The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_time.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)kern_time.c 8.1 (Berkeley) 6/10/93
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/10.4/sys/kern/kern_time.c 315658 2017-03-21 01:24:56Z vangyzen $");
   34 
   35 #include "opt_ktrace.h"
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/limits.h>
   40 #include <sys/clock.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/sysproto.h>
   44 #include <sys/eventhandler.h>
   45 #include <sys/resourcevar.h>
   46 #include <sys/signalvar.h>
   47 #include <sys/kernel.h>
   48 #include <sys/sleepqueue.h>
   49 #include <sys/syscallsubr.h>
   50 #include <sys/sysctl.h>
   51 #include <sys/sysent.h>
   52 #include <sys/priv.h>
   53 #include <sys/proc.h>
   54 #include <sys/posix4.h>
   55 #include <sys/time.h>
   56 #include <sys/timers.h>
   57 #include <sys/timetc.h>
   58 #include <sys/vnode.h>
   59 #ifdef KTRACE
   60 #include <sys/ktrace.h>
   61 #endif
   62 
   63 #include <vm/vm.h>
   64 #include <vm/vm_extern.h>
   65 
   66 #define MAX_CLOCKS      (CLOCK_MONOTONIC+1)
   67 #define CPUCLOCK_BIT            0x80000000
   68 #define CPUCLOCK_PROCESS_BIT    0x40000000
   69 #define CPUCLOCK_ID_MASK        (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
   70 #define MAKE_THREAD_CPUCLOCK(tid)       (CPUCLOCK_BIT|(tid))
   71 #define MAKE_PROCESS_CPUCLOCK(pid)      \
   72         (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
   73 
   74 static struct kclock    posix_clocks[MAX_CLOCKS];
   75 static uma_zone_t       itimer_zone = NULL;
   76 
   77 /*
   78  * Time of day and interval timer support.
   79  *
   80  * These routines provide the kernel entry points to get and set
   81  * the time-of-day and per-process interval timers.  Subroutines
   82  * here provide support for adding and subtracting timeval structures
   83  * and decrementing interval timers, optionally reloading the interval
   84  * timers when they expire.
   85  */
   86 
   87 static int      settime(struct thread *, struct timeval *);
   88 static void     timevalfix(struct timeval *);
   89 
   90 static void     itimer_start(void);
   91 static int      itimer_init(void *, int, int);
   92 static void     itimer_fini(void *, int);
   93 static void     itimer_enter(struct itimer *);
   94 static void     itimer_leave(struct itimer *);
   95 static struct itimer *itimer_find(struct proc *, int);
   96 static void     itimers_alloc(struct proc *);
   97 static void     itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
   98 static void     itimers_event_hook_exit(void *arg, struct proc *p);
   99 static int      realtimer_create(struct itimer *);
  100 static int      realtimer_gettime(struct itimer *, struct itimerspec *);
  101 static int      realtimer_settime(struct itimer *, int,
  102                         struct itimerspec *, struct itimerspec *);
  103 static int      realtimer_delete(struct itimer *);
  104 static void     realtimer_clocktime(clockid_t, struct timespec *);
  105 static void     realtimer_expire(void *);
  106 
  107 int             register_posix_clock(int, struct kclock *);
  108 void            itimer_fire(struct itimer *it);
  109 int             itimespecfix(struct timespec *ts);
  110 
  111 #define CLOCK_CALL(clock, call, arglist)                \
  112         ((*posix_clocks[clock].call) arglist)
  113 
  114 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
  115 
  116 
  117 static int
  118 settime(struct thread *td, struct timeval *tv)
  119 {
  120         struct timeval delta, tv1, tv2;
  121         static struct timeval maxtime, laststep;
  122         struct timespec ts;
  123         int s;
  124 
  125         s = splclock();
  126         microtime(&tv1);
  127         delta = *tv;
  128         timevalsub(&delta, &tv1);
  129 
  130         /*
  131          * If the system is secure, we do not allow the time to be 
  132          * set to a value earlier than 1 second less than the highest
  133          * time we have yet seen. The worst a miscreant can do in
  134          * this circumstance is "freeze" time. He couldn't go
  135          * back to the past.
  136          *
  137          * We similarly do not allow the clock to be stepped more
  138          * than one second, nor more than once per second. This allows
  139          * a miscreant to make the clock march double-time, but no worse.
  140          */
  141         if (securelevel_gt(td->td_ucred, 1) != 0) {
  142                 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
  143                         /*
  144                          * Update maxtime to latest time we've seen.
  145                          */
  146                         if (tv1.tv_sec > maxtime.tv_sec)
  147                                 maxtime = tv1;
  148                         tv2 = *tv;
  149                         timevalsub(&tv2, &maxtime);
  150                         if (tv2.tv_sec < -1) {
  151                                 tv->tv_sec = maxtime.tv_sec - 1;
  152                                 printf("Time adjustment clamped to -1 second\n");
  153                         }
  154                 } else {
  155                         if (tv1.tv_sec == laststep.tv_sec) {
  156                                 splx(s);
  157                                 return (EPERM);
  158                         }
  159                         if (delta.tv_sec > 1) {
  160                                 tv->tv_sec = tv1.tv_sec + 1;
  161                                 printf("Time adjustment clamped to +1 second\n");
  162                         }
  163                         laststep = *tv;
  164                 }
  165         }
  166 
  167         ts.tv_sec = tv->tv_sec;
  168         ts.tv_nsec = tv->tv_usec * 1000;
  169         mtx_lock(&Giant);
  170         tc_setclock(&ts);
  171         resettodr();
  172         mtx_unlock(&Giant);
  173         return (0);
  174 }
  175 
  176 #ifndef _SYS_SYSPROTO_H_
  177 struct clock_getcpuclockid2_args {
  178         id_t id;
  179         int which,
  180         clockid_t *clock_id;
  181 };
  182 #endif
  183 /* ARGSUSED */
  184 int
  185 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
  186 {
  187         clockid_t clk_id;
  188         int error;
  189 
  190         error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
  191         if (error == 0)
  192                 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
  193         return (error);
  194 }
  195 
  196 int
  197 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
  198     clockid_t *clk_id)
  199 {
  200         struct proc *p;
  201         pid_t pid;
  202         lwpid_t tid;
  203         int error;
  204 
  205         switch (which) {
  206         case CPUCLOCK_WHICH_PID:
  207                 if (id != 0) {
  208                         error = pget(id, PGET_CANSEE | PGET_NOTID, &p);
  209                         if (error != 0)
  210                                 return (error);
  211                         PROC_UNLOCK(p);
  212                         pid = id;
  213                 } else {
  214                         pid = td->td_proc->p_pid;
  215                 }
  216                 *clk_id = MAKE_PROCESS_CPUCLOCK(pid);
  217                 return (0);
  218         case CPUCLOCK_WHICH_TID:
  219                 tid = id == 0 ? td->td_tid : id;
  220                 *clk_id = MAKE_THREAD_CPUCLOCK(tid);
  221                 return (0);
  222         default:
  223                 return (EINVAL);
  224         }
  225 }
  226 
  227 #ifndef _SYS_SYSPROTO_H_
  228 struct clock_gettime_args {
  229         clockid_t clock_id;
  230         struct  timespec *tp;
  231 };
  232 #endif
  233 /* ARGSUSED */
  234 int
  235 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
  236 {
  237         struct timespec ats;
  238         int error;
  239 
  240         error = kern_clock_gettime(td, uap->clock_id, &ats);
  241         if (error == 0)
  242                 error = copyout(&ats, uap->tp, sizeof(ats));
  243 
  244         return (error);
  245 }
  246 
  247 static inline void 
  248 cputick2timespec(uint64_t runtime, struct timespec *ats)
  249 {
  250         runtime = cputick2usec(runtime);
  251         ats->tv_sec = runtime / 1000000;
  252         ats->tv_nsec = runtime % 1000000 * 1000;
  253 }
  254 
  255 static void
  256 get_thread_cputime(struct thread *targettd, struct timespec *ats)
  257 {
  258         uint64_t runtime, curtime, switchtime;
  259 
  260         if (targettd == NULL) { /* current thread */
  261                 critical_enter();
  262                 switchtime = PCPU_GET(switchtime);
  263                 curtime = cpu_ticks();
  264                 runtime = curthread->td_runtime;
  265                 critical_exit();
  266                 runtime += curtime - switchtime;
  267         } else {
  268                 thread_lock(targettd);
  269                 runtime = targettd->td_runtime;
  270                 thread_unlock(targettd);
  271         }
  272         cputick2timespec(runtime, ats);
  273 }
  274 
  275 static void
  276 get_process_cputime(struct proc *targetp, struct timespec *ats)
  277 {
  278         uint64_t runtime;
  279         struct rusage ru;
  280 
  281         PROC_STATLOCK(targetp);
  282         rufetch(targetp, &ru);
  283         runtime = targetp->p_rux.rux_runtime;
  284         PROC_STATUNLOCK(targetp);
  285         cputick2timespec(runtime, ats);
  286 }
  287 
  288 static int
  289 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  290 {
  291         struct proc *p, *p2;
  292         struct thread *td2;
  293         lwpid_t tid;
  294         pid_t pid;
  295         int error;
  296 
  297         p = td->td_proc;
  298         if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
  299                 tid = clock_id & CPUCLOCK_ID_MASK;
  300                 td2 = tdfind(tid, p->p_pid);
  301                 if (td2 == NULL)
  302                         return (EINVAL);
  303                 get_thread_cputime(td2, ats);
  304                 PROC_UNLOCK(td2->td_proc);
  305         } else {
  306                 pid = clock_id & CPUCLOCK_ID_MASK;
  307                 error = pget(pid, PGET_CANSEE, &p2);
  308                 if (error != 0)
  309                         return (EINVAL);
  310                 get_process_cputime(p2, ats);
  311                 PROC_UNLOCK(p2);
  312         }
  313         return (0);
  314 }
  315 
  316 int
  317 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  318 {
  319         struct timeval sys, user;
  320         struct proc *p;
  321 
  322         p = td->td_proc;
  323         switch (clock_id) {
  324         case CLOCK_REALTIME:            /* Default to precise. */
  325         case CLOCK_REALTIME_PRECISE:
  326                 nanotime(ats);
  327                 break;
  328         case CLOCK_REALTIME_FAST:
  329                 getnanotime(ats);
  330                 break;
  331         case CLOCK_VIRTUAL:
  332                 PROC_LOCK(p);
  333                 PROC_STATLOCK(p);
  334                 calcru(p, &user, &sys);
  335                 PROC_STATUNLOCK(p);
  336                 PROC_UNLOCK(p);
  337                 TIMEVAL_TO_TIMESPEC(&user, ats);
  338                 break;
  339         case CLOCK_PROF:
  340                 PROC_LOCK(p);
  341                 PROC_STATLOCK(p);
  342                 calcru(p, &user, &sys);
  343                 PROC_STATUNLOCK(p);
  344                 PROC_UNLOCK(p);
  345                 timevaladd(&user, &sys);
  346                 TIMEVAL_TO_TIMESPEC(&user, ats);
  347                 break;
  348         case CLOCK_MONOTONIC:           /* Default to precise. */
  349         case CLOCK_MONOTONIC_PRECISE:
  350         case CLOCK_UPTIME:
  351         case CLOCK_UPTIME_PRECISE:
  352                 nanouptime(ats);
  353                 break;
  354         case CLOCK_UPTIME_FAST:
  355         case CLOCK_MONOTONIC_FAST:
  356                 getnanouptime(ats);
  357                 break;
  358         case CLOCK_SECOND:
  359                 ats->tv_sec = time_second;
  360                 ats->tv_nsec = 0;
  361                 break;
  362         case CLOCK_THREAD_CPUTIME_ID:
  363                 get_thread_cputime(NULL, ats);
  364                 break;
  365         case CLOCK_PROCESS_CPUTIME_ID:
  366                 PROC_LOCK(p);
  367                 get_process_cputime(p, ats);
  368                 PROC_UNLOCK(p);
  369                 break;
  370         default:
  371                 if ((int)clock_id >= 0)
  372                         return (EINVAL);
  373                 return (get_cputime(td, clock_id, ats));
  374         }
  375         return (0);
  376 }
  377 
  378 #ifndef _SYS_SYSPROTO_H_
  379 struct clock_settime_args {
  380         clockid_t clock_id;
  381         const struct    timespec *tp;
  382 };
  383 #endif
  384 /* ARGSUSED */
  385 int
  386 sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
  387 {
  388         struct timespec ats;
  389         int error;
  390 
  391         if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
  392                 return (error);
  393         return (kern_clock_settime(td, uap->clock_id, &ats));
  394 }
  395 
  396 int
  397 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  398 {
  399         struct timeval atv;
  400         int error;
  401 
  402         if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
  403                 return (error);
  404         if (clock_id != CLOCK_REALTIME)
  405                 return (EINVAL);
  406         if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
  407                 return (EINVAL);
  408         /* XXX Don't convert nsec->usec and back */
  409         TIMESPEC_TO_TIMEVAL(&atv, ats);
  410         error = settime(td, &atv);
  411         return (error);
  412 }
  413 
  414 #ifndef _SYS_SYSPROTO_H_
  415 struct clock_getres_args {
  416         clockid_t clock_id;
  417         struct  timespec *tp;
  418 };
  419 #endif
  420 int
  421 sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
  422 {
  423         struct timespec ts;
  424         int error;
  425 
  426         if (uap->tp == NULL)
  427                 return (0);
  428 
  429         error = kern_clock_getres(td, uap->clock_id, &ts);
  430         if (error == 0)
  431                 error = copyout(&ts, uap->tp, sizeof(ts));
  432         return (error);
  433 }
  434 
  435 int
  436 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
  437 {
  438 
  439         ts->tv_sec = 0;
  440         switch (clock_id) {
  441         case CLOCK_REALTIME:
  442         case CLOCK_REALTIME_FAST:
  443         case CLOCK_REALTIME_PRECISE:
  444         case CLOCK_MONOTONIC:
  445         case CLOCK_MONOTONIC_FAST:
  446         case CLOCK_MONOTONIC_PRECISE:
  447         case CLOCK_UPTIME:
  448         case CLOCK_UPTIME_FAST:
  449         case CLOCK_UPTIME_PRECISE:
  450                 /*
  451                  * Round up the result of the division cheaply by adding 1.
  452                  * Rounding up is especially important if rounding down
  453                  * would give 0.  Perfect rounding is unimportant.
  454                  */
  455                 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
  456                 break;
  457         case CLOCK_VIRTUAL:
  458         case CLOCK_PROF:
  459                 /* Accurately round up here because we can do so cheaply. */
  460                 ts->tv_nsec = (1000000000 + hz - 1) / hz;
  461                 break;
  462         case CLOCK_SECOND:
  463                 ts->tv_sec = 1;
  464                 ts->tv_nsec = 0;
  465                 break;
  466         case CLOCK_THREAD_CPUTIME_ID:
  467         case CLOCK_PROCESS_CPUTIME_ID:
  468         cputime:
  469                 /* sync with cputick2usec */
  470                 ts->tv_nsec = 1000000 / cpu_tickrate();
  471                 if (ts->tv_nsec == 0)
  472                         ts->tv_nsec = 1000;
  473                 break;
  474         default:
  475                 if ((int)clock_id < 0)
  476                         goto cputime;
  477                 return (EINVAL);
  478         }
  479         return (0);
  480 }
  481 
  482 static uint8_t nanowait[MAXCPU];
  483 
  484 int
  485 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
  486 {
  487         struct timespec ts;
  488         sbintime_t sbt, sbtt, prec, tmp;
  489         time_t over;
  490         int error;
  491 
  492         if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
  493                 return (EINVAL);
  494         if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
  495                 return (0);
  496         ts = *rqt;
  497         if (ts.tv_sec > INT32_MAX / 2) {
  498                 over = ts.tv_sec - INT32_MAX / 2;
  499                 ts.tv_sec -= over;
  500         } else
  501                 over = 0;
  502         tmp = tstosbt(ts);
  503         prec = tmp;
  504         prec >>= tc_precexp;
  505         if (TIMESEL(&sbt, tmp))
  506                 sbt += tc_tick_sbt;
  507         sbt += tmp;
  508         error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
  509             sbt, prec, C_ABSOLUTE);
  510         if (error != EWOULDBLOCK) {
  511                 if (error == ERESTART)
  512                         error = EINTR;
  513                 TIMESEL(&sbtt, tmp);
  514                 if (rmt != NULL) {
  515                         ts = sbttots(sbt - sbtt);
  516                         ts.tv_sec += over;
  517                         if (ts.tv_sec < 0)
  518                                 timespecclear(&ts);
  519                         *rmt = ts;
  520                 }
  521                 if (sbtt >= sbt)
  522                         return (0);
  523                 return (error);
  524         }
  525         return (0);
  526 }
  527 
  528 #ifndef _SYS_SYSPROTO_H_
  529 struct nanosleep_args {
  530         struct  timespec *rqtp;
  531         struct  timespec *rmtp;
  532 };
  533 #endif
  534 /* ARGSUSED */
  535 int
  536 sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
  537 {
  538         struct timespec rmt, rqt;
  539         int error;
  540 
  541         error = copyin(uap->rqtp, &rqt, sizeof(rqt));
  542         if (error)
  543                 return (error);
  544 
  545         if (uap->rmtp &&
  546             !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
  547                         return (EFAULT);
  548         error = kern_nanosleep(td, &rqt, &rmt);
  549         if (error == EINTR && uap->rmtp) {
  550                 int error2;
  551 
  552                 error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
  553                 if (error2)
  554                         error = error2;
  555         }
  556         return (error);
  557 }
  558 
  559 #ifndef _SYS_SYSPROTO_H_
  560 struct gettimeofday_args {
  561         struct  timeval *tp;
  562         struct  timezone *tzp;
  563 };
  564 #endif
  565 /* ARGSUSED */
  566 int
  567 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
  568 {
  569         struct timeval atv;
  570         struct timezone rtz;
  571         int error = 0;
  572 
  573         if (uap->tp) {
  574                 microtime(&atv);
  575                 error = copyout(&atv, uap->tp, sizeof (atv));
  576         }
  577         if (error == 0 && uap->tzp != NULL) {
  578                 rtz.tz_minuteswest = tz_minuteswest;
  579                 rtz.tz_dsttime = tz_dsttime;
  580                 error = copyout(&rtz, uap->tzp, sizeof (rtz));
  581         }
  582         return (error);
  583 }
  584 
  585 #ifndef _SYS_SYSPROTO_H_
  586 struct settimeofday_args {
  587         struct  timeval *tv;
  588         struct  timezone *tzp;
  589 };
  590 #endif
  591 /* ARGSUSED */
  592 int
  593 sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
  594 {
  595         struct timeval atv, *tvp;
  596         struct timezone atz, *tzp;
  597         int error;
  598 
  599         if (uap->tv) {
  600                 error = copyin(uap->tv, &atv, sizeof(atv));
  601                 if (error)
  602                         return (error);
  603                 tvp = &atv;
  604         } else
  605                 tvp = NULL;
  606         if (uap->tzp) {
  607                 error = copyin(uap->tzp, &atz, sizeof(atz));
  608                 if (error)
  609                         return (error);
  610                 tzp = &atz;
  611         } else
  612                 tzp = NULL;
  613         return (kern_settimeofday(td, tvp, tzp));
  614 }
  615 
  616 int
  617 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
  618 {
  619         int error;
  620 
  621         error = priv_check(td, PRIV_SETTIMEOFDAY);
  622         if (error)
  623                 return (error);
  624         /* Verify all parameters before changing time. */
  625         if (tv) {
  626                 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
  627                         return (EINVAL);
  628                 error = settime(td, tv);
  629         }
  630         if (tzp && error == 0) {
  631                 tz_minuteswest = tzp->tz_minuteswest;
  632                 tz_dsttime = tzp->tz_dsttime;
  633         }
  634         return (error);
  635 }
  636 
  637 /*
  638  * Get value of an interval timer.  The process virtual and profiling virtual
  639  * time timers are kept in the p_stats area, since they can be swapped out.
  640  * These are kept internally in the way they are specified externally: in
  641  * time until they expire.
  642  *
  643  * The real time interval timer is kept in the process table slot for the
  644  * process, and its value (it_value) is kept as an absolute time rather than
  645  * as a delta, so that it is easy to keep periodic real-time signals from
  646  * drifting.
  647  *
  648  * Virtual time timers are processed in the hardclock() routine of
  649  * kern_clock.c.  The real time timer is processed by a timeout routine,
  650  * called from the softclock() routine.  Since a callout may be delayed in
  651  * real time due to interrupt processing in the system, it is possible for
  652  * the real time timeout routine (realitexpire, given below), to be delayed
  653  * in real time past when it is supposed to occur.  It does not suffice,
  654  * therefore, to reload the real timer .it_value from the real time timers
  655  * .it_interval.  Rather, we compute the next time in absolute time the timer
  656  * should go off.
  657  */
  658 #ifndef _SYS_SYSPROTO_H_
  659 struct getitimer_args {
  660         u_int   which;
  661         struct  itimerval *itv;
  662 };
  663 #endif
  664 int
  665 sys_getitimer(struct thread *td, struct getitimer_args *uap)
  666 {
  667         struct itimerval aitv;
  668         int error;
  669 
  670         error = kern_getitimer(td, uap->which, &aitv);
  671         if (error != 0)
  672                 return (error);
  673         return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
  674 }
  675 
  676 int
  677 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
  678 {
  679         struct proc *p = td->td_proc;
  680         struct timeval ctv;
  681 
  682         if (which > ITIMER_PROF)
  683                 return (EINVAL);
  684 
  685         if (which == ITIMER_REAL) {
  686                 /*
  687                  * Convert from absolute to relative time in .it_value
  688                  * part of real time timer.  If time for real time timer
  689                  * has passed return 0, else return difference between
  690                  * current time and time for the timer to go off.
  691                  */
  692                 PROC_LOCK(p);
  693                 *aitv = p->p_realtimer;
  694                 PROC_UNLOCK(p);
  695                 if (timevalisset(&aitv->it_value)) {
  696                         microuptime(&ctv);
  697                         if (timevalcmp(&aitv->it_value, &ctv, <))
  698                                 timevalclear(&aitv->it_value);
  699                         else
  700                                 timevalsub(&aitv->it_value, &ctv);
  701                 }
  702         } else {
  703                 PROC_ITIMLOCK(p);
  704                 *aitv = p->p_stats->p_timer[which];
  705                 PROC_ITIMUNLOCK(p);
  706         }
  707 #ifdef KTRACE
  708         if (KTRPOINT(td, KTR_STRUCT))
  709                 ktritimerval(aitv);
  710 #endif
  711         return (0);
  712 }
  713 
  714 #ifndef _SYS_SYSPROTO_H_
  715 struct setitimer_args {
  716         u_int   which;
  717         struct  itimerval *itv, *oitv;
  718 };
  719 #endif
  720 int
  721 sys_setitimer(struct thread *td, struct setitimer_args *uap)
  722 {
  723         struct itimerval aitv, oitv;
  724         int error;
  725 
  726         if (uap->itv == NULL) {
  727                 uap->itv = uap->oitv;
  728                 return (sys_getitimer(td, (struct getitimer_args *)uap));
  729         }
  730 
  731         if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
  732                 return (error);
  733         error = kern_setitimer(td, uap->which, &aitv, &oitv);
  734         if (error != 0 || uap->oitv == NULL)
  735                 return (error);
  736         return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
  737 }
  738 
  739 int
  740 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
  741     struct itimerval *oitv)
  742 {
  743         struct proc *p = td->td_proc;
  744         struct timeval ctv;
  745         sbintime_t sbt, pr;
  746 
  747         if (aitv == NULL)
  748                 return (kern_getitimer(td, which, oitv));
  749 
  750         if (which > ITIMER_PROF)
  751                 return (EINVAL);
  752 #ifdef KTRACE
  753         if (KTRPOINT(td, KTR_STRUCT))
  754                 ktritimerval(aitv);
  755 #endif
  756         if (itimerfix(&aitv->it_value) ||
  757             aitv->it_value.tv_sec > INT32_MAX / 2)
  758                 return (EINVAL);
  759         if (!timevalisset(&aitv->it_value))
  760                 timevalclear(&aitv->it_interval);
  761         else if (itimerfix(&aitv->it_interval) ||
  762             aitv->it_interval.tv_sec > INT32_MAX / 2)
  763                 return (EINVAL);
  764 
  765         if (which == ITIMER_REAL) {
  766                 PROC_LOCK(p);
  767                 if (timevalisset(&p->p_realtimer.it_value))
  768                         callout_stop(&p->p_itcallout);
  769                 microuptime(&ctv);
  770                 if (timevalisset(&aitv->it_value)) {
  771                         pr = tvtosbt(aitv->it_value) >> tc_precexp;
  772                         timevaladd(&aitv->it_value, &ctv);
  773                         sbt = tvtosbt(aitv->it_value);
  774                         callout_reset_sbt(&p->p_itcallout, sbt, pr,
  775                             realitexpire, p, C_ABSOLUTE);
  776                 }
  777                 *oitv = p->p_realtimer;
  778                 p->p_realtimer = *aitv;
  779                 PROC_UNLOCK(p);
  780                 if (timevalisset(&oitv->it_value)) {
  781                         if (timevalcmp(&oitv->it_value, &ctv, <))
  782                                 timevalclear(&oitv->it_value);
  783                         else
  784                                 timevalsub(&oitv->it_value, &ctv);
  785                 }
  786         } else {
  787                 if (aitv->it_interval.tv_sec == 0 &&
  788                     aitv->it_interval.tv_usec != 0 &&
  789                     aitv->it_interval.tv_usec < tick)
  790                         aitv->it_interval.tv_usec = tick;
  791                 if (aitv->it_value.tv_sec == 0 &&
  792                     aitv->it_value.tv_usec != 0 &&
  793                     aitv->it_value.tv_usec < tick)
  794                         aitv->it_value.tv_usec = tick;
  795                 PROC_ITIMLOCK(p);
  796                 *oitv = p->p_stats->p_timer[which];
  797                 p->p_stats->p_timer[which] = *aitv;
  798                 PROC_ITIMUNLOCK(p);
  799         }
  800 #ifdef KTRACE
  801         if (KTRPOINT(td, KTR_STRUCT))
  802                 ktritimerval(oitv);
  803 #endif
  804         return (0);
  805 }
  806 
  807 /*
  808  * Real interval timer expired:
  809  * send process whose timer expired an alarm signal.
  810  * If time is not set up to reload, then just return.
  811  * Else compute next time timer should go off which is > current time.
  812  * This is where delay in processing this timeout causes multiple
  813  * SIGALRM calls to be compressed into one.
  814  * tvtohz() always adds 1 to allow for the time until the next clock
  815  * interrupt being strictly less than 1 clock tick, but we don't want
  816  * that here since we want to appear to be in sync with the clock
  817  * interrupt even when we're delayed.
  818  */
  819 void
  820 realitexpire(void *arg)
  821 {
  822         struct proc *p;
  823         struct timeval ctv;
  824         sbintime_t isbt;
  825 
  826         p = (struct proc *)arg;
  827         kern_psignal(p, SIGALRM);
  828         if (!timevalisset(&p->p_realtimer.it_interval)) {
  829                 timevalclear(&p->p_realtimer.it_value);
  830                 if (p->p_flag & P_WEXIT)
  831                         wakeup(&p->p_itcallout);
  832                 return;
  833         }
  834         isbt = tvtosbt(p->p_realtimer.it_interval);
  835         if (isbt >= sbt_timethreshold)
  836                 getmicrouptime(&ctv);
  837         else
  838                 microuptime(&ctv);
  839         do {
  840                 timevaladd(&p->p_realtimer.it_value,
  841                     &p->p_realtimer.it_interval);
  842         } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
  843         callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
  844             isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE);
  845 }
  846 
  847 /*
  848  * Check that a proposed value to load into the .it_value or
  849  * .it_interval part of an interval timer is acceptable, and
  850  * fix it to have at least minimal value (i.e. if it is less
  851  * than the resolution of the clock, round it up.)
  852  */
  853 int
  854 itimerfix(struct timeval *tv)
  855 {
  856 
  857         if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
  858                 return (EINVAL);
  859         if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
  860             tv->tv_usec < (u_int)tick / 16)
  861                 tv->tv_usec = (u_int)tick / 16;
  862         return (0);
  863 }
  864 
  865 /*
  866  * Decrement an interval timer by a specified number
  867  * of microseconds, which must be less than a second,
  868  * i.e. < 1000000.  If the timer expires, then reload
  869  * it.  In this case, carry over (usec - old value) to
  870  * reduce the value reloaded into the timer so that
  871  * the timer does not drift.  This routine assumes
  872  * that it is called in a context where the timers
  873  * on which it is operating cannot change in value.
  874  */
  875 int
  876 itimerdecr(struct itimerval *itp, int usec)
  877 {
  878 
  879         if (itp->it_value.tv_usec < usec) {
  880                 if (itp->it_value.tv_sec == 0) {
  881                         /* expired, and already in next interval */
  882                         usec -= itp->it_value.tv_usec;
  883                         goto expire;
  884                 }
  885                 itp->it_value.tv_usec += 1000000;
  886                 itp->it_value.tv_sec--;
  887         }
  888         itp->it_value.tv_usec -= usec;
  889         usec = 0;
  890         if (timevalisset(&itp->it_value))
  891                 return (1);
  892         /* expired, exactly at end of interval */
  893 expire:
  894         if (timevalisset(&itp->it_interval)) {
  895                 itp->it_value = itp->it_interval;
  896                 itp->it_value.tv_usec -= usec;
  897                 if (itp->it_value.tv_usec < 0) {
  898                         itp->it_value.tv_usec += 1000000;
  899                         itp->it_value.tv_sec--;
  900                 }
  901         } else
  902                 itp->it_value.tv_usec = 0;              /* sec is already 0 */
  903         return (0);
  904 }
  905 
  906 /*
  907  * Add and subtract routines for timevals.
  908  * N.B.: subtract routine doesn't deal with
  909  * results which are before the beginning,
  910  * it just gets very confused in this case.
  911  * Caveat emptor.
  912  */
  913 void
  914 timevaladd(struct timeval *t1, const struct timeval *t2)
  915 {
  916 
  917         t1->tv_sec += t2->tv_sec;
  918         t1->tv_usec += t2->tv_usec;
  919         timevalfix(t1);
  920 }
  921 
  922 void
  923 timevalsub(struct timeval *t1, const struct timeval *t2)
  924 {
  925 
  926         t1->tv_sec -= t2->tv_sec;
  927         t1->tv_usec -= t2->tv_usec;
  928         timevalfix(t1);
  929 }
  930 
  931 static void
  932 timevalfix(struct timeval *t1)
  933 {
  934 
  935         if (t1->tv_usec < 0) {
  936                 t1->tv_sec--;
  937                 t1->tv_usec += 1000000;
  938         }
  939         if (t1->tv_usec >= 1000000) {
  940                 t1->tv_sec++;
  941                 t1->tv_usec -= 1000000;
  942         }
  943 }
  944 
  945 /*
  946  * ratecheck(): simple time-based rate-limit checking.
  947  */
  948 int
  949 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
  950 {
  951         struct timeval tv, delta;
  952         int rv = 0;
  953 
  954         getmicrouptime(&tv);            /* NB: 10ms precision */
  955         delta = tv;
  956         timevalsub(&delta, lasttime);
  957 
  958         /*
  959          * check for 0,0 is so that the message will be seen at least once,
  960          * even if interval is huge.
  961          */
  962         if (timevalcmp(&delta, mininterval, >=) ||
  963             (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
  964                 *lasttime = tv;
  965                 rv = 1;
  966         }
  967 
  968         return (rv);
  969 }
  970 
  971 /*
  972  * ppsratecheck(): packets (or events) per second limitation.
  973  *
  974  * Return 0 if the limit is to be enforced (e.g. the caller
  975  * should drop a packet because of the rate limitation).
  976  *
  977  * maxpps of 0 always causes zero to be returned.  maxpps of -1
  978  * always causes 1 to be returned; this effectively defeats rate
  979  * limiting.
  980  *
  981  * Note that we maintain the struct timeval for compatibility
  982  * with other bsd systems.  We reuse the storage and just monitor
  983  * clock ticks for minimal overhead.  
  984  */
  985 int
  986 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
  987 {
  988         int now;
  989 
  990         /*
  991          * Reset the last time and counter if this is the first call
  992          * or more than a second has passed since the last update of
  993          * lasttime.
  994          */
  995         now = ticks;
  996         if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
  997                 lasttime->tv_sec = now;
  998                 *curpps = 1;
  999                 return (maxpps != 0);
 1000         } else {
 1001                 (*curpps)++;            /* NB: ignore potential overflow */
 1002                 return (maxpps < 0 || *curpps <= maxpps);
 1003         }
 1004 }
 1005 
 1006 static void
 1007 itimer_start(void)
 1008 {
 1009         struct kclock rt_clock = {
 1010                 .timer_create  = realtimer_create,
 1011                 .timer_delete  = realtimer_delete,
 1012                 .timer_settime = realtimer_settime,
 1013                 .timer_gettime = realtimer_gettime,
 1014                 .event_hook    = NULL
 1015         };
 1016 
 1017         itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
 1018                 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
 1019         register_posix_clock(CLOCK_REALTIME,  &rt_clock);
 1020         register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
 1021         p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
 1022         p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
 1023         p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
 1024         EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
 1025                 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
 1026         EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
 1027                 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
 1028 }
 1029 
 1030 int
 1031 register_posix_clock(int clockid, struct kclock *clk)
 1032 {
 1033         if ((unsigned)clockid >= MAX_CLOCKS) {
 1034                 printf("%s: invalid clockid\n", __func__);
 1035                 return (0);
 1036         }
 1037         posix_clocks[clockid] = *clk;
 1038         return (1);
 1039 }
 1040 
 1041 static int
 1042 itimer_init(void *mem, int size, int flags)
 1043 {
 1044         struct itimer *it;
 1045 
 1046         it = (struct itimer *)mem;
 1047         mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
 1048         return (0);
 1049 }
 1050 
 1051 static void
 1052 itimer_fini(void *mem, int size)
 1053 {
 1054         struct itimer *it;
 1055 
 1056         it = (struct itimer *)mem;
 1057         mtx_destroy(&it->it_mtx);
 1058 }
 1059 
 1060 static void
 1061 itimer_enter(struct itimer *it)
 1062 {
 1063 
 1064         mtx_assert(&it->it_mtx, MA_OWNED);
 1065         it->it_usecount++;
 1066 }
 1067 
 1068 static void
 1069 itimer_leave(struct itimer *it)
 1070 {
 1071 
 1072         mtx_assert(&it->it_mtx, MA_OWNED);
 1073         KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
 1074 
 1075         if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
 1076                 wakeup(it);
 1077 }
 1078 
 1079 #ifndef _SYS_SYSPROTO_H_
 1080 struct ktimer_create_args {
 1081         clockid_t clock_id;
 1082         struct sigevent * evp;
 1083         int * timerid;
 1084 };
 1085 #endif
 1086 int
 1087 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
 1088 {
 1089         struct sigevent *evp, ev;
 1090         int id;
 1091         int error;
 1092 
 1093         if (uap->evp == NULL) {
 1094                 evp = NULL;
 1095         } else {
 1096                 error = copyin(uap->evp, &ev, sizeof(ev));
 1097                 if (error != 0)
 1098                         return (error);
 1099                 evp = &ev;
 1100         }
 1101         error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
 1102         if (error == 0) {
 1103                 error = copyout(&id, uap->timerid, sizeof(int));
 1104                 if (error != 0)
 1105                         kern_ktimer_delete(td, id);
 1106         }
 1107         return (error);
 1108 }
 1109 
 1110 int
 1111 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
 1112     int *timerid, int preset_id)
 1113 {
 1114         struct proc *p = td->td_proc;
 1115         struct itimer *it;
 1116         int id;
 1117         int error;
 1118 
 1119         if (clock_id < 0 || clock_id >= MAX_CLOCKS)
 1120                 return (EINVAL);
 1121 
 1122         if (posix_clocks[clock_id].timer_create == NULL)
 1123                 return (EINVAL);
 1124 
 1125         if (evp != NULL) {
 1126                 if (evp->sigev_notify != SIGEV_NONE &&
 1127                     evp->sigev_notify != SIGEV_SIGNAL &&
 1128                     evp->sigev_notify != SIGEV_THREAD_ID)
 1129                         return (EINVAL);
 1130                 if ((evp->sigev_notify == SIGEV_SIGNAL ||
 1131                      evp->sigev_notify == SIGEV_THREAD_ID) &&
 1132                         !_SIG_VALID(evp->sigev_signo))
 1133                         return (EINVAL);
 1134         }
 1135         
 1136         if (p->p_itimers == NULL)
 1137                 itimers_alloc(p);
 1138         
 1139         it = uma_zalloc(itimer_zone, M_WAITOK);
 1140         it->it_flags = 0;
 1141         it->it_usecount = 0;
 1142         it->it_active = 0;
 1143         timespecclear(&it->it_time.it_value);
 1144         timespecclear(&it->it_time.it_interval);
 1145         it->it_overrun = 0;
 1146         it->it_overrun_last = 0;
 1147         it->it_clockid = clock_id;
 1148         it->it_timerid = -1;
 1149         it->it_proc = p;
 1150         ksiginfo_init(&it->it_ksi);
 1151         it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
 1152         error = CLOCK_CALL(clock_id, timer_create, (it));
 1153         if (error != 0)
 1154                 goto out;
 1155 
 1156         PROC_LOCK(p);
 1157         if (preset_id != -1) {
 1158                 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
 1159                 id = preset_id;
 1160                 if (p->p_itimers->its_timers[id] != NULL) {
 1161                         PROC_UNLOCK(p);
 1162                         error = 0;
 1163                         goto out;
 1164                 }
 1165         } else {
 1166                 /*
 1167                  * Find a free timer slot, skipping those reserved
 1168                  * for setitimer().
 1169                  */
 1170                 for (id = 3; id < TIMER_MAX; id++)
 1171                         if (p->p_itimers->its_timers[id] == NULL)
 1172                                 break;
 1173                 if (id == TIMER_MAX) {
 1174                         PROC_UNLOCK(p);
 1175                         error = EAGAIN;
 1176                         goto out;
 1177                 }
 1178         }
 1179         it->it_timerid = id;
 1180         p->p_itimers->its_timers[id] = it;
 1181         if (evp != NULL)
 1182                 it->it_sigev = *evp;
 1183         else {
 1184                 it->it_sigev.sigev_notify = SIGEV_SIGNAL;
 1185                 switch (clock_id) {
 1186                 default:
 1187                 case CLOCK_REALTIME:
 1188                         it->it_sigev.sigev_signo = SIGALRM;
 1189                         break;
 1190                 case CLOCK_VIRTUAL:
 1191                         it->it_sigev.sigev_signo = SIGVTALRM;
 1192                         break;
 1193                 case CLOCK_PROF:
 1194                         it->it_sigev.sigev_signo = SIGPROF;
 1195                         break;
 1196                 }
 1197                 it->it_sigev.sigev_value.sival_int = id;
 1198         }
 1199 
 1200         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1201             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1202                 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
 1203                 it->it_ksi.ksi_code = SI_TIMER;
 1204                 it->it_ksi.ksi_value = it->it_sigev.sigev_value;
 1205                 it->it_ksi.ksi_timerid = id;
 1206         }
 1207         PROC_UNLOCK(p);
 1208         *timerid = id;
 1209         return (0);
 1210 
 1211 out:
 1212         ITIMER_LOCK(it);
 1213         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1214         ITIMER_UNLOCK(it);
 1215         uma_zfree(itimer_zone, it);
 1216         return (error);
 1217 }
 1218 
 1219 #ifndef _SYS_SYSPROTO_H_
 1220 struct ktimer_delete_args {
 1221         int timerid;
 1222 };
 1223 #endif
 1224 int
 1225 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
 1226 {
 1227 
 1228         return (kern_ktimer_delete(td, uap->timerid));
 1229 }
 1230 
 1231 static struct itimer *
 1232 itimer_find(struct proc *p, int timerid)
 1233 {
 1234         struct itimer *it;
 1235 
 1236         PROC_LOCK_ASSERT(p, MA_OWNED);
 1237         if ((p->p_itimers == NULL) ||
 1238             (timerid < 0) || (timerid >= TIMER_MAX) ||
 1239             (it = p->p_itimers->its_timers[timerid]) == NULL) {
 1240                 return (NULL);
 1241         }
 1242         ITIMER_LOCK(it);
 1243         if ((it->it_flags & ITF_DELETING) != 0) {
 1244                 ITIMER_UNLOCK(it);
 1245                 it = NULL;
 1246         }
 1247         return (it);
 1248 }
 1249 
 1250 int
 1251 kern_ktimer_delete(struct thread *td, int timerid)
 1252 {
 1253         struct proc *p = td->td_proc;
 1254         struct itimer *it;
 1255 
 1256         PROC_LOCK(p);
 1257         it = itimer_find(p, timerid);
 1258         if (it == NULL) {
 1259                 PROC_UNLOCK(p);
 1260                 return (EINVAL);
 1261         }
 1262         PROC_UNLOCK(p);
 1263 
 1264         it->it_flags |= ITF_DELETING;
 1265         while (it->it_usecount > 0) {
 1266                 it->it_flags |= ITF_WANTED;
 1267                 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
 1268         }
 1269         it->it_flags &= ~ITF_WANTED;
 1270         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1271         ITIMER_UNLOCK(it);
 1272 
 1273         PROC_LOCK(p);
 1274         if (KSI_ONQ(&it->it_ksi))
 1275                 sigqueue_take(&it->it_ksi);
 1276         p->p_itimers->its_timers[timerid] = NULL;
 1277         PROC_UNLOCK(p);
 1278         uma_zfree(itimer_zone, it);
 1279         return (0);
 1280 }
 1281 
 1282 #ifndef _SYS_SYSPROTO_H_
 1283 struct ktimer_settime_args {
 1284         int timerid;
 1285         int flags;
 1286         const struct itimerspec * value;
 1287         struct itimerspec * ovalue;
 1288 };
 1289 #endif
 1290 int
 1291 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
 1292 {
 1293         struct itimerspec val, oval, *ovalp;
 1294         int error;
 1295 
 1296         error = copyin(uap->value, &val, sizeof(val));
 1297         if (error != 0)
 1298                 return (error);
 1299         ovalp = uap->ovalue != NULL ? &oval : NULL;
 1300         error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
 1301         if (error == 0 && uap->ovalue != NULL)
 1302                 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
 1303         return (error);
 1304 }
 1305 
 1306 int
 1307 kern_ktimer_settime(struct thread *td, int timer_id, int flags,
 1308     struct itimerspec *val, struct itimerspec *oval)
 1309 {
 1310         struct proc *p;
 1311         struct itimer *it;
 1312         int error;
 1313 
 1314         p = td->td_proc;
 1315         PROC_LOCK(p);
 1316         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1317                 PROC_UNLOCK(p);
 1318                 error = EINVAL;
 1319         } else {
 1320                 PROC_UNLOCK(p);
 1321                 itimer_enter(it);
 1322                 error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
 1323                     flags, val, oval));
 1324                 itimer_leave(it);
 1325                 ITIMER_UNLOCK(it);
 1326         }
 1327         return (error);
 1328 }
 1329 
 1330 #ifndef _SYS_SYSPROTO_H_
 1331 struct ktimer_gettime_args {
 1332         int timerid;
 1333         struct itimerspec * value;
 1334 };
 1335 #endif
 1336 int
 1337 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
 1338 {
 1339         struct itimerspec val;
 1340         int error;
 1341 
 1342         error = kern_ktimer_gettime(td, uap->timerid, &val);
 1343         if (error == 0)
 1344                 error = copyout(&val, uap->value, sizeof(val));
 1345         return (error);
 1346 }
 1347 
 1348 int
 1349 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
 1350 {
 1351         struct proc *p;
 1352         struct itimer *it;
 1353         int error;
 1354 
 1355         p = td->td_proc;
 1356         PROC_LOCK(p);
 1357         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1358                 PROC_UNLOCK(p);
 1359                 error = EINVAL;
 1360         } else {
 1361                 PROC_UNLOCK(p);
 1362                 itimer_enter(it);
 1363                 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
 1364                 itimer_leave(it);
 1365                 ITIMER_UNLOCK(it);
 1366         }
 1367         return (error);
 1368 }
 1369 
 1370 #ifndef _SYS_SYSPROTO_H_
 1371 struct timer_getoverrun_args {
 1372         int timerid;
 1373 };
 1374 #endif
 1375 int
 1376 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
 1377 {
 1378 
 1379         return (kern_ktimer_getoverrun(td, uap->timerid));
 1380 }
 1381 
 1382 int
 1383 kern_ktimer_getoverrun(struct thread *td, int timer_id)
 1384 {
 1385         struct proc *p = td->td_proc;
 1386         struct itimer *it;
 1387         int error ;
 1388 
 1389         PROC_LOCK(p);
 1390         if (timer_id < 3 ||
 1391             (it = itimer_find(p, timer_id)) == NULL) {
 1392                 PROC_UNLOCK(p);
 1393                 error = EINVAL;
 1394         } else {
 1395                 td->td_retval[0] = it->it_overrun_last;
 1396                 ITIMER_UNLOCK(it);
 1397                 PROC_UNLOCK(p);
 1398                 error = 0;
 1399         }
 1400         return (error);
 1401 }
 1402 
 1403 static int
 1404 realtimer_create(struct itimer *it)
 1405 {
 1406         callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
 1407         return (0);
 1408 }
 1409 
 1410 static int
 1411 realtimer_delete(struct itimer *it)
 1412 {
 1413         mtx_assert(&it->it_mtx, MA_OWNED);
 1414         
 1415         /*
 1416          * clear timer's value and interval to tell realtimer_expire
 1417          * to not rearm the timer.
 1418          */
 1419         timespecclear(&it->it_time.it_value);
 1420         timespecclear(&it->it_time.it_interval);
 1421         ITIMER_UNLOCK(it);
 1422         callout_drain(&it->it_callout);
 1423         ITIMER_LOCK(it);
 1424         return (0);
 1425 }
 1426 
 1427 static int
 1428 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
 1429 {
 1430         struct timespec cts;
 1431 
 1432         mtx_assert(&it->it_mtx, MA_OWNED);
 1433 
 1434         realtimer_clocktime(it->it_clockid, &cts);
 1435         *ovalue = it->it_time;
 1436         if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
 1437                 timespecsub(&ovalue->it_value, &cts);
 1438                 if (ovalue->it_value.tv_sec < 0 ||
 1439                     (ovalue->it_value.tv_sec == 0 &&
 1440                      ovalue->it_value.tv_nsec == 0)) {
 1441                         ovalue->it_value.tv_sec  = 0;
 1442                         ovalue->it_value.tv_nsec = 1;
 1443                 }
 1444         }
 1445         return (0);
 1446 }
 1447 
 1448 static int
 1449 realtimer_settime(struct itimer *it, int flags,
 1450         struct itimerspec *value, struct itimerspec *ovalue)
 1451 {
 1452         struct timespec cts, ts;
 1453         struct timeval tv;
 1454         struct itimerspec val;
 1455 
 1456         mtx_assert(&it->it_mtx, MA_OWNED);
 1457 
 1458         val = *value;
 1459         if (itimespecfix(&val.it_value))
 1460                 return (EINVAL);
 1461 
 1462         if (timespecisset(&val.it_value)) {
 1463                 if (itimespecfix(&val.it_interval))
 1464                         return (EINVAL);
 1465         } else {
 1466                 timespecclear(&val.it_interval);
 1467         }
 1468         
 1469         if (ovalue != NULL)
 1470                 realtimer_gettime(it, ovalue);
 1471 
 1472         it->it_time = val;
 1473         if (timespecisset(&val.it_value)) {
 1474                 realtimer_clocktime(it->it_clockid, &cts);
 1475                 ts = val.it_value;
 1476                 if ((flags & TIMER_ABSTIME) == 0) {
 1477                         /* Convert to absolute time. */
 1478                         timespecadd(&it->it_time.it_value, &cts);
 1479                 } else {
 1480                         timespecsub(&ts, &cts);
 1481                         /*
 1482                          * We don't care if ts is negative, tztohz will
 1483                          * fix it.
 1484                          */
 1485                 }
 1486                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1487                 callout_reset(&it->it_callout, tvtohz(&tv),
 1488                         realtimer_expire, it);
 1489         } else {
 1490                 callout_stop(&it->it_callout);
 1491         }
 1492 
 1493         return (0);
 1494 }
 1495 
 1496 static void
 1497 realtimer_clocktime(clockid_t id, struct timespec *ts)
 1498 {
 1499         if (id == CLOCK_REALTIME)
 1500                 getnanotime(ts);
 1501         else    /* CLOCK_MONOTONIC */
 1502                 getnanouptime(ts);
 1503 }
 1504 
 1505 int
 1506 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
 1507 {
 1508         struct itimer *it;
 1509 
 1510         PROC_LOCK_ASSERT(p, MA_OWNED);
 1511         it = itimer_find(p, timerid);
 1512         if (it != NULL) {
 1513                 ksi->ksi_overrun = it->it_overrun;
 1514                 it->it_overrun_last = it->it_overrun;
 1515                 it->it_overrun = 0;
 1516                 ITIMER_UNLOCK(it);
 1517                 return (0);
 1518         }
 1519         return (EINVAL);
 1520 }
 1521 
 1522 int
 1523 itimespecfix(struct timespec *ts)
 1524 {
 1525 
 1526         if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 1527                 return (EINVAL);
 1528         if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
 1529                 ts->tv_nsec = tick * 1000;
 1530         return (0);
 1531 }
 1532 
 1533 /* Timeout callback for realtime timer */
 1534 static void
 1535 realtimer_expire(void *arg)
 1536 {
 1537         struct timespec cts, ts;
 1538         struct timeval tv;
 1539         struct itimer *it;
 1540 
 1541         it = (struct itimer *)arg;
 1542 
 1543         realtimer_clocktime(it->it_clockid, &cts);
 1544         /* Only fire if time is reached. */
 1545         if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
 1546                 if (timespecisset(&it->it_time.it_interval)) {
 1547                         timespecadd(&it->it_time.it_value,
 1548                                     &it->it_time.it_interval);
 1549                         while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
 1550                                 if (it->it_overrun < INT_MAX)
 1551                                         it->it_overrun++;
 1552                                 else
 1553                                         it->it_ksi.ksi_errno = ERANGE;
 1554                                 timespecadd(&it->it_time.it_value,
 1555                                             &it->it_time.it_interval);
 1556                         }
 1557                 } else {
 1558                         /* single shot timer ? */
 1559                         timespecclear(&it->it_time.it_value);
 1560                 }
 1561                 if (timespecisset(&it->it_time.it_value)) {
 1562                         ts = it->it_time.it_value;
 1563                         timespecsub(&ts, &cts);
 1564                         TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1565                         callout_reset(&it->it_callout, tvtohz(&tv),
 1566                                  realtimer_expire, it);
 1567                 }
 1568                 itimer_enter(it);
 1569                 ITIMER_UNLOCK(it);
 1570                 itimer_fire(it);
 1571                 ITIMER_LOCK(it);
 1572                 itimer_leave(it);
 1573         } else if (timespecisset(&it->it_time.it_value)) {
 1574                 ts = it->it_time.it_value;
 1575                 timespecsub(&ts, &cts);
 1576                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1577                 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
 1578                         it);
 1579         }
 1580 }
 1581 
 1582 void
 1583 itimer_fire(struct itimer *it)
 1584 {
 1585         struct proc *p = it->it_proc;
 1586         struct thread *td;
 1587 
 1588         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1589             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1590                 if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
 1591                         ITIMER_LOCK(it);
 1592                         timespecclear(&it->it_time.it_value);
 1593                         timespecclear(&it->it_time.it_interval);
 1594                         callout_stop(&it->it_callout);
 1595                         ITIMER_UNLOCK(it);
 1596                         return;
 1597                 }
 1598                 if (!KSI_ONQ(&it->it_ksi)) {
 1599                         it->it_ksi.ksi_errno = 0;
 1600                         ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
 1601                         tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
 1602                 } else {
 1603                         if (it->it_overrun < INT_MAX)
 1604                                 it->it_overrun++;
 1605                         else
 1606                                 it->it_ksi.ksi_errno = ERANGE;
 1607                 }
 1608                 PROC_UNLOCK(p);
 1609         }
 1610 }
 1611 
 1612 static void
 1613 itimers_alloc(struct proc *p)
 1614 {
 1615         struct itimers *its;
 1616         int i;
 1617 
 1618         its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
 1619         LIST_INIT(&its->its_virtual);
 1620         LIST_INIT(&its->its_prof);
 1621         TAILQ_INIT(&its->its_worklist);
 1622         for (i = 0; i < TIMER_MAX; i++)
 1623                 its->its_timers[i] = NULL;
 1624         PROC_LOCK(p);
 1625         if (p->p_itimers == NULL) {
 1626                 p->p_itimers = its;
 1627                 PROC_UNLOCK(p);
 1628         }
 1629         else {
 1630                 PROC_UNLOCK(p);
 1631                 free(its, M_SUBPROC);
 1632         }
 1633 }
 1634 
 1635 static void
 1636 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
 1637 {
 1638         itimers_event_hook_exit(arg, p);
 1639 }
 1640 
 1641 /* Clean up timers when some process events are being triggered. */
 1642 static void
 1643 itimers_event_hook_exit(void *arg, struct proc *p)
 1644 {
 1645         struct itimers *its;
 1646         struct itimer *it;
 1647         int event = (int)(intptr_t)arg;
 1648         int i;
 1649 
 1650         if (p->p_itimers != NULL) {
 1651                 its = p->p_itimers;
 1652                 for (i = 0; i < MAX_CLOCKS; ++i) {
 1653                         if (posix_clocks[i].event_hook != NULL)
 1654                                 CLOCK_CALL(i, event_hook, (p, i, event));
 1655                 }
 1656                 /*
 1657                  * According to susv3, XSI interval timers should be inherited
 1658                  * by new image.
 1659                  */
 1660                 if (event == ITIMER_EV_EXEC)
 1661                         i = 3;
 1662                 else if (event == ITIMER_EV_EXIT)
 1663                         i = 0;
 1664                 else
 1665                         panic("unhandled event");
 1666                 for (; i < TIMER_MAX; ++i) {
 1667                         if ((it = its->its_timers[i]) != NULL)
 1668                                 kern_ktimer_delete(curthread, i);
 1669                 }
 1670                 if (its->its_timers[0] == NULL &&
 1671                     its->its_timers[1] == NULL &&
 1672                     its->its_timers[2] == NULL) {
 1673                         free(its, M_SUBPROC);
 1674                         p->p_itimers = NULL;
 1675                 }
 1676         }
 1677 }

Cache object: 3bbbb2a754da4dc7c0ebf45673ddf4ba


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.