The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_time.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)kern_time.c 8.1 (Berkeley) 6/10/93
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/10.3/sys/kern/kern_time.c 293473 2016-01-09 14:08:10Z dchagin $");
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/limits.h>
   38 #include <sys/clock.h>
   39 #include <sys/lock.h>
   40 #include <sys/mutex.h>
   41 #include <sys/sysproto.h>
   42 #include <sys/eventhandler.h>
   43 #include <sys/resourcevar.h>
   44 #include <sys/signalvar.h>
   45 #include <sys/kernel.h>
   46 #include <sys/sleepqueue.h>
   47 #include <sys/syscallsubr.h>
   48 #include <sys/sysctl.h>
   49 #include <sys/sysent.h>
   50 #include <sys/priv.h>
   51 #include <sys/proc.h>
   52 #include <sys/posix4.h>
   53 #include <sys/time.h>
   54 #include <sys/timers.h>
   55 #include <sys/timetc.h>
   56 #include <sys/vnode.h>
   57 
   58 #include <vm/vm.h>
   59 #include <vm/vm_extern.h>
   60 
   61 #define MAX_CLOCKS      (CLOCK_MONOTONIC+1)
   62 #define CPUCLOCK_BIT            0x80000000
   63 #define CPUCLOCK_PROCESS_BIT    0x40000000
   64 #define CPUCLOCK_ID_MASK        (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
   65 #define MAKE_THREAD_CPUCLOCK(tid)       (CPUCLOCK_BIT|(tid))
   66 #define MAKE_PROCESS_CPUCLOCK(pid)      \
   67         (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
   68 
   69 static struct kclock    posix_clocks[MAX_CLOCKS];
   70 static uma_zone_t       itimer_zone = NULL;
   71 
   72 /*
   73  * Time of day and interval timer support.
   74  *
   75  * These routines provide the kernel entry points to get and set
   76  * the time-of-day and per-process interval timers.  Subroutines
   77  * here provide support for adding and subtracting timeval structures
   78  * and decrementing interval timers, optionally reloading the interval
   79  * timers when they expire.
   80  */
   81 
   82 static int      settime(struct thread *, struct timeval *);
   83 static void     timevalfix(struct timeval *);
   84 
   85 static void     itimer_start(void);
   86 static int      itimer_init(void *, int, int);
   87 static void     itimer_fini(void *, int);
   88 static void     itimer_enter(struct itimer *);
   89 static void     itimer_leave(struct itimer *);
   90 static struct itimer *itimer_find(struct proc *, int);
   91 static void     itimers_alloc(struct proc *);
   92 static void     itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
   93 static void     itimers_event_hook_exit(void *arg, struct proc *p);
   94 static int      realtimer_create(struct itimer *);
   95 static int      realtimer_gettime(struct itimer *, struct itimerspec *);
   96 static int      realtimer_settime(struct itimer *, int,
   97                         struct itimerspec *, struct itimerspec *);
   98 static int      realtimer_delete(struct itimer *);
   99 static void     realtimer_clocktime(clockid_t, struct timespec *);
  100 static void     realtimer_expire(void *);
  101 
  102 int             register_posix_clock(int, struct kclock *);
  103 void            itimer_fire(struct itimer *it);
  104 int             itimespecfix(struct timespec *ts);
  105 
  106 #define CLOCK_CALL(clock, call, arglist)                \
  107         ((*posix_clocks[clock].call) arglist)
  108 
  109 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
  110 
  111 
  112 static int
  113 settime(struct thread *td, struct timeval *tv)
  114 {
  115         struct timeval delta, tv1, tv2;
  116         static struct timeval maxtime, laststep;
  117         struct timespec ts;
  118         int s;
  119 
  120         s = splclock();
  121         microtime(&tv1);
  122         delta = *tv;
  123         timevalsub(&delta, &tv1);
  124 
  125         /*
  126          * If the system is secure, we do not allow the time to be 
  127          * set to a value earlier than 1 second less than the highest
  128          * time we have yet seen. The worst a miscreant can do in
  129          * this circumstance is "freeze" time. He couldn't go
  130          * back to the past.
  131          *
  132          * We similarly do not allow the clock to be stepped more
  133          * than one second, nor more than once per second. This allows
  134          * a miscreant to make the clock march double-time, but no worse.
  135          */
  136         if (securelevel_gt(td->td_ucred, 1) != 0) {
  137                 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
  138                         /*
  139                          * Update maxtime to latest time we've seen.
  140                          */
  141                         if (tv1.tv_sec > maxtime.tv_sec)
  142                                 maxtime = tv1;
  143                         tv2 = *tv;
  144                         timevalsub(&tv2, &maxtime);
  145                         if (tv2.tv_sec < -1) {
  146                                 tv->tv_sec = maxtime.tv_sec - 1;
  147                                 printf("Time adjustment clamped to -1 second\n");
  148                         }
  149                 } else {
  150                         if (tv1.tv_sec == laststep.tv_sec) {
  151                                 splx(s);
  152                                 return (EPERM);
  153                         }
  154                         if (delta.tv_sec > 1) {
  155                                 tv->tv_sec = tv1.tv_sec + 1;
  156                                 printf("Time adjustment clamped to +1 second\n");
  157                         }
  158                         laststep = *tv;
  159                 }
  160         }
  161 
  162         ts.tv_sec = tv->tv_sec;
  163         ts.tv_nsec = tv->tv_usec * 1000;
  164         mtx_lock(&Giant);
  165         tc_setclock(&ts);
  166         resettodr();
  167         mtx_unlock(&Giant);
  168         return (0);
  169 }
  170 
  171 #ifndef _SYS_SYSPROTO_H_
  172 struct clock_getcpuclockid2_args {
  173         id_t id;
  174         int which,
  175         clockid_t *clock_id;
  176 };
  177 #endif
  178 /* ARGSUSED */
  179 int
  180 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
  181 {
  182         clockid_t clk_id;
  183         int error;
  184 
  185         error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
  186         if (error == 0)
  187                 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
  188         return (error);
  189 }
  190 
  191 int
  192 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
  193     clockid_t *clk_id)
  194 {
  195         struct proc *p;
  196         pid_t pid;
  197         lwpid_t tid;
  198         int error;
  199 
  200         switch (which) {
  201         case CPUCLOCK_WHICH_PID:
  202                 if (id != 0) {
  203                         error = pget(id, PGET_CANSEE | PGET_NOTID, &p);
  204                         if (error != 0)
  205                                 return (error);
  206                         PROC_UNLOCK(p);
  207                         pid = id;
  208                 } else {
  209                         pid = td->td_proc->p_pid;
  210                 }
  211                 *clk_id = MAKE_PROCESS_CPUCLOCK(pid);
  212                 return (0);
  213         case CPUCLOCK_WHICH_TID:
  214                 tid = id == 0 ? td->td_tid : id;
  215                 *clk_id = MAKE_THREAD_CPUCLOCK(tid);
  216                 return (0);
  217         default:
  218                 return (EINVAL);
  219         }
  220 }
  221 
  222 #ifndef _SYS_SYSPROTO_H_
  223 struct clock_gettime_args {
  224         clockid_t clock_id;
  225         struct  timespec *tp;
  226 };
  227 #endif
  228 /* ARGSUSED */
  229 int
  230 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
  231 {
  232         struct timespec ats;
  233         int error;
  234 
  235         error = kern_clock_gettime(td, uap->clock_id, &ats);
  236         if (error == 0)
  237                 error = copyout(&ats, uap->tp, sizeof(ats));
  238 
  239         return (error);
  240 }
  241 
  242 static inline void 
  243 cputick2timespec(uint64_t runtime, struct timespec *ats)
  244 {
  245         runtime = cputick2usec(runtime);
  246         ats->tv_sec = runtime / 1000000;
  247         ats->tv_nsec = runtime % 1000000 * 1000;
  248 }
  249 
  250 static void
  251 get_thread_cputime(struct thread *targettd, struct timespec *ats)
  252 {
  253         uint64_t runtime, curtime, switchtime;
  254 
  255         if (targettd == NULL) { /* current thread */
  256                 critical_enter();
  257                 switchtime = PCPU_GET(switchtime);
  258                 curtime = cpu_ticks();
  259                 runtime = curthread->td_runtime;
  260                 critical_exit();
  261                 runtime += curtime - switchtime;
  262         } else {
  263                 thread_lock(targettd);
  264                 runtime = targettd->td_runtime;
  265                 thread_unlock(targettd);
  266         }
  267         cputick2timespec(runtime, ats);
  268 }
  269 
  270 static void
  271 get_process_cputime(struct proc *targetp, struct timespec *ats)
  272 {
  273         uint64_t runtime;
  274         struct rusage ru;
  275 
  276         PROC_STATLOCK(targetp);
  277         rufetch(targetp, &ru);
  278         runtime = targetp->p_rux.rux_runtime;
  279         PROC_STATUNLOCK(targetp);
  280         cputick2timespec(runtime, ats);
  281 }
  282 
  283 static int
  284 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  285 {
  286         struct proc *p, *p2;
  287         struct thread *td2;
  288         lwpid_t tid;
  289         pid_t pid;
  290         int error;
  291 
  292         p = td->td_proc;
  293         if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
  294                 tid = clock_id & CPUCLOCK_ID_MASK;
  295                 td2 = tdfind(tid, p->p_pid);
  296                 if (td2 == NULL)
  297                         return (EINVAL);
  298                 get_thread_cputime(td2, ats);
  299                 PROC_UNLOCK(td2->td_proc);
  300         } else {
  301                 pid = clock_id & CPUCLOCK_ID_MASK;
  302                 error = pget(pid, PGET_CANSEE, &p2);
  303                 if (error != 0)
  304                         return (EINVAL);
  305                 get_process_cputime(p2, ats);
  306                 PROC_UNLOCK(p2);
  307         }
  308         return (0);
  309 }
  310 
  311 int
  312 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  313 {
  314         struct timeval sys, user;
  315         struct proc *p;
  316 
  317         p = td->td_proc;
  318         switch (clock_id) {
  319         case CLOCK_REALTIME:            /* Default to precise. */
  320         case CLOCK_REALTIME_PRECISE:
  321                 nanotime(ats);
  322                 break;
  323         case CLOCK_REALTIME_FAST:
  324                 getnanotime(ats);
  325                 break;
  326         case CLOCK_VIRTUAL:
  327                 PROC_LOCK(p);
  328                 PROC_STATLOCK(p);
  329                 calcru(p, &user, &sys);
  330                 PROC_STATUNLOCK(p);
  331                 PROC_UNLOCK(p);
  332                 TIMEVAL_TO_TIMESPEC(&user, ats);
  333                 break;
  334         case CLOCK_PROF:
  335                 PROC_LOCK(p);
  336                 PROC_STATLOCK(p);
  337                 calcru(p, &user, &sys);
  338                 PROC_STATUNLOCK(p);
  339                 PROC_UNLOCK(p);
  340                 timevaladd(&user, &sys);
  341                 TIMEVAL_TO_TIMESPEC(&user, ats);
  342                 break;
  343         case CLOCK_MONOTONIC:           /* Default to precise. */
  344         case CLOCK_MONOTONIC_PRECISE:
  345         case CLOCK_UPTIME:
  346         case CLOCK_UPTIME_PRECISE:
  347                 nanouptime(ats);
  348                 break;
  349         case CLOCK_UPTIME_FAST:
  350         case CLOCK_MONOTONIC_FAST:
  351                 getnanouptime(ats);
  352                 break;
  353         case CLOCK_SECOND:
  354                 ats->tv_sec = time_second;
  355                 ats->tv_nsec = 0;
  356                 break;
  357         case CLOCK_THREAD_CPUTIME_ID:
  358                 get_thread_cputime(NULL, ats);
  359                 break;
  360         case CLOCK_PROCESS_CPUTIME_ID:
  361                 PROC_LOCK(p);
  362                 get_process_cputime(p, ats);
  363                 PROC_UNLOCK(p);
  364                 break;
  365         default:
  366                 if ((int)clock_id >= 0)
  367                         return (EINVAL);
  368                 return (get_cputime(td, clock_id, ats));
  369         }
  370         return (0);
  371 }
  372 
  373 #ifndef _SYS_SYSPROTO_H_
  374 struct clock_settime_args {
  375         clockid_t clock_id;
  376         const struct    timespec *tp;
  377 };
  378 #endif
  379 /* ARGSUSED */
  380 int
  381 sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
  382 {
  383         struct timespec ats;
  384         int error;
  385 
  386         if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
  387                 return (error);
  388         return (kern_clock_settime(td, uap->clock_id, &ats));
  389 }
  390 
  391 int
  392 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  393 {
  394         struct timeval atv;
  395         int error;
  396 
  397         if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
  398                 return (error);
  399         if (clock_id != CLOCK_REALTIME)
  400                 return (EINVAL);
  401         if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
  402                 return (EINVAL);
  403         /* XXX Don't convert nsec->usec and back */
  404         TIMESPEC_TO_TIMEVAL(&atv, ats);
  405         error = settime(td, &atv);
  406         return (error);
  407 }
  408 
  409 #ifndef _SYS_SYSPROTO_H_
  410 struct clock_getres_args {
  411         clockid_t clock_id;
  412         struct  timespec *tp;
  413 };
  414 #endif
  415 int
  416 sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
  417 {
  418         struct timespec ts;
  419         int error;
  420 
  421         if (uap->tp == NULL)
  422                 return (0);
  423 
  424         error = kern_clock_getres(td, uap->clock_id, &ts);
  425         if (error == 0)
  426                 error = copyout(&ts, uap->tp, sizeof(ts));
  427         return (error);
  428 }
  429 
  430 int
  431 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
  432 {
  433 
  434         ts->tv_sec = 0;
  435         switch (clock_id) {
  436         case CLOCK_REALTIME:
  437         case CLOCK_REALTIME_FAST:
  438         case CLOCK_REALTIME_PRECISE:
  439         case CLOCK_MONOTONIC:
  440         case CLOCK_MONOTONIC_FAST:
  441         case CLOCK_MONOTONIC_PRECISE:
  442         case CLOCK_UPTIME:
  443         case CLOCK_UPTIME_FAST:
  444         case CLOCK_UPTIME_PRECISE:
  445                 /*
  446                  * Round up the result of the division cheaply by adding 1.
  447                  * Rounding up is especially important if rounding down
  448                  * would give 0.  Perfect rounding is unimportant.
  449                  */
  450                 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
  451                 break;
  452         case CLOCK_VIRTUAL:
  453         case CLOCK_PROF:
  454                 /* Accurately round up here because we can do so cheaply. */
  455                 ts->tv_nsec = (1000000000 + hz - 1) / hz;
  456                 break;
  457         case CLOCK_SECOND:
  458                 ts->tv_sec = 1;
  459                 ts->tv_nsec = 0;
  460                 break;
  461         case CLOCK_THREAD_CPUTIME_ID:
  462         case CLOCK_PROCESS_CPUTIME_ID:
  463         cputime:
  464                 /* sync with cputick2usec */
  465                 ts->tv_nsec = 1000000 / cpu_tickrate();
  466                 if (ts->tv_nsec == 0)
  467                         ts->tv_nsec = 1000;
  468                 break;
  469         default:
  470                 if ((int)clock_id < 0)
  471                         goto cputime;
  472                 return (EINVAL);
  473         }
  474         return (0);
  475 }
  476 
  477 static uint8_t nanowait[MAXCPU];
  478 
  479 int
  480 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
  481 {
  482         struct timespec ts;
  483         sbintime_t sbt, sbtt, prec, tmp;
  484         time_t over;
  485         int error;
  486 
  487         if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
  488                 return (EINVAL);
  489         if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
  490                 return (0);
  491         ts = *rqt;
  492         if (ts.tv_sec > INT32_MAX / 2) {
  493                 over = ts.tv_sec - INT32_MAX / 2;
  494                 ts.tv_sec -= over;
  495         } else
  496                 over = 0;
  497         tmp = tstosbt(ts);
  498         prec = tmp;
  499         prec >>= tc_precexp;
  500         if (TIMESEL(&sbt, tmp))
  501                 sbt += tc_tick_sbt;
  502         sbt += tmp;
  503         error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
  504             sbt, prec, C_ABSOLUTE);
  505         if (error != EWOULDBLOCK) {
  506                 if (error == ERESTART)
  507                         error = EINTR;
  508                 TIMESEL(&sbtt, tmp);
  509                 if (rmt != NULL) {
  510                         ts = sbttots(sbt - sbtt);
  511                         ts.tv_sec += over;
  512                         if (ts.tv_sec < 0)
  513                                 timespecclear(&ts);
  514                         *rmt = ts;
  515                 }
  516                 if (sbtt >= sbt)
  517                         return (0);
  518                 return (error);
  519         }
  520         return (0);
  521 }
  522 
  523 #ifndef _SYS_SYSPROTO_H_
  524 struct nanosleep_args {
  525         struct  timespec *rqtp;
  526         struct  timespec *rmtp;
  527 };
  528 #endif
  529 /* ARGSUSED */
  530 int
  531 sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
  532 {
  533         struct timespec rmt, rqt;
  534         int error;
  535 
  536         error = copyin(uap->rqtp, &rqt, sizeof(rqt));
  537         if (error)
  538                 return (error);
  539 
  540         if (uap->rmtp &&
  541             !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
  542                         return (EFAULT);
  543         error = kern_nanosleep(td, &rqt, &rmt);
  544         if (error && uap->rmtp) {
  545                 int error2;
  546 
  547                 error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
  548                 if (error2)
  549                         error = error2;
  550         }
  551         return (error);
  552 }
  553 
  554 #ifndef _SYS_SYSPROTO_H_
  555 struct gettimeofday_args {
  556         struct  timeval *tp;
  557         struct  timezone *tzp;
  558 };
  559 #endif
  560 /* ARGSUSED */
  561 int
  562 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
  563 {
  564         struct timeval atv;
  565         struct timezone rtz;
  566         int error = 0;
  567 
  568         if (uap->tp) {
  569                 microtime(&atv);
  570                 error = copyout(&atv, uap->tp, sizeof (atv));
  571         }
  572         if (error == 0 && uap->tzp != NULL) {
  573                 rtz.tz_minuteswest = tz_minuteswest;
  574                 rtz.tz_dsttime = tz_dsttime;
  575                 error = copyout(&rtz, uap->tzp, sizeof (rtz));
  576         }
  577         return (error);
  578 }
  579 
  580 #ifndef _SYS_SYSPROTO_H_
  581 struct settimeofday_args {
  582         struct  timeval *tv;
  583         struct  timezone *tzp;
  584 };
  585 #endif
  586 /* ARGSUSED */
  587 int
  588 sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
  589 {
  590         struct timeval atv, *tvp;
  591         struct timezone atz, *tzp;
  592         int error;
  593 
  594         if (uap->tv) {
  595                 error = copyin(uap->tv, &atv, sizeof(atv));
  596                 if (error)
  597                         return (error);
  598                 tvp = &atv;
  599         } else
  600                 tvp = NULL;
  601         if (uap->tzp) {
  602                 error = copyin(uap->tzp, &atz, sizeof(atz));
  603                 if (error)
  604                         return (error);
  605                 tzp = &atz;
  606         } else
  607                 tzp = NULL;
  608         return (kern_settimeofday(td, tvp, tzp));
  609 }
  610 
  611 int
  612 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
  613 {
  614         int error;
  615 
  616         error = priv_check(td, PRIV_SETTIMEOFDAY);
  617         if (error)
  618                 return (error);
  619         /* Verify all parameters before changing time. */
  620         if (tv) {
  621                 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
  622                         return (EINVAL);
  623                 error = settime(td, tv);
  624         }
  625         if (tzp && error == 0) {
  626                 tz_minuteswest = tzp->tz_minuteswest;
  627                 tz_dsttime = tzp->tz_dsttime;
  628         }
  629         return (error);
  630 }
  631 
  632 /*
  633  * Get value of an interval timer.  The process virtual and profiling virtual
  634  * time timers are kept in the p_stats area, since they can be swapped out.
  635  * These are kept internally in the way they are specified externally: in
  636  * time until they expire.
  637  *
  638  * The real time interval timer is kept in the process table slot for the
  639  * process, and its value (it_value) is kept as an absolute time rather than
  640  * as a delta, so that it is easy to keep periodic real-time signals from
  641  * drifting.
  642  *
  643  * Virtual time timers are processed in the hardclock() routine of
  644  * kern_clock.c.  The real time timer is processed by a timeout routine,
  645  * called from the softclock() routine.  Since a callout may be delayed in
  646  * real time due to interrupt processing in the system, it is possible for
  647  * the real time timeout routine (realitexpire, given below), to be delayed
  648  * in real time past when it is supposed to occur.  It does not suffice,
  649  * therefore, to reload the real timer .it_value from the real time timers
  650  * .it_interval.  Rather, we compute the next time in absolute time the timer
  651  * should go off.
  652  */
  653 #ifndef _SYS_SYSPROTO_H_
  654 struct getitimer_args {
  655         u_int   which;
  656         struct  itimerval *itv;
  657 };
  658 #endif
  659 int
  660 sys_getitimer(struct thread *td, struct getitimer_args *uap)
  661 {
  662         struct itimerval aitv;
  663         int error;
  664 
  665         error = kern_getitimer(td, uap->which, &aitv);
  666         if (error != 0)
  667                 return (error);
  668         return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
  669 }
  670 
  671 int
  672 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
  673 {
  674         struct proc *p = td->td_proc;
  675         struct timeval ctv;
  676 
  677         if (which > ITIMER_PROF)
  678                 return (EINVAL);
  679 
  680         if (which == ITIMER_REAL) {
  681                 /*
  682                  * Convert from absolute to relative time in .it_value
  683                  * part of real time timer.  If time for real time timer
  684                  * has passed return 0, else return difference between
  685                  * current time and time for the timer to go off.
  686                  */
  687                 PROC_LOCK(p);
  688                 *aitv = p->p_realtimer;
  689                 PROC_UNLOCK(p);
  690                 if (timevalisset(&aitv->it_value)) {
  691                         microuptime(&ctv);
  692                         if (timevalcmp(&aitv->it_value, &ctv, <))
  693                                 timevalclear(&aitv->it_value);
  694                         else
  695                                 timevalsub(&aitv->it_value, &ctv);
  696                 }
  697         } else {
  698                 PROC_ITIMLOCK(p);
  699                 *aitv = p->p_stats->p_timer[which];
  700                 PROC_ITIMUNLOCK(p);
  701         }
  702         return (0);
  703 }
  704 
  705 #ifndef _SYS_SYSPROTO_H_
  706 struct setitimer_args {
  707         u_int   which;
  708         struct  itimerval *itv, *oitv;
  709 };
  710 #endif
  711 int
  712 sys_setitimer(struct thread *td, struct setitimer_args *uap)
  713 {
  714         struct itimerval aitv, oitv;
  715         int error;
  716 
  717         if (uap->itv == NULL) {
  718                 uap->itv = uap->oitv;
  719                 return (sys_getitimer(td, (struct getitimer_args *)uap));
  720         }
  721 
  722         if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
  723                 return (error);
  724         error = kern_setitimer(td, uap->which, &aitv, &oitv);
  725         if (error != 0 || uap->oitv == NULL)
  726                 return (error);
  727         return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
  728 }
  729 
  730 int
  731 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
  732     struct itimerval *oitv)
  733 {
  734         struct proc *p = td->td_proc;
  735         struct timeval ctv;
  736         sbintime_t sbt, pr;
  737 
  738         if (aitv == NULL)
  739                 return (kern_getitimer(td, which, oitv));
  740 
  741         if (which > ITIMER_PROF)
  742                 return (EINVAL);
  743         if (itimerfix(&aitv->it_value) ||
  744             aitv->it_value.tv_sec > INT32_MAX / 2)
  745                 return (EINVAL);
  746         if (!timevalisset(&aitv->it_value))
  747                 timevalclear(&aitv->it_interval);
  748         else if (itimerfix(&aitv->it_interval) ||
  749             aitv->it_interval.tv_sec > INT32_MAX / 2)
  750                 return (EINVAL);
  751 
  752         if (which == ITIMER_REAL) {
  753                 PROC_LOCK(p);
  754                 if (timevalisset(&p->p_realtimer.it_value))
  755                         callout_stop(&p->p_itcallout);
  756                 microuptime(&ctv);
  757                 if (timevalisset(&aitv->it_value)) {
  758                         pr = tvtosbt(aitv->it_value) >> tc_precexp;
  759                         timevaladd(&aitv->it_value, &ctv);
  760                         sbt = tvtosbt(aitv->it_value);
  761                         callout_reset_sbt(&p->p_itcallout, sbt, pr,
  762                             realitexpire, p, C_ABSOLUTE);
  763                 }
  764                 *oitv = p->p_realtimer;
  765                 p->p_realtimer = *aitv;
  766                 PROC_UNLOCK(p);
  767                 if (timevalisset(&oitv->it_value)) {
  768                         if (timevalcmp(&oitv->it_value, &ctv, <))
  769                                 timevalclear(&oitv->it_value);
  770                         else
  771                                 timevalsub(&oitv->it_value, &ctv);
  772                 }
  773         } else {
  774                 if (aitv->it_interval.tv_sec == 0 &&
  775                     aitv->it_interval.tv_usec != 0 &&
  776                     aitv->it_interval.tv_usec < tick)
  777                         aitv->it_interval.tv_usec = tick;
  778                 if (aitv->it_value.tv_sec == 0 &&
  779                     aitv->it_value.tv_usec != 0 &&
  780                     aitv->it_value.tv_usec < tick)
  781                         aitv->it_value.tv_usec = tick;
  782                 PROC_ITIMLOCK(p);
  783                 *oitv = p->p_stats->p_timer[which];
  784                 p->p_stats->p_timer[which] = *aitv;
  785                 PROC_ITIMUNLOCK(p);
  786         }
  787         return (0);
  788 }
  789 
  790 /*
  791  * Real interval timer expired:
  792  * send process whose timer expired an alarm signal.
  793  * If time is not set up to reload, then just return.
  794  * Else compute next time timer should go off which is > current time.
  795  * This is where delay in processing this timeout causes multiple
  796  * SIGALRM calls to be compressed into one.
  797  * tvtohz() always adds 1 to allow for the time until the next clock
  798  * interrupt being strictly less than 1 clock tick, but we don't want
  799  * that here since we want to appear to be in sync with the clock
  800  * interrupt even when we're delayed.
  801  */
  802 void
  803 realitexpire(void *arg)
  804 {
  805         struct proc *p;
  806         struct timeval ctv;
  807         sbintime_t isbt;
  808 
  809         p = (struct proc *)arg;
  810         kern_psignal(p, SIGALRM);
  811         if (!timevalisset(&p->p_realtimer.it_interval)) {
  812                 timevalclear(&p->p_realtimer.it_value);
  813                 if (p->p_flag & P_WEXIT)
  814                         wakeup(&p->p_itcallout);
  815                 return;
  816         }
  817         isbt = tvtosbt(p->p_realtimer.it_interval);
  818         if (isbt >= sbt_timethreshold)
  819                 getmicrouptime(&ctv);
  820         else
  821                 microuptime(&ctv);
  822         do {
  823                 timevaladd(&p->p_realtimer.it_value,
  824                     &p->p_realtimer.it_interval);
  825         } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
  826         callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
  827             isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE);
  828 }
  829 
  830 /*
  831  * Check that a proposed value to load into the .it_value or
  832  * .it_interval part of an interval timer is acceptable, and
  833  * fix it to have at least minimal value (i.e. if it is less
  834  * than the resolution of the clock, round it up.)
  835  */
  836 int
  837 itimerfix(struct timeval *tv)
  838 {
  839 
  840         if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
  841                 return (EINVAL);
  842         if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
  843             tv->tv_usec < (u_int)tick / 16)
  844                 tv->tv_usec = (u_int)tick / 16;
  845         return (0);
  846 }
  847 
  848 /*
  849  * Decrement an interval timer by a specified number
  850  * of microseconds, which must be less than a second,
  851  * i.e. < 1000000.  If the timer expires, then reload
  852  * it.  In this case, carry over (usec - old value) to
  853  * reduce the value reloaded into the timer so that
  854  * the timer does not drift.  This routine assumes
  855  * that it is called in a context where the timers
  856  * on which it is operating cannot change in value.
  857  */
  858 int
  859 itimerdecr(struct itimerval *itp, int usec)
  860 {
  861 
  862         if (itp->it_value.tv_usec < usec) {
  863                 if (itp->it_value.tv_sec == 0) {
  864                         /* expired, and already in next interval */
  865                         usec -= itp->it_value.tv_usec;
  866                         goto expire;
  867                 }
  868                 itp->it_value.tv_usec += 1000000;
  869                 itp->it_value.tv_sec--;
  870         }
  871         itp->it_value.tv_usec -= usec;
  872         usec = 0;
  873         if (timevalisset(&itp->it_value))
  874                 return (1);
  875         /* expired, exactly at end of interval */
  876 expire:
  877         if (timevalisset(&itp->it_interval)) {
  878                 itp->it_value = itp->it_interval;
  879                 itp->it_value.tv_usec -= usec;
  880                 if (itp->it_value.tv_usec < 0) {
  881                         itp->it_value.tv_usec += 1000000;
  882                         itp->it_value.tv_sec--;
  883                 }
  884         } else
  885                 itp->it_value.tv_usec = 0;              /* sec is already 0 */
  886         return (0);
  887 }
  888 
  889 /*
  890  * Add and subtract routines for timevals.
  891  * N.B.: subtract routine doesn't deal with
  892  * results which are before the beginning,
  893  * it just gets very confused in this case.
  894  * Caveat emptor.
  895  */
  896 void
  897 timevaladd(struct timeval *t1, const struct timeval *t2)
  898 {
  899 
  900         t1->tv_sec += t2->tv_sec;
  901         t1->tv_usec += t2->tv_usec;
  902         timevalfix(t1);
  903 }
  904 
  905 void
  906 timevalsub(struct timeval *t1, const struct timeval *t2)
  907 {
  908 
  909         t1->tv_sec -= t2->tv_sec;
  910         t1->tv_usec -= t2->tv_usec;
  911         timevalfix(t1);
  912 }
  913 
  914 static void
  915 timevalfix(struct timeval *t1)
  916 {
  917 
  918         if (t1->tv_usec < 0) {
  919                 t1->tv_sec--;
  920                 t1->tv_usec += 1000000;
  921         }
  922         if (t1->tv_usec >= 1000000) {
  923                 t1->tv_sec++;
  924                 t1->tv_usec -= 1000000;
  925         }
  926 }
  927 
  928 /*
  929  * ratecheck(): simple time-based rate-limit checking.
  930  */
  931 int
  932 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
  933 {
  934         struct timeval tv, delta;
  935         int rv = 0;
  936 
  937         getmicrouptime(&tv);            /* NB: 10ms precision */
  938         delta = tv;
  939         timevalsub(&delta, lasttime);
  940 
  941         /*
  942          * check for 0,0 is so that the message will be seen at least once,
  943          * even if interval is huge.
  944          */
  945         if (timevalcmp(&delta, mininterval, >=) ||
  946             (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
  947                 *lasttime = tv;
  948                 rv = 1;
  949         }
  950 
  951         return (rv);
  952 }
  953 
  954 /*
  955  * ppsratecheck(): packets (or events) per second limitation.
  956  *
  957  * Return 0 if the limit is to be enforced (e.g. the caller
  958  * should drop a packet because of the rate limitation).
  959  *
  960  * maxpps of 0 always causes zero to be returned.  maxpps of -1
  961  * always causes 1 to be returned; this effectively defeats rate
  962  * limiting.
  963  *
  964  * Note that we maintain the struct timeval for compatibility
  965  * with other bsd systems.  We reuse the storage and just monitor
  966  * clock ticks for minimal overhead.  
  967  */
  968 int
  969 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
  970 {
  971         int now;
  972 
  973         /*
  974          * Reset the last time and counter if this is the first call
  975          * or more than a second has passed since the last update of
  976          * lasttime.
  977          */
  978         now = ticks;
  979         if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
  980                 lasttime->tv_sec = now;
  981                 *curpps = 1;
  982                 return (maxpps != 0);
  983         } else {
  984                 (*curpps)++;            /* NB: ignore potential overflow */
  985                 return (maxpps < 0 || *curpps <= maxpps);
  986         }
  987 }
  988 
  989 static void
  990 itimer_start(void)
  991 {
  992         struct kclock rt_clock = {
  993                 .timer_create  = realtimer_create,
  994                 .timer_delete  = realtimer_delete,
  995                 .timer_settime = realtimer_settime,
  996                 .timer_gettime = realtimer_gettime,
  997                 .event_hook    = NULL
  998         };
  999 
 1000         itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
 1001                 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
 1002         register_posix_clock(CLOCK_REALTIME,  &rt_clock);
 1003         register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
 1004         p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
 1005         p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
 1006         p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
 1007         EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
 1008                 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
 1009         EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
 1010                 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
 1011 }
 1012 
 1013 int
 1014 register_posix_clock(int clockid, struct kclock *clk)
 1015 {
 1016         if ((unsigned)clockid >= MAX_CLOCKS) {
 1017                 printf("%s: invalid clockid\n", __func__);
 1018                 return (0);
 1019         }
 1020         posix_clocks[clockid] = *clk;
 1021         return (1);
 1022 }
 1023 
 1024 static int
 1025 itimer_init(void *mem, int size, int flags)
 1026 {
 1027         struct itimer *it;
 1028 
 1029         it = (struct itimer *)mem;
 1030         mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
 1031         return (0);
 1032 }
 1033 
 1034 static void
 1035 itimer_fini(void *mem, int size)
 1036 {
 1037         struct itimer *it;
 1038 
 1039         it = (struct itimer *)mem;
 1040         mtx_destroy(&it->it_mtx);
 1041 }
 1042 
 1043 static void
 1044 itimer_enter(struct itimer *it)
 1045 {
 1046 
 1047         mtx_assert(&it->it_mtx, MA_OWNED);
 1048         it->it_usecount++;
 1049 }
 1050 
 1051 static void
 1052 itimer_leave(struct itimer *it)
 1053 {
 1054 
 1055         mtx_assert(&it->it_mtx, MA_OWNED);
 1056         KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
 1057 
 1058         if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
 1059                 wakeup(it);
 1060 }
 1061 
 1062 #ifndef _SYS_SYSPROTO_H_
 1063 struct ktimer_create_args {
 1064         clockid_t clock_id;
 1065         struct sigevent * evp;
 1066         int * timerid;
 1067 };
 1068 #endif
 1069 int
 1070 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
 1071 {
 1072         struct sigevent *evp, ev;
 1073         int id;
 1074         int error;
 1075 
 1076         if (uap->evp == NULL) {
 1077                 evp = NULL;
 1078         } else {
 1079                 error = copyin(uap->evp, &ev, sizeof(ev));
 1080                 if (error != 0)
 1081                         return (error);
 1082                 evp = &ev;
 1083         }
 1084         error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
 1085         if (error == 0) {
 1086                 error = copyout(&id, uap->timerid, sizeof(int));
 1087                 if (error != 0)
 1088                         kern_ktimer_delete(td, id);
 1089         }
 1090         return (error);
 1091 }
 1092 
 1093 int
 1094 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
 1095     int *timerid, int preset_id)
 1096 {
 1097         struct proc *p = td->td_proc;
 1098         struct itimer *it;
 1099         int id;
 1100         int error;
 1101 
 1102         if (clock_id < 0 || clock_id >= MAX_CLOCKS)
 1103                 return (EINVAL);
 1104 
 1105         if (posix_clocks[clock_id].timer_create == NULL)
 1106                 return (EINVAL);
 1107 
 1108         if (evp != NULL) {
 1109                 if (evp->sigev_notify != SIGEV_NONE &&
 1110                     evp->sigev_notify != SIGEV_SIGNAL &&
 1111                     evp->sigev_notify != SIGEV_THREAD_ID)
 1112                         return (EINVAL);
 1113                 if ((evp->sigev_notify == SIGEV_SIGNAL ||
 1114                      evp->sigev_notify == SIGEV_THREAD_ID) &&
 1115                         !_SIG_VALID(evp->sigev_signo))
 1116                         return (EINVAL);
 1117         }
 1118         
 1119         if (p->p_itimers == NULL)
 1120                 itimers_alloc(p);
 1121         
 1122         it = uma_zalloc(itimer_zone, M_WAITOK);
 1123         it->it_flags = 0;
 1124         it->it_usecount = 0;
 1125         it->it_active = 0;
 1126         timespecclear(&it->it_time.it_value);
 1127         timespecclear(&it->it_time.it_interval);
 1128         it->it_overrun = 0;
 1129         it->it_overrun_last = 0;
 1130         it->it_clockid = clock_id;
 1131         it->it_timerid = -1;
 1132         it->it_proc = p;
 1133         ksiginfo_init(&it->it_ksi);
 1134         it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
 1135         error = CLOCK_CALL(clock_id, timer_create, (it));
 1136         if (error != 0)
 1137                 goto out;
 1138 
 1139         PROC_LOCK(p);
 1140         if (preset_id != -1) {
 1141                 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
 1142                 id = preset_id;
 1143                 if (p->p_itimers->its_timers[id] != NULL) {
 1144                         PROC_UNLOCK(p);
 1145                         error = 0;
 1146                         goto out;
 1147                 }
 1148         } else {
 1149                 /*
 1150                  * Find a free timer slot, skipping those reserved
 1151                  * for setitimer().
 1152                  */
 1153                 for (id = 3; id < TIMER_MAX; id++)
 1154                         if (p->p_itimers->its_timers[id] == NULL)
 1155                                 break;
 1156                 if (id == TIMER_MAX) {
 1157                         PROC_UNLOCK(p);
 1158                         error = EAGAIN;
 1159                         goto out;
 1160                 }
 1161         }
 1162         it->it_timerid = id;
 1163         p->p_itimers->its_timers[id] = it;
 1164         if (evp != NULL)
 1165                 it->it_sigev = *evp;
 1166         else {
 1167                 it->it_sigev.sigev_notify = SIGEV_SIGNAL;
 1168                 switch (clock_id) {
 1169                 default:
 1170                 case CLOCK_REALTIME:
 1171                         it->it_sigev.sigev_signo = SIGALRM;
 1172                         break;
 1173                 case CLOCK_VIRTUAL:
 1174                         it->it_sigev.sigev_signo = SIGVTALRM;
 1175                         break;
 1176                 case CLOCK_PROF:
 1177                         it->it_sigev.sigev_signo = SIGPROF;
 1178                         break;
 1179                 }
 1180                 it->it_sigev.sigev_value.sival_int = id;
 1181         }
 1182 
 1183         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1184             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1185                 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
 1186                 it->it_ksi.ksi_code = SI_TIMER;
 1187                 it->it_ksi.ksi_value = it->it_sigev.sigev_value;
 1188                 it->it_ksi.ksi_timerid = id;
 1189         }
 1190         PROC_UNLOCK(p);
 1191         *timerid = id;
 1192         return (0);
 1193 
 1194 out:
 1195         ITIMER_LOCK(it);
 1196         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1197         ITIMER_UNLOCK(it);
 1198         uma_zfree(itimer_zone, it);
 1199         return (error);
 1200 }
 1201 
 1202 #ifndef _SYS_SYSPROTO_H_
 1203 struct ktimer_delete_args {
 1204         int timerid;
 1205 };
 1206 #endif
 1207 int
 1208 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
 1209 {
 1210 
 1211         return (kern_ktimer_delete(td, uap->timerid));
 1212 }
 1213 
 1214 static struct itimer *
 1215 itimer_find(struct proc *p, int timerid)
 1216 {
 1217         struct itimer *it;
 1218 
 1219         PROC_LOCK_ASSERT(p, MA_OWNED);
 1220         if ((p->p_itimers == NULL) ||
 1221             (timerid < 0) || (timerid >= TIMER_MAX) ||
 1222             (it = p->p_itimers->its_timers[timerid]) == NULL) {
 1223                 return (NULL);
 1224         }
 1225         ITIMER_LOCK(it);
 1226         if ((it->it_flags & ITF_DELETING) != 0) {
 1227                 ITIMER_UNLOCK(it);
 1228                 it = NULL;
 1229         }
 1230         return (it);
 1231 }
 1232 
 1233 int
 1234 kern_ktimer_delete(struct thread *td, int timerid)
 1235 {
 1236         struct proc *p = td->td_proc;
 1237         struct itimer *it;
 1238 
 1239         PROC_LOCK(p);
 1240         it = itimer_find(p, timerid);
 1241         if (it == NULL) {
 1242                 PROC_UNLOCK(p);
 1243                 return (EINVAL);
 1244         }
 1245         PROC_UNLOCK(p);
 1246 
 1247         it->it_flags |= ITF_DELETING;
 1248         while (it->it_usecount > 0) {
 1249                 it->it_flags |= ITF_WANTED;
 1250                 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
 1251         }
 1252         it->it_flags &= ~ITF_WANTED;
 1253         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1254         ITIMER_UNLOCK(it);
 1255 
 1256         PROC_LOCK(p);
 1257         if (KSI_ONQ(&it->it_ksi))
 1258                 sigqueue_take(&it->it_ksi);
 1259         p->p_itimers->its_timers[timerid] = NULL;
 1260         PROC_UNLOCK(p);
 1261         uma_zfree(itimer_zone, it);
 1262         return (0);
 1263 }
 1264 
 1265 #ifndef _SYS_SYSPROTO_H_
 1266 struct ktimer_settime_args {
 1267         int timerid;
 1268         int flags;
 1269         const struct itimerspec * value;
 1270         struct itimerspec * ovalue;
 1271 };
 1272 #endif
 1273 int
 1274 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
 1275 {
 1276         struct itimerspec val, oval, *ovalp;
 1277         int error;
 1278 
 1279         error = copyin(uap->value, &val, sizeof(val));
 1280         if (error != 0)
 1281                 return (error);
 1282         ovalp = uap->ovalue != NULL ? &oval : NULL;
 1283         error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
 1284         if (error == 0 && uap->ovalue != NULL)
 1285                 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
 1286         return (error);
 1287 }
 1288 
 1289 int
 1290 kern_ktimer_settime(struct thread *td, int timer_id, int flags,
 1291     struct itimerspec *val, struct itimerspec *oval)
 1292 {
 1293         struct proc *p;
 1294         struct itimer *it;
 1295         int error;
 1296 
 1297         p = td->td_proc;
 1298         PROC_LOCK(p);
 1299         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1300                 PROC_UNLOCK(p);
 1301                 error = EINVAL;
 1302         } else {
 1303                 PROC_UNLOCK(p);
 1304                 itimer_enter(it);
 1305                 error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
 1306                     flags, val, oval));
 1307                 itimer_leave(it);
 1308                 ITIMER_UNLOCK(it);
 1309         }
 1310         return (error);
 1311 }
 1312 
 1313 #ifndef _SYS_SYSPROTO_H_
 1314 struct ktimer_gettime_args {
 1315         int timerid;
 1316         struct itimerspec * value;
 1317 };
 1318 #endif
 1319 int
 1320 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
 1321 {
 1322         struct itimerspec val;
 1323         int error;
 1324 
 1325         error = kern_ktimer_gettime(td, uap->timerid, &val);
 1326         if (error == 0)
 1327                 error = copyout(&val, uap->value, sizeof(val));
 1328         return (error);
 1329 }
 1330 
 1331 int
 1332 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
 1333 {
 1334         struct proc *p;
 1335         struct itimer *it;
 1336         int error;
 1337 
 1338         p = td->td_proc;
 1339         PROC_LOCK(p);
 1340         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1341                 PROC_UNLOCK(p);
 1342                 error = EINVAL;
 1343         } else {
 1344                 PROC_UNLOCK(p);
 1345                 itimer_enter(it);
 1346                 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
 1347                 itimer_leave(it);
 1348                 ITIMER_UNLOCK(it);
 1349         }
 1350         return (error);
 1351 }
 1352 
 1353 #ifndef _SYS_SYSPROTO_H_
 1354 struct timer_getoverrun_args {
 1355         int timerid;
 1356 };
 1357 #endif
 1358 int
 1359 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
 1360 {
 1361 
 1362         return (kern_ktimer_getoverrun(td, uap->timerid));
 1363 }
 1364 
 1365 int
 1366 kern_ktimer_getoverrun(struct thread *td, int timer_id)
 1367 {
 1368         struct proc *p = td->td_proc;
 1369         struct itimer *it;
 1370         int error ;
 1371 
 1372         PROC_LOCK(p);
 1373         if (timer_id < 3 ||
 1374             (it = itimer_find(p, timer_id)) == NULL) {
 1375                 PROC_UNLOCK(p);
 1376                 error = EINVAL;
 1377         } else {
 1378                 td->td_retval[0] = it->it_overrun_last;
 1379                 ITIMER_UNLOCK(it);
 1380                 PROC_UNLOCK(p);
 1381                 error = 0;
 1382         }
 1383         return (error);
 1384 }
 1385 
 1386 static int
 1387 realtimer_create(struct itimer *it)
 1388 {
 1389         callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
 1390         return (0);
 1391 }
 1392 
 1393 static int
 1394 realtimer_delete(struct itimer *it)
 1395 {
 1396         mtx_assert(&it->it_mtx, MA_OWNED);
 1397         
 1398         /*
 1399          * clear timer's value and interval to tell realtimer_expire
 1400          * to not rearm the timer.
 1401          */
 1402         timespecclear(&it->it_time.it_value);
 1403         timespecclear(&it->it_time.it_interval);
 1404         ITIMER_UNLOCK(it);
 1405         callout_drain(&it->it_callout);
 1406         ITIMER_LOCK(it);
 1407         return (0);
 1408 }
 1409 
 1410 static int
 1411 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
 1412 {
 1413         struct timespec cts;
 1414 
 1415         mtx_assert(&it->it_mtx, MA_OWNED);
 1416 
 1417         realtimer_clocktime(it->it_clockid, &cts);
 1418         *ovalue = it->it_time;
 1419         if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
 1420                 timespecsub(&ovalue->it_value, &cts);
 1421                 if (ovalue->it_value.tv_sec < 0 ||
 1422                     (ovalue->it_value.tv_sec == 0 &&
 1423                      ovalue->it_value.tv_nsec == 0)) {
 1424                         ovalue->it_value.tv_sec  = 0;
 1425                         ovalue->it_value.tv_nsec = 1;
 1426                 }
 1427         }
 1428         return (0);
 1429 }
 1430 
 1431 static int
 1432 realtimer_settime(struct itimer *it, int flags,
 1433         struct itimerspec *value, struct itimerspec *ovalue)
 1434 {
 1435         struct timespec cts, ts;
 1436         struct timeval tv;
 1437         struct itimerspec val;
 1438 
 1439         mtx_assert(&it->it_mtx, MA_OWNED);
 1440 
 1441         val = *value;
 1442         if (itimespecfix(&val.it_value))
 1443                 return (EINVAL);
 1444 
 1445         if (timespecisset(&val.it_value)) {
 1446                 if (itimespecfix(&val.it_interval))
 1447                         return (EINVAL);
 1448         } else {
 1449                 timespecclear(&val.it_interval);
 1450         }
 1451         
 1452         if (ovalue != NULL)
 1453                 realtimer_gettime(it, ovalue);
 1454 
 1455         it->it_time = val;
 1456         if (timespecisset(&val.it_value)) {
 1457                 realtimer_clocktime(it->it_clockid, &cts);
 1458                 ts = val.it_value;
 1459                 if ((flags & TIMER_ABSTIME) == 0) {
 1460                         /* Convert to absolute time. */
 1461                         timespecadd(&it->it_time.it_value, &cts);
 1462                 } else {
 1463                         timespecsub(&ts, &cts);
 1464                         /*
 1465                          * We don't care if ts is negative, tztohz will
 1466                          * fix it.
 1467                          */
 1468                 }
 1469                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1470                 callout_reset(&it->it_callout, tvtohz(&tv),
 1471                         realtimer_expire, it);
 1472         } else {
 1473                 callout_stop(&it->it_callout);
 1474         }
 1475 
 1476         return (0);
 1477 }
 1478 
 1479 static void
 1480 realtimer_clocktime(clockid_t id, struct timespec *ts)
 1481 {
 1482         if (id == CLOCK_REALTIME)
 1483                 getnanotime(ts);
 1484         else    /* CLOCK_MONOTONIC */
 1485                 getnanouptime(ts);
 1486 }
 1487 
 1488 int
 1489 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
 1490 {
 1491         struct itimer *it;
 1492 
 1493         PROC_LOCK_ASSERT(p, MA_OWNED);
 1494         it = itimer_find(p, timerid);
 1495         if (it != NULL) {
 1496                 ksi->ksi_overrun = it->it_overrun;
 1497                 it->it_overrun_last = it->it_overrun;
 1498                 it->it_overrun = 0;
 1499                 ITIMER_UNLOCK(it);
 1500                 return (0);
 1501         }
 1502         return (EINVAL);
 1503 }
 1504 
 1505 int
 1506 itimespecfix(struct timespec *ts)
 1507 {
 1508 
 1509         if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 1510                 return (EINVAL);
 1511         if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
 1512                 ts->tv_nsec = tick * 1000;
 1513         return (0);
 1514 }
 1515 
 1516 /* Timeout callback for realtime timer */
 1517 static void
 1518 realtimer_expire(void *arg)
 1519 {
 1520         struct timespec cts, ts;
 1521         struct timeval tv;
 1522         struct itimer *it;
 1523 
 1524         it = (struct itimer *)arg;
 1525 
 1526         realtimer_clocktime(it->it_clockid, &cts);
 1527         /* Only fire if time is reached. */
 1528         if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
 1529                 if (timespecisset(&it->it_time.it_interval)) {
 1530                         timespecadd(&it->it_time.it_value,
 1531                                     &it->it_time.it_interval);
 1532                         while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
 1533                                 if (it->it_overrun < INT_MAX)
 1534                                         it->it_overrun++;
 1535                                 else
 1536                                         it->it_ksi.ksi_errno = ERANGE;
 1537                                 timespecadd(&it->it_time.it_value,
 1538                                             &it->it_time.it_interval);
 1539                         }
 1540                 } else {
 1541                         /* single shot timer ? */
 1542                         timespecclear(&it->it_time.it_value);
 1543                 }
 1544                 if (timespecisset(&it->it_time.it_value)) {
 1545                         ts = it->it_time.it_value;
 1546                         timespecsub(&ts, &cts);
 1547                         TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1548                         callout_reset(&it->it_callout, tvtohz(&tv),
 1549                                  realtimer_expire, it);
 1550                 }
 1551                 itimer_enter(it);
 1552                 ITIMER_UNLOCK(it);
 1553                 itimer_fire(it);
 1554                 ITIMER_LOCK(it);
 1555                 itimer_leave(it);
 1556         } else if (timespecisset(&it->it_time.it_value)) {
 1557                 ts = it->it_time.it_value;
 1558                 timespecsub(&ts, &cts);
 1559                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1560                 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
 1561                         it);
 1562         }
 1563 }
 1564 
 1565 void
 1566 itimer_fire(struct itimer *it)
 1567 {
 1568         struct proc *p = it->it_proc;
 1569         struct thread *td;
 1570 
 1571         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1572             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1573                 if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
 1574                         ITIMER_LOCK(it);
 1575                         timespecclear(&it->it_time.it_value);
 1576                         timespecclear(&it->it_time.it_interval);
 1577                         callout_stop(&it->it_callout);
 1578                         ITIMER_UNLOCK(it);
 1579                         return;
 1580                 }
 1581                 if (!KSI_ONQ(&it->it_ksi)) {
 1582                         it->it_ksi.ksi_errno = 0;
 1583                         ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
 1584                         tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
 1585                 } else {
 1586                         if (it->it_overrun < INT_MAX)
 1587                                 it->it_overrun++;
 1588                         else
 1589                                 it->it_ksi.ksi_errno = ERANGE;
 1590                 }
 1591                 PROC_UNLOCK(p);
 1592         }
 1593 }
 1594 
 1595 static void
 1596 itimers_alloc(struct proc *p)
 1597 {
 1598         struct itimers *its;
 1599         int i;
 1600 
 1601         its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
 1602         LIST_INIT(&its->its_virtual);
 1603         LIST_INIT(&its->its_prof);
 1604         TAILQ_INIT(&its->its_worklist);
 1605         for (i = 0; i < TIMER_MAX; i++)
 1606                 its->its_timers[i] = NULL;
 1607         PROC_LOCK(p);
 1608         if (p->p_itimers == NULL) {
 1609                 p->p_itimers = its;
 1610                 PROC_UNLOCK(p);
 1611         }
 1612         else {
 1613                 PROC_UNLOCK(p);
 1614                 free(its, M_SUBPROC);
 1615         }
 1616 }
 1617 
 1618 static void
 1619 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
 1620 {
 1621         itimers_event_hook_exit(arg, p);
 1622 }
 1623 
 1624 /* Clean up timers when some process events are being triggered. */
 1625 static void
 1626 itimers_event_hook_exit(void *arg, struct proc *p)
 1627 {
 1628         struct itimers *its;
 1629         struct itimer *it;
 1630         int event = (int)(intptr_t)arg;
 1631         int i;
 1632 
 1633         if (p->p_itimers != NULL) {
 1634                 its = p->p_itimers;
 1635                 for (i = 0; i < MAX_CLOCKS; ++i) {
 1636                         if (posix_clocks[i].event_hook != NULL)
 1637                                 CLOCK_CALL(i, event_hook, (p, i, event));
 1638                 }
 1639                 /*
 1640                  * According to susv3, XSI interval timers should be inherited
 1641                  * by new image.
 1642                  */
 1643                 if (event == ITIMER_EV_EXEC)
 1644                         i = 3;
 1645                 else if (event == ITIMER_EV_EXIT)
 1646                         i = 0;
 1647                 else
 1648                         panic("unhandled event");
 1649                 for (; i < TIMER_MAX; ++i) {
 1650                         if ((it = its->its_timers[i]) != NULL)
 1651                                 kern_ktimer_delete(curthread, i);
 1652                 }
 1653                 if (its->its_timers[0] == NULL &&
 1654                     its->its_timers[1] == NULL &&
 1655                     its->its_timers[2] == NULL) {
 1656                         free(its, M_SUBPROC);
 1657                         p->p_itimers = NULL;
 1658                 }
 1659         }
 1660 }

Cache object: 5827f33aa6acf6054de0a9ffa75d2fcd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.