The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_time.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)kern_time.c 8.1 (Berkeley) 6/10/93
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include "opt_ktrace.h"
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/limits.h>
   40 #include <sys/clock.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/sysproto.h>
   44 #include <sys/eventhandler.h>
   45 #include <sys/resourcevar.h>
   46 #include <sys/signalvar.h>
   47 #include <sys/kernel.h>
   48 #include <sys/sleepqueue.h>
   49 #include <sys/syscallsubr.h>
   50 #include <sys/sysctl.h>
   51 #include <sys/sysent.h>
   52 #include <sys/priv.h>
   53 #include <sys/proc.h>
   54 #include <sys/posix4.h>
   55 #include <sys/time.h>
   56 #include <sys/timers.h>
   57 #include <sys/timetc.h>
   58 #include <sys/vnode.h>
   59 #ifdef KTRACE
   60 #include <sys/ktrace.h>
   61 #endif
   62 
   63 #include <vm/vm.h>
   64 #include <vm/vm_extern.h>
   65 
   66 #define MAX_CLOCKS      (CLOCK_MONOTONIC+1)
   67 #define CPUCLOCK_BIT            0x80000000
   68 #define CPUCLOCK_PROCESS_BIT    0x40000000
   69 #define CPUCLOCK_ID_MASK        (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
   70 #define MAKE_THREAD_CPUCLOCK(tid)       (CPUCLOCK_BIT|(tid))
   71 #define MAKE_PROCESS_CPUCLOCK(pid)      \
   72         (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
   73 
   74 static struct kclock    posix_clocks[MAX_CLOCKS];
   75 static uma_zone_t       itimer_zone = NULL;
   76 
   77 /*
   78  * Time of day and interval timer support.
   79  *
   80  * These routines provide the kernel entry points to get and set
   81  * the time-of-day and per-process interval timers.  Subroutines
   82  * here provide support for adding and subtracting timeval structures
   83  * and decrementing interval timers, optionally reloading the interval
   84  * timers when they expire.
   85  */
   86 
   87 static int      settime(struct thread *, struct timeval *);
   88 static void     timevalfix(struct timeval *);
   89 static int      user_clock_nanosleep(struct thread *td, clockid_t clock_id,
   90                     int flags, const struct timespec *ua_rqtp,
   91                     struct timespec *ua_rmtp);
   92 
   93 static void     itimer_start(void);
   94 static int      itimer_init(void *, int, int);
   95 static void     itimer_fini(void *, int);
   96 static void     itimer_enter(struct itimer *);
   97 static void     itimer_leave(struct itimer *);
   98 static struct itimer *itimer_find(struct proc *, int);
   99 static void     itimers_alloc(struct proc *);
  100 static void     itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
  101 static void     itimers_event_hook_exit(void *arg, struct proc *p);
  102 static int      realtimer_create(struct itimer *);
  103 static int      realtimer_gettime(struct itimer *, struct itimerspec *);
  104 static int      realtimer_settime(struct itimer *, int,
  105                         struct itimerspec *, struct itimerspec *);
  106 static int      realtimer_delete(struct itimer *);
  107 static void     realtimer_clocktime(clockid_t, struct timespec *);
  108 static void     realtimer_expire(void *);
  109 
  110 int             register_posix_clock(int, struct kclock *);
  111 void            itimer_fire(struct itimer *it);
  112 int             itimespecfix(struct timespec *ts);
  113 
  114 #define CLOCK_CALL(clock, call, arglist)                \
  115         ((*posix_clocks[clock].call) arglist)
  116 
  117 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
  118 
  119 
  120 static int
  121 settime(struct thread *td, struct timeval *tv)
  122 {
  123         struct timeval delta, tv1, tv2;
  124         static struct timeval maxtime, laststep;
  125         struct timespec ts;
  126 
  127         microtime(&tv1);
  128         delta = *tv;
  129         timevalsub(&delta, &tv1);
  130 
  131         /*
  132          * If the system is secure, we do not allow the time to be 
  133          * set to a value earlier than 1 second less than the highest
  134          * time we have yet seen. The worst a miscreant can do in
  135          * this circumstance is "freeze" time. He couldn't go
  136          * back to the past.
  137          *
  138          * We similarly do not allow the clock to be stepped more
  139          * than one second, nor more than once per second. This allows
  140          * a miscreant to make the clock march double-time, but no worse.
  141          */
  142         if (securelevel_gt(td->td_ucred, 1) != 0) {
  143                 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
  144                         /*
  145                          * Update maxtime to latest time we've seen.
  146                          */
  147                         if (tv1.tv_sec > maxtime.tv_sec)
  148                                 maxtime = tv1;
  149                         tv2 = *tv;
  150                         timevalsub(&tv2, &maxtime);
  151                         if (tv2.tv_sec < -1) {
  152                                 tv->tv_sec = maxtime.tv_sec - 1;
  153                                 printf("Time adjustment clamped to -1 second\n");
  154                         }
  155                 } else {
  156                         if (tv1.tv_sec == laststep.tv_sec)
  157                                 return (EPERM);
  158                         if (delta.tv_sec > 1) {
  159                                 tv->tv_sec = tv1.tv_sec + 1;
  160                                 printf("Time adjustment clamped to +1 second\n");
  161                         }
  162                         laststep = *tv;
  163                 }
  164         }
  165 
  166         ts.tv_sec = tv->tv_sec;
  167         ts.tv_nsec = tv->tv_usec * 1000;
  168         tc_setclock(&ts);
  169         resettodr();
  170         return (0);
  171 }
  172 
  173 #ifndef _SYS_SYSPROTO_H_
  174 struct clock_getcpuclockid2_args {
  175         id_t id;
  176         int which,
  177         clockid_t *clock_id;
  178 };
  179 #endif
  180 /* ARGSUSED */
  181 int
  182 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
  183 {
  184         clockid_t clk_id;
  185         int error;
  186 
  187         error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
  188         if (error == 0)
  189                 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
  190         return (error);
  191 }
  192 
  193 int
  194 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
  195     clockid_t *clk_id)
  196 {
  197         struct proc *p;
  198         pid_t pid;
  199         lwpid_t tid;
  200         int error;
  201 
  202         switch (which) {
  203         case CPUCLOCK_WHICH_PID:
  204                 if (id != 0) {
  205                         error = pget(id, PGET_CANSEE | PGET_NOTID, &p);
  206                         if (error != 0)
  207                                 return (error);
  208                         PROC_UNLOCK(p);
  209                         pid = id;
  210                 } else {
  211                         pid = td->td_proc->p_pid;
  212                 }
  213                 *clk_id = MAKE_PROCESS_CPUCLOCK(pid);
  214                 return (0);
  215         case CPUCLOCK_WHICH_TID:
  216                 tid = id == 0 ? td->td_tid : id;
  217                 *clk_id = MAKE_THREAD_CPUCLOCK(tid);
  218                 return (0);
  219         default:
  220                 return (EINVAL);
  221         }
  222 }
  223 
  224 #ifndef _SYS_SYSPROTO_H_
  225 struct clock_gettime_args {
  226         clockid_t clock_id;
  227         struct  timespec *tp;
  228 };
  229 #endif
  230 /* ARGSUSED */
  231 int
  232 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
  233 {
  234         struct timespec ats;
  235         int error;
  236 
  237         error = kern_clock_gettime(td, uap->clock_id, &ats);
  238         if (error == 0)
  239                 error = copyout(&ats, uap->tp, sizeof(ats));
  240 
  241         return (error);
  242 }
  243 
  244 static inline void 
  245 cputick2timespec(uint64_t runtime, struct timespec *ats)
  246 {
  247         runtime = cputick2usec(runtime);
  248         ats->tv_sec = runtime / 1000000;
  249         ats->tv_nsec = runtime % 1000000 * 1000;
  250 }
  251 
  252 static void
  253 get_thread_cputime(struct thread *targettd, struct timespec *ats)
  254 {
  255         uint64_t runtime, curtime, switchtime;
  256 
  257         if (targettd == NULL) { /* current thread */
  258                 critical_enter();
  259                 switchtime = PCPU_GET(switchtime);
  260                 curtime = cpu_ticks();
  261                 runtime = curthread->td_runtime;
  262                 critical_exit();
  263                 runtime += curtime - switchtime;
  264         } else {
  265                 thread_lock(targettd);
  266                 runtime = targettd->td_runtime;
  267                 thread_unlock(targettd);
  268         }
  269         cputick2timespec(runtime, ats);
  270 }
  271 
  272 static void
  273 get_process_cputime(struct proc *targetp, struct timespec *ats)
  274 {
  275         uint64_t runtime;
  276         struct rusage ru;
  277 
  278         PROC_STATLOCK(targetp);
  279         rufetch(targetp, &ru);
  280         runtime = targetp->p_rux.rux_runtime;
  281         if (curthread->td_proc == targetp)
  282                 runtime += cpu_ticks() - PCPU_GET(switchtime);
  283         PROC_STATUNLOCK(targetp);
  284         cputick2timespec(runtime, ats);
  285 }
  286 
  287 static int
  288 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  289 {
  290         struct proc *p, *p2;
  291         struct thread *td2;
  292         lwpid_t tid;
  293         pid_t pid;
  294         int error;
  295 
  296         p = td->td_proc;
  297         if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
  298                 tid = clock_id & CPUCLOCK_ID_MASK;
  299                 td2 = tdfind(tid, p->p_pid);
  300                 if (td2 == NULL)
  301                         return (EINVAL);
  302                 get_thread_cputime(td2, ats);
  303                 PROC_UNLOCK(td2->td_proc);
  304         } else {
  305                 pid = clock_id & CPUCLOCK_ID_MASK;
  306                 error = pget(pid, PGET_CANSEE, &p2);
  307                 if (error != 0)
  308                         return (EINVAL);
  309                 get_process_cputime(p2, ats);
  310                 PROC_UNLOCK(p2);
  311         }
  312         return (0);
  313 }
  314 
  315 int
  316 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  317 {
  318         struct timeval sys, user;
  319         struct proc *p;
  320 
  321         p = td->td_proc;
  322         switch (clock_id) {
  323         case CLOCK_REALTIME:            /* Default to precise. */
  324         case CLOCK_REALTIME_PRECISE:
  325                 nanotime(ats);
  326                 break;
  327         case CLOCK_REALTIME_FAST:
  328                 getnanotime(ats);
  329                 break;
  330         case CLOCK_VIRTUAL:
  331                 PROC_LOCK(p);
  332                 PROC_STATLOCK(p);
  333                 calcru(p, &user, &sys);
  334                 PROC_STATUNLOCK(p);
  335                 PROC_UNLOCK(p);
  336                 TIMEVAL_TO_TIMESPEC(&user, ats);
  337                 break;
  338         case CLOCK_PROF:
  339                 PROC_LOCK(p);
  340                 PROC_STATLOCK(p);
  341                 calcru(p, &user, &sys);
  342                 PROC_STATUNLOCK(p);
  343                 PROC_UNLOCK(p);
  344                 timevaladd(&user, &sys);
  345                 TIMEVAL_TO_TIMESPEC(&user, ats);
  346                 break;
  347         case CLOCK_MONOTONIC:           /* Default to precise. */
  348         case CLOCK_MONOTONIC_PRECISE:
  349         case CLOCK_UPTIME:
  350         case CLOCK_UPTIME_PRECISE:
  351                 nanouptime(ats);
  352                 break;
  353         case CLOCK_UPTIME_FAST:
  354         case CLOCK_MONOTONIC_FAST:
  355                 getnanouptime(ats);
  356                 break;
  357         case CLOCK_SECOND:
  358                 ats->tv_sec = time_second;
  359                 ats->tv_nsec = 0;
  360                 break;
  361         case CLOCK_THREAD_CPUTIME_ID:
  362                 get_thread_cputime(NULL, ats);
  363                 break;
  364         case CLOCK_PROCESS_CPUTIME_ID:
  365                 PROC_LOCK(p);
  366                 get_process_cputime(p, ats);
  367                 PROC_UNLOCK(p);
  368                 break;
  369         default:
  370                 if ((int)clock_id >= 0)
  371                         return (EINVAL);
  372                 return (get_cputime(td, clock_id, ats));
  373         }
  374         return (0);
  375 }
  376 
  377 #ifndef _SYS_SYSPROTO_H_
  378 struct clock_settime_args {
  379         clockid_t clock_id;
  380         const struct    timespec *tp;
  381 };
  382 #endif
  383 /* ARGSUSED */
  384 int
  385 sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
  386 {
  387         struct timespec ats;
  388         int error;
  389 
  390         if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
  391                 return (error);
  392         return (kern_clock_settime(td, uap->clock_id, &ats));
  393 }
  394 
  395 int
  396 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  397 {
  398         struct timeval atv;
  399         int error;
  400 
  401         if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
  402                 return (error);
  403         if (clock_id != CLOCK_REALTIME)
  404                 return (EINVAL);
  405         if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000 ||
  406             ats->tv_sec < 0)
  407                 return (EINVAL);
  408         /* XXX Don't convert nsec->usec and back */
  409         TIMESPEC_TO_TIMEVAL(&atv, ats);
  410         error = settime(td, &atv);
  411         return (error);
  412 }
  413 
  414 #ifndef _SYS_SYSPROTO_H_
  415 struct clock_getres_args {
  416         clockid_t clock_id;
  417         struct  timespec *tp;
  418 };
  419 #endif
  420 int
  421 sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
  422 {
  423         struct timespec ts;
  424         int error;
  425 
  426         if (uap->tp == NULL)
  427                 return (0);
  428 
  429         error = kern_clock_getres(td, uap->clock_id, &ts);
  430         if (error == 0)
  431                 error = copyout(&ts, uap->tp, sizeof(ts));
  432         return (error);
  433 }
  434 
  435 int
  436 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
  437 {
  438 
  439         ts->tv_sec = 0;
  440         switch (clock_id) {
  441         case CLOCK_REALTIME:
  442         case CLOCK_REALTIME_FAST:
  443         case CLOCK_REALTIME_PRECISE:
  444         case CLOCK_MONOTONIC:
  445         case CLOCK_MONOTONIC_FAST:
  446         case CLOCK_MONOTONIC_PRECISE:
  447         case CLOCK_UPTIME:
  448         case CLOCK_UPTIME_FAST:
  449         case CLOCK_UPTIME_PRECISE:
  450                 /*
  451                  * Round up the result of the division cheaply by adding 1.
  452                  * Rounding up is especially important if rounding down
  453                  * would give 0.  Perfect rounding is unimportant.
  454                  */
  455                 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
  456                 break;
  457         case CLOCK_VIRTUAL:
  458         case CLOCK_PROF:
  459                 /* Accurately round up here because we can do so cheaply. */
  460                 ts->tv_nsec = howmany(1000000000, hz);
  461                 break;
  462         case CLOCK_SECOND:
  463                 ts->tv_sec = 1;
  464                 ts->tv_nsec = 0;
  465                 break;
  466         case CLOCK_THREAD_CPUTIME_ID:
  467         case CLOCK_PROCESS_CPUTIME_ID:
  468         cputime:
  469                 /* sync with cputick2usec */
  470                 ts->tv_nsec = 1000000 / cpu_tickrate();
  471                 if (ts->tv_nsec == 0)
  472                         ts->tv_nsec = 1000;
  473                 break;
  474         default:
  475                 if ((int)clock_id < 0)
  476                         goto cputime;
  477                 return (EINVAL);
  478         }
  479         return (0);
  480 }
  481 
  482 int
  483 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
  484 {
  485 
  486         return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt,
  487             rmt));
  488 }
  489 
  490 static uint8_t nanowait[MAXCPU];
  491 
  492 int
  493 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
  494     const struct timespec *rqt, struct timespec *rmt)
  495 {
  496         struct timespec ts, now;
  497         sbintime_t sbt, sbtt, prec, tmp;
  498         time_t over;
  499         int error;
  500         bool is_abs_real;
  501 
  502         if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
  503                 return (EINVAL);
  504         if ((flags & ~TIMER_ABSTIME) != 0)
  505                 return (EINVAL);
  506         switch (clock_id) {
  507         case CLOCK_REALTIME:
  508         case CLOCK_REALTIME_PRECISE:
  509         case CLOCK_REALTIME_FAST:
  510         case CLOCK_SECOND:
  511                 is_abs_real = (flags & TIMER_ABSTIME) != 0;
  512                 break;
  513         case CLOCK_MONOTONIC:
  514         case CLOCK_MONOTONIC_PRECISE:
  515         case CLOCK_MONOTONIC_FAST:
  516         case CLOCK_UPTIME:
  517         case CLOCK_UPTIME_PRECISE:
  518         case CLOCK_UPTIME_FAST:
  519                 is_abs_real = false;
  520                 break;
  521         case CLOCK_VIRTUAL:
  522         case CLOCK_PROF:
  523         case CLOCK_PROCESS_CPUTIME_ID:
  524                 return (ENOTSUP);
  525         case CLOCK_THREAD_CPUTIME_ID:
  526         default:
  527                 return (EINVAL);
  528         }
  529         do {
  530                 ts = *rqt;
  531                 if ((flags & TIMER_ABSTIME) != 0) {
  532                         if (is_abs_real)
  533                                 td->td_rtcgen =
  534                                     atomic_load_acq_int(&rtc_generation);
  535                         error = kern_clock_gettime(td, clock_id, &now);
  536                         KASSERT(error == 0, ("kern_clock_gettime: %d", error));
  537                         timespecsub(&ts, &now);
  538                 }
  539                 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) {
  540                         error = EWOULDBLOCK;
  541                         break;
  542                 }
  543                 if (ts.tv_sec > INT32_MAX / 2) {
  544                         over = ts.tv_sec - INT32_MAX / 2;
  545                         ts.tv_sec -= over;
  546                 } else
  547                         over = 0;
  548                 tmp = tstosbt(ts);
  549                 prec = tmp;
  550                 prec >>= tc_precexp;
  551                 if (TIMESEL(&sbt, tmp))
  552                         sbt += tc_tick_sbt;
  553                 sbt += tmp;
  554                 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
  555                     sbt, prec, C_ABSOLUTE);
  556         } while (error == 0 && is_abs_real && td->td_rtcgen == 0);
  557         td->td_rtcgen = 0;
  558         if (error != EWOULDBLOCK) {
  559                 if (TIMESEL(&sbtt, tmp))
  560                         sbtt += tc_tick_sbt;
  561                 if (sbtt >= sbt)
  562                         return (0);
  563                 if (error == ERESTART)
  564                         error = EINTR;
  565                 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) {
  566                         ts = sbttots(sbt - sbtt);
  567                         ts.tv_sec += over;
  568                         if (ts.tv_sec < 0)
  569                                 timespecclear(&ts);
  570                         *rmt = ts;
  571                 }
  572                 return (error);
  573         }
  574         return (0);
  575 }
  576 
  577 #ifndef _SYS_SYSPROTO_H_
  578 struct nanosleep_args {
  579         struct  timespec *rqtp;
  580         struct  timespec *rmtp;
  581 };
  582 #endif
  583 /* ARGSUSED */
  584 int
  585 sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
  586 {
  587 
  588         return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME,
  589             uap->rqtp, uap->rmtp));
  590 }
  591 
  592 #ifndef _SYS_SYSPROTO_H_
  593 struct clock_nanosleep_args {
  594         clockid_t clock_id;
  595         int       flags;
  596         struct  timespec *rqtp;
  597         struct  timespec *rmtp;
  598 };
  599 #endif
  600 /* ARGSUSED */
  601 int
  602 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap)
  603 {
  604         int error;
  605 
  606         error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp,
  607             uap->rmtp);
  608         return (kern_posix_error(td, error));
  609 }
  610 
  611 static int
  612 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
  613     const struct timespec *ua_rqtp, struct timespec *ua_rmtp)
  614 {
  615         struct timespec rmt, rqt;
  616         int error, error2;
  617 
  618         error = copyin(ua_rqtp, &rqt, sizeof(rqt));
  619         if (error)
  620                 return (error);
  621         error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
  622         if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
  623                 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt));
  624                 if (error2 != 0)
  625                         error = error2;
  626         }
  627         return (error);
  628 }
  629 
  630 #ifndef _SYS_SYSPROTO_H_
  631 struct gettimeofday_args {
  632         struct  timeval *tp;
  633         struct  timezone *tzp;
  634 };
  635 #endif
  636 /* ARGSUSED */
  637 int
  638 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
  639 {
  640         struct timeval atv;
  641         struct timezone rtz;
  642         int error = 0;
  643 
  644         if (uap->tp) {
  645                 microtime(&atv);
  646                 error = copyout(&atv, uap->tp, sizeof (atv));
  647         }
  648         if (error == 0 && uap->tzp != NULL) {
  649                 rtz.tz_minuteswest = tz_minuteswest;
  650                 rtz.tz_dsttime = tz_dsttime;
  651                 error = copyout(&rtz, uap->tzp, sizeof (rtz));
  652         }
  653         return (error);
  654 }
  655 
  656 #ifndef _SYS_SYSPROTO_H_
  657 struct settimeofday_args {
  658         struct  timeval *tv;
  659         struct  timezone *tzp;
  660 };
  661 #endif
  662 /* ARGSUSED */
  663 int
  664 sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
  665 {
  666         struct timeval atv, *tvp;
  667         struct timezone atz, *tzp;
  668         int error;
  669 
  670         if (uap->tv) {
  671                 error = copyin(uap->tv, &atv, sizeof(atv));
  672                 if (error)
  673                         return (error);
  674                 tvp = &atv;
  675         } else
  676                 tvp = NULL;
  677         if (uap->tzp) {
  678                 error = copyin(uap->tzp, &atz, sizeof(atz));
  679                 if (error)
  680                         return (error);
  681                 tzp = &atz;
  682         } else
  683                 tzp = NULL;
  684         return (kern_settimeofday(td, tvp, tzp));
  685 }
  686 
  687 int
  688 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
  689 {
  690         int error;
  691 
  692         error = priv_check(td, PRIV_SETTIMEOFDAY);
  693         if (error)
  694                 return (error);
  695         /* Verify all parameters before changing time. */
  696         if (tv) {
  697                 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 ||
  698                     tv->tv_sec < 0)
  699                         return (EINVAL);
  700                 error = settime(td, tv);
  701         }
  702         if (tzp && error == 0) {
  703                 tz_minuteswest = tzp->tz_minuteswest;
  704                 tz_dsttime = tzp->tz_dsttime;
  705         }
  706         return (error);
  707 }
  708 
  709 /*
  710  * Get value of an interval timer.  The process virtual and profiling virtual
  711  * time timers are kept in the p_stats area, since they can be swapped out.
  712  * These are kept internally in the way they are specified externally: in
  713  * time until they expire.
  714  *
  715  * The real time interval timer is kept in the process table slot for the
  716  * process, and its value (it_value) is kept as an absolute time rather than
  717  * as a delta, so that it is easy to keep periodic real-time signals from
  718  * drifting.
  719  *
  720  * Virtual time timers are processed in the hardclock() routine of
  721  * kern_clock.c.  The real time timer is processed by a timeout routine,
  722  * called from the softclock() routine.  Since a callout may be delayed in
  723  * real time due to interrupt processing in the system, it is possible for
  724  * the real time timeout routine (realitexpire, given below), to be delayed
  725  * in real time past when it is supposed to occur.  It does not suffice,
  726  * therefore, to reload the real timer .it_value from the real time timers
  727  * .it_interval.  Rather, we compute the next time in absolute time the timer
  728  * should go off.
  729  */
  730 #ifndef _SYS_SYSPROTO_H_
  731 struct getitimer_args {
  732         u_int   which;
  733         struct  itimerval *itv;
  734 };
  735 #endif
  736 int
  737 sys_getitimer(struct thread *td, struct getitimer_args *uap)
  738 {
  739         struct itimerval aitv;
  740         int error;
  741 
  742         error = kern_getitimer(td, uap->which, &aitv);
  743         if (error != 0)
  744                 return (error);
  745         return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
  746 }
  747 
  748 int
  749 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
  750 {
  751         struct proc *p = td->td_proc;
  752         struct timeval ctv;
  753 
  754         if (which > ITIMER_PROF)
  755                 return (EINVAL);
  756 
  757         if (which == ITIMER_REAL) {
  758                 /*
  759                  * Convert from absolute to relative time in .it_value
  760                  * part of real time timer.  If time for real time timer
  761                  * has passed return 0, else return difference between
  762                  * current time and time for the timer to go off.
  763                  */
  764                 PROC_LOCK(p);
  765                 *aitv = p->p_realtimer;
  766                 PROC_UNLOCK(p);
  767                 if (timevalisset(&aitv->it_value)) {
  768                         microuptime(&ctv);
  769                         if (timevalcmp(&aitv->it_value, &ctv, <))
  770                                 timevalclear(&aitv->it_value);
  771                         else
  772                                 timevalsub(&aitv->it_value, &ctv);
  773                 }
  774         } else {
  775                 PROC_ITIMLOCK(p);
  776                 *aitv = p->p_stats->p_timer[which];
  777                 PROC_ITIMUNLOCK(p);
  778         }
  779 #ifdef KTRACE
  780         if (KTRPOINT(td, KTR_STRUCT))
  781                 ktritimerval(aitv);
  782 #endif
  783         return (0);
  784 }
  785 
  786 #ifndef _SYS_SYSPROTO_H_
  787 struct setitimer_args {
  788         u_int   which;
  789         struct  itimerval *itv, *oitv;
  790 };
  791 #endif
  792 int
  793 sys_setitimer(struct thread *td, struct setitimer_args *uap)
  794 {
  795         struct itimerval aitv, oitv;
  796         int error;
  797 
  798         if (uap->itv == NULL) {
  799                 uap->itv = uap->oitv;
  800                 return (sys_getitimer(td, (struct getitimer_args *)uap));
  801         }
  802 
  803         if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
  804                 return (error);
  805         error = kern_setitimer(td, uap->which, &aitv, &oitv);
  806         if (error != 0 || uap->oitv == NULL)
  807                 return (error);
  808         return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
  809 }
  810 
  811 int
  812 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
  813     struct itimerval *oitv)
  814 {
  815         struct proc *p = td->td_proc;
  816         struct timeval ctv;
  817         sbintime_t sbt, pr;
  818 
  819         if (aitv == NULL)
  820                 return (kern_getitimer(td, which, oitv));
  821 
  822         if (which > ITIMER_PROF)
  823                 return (EINVAL);
  824 #ifdef KTRACE
  825         if (KTRPOINT(td, KTR_STRUCT))
  826                 ktritimerval(aitv);
  827 #endif
  828         if (itimerfix(&aitv->it_value) ||
  829             aitv->it_value.tv_sec > INT32_MAX / 2)
  830                 return (EINVAL);
  831         if (!timevalisset(&aitv->it_value))
  832                 timevalclear(&aitv->it_interval);
  833         else if (itimerfix(&aitv->it_interval) ||
  834             aitv->it_interval.tv_sec > INT32_MAX / 2)
  835                 return (EINVAL);
  836 
  837         if (which == ITIMER_REAL) {
  838                 PROC_LOCK(p);
  839                 if (timevalisset(&p->p_realtimer.it_value))
  840                         callout_stop(&p->p_itcallout);
  841                 microuptime(&ctv);
  842                 if (timevalisset(&aitv->it_value)) {
  843                         pr = tvtosbt(aitv->it_value) >> tc_precexp;
  844                         timevaladd(&aitv->it_value, &ctv);
  845                         sbt = tvtosbt(aitv->it_value);
  846                         callout_reset_sbt(&p->p_itcallout, sbt, pr,
  847                             realitexpire, p, C_ABSOLUTE);
  848                 }
  849                 *oitv = p->p_realtimer;
  850                 p->p_realtimer = *aitv;
  851                 PROC_UNLOCK(p);
  852                 if (timevalisset(&oitv->it_value)) {
  853                         if (timevalcmp(&oitv->it_value, &ctv, <))
  854                                 timevalclear(&oitv->it_value);
  855                         else
  856                                 timevalsub(&oitv->it_value, &ctv);
  857                 }
  858         } else {
  859                 if (aitv->it_interval.tv_sec == 0 &&
  860                     aitv->it_interval.tv_usec != 0 &&
  861                     aitv->it_interval.tv_usec < tick)
  862                         aitv->it_interval.tv_usec = tick;
  863                 if (aitv->it_value.tv_sec == 0 &&
  864                     aitv->it_value.tv_usec != 0 &&
  865                     aitv->it_value.tv_usec < tick)
  866                         aitv->it_value.tv_usec = tick;
  867                 PROC_ITIMLOCK(p);
  868                 *oitv = p->p_stats->p_timer[which];
  869                 p->p_stats->p_timer[which] = *aitv;
  870                 PROC_ITIMUNLOCK(p);
  871         }
  872 #ifdef KTRACE
  873         if (KTRPOINT(td, KTR_STRUCT))
  874                 ktritimerval(oitv);
  875 #endif
  876         return (0);
  877 }
  878 
  879 /*
  880  * Real interval timer expired:
  881  * send process whose timer expired an alarm signal.
  882  * If time is not set up to reload, then just return.
  883  * Else compute next time timer should go off which is > current time.
  884  * This is where delay in processing this timeout causes multiple
  885  * SIGALRM calls to be compressed into one.
  886  * tvtohz() always adds 1 to allow for the time until the next clock
  887  * interrupt being strictly less than 1 clock tick, but we don't want
  888  * that here since we want to appear to be in sync with the clock
  889  * interrupt even when we're delayed.
  890  */
  891 void
  892 realitexpire(void *arg)
  893 {
  894         struct proc *p;
  895         struct timeval ctv;
  896         sbintime_t isbt;
  897 
  898         p = (struct proc *)arg;
  899         kern_psignal(p, SIGALRM);
  900         if (!timevalisset(&p->p_realtimer.it_interval)) {
  901                 timevalclear(&p->p_realtimer.it_value);
  902                 if (p->p_flag & P_WEXIT)
  903                         wakeup(&p->p_itcallout);
  904                 return;
  905         }
  906         isbt = tvtosbt(p->p_realtimer.it_interval);
  907         if (isbt >= sbt_timethreshold)
  908                 getmicrouptime(&ctv);
  909         else
  910                 microuptime(&ctv);
  911         do {
  912                 timevaladd(&p->p_realtimer.it_value,
  913                     &p->p_realtimer.it_interval);
  914         } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
  915         callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
  916             isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE);
  917 }
  918 
  919 /*
  920  * Check that a proposed value to load into the .it_value or
  921  * .it_interval part of an interval timer is acceptable, and
  922  * fix it to have at least minimal value (i.e. if it is less
  923  * than the resolution of the clock, round it up.)
  924  */
  925 int
  926 itimerfix(struct timeval *tv)
  927 {
  928 
  929         if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
  930                 return (EINVAL);
  931         if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
  932             tv->tv_usec < (u_int)tick / 16)
  933                 tv->tv_usec = (u_int)tick / 16;
  934         return (0);
  935 }
  936 
  937 /*
  938  * Decrement an interval timer by a specified number
  939  * of microseconds, which must be less than a second,
  940  * i.e. < 1000000.  If the timer expires, then reload
  941  * it.  In this case, carry over (usec - old value) to
  942  * reduce the value reloaded into the timer so that
  943  * the timer does not drift.  This routine assumes
  944  * that it is called in a context where the timers
  945  * on which it is operating cannot change in value.
  946  */
  947 int
  948 itimerdecr(struct itimerval *itp, int usec)
  949 {
  950 
  951         if (itp->it_value.tv_usec < usec) {
  952                 if (itp->it_value.tv_sec == 0) {
  953                         /* expired, and already in next interval */
  954                         usec -= itp->it_value.tv_usec;
  955                         goto expire;
  956                 }
  957                 itp->it_value.tv_usec += 1000000;
  958                 itp->it_value.tv_sec--;
  959         }
  960         itp->it_value.tv_usec -= usec;
  961         usec = 0;
  962         if (timevalisset(&itp->it_value))
  963                 return (1);
  964         /* expired, exactly at end of interval */
  965 expire:
  966         if (timevalisset(&itp->it_interval)) {
  967                 itp->it_value = itp->it_interval;
  968                 itp->it_value.tv_usec -= usec;
  969                 if (itp->it_value.tv_usec < 0) {
  970                         itp->it_value.tv_usec += 1000000;
  971                         itp->it_value.tv_sec--;
  972                 }
  973         } else
  974                 itp->it_value.tv_usec = 0;              /* sec is already 0 */
  975         return (0);
  976 }
  977 
  978 /*
  979  * Add and subtract routines for timevals.
  980  * N.B.: subtract routine doesn't deal with
  981  * results which are before the beginning,
  982  * it just gets very confused in this case.
  983  * Caveat emptor.
  984  */
  985 void
  986 timevaladd(struct timeval *t1, const struct timeval *t2)
  987 {
  988 
  989         t1->tv_sec += t2->tv_sec;
  990         t1->tv_usec += t2->tv_usec;
  991         timevalfix(t1);
  992 }
  993 
  994 void
  995 timevalsub(struct timeval *t1, const struct timeval *t2)
  996 {
  997 
  998         t1->tv_sec -= t2->tv_sec;
  999         t1->tv_usec -= t2->tv_usec;
 1000         timevalfix(t1);
 1001 }
 1002 
 1003 static void
 1004 timevalfix(struct timeval *t1)
 1005 {
 1006 
 1007         if (t1->tv_usec < 0) {
 1008                 t1->tv_sec--;
 1009                 t1->tv_usec += 1000000;
 1010         }
 1011         if (t1->tv_usec >= 1000000) {
 1012                 t1->tv_sec++;
 1013                 t1->tv_usec -= 1000000;
 1014         }
 1015 }
 1016 
 1017 /*
 1018  * ratecheck(): simple time-based rate-limit checking.
 1019  */
 1020 int
 1021 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
 1022 {
 1023         struct timeval tv, delta;
 1024         int rv = 0;
 1025 
 1026         getmicrouptime(&tv);            /* NB: 10ms precision */
 1027         delta = tv;
 1028         timevalsub(&delta, lasttime);
 1029 
 1030         /*
 1031          * check for 0,0 is so that the message will be seen at least once,
 1032          * even if interval is huge.
 1033          */
 1034         if (timevalcmp(&delta, mininterval, >=) ||
 1035             (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
 1036                 *lasttime = tv;
 1037                 rv = 1;
 1038         }
 1039 
 1040         return (rv);
 1041 }
 1042 
 1043 /*
 1044  * ppsratecheck(): packets (or events) per second limitation.
 1045  *
 1046  * Return 0 if the limit is to be enforced (e.g. the caller
 1047  * should drop a packet because of the rate limitation).
 1048  *
 1049  * maxpps of 0 always causes zero to be returned.  maxpps of -1
 1050  * always causes 1 to be returned; this effectively defeats rate
 1051  * limiting.
 1052  *
 1053  * Note that we maintain the struct timeval for compatibility
 1054  * with other bsd systems.  We reuse the storage and just monitor
 1055  * clock ticks for minimal overhead.  
 1056  */
 1057 int
 1058 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
 1059 {
 1060         int now;
 1061 
 1062         /*
 1063          * Reset the last time and counter if this is the first call
 1064          * or more than a second has passed since the last update of
 1065          * lasttime.
 1066          */
 1067         now = ticks;
 1068         if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
 1069                 lasttime->tv_sec = now;
 1070                 *curpps = 1;
 1071                 return (maxpps != 0);
 1072         } else {
 1073                 (*curpps)++;            /* NB: ignore potential overflow */
 1074                 return (maxpps < 0 || *curpps <= maxpps);
 1075         }
 1076 }
 1077 
 1078 static void
 1079 itimer_start(void)
 1080 {
 1081         struct kclock rt_clock = {
 1082                 .timer_create  = realtimer_create,
 1083                 .timer_delete  = realtimer_delete,
 1084                 .timer_settime = realtimer_settime,
 1085                 .timer_gettime = realtimer_gettime,
 1086                 .event_hook    = NULL
 1087         };
 1088 
 1089         itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
 1090                 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
 1091         register_posix_clock(CLOCK_REALTIME,  &rt_clock);
 1092         register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
 1093         p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
 1094         p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
 1095         p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
 1096         EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
 1097                 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
 1098         EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
 1099                 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
 1100 }
 1101 
 1102 int
 1103 register_posix_clock(int clockid, struct kclock *clk)
 1104 {
 1105         if ((unsigned)clockid >= MAX_CLOCKS) {
 1106                 printf("%s: invalid clockid\n", __func__);
 1107                 return (0);
 1108         }
 1109         posix_clocks[clockid] = *clk;
 1110         return (1);
 1111 }
 1112 
 1113 static int
 1114 itimer_init(void *mem, int size, int flags)
 1115 {
 1116         struct itimer *it;
 1117 
 1118         it = (struct itimer *)mem;
 1119         mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
 1120         return (0);
 1121 }
 1122 
 1123 static void
 1124 itimer_fini(void *mem, int size)
 1125 {
 1126         struct itimer *it;
 1127 
 1128         it = (struct itimer *)mem;
 1129         mtx_destroy(&it->it_mtx);
 1130 }
 1131 
 1132 static void
 1133 itimer_enter(struct itimer *it)
 1134 {
 1135 
 1136         mtx_assert(&it->it_mtx, MA_OWNED);
 1137         it->it_usecount++;
 1138 }
 1139 
 1140 static void
 1141 itimer_leave(struct itimer *it)
 1142 {
 1143 
 1144         mtx_assert(&it->it_mtx, MA_OWNED);
 1145         KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
 1146 
 1147         if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
 1148                 wakeup(it);
 1149 }
 1150 
 1151 #ifndef _SYS_SYSPROTO_H_
 1152 struct ktimer_create_args {
 1153         clockid_t clock_id;
 1154         struct sigevent * evp;
 1155         int * timerid;
 1156 };
 1157 #endif
 1158 int
 1159 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
 1160 {
 1161         struct sigevent *evp, ev;
 1162         int id;
 1163         int error;
 1164 
 1165         if (uap->evp == NULL) {
 1166                 evp = NULL;
 1167         } else {
 1168                 error = copyin(uap->evp, &ev, sizeof(ev));
 1169                 if (error != 0)
 1170                         return (error);
 1171                 evp = &ev;
 1172         }
 1173         error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
 1174         if (error == 0) {
 1175                 error = copyout(&id, uap->timerid, sizeof(int));
 1176                 if (error != 0)
 1177                         kern_ktimer_delete(td, id);
 1178         }
 1179         return (error);
 1180 }
 1181 
 1182 int
 1183 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
 1184     int *timerid, int preset_id)
 1185 {
 1186         struct proc *p = td->td_proc;
 1187         struct itimer *it;
 1188         int id;
 1189         int error;
 1190 
 1191         if (clock_id < 0 || clock_id >= MAX_CLOCKS)
 1192                 return (EINVAL);
 1193 
 1194         if (posix_clocks[clock_id].timer_create == NULL)
 1195                 return (EINVAL);
 1196 
 1197         if (evp != NULL) {
 1198                 if (evp->sigev_notify != SIGEV_NONE &&
 1199                     evp->sigev_notify != SIGEV_SIGNAL &&
 1200                     evp->sigev_notify != SIGEV_THREAD_ID)
 1201                         return (EINVAL);
 1202                 if ((evp->sigev_notify == SIGEV_SIGNAL ||
 1203                      evp->sigev_notify == SIGEV_THREAD_ID) &&
 1204                         !_SIG_VALID(evp->sigev_signo))
 1205                         return (EINVAL);
 1206         }
 1207         
 1208         if (p->p_itimers == NULL)
 1209                 itimers_alloc(p);
 1210         
 1211         it = uma_zalloc(itimer_zone, M_WAITOK);
 1212         it->it_flags = 0;
 1213         it->it_usecount = 0;
 1214         it->it_active = 0;
 1215         timespecclear(&it->it_time.it_value);
 1216         timespecclear(&it->it_time.it_interval);
 1217         it->it_overrun = 0;
 1218         it->it_overrun_last = 0;
 1219         it->it_clockid = clock_id;
 1220         it->it_timerid = -1;
 1221         it->it_proc = p;
 1222         ksiginfo_init(&it->it_ksi);
 1223         it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
 1224         error = CLOCK_CALL(clock_id, timer_create, (it));
 1225         if (error != 0)
 1226                 goto out;
 1227 
 1228         PROC_LOCK(p);
 1229         if (preset_id != -1) {
 1230                 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
 1231                 id = preset_id;
 1232                 if (p->p_itimers->its_timers[id] != NULL) {
 1233                         PROC_UNLOCK(p);
 1234                         error = 0;
 1235                         goto out;
 1236                 }
 1237         } else {
 1238                 /*
 1239                  * Find a free timer slot, skipping those reserved
 1240                  * for setitimer().
 1241                  */
 1242                 for (id = 3; id < TIMER_MAX; id++)
 1243                         if (p->p_itimers->its_timers[id] == NULL)
 1244                                 break;
 1245                 if (id == TIMER_MAX) {
 1246                         PROC_UNLOCK(p);
 1247                         error = EAGAIN;
 1248                         goto out;
 1249                 }
 1250         }
 1251         it->it_timerid = id;
 1252         p->p_itimers->its_timers[id] = it;
 1253         if (evp != NULL)
 1254                 it->it_sigev = *evp;
 1255         else {
 1256                 it->it_sigev.sigev_notify = SIGEV_SIGNAL;
 1257                 switch (clock_id) {
 1258                 default:
 1259                 case CLOCK_REALTIME:
 1260                         it->it_sigev.sigev_signo = SIGALRM;
 1261                         break;
 1262                 case CLOCK_VIRTUAL:
 1263                         it->it_sigev.sigev_signo = SIGVTALRM;
 1264                         break;
 1265                 case CLOCK_PROF:
 1266                         it->it_sigev.sigev_signo = SIGPROF;
 1267                         break;
 1268                 }
 1269                 it->it_sigev.sigev_value.sival_int = id;
 1270         }
 1271 
 1272         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1273             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1274                 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
 1275                 it->it_ksi.ksi_code = SI_TIMER;
 1276                 it->it_ksi.ksi_value = it->it_sigev.sigev_value;
 1277                 it->it_ksi.ksi_timerid = id;
 1278         }
 1279         PROC_UNLOCK(p);
 1280         *timerid = id;
 1281         return (0);
 1282 
 1283 out:
 1284         ITIMER_LOCK(it);
 1285         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1286         ITIMER_UNLOCK(it);
 1287         uma_zfree(itimer_zone, it);
 1288         return (error);
 1289 }
 1290 
 1291 #ifndef _SYS_SYSPROTO_H_
 1292 struct ktimer_delete_args {
 1293         int timerid;
 1294 };
 1295 #endif
 1296 int
 1297 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
 1298 {
 1299 
 1300         return (kern_ktimer_delete(td, uap->timerid));
 1301 }
 1302 
 1303 static struct itimer *
 1304 itimer_find(struct proc *p, int timerid)
 1305 {
 1306         struct itimer *it;
 1307 
 1308         PROC_LOCK_ASSERT(p, MA_OWNED);
 1309         if ((p->p_itimers == NULL) ||
 1310             (timerid < 0) || (timerid >= TIMER_MAX) ||
 1311             (it = p->p_itimers->its_timers[timerid]) == NULL) {
 1312                 return (NULL);
 1313         }
 1314         ITIMER_LOCK(it);
 1315         if ((it->it_flags & ITF_DELETING) != 0) {
 1316                 ITIMER_UNLOCK(it);
 1317                 it = NULL;
 1318         }
 1319         return (it);
 1320 }
 1321 
 1322 int
 1323 kern_ktimer_delete(struct thread *td, int timerid)
 1324 {
 1325         struct proc *p = td->td_proc;
 1326         struct itimer *it;
 1327 
 1328         PROC_LOCK(p);
 1329         it = itimer_find(p, timerid);
 1330         if (it == NULL) {
 1331                 PROC_UNLOCK(p);
 1332                 return (EINVAL);
 1333         }
 1334         PROC_UNLOCK(p);
 1335 
 1336         it->it_flags |= ITF_DELETING;
 1337         while (it->it_usecount > 0) {
 1338                 it->it_flags |= ITF_WANTED;
 1339                 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
 1340         }
 1341         it->it_flags &= ~ITF_WANTED;
 1342         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1343         ITIMER_UNLOCK(it);
 1344 
 1345         PROC_LOCK(p);
 1346         if (KSI_ONQ(&it->it_ksi))
 1347                 sigqueue_take(&it->it_ksi);
 1348         p->p_itimers->its_timers[timerid] = NULL;
 1349         PROC_UNLOCK(p);
 1350         uma_zfree(itimer_zone, it);
 1351         return (0);
 1352 }
 1353 
 1354 #ifndef _SYS_SYSPROTO_H_
 1355 struct ktimer_settime_args {
 1356         int timerid;
 1357         int flags;
 1358         const struct itimerspec * value;
 1359         struct itimerspec * ovalue;
 1360 };
 1361 #endif
 1362 int
 1363 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
 1364 {
 1365         struct itimerspec val, oval, *ovalp;
 1366         int error;
 1367 
 1368         error = copyin(uap->value, &val, sizeof(val));
 1369         if (error != 0)
 1370                 return (error);
 1371         ovalp = uap->ovalue != NULL ? &oval : NULL;
 1372         error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
 1373         if (error == 0 && uap->ovalue != NULL)
 1374                 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
 1375         return (error);
 1376 }
 1377 
 1378 int
 1379 kern_ktimer_settime(struct thread *td, int timer_id, int flags,
 1380     struct itimerspec *val, struct itimerspec *oval)
 1381 {
 1382         struct proc *p;
 1383         struct itimer *it;
 1384         int error;
 1385 
 1386         p = td->td_proc;
 1387         PROC_LOCK(p);
 1388         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1389                 PROC_UNLOCK(p);
 1390                 error = EINVAL;
 1391         } else {
 1392                 PROC_UNLOCK(p);
 1393                 itimer_enter(it);
 1394                 error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
 1395                     flags, val, oval));
 1396                 itimer_leave(it);
 1397                 ITIMER_UNLOCK(it);
 1398         }
 1399         return (error);
 1400 }
 1401 
 1402 #ifndef _SYS_SYSPROTO_H_
 1403 struct ktimer_gettime_args {
 1404         int timerid;
 1405         struct itimerspec * value;
 1406 };
 1407 #endif
 1408 int
 1409 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
 1410 {
 1411         struct itimerspec val;
 1412         int error;
 1413 
 1414         error = kern_ktimer_gettime(td, uap->timerid, &val);
 1415         if (error == 0)
 1416                 error = copyout(&val, uap->value, sizeof(val));
 1417         return (error);
 1418 }
 1419 
 1420 int
 1421 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
 1422 {
 1423         struct proc *p;
 1424         struct itimer *it;
 1425         int error;
 1426 
 1427         p = td->td_proc;
 1428         PROC_LOCK(p);
 1429         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1430                 PROC_UNLOCK(p);
 1431                 error = EINVAL;
 1432         } else {
 1433                 PROC_UNLOCK(p);
 1434                 itimer_enter(it);
 1435                 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
 1436                 itimer_leave(it);
 1437                 ITIMER_UNLOCK(it);
 1438         }
 1439         return (error);
 1440 }
 1441 
 1442 #ifndef _SYS_SYSPROTO_H_
 1443 struct timer_getoverrun_args {
 1444         int timerid;
 1445 };
 1446 #endif
 1447 int
 1448 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
 1449 {
 1450 
 1451         return (kern_ktimer_getoverrun(td, uap->timerid));
 1452 }
 1453 
 1454 int
 1455 kern_ktimer_getoverrun(struct thread *td, int timer_id)
 1456 {
 1457         struct proc *p = td->td_proc;
 1458         struct itimer *it;
 1459         int error ;
 1460 
 1461         PROC_LOCK(p);
 1462         if (timer_id < 3 ||
 1463             (it = itimer_find(p, timer_id)) == NULL) {
 1464                 PROC_UNLOCK(p);
 1465                 error = EINVAL;
 1466         } else {
 1467                 td->td_retval[0] = it->it_overrun_last;
 1468                 ITIMER_UNLOCK(it);
 1469                 PROC_UNLOCK(p);
 1470                 error = 0;
 1471         }
 1472         return (error);
 1473 }
 1474 
 1475 static int
 1476 realtimer_create(struct itimer *it)
 1477 {
 1478         callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
 1479         return (0);
 1480 }
 1481 
 1482 static int
 1483 realtimer_delete(struct itimer *it)
 1484 {
 1485         mtx_assert(&it->it_mtx, MA_OWNED);
 1486         
 1487         /*
 1488          * clear timer's value and interval to tell realtimer_expire
 1489          * to not rearm the timer.
 1490          */
 1491         timespecclear(&it->it_time.it_value);
 1492         timespecclear(&it->it_time.it_interval);
 1493         ITIMER_UNLOCK(it);
 1494         callout_drain(&it->it_callout);
 1495         ITIMER_LOCK(it);
 1496         return (0);
 1497 }
 1498 
 1499 static int
 1500 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
 1501 {
 1502         struct timespec cts;
 1503 
 1504         mtx_assert(&it->it_mtx, MA_OWNED);
 1505 
 1506         realtimer_clocktime(it->it_clockid, &cts);
 1507         *ovalue = it->it_time;
 1508         if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
 1509                 timespecsub(&ovalue->it_value, &cts);
 1510                 if (ovalue->it_value.tv_sec < 0 ||
 1511                     (ovalue->it_value.tv_sec == 0 &&
 1512                      ovalue->it_value.tv_nsec == 0)) {
 1513                         ovalue->it_value.tv_sec  = 0;
 1514                         ovalue->it_value.tv_nsec = 1;
 1515                 }
 1516         }
 1517         return (0);
 1518 }
 1519 
 1520 static int
 1521 realtimer_settime(struct itimer *it, int flags,
 1522         struct itimerspec *value, struct itimerspec *ovalue)
 1523 {
 1524         struct timespec cts, ts;
 1525         struct timeval tv;
 1526         struct itimerspec val;
 1527 
 1528         mtx_assert(&it->it_mtx, MA_OWNED);
 1529 
 1530         val = *value;
 1531         if (itimespecfix(&val.it_value))
 1532                 return (EINVAL);
 1533 
 1534         if (timespecisset(&val.it_value)) {
 1535                 if (itimespecfix(&val.it_interval))
 1536                         return (EINVAL);
 1537         } else {
 1538                 timespecclear(&val.it_interval);
 1539         }
 1540         
 1541         if (ovalue != NULL)
 1542                 realtimer_gettime(it, ovalue);
 1543 
 1544         it->it_time = val;
 1545         if (timespecisset(&val.it_value)) {
 1546                 realtimer_clocktime(it->it_clockid, &cts);
 1547                 ts = val.it_value;
 1548                 if ((flags & TIMER_ABSTIME) == 0) {
 1549                         /* Convert to absolute time. */
 1550                         timespecadd(&it->it_time.it_value, &cts);
 1551                 } else {
 1552                         timespecsub(&ts, &cts);
 1553                         /*
 1554                          * We don't care if ts is negative, tztohz will
 1555                          * fix it.
 1556                          */
 1557                 }
 1558                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1559                 callout_reset(&it->it_callout, tvtohz(&tv),
 1560                         realtimer_expire, it);
 1561         } else {
 1562                 callout_stop(&it->it_callout);
 1563         }
 1564 
 1565         return (0);
 1566 }
 1567 
 1568 static void
 1569 realtimer_clocktime(clockid_t id, struct timespec *ts)
 1570 {
 1571         if (id == CLOCK_REALTIME)
 1572                 getnanotime(ts);
 1573         else    /* CLOCK_MONOTONIC */
 1574                 getnanouptime(ts);
 1575 }
 1576 
 1577 int
 1578 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
 1579 {
 1580         struct itimer *it;
 1581 
 1582         PROC_LOCK_ASSERT(p, MA_OWNED);
 1583         it = itimer_find(p, timerid);
 1584         if (it != NULL) {
 1585                 ksi->ksi_overrun = it->it_overrun;
 1586                 it->it_overrun_last = it->it_overrun;
 1587                 it->it_overrun = 0;
 1588                 ITIMER_UNLOCK(it);
 1589                 return (0);
 1590         }
 1591         return (EINVAL);
 1592 }
 1593 
 1594 int
 1595 itimespecfix(struct timespec *ts)
 1596 {
 1597 
 1598         if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 1599                 return (EINVAL);
 1600         if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
 1601                 ts->tv_nsec = tick * 1000;
 1602         return (0);
 1603 }
 1604 
 1605 /* Timeout callback for realtime timer */
 1606 static void
 1607 realtimer_expire(void *arg)
 1608 {
 1609         struct timespec cts, ts;
 1610         struct timeval tv;
 1611         struct itimer *it;
 1612 
 1613         it = (struct itimer *)arg;
 1614 
 1615         realtimer_clocktime(it->it_clockid, &cts);
 1616         /* Only fire if time is reached. */
 1617         if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
 1618                 if (timespecisset(&it->it_time.it_interval)) {
 1619                         timespecadd(&it->it_time.it_value,
 1620                                     &it->it_time.it_interval);
 1621                         while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
 1622                                 if (it->it_overrun < INT_MAX)
 1623                                         it->it_overrun++;
 1624                                 else
 1625                                         it->it_ksi.ksi_errno = ERANGE;
 1626                                 timespecadd(&it->it_time.it_value,
 1627                                             &it->it_time.it_interval);
 1628                         }
 1629                 } else {
 1630                         /* single shot timer ? */
 1631                         timespecclear(&it->it_time.it_value);
 1632                 }
 1633                 if (timespecisset(&it->it_time.it_value)) {
 1634                         ts = it->it_time.it_value;
 1635                         timespecsub(&ts, &cts);
 1636                         TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1637                         callout_reset(&it->it_callout, tvtohz(&tv),
 1638                                  realtimer_expire, it);
 1639                 }
 1640                 itimer_enter(it);
 1641                 ITIMER_UNLOCK(it);
 1642                 itimer_fire(it);
 1643                 ITIMER_LOCK(it);
 1644                 itimer_leave(it);
 1645         } else if (timespecisset(&it->it_time.it_value)) {
 1646                 ts = it->it_time.it_value;
 1647                 timespecsub(&ts, &cts);
 1648                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1649                 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
 1650                         it);
 1651         }
 1652 }
 1653 
 1654 void
 1655 itimer_fire(struct itimer *it)
 1656 {
 1657         struct proc *p = it->it_proc;
 1658         struct thread *td;
 1659 
 1660         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1661             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1662                 if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
 1663                         ITIMER_LOCK(it);
 1664                         timespecclear(&it->it_time.it_value);
 1665                         timespecclear(&it->it_time.it_interval);
 1666                         callout_stop(&it->it_callout);
 1667                         ITIMER_UNLOCK(it);
 1668                         return;
 1669                 }
 1670                 if (!KSI_ONQ(&it->it_ksi)) {
 1671                         it->it_ksi.ksi_errno = 0;
 1672                         ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
 1673                         tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
 1674                 } else {
 1675                         if (it->it_overrun < INT_MAX)
 1676                                 it->it_overrun++;
 1677                         else
 1678                                 it->it_ksi.ksi_errno = ERANGE;
 1679                 }
 1680                 PROC_UNLOCK(p);
 1681         }
 1682 }
 1683 
 1684 static void
 1685 itimers_alloc(struct proc *p)
 1686 {
 1687         struct itimers *its;
 1688         int i;
 1689 
 1690         its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
 1691         LIST_INIT(&its->its_virtual);
 1692         LIST_INIT(&its->its_prof);
 1693         TAILQ_INIT(&its->its_worklist);
 1694         for (i = 0; i < TIMER_MAX; i++)
 1695                 its->its_timers[i] = NULL;
 1696         PROC_LOCK(p);
 1697         if (p->p_itimers == NULL) {
 1698                 p->p_itimers = its;
 1699                 PROC_UNLOCK(p);
 1700         }
 1701         else {
 1702                 PROC_UNLOCK(p);
 1703                 free(its, M_SUBPROC);
 1704         }
 1705 }
 1706 
 1707 static void
 1708 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
 1709 {
 1710         itimers_event_hook_exit(arg, p);
 1711 }
 1712 
 1713 /* Clean up timers when some process events are being triggered. */
 1714 static void
 1715 itimers_event_hook_exit(void *arg, struct proc *p)
 1716 {
 1717         struct itimers *its;
 1718         struct itimer *it;
 1719         int event = (int)(intptr_t)arg;
 1720         int i;
 1721 
 1722         if (p->p_itimers != NULL) {
 1723                 its = p->p_itimers;
 1724                 for (i = 0; i < MAX_CLOCKS; ++i) {
 1725                         if (posix_clocks[i].event_hook != NULL)
 1726                                 CLOCK_CALL(i, event_hook, (p, i, event));
 1727                 }
 1728                 /*
 1729                  * According to susv3, XSI interval timers should be inherited
 1730                  * by new image.
 1731                  */
 1732                 if (event == ITIMER_EV_EXEC)
 1733                         i = 3;
 1734                 else if (event == ITIMER_EV_EXIT)
 1735                         i = 0;
 1736                 else
 1737                         panic("unhandled event");
 1738                 for (; i < TIMER_MAX; ++i) {
 1739                         if ((it = its->its_timers[i]) != NULL)
 1740                                 kern_ktimer_delete(curthread, i);
 1741                 }
 1742                 if (its->its_timers[0] == NULL &&
 1743                     its->its_timers[1] == NULL &&
 1744                     its->its_timers[2] == NULL) {
 1745                         free(its, M_SUBPROC);
 1746                         p->p_itimers = NULL;
 1747                 }
 1748         }
 1749 }

Cache object: 2ed724ace3d036e8c677081c88896fae


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.