The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_time.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)kern_time.c 8.1 (Berkeley) 6/10/93
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/11.1/sys/kern/kern_time.c 317618 2017-05-01 01:36:54Z vangyzen $");
   34 
   35 #include "opt_ktrace.h"
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/limits.h>
   40 #include <sys/clock.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/sysproto.h>
   44 #include <sys/eventhandler.h>
   45 #include <sys/resourcevar.h>
   46 #include <sys/signalvar.h>
   47 #include <sys/kernel.h>
   48 #include <sys/sleepqueue.h>
   49 #include <sys/syscallsubr.h>
   50 #include <sys/sysctl.h>
   51 #include <sys/sysent.h>
   52 #include <sys/priv.h>
   53 #include <sys/proc.h>
   54 #include <sys/posix4.h>
   55 #include <sys/time.h>
   56 #include <sys/timers.h>
   57 #include <sys/timetc.h>
   58 #include <sys/vnode.h>
   59 #ifdef KTRACE
   60 #include <sys/ktrace.h>
   61 #endif
   62 
   63 #include <vm/vm.h>
   64 #include <vm/vm_extern.h>
   65 
   66 #define MAX_CLOCKS      (CLOCK_MONOTONIC+1)
   67 #define CPUCLOCK_BIT            0x80000000
   68 #define CPUCLOCK_PROCESS_BIT    0x40000000
   69 #define CPUCLOCK_ID_MASK        (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
   70 #define MAKE_THREAD_CPUCLOCK(tid)       (CPUCLOCK_BIT|(tid))
   71 #define MAKE_PROCESS_CPUCLOCK(pid)      \
   72         (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
   73 
   74 static struct kclock    posix_clocks[MAX_CLOCKS];
   75 static uma_zone_t       itimer_zone = NULL;
   76 
   77 /*
   78  * Time of day and interval timer support.
   79  *
   80  * These routines provide the kernel entry points to get and set
   81  * the time-of-day and per-process interval timers.  Subroutines
   82  * here provide support for adding and subtracting timeval structures
   83  * and decrementing interval timers, optionally reloading the interval
   84  * timers when they expire.
   85  */
   86 
   87 static int      settime(struct thread *, struct timeval *);
   88 static void     timevalfix(struct timeval *);
   89 static int      user_clock_nanosleep(struct thread *td, clockid_t clock_id,
   90                     int flags, const struct timespec *ua_rqtp,
   91                     struct timespec *ua_rmtp);
   92 
   93 static void     itimer_start(void);
   94 static int      itimer_init(void *, int, int);
   95 static void     itimer_fini(void *, int);
   96 static void     itimer_enter(struct itimer *);
   97 static void     itimer_leave(struct itimer *);
   98 static struct itimer *itimer_find(struct proc *, int);
   99 static void     itimers_alloc(struct proc *);
  100 static void     itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
  101 static void     itimers_event_hook_exit(void *arg, struct proc *p);
  102 static int      realtimer_create(struct itimer *);
  103 static int      realtimer_gettime(struct itimer *, struct itimerspec *);
  104 static int      realtimer_settime(struct itimer *, int,
  105                         struct itimerspec *, struct itimerspec *);
  106 static int      realtimer_delete(struct itimer *);
  107 static void     realtimer_clocktime(clockid_t, struct timespec *);
  108 static void     realtimer_expire(void *);
  109 
  110 int             register_posix_clock(int, struct kclock *);
  111 void            itimer_fire(struct itimer *it);
  112 int             itimespecfix(struct timespec *ts);
  113 
  114 #define CLOCK_CALL(clock, call, arglist)                \
  115         ((*posix_clocks[clock].call) arglist)
  116 
  117 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
  118 
  119 
  120 static int
  121 settime(struct thread *td, struct timeval *tv)
  122 {
  123         struct timeval delta, tv1, tv2;
  124         static struct timeval maxtime, laststep;
  125         struct timespec ts;
  126 
  127         microtime(&tv1);
  128         delta = *tv;
  129         timevalsub(&delta, &tv1);
  130 
  131         /*
  132          * If the system is secure, we do not allow the time to be 
  133          * set to a value earlier than 1 second less than the highest
  134          * time we have yet seen. The worst a miscreant can do in
  135          * this circumstance is "freeze" time. He couldn't go
  136          * back to the past.
  137          *
  138          * We similarly do not allow the clock to be stepped more
  139          * than one second, nor more than once per second. This allows
  140          * a miscreant to make the clock march double-time, but no worse.
  141          */
  142         if (securelevel_gt(td->td_ucred, 1) != 0) {
  143                 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
  144                         /*
  145                          * Update maxtime to latest time we've seen.
  146                          */
  147                         if (tv1.tv_sec > maxtime.tv_sec)
  148                                 maxtime = tv1;
  149                         tv2 = *tv;
  150                         timevalsub(&tv2, &maxtime);
  151                         if (tv2.tv_sec < -1) {
  152                                 tv->tv_sec = maxtime.tv_sec - 1;
  153                                 printf("Time adjustment clamped to -1 second\n");
  154                         }
  155                 } else {
  156                         if (tv1.tv_sec == laststep.tv_sec)
  157                                 return (EPERM);
  158                         if (delta.tv_sec > 1) {
  159                                 tv->tv_sec = tv1.tv_sec + 1;
  160                                 printf("Time adjustment clamped to +1 second\n");
  161                         }
  162                         laststep = *tv;
  163                 }
  164         }
  165 
  166         ts.tv_sec = tv->tv_sec;
  167         ts.tv_nsec = tv->tv_usec * 1000;
  168         tc_setclock(&ts);
  169         resettodr();
  170         return (0);
  171 }
  172 
  173 #ifndef _SYS_SYSPROTO_H_
  174 struct clock_getcpuclockid2_args {
  175         id_t id;
  176         int which,
  177         clockid_t *clock_id;
  178 };
  179 #endif
  180 /* ARGSUSED */
  181 int
  182 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
  183 {
  184         clockid_t clk_id;
  185         int error;
  186 
  187         error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
  188         if (error == 0)
  189                 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
  190         return (error);
  191 }
  192 
  193 int
  194 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
  195     clockid_t *clk_id)
  196 {
  197         struct proc *p;
  198         pid_t pid;
  199         lwpid_t tid;
  200         int error;
  201 
  202         switch (which) {
  203         case CPUCLOCK_WHICH_PID:
  204                 if (id != 0) {
  205                         error = pget(id, PGET_CANSEE | PGET_NOTID, &p);
  206                         if (error != 0)
  207                                 return (error);
  208                         PROC_UNLOCK(p);
  209                         pid = id;
  210                 } else {
  211                         pid = td->td_proc->p_pid;
  212                 }
  213                 *clk_id = MAKE_PROCESS_CPUCLOCK(pid);
  214                 return (0);
  215         case CPUCLOCK_WHICH_TID:
  216                 tid = id == 0 ? td->td_tid : id;
  217                 *clk_id = MAKE_THREAD_CPUCLOCK(tid);
  218                 return (0);
  219         default:
  220                 return (EINVAL);
  221         }
  222 }
  223 
  224 #ifndef _SYS_SYSPROTO_H_
  225 struct clock_gettime_args {
  226         clockid_t clock_id;
  227         struct  timespec *tp;
  228 };
  229 #endif
  230 /* ARGSUSED */
  231 int
  232 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
  233 {
  234         struct timespec ats;
  235         int error;
  236 
  237         error = kern_clock_gettime(td, uap->clock_id, &ats);
  238         if (error == 0)
  239                 error = copyout(&ats, uap->tp, sizeof(ats));
  240 
  241         return (error);
  242 }
  243 
  244 static inline void 
  245 cputick2timespec(uint64_t runtime, struct timespec *ats)
  246 {
  247         runtime = cputick2usec(runtime);
  248         ats->tv_sec = runtime / 1000000;
  249         ats->tv_nsec = runtime % 1000000 * 1000;
  250 }
  251 
  252 static void
  253 get_thread_cputime(struct thread *targettd, struct timespec *ats)
  254 {
  255         uint64_t runtime, curtime, switchtime;
  256 
  257         if (targettd == NULL) { /* current thread */
  258                 critical_enter();
  259                 switchtime = PCPU_GET(switchtime);
  260                 curtime = cpu_ticks();
  261                 runtime = curthread->td_runtime;
  262                 critical_exit();
  263                 runtime += curtime - switchtime;
  264         } else {
  265                 thread_lock(targettd);
  266                 runtime = targettd->td_runtime;
  267                 thread_unlock(targettd);
  268         }
  269         cputick2timespec(runtime, ats);
  270 }
  271 
  272 static void
  273 get_process_cputime(struct proc *targetp, struct timespec *ats)
  274 {
  275         uint64_t runtime;
  276         struct rusage ru;
  277 
  278         PROC_STATLOCK(targetp);
  279         rufetch(targetp, &ru);
  280         runtime = targetp->p_rux.rux_runtime;
  281         PROC_STATUNLOCK(targetp);
  282         cputick2timespec(runtime, ats);
  283 }
  284 
  285 static int
  286 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  287 {
  288         struct proc *p, *p2;
  289         struct thread *td2;
  290         lwpid_t tid;
  291         pid_t pid;
  292         int error;
  293 
  294         p = td->td_proc;
  295         if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
  296                 tid = clock_id & CPUCLOCK_ID_MASK;
  297                 td2 = tdfind(tid, p->p_pid);
  298                 if (td2 == NULL)
  299                         return (EINVAL);
  300                 get_thread_cputime(td2, ats);
  301                 PROC_UNLOCK(td2->td_proc);
  302         } else {
  303                 pid = clock_id & CPUCLOCK_ID_MASK;
  304                 error = pget(pid, PGET_CANSEE, &p2);
  305                 if (error != 0)
  306                         return (EINVAL);
  307                 get_process_cputime(p2, ats);
  308                 PROC_UNLOCK(p2);
  309         }
  310         return (0);
  311 }
  312 
  313 int
  314 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  315 {
  316         struct timeval sys, user;
  317         struct proc *p;
  318 
  319         p = td->td_proc;
  320         switch (clock_id) {
  321         case CLOCK_REALTIME:            /* Default to precise. */
  322         case CLOCK_REALTIME_PRECISE:
  323                 nanotime(ats);
  324                 break;
  325         case CLOCK_REALTIME_FAST:
  326                 getnanotime(ats);
  327                 break;
  328         case CLOCK_VIRTUAL:
  329                 PROC_LOCK(p);
  330                 PROC_STATLOCK(p);
  331                 calcru(p, &user, &sys);
  332                 PROC_STATUNLOCK(p);
  333                 PROC_UNLOCK(p);
  334                 TIMEVAL_TO_TIMESPEC(&user, ats);
  335                 break;
  336         case CLOCK_PROF:
  337                 PROC_LOCK(p);
  338                 PROC_STATLOCK(p);
  339                 calcru(p, &user, &sys);
  340                 PROC_STATUNLOCK(p);
  341                 PROC_UNLOCK(p);
  342                 timevaladd(&user, &sys);
  343                 TIMEVAL_TO_TIMESPEC(&user, ats);
  344                 break;
  345         case CLOCK_MONOTONIC:           /* Default to precise. */
  346         case CLOCK_MONOTONIC_PRECISE:
  347         case CLOCK_UPTIME:
  348         case CLOCK_UPTIME_PRECISE:
  349                 nanouptime(ats);
  350                 break;
  351         case CLOCK_UPTIME_FAST:
  352         case CLOCK_MONOTONIC_FAST:
  353                 getnanouptime(ats);
  354                 break;
  355         case CLOCK_SECOND:
  356                 ats->tv_sec = time_second;
  357                 ats->tv_nsec = 0;
  358                 break;
  359         case CLOCK_THREAD_CPUTIME_ID:
  360                 get_thread_cputime(NULL, ats);
  361                 break;
  362         case CLOCK_PROCESS_CPUTIME_ID:
  363                 PROC_LOCK(p);
  364                 get_process_cputime(p, ats);
  365                 PROC_UNLOCK(p);
  366                 break;
  367         default:
  368                 if ((int)clock_id >= 0)
  369                         return (EINVAL);
  370                 return (get_cputime(td, clock_id, ats));
  371         }
  372         return (0);
  373 }
  374 
  375 #ifndef _SYS_SYSPROTO_H_
  376 struct clock_settime_args {
  377         clockid_t clock_id;
  378         const struct    timespec *tp;
  379 };
  380 #endif
  381 /* ARGSUSED */
  382 int
  383 sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
  384 {
  385         struct timespec ats;
  386         int error;
  387 
  388         if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
  389                 return (error);
  390         return (kern_clock_settime(td, uap->clock_id, &ats));
  391 }
  392 
  393 int
  394 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  395 {
  396         struct timeval atv;
  397         int error;
  398 
  399         if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
  400                 return (error);
  401         if (clock_id != CLOCK_REALTIME)
  402                 return (EINVAL);
  403         if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000 ||
  404             ats->tv_sec < 0)
  405                 return (EINVAL);
  406         /* XXX Don't convert nsec->usec and back */
  407         TIMESPEC_TO_TIMEVAL(&atv, ats);
  408         error = settime(td, &atv);
  409         return (error);
  410 }
  411 
  412 #ifndef _SYS_SYSPROTO_H_
  413 struct clock_getres_args {
  414         clockid_t clock_id;
  415         struct  timespec *tp;
  416 };
  417 #endif
  418 int
  419 sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
  420 {
  421         struct timespec ts;
  422         int error;
  423 
  424         if (uap->tp == NULL)
  425                 return (0);
  426 
  427         error = kern_clock_getres(td, uap->clock_id, &ts);
  428         if (error == 0)
  429                 error = copyout(&ts, uap->tp, sizeof(ts));
  430         return (error);
  431 }
  432 
  433 int
  434 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
  435 {
  436 
  437         ts->tv_sec = 0;
  438         switch (clock_id) {
  439         case CLOCK_REALTIME:
  440         case CLOCK_REALTIME_FAST:
  441         case CLOCK_REALTIME_PRECISE:
  442         case CLOCK_MONOTONIC:
  443         case CLOCK_MONOTONIC_FAST:
  444         case CLOCK_MONOTONIC_PRECISE:
  445         case CLOCK_UPTIME:
  446         case CLOCK_UPTIME_FAST:
  447         case CLOCK_UPTIME_PRECISE:
  448                 /*
  449                  * Round up the result of the division cheaply by adding 1.
  450                  * Rounding up is especially important if rounding down
  451                  * would give 0.  Perfect rounding is unimportant.
  452                  */
  453                 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
  454                 break;
  455         case CLOCK_VIRTUAL:
  456         case CLOCK_PROF:
  457                 /* Accurately round up here because we can do so cheaply. */
  458                 ts->tv_nsec = howmany(1000000000, hz);
  459                 break;
  460         case CLOCK_SECOND:
  461                 ts->tv_sec = 1;
  462                 ts->tv_nsec = 0;
  463                 break;
  464         case CLOCK_THREAD_CPUTIME_ID:
  465         case CLOCK_PROCESS_CPUTIME_ID:
  466         cputime:
  467                 /* sync with cputick2usec */
  468                 ts->tv_nsec = 1000000 / cpu_tickrate();
  469                 if (ts->tv_nsec == 0)
  470                         ts->tv_nsec = 1000;
  471                 break;
  472         default:
  473                 if ((int)clock_id < 0)
  474                         goto cputime;
  475                 return (EINVAL);
  476         }
  477         return (0);
  478 }
  479 
  480 int
  481 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
  482 {
  483 
  484         return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt,
  485             rmt));
  486 }
  487 
  488 static uint8_t nanowait[MAXCPU];
  489 
  490 int
  491 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
  492     const struct timespec *rqt, struct timespec *rmt)
  493 {
  494         struct timespec ts, now;
  495         sbintime_t sbt, sbtt, prec, tmp;
  496         time_t over;
  497         int error;
  498         bool is_abs_real;
  499 
  500         if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
  501                 return (EINVAL);
  502         if ((flags & ~TIMER_ABSTIME) != 0)
  503                 return (EINVAL);
  504         switch (clock_id) {
  505         case CLOCK_REALTIME:
  506         case CLOCK_REALTIME_PRECISE:
  507         case CLOCK_REALTIME_FAST:
  508         case CLOCK_SECOND:
  509                 is_abs_real = (flags & TIMER_ABSTIME) != 0;
  510                 break;
  511         case CLOCK_MONOTONIC:
  512         case CLOCK_MONOTONIC_PRECISE:
  513         case CLOCK_MONOTONIC_FAST:
  514         case CLOCK_UPTIME:
  515         case CLOCK_UPTIME_PRECISE:
  516         case CLOCK_UPTIME_FAST:
  517                 is_abs_real = false;
  518                 break;
  519         case CLOCK_VIRTUAL:
  520         case CLOCK_PROF:
  521         case CLOCK_PROCESS_CPUTIME_ID:
  522                 return (ENOTSUP);
  523         case CLOCK_THREAD_CPUTIME_ID:
  524         default:
  525                 return (EINVAL);
  526         }
  527         do {
  528                 ts = *rqt;
  529                 if ((flags & TIMER_ABSTIME) != 0) {
  530                         if (is_abs_real)
  531                                 td->td_rtcgen =
  532                                     atomic_load_acq_int(&rtc_generation);
  533                         error = kern_clock_gettime(td, clock_id, &now);
  534                         KASSERT(error == 0, ("kern_clock_gettime: %d", error));
  535                         timespecsub(&ts, &now);
  536                 }
  537                 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) {
  538                         error = EWOULDBLOCK;
  539                         break;
  540                 }
  541                 if (ts.tv_sec > INT32_MAX / 2) {
  542                         over = ts.tv_sec - INT32_MAX / 2;
  543                         ts.tv_sec -= over;
  544                 } else
  545                         over = 0;
  546                 tmp = tstosbt(ts);
  547                 prec = tmp;
  548                 prec >>= tc_precexp;
  549                 if (TIMESEL(&sbt, tmp))
  550                         sbt += tc_tick_sbt;
  551                 sbt += tmp;
  552                 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
  553                     sbt, prec, C_ABSOLUTE);
  554         } while (error == 0 && is_abs_real && td->td_rtcgen == 0);
  555         td->td_rtcgen = 0;
  556         if (error != EWOULDBLOCK) {
  557                 TIMESEL(&sbtt, tmp);
  558                 if (sbtt >= sbt)
  559                         return (0);
  560                 if (error == ERESTART)
  561                         error = EINTR;
  562                 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) {
  563                         ts = sbttots(sbt - sbtt);
  564                         ts.tv_sec += over;
  565                         if (ts.tv_sec < 0)
  566                                 timespecclear(&ts);
  567                         *rmt = ts;
  568                 }
  569                 return (error);
  570         }
  571         return (0);
  572 }
  573 
  574 #ifndef _SYS_SYSPROTO_H_
  575 struct nanosleep_args {
  576         struct  timespec *rqtp;
  577         struct  timespec *rmtp;
  578 };
  579 #endif
  580 /* ARGSUSED */
  581 int
  582 sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
  583 {
  584 
  585         return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME,
  586             uap->rqtp, uap->rmtp));
  587 }
  588 
  589 #ifndef _SYS_SYSPROTO_H_
  590 struct clock_nanosleep_args {
  591         clockid_t clock_id;
  592         int       flags;
  593         struct  timespec *rqtp;
  594         struct  timespec *rmtp;
  595 };
  596 #endif
  597 /* ARGSUSED */
  598 int
  599 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap)
  600 {
  601         int error;
  602 
  603         error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp,
  604             uap->rmtp);
  605         return (kern_posix_error(td, error));
  606 }
  607 
  608 static int
  609 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
  610     const struct timespec *ua_rqtp, struct timespec *ua_rmtp)
  611 {
  612         struct timespec rmt, rqt;
  613         int error;
  614 
  615         error = copyin(ua_rqtp, &rqt, sizeof(rqt));
  616         if (error)
  617                 return (error);
  618         if (ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0 &&
  619             !useracc(ua_rmtp, sizeof(rmt), VM_PROT_WRITE))
  620                 return (EFAULT);
  621         error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
  622         if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
  623                 int error2;
  624 
  625                 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt));
  626                 if (error2)
  627                         error = error2;
  628         }
  629         return (error);
  630 }
  631 
  632 #ifndef _SYS_SYSPROTO_H_
  633 struct gettimeofday_args {
  634         struct  timeval *tp;
  635         struct  timezone *tzp;
  636 };
  637 #endif
  638 /* ARGSUSED */
  639 int
  640 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
  641 {
  642         struct timeval atv;
  643         struct timezone rtz;
  644         int error = 0;
  645 
  646         if (uap->tp) {
  647                 microtime(&atv);
  648                 error = copyout(&atv, uap->tp, sizeof (atv));
  649         }
  650         if (error == 0 && uap->tzp != NULL) {
  651                 rtz.tz_minuteswest = tz_minuteswest;
  652                 rtz.tz_dsttime = tz_dsttime;
  653                 error = copyout(&rtz, uap->tzp, sizeof (rtz));
  654         }
  655         return (error);
  656 }
  657 
  658 #ifndef _SYS_SYSPROTO_H_
  659 struct settimeofday_args {
  660         struct  timeval *tv;
  661         struct  timezone *tzp;
  662 };
  663 #endif
  664 /* ARGSUSED */
  665 int
  666 sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
  667 {
  668         struct timeval atv, *tvp;
  669         struct timezone atz, *tzp;
  670         int error;
  671 
  672         if (uap->tv) {
  673                 error = copyin(uap->tv, &atv, sizeof(atv));
  674                 if (error)
  675                         return (error);
  676                 tvp = &atv;
  677         } else
  678                 tvp = NULL;
  679         if (uap->tzp) {
  680                 error = copyin(uap->tzp, &atz, sizeof(atz));
  681                 if (error)
  682                         return (error);
  683                 tzp = &atz;
  684         } else
  685                 tzp = NULL;
  686         return (kern_settimeofday(td, tvp, tzp));
  687 }
  688 
  689 int
  690 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
  691 {
  692         int error;
  693 
  694         error = priv_check(td, PRIV_SETTIMEOFDAY);
  695         if (error)
  696                 return (error);
  697         /* Verify all parameters before changing time. */
  698         if (tv) {
  699                 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 ||
  700                     tv->tv_sec < 0)
  701                         return (EINVAL);
  702                 error = settime(td, tv);
  703         }
  704         if (tzp && error == 0) {
  705                 tz_minuteswest = tzp->tz_minuteswest;
  706                 tz_dsttime = tzp->tz_dsttime;
  707         }
  708         return (error);
  709 }
  710 
  711 /*
  712  * Get value of an interval timer.  The process virtual and profiling virtual
  713  * time timers are kept in the p_stats area, since they can be swapped out.
  714  * These are kept internally in the way they are specified externally: in
  715  * time until they expire.
  716  *
  717  * The real time interval timer is kept in the process table slot for the
  718  * process, and its value (it_value) is kept as an absolute time rather than
  719  * as a delta, so that it is easy to keep periodic real-time signals from
  720  * drifting.
  721  *
  722  * Virtual time timers are processed in the hardclock() routine of
  723  * kern_clock.c.  The real time timer is processed by a timeout routine,
  724  * called from the softclock() routine.  Since a callout may be delayed in
  725  * real time due to interrupt processing in the system, it is possible for
  726  * the real time timeout routine (realitexpire, given below), to be delayed
  727  * in real time past when it is supposed to occur.  It does not suffice,
  728  * therefore, to reload the real timer .it_value from the real time timers
  729  * .it_interval.  Rather, we compute the next time in absolute time the timer
  730  * should go off.
  731  */
  732 #ifndef _SYS_SYSPROTO_H_
  733 struct getitimer_args {
  734         u_int   which;
  735         struct  itimerval *itv;
  736 };
  737 #endif
  738 int
  739 sys_getitimer(struct thread *td, struct getitimer_args *uap)
  740 {
  741         struct itimerval aitv;
  742         int error;
  743 
  744         error = kern_getitimer(td, uap->which, &aitv);
  745         if (error != 0)
  746                 return (error);
  747         return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
  748 }
  749 
  750 int
  751 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
  752 {
  753         struct proc *p = td->td_proc;
  754         struct timeval ctv;
  755 
  756         if (which > ITIMER_PROF)
  757                 return (EINVAL);
  758 
  759         if (which == ITIMER_REAL) {
  760                 /*
  761                  * Convert from absolute to relative time in .it_value
  762                  * part of real time timer.  If time for real time timer
  763                  * has passed return 0, else return difference between
  764                  * current time and time for the timer to go off.
  765                  */
  766                 PROC_LOCK(p);
  767                 *aitv = p->p_realtimer;
  768                 PROC_UNLOCK(p);
  769                 if (timevalisset(&aitv->it_value)) {
  770                         microuptime(&ctv);
  771                         if (timevalcmp(&aitv->it_value, &ctv, <))
  772                                 timevalclear(&aitv->it_value);
  773                         else
  774                                 timevalsub(&aitv->it_value, &ctv);
  775                 }
  776         } else {
  777                 PROC_ITIMLOCK(p);
  778                 *aitv = p->p_stats->p_timer[which];
  779                 PROC_ITIMUNLOCK(p);
  780         }
  781 #ifdef KTRACE
  782         if (KTRPOINT(td, KTR_STRUCT))
  783                 ktritimerval(aitv);
  784 #endif
  785         return (0);
  786 }
  787 
  788 #ifndef _SYS_SYSPROTO_H_
  789 struct setitimer_args {
  790         u_int   which;
  791         struct  itimerval *itv, *oitv;
  792 };
  793 #endif
  794 int
  795 sys_setitimer(struct thread *td, struct setitimer_args *uap)
  796 {
  797         struct itimerval aitv, oitv;
  798         int error;
  799 
  800         if (uap->itv == NULL) {
  801                 uap->itv = uap->oitv;
  802                 return (sys_getitimer(td, (struct getitimer_args *)uap));
  803         }
  804 
  805         if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
  806                 return (error);
  807         error = kern_setitimer(td, uap->which, &aitv, &oitv);
  808         if (error != 0 || uap->oitv == NULL)
  809                 return (error);
  810         return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
  811 }
  812 
  813 int
  814 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
  815     struct itimerval *oitv)
  816 {
  817         struct proc *p = td->td_proc;
  818         struct timeval ctv;
  819         sbintime_t sbt, pr;
  820 
  821         if (aitv == NULL)
  822                 return (kern_getitimer(td, which, oitv));
  823 
  824         if (which > ITIMER_PROF)
  825                 return (EINVAL);
  826 #ifdef KTRACE
  827         if (KTRPOINT(td, KTR_STRUCT))
  828                 ktritimerval(aitv);
  829 #endif
  830         if (itimerfix(&aitv->it_value) ||
  831             aitv->it_value.tv_sec > INT32_MAX / 2)
  832                 return (EINVAL);
  833         if (!timevalisset(&aitv->it_value))
  834                 timevalclear(&aitv->it_interval);
  835         else if (itimerfix(&aitv->it_interval) ||
  836             aitv->it_interval.tv_sec > INT32_MAX / 2)
  837                 return (EINVAL);
  838 
  839         if (which == ITIMER_REAL) {
  840                 PROC_LOCK(p);
  841                 if (timevalisset(&p->p_realtimer.it_value))
  842                         callout_stop(&p->p_itcallout);
  843                 microuptime(&ctv);
  844                 if (timevalisset(&aitv->it_value)) {
  845                         pr = tvtosbt(aitv->it_value) >> tc_precexp;
  846                         timevaladd(&aitv->it_value, &ctv);
  847                         sbt = tvtosbt(aitv->it_value);
  848                         callout_reset_sbt(&p->p_itcallout, sbt, pr,
  849                             realitexpire, p, C_ABSOLUTE);
  850                 }
  851                 *oitv = p->p_realtimer;
  852                 p->p_realtimer = *aitv;
  853                 PROC_UNLOCK(p);
  854                 if (timevalisset(&oitv->it_value)) {
  855                         if (timevalcmp(&oitv->it_value, &ctv, <))
  856                                 timevalclear(&oitv->it_value);
  857                         else
  858                                 timevalsub(&oitv->it_value, &ctv);
  859                 }
  860         } else {
  861                 if (aitv->it_interval.tv_sec == 0 &&
  862                     aitv->it_interval.tv_usec != 0 &&
  863                     aitv->it_interval.tv_usec < tick)
  864                         aitv->it_interval.tv_usec = tick;
  865                 if (aitv->it_value.tv_sec == 0 &&
  866                     aitv->it_value.tv_usec != 0 &&
  867                     aitv->it_value.tv_usec < tick)
  868                         aitv->it_value.tv_usec = tick;
  869                 PROC_ITIMLOCK(p);
  870                 *oitv = p->p_stats->p_timer[which];
  871                 p->p_stats->p_timer[which] = *aitv;
  872                 PROC_ITIMUNLOCK(p);
  873         }
  874 #ifdef KTRACE
  875         if (KTRPOINT(td, KTR_STRUCT))
  876                 ktritimerval(oitv);
  877 #endif
  878         return (0);
  879 }
  880 
  881 /*
  882  * Real interval timer expired:
  883  * send process whose timer expired an alarm signal.
  884  * If time is not set up to reload, then just return.
  885  * Else compute next time timer should go off which is > current time.
  886  * This is where delay in processing this timeout causes multiple
  887  * SIGALRM calls to be compressed into one.
  888  * tvtohz() always adds 1 to allow for the time until the next clock
  889  * interrupt being strictly less than 1 clock tick, but we don't want
  890  * that here since we want to appear to be in sync with the clock
  891  * interrupt even when we're delayed.
  892  */
  893 void
  894 realitexpire(void *arg)
  895 {
  896         struct proc *p;
  897         struct timeval ctv;
  898         sbintime_t isbt;
  899 
  900         p = (struct proc *)arg;
  901         kern_psignal(p, SIGALRM);
  902         if (!timevalisset(&p->p_realtimer.it_interval)) {
  903                 timevalclear(&p->p_realtimer.it_value);
  904                 if (p->p_flag & P_WEXIT)
  905                         wakeup(&p->p_itcallout);
  906                 return;
  907         }
  908         isbt = tvtosbt(p->p_realtimer.it_interval);
  909         if (isbt >= sbt_timethreshold)
  910                 getmicrouptime(&ctv);
  911         else
  912                 microuptime(&ctv);
  913         do {
  914                 timevaladd(&p->p_realtimer.it_value,
  915                     &p->p_realtimer.it_interval);
  916         } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
  917         callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
  918             isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE);
  919 }
  920 
  921 /*
  922  * Check that a proposed value to load into the .it_value or
  923  * .it_interval part of an interval timer is acceptable, and
  924  * fix it to have at least minimal value (i.e. if it is less
  925  * than the resolution of the clock, round it up.)
  926  */
  927 int
  928 itimerfix(struct timeval *tv)
  929 {
  930 
  931         if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
  932                 return (EINVAL);
  933         if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
  934             tv->tv_usec < (u_int)tick / 16)
  935                 tv->tv_usec = (u_int)tick / 16;
  936         return (0);
  937 }
  938 
  939 /*
  940  * Decrement an interval timer by a specified number
  941  * of microseconds, which must be less than a second,
  942  * i.e. < 1000000.  If the timer expires, then reload
  943  * it.  In this case, carry over (usec - old value) to
  944  * reduce the value reloaded into the timer so that
  945  * the timer does not drift.  This routine assumes
  946  * that it is called in a context where the timers
  947  * on which it is operating cannot change in value.
  948  */
  949 int
  950 itimerdecr(struct itimerval *itp, int usec)
  951 {
  952 
  953         if (itp->it_value.tv_usec < usec) {
  954                 if (itp->it_value.tv_sec == 0) {
  955                         /* expired, and already in next interval */
  956                         usec -= itp->it_value.tv_usec;
  957                         goto expire;
  958                 }
  959                 itp->it_value.tv_usec += 1000000;
  960                 itp->it_value.tv_sec--;
  961         }
  962         itp->it_value.tv_usec -= usec;
  963         usec = 0;
  964         if (timevalisset(&itp->it_value))
  965                 return (1);
  966         /* expired, exactly at end of interval */
  967 expire:
  968         if (timevalisset(&itp->it_interval)) {
  969                 itp->it_value = itp->it_interval;
  970                 itp->it_value.tv_usec -= usec;
  971                 if (itp->it_value.tv_usec < 0) {
  972                         itp->it_value.tv_usec += 1000000;
  973                         itp->it_value.tv_sec--;
  974                 }
  975         } else
  976                 itp->it_value.tv_usec = 0;              /* sec is already 0 */
  977         return (0);
  978 }
  979 
  980 /*
  981  * Add and subtract routines for timevals.
  982  * N.B.: subtract routine doesn't deal with
  983  * results which are before the beginning,
  984  * it just gets very confused in this case.
  985  * Caveat emptor.
  986  */
  987 void
  988 timevaladd(struct timeval *t1, const struct timeval *t2)
  989 {
  990 
  991         t1->tv_sec += t2->tv_sec;
  992         t1->tv_usec += t2->tv_usec;
  993         timevalfix(t1);
  994 }
  995 
  996 void
  997 timevalsub(struct timeval *t1, const struct timeval *t2)
  998 {
  999 
 1000         t1->tv_sec -= t2->tv_sec;
 1001         t1->tv_usec -= t2->tv_usec;
 1002         timevalfix(t1);
 1003 }
 1004 
 1005 static void
 1006 timevalfix(struct timeval *t1)
 1007 {
 1008 
 1009         if (t1->tv_usec < 0) {
 1010                 t1->tv_sec--;
 1011                 t1->tv_usec += 1000000;
 1012         }
 1013         if (t1->tv_usec >= 1000000) {
 1014                 t1->tv_sec++;
 1015                 t1->tv_usec -= 1000000;
 1016         }
 1017 }
 1018 
 1019 /*
 1020  * ratecheck(): simple time-based rate-limit checking.
 1021  */
 1022 int
 1023 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
 1024 {
 1025         struct timeval tv, delta;
 1026         int rv = 0;
 1027 
 1028         getmicrouptime(&tv);            /* NB: 10ms precision */
 1029         delta = tv;
 1030         timevalsub(&delta, lasttime);
 1031 
 1032         /*
 1033          * check for 0,0 is so that the message will be seen at least once,
 1034          * even if interval is huge.
 1035          */
 1036         if (timevalcmp(&delta, mininterval, >=) ||
 1037             (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
 1038                 *lasttime = tv;
 1039                 rv = 1;
 1040         }
 1041 
 1042         return (rv);
 1043 }
 1044 
 1045 /*
 1046  * ppsratecheck(): packets (or events) per second limitation.
 1047  *
 1048  * Return 0 if the limit is to be enforced (e.g. the caller
 1049  * should drop a packet because of the rate limitation).
 1050  *
 1051  * maxpps of 0 always causes zero to be returned.  maxpps of -1
 1052  * always causes 1 to be returned; this effectively defeats rate
 1053  * limiting.
 1054  *
 1055  * Note that we maintain the struct timeval for compatibility
 1056  * with other bsd systems.  We reuse the storage and just monitor
 1057  * clock ticks for minimal overhead.  
 1058  */
 1059 int
 1060 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
 1061 {
 1062         int now;
 1063 
 1064         /*
 1065          * Reset the last time and counter if this is the first call
 1066          * or more than a second has passed since the last update of
 1067          * lasttime.
 1068          */
 1069         now = ticks;
 1070         if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
 1071                 lasttime->tv_sec = now;
 1072                 *curpps = 1;
 1073                 return (maxpps != 0);
 1074         } else {
 1075                 (*curpps)++;            /* NB: ignore potential overflow */
 1076                 return (maxpps < 0 || *curpps <= maxpps);
 1077         }
 1078 }
 1079 
 1080 static void
 1081 itimer_start(void)
 1082 {
 1083         struct kclock rt_clock = {
 1084                 .timer_create  = realtimer_create,
 1085                 .timer_delete  = realtimer_delete,
 1086                 .timer_settime = realtimer_settime,
 1087                 .timer_gettime = realtimer_gettime,
 1088                 .event_hook    = NULL
 1089         };
 1090 
 1091         itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
 1092                 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
 1093         register_posix_clock(CLOCK_REALTIME,  &rt_clock);
 1094         register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
 1095         p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
 1096         p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
 1097         p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
 1098         EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
 1099                 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
 1100         EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
 1101                 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
 1102 }
 1103 
 1104 int
 1105 register_posix_clock(int clockid, struct kclock *clk)
 1106 {
 1107         if ((unsigned)clockid >= MAX_CLOCKS) {
 1108                 printf("%s: invalid clockid\n", __func__);
 1109                 return (0);
 1110         }
 1111         posix_clocks[clockid] = *clk;
 1112         return (1);
 1113 }
 1114 
 1115 static int
 1116 itimer_init(void *mem, int size, int flags)
 1117 {
 1118         struct itimer *it;
 1119 
 1120         it = (struct itimer *)mem;
 1121         mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
 1122         return (0);
 1123 }
 1124 
 1125 static void
 1126 itimer_fini(void *mem, int size)
 1127 {
 1128         struct itimer *it;
 1129 
 1130         it = (struct itimer *)mem;
 1131         mtx_destroy(&it->it_mtx);
 1132 }
 1133 
 1134 static void
 1135 itimer_enter(struct itimer *it)
 1136 {
 1137 
 1138         mtx_assert(&it->it_mtx, MA_OWNED);
 1139         it->it_usecount++;
 1140 }
 1141 
 1142 static void
 1143 itimer_leave(struct itimer *it)
 1144 {
 1145 
 1146         mtx_assert(&it->it_mtx, MA_OWNED);
 1147         KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
 1148 
 1149         if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
 1150                 wakeup(it);
 1151 }
 1152 
 1153 #ifndef _SYS_SYSPROTO_H_
 1154 struct ktimer_create_args {
 1155         clockid_t clock_id;
 1156         struct sigevent * evp;
 1157         int * timerid;
 1158 };
 1159 #endif
 1160 int
 1161 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
 1162 {
 1163         struct sigevent *evp, ev;
 1164         int id;
 1165         int error;
 1166 
 1167         if (uap->evp == NULL) {
 1168                 evp = NULL;
 1169         } else {
 1170                 error = copyin(uap->evp, &ev, sizeof(ev));
 1171                 if (error != 0)
 1172                         return (error);
 1173                 evp = &ev;
 1174         }
 1175         error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
 1176         if (error == 0) {
 1177                 error = copyout(&id, uap->timerid, sizeof(int));
 1178                 if (error != 0)
 1179                         kern_ktimer_delete(td, id);
 1180         }
 1181         return (error);
 1182 }
 1183 
 1184 int
 1185 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
 1186     int *timerid, int preset_id)
 1187 {
 1188         struct proc *p = td->td_proc;
 1189         struct itimer *it;
 1190         int id;
 1191         int error;
 1192 
 1193         if (clock_id < 0 || clock_id >= MAX_CLOCKS)
 1194                 return (EINVAL);
 1195 
 1196         if (posix_clocks[clock_id].timer_create == NULL)
 1197                 return (EINVAL);
 1198 
 1199         if (evp != NULL) {
 1200                 if (evp->sigev_notify != SIGEV_NONE &&
 1201                     evp->sigev_notify != SIGEV_SIGNAL &&
 1202                     evp->sigev_notify != SIGEV_THREAD_ID)
 1203                         return (EINVAL);
 1204                 if ((evp->sigev_notify == SIGEV_SIGNAL ||
 1205                      evp->sigev_notify == SIGEV_THREAD_ID) &&
 1206                         !_SIG_VALID(evp->sigev_signo))
 1207                         return (EINVAL);
 1208         }
 1209         
 1210         if (p->p_itimers == NULL)
 1211                 itimers_alloc(p);
 1212         
 1213         it = uma_zalloc(itimer_zone, M_WAITOK);
 1214         it->it_flags = 0;
 1215         it->it_usecount = 0;
 1216         it->it_active = 0;
 1217         timespecclear(&it->it_time.it_value);
 1218         timespecclear(&it->it_time.it_interval);
 1219         it->it_overrun = 0;
 1220         it->it_overrun_last = 0;
 1221         it->it_clockid = clock_id;
 1222         it->it_timerid = -1;
 1223         it->it_proc = p;
 1224         ksiginfo_init(&it->it_ksi);
 1225         it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
 1226         error = CLOCK_CALL(clock_id, timer_create, (it));
 1227         if (error != 0)
 1228                 goto out;
 1229 
 1230         PROC_LOCK(p);
 1231         if (preset_id != -1) {
 1232                 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
 1233                 id = preset_id;
 1234                 if (p->p_itimers->its_timers[id] != NULL) {
 1235                         PROC_UNLOCK(p);
 1236                         error = 0;
 1237                         goto out;
 1238                 }
 1239         } else {
 1240                 /*
 1241                  * Find a free timer slot, skipping those reserved
 1242                  * for setitimer().
 1243                  */
 1244                 for (id = 3; id < TIMER_MAX; id++)
 1245                         if (p->p_itimers->its_timers[id] == NULL)
 1246                                 break;
 1247                 if (id == TIMER_MAX) {
 1248                         PROC_UNLOCK(p);
 1249                         error = EAGAIN;
 1250                         goto out;
 1251                 }
 1252         }
 1253         it->it_timerid = id;
 1254         p->p_itimers->its_timers[id] = it;
 1255         if (evp != NULL)
 1256                 it->it_sigev = *evp;
 1257         else {
 1258                 it->it_sigev.sigev_notify = SIGEV_SIGNAL;
 1259                 switch (clock_id) {
 1260                 default:
 1261                 case CLOCK_REALTIME:
 1262                         it->it_sigev.sigev_signo = SIGALRM;
 1263                         break;
 1264                 case CLOCK_VIRTUAL:
 1265                         it->it_sigev.sigev_signo = SIGVTALRM;
 1266                         break;
 1267                 case CLOCK_PROF:
 1268                         it->it_sigev.sigev_signo = SIGPROF;
 1269                         break;
 1270                 }
 1271                 it->it_sigev.sigev_value.sival_int = id;
 1272         }
 1273 
 1274         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1275             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1276                 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
 1277                 it->it_ksi.ksi_code = SI_TIMER;
 1278                 it->it_ksi.ksi_value = it->it_sigev.sigev_value;
 1279                 it->it_ksi.ksi_timerid = id;
 1280         }
 1281         PROC_UNLOCK(p);
 1282         *timerid = id;
 1283         return (0);
 1284 
 1285 out:
 1286         ITIMER_LOCK(it);
 1287         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1288         ITIMER_UNLOCK(it);
 1289         uma_zfree(itimer_zone, it);
 1290         return (error);
 1291 }
 1292 
 1293 #ifndef _SYS_SYSPROTO_H_
 1294 struct ktimer_delete_args {
 1295         int timerid;
 1296 };
 1297 #endif
 1298 int
 1299 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
 1300 {
 1301 
 1302         return (kern_ktimer_delete(td, uap->timerid));
 1303 }
 1304 
 1305 static struct itimer *
 1306 itimer_find(struct proc *p, int timerid)
 1307 {
 1308         struct itimer *it;
 1309 
 1310         PROC_LOCK_ASSERT(p, MA_OWNED);
 1311         if ((p->p_itimers == NULL) ||
 1312             (timerid < 0) || (timerid >= TIMER_MAX) ||
 1313             (it = p->p_itimers->its_timers[timerid]) == NULL) {
 1314                 return (NULL);
 1315         }
 1316         ITIMER_LOCK(it);
 1317         if ((it->it_flags & ITF_DELETING) != 0) {
 1318                 ITIMER_UNLOCK(it);
 1319                 it = NULL;
 1320         }
 1321         return (it);
 1322 }
 1323 
 1324 int
 1325 kern_ktimer_delete(struct thread *td, int timerid)
 1326 {
 1327         struct proc *p = td->td_proc;
 1328         struct itimer *it;
 1329 
 1330         PROC_LOCK(p);
 1331         it = itimer_find(p, timerid);
 1332         if (it == NULL) {
 1333                 PROC_UNLOCK(p);
 1334                 return (EINVAL);
 1335         }
 1336         PROC_UNLOCK(p);
 1337 
 1338         it->it_flags |= ITF_DELETING;
 1339         while (it->it_usecount > 0) {
 1340                 it->it_flags |= ITF_WANTED;
 1341                 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
 1342         }
 1343         it->it_flags &= ~ITF_WANTED;
 1344         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1345         ITIMER_UNLOCK(it);
 1346 
 1347         PROC_LOCK(p);
 1348         if (KSI_ONQ(&it->it_ksi))
 1349                 sigqueue_take(&it->it_ksi);
 1350         p->p_itimers->its_timers[timerid] = NULL;
 1351         PROC_UNLOCK(p);
 1352         uma_zfree(itimer_zone, it);
 1353         return (0);
 1354 }
 1355 
 1356 #ifndef _SYS_SYSPROTO_H_
 1357 struct ktimer_settime_args {
 1358         int timerid;
 1359         int flags;
 1360         const struct itimerspec * value;
 1361         struct itimerspec * ovalue;
 1362 };
 1363 #endif
 1364 int
 1365 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
 1366 {
 1367         struct itimerspec val, oval, *ovalp;
 1368         int error;
 1369 
 1370         error = copyin(uap->value, &val, sizeof(val));
 1371         if (error != 0)
 1372                 return (error);
 1373         ovalp = uap->ovalue != NULL ? &oval : NULL;
 1374         error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
 1375         if (error == 0 && uap->ovalue != NULL)
 1376                 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
 1377         return (error);
 1378 }
 1379 
 1380 int
 1381 kern_ktimer_settime(struct thread *td, int timer_id, int flags,
 1382     struct itimerspec *val, struct itimerspec *oval)
 1383 {
 1384         struct proc *p;
 1385         struct itimer *it;
 1386         int error;
 1387 
 1388         p = td->td_proc;
 1389         PROC_LOCK(p);
 1390         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1391                 PROC_UNLOCK(p);
 1392                 error = EINVAL;
 1393         } else {
 1394                 PROC_UNLOCK(p);
 1395                 itimer_enter(it);
 1396                 error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
 1397                     flags, val, oval));
 1398                 itimer_leave(it);
 1399                 ITIMER_UNLOCK(it);
 1400         }
 1401         return (error);
 1402 }
 1403 
 1404 #ifndef _SYS_SYSPROTO_H_
 1405 struct ktimer_gettime_args {
 1406         int timerid;
 1407         struct itimerspec * value;
 1408 };
 1409 #endif
 1410 int
 1411 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
 1412 {
 1413         struct itimerspec val;
 1414         int error;
 1415 
 1416         error = kern_ktimer_gettime(td, uap->timerid, &val);
 1417         if (error == 0)
 1418                 error = copyout(&val, uap->value, sizeof(val));
 1419         return (error);
 1420 }
 1421 
 1422 int
 1423 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
 1424 {
 1425         struct proc *p;
 1426         struct itimer *it;
 1427         int error;
 1428 
 1429         p = td->td_proc;
 1430         PROC_LOCK(p);
 1431         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1432                 PROC_UNLOCK(p);
 1433                 error = EINVAL;
 1434         } else {
 1435                 PROC_UNLOCK(p);
 1436                 itimer_enter(it);
 1437                 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
 1438                 itimer_leave(it);
 1439                 ITIMER_UNLOCK(it);
 1440         }
 1441         return (error);
 1442 }
 1443 
 1444 #ifndef _SYS_SYSPROTO_H_
 1445 struct timer_getoverrun_args {
 1446         int timerid;
 1447 };
 1448 #endif
 1449 int
 1450 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
 1451 {
 1452 
 1453         return (kern_ktimer_getoverrun(td, uap->timerid));
 1454 }
 1455 
 1456 int
 1457 kern_ktimer_getoverrun(struct thread *td, int timer_id)
 1458 {
 1459         struct proc *p = td->td_proc;
 1460         struct itimer *it;
 1461         int error ;
 1462 
 1463         PROC_LOCK(p);
 1464         if (timer_id < 3 ||
 1465             (it = itimer_find(p, timer_id)) == NULL) {
 1466                 PROC_UNLOCK(p);
 1467                 error = EINVAL;
 1468         } else {
 1469                 td->td_retval[0] = it->it_overrun_last;
 1470                 ITIMER_UNLOCK(it);
 1471                 PROC_UNLOCK(p);
 1472                 error = 0;
 1473         }
 1474         return (error);
 1475 }
 1476 
 1477 static int
 1478 realtimer_create(struct itimer *it)
 1479 {
 1480         callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
 1481         return (0);
 1482 }
 1483 
 1484 static int
 1485 realtimer_delete(struct itimer *it)
 1486 {
 1487         mtx_assert(&it->it_mtx, MA_OWNED);
 1488         
 1489         /*
 1490          * clear timer's value and interval to tell realtimer_expire
 1491          * to not rearm the timer.
 1492          */
 1493         timespecclear(&it->it_time.it_value);
 1494         timespecclear(&it->it_time.it_interval);
 1495         ITIMER_UNLOCK(it);
 1496         callout_drain(&it->it_callout);
 1497         ITIMER_LOCK(it);
 1498         return (0);
 1499 }
 1500 
 1501 static int
 1502 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
 1503 {
 1504         struct timespec cts;
 1505 
 1506         mtx_assert(&it->it_mtx, MA_OWNED);
 1507 
 1508         realtimer_clocktime(it->it_clockid, &cts);
 1509         *ovalue = it->it_time;
 1510         if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
 1511                 timespecsub(&ovalue->it_value, &cts);
 1512                 if (ovalue->it_value.tv_sec < 0 ||
 1513                     (ovalue->it_value.tv_sec == 0 &&
 1514                      ovalue->it_value.tv_nsec == 0)) {
 1515                         ovalue->it_value.tv_sec  = 0;
 1516                         ovalue->it_value.tv_nsec = 1;
 1517                 }
 1518         }
 1519         return (0);
 1520 }
 1521 
 1522 static int
 1523 realtimer_settime(struct itimer *it, int flags,
 1524         struct itimerspec *value, struct itimerspec *ovalue)
 1525 {
 1526         struct timespec cts, ts;
 1527         struct timeval tv;
 1528         struct itimerspec val;
 1529 
 1530         mtx_assert(&it->it_mtx, MA_OWNED);
 1531 
 1532         val = *value;
 1533         if (itimespecfix(&val.it_value))
 1534                 return (EINVAL);
 1535 
 1536         if (timespecisset(&val.it_value)) {
 1537                 if (itimespecfix(&val.it_interval))
 1538                         return (EINVAL);
 1539         } else {
 1540                 timespecclear(&val.it_interval);
 1541         }
 1542         
 1543         if (ovalue != NULL)
 1544                 realtimer_gettime(it, ovalue);
 1545 
 1546         it->it_time = val;
 1547         if (timespecisset(&val.it_value)) {
 1548                 realtimer_clocktime(it->it_clockid, &cts);
 1549                 ts = val.it_value;
 1550                 if ((flags & TIMER_ABSTIME) == 0) {
 1551                         /* Convert to absolute time. */
 1552                         timespecadd(&it->it_time.it_value, &cts);
 1553                 } else {
 1554                         timespecsub(&ts, &cts);
 1555                         /*
 1556                          * We don't care if ts is negative, tztohz will
 1557                          * fix it.
 1558                          */
 1559                 }
 1560                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1561                 callout_reset(&it->it_callout, tvtohz(&tv),
 1562                         realtimer_expire, it);
 1563         } else {
 1564                 callout_stop(&it->it_callout);
 1565         }
 1566 
 1567         return (0);
 1568 }
 1569 
 1570 static void
 1571 realtimer_clocktime(clockid_t id, struct timespec *ts)
 1572 {
 1573         if (id == CLOCK_REALTIME)
 1574                 getnanotime(ts);
 1575         else    /* CLOCK_MONOTONIC */
 1576                 getnanouptime(ts);
 1577 }
 1578 
 1579 int
 1580 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
 1581 {
 1582         struct itimer *it;
 1583 
 1584         PROC_LOCK_ASSERT(p, MA_OWNED);
 1585         it = itimer_find(p, timerid);
 1586         if (it != NULL) {
 1587                 ksi->ksi_overrun = it->it_overrun;
 1588                 it->it_overrun_last = it->it_overrun;
 1589                 it->it_overrun = 0;
 1590                 ITIMER_UNLOCK(it);
 1591                 return (0);
 1592         }
 1593         return (EINVAL);
 1594 }
 1595 
 1596 int
 1597 itimespecfix(struct timespec *ts)
 1598 {
 1599 
 1600         if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 1601                 return (EINVAL);
 1602         if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
 1603                 ts->tv_nsec = tick * 1000;
 1604         return (0);
 1605 }
 1606 
 1607 /* Timeout callback for realtime timer */
 1608 static void
 1609 realtimer_expire(void *arg)
 1610 {
 1611         struct timespec cts, ts;
 1612         struct timeval tv;
 1613         struct itimer *it;
 1614 
 1615         it = (struct itimer *)arg;
 1616 
 1617         realtimer_clocktime(it->it_clockid, &cts);
 1618         /* Only fire if time is reached. */
 1619         if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
 1620                 if (timespecisset(&it->it_time.it_interval)) {
 1621                         timespecadd(&it->it_time.it_value,
 1622                                     &it->it_time.it_interval);
 1623                         while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
 1624                                 if (it->it_overrun < INT_MAX)
 1625                                         it->it_overrun++;
 1626                                 else
 1627                                         it->it_ksi.ksi_errno = ERANGE;
 1628                                 timespecadd(&it->it_time.it_value,
 1629                                             &it->it_time.it_interval);
 1630                         }
 1631                 } else {
 1632                         /* single shot timer ? */
 1633                         timespecclear(&it->it_time.it_value);
 1634                 }
 1635                 if (timespecisset(&it->it_time.it_value)) {
 1636                         ts = it->it_time.it_value;
 1637                         timespecsub(&ts, &cts);
 1638                         TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1639                         callout_reset(&it->it_callout, tvtohz(&tv),
 1640                                  realtimer_expire, it);
 1641                 }
 1642                 itimer_enter(it);
 1643                 ITIMER_UNLOCK(it);
 1644                 itimer_fire(it);
 1645                 ITIMER_LOCK(it);
 1646                 itimer_leave(it);
 1647         } else if (timespecisset(&it->it_time.it_value)) {
 1648                 ts = it->it_time.it_value;
 1649                 timespecsub(&ts, &cts);
 1650                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1651                 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
 1652                         it);
 1653         }
 1654 }
 1655 
 1656 void
 1657 itimer_fire(struct itimer *it)
 1658 {
 1659         struct proc *p = it->it_proc;
 1660         struct thread *td;
 1661 
 1662         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1663             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1664                 if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
 1665                         ITIMER_LOCK(it);
 1666                         timespecclear(&it->it_time.it_value);
 1667                         timespecclear(&it->it_time.it_interval);
 1668                         callout_stop(&it->it_callout);
 1669                         ITIMER_UNLOCK(it);
 1670                         return;
 1671                 }
 1672                 if (!KSI_ONQ(&it->it_ksi)) {
 1673                         it->it_ksi.ksi_errno = 0;
 1674                         ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
 1675                         tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
 1676                 } else {
 1677                         if (it->it_overrun < INT_MAX)
 1678                                 it->it_overrun++;
 1679                         else
 1680                                 it->it_ksi.ksi_errno = ERANGE;
 1681                 }
 1682                 PROC_UNLOCK(p);
 1683         }
 1684 }
 1685 
 1686 static void
 1687 itimers_alloc(struct proc *p)
 1688 {
 1689         struct itimers *its;
 1690         int i;
 1691 
 1692         its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
 1693         LIST_INIT(&its->its_virtual);
 1694         LIST_INIT(&its->its_prof);
 1695         TAILQ_INIT(&its->its_worklist);
 1696         for (i = 0; i < TIMER_MAX; i++)
 1697                 its->its_timers[i] = NULL;
 1698         PROC_LOCK(p);
 1699         if (p->p_itimers == NULL) {
 1700                 p->p_itimers = its;
 1701                 PROC_UNLOCK(p);
 1702         }
 1703         else {
 1704                 PROC_UNLOCK(p);
 1705                 free(its, M_SUBPROC);
 1706         }
 1707 }
 1708 
 1709 static void
 1710 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
 1711 {
 1712         itimers_event_hook_exit(arg, p);
 1713 }
 1714 
 1715 /* Clean up timers when some process events are being triggered. */
 1716 static void
 1717 itimers_event_hook_exit(void *arg, struct proc *p)
 1718 {
 1719         struct itimers *its;
 1720         struct itimer *it;
 1721         int event = (int)(intptr_t)arg;
 1722         int i;
 1723 
 1724         if (p->p_itimers != NULL) {
 1725                 its = p->p_itimers;
 1726                 for (i = 0; i < MAX_CLOCKS; ++i) {
 1727                         if (posix_clocks[i].event_hook != NULL)
 1728                                 CLOCK_CALL(i, event_hook, (p, i, event));
 1729                 }
 1730                 /*
 1731                  * According to susv3, XSI interval timers should be inherited
 1732                  * by new image.
 1733                  */
 1734                 if (event == ITIMER_EV_EXEC)
 1735                         i = 3;
 1736                 else if (event == ITIMER_EV_EXIT)
 1737                         i = 0;
 1738                 else
 1739                         panic("unhandled event");
 1740                 for (; i < TIMER_MAX; ++i) {
 1741                         if ((it = its->its_timers[i]) != NULL)
 1742                                 kern_ktimer_delete(curthread, i);
 1743                 }
 1744                 if (its->its_timers[0] == NULL &&
 1745                     its->its_timers[1] == NULL &&
 1746                     its->its_timers[2] == NULL) {
 1747                         free(its, M_SUBPROC);
 1748                         p->p_itimers = NULL;
 1749                 }
 1750         }
 1751 }

Cache object: 4c1c452e130592e38d7079e16841e8d3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.