The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_time.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)kern_time.c 8.1 (Berkeley) 6/10/93
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/10.1/sys/kern/kern_time.c 270042 2014-08-16 12:59:47Z bz $");
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/limits.h>
   38 #include <sys/clock.h>
   39 #include <sys/lock.h>
   40 #include <sys/mutex.h>
   41 #include <sys/sysproto.h>
   42 #include <sys/eventhandler.h>
   43 #include <sys/resourcevar.h>
   44 #include <sys/signalvar.h>
   45 #include <sys/kernel.h>
   46 #include <sys/sleepqueue.h>
   47 #include <sys/syscallsubr.h>
   48 #include <sys/sysctl.h>
   49 #include <sys/sysent.h>
   50 #include <sys/priv.h>
   51 #include <sys/proc.h>
   52 #include <sys/posix4.h>
   53 #include <sys/time.h>
   54 #include <sys/timers.h>
   55 #include <sys/timetc.h>
   56 #include <sys/vnode.h>
   57 
   58 #include <vm/vm.h>
   59 #include <vm/vm_extern.h>
   60 
   61 #define MAX_CLOCKS      (CLOCK_MONOTONIC+1)
   62 #define CPUCLOCK_BIT            0x80000000
   63 #define CPUCLOCK_PROCESS_BIT    0x40000000
   64 #define CPUCLOCK_ID_MASK        (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
   65 #define MAKE_THREAD_CPUCLOCK(tid)       (CPUCLOCK_BIT|(tid))
   66 #define MAKE_PROCESS_CPUCLOCK(pid)      \
   67         (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
   68 
   69 static struct kclock    posix_clocks[MAX_CLOCKS];
   70 static uma_zone_t       itimer_zone = NULL;
   71 
   72 /*
   73  * Time of day and interval timer support.
   74  *
   75  * These routines provide the kernel entry points to get and set
   76  * the time-of-day and per-process interval timers.  Subroutines
   77  * here provide support for adding and subtracting timeval structures
   78  * and decrementing interval timers, optionally reloading the interval
   79  * timers when they expire.
   80  */
   81 
   82 static int      settime(struct thread *, struct timeval *);
   83 static void     timevalfix(struct timeval *);
   84 
   85 static void     itimer_start(void);
   86 static int      itimer_init(void *, int, int);
   87 static void     itimer_fini(void *, int);
   88 static void     itimer_enter(struct itimer *);
   89 static void     itimer_leave(struct itimer *);
   90 static struct itimer *itimer_find(struct proc *, int);
   91 static void     itimers_alloc(struct proc *);
   92 static void     itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
   93 static void     itimers_event_hook_exit(void *arg, struct proc *p);
   94 static int      realtimer_create(struct itimer *);
   95 static int      realtimer_gettime(struct itimer *, struct itimerspec *);
   96 static int      realtimer_settime(struct itimer *, int,
   97                         struct itimerspec *, struct itimerspec *);
   98 static int      realtimer_delete(struct itimer *);
   99 static void     realtimer_clocktime(clockid_t, struct timespec *);
  100 static void     realtimer_expire(void *);
  101 
  102 int             register_posix_clock(int, struct kclock *);
  103 void            itimer_fire(struct itimer *it);
  104 int             itimespecfix(struct timespec *ts);
  105 
  106 #define CLOCK_CALL(clock, call, arglist)                \
  107         ((*posix_clocks[clock].call) arglist)
  108 
  109 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
  110 
  111 
  112 static int
  113 settime(struct thread *td, struct timeval *tv)
  114 {
  115         struct timeval delta, tv1, tv2;
  116         static struct timeval maxtime, laststep;
  117         struct timespec ts;
  118         int s;
  119 
  120         s = splclock();
  121         microtime(&tv1);
  122         delta = *tv;
  123         timevalsub(&delta, &tv1);
  124 
  125         /*
  126          * If the system is secure, we do not allow the time to be 
  127          * set to a value earlier than 1 second less than the highest
  128          * time we have yet seen. The worst a miscreant can do in
  129          * this circumstance is "freeze" time. He couldn't go
  130          * back to the past.
  131          *
  132          * We similarly do not allow the clock to be stepped more
  133          * than one second, nor more than once per second. This allows
  134          * a miscreant to make the clock march double-time, but no worse.
  135          */
  136         if (securelevel_gt(td->td_ucred, 1) != 0) {
  137                 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
  138                         /*
  139                          * Update maxtime to latest time we've seen.
  140                          */
  141                         if (tv1.tv_sec > maxtime.tv_sec)
  142                                 maxtime = tv1;
  143                         tv2 = *tv;
  144                         timevalsub(&tv2, &maxtime);
  145                         if (tv2.tv_sec < -1) {
  146                                 tv->tv_sec = maxtime.tv_sec - 1;
  147                                 printf("Time adjustment clamped to -1 second\n");
  148                         }
  149                 } else {
  150                         if (tv1.tv_sec == laststep.tv_sec) {
  151                                 splx(s);
  152                                 return (EPERM);
  153                         }
  154                         if (delta.tv_sec > 1) {
  155                                 tv->tv_sec = tv1.tv_sec + 1;
  156                                 printf("Time adjustment clamped to +1 second\n");
  157                         }
  158                         laststep = *tv;
  159                 }
  160         }
  161 
  162         ts.tv_sec = tv->tv_sec;
  163         ts.tv_nsec = tv->tv_usec * 1000;
  164         mtx_lock(&Giant);
  165         tc_setclock(&ts);
  166         resettodr();
  167         mtx_unlock(&Giant);
  168         return (0);
  169 }
  170 
  171 #ifndef _SYS_SYSPROTO_H_
  172 struct clock_getcpuclockid2_args {
  173         id_t id;
  174         int which,
  175         clockid_t *clock_id;
  176 };
  177 #endif
  178 /* ARGSUSED */
  179 int
  180 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
  181 {
  182         clockid_t clk_id;
  183         int error;
  184 
  185         error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
  186         if (error == 0)
  187                 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
  188         return (error);
  189 }
  190 
  191 int
  192 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
  193     clockid_t *clk_id)
  194 {
  195         struct proc *p;
  196         pid_t pid;
  197         lwpid_t tid;
  198         int error;
  199 
  200         switch (which) {
  201         case CPUCLOCK_WHICH_PID:
  202                 if (id != 0) {
  203                         p = pfind(id);
  204                         if (p == NULL)
  205                                 return (ESRCH);
  206                         error = p_cansee(td, p);
  207                         PROC_UNLOCK(p);
  208                         if (error != 0)
  209                                 return (error);
  210                         pid = id;
  211                 } else {
  212                         pid = td->td_proc->p_pid;
  213                 }
  214                 *clk_id = MAKE_PROCESS_CPUCLOCK(pid);
  215                 return (0);
  216         case CPUCLOCK_WHICH_TID:
  217                 tid = id == 0 ? td->td_tid : id;
  218                 *clk_id = MAKE_THREAD_CPUCLOCK(tid);
  219                 return (0);
  220         default:
  221                 return (EINVAL);
  222         }
  223 }
  224 
  225 #ifndef _SYS_SYSPROTO_H_
  226 struct clock_gettime_args {
  227         clockid_t clock_id;
  228         struct  timespec *tp;
  229 };
  230 #endif
  231 /* ARGSUSED */
  232 int
  233 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
  234 {
  235         struct timespec ats;
  236         int error;
  237 
  238         error = kern_clock_gettime(td, uap->clock_id, &ats);
  239         if (error == 0)
  240                 error = copyout(&ats, uap->tp, sizeof(ats));
  241 
  242         return (error);
  243 }
  244 
  245 static inline void 
  246 cputick2timespec(uint64_t runtime, struct timespec *ats)
  247 {
  248         runtime = cputick2usec(runtime);
  249         ats->tv_sec = runtime / 1000000;
  250         ats->tv_nsec = runtime % 1000000 * 1000;
  251 }
  252 
  253 static void
  254 get_thread_cputime(struct thread *targettd, struct timespec *ats)
  255 {
  256         uint64_t runtime, curtime, switchtime;
  257 
  258         if (targettd == NULL) { /* current thread */
  259                 critical_enter();
  260                 switchtime = PCPU_GET(switchtime);
  261                 curtime = cpu_ticks();
  262                 runtime = curthread->td_runtime;
  263                 critical_exit();
  264                 runtime += curtime - switchtime;
  265         } else {
  266                 thread_lock(targettd);
  267                 runtime = targettd->td_runtime;
  268                 thread_unlock(targettd);
  269         }
  270         cputick2timespec(runtime, ats);
  271 }
  272 
  273 static void
  274 get_process_cputime(struct proc *targetp, struct timespec *ats)
  275 {
  276         uint64_t runtime;
  277         struct rusage ru;
  278 
  279         PROC_SLOCK(targetp);
  280         rufetch(targetp, &ru);
  281         runtime = targetp->p_rux.rux_runtime;
  282         PROC_SUNLOCK(targetp);
  283         cputick2timespec(runtime, ats);
  284 }
  285 
  286 static int
  287 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  288 {
  289         struct proc *p, *p2;
  290         struct thread *td2;
  291         lwpid_t tid;
  292         pid_t pid;
  293         int error;
  294 
  295         p = td->td_proc;
  296         if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
  297                 tid = clock_id & CPUCLOCK_ID_MASK;
  298                 td2 = tdfind(tid, p->p_pid);
  299                 if (td2 == NULL)
  300                         return (EINVAL);
  301                 get_thread_cputime(td2, ats);
  302                 PROC_UNLOCK(td2->td_proc);
  303         } else {
  304                 pid = clock_id & CPUCLOCK_ID_MASK;
  305                 error = pget(pid, PGET_CANSEE, &p2);
  306                 if (error != 0)
  307                         return (EINVAL);
  308                 get_process_cputime(p2, ats);
  309                 PROC_UNLOCK(p2);
  310         }
  311         return (0);
  312 }
  313 
  314 int
  315 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  316 {
  317         struct timeval sys, user;
  318         struct proc *p;
  319 
  320         p = td->td_proc;
  321         switch (clock_id) {
  322         case CLOCK_REALTIME:            /* Default to precise. */
  323         case CLOCK_REALTIME_PRECISE:
  324                 nanotime(ats);
  325                 break;
  326         case CLOCK_REALTIME_FAST:
  327                 getnanotime(ats);
  328                 break;
  329         case CLOCK_VIRTUAL:
  330                 PROC_LOCK(p);
  331                 PROC_SLOCK(p);
  332                 calcru(p, &user, &sys);
  333                 PROC_SUNLOCK(p);
  334                 PROC_UNLOCK(p);
  335                 TIMEVAL_TO_TIMESPEC(&user, ats);
  336                 break;
  337         case CLOCK_PROF:
  338                 PROC_LOCK(p);
  339                 PROC_SLOCK(p);
  340                 calcru(p, &user, &sys);
  341                 PROC_SUNLOCK(p);
  342                 PROC_UNLOCK(p);
  343                 timevaladd(&user, &sys);
  344                 TIMEVAL_TO_TIMESPEC(&user, ats);
  345                 break;
  346         case CLOCK_MONOTONIC:           /* Default to precise. */
  347         case CLOCK_MONOTONIC_PRECISE:
  348         case CLOCK_UPTIME:
  349         case CLOCK_UPTIME_PRECISE:
  350                 nanouptime(ats);
  351                 break;
  352         case CLOCK_UPTIME_FAST:
  353         case CLOCK_MONOTONIC_FAST:
  354                 getnanouptime(ats);
  355                 break;
  356         case CLOCK_SECOND:
  357                 ats->tv_sec = time_second;
  358                 ats->tv_nsec = 0;
  359                 break;
  360         case CLOCK_THREAD_CPUTIME_ID:
  361                 get_thread_cputime(NULL, ats);
  362                 break;
  363         case CLOCK_PROCESS_CPUTIME_ID:
  364                 PROC_LOCK(p);
  365                 get_process_cputime(p, ats);
  366                 PROC_UNLOCK(p);
  367                 break;
  368         default:
  369                 if ((int)clock_id >= 0)
  370                         return (EINVAL);
  371                 return (get_cputime(td, clock_id, ats));
  372         }
  373         return (0);
  374 }
  375 
  376 #ifndef _SYS_SYSPROTO_H_
  377 struct clock_settime_args {
  378         clockid_t clock_id;
  379         const struct    timespec *tp;
  380 };
  381 #endif
  382 /* ARGSUSED */
  383 int
  384 sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
  385 {
  386         struct timespec ats;
  387         int error;
  388 
  389         if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
  390                 return (error);
  391         return (kern_clock_settime(td, uap->clock_id, &ats));
  392 }
  393 
  394 int
  395 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  396 {
  397         struct timeval atv;
  398         int error;
  399 
  400         if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
  401                 return (error);
  402         if (clock_id != CLOCK_REALTIME)
  403                 return (EINVAL);
  404         if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
  405                 return (EINVAL);
  406         /* XXX Don't convert nsec->usec and back */
  407         TIMESPEC_TO_TIMEVAL(&atv, ats);
  408         error = settime(td, &atv);
  409         return (error);
  410 }
  411 
  412 #ifndef _SYS_SYSPROTO_H_
  413 struct clock_getres_args {
  414         clockid_t clock_id;
  415         struct  timespec *tp;
  416 };
  417 #endif
  418 int
  419 sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
  420 {
  421         struct timespec ts;
  422         int error;
  423 
  424         if (uap->tp == NULL)
  425                 return (0);
  426 
  427         error = kern_clock_getres(td, uap->clock_id, &ts);
  428         if (error == 0)
  429                 error = copyout(&ts, uap->tp, sizeof(ts));
  430         return (error);
  431 }
  432 
  433 int
  434 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
  435 {
  436 
  437         ts->tv_sec = 0;
  438         switch (clock_id) {
  439         case CLOCK_REALTIME:
  440         case CLOCK_REALTIME_FAST:
  441         case CLOCK_REALTIME_PRECISE:
  442         case CLOCK_MONOTONIC:
  443         case CLOCK_MONOTONIC_FAST:
  444         case CLOCK_MONOTONIC_PRECISE:
  445         case CLOCK_UPTIME:
  446         case CLOCK_UPTIME_FAST:
  447         case CLOCK_UPTIME_PRECISE:
  448                 /*
  449                  * Round up the result of the division cheaply by adding 1.
  450                  * Rounding up is especially important if rounding down
  451                  * would give 0.  Perfect rounding is unimportant.
  452                  */
  453                 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
  454                 break;
  455         case CLOCK_VIRTUAL:
  456         case CLOCK_PROF:
  457                 /* Accurately round up here because we can do so cheaply. */
  458                 ts->tv_nsec = (1000000000 + hz - 1) / hz;
  459                 break;
  460         case CLOCK_SECOND:
  461                 ts->tv_sec = 1;
  462                 ts->tv_nsec = 0;
  463                 break;
  464         case CLOCK_THREAD_CPUTIME_ID:
  465         case CLOCK_PROCESS_CPUTIME_ID:
  466         cputime:
  467                 /* sync with cputick2usec */
  468                 ts->tv_nsec = 1000000 / cpu_tickrate();
  469                 if (ts->tv_nsec == 0)
  470                         ts->tv_nsec = 1000;
  471                 break;
  472         default:
  473                 if ((int)clock_id < 0)
  474                         goto cputime;
  475                 return (EINVAL);
  476         }
  477         return (0);
  478 }
  479 
  480 static uint8_t nanowait[MAXCPU];
  481 
  482 int
  483 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
  484 {
  485         struct timespec ts;
  486         sbintime_t sbt, sbtt, prec, tmp;
  487         time_t over;
  488         int error;
  489 
  490         if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
  491                 return (EINVAL);
  492         if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
  493                 return (0);
  494         ts = *rqt;
  495         if (ts.tv_sec > INT32_MAX / 2) {
  496                 over = ts.tv_sec - INT32_MAX / 2;
  497                 ts.tv_sec -= over;
  498         } else
  499                 over = 0;
  500         tmp = tstosbt(ts);
  501         prec = tmp;
  502         prec >>= tc_precexp;
  503         if (TIMESEL(&sbt, tmp))
  504                 sbt += tc_tick_sbt;
  505         sbt += tmp;
  506         error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
  507             sbt, prec, C_ABSOLUTE);
  508         if (error != EWOULDBLOCK) {
  509                 if (error == ERESTART)
  510                         error = EINTR;
  511                 TIMESEL(&sbtt, tmp);
  512                 if (rmt != NULL) {
  513                         ts = sbttots(sbt - sbtt);
  514                         ts.tv_sec += over;
  515                         if (ts.tv_sec < 0)
  516                                 timespecclear(&ts);
  517                         *rmt = ts;
  518                 }
  519                 if (sbtt >= sbt)
  520                         return (0);
  521                 return (error);
  522         }
  523         return (0);
  524 }
  525 
  526 #ifndef _SYS_SYSPROTO_H_
  527 struct nanosleep_args {
  528         struct  timespec *rqtp;
  529         struct  timespec *rmtp;
  530 };
  531 #endif
  532 /* ARGSUSED */
  533 int
  534 sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
  535 {
  536         struct timespec rmt, rqt;
  537         int error;
  538 
  539         error = copyin(uap->rqtp, &rqt, sizeof(rqt));
  540         if (error)
  541                 return (error);
  542 
  543         if (uap->rmtp &&
  544             !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
  545                         return (EFAULT);
  546         error = kern_nanosleep(td, &rqt, &rmt);
  547         if (error && uap->rmtp) {
  548                 int error2;
  549 
  550                 error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
  551                 if (error2)
  552                         error = error2;
  553         }
  554         return (error);
  555 }
  556 
  557 #ifndef _SYS_SYSPROTO_H_
  558 struct gettimeofday_args {
  559         struct  timeval *tp;
  560         struct  timezone *tzp;
  561 };
  562 #endif
  563 /* ARGSUSED */
  564 int
  565 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
  566 {
  567         struct timeval atv;
  568         struct timezone rtz;
  569         int error = 0;
  570 
  571         if (uap->tp) {
  572                 microtime(&atv);
  573                 error = copyout(&atv, uap->tp, sizeof (atv));
  574         }
  575         if (error == 0 && uap->tzp != NULL) {
  576                 rtz.tz_minuteswest = tz_minuteswest;
  577                 rtz.tz_dsttime = tz_dsttime;
  578                 error = copyout(&rtz, uap->tzp, sizeof (rtz));
  579         }
  580         return (error);
  581 }
  582 
  583 #ifndef _SYS_SYSPROTO_H_
  584 struct settimeofday_args {
  585         struct  timeval *tv;
  586         struct  timezone *tzp;
  587 };
  588 #endif
  589 /* ARGSUSED */
  590 int
  591 sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
  592 {
  593         struct timeval atv, *tvp;
  594         struct timezone atz, *tzp;
  595         int error;
  596 
  597         if (uap->tv) {
  598                 error = copyin(uap->tv, &atv, sizeof(atv));
  599                 if (error)
  600                         return (error);
  601                 tvp = &atv;
  602         } else
  603                 tvp = NULL;
  604         if (uap->tzp) {
  605                 error = copyin(uap->tzp, &atz, sizeof(atz));
  606                 if (error)
  607                         return (error);
  608                 tzp = &atz;
  609         } else
  610                 tzp = NULL;
  611         return (kern_settimeofday(td, tvp, tzp));
  612 }
  613 
  614 int
  615 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
  616 {
  617         int error;
  618 
  619         error = priv_check(td, PRIV_SETTIMEOFDAY);
  620         if (error)
  621                 return (error);
  622         /* Verify all parameters before changing time. */
  623         if (tv) {
  624                 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
  625                         return (EINVAL);
  626                 error = settime(td, tv);
  627         }
  628         if (tzp && error == 0) {
  629                 tz_minuteswest = tzp->tz_minuteswest;
  630                 tz_dsttime = tzp->tz_dsttime;
  631         }
  632         return (error);
  633 }
  634 
  635 /*
  636  * Get value of an interval timer.  The process virtual and profiling virtual
  637  * time timers are kept in the p_stats area, since they can be swapped out.
  638  * These are kept internally in the way they are specified externally: in
  639  * time until they expire.
  640  *
  641  * The real time interval timer is kept in the process table slot for the
  642  * process, and its value (it_value) is kept as an absolute time rather than
  643  * as a delta, so that it is easy to keep periodic real-time signals from
  644  * drifting.
  645  *
  646  * Virtual time timers are processed in the hardclock() routine of
  647  * kern_clock.c.  The real time timer is processed by a timeout routine,
  648  * called from the softclock() routine.  Since a callout may be delayed in
  649  * real time due to interrupt processing in the system, it is possible for
  650  * the real time timeout routine (realitexpire, given below), to be delayed
  651  * in real time past when it is supposed to occur.  It does not suffice,
  652  * therefore, to reload the real timer .it_value from the real time timers
  653  * .it_interval.  Rather, we compute the next time in absolute time the timer
  654  * should go off.
  655  */
  656 #ifndef _SYS_SYSPROTO_H_
  657 struct getitimer_args {
  658         u_int   which;
  659         struct  itimerval *itv;
  660 };
  661 #endif
  662 int
  663 sys_getitimer(struct thread *td, struct getitimer_args *uap)
  664 {
  665         struct itimerval aitv;
  666         int error;
  667 
  668         error = kern_getitimer(td, uap->which, &aitv);
  669         if (error != 0)
  670                 return (error);
  671         return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
  672 }
  673 
  674 int
  675 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
  676 {
  677         struct proc *p = td->td_proc;
  678         struct timeval ctv;
  679 
  680         if (which > ITIMER_PROF)
  681                 return (EINVAL);
  682 
  683         if (which == ITIMER_REAL) {
  684                 /*
  685                  * Convert from absolute to relative time in .it_value
  686                  * part of real time timer.  If time for real time timer
  687                  * has passed return 0, else return difference between
  688                  * current time and time for the timer to go off.
  689                  */
  690                 PROC_LOCK(p);
  691                 *aitv = p->p_realtimer;
  692                 PROC_UNLOCK(p);
  693                 if (timevalisset(&aitv->it_value)) {
  694                         microuptime(&ctv);
  695                         if (timevalcmp(&aitv->it_value, &ctv, <))
  696                                 timevalclear(&aitv->it_value);
  697                         else
  698                                 timevalsub(&aitv->it_value, &ctv);
  699                 }
  700         } else {
  701                 PROC_SLOCK(p);
  702                 *aitv = p->p_stats->p_timer[which];
  703                 PROC_SUNLOCK(p);
  704         }
  705         return (0);
  706 }
  707 
  708 #ifndef _SYS_SYSPROTO_H_
  709 struct setitimer_args {
  710         u_int   which;
  711         struct  itimerval *itv, *oitv;
  712 };
  713 #endif
  714 int
  715 sys_setitimer(struct thread *td, struct setitimer_args *uap)
  716 {
  717         struct itimerval aitv, oitv;
  718         int error;
  719 
  720         if (uap->itv == NULL) {
  721                 uap->itv = uap->oitv;
  722                 return (sys_getitimer(td, (struct getitimer_args *)uap));
  723         }
  724 
  725         if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
  726                 return (error);
  727         error = kern_setitimer(td, uap->which, &aitv, &oitv);
  728         if (error != 0 || uap->oitv == NULL)
  729                 return (error);
  730         return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
  731 }
  732 
  733 int
  734 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
  735     struct itimerval *oitv)
  736 {
  737         struct proc *p = td->td_proc;
  738         struct timeval ctv;
  739         sbintime_t sbt, pr;
  740 
  741         if (aitv == NULL)
  742                 return (kern_getitimer(td, which, oitv));
  743 
  744         if (which > ITIMER_PROF)
  745                 return (EINVAL);
  746         if (itimerfix(&aitv->it_value) ||
  747             aitv->it_value.tv_sec > INT32_MAX / 2)
  748                 return (EINVAL);
  749         if (!timevalisset(&aitv->it_value))
  750                 timevalclear(&aitv->it_interval);
  751         else if (itimerfix(&aitv->it_interval) ||
  752             aitv->it_interval.tv_sec > INT32_MAX / 2)
  753                 return (EINVAL);
  754 
  755         if (which == ITIMER_REAL) {
  756                 PROC_LOCK(p);
  757                 if (timevalisset(&p->p_realtimer.it_value))
  758                         callout_stop(&p->p_itcallout);
  759                 microuptime(&ctv);
  760                 if (timevalisset(&aitv->it_value)) {
  761                         pr = tvtosbt(aitv->it_value) >> tc_precexp;
  762                         timevaladd(&aitv->it_value, &ctv);
  763                         sbt = tvtosbt(aitv->it_value);
  764                         callout_reset_sbt(&p->p_itcallout, sbt, pr,
  765                             realitexpire, p, C_ABSOLUTE);
  766                 }
  767                 *oitv = p->p_realtimer;
  768                 p->p_realtimer = *aitv;
  769                 PROC_UNLOCK(p);
  770                 if (timevalisset(&oitv->it_value)) {
  771                         if (timevalcmp(&oitv->it_value, &ctv, <))
  772                                 timevalclear(&oitv->it_value);
  773                         else
  774                                 timevalsub(&oitv->it_value, &ctv);
  775                 }
  776         } else {
  777                 if (aitv->it_interval.tv_sec == 0 &&
  778                     aitv->it_interval.tv_usec != 0 &&
  779                     aitv->it_interval.tv_usec < tick)
  780                         aitv->it_interval.tv_usec = tick;
  781                 if (aitv->it_value.tv_sec == 0 &&
  782                     aitv->it_value.tv_usec != 0 &&
  783                     aitv->it_value.tv_usec < tick)
  784                         aitv->it_value.tv_usec = tick;
  785                 PROC_SLOCK(p);
  786                 *oitv = p->p_stats->p_timer[which];
  787                 p->p_stats->p_timer[which] = *aitv;
  788                 PROC_SUNLOCK(p);
  789         }
  790         return (0);
  791 }
  792 
  793 /*
  794  * Real interval timer expired:
  795  * send process whose timer expired an alarm signal.
  796  * If time is not set up to reload, then just return.
  797  * Else compute next time timer should go off which is > current time.
  798  * This is where delay in processing this timeout causes multiple
  799  * SIGALRM calls to be compressed into one.
  800  * tvtohz() always adds 1 to allow for the time until the next clock
  801  * interrupt being strictly less than 1 clock tick, but we don't want
  802  * that here since we want to appear to be in sync with the clock
  803  * interrupt even when we're delayed.
  804  */
  805 void
  806 realitexpire(void *arg)
  807 {
  808         struct proc *p;
  809         struct timeval ctv;
  810         sbintime_t isbt;
  811 
  812         p = (struct proc *)arg;
  813         kern_psignal(p, SIGALRM);
  814         if (!timevalisset(&p->p_realtimer.it_interval)) {
  815                 timevalclear(&p->p_realtimer.it_value);
  816                 if (p->p_flag & P_WEXIT)
  817                         wakeup(&p->p_itcallout);
  818                 return;
  819         }
  820         isbt = tvtosbt(p->p_realtimer.it_interval);
  821         if (isbt >= sbt_timethreshold)
  822                 getmicrouptime(&ctv);
  823         else
  824                 microuptime(&ctv);
  825         do {
  826                 timevaladd(&p->p_realtimer.it_value,
  827                     &p->p_realtimer.it_interval);
  828         } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
  829         callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
  830             isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE);
  831 }
  832 
  833 /*
  834  * Check that a proposed value to load into the .it_value or
  835  * .it_interval part of an interval timer is acceptable, and
  836  * fix it to have at least minimal value (i.e. if it is less
  837  * than the resolution of the clock, round it up.)
  838  */
  839 int
  840 itimerfix(struct timeval *tv)
  841 {
  842 
  843         if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
  844                 return (EINVAL);
  845         if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
  846             tv->tv_usec < (u_int)tick / 16)
  847                 tv->tv_usec = (u_int)tick / 16;
  848         return (0);
  849 }
  850 
  851 /*
  852  * Decrement an interval timer by a specified number
  853  * of microseconds, which must be less than a second,
  854  * i.e. < 1000000.  If the timer expires, then reload
  855  * it.  In this case, carry over (usec - old value) to
  856  * reduce the value reloaded into the timer so that
  857  * the timer does not drift.  This routine assumes
  858  * that it is called in a context where the timers
  859  * on which it is operating cannot change in value.
  860  */
  861 int
  862 itimerdecr(struct itimerval *itp, int usec)
  863 {
  864 
  865         if (itp->it_value.tv_usec < usec) {
  866                 if (itp->it_value.tv_sec == 0) {
  867                         /* expired, and already in next interval */
  868                         usec -= itp->it_value.tv_usec;
  869                         goto expire;
  870                 }
  871                 itp->it_value.tv_usec += 1000000;
  872                 itp->it_value.tv_sec--;
  873         }
  874         itp->it_value.tv_usec -= usec;
  875         usec = 0;
  876         if (timevalisset(&itp->it_value))
  877                 return (1);
  878         /* expired, exactly at end of interval */
  879 expire:
  880         if (timevalisset(&itp->it_interval)) {
  881                 itp->it_value = itp->it_interval;
  882                 itp->it_value.tv_usec -= usec;
  883                 if (itp->it_value.tv_usec < 0) {
  884                         itp->it_value.tv_usec += 1000000;
  885                         itp->it_value.tv_sec--;
  886                 }
  887         } else
  888                 itp->it_value.tv_usec = 0;              /* sec is already 0 */
  889         return (0);
  890 }
  891 
  892 /*
  893  * Add and subtract routines for timevals.
  894  * N.B.: subtract routine doesn't deal with
  895  * results which are before the beginning,
  896  * it just gets very confused in this case.
  897  * Caveat emptor.
  898  */
  899 void
  900 timevaladd(struct timeval *t1, const struct timeval *t2)
  901 {
  902 
  903         t1->tv_sec += t2->tv_sec;
  904         t1->tv_usec += t2->tv_usec;
  905         timevalfix(t1);
  906 }
  907 
  908 void
  909 timevalsub(struct timeval *t1, const struct timeval *t2)
  910 {
  911 
  912         t1->tv_sec -= t2->tv_sec;
  913         t1->tv_usec -= t2->tv_usec;
  914         timevalfix(t1);
  915 }
  916 
  917 static void
  918 timevalfix(struct timeval *t1)
  919 {
  920 
  921         if (t1->tv_usec < 0) {
  922                 t1->tv_sec--;
  923                 t1->tv_usec += 1000000;
  924         }
  925         if (t1->tv_usec >= 1000000) {
  926                 t1->tv_sec++;
  927                 t1->tv_usec -= 1000000;
  928         }
  929 }
  930 
  931 /*
  932  * ratecheck(): simple time-based rate-limit checking.
  933  */
  934 int
  935 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
  936 {
  937         struct timeval tv, delta;
  938         int rv = 0;
  939 
  940         getmicrouptime(&tv);            /* NB: 10ms precision */
  941         delta = tv;
  942         timevalsub(&delta, lasttime);
  943 
  944         /*
  945          * check for 0,0 is so that the message will be seen at least once,
  946          * even if interval is huge.
  947          */
  948         if (timevalcmp(&delta, mininterval, >=) ||
  949             (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
  950                 *lasttime = tv;
  951                 rv = 1;
  952         }
  953 
  954         return (rv);
  955 }
  956 
  957 /*
  958  * ppsratecheck(): packets (or events) per second limitation.
  959  *
  960  * Return 0 if the limit is to be enforced (e.g. the caller
  961  * should drop a packet because of the rate limitation).
  962  *
  963  * maxpps of 0 always causes zero to be returned.  maxpps of -1
  964  * always causes 1 to be returned; this effectively defeats rate
  965  * limiting.
  966  *
  967  * Note that we maintain the struct timeval for compatibility
  968  * with other bsd systems.  We reuse the storage and just monitor
  969  * clock ticks for minimal overhead.  
  970  */
  971 int
  972 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
  973 {
  974         int now;
  975 
  976         /*
  977          * Reset the last time and counter if this is the first call
  978          * or more than a second has passed since the last update of
  979          * lasttime.
  980          */
  981         now = ticks;
  982         if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
  983                 lasttime->tv_sec = now;
  984                 *curpps = 1;
  985                 return (maxpps != 0);
  986         } else {
  987                 (*curpps)++;            /* NB: ignore potential overflow */
  988                 return (maxpps < 0 || *curpps < maxpps);
  989         }
  990 }
  991 
  992 static void
  993 itimer_start(void)
  994 {
  995         struct kclock rt_clock = {
  996                 .timer_create  = realtimer_create,
  997                 .timer_delete  = realtimer_delete,
  998                 .timer_settime = realtimer_settime,
  999                 .timer_gettime = realtimer_gettime,
 1000                 .event_hook    = NULL
 1001         };
 1002 
 1003         itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
 1004                 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
 1005         register_posix_clock(CLOCK_REALTIME,  &rt_clock);
 1006         register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
 1007         p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
 1008         p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
 1009         p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
 1010         EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
 1011                 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
 1012         EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
 1013                 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
 1014 }
 1015 
 1016 int
 1017 register_posix_clock(int clockid, struct kclock *clk)
 1018 {
 1019         if ((unsigned)clockid >= MAX_CLOCKS) {
 1020                 printf("%s: invalid clockid\n", __func__);
 1021                 return (0);
 1022         }
 1023         posix_clocks[clockid] = *clk;
 1024         return (1);
 1025 }
 1026 
 1027 static int
 1028 itimer_init(void *mem, int size, int flags)
 1029 {
 1030         struct itimer *it;
 1031 
 1032         it = (struct itimer *)mem;
 1033         mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
 1034         return (0);
 1035 }
 1036 
 1037 static void
 1038 itimer_fini(void *mem, int size)
 1039 {
 1040         struct itimer *it;
 1041 
 1042         it = (struct itimer *)mem;
 1043         mtx_destroy(&it->it_mtx);
 1044 }
 1045 
 1046 static void
 1047 itimer_enter(struct itimer *it)
 1048 {
 1049 
 1050         mtx_assert(&it->it_mtx, MA_OWNED);
 1051         it->it_usecount++;
 1052 }
 1053 
 1054 static void
 1055 itimer_leave(struct itimer *it)
 1056 {
 1057 
 1058         mtx_assert(&it->it_mtx, MA_OWNED);
 1059         KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
 1060 
 1061         if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
 1062                 wakeup(it);
 1063 }
 1064 
 1065 #ifndef _SYS_SYSPROTO_H_
 1066 struct ktimer_create_args {
 1067         clockid_t clock_id;
 1068         struct sigevent * evp;
 1069         int * timerid;
 1070 };
 1071 #endif
 1072 int
 1073 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
 1074 {
 1075         struct sigevent *evp, ev;
 1076         int id;
 1077         int error;
 1078 
 1079         if (uap->evp == NULL) {
 1080                 evp = NULL;
 1081         } else {
 1082                 error = copyin(uap->evp, &ev, sizeof(ev));
 1083                 if (error != 0)
 1084                         return (error);
 1085                 evp = &ev;
 1086         }
 1087         error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
 1088         if (error == 0) {
 1089                 error = copyout(&id, uap->timerid, sizeof(int));
 1090                 if (error != 0)
 1091                         kern_ktimer_delete(td, id);
 1092         }
 1093         return (error);
 1094 }
 1095 
 1096 int
 1097 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
 1098     int *timerid, int preset_id)
 1099 {
 1100         struct proc *p = td->td_proc;
 1101         struct itimer *it;
 1102         int id;
 1103         int error;
 1104 
 1105         if (clock_id < 0 || clock_id >= MAX_CLOCKS)
 1106                 return (EINVAL);
 1107 
 1108         if (posix_clocks[clock_id].timer_create == NULL)
 1109                 return (EINVAL);
 1110 
 1111         if (evp != NULL) {
 1112                 if (evp->sigev_notify != SIGEV_NONE &&
 1113                     evp->sigev_notify != SIGEV_SIGNAL &&
 1114                     evp->sigev_notify != SIGEV_THREAD_ID)
 1115                         return (EINVAL);
 1116                 if ((evp->sigev_notify == SIGEV_SIGNAL ||
 1117                      evp->sigev_notify == SIGEV_THREAD_ID) &&
 1118                         !_SIG_VALID(evp->sigev_signo))
 1119                         return (EINVAL);
 1120         }
 1121         
 1122         if (p->p_itimers == NULL)
 1123                 itimers_alloc(p);
 1124         
 1125         it = uma_zalloc(itimer_zone, M_WAITOK);
 1126         it->it_flags = 0;
 1127         it->it_usecount = 0;
 1128         it->it_active = 0;
 1129         timespecclear(&it->it_time.it_value);
 1130         timespecclear(&it->it_time.it_interval);
 1131         it->it_overrun = 0;
 1132         it->it_overrun_last = 0;
 1133         it->it_clockid = clock_id;
 1134         it->it_timerid = -1;
 1135         it->it_proc = p;
 1136         ksiginfo_init(&it->it_ksi);
 1137         it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
 1138         error = CLOCK_CALL(clock_id, timer_create, (it));
 1139         if (error != 0)
 1140                 goto out;
 1141 
 1142         PROC_LOCK(p);
 1143         if (preset_id != -1) {
 1144                 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
 1145                 id = preset_id;
 1146                 if (p->p_itimers->its_timers[id] != NULL) {
 1147                         PROC_UNLOCK(p);
 1148                         error = 0;
 1149                         goto out;
 1150                 }
 1151         } else {
 1152                 /*
 1153                  * Find a free timer slot, skipping those reserved
 1154                  * for setitimer().
 1155                  */
 1156                 for (id = 3; id < TIMER_MAX; id++)
 1157                         if (p->p_itimers->its_timers[id] == NULL)
 1158                                 break;
 1159                 if (id == TIMER_MAX) {
 1160                         PROC_UNLOCK(p);
 1161                         error = EAGAIN;
 1162                         goto out;
 1163                 }
 1164         }
 1165         it->it_timerid = id;
 1166         p->p_itimers->its_timers[id] = it;
 1167         if (evp != NULL)
 1168                 it->it_sigev = *evp;
 1169         else {
 1170                 it->it_sigev.sigev_notify = SIGEV_SIGNAL;
 1171                 switch (clock_id) {
 1172                 default:
 1173                 case CLOCK_REALTIME:
 1174                         it->it_sigev.sigev_signo = SIGALRM;
 1175                         break;
 1176                 case CLOCK_VIRTUAL:
 1177                         it->it_sigev.sigev_signo = SIGVTALRM;
 1178                         break;
 1179                 case CLOCK_PROF:
 1180                         it->it_sigev.sigev_signo = SIGPROF;
 1181                         break;
 1182                 }
 1183                 it->it_sigev.sigev_value.sival_int = id;
 1184         }
 1185 
 1186         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1187             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1188                 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
 1189                 it->it_ksi.ksi_code = SI_TIMER;
 1190                 it->it_ksi.ksi_value = it->it_sigev.sigev_value;
 1191                 it->it_ksi.ksi_timerid = id;
 1192         }
 1193         PROC_UNLOCK(p);
 1194         *timerid = id;
 1195         return (0);
 1196 
 1197 out:
 1198         ITIMER_LOCK(it);
 1199         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1200         ITIMER_UNLOCK(it);
 1201         uma_zfree(itimer_zone, it);
 1202         return (error);
 1203 }
 1204 
 1205 #ifndef _SYS_SYSPROTO_H_
 1206 struct ktimer_delete_args {
 1207         int timerid;
 1208 };
 1209 #endif
 1210 int
 1211 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
 1212 {
 1213 
 1214         return (kern_ktimer_delete(td, uap->timerid));
 1215 }
 1216 
 1217 static struct itimer *
 1218 itimer_find(struct proc *p, int timerid)
 1219 {
 1220         struct itimer *it;
 1221 
 1222         PROC_LOCK_ASSERT(p, MA_OWNED);
 1223         if ((p->p_itimers == NULL) ||
 1224             (timerid < 0) || (timerid >= TIMER_MAX) ||
 1225             (it = p->p_itimers->its_timers[timerid]) == NULL) {
 1226                 return (NULL);
 1227         }
 1228         ITIMER_LOCK(it);
 1229         if ((it->it_flags & ITF_DELETING) != 0) {
 1230                 ITIMER_UNLOCK(it);
 1231                 it = NULL;
 1232         }
 1233         return (it);
 1234 }
 1235 
 1236 int
 1237 kern_ktimer_delete(struct thread *td, int timerid)
 1238 {
 1239         struct proc *p = td->td_proc;
 1240         struct itimer *it;
 1241 
 1242         PROC_LOCK(p);
 1243         it = itimer_find(p, timerid);
 1244         if (it == NULL) {
 1245                 PROC_UNLOCK(p);
 1246                 return (EINVAL);
 1247         }
 1248         PROC_UNLOCK(p);
 1249 
 1250         it->it_flags |= ITF_DELETING;
 1251         while (it->it_usecount > 0) {
 1252                 it->it_flags |= ITF_WANTED;
 1253                 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
 1254         }
 1255         it->it_flags &= ~ITF_WANTED;
 1256         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1257         ITIMER_UNLOCK(it);
 1258 
 1259         PROC_LOCK(p);
 1260         if (KSI_ONQ(&it->it_ksi))
 1261                 sigqueue_take(&it->it_ksi);
 1262         p->p_itimers->its_timers[timerid] = NULL;
 1263         PROC_UNLOCK(p);
 1264         uma_zfree(itimer_zone, it);
 1265         return (0);
 1266 }
 1267 
 1268 #ifndef _SYS_SYSPROTO_H_
 1269 struct ktimer_settime_args {
 1270         int timerid;
 1271         int flags;
 1272         const struct itimerspec * value;
 1273         struct itimerspec * ovalue;
 1274 };
 1275 #endif
 1276 int
 1277 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
 1278 {
 1279         struct itimerspec val, oval, *ovalp;
 1280         int error;
 1281 
 1282         error = copyin(uap->value, &val, sizeof(val));
 1283         if (error != 0)
 1284                 return (error);
 1285         ovalp = uap->ovalue != NULL ? &oval : NULL;
 1286         error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
 1287         if (error == 0 && uap->ovalue != NULL)
 1288                 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
 1289         return (error);
 1290 }
 1291 
 1292 int
 1293 kern_ktimer_settime(struct thread *td, int timer_id, int flags,
 1294     struct itimerspec *val, struct itimerspec *oval)
 1295 {
 1296         struct proc *p;
 1297         struct itimer *it;
 1298         int error;
 1299 
 1300         p = td->td_proc;
 1301         PROC_LOCK(p);
 1302         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1303                 PROC_UNLOCK(p);
 1304                 error = EINVAL;
 1305         } else {
 1306                 PROC_UNLOCK(p);
 1307                 itimer_enter(it);
 1308                 error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
 1309                     flags, val, oval));
 1310                 itimer_leave(it);
 1311                 ITIMER_UNLOCK(it);
 1312         }
 1313         return (error);
 1314 }
 1315 
 1316 #ifndef _SYS_SYSPROTO_H_
 1317 struct ktimer_gettime_args {
 1318         int timerid;
 1319         struct itimerspec * value;
 1320 };
 1321 #endif
 1322 int
 1323 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
 1324 {
 1325         struct itimerspec val;
 1326         int error;
 1327 
 1328         error = kern_ktimer_gettime(td, uap->timerid, &val);
 1329         if (error == 0)
 1330                 error = copyout(&val, uap->value, sizeof(val));
 1331         return (error);
 1332 }
 1333 
 1334 int
 1335 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
 1336 {
 1337         struct proc *p;
 1338         struct itimer *it;
 1339         int error;
 1340 
 1341         p = td->td_proc;
 1342         PROC_LOCK(p);
 1343         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1344                 PROC_UNLOCK(p);
 1345                 error = EINVAL;
 1346         } else {
 1347                 PROC_UNLOCK(p);
 1348                 itimer_enter(it);
 1349                 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
 1350                 itimer_leave(it);
 1351                 ITIMER_UNLOCK(it);
 1352         }
 1353         return (error);
 1354 }
 1355 
 1356 #ifndef _SYS_SYSPROTO_H_
 1357 struct timer_getoverrun_args {
 1358         int timerid;
 1359 };
 1360 #endif
 1361 int
 1362 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
 1363 {
 1364 
 1365         return (kern_ktimer_getoverrun(td, uap->timerid));
 1366 }
 1367 
 1368 int
 1369 kern_ktimer_getoverrun(struct thread *td, int timer_id)
 1370 {
 1371         struct proc *p = td->td_proc;
 1372         struct itimer *it;
 1373         int error ;
 1374 
 1375         PROC_LOCK(p);
 1376         if (timer_id < 3 ||
 1377             (it = itimer_find(p, timer_id)) == NULL) {
 1378                 PROC_UNLOCK(p);
 1379                 error = EINVAL;
 1380         } else {
 1381                 td->td_retval[0] = it->it_overrun_last;
 1382                 ITIMER_UNLOCK(it);
 1383                 PROC_UNLOCK(p);
 1384                 error = 0;
 1385         }
 1386         return (error);
 1387 }
 1388 
 1389 static int
 1390 realtimer_create(struct itimer *it)
 1391 {
 1392         callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
 1393         return (0);
 1394 }
 1395 
 1396 static int
 1397 realtimer_delete(struct itimer *it)
 1398 {
 1399         mtx_assert(&it->it_mtx, MA_OWNED);
 1400         
 1401         /*
 1402          * clear timer's value and interval to tell realtimer_expire
 1403          * to not rearm the timer.
 1404          */
 1405         timespecclear(&it->it_time.it_value);
 1406         timespecclear(&it->it_time.it_interval);
 1407         ITIMER_UNLOCK(it);
 1408         callout_drain(&it->it_callout);
 1409         ITIMER_LOCK(it);
 1410         return (0);
 1411 }
 1412 
 1413 static int
 1414 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
 1415 {
 1416         struct timespec cts;
 1417 
 1418         mtx_assert(&it->it_mtx, MA_OWNED);
 1419 
 1420         realtimer_clocktime(it->it_clockid, &cts);
 1421         *ovalue = it->it_time;
 1422         if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
 1423                 timespecsub(&ovalue->it_value, &cts);
 1424                 if (ovalue->it_value.tv_sec < 0 ||
 1425                     (ovalue->it_value.tv_sec == 0 &&
 1426                      ovalue->it_value.tv_nsec == 0)) {
 1427                         ovalue->it_value.tv_sec  = 0;
 1428                         ovalue->it_value.tv_nsec = 1;
 1429                 }
 1430         }
 1431         return (0);
 1432 }
 1433 
 1434 static int
 1435 realtimer_settime(struct itimer *it, int flags,
 1436         struct itimerspec *value, struct itimerspec *ovalue)
 1437 {
 1438         struct timespec cts, ts;
 1439         struct timeval tv;
 1440         struct itimerspec val;
 1441 
 1442         mtx_assert(&it->it_mtx, MA_OWNED);
 1443 
 1444         val = *value;
 1445         if (itimespecfix(&val.it_value))
 1446                 return (EINVAL);
 1447 
 1448         if (timespecisset(&val.it_value)) {
 1449                 if (itimespecfix(&val.it_interval))
 1450                         return (EINVAL);
 1451         } else {
 1452                 timespecclear(&val.it_interval);
 1453         }
 1454         
 1455         if (ovalue != NULL)
 1456                 realtimer_gettime(it, ovalue);
 1457 
 1458         it->it_time = val;
 1459         if (timespecisset(&val.it_value)) {
 1460                 realtimer_clocktime(it->it_clockid, &cts);
 1461                 ts = val.it_value;
 1462                 if ((flags & TIMER_ABSTIME) == 0) {
 1463                         /* Convert to absolute time. */
 1464                         timespecadd(&it->it_time.it_value, &cts);
 1465                 } else {
 1466                         timespecsub(&ts, &cts);
 1467                         /*
 1468                          * We don't care if ts is negative, tztohz will
 1469                          * fix it.
 1470                          */
 1471                 }
 1472                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1473                 callout_reset(&it->it_callout, tvtohz(&tv),
 1474                         realtimer_expire, it);
 1475         } else {
 1476                 callout_stop(&it->it_callout);
 1477         }
 1478 
 1479         return (0);
 1480 }
 1481 
 1482 static void
 1483 realtimer_clocktime(clockid_t id, struct timespec *ts)
 1484 {
 1485         if (id == CLOCK_REALTIME)
 1486                 getnanotime(ts);
 1487         else    /* CLOCK_MONOTONIC */
 1488                 getnanouptime(ts);
 1489 }
 1490 
 1491 int
 1492 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
 1493 {
 1494         struct itimer *it;
 1495 
 1496         PROC_LOCK_ASSERT(p, MA_OWNED);
 1497         it = itimer_find(p, timerid);
 1498         if (it != NULL) {
 1499                 ksi->ksi_overrun = it->it_overrun;
 1500                 it->it_overrun_last = it->it_overrun;
 1501                 it->it_overrun = 0;
 1502                 ITIMER_UNLOCK(it);
 1503                 return (0);
 1504         }
 1505         return (EINVAL);
 1506 }
 1507 
 1508 int
 1509 itimespecfix(struct timespec *ts)
 1510 {
 1511 
 1512         if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 1513                 return (EINVAL);
 1514         if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
 1515                 ts->tv_nsec = tick * 1000;
 1516         return (0);
 1517 }
 1518 
 1519 /* Timeout callback for realtime timer */
 1520 static void
 1521 realtimer_expire(void *arg)
 1522 {
 1523         struct timespec cts, ts;
 1524         struct timeval tv;
 1525         struct itimer *it;
 1526 
 1527         it = (struct itimer *)arg;
 1528 
 1529         realtimer_clocktime(it->it_clockid, &cts);
 1530         /* Only fire if time is reached. */
 1531         if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
 1532                 if (timespecisset(&it->it_time.it_interval)) {
 1533                         timespecadd(&it->it_time.it_value,
 1534                                     &it->it_time.it_interval);
 1535                         while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
 1536                                 if (it->it_overrun < INT_MAX)
 1537                                         it->it_overrun++;
 1538                                 else
 1539                                         it->it_ksi.ksi_errno = ERANGE;
 1540                                 timespecadd(&it->it_time.it_value,
 1541                                             &it->it_time.it_interval);
 1542                         }
 1543                 } else {
 1544                         /* single shot timer ? */
 1545                         timespecclear(&it->it_time.it_value);
 1546                 }
 1547                 if (timespecisset(&it->it_time.it_value)) {
 1548                         ts = it->it_time.it_value;
 1549                         timespecsub(&ts, &cts);
 1550                         TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1551                         callout_reset(&it->it_callout, tvtohz(&tv),
 1552                                  realtimer_expire, it);
 1553                 }
 1554                 itimer_enter(it);
 1555                 ITIMER_UNLOCK(it);
 1556                 itimer_fire(it);
 1557                 ITIMER_LOCK(it);
 1558                 itimer_leave(it);
 1559         } else if (timespecisset(&it->it_time.it_value)) {
 1560                 ts = it->it_time.it_value;
 1561                 timespecsub(&ts, &cts);
 1562                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1563                 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
 1564                         it);
 1565         }
 1566 }
 1567 
 1568 void
 1569 itimer_fire(struct itimer *it)
 1570 {
 1571         struct proc *p = it->it_proc;
 1572         struct thread *td;
 1573 
 1574         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1575             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1576                 if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
 1577                         ITIMER_LOCK(it);
 1578                         timespecclear(&it->it_time.it_value);
 1579                         timespecclear(&it->it_time.it_interval);
 1580                         callout_stop(&it->it_callout);
 1581                         ITIMER_UNLOCK(it);
 1582                         return;
 1583                 }
 1584                 if (!KSI_ONQ(&it->it_ksi)) {
 1585                         it->it_ksi.ksi_errno = 0;
 1586                         ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
 1587                         tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
 1588                 } else {
 1589                         if (it->it_overrun < INT_MAX)
 1590                                 it->it_overrun++;
 1591                         else
 1592                                 it->it_ksi.ksi_errno = ERANGE;
 1593                 }
 1594                 PROC_UNLOCK(p);
 1595         }
 1596 }
 1597 
 1598 static void
 1599 itimers_alloc(struct proc *p)
 1600 {
 1601         struct itimers *its;
 1602         int i;
 1603 
 1604         its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
 1605         LIST_INIT(&its->its_virtual);
 1606         LIST_INIT(&its->its_prof);
 1607         TAILQ_INIT(&its->its_worklist);
 1608         for (i = 0; i < TIMER_MAX; i++)
 1609                 its->its_timers[i] = NULL;
 1610         PROC_LOCK(p);
 1611         if (p->p_itimers == NULL) {
 1612                 p->p_itimers = its;
 1613                 PROC_UNLOCK(p);
 1614         }
 1615         else {
 1616                 PROC_UNLOCK(p);
 1617                 free(its, M_SUBPROC);
 1618         }
 1619 }
 1620 
 1621 static void
 1622 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
 1623 {
 1624         itimers_event_hook_exit(arg, p);
 1625 }
 1626 
 1627 /* Clean up timers when some process events are being triggered. */
 1628 static void
 1629 itimers_event_hook_exit(void *arg, struct proc *p)
 1630 {
 1631         struct itimers *its;
 1632         struct itimer *it;
 1633         int event = (int)(intptr_t)arg;
 1634         int i;
 1635 
 1636         if (p->p_itimers != NULL) {
 1637                 its = p->p_itimers;
 1638                 for (i = 0; i < MAX_CLOCKS; ++i) {
 1639                         if (posix_clocks[i].event_hook != NULL)
 1640                                 CLOCK_CALL(i, event_hook, (p, i, event));
 1641                 }
 1642                 /*
 1643                  * According to susv3, XSI interval timers should be inherited
 1644                  * by new image.
 1645                  */
 1646                 if (event == ITIMER_EV_EXEC)
 1647                         i = 3;
 1648                 else if (event == ITIMER_EV_EXIT)
 1649                         i = 0;
 1650                 else
 1651                         panic("unhandled event");
 1652                 for (; i < TIMER_MAX; ++i) {
 1653                         if ((it = its->its_timers[i]) != NULL)
 1654                                 kern_ktimer_delete(curthread, i);
 1655                 }
 1656                 if (its->its_timers[0] == NULL &&
 1657                     its->its_timers[1] == NULL &&
 1658                     its->its_timers[2] == NULL) {
 1659                         free(its, M_SUBPROC);
 1660                         p->p_itimers = NULL;
 1661                 }
 1662         }
 1663 }

Cache object: 6bef553e376b0dea05f861fa7465a101


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.