The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_time.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1989, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)kern_time.c 8.1 (Berkeley) 6/10/93
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_ktrace.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/limits.h>
   42 #include <sys/clock.h>
   43 #include <sys/lock.h>
   44 #include <sys/mutex.h>
   45 #include <sys/sysproto.h>
   46 #include <sys/resourcevar.h>
   47 #include <sys/signalvar.h>
   48 #include <sys/kernel.h>
   49 #include <sys/sleepqueue.h>
   50 #include <sys/syscallsubr.h>
   51 #include <sys/sysctl.h>
   52 #include <sys/sysent.h>
   53 #include <sys/priv.h>
   54 #include <sys/proc.h>
   55 #include <sys/posix4.h>
   56 #include <sys/time.h>
   57 #include <sys/timers.h>
   58 #include <sys/timetc.h>
   59 #include <sys/vnode.h>
   60 #ifdef KTRACE
   61 #include <sys/ktrace.h>
   62 #endif
   63 
   64 #include <vm/vm.h>
   65 #include <vm/vm_extern.h>
   66 
   67 #define MAX_CLOCKS      (CLOCK_MONOTONIC+1)
   68 #define CPUCLOCK_BIT            0x80000000
   69 #define CPUCLOCK_PROCESS_BIT    0x40000000
   70 #define CPUCLOCK_ID_MASK        (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
   71 #define MAKE_THREAD_CPUCLOCK(tid)       (CPUCLOCK_BIT|(tid))
   72 #define MAKE_PROCESS_CPUCLOCK(pid)      \
   73         (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
   74 
   75 static struct kclock    posix_clocks[MAX_CLOCKS];
   76 static uma_zone_t       itimer_zone = NULL;
   77 
   78 /*
   79  * Time of day and interval timer support.
   80  *
   81  * These routines provide the kernel entry points to get and set
   82  * the time-of-day and per-process interval timers.  Subroutines
   83  * here provide support for adding and subtracting timeval structures
   84  * and decrementing interval timers, optionally reloading the interval
   85  * timers when they expire.
   86  */
   87 
   88 static int      settime(struct thread *, struct timeval *);
   89 static void     timevalfix(struct timeval *);
   90 static int      user_clock_nanosleep(struct thread *td, clockid_t clock_id,
   91                     int flags, const struct timespec *ua_rqtp,
   92                     struct timespec *ua_rmtp);
   93 
   94 static void     itimer_start(void);
   95 static int      itimer_init(void *, int, int);
   96 static void     itimer_fini(void *, int);
   97 static void     itimer_enter(struct itimer *);
   98 static void     itimer_leave(struct itimer *);
   99 static struct itimer *itimer_find(struct proc *, int);
  100 static void     itimers_alloc(struct proc *);
  101 static int      realtimer_create(struct itimer *);
  102 static int      realtimer_gettime(struct itimer *, struct itimerspec *);
  103 static int      realtimer_settime(struct itimer *, int,
  104                         struct itimerspec *, struct itimerspec *);
  105 static int      realtimer_delete(struct itimer *);
  106 static void     realtimer_clocktime(clockid_t, struct timespec *);
  107 static void     realtimer_expire(void *);
  108 
  109 static int      register_posix_clock(int, const struct kclock *);
  110 void            itimer_fire(struct itimer *it);
  111 int             itimespecfix(struct timespec *ts);
  112 
  113 #define CLOCK_CALL(clock, call, arglist)                \
  114         ((*posix_clocks[clock].call) arglist)
  115 
  116 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
  117 
  118 static int
  119 settime(struct thread *td, struct timeval *tv)
  120 {
  121         struct timeval delta, tv1, tv2;
  122         static struct timeval maxtime, laststep;
  123         struct timespec ts;
  124 
  125         microtime(&tv1);
  126         delta = *tv;
  127         timevalsub(&delta, &tv1);
  128 
  129         /*
  130          * If the system is secure, we do not allow the time to be 
  131          * set to a value earlier than 1 second less than the highest
  132          * time we have yet seen. The worst a miscreant can do in
  133          * this circumstance is "freeze" time. He couldn't go
  134          * back to the past.
  135          *
  136          * We similarly do not allow the clock to be stepped more
  137          * than one second, nor more than once per second. This allows
  138          * a miscreant to make the clock march double-time, but no worse.
  139          */
  140         if (securelevel_gt(td->td_ucred, 1) != 0) {
  141                 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
  142                         /*
  143                          * Update maxtime to latest time we've seen.
  144                          */
  145                         if (tv1.tv_sec > maxtime.tv_sec)
  146                                 maxtime = tv1;
  147                         tv2 = *tv;
  148                         timevalsub(&tv2, &maxtime);
  149                         if (tv2.tv_sec < -1) {
  150                                 tv->tv_sec = maxtime.tv_sec - 1;
  151                                 printf("Time adjustment clamped to -1 second\n");
  152                         }
  153                 } else {
  154                         if (tv1.tv_sec == laststep.tv_sec)
  155                                 return (EPERM);
  156                         if (delta.tv_sec > 1) {
  157                                 tv->tv_sec = tv1.tv_sec + 1;
  158                                 printf("Time adjustment clamped to +1 second\n");
  159                         }
  160                         laststep = *tv;
  161                 }
  162         }
  163 
  164         ts.tv_sec = tv->tv_sec;
  165         ts.tv_nsec = tv->tv_usec * 1000;
  166         tc_setclock(&ts);
  167         resettodr();
  168         return (0);
  169 }
  170 
  171 #ifndef _SYS_SYSPROTO_H_
  172 struct clock_getcpuclockid2_args {
  173         id_t id;
  174         int which,
  175         clockid_t *clock_id;
  176 };
  177 #endif
  178 /* ARGSUSED */
  179 int
  180 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
  181 {
  182         clockid_t clk_id;
  183         int error;
  184 
  185         error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
  186         if (error == 0)
  187                 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
  188         return (error);
  189 }
  190 
  191 int
  192 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
  193     clockid_t *clk_id)
  194 {
  195         struct proc *p;
  196         pid_t pid;
  197         lwpid_t tid;
  198         int error;
  199 
  200         switch (which) {
  201         case CPUCLOCK_WHICH_PID:
  202                 if (id != 0) {
  203                         error = pget(id, PGET_CANSEE | PGET_NOTID, &p);
  204                         if (error != 0)
  205                                 return (error);
  206                         PROC_UNLOCK(p);
  207                         pid = id;
  208                 } else {
  209                         pid = td->td_proc->p_pid;
  210                 }
  211                 *clk_id = MAKE_PROCESS_CPUCLOCK(pid);
  212                 return (0);
  213         case CPUCLOCK_WHICH_TID:
  214                 tid = id == 0 ? td->td_tid : id;
  215                 *clk_id = MAKE_THREAD_CPUCLOCK(tid);
  216                 return (0);
  217         default:
  218                 return (EINVAL);
  219         }
  220 }
  221 
  222 #ifndef _SYS_SYSPROTO_H_
  223 struct clock_gettime_args {
  224         clockid_t clock_id;
  225         struct  timespec *tp;
  226 };
  227 #endif
  228 /* ARGSUSED */
  229 int
  230 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
  231 {
  232         struct timespec ats;
  233         int error;
  234 
  235         error = kern_clock_gettime(td, uap->clock_id, &ats);
  236         if (error == 0)
  237                 error = copyout(&ats, uap->tp, sizeof(ats));
  238 
  239         return (error);
  240 }
  241 
  242 static inline void
  243 cputick2timespec(uint64_t runtime, struct timespec *ats)
  244 {
  245         runtime = cputick2usec(runtime);
  246         ats->tv_sec = runtime / 1000000;
  247         ats->tv_nsec = runtime % 1000000 * 1000;
  248 }
  249 
  250 void
  251 kern_thread_cputime(struct thread *targettd, struct timespec *ats)
  252 {
  253         uint64_t runtime, curtime, switchtime;
  254 
  255         if (targettd == NULL) { /* current thread */
  256                 critical_enter();
  257                 switchtime = PCPU_GET(switchtime);
  258                 curtime = cpu_ticks();
  259                 runtime = curthread->td_runtime;
  260                 critical_exit();
  261                 runtime += curtime - switchtime;
  262         } else {
  263                 PROC_LOCK_ASSERT(targettd->td_proc, MA_OWNED);
  264                 thread_lock(targettd);
  265                 runtime = targettd->td_runtime;
  266                 thread_unlock(targettd);
  267         }
  268         cputick2timespec(runtime, ats);
  269 }
  270 
  271 void
  272 kern_process_cputime(struct proc *targetp, struct timespec *ats)
  273 {
  274         uint64_t runtime;
  275         struct rusage ru;
  276 
  277         PROC_LOCK_ASSERT(targetp, MA_OWNED);
  278         PROC_STATLOCK(targetp);
  279         rufetch(targetp, &ru);
  280         runtime = targetp->p_rux.rux_runtime;
  281         if (curthread->td_proc == targetp)
  282                 runtime += cpu_ticks() - PCPU_GET(switchtime);
  283         PROC_STATUNLOCK(targetp);
  284         cputick2timespec(runtime, ats);
  285 }
  286 
  287 static int
  288 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  289 {
  290         struct proc *p, *p2;
  291         struct thread *td2;
  292         lwpid_t tid;
  293         pid_t pid;
  294         int error;
  295 
  296         p = td->td_proc;
  297         if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
  298                 tid = clock_id & CPUCLOCK_ID_MASK;
  299                 td2 = tdfind(tid, p->p_pid);
  300                 if (td2 == NULL)
  301                         return (EINVAL);
  302                 kern_thread_cputime(td2, ats);
  303                 PROC_UNLOCK(td2->td_proc);
  304         } else {
  305                 pid = clock_id & CPUCLOCK_ID_MASK;
  306                 error = pget(pid, PGET_CANSEE, &p2);
  307                 if (error != 0)
  308                         return (EINVAL);
  309                 kern_process_cputime(p2, ats);
  310                 PROC_UNLOCK(p2);
  311         }
  312         return (0);
  313 }
  314 
  315 int
  316 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  317 {
  318         struct timeval sys, user;
  319         struct proc *p;
  320 
  321         p = td->td_proc;
  322         switch (clock_id) {
  323         case CLOCK_REALTIME:            /* Default to precise. */
  324         case CLOCK_REALTIME_PRECISE:
  325                 nanotime(ats);
  326                 break;
  327         case CLOCK_REALTIME_FAST:
  328                 getnanotime(ats);
  329                 break;
  330         case CLOCK_VIRTUAL:
  331                 PROC_LOCK(p);
  332                 PROC_STATLOCK(p);
  333                 calcru(p, &user, &sys);
  334                 PROC_STATUNLOCK(p);
  335                 PROC_UNLOCK(p);
  336                 TIMEVAL_TO_TIMESPEC(&user, ats);
  337                 break;
  338         case CLOCK_PROF:
  339                 PROC_LOCK(p);
  340                 PROC_STATLOCK(p);
  341                 calcru(p, &user, &sys);
  342                 PROC_STATUNLOCK(p);
  343                 PROC_UNLOCK(p);
  344                 timevaladd(&user, &sys);
  345                 TIMEVAL_TO_TIMESPEC(&user, ats);
  346                 break;
  347         case CLOCK_MONOTONIC:           /* Default to precise. */
  348         case CLOCK_MONOTONIC_PRECISE:
  349         case CLOCK_UPTIME:
  350         case CLOCK_UPTIME_PRECISE:
  351                 nanouptime(ats);
  352                 break;
  353         case CLOCK_UPTIME_FAST:
  354         case CLOCK_MONOTONIC_FAST:
  355                 getnanouptime(ats);
  356                 break;
  357         case CLOCK_SECOND:
  358                 ats->tv_sec = time_second;
  359                 ats->tv_nsec = 0;
  360                 break;
  361         case CLOCK_THREAD_CPUTIME_ID:
  362                 kern_thread_cputime(NULL, ats);
  363                 break;
  364         case CLOCK_PROCESS_CPUTIME_ID:
  365                 PROC_LOCK(p);
  366                 kern_process_cputime(p, ats);
  367                 PROC_UNLOCK(p);
  368                 break;
  369         default:
  370                 if ((int)clock_id >= 0)
  371                         return (EINVAL);
  372                 return (get_cputime(td, clock_id, ats));
  373         }
  374         return (0);
  375 }
  376 
  377 #ifndef _SYS_SYSPROTO_H_
  378 struct clock_settime_args {
  379         clockid_t clock_id;
  380         const struct    timespec *tp;
  381 };
  382 #endif
  383 /* ARGSUSED */
  384 int
  385 sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
  386 {
  387         struct timespec ats;
  388         int error;
  389 
  390         if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
  391                 return (error);
  392         return (kern_clock_settime(td, uap->clock_id, &ats));
  393 }
  394 
  395 static int allow_insane_settime = 0;
  396 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN,
  397     &allow_insane_settime, 0,
  398     "do not perform possibly restrictive checks on settime(2) args");
  399 
  400 int
  401 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  402 {
  403         struct timeval atv;
  404         int error;
  405 
  406         if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
  407                 return (error);
  408         if (clock_id != CLOCK_REALTIME)
  409                 return (EINVAL);
  410         if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000 ||
  411             ats->tv_sec < 0)
  412                 return (EINVAL);
  413         if (!allow_insane_settime &&
  414             (ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60 ||
  415             ats->tv_sec < utc_offset()))
  416                 return (EINVAL);
  417         /* XXX Don't convert nsec->usec and back */
  418         TIMESPEC_TO_TIMEVAL(&atv, ats);
  419         error = settime(td, &atv);
  420         return (error);
  421 }
  422 
  423 #ifndef _SYS_SYSPROTO_H_
  424 struct clock_getres_args {
  425         clockid_t clock_id;
  426         struct  timespec *tp;
  427 };
  428 #endif
  429 int
  430 sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
  431 {
  432         struct timespec ts;
  433         int error;
  434 
  435         if (uap->tp == NULL)
  436                 return (0);
  437 
  438         error = kern_clock_getres(td, uap->clock_id, &ts);
  439         if (error == 0)
  440                 error = copyout(&ts, uap->tp, sizeof(ts));
  441         return (error);
  442 }
  443 
  444 int
  445 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
  446 {
  447 
  448         ts->tv_sec = 0;
  449         switch (clock_id) {
  450         case CLOCK_REALTIME:
  451         case CLOCK_REALTIME_FAST:
  452         case CLOCK_REALTIME_PRECISE:
  453         case CLOCK_MONOTONIC:
  454         case CLOCK_MONOTONIC_FAST:
  455         case CLOCK_MONOTONIC_PRECISE:
  456         case CLOCK_UPTIME:
  457         case CLOCK_UPTIME_FAST:
  458         case CLOCK_UPTIME_PRECISE:
  459                 /*
  460                  * Round up the result of the division cheaply by adding 1.
  461                  * Rounding up is especially important if rounding down
  462                  * would give 0.  Perfect rounding is unimportant.
  463                  */
  464                 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
  465                 break;
  466         case CLOCK_VIRTUAL:
  467         case CLOCK_PROF:
  468                 /* Accurately round up here because we can do so cheaply. */
  469                 ts->tv_nsec = howmany(1000000000, hz);
  470                 break;
  471         case CLOCK_SECOND:
  472                 ts->tv_sec = 1;
  473                 ts->tv_nsec = 0;
  474                 break;
  475         case CLOCK_THREAD_CPUTIME_ID:
  476         case CLOCK_PROCESS_CPUTIME_ID:
  477         cputime:
  478                 /* sync with cputick2usec */
  479                 ts->tv_nsec = 1000000 / cpu_tickrate();
  480                 if (ts->tv_nsec == 0)
  481                         ts->tv_nsec = 1000;
  482                 break;
  483         default:
  484                 if ((int)clock_id < 0)
  485                         goto cputime;
  486                 return (EINVAL);
  487         }
  488         return (0);
  489 }
  490 
  491 int
  492 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
  493 {
  494 
  495         return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt,
  496             rmt));
  497 }
  498 
  499 static uint8_t nanowait[MAXCPU];
  500 
  501 int
  502 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
  503     const struct timespec *rqt, struct timespec *rmt)
  504 {
  505         struct timespec ts, now;
  506         sbintime_t sbt, sbtt, prec, tmp;
  507         time_t over;
  508         int error;
  509         bool is_abs_real;
  510 
  511         if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
  512                 return (EINVAL);
  513         if ((flags & ~TIMER_ABSTIME) != 0)
  514                 return (EINVAL);
  515         switch (clock_id) {
  516         case CLOCK_REALTIME:
  517         case CLOCK_REALTIME_PRECISE:
  518         case CLOCK_REALTIME_FAST:
  519         case CLOCK_SECOND:
  520                 is_abs_real = (flags & TIMER_ABSTIME) != 0;
  521                 break;
  522         case CLOCK_MONOTONIC:
  523         case CLOCK_MONOTONIC_PRECISE:
  524         case CLOCK_MONOTONIC_FAST:
  525         case CLOCK_UPTIME:
  526         case CLOCK_UPTIME_PRECISE:
  527         case CLOCK_UPTIME_FAST:
  528                 is_abs_real = false;
  529                 break;
  530         case CLOCK_VIRTUAL:
  531         case CLOCK_PROF:
  532         case CLOCK_PROCESS_CPUTIME_ID:
  533                 return (ENOTSUP);
  534         case CLOCK_THREAD_CPUTIME_ID:
  535         default:
  536                 return (EINVAL);
  537         }
  538         do {
  539                 ts = *rqt;
  540                 if ((flags & TIMER_ABSTIME) != 0) {
  541                         if (is_abs_real)
  542                                 td->td_rtcgen =
  543                                     atomic_load_acq_int(&rtc_generation);
  544                         error = kern_clock_gettime(td, clock_id, &now);
  545                         KASSERT(error == 0, ("kern_clock_gettime: %d", error));
  546                         timespecsub(&ts, &now, &ts);
  547                 }
  548                 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) {
  549                         error = EWOULDBLOCK;
  550                         break;
  551                 }
  552                 if (ts.tv_sec > INT32_MAX / 2) {
  553                         over = ts.tv_sec - INT32_MAX / 2;
  554                         ts.tv_sec -= over;
  555                 } else
  556                         over = 0;
  557                 tmp = tstosbt(ts);
  558                 prec = tmp;
  559                 prec >>= tc_precexp;
  560                 if (TIMESEL(&sbt, tmp))
  561                         sbt += tc_tick_sbt;
  562                 sbt += tmp;
  563                 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
  564                     sbt, prec, C_ABSOLUTE);
  565         } while (error == 0 && is_abs_real && td->td_rtcgen == 0);
  566         td->td_rtcgen = 0;
  567         if (error != EWOULDBLOCK) {
  568                 if (TIMESEL(&sbtt, tmp))
  569                         sbtt += tc_tick_sbt;
  570                 if (sbtt >= sbt)
  571                         return (0);
  572                 if (error == ERESTART)
  573                         error = EINTR;
  574                 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) {
  575                         ts = sbttots(sbt - sbtt);
  576                         ts.tv_sec += over;
  577                         if (ts.tv_sec < 0)
  578                                 timespecclear(&ts);
  579                         *rmt = ts;
  580                 }
  581                 return (error);
  582         }
  583         return (0);
  584 }
  585 
  586 #ifndef _SYS_SYSPROTO_H_
  587 struct nanosleep_args {
  588         struct  timespec *rqtp;
  589         struct  timespec *rmtp;
  590 };
  591 #endif
  592 /* ARGSUSED */
  593 int
  594 sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
  595 {
  596 
  597         return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME,
  598             uap->rqtp, uap->rmtp));
  599 }
  600 
  601 #ifndef _SYS_SYSPROTO_H_
  602 struct clock_nanosleep_args {
  603         clockid_t clock_id;
  604         int       flags;
  605         struct  timespec *rqtp;
  606         struct  timespec *rmtp;
  607 };
  608 #endif
  609 /* ARGSUSED */
  610 int
  611 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap)
  612 {
  613         int error;
  614 
  615         error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp,
  616             uap->rmtp);
  617         return (kern_posix_error(td, error));
  618 }
  619 
  620 static int
  621 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
  622     const struct timespec *ua_rqtp, struct timespec *ua_rmtp)
  623 {
  624         struct timespec rmt, rqt;
  625         int error, error2;
  626 
  627         error = copyin(ua_rqtp, &rqt, sizeof(rqt));
  628         if (error)
  629                 return (error);
  630         error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
  631         if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
  632                 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt));
  633                 if (error2 != 0)
  634                         error = error2;
  635         }
  636         return (error);
  637 }
  638 
  639 #ifndef _SYS_SYSPROTO_H_
  640 struct gettimeofday_args {
  641         struct  timeval *tp;
  642         struct  timezone *tzp;
  643 };
  644 #endif
  645 /* ARGSUSED */
  646 int
  647 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
  648 {
  649         struct timeval atv;
  650         struct timezone rtz;
  651         int error = 0;
  652 
  653         if (uap->tp) {
  654                 microtime(&atv);
  655                 error = copyout(&atv, uap->tp, sizeof (atv));
  656         }
  657         if (error == 0 && uap->tzp != NULL) {
  658                 rtz.tz_minuteswest = 0;
  659                 rtz.tz_dsttime = 0;
  660                 error = copyout(&rtz, uap->tzp, sizeof (rtz));
  661         }
  662         return (error);
  663 }
  664 
  665 #ifndef _SYS_SYSPROTO_H_
  666 struct settimeofday_args {
  667         struct  timeval *tv;
  668         struct  timezone *tzp;
  669 };
  670 #endif
  671 /* ARGSUSED */
  672 int
  673 sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
  674 {
  675         struct timeval atv, *tvp;
  676         struct timezone atz, *tzp;
  677         int error;
  678 
  679         if (uap->tv) {
  680                 error = copyin(uap->tv, &atv, sizeof(atv));
  681                 if (error)
  682                         return (error);
  683                 tvp = &atv;
  684         } else
  685                 tvp = NULL;
  686         if (uap->tzp) {
  687                 error = copyin(uap->tzp, &atz, sizeof(atz));
  688                 if (error)
  689                         return (error);
  690                 tzp = &atz;
  691         } else
  692                 tzp = NULL;
  693         return (kern_settimeofday(td, tvp, tzp));
  694 }
  695 
  696 int
  697 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
  698 {
  699         int error;
  700 
  701         error = priv_check(td, PRIV_SETTIMEOFDAY);
  702         if (error)
  703                 return (error);
  704         /* Verify all parameters before changing time. */
  705         if (tv) {
  706                 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 ||
  707                     tv->tv_sec < 0)
  708                         return (EINVAL);
  709                 error = settime(td, tv);
  710         }
  711         return (error);
  712 }
  713 
  714 /*
  715  * Get value of an interval timer.  The process virtual and profiling virtual
  716  * time timers are kept in the p_stats area, since they can be swapped out.
  717  * These are kept internally in the way they are specified externally: in
  718  * time until they expire.
  719  *
  720  * The real time interval timer is kept in the process table slot for the
  721  * process, and its value (it_value) is kept as an absolute time rather than
  722  * as a delta, so that it is easy to keep periodic real-time signals from
  723  * drifting.
  724  *
  725  * Virtual time timers are processed in the hardclock() routine of
  726  * kern_clock.c.  The real time timer is processed by a timeout routine,
  727  * called from the softclock() routine.  Since a callout may be delayed in
  728  * real time due to interrupt processing in the system, it is possible for
  729  * the real time timeout routine (realitexpire, given below), to be delayed
  730  * in real time past when it is supposed to occur.  It does not suffice,
  731  * therefore, to reload the real timer .it_value from the real time timers
  732  * .it_interval.  Rather, we compute the next time in absolute time the timer
  733  * should go off.
  734  */
  735 #ifndef _SYS_SYSPROTO_H_
  736 struct getitimer_args {
  737         u_int   which;
  738         struct  itimerval *itv;
  739 };
  740 #endif
  741 int
  742 sys_getitimer(struct thread *td, struct getitimer_args *uap)
  743 {
  744         struct itimerval aitv;
  745         int error;
  746 
  747         error = kern_getitimer(td, uap->which, &aitv);
  748         if (error != 0)
  749                 return (error);
  750         return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
  751 }
  752 
  753 int
  754 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
  755 {
  756         struct proc *p = td->td_proc;
  757         struct timeval ctv;
  758 
  759         if (which > ITIMER_PROF)
  760                 return (EINVAL);
  761 
  762         if (which == ITIMER_REAL) {
  763                 /*
  764                  * Convert from absolute to relative time in .it_value
  765                  * part of real time timer.  If time for real time timer
  766                  * has passed return 0, else return difference between
  767                  * current time and time for the timer to go off.
  768                  */
  769                 PROC_LOCK(p);
  770                 *aitv = p->p_realtimer;
  771                 PROC_UNLOCK(p);
  772                 if (timevalisset(&aitv->it_value)) {
  773                         microuptime(&ctv);
  774                         if (timevalcmp(&aitv->it_value, &ctv, <))
  775                                 timevalclear(&aitv->it_value);
  776                         else
  777                                 timevalsub(&aitv->it_value, &ctv);
  778                 }
  779         } else {
  780                 PROC_ITIMLOCK(p);
  781                 *aitv = p->p_stats->p_timer[which];
  782                 PROC_ITIMUNLOCK(p);
  783         }
  784 #ifdef KTRACE
  785         if (KTRPOINT(td, KTR_STRUCT))
  786                 ktritimerval(aitv);
  787 #endif
  788         return (0);
  789 }
  790 
  791 #ifndef _SYS_SYSPROTO_H_
  792 struct setitimer_args {
  793         u_int   which;
  794         struct  itimerval *itv, *oitv;
  795 };
  796 #endif
  797 int
  798 sys_setitimer(struct thread *td, struct setitimer_args *uap)
  799 {
  800         struct itimerval aitv, oitv;
  801         int error;
  802 
  803         if (uap->itv == NULL) {
  804                 uap->itv = uap->oitv;
  805                 return (sys_getitimer(td, (struct getitimer_args *)uap));
  806         }
  807 
  808         if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
  809                 return (error);
  810         error = kern_setitimer(td, uap->which, &aitv, &oitv);
  811         if (error != 0 || uap->oitv == NULL)
  812                 return (error);
  813         return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
  814 }
  815 
  816 int
  817 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
  818     struct itimerval *oitv)
  819 {
  820         struct proc *p = td->td_proc;
  821         struct timeval ctv;
  822         sbintime_t sbt, pr;
  823 
  824         if (aitv == NULL)
  825                 return (kern_getitimer(td, which, oitv));
  826 
  827         if (which > ITIMER_PROF)
  828                 return (EINVAL);
  829 #ifdef KTRACE
  830         if (KTRPOINT(td, KTR_STRUCT))
  831                 ktritimerval(aitv);
  832 #endif
  833         if (itimerfix(&aitv->it_value) ||
  834             aitv->it_value.tv_sec > INT32_MAX / 2)
  835                 return (EINVAL);
  836         if (!timevalisset(&aitv->it_value))
  837                 timevalclear(&aitv->it_interval);
  838         else if (itimerfix(&aitv->it_interval) ||
  839             aitv->it_interval.tv_sec > INT32_MAX / 2)
  840                 return (EINVAL);
  841 
  842         if (which == ITIMER_REAL) {
  843                 PROC_LOCK(p);
  844                 if (timevalisset(&p->p_realtimer.it_value))
  845                         callout_stop(&p->p_itcallout);
  846                 microuptime(&ctv);
  847                 if (timevalisset(&aitv->it_value)) {
  848                         pr = tvtosbt(aitv->it_value) >> tc_precexp;
  849                         timevaladd(&aitv->it_value, &ctv);
  850                         sbt = tvtosbt(aitv->it_value);
  851                         callout_reset_sbt(&p->p_itcallout, sbt, pr,
  852                             realitexpire, p, C_ABSOLUTE);
  853                 }
  854                 *oitv = p->p_realtimer;
  855                 p->p_realtimer = *aitv;
  856                 PROC_UNLOCK(p);
  857                 if (timevalisset(&oitv->it_value)) {
  858                         if (timevalcmp(&oitv->it_value, &ctv, <))
  859                                 timevalclear(&oitv->it_value);
  860                         else
  861                                 timevalsub(&oitv->it_value, &ctv);
  862                 }
  863         } else {
  864                 if (aitv->it_interval.tv_sec == 0 &&
  865                     aitv->it_interval.tv_usec != 0 &&
  866                     aitv->it_interval.tv_usec < tick)
  867                         aitv->it_interval.tv_usec = tick;
  868                 if (aitv->it_value.tv_sec == 0 &&
  869                     aitv->it_value.tv_usec != 0 &&
  870                     aitv->it_value.tv_usec < tick)
  871                         aitv->it_value.tv_usec = tick;
  872                 PROC_ITIMLOCK(p);
  873                 *oitv = p->p_stats->p_timer[which];
  874                 p->p_stats->p_timer[which] = *aitv;
  875                 PROC_ITIMUNLOCK(p);
  876         }
  877 #ifdef KTRACE
  878         if (KTRPOINT(td, KTR_STRUCT))
  879                 ktritimerval(oitv);
  880 #endif
  881         return (0);
  882 }
  883 
  884 /*
  885  * Real interval timer expired:
  886  * send process whose timer expired an alarm signal.
  887  * If time is not set up to reload, then just return.
  888  * Else compute next time timer should go off which is > current time.
  889  * This is where delay in processing this timeout causes multiple
  890  * SIGALRM calls to be compressed into one.
  891  * tvtohz() always adds 1 to allow for the time until the next clock
  892  * interrupt being strictly less than 1 clock tick, but we don't want
  893  * that here since we want to appear to be in sync with the clock
  894  * interrupt even when we're delayed.
  895  */
  896 void
  897 realitexpire(void *arg)
  898 {
  899         struct proc *p;
  900         struct timeval ctv;
  901         sbintime_t isbt;
  902 
  903         p = (struct proc *)arg;
  904         kern_psignal(p, SIGALRM);
  905         if (!timevalisset(&p->p_realtimer.it_interval)) {
  906                 timevalclear(&p->p_realtimer.it_value);
  907                 if (p->p_flag & P_WEXIT)
  908                         wakeup(&p->p_itcallout);
  909                 return;
  910         }
  911         isbt = tvtosbt(p->p_realtimer.it_interval);
  912         if (isbt >= sbt_timethreshold)
  913                 getmicrouptime(&ctv);
  914         else
  915                 microuptime(&ctv);
  916         do {
  917                 timevaladd(&p->p_realtimer.it_value,
  918                     &p->p_realtimer.it_interval);
  919         } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
  920         callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
  921             isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE);
  922 }
  923 
  924 /*
  925  * Check that a proposed value to load into the .it_value or
  926  * .it_interval part of an interval timer is acceptable, and
  927  * fix it to have at least minimal value (i.e. if it is less
  928  * than the resolution of the clock, round it up.)
  929  */
  930 int
  931 itimerfix(struct timeval *tv)
  932 {
  933 
  934         if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
  935                 return (EINVAL);
  936         if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
  937             tv->tv_usec < (u_int)tick / 16)
  938                 tv->tv_usec = (u_int)tick / 16;
  939         return (0);
  940 }
  941 
  942 /*
  943  * Decrement an interval timer by a specified number
  944  * of microseconds, which must be less than a second,
  945  * i.e. < 1000000.  If the timer expires, then reload
  946  * it.  In this case, carry over (usec - old value) to
  947  * reduce the value reloaded into the timer so that
  948  * the timer does not drift.  This routine assumes
  949  * that it is called in a context where the timers
  950  * on which it is operating cannot change in value.
  951  */
  952 int
  953 itimerdecr(struct itimerval *itp, int usec)
  954 {
  955 
  956         if (itp->it_value.tv_usec < usec) {
  957                 if (itp->it_value.tv_sec == 0) {
  958                         /* expired, and already in next interval */
  959                         usec -= itp->it_value.tv_usec;
  960                         goto expire;
  961                 }
  962                 itp->it_value.tv_usec += 1000000;
  963                 itp->it_value.tv_sec--;
  964         }
  965         itp->it_value.tv_usec -= usec;
  966         usec = 0;
  967         if (timevalisset(&itp->it_value))
  968                 return (1);
  969         /* expired, exactly at end of interval */
  970 expire:
  971         if (timevalisset(&itp->it_interval)) {
  972                 itp->it_value = itp->it_interval;
  973                 itp->it_value.tv_usec -= usec;
  974                 if (itp->it_value.tv_usec < 0) {
  975                         itp->it_value.tv_usec += 1000000;
  976                         itp->it_value.tv_sec--;
  977                 }
  978         } else
  979                 itp->it_value.tv_usec = 0;              /* sec is already 0 */
  980         return (0);
  981 }
  982 
  983 /*
  984  * Add and subtract routines for timevals.
  985  * N.B.: subtract routine doesn't deal with
  986  * results which are before the beginning,
  987  * it just gets very confused in this case.
  988  * Caveat emptor.
  989  */
  990 void
  991 timevaladd(struct timeval *t1, const struct timeval *t2)
  992 {
  993 
  994         t1->tv_sec += t2->tv_sec;
  995         t1->tv_usec += t2->tv_usec;
  996         timevalfix(t1);
  997 }
  998 
  999 void
 1000 timevalsub(struct timeval *t1, const struct timeval *t2)
 1001 {
 1002 
 1003         t1->tv_sec -= t2->tv_sec;
 1004         t1->tv_usec -= t2->tv_usec;
 1005         timevalfix(t1);
 1006 }
 1007 
 1008 static void
 1009 timevalfix(struct timeval *t1)
 1010 {
 1011 
 1012         if (t1->tv_usec < 0) {
 1013                 t1->tv_sec--;
 1014                 t1->tv_usec += 1000000;
 1015         }
 1016         if (t1->tv_usec >= 1000000) {
 1017                 t1->tv_sec++;
 1018                 t1->tv_usec -= 1000000;
 1019         }
 1020 }
 1021 
 1022 /*
 1023  * ratecheck(): simple time-based rate-limit checking.
 1024  */
 1025 int
 1026 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
 1027 {
 1028         struct timeval tv, delta;
 1029         int rv = 0;
 1030 
 1031         getmicrouptime(&tv);            /* NB: 10ms precision */
 1032         delta = tv;
 1033         timevalsub(&delta, lasttime);
 1034 
 1035         /*
 1036          * check for 0,0 is so that the message will be seen at least once,
 1037          * even if interval is huge.
 1038          */
 1039         if (timevalcmp(&delta, mininterval, >=) ||
 1040             (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
 1041                 *lasttime = tv;
 1042                 rv = 1;
 1043         }
 1044 
 1045         return (rv);
 1046 }
 1047 
 1048 /*
 1049  * ppsratecheck(): packets (or events) per second limitation.
 1050  *
 1051  * Return 0 if the limit is to be enforced (e.g. the caller
 1052  * should drop a packet because of the rate limitation).
 1053  *
 1054  * maxpps of 0 always causes zero to be returned.  maxpps of -1
 1055  * always causes 1 to be returned; this effectively defeats rate
 1056  * limiting.
 1057  *
 1058  * Note that we maintain the struct timeval for compatibility
 1059  * with other bsd systems.  We reuse the storage and just monitor
 1060  * clock ticks for minimal overhead.  
 1061  */
 1062 int
 1063 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
 1064 {
 1065         int now;
 1066 
 1067         /*
 1068          * Reset the last time and counter if this is the first call
 1069          * or more than a second has passed since the last update of
 1070          * lasttime.
 1071          */
 1072         now = ticks;
 1073         if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
 1074                 lasttime->tv_sec = now;
 1075                 *curpps = 1;
 1076                 return (maxpps != 0);
 1077         } else {
 1078                 (*curpps)++;            /* NB: ignore potential overflow */
 1079                 return (maxpps < 0 || *curpps <= maxpps);
 1080         }
 1081 }
 1082 
 1083 static void
 1084 itimer_start(void)
 1085 {
 1086         static const struct kclock rt_clock = {
 1087                 .timer_create  = realtimer_create,
 1088                 .timer_delete  = realtimer_delete,
 1089                 .timer_settime = realtimer_settime,
 1090                 .timer_gettime = realtimer_gettime,
 1091         };
 1092 
 1093         itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
 1094                 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
 1095         register_posix_clock(CLOCK_REALTIME,  &rt_clock);
 1096         register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
 1097         p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
 1098         p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
 1099         p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
 1100 }
 1101 
 1102 static int
 1103 register_posix_clock(int clockid, const struct kclock *clk)
 1104 {
 1105         if ((unsigned)clockid >= MAX_CLOCKS) {
 1106                 printf("%s: invalid clockid\n", __func__);
 1107                 return (0);
 1108         }
 1109         posix_clocks[clockid] = *clk;
 1110         return (1);
 1111 }
 1112 
 1113 static int
 1114 itimer_init(void *mem, int size, int flags)
 1115 {
 1116         struct itimer *it;
 1117 
 1118         it = (struct itimer *)mem;
 1119         mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
 1120         return (0);
 1121 }
 1122 
 1123 static void
 1124 itimer_fini(void *mem, int size)
 1125 {
 1126         struct itimer *it;
 1127 
 1128         it = (struct itimer *)mem;
 1129         mtx_destroy(&it->it_mtx);
 1130 }
 1131 
 1132 static void
 1133 itimer_enter(struct itimer *it)
 1134 {
 1135 
 1136         mtx_assert(&it->it_mtx, MA_OWNED);
 1137         it->it_usecount++;
 1138 }
 1139 
 1140 static void
 1141 itimer_leave(struct itimer *it)
 1142 {
 1143 
 1144         mtx_assert(&it->it_mtx, MA_OWNED);
 1145         KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
 1146 
 1147         if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
 1148                 wakeup(it);
 1149 }
 1150 
 1151 #ifndef _SYS_SYSPROTO_H_
 1152 struct ktimer_create_args {
 1153         clockid_t clock_id;
 1154         struct sigevent * evp;
 1155         int * timerid;
 1156 };
 1157 #endif
 1158 int
 1159 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
 1160 {
 1161         struct sigevent *evp, ev;
 1162         int id;
 1163         int error;
 1164 
 1165         if (uap->evp == NULL) {
 1166                 evp = NULL;
 1167         } else {
 1168                 error = copyin(uap->evp, &ev, sizeof(ev));
 1169                 if (error != 0)
 1170                         return (error);
 1171                 evp = &ev;
 1172         }
 1173         error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
 1174         if (error == 0) {
 1175                 error = copyout(&id, uap->timerid, sizeof(int));
 1176                 if (error != 0)
 1177                         kern_ktimer_delete(td, id);
 1178         }
 1179         return (error);
 1180 }
 1181 
 1182 int
 1183 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
 1184     int *timerid, int preset_id)
 1185 {
 1186         struct proc *p = td->td_proc;
 1187         struct itimer *it;
 1188         int id;
 1189         int error;
 1190 
 1191         if (clock_id < 0 || clock_id >= MAX_CLOCKS)
 1192                 return (EINVAL);
 1193 
 1194         if (posix_clocks[clock_id].timer_create == NULL)
 1195                 return (EINVAL);
 1196 
 1197         if (evp != NULL) {
 1198                 if (evp->sigev_notify != SIGEV_NONE &&
 1199                     evp->sigev_notify != SIGEV_SIGNAL &&
 1200                     evp->sigev_notify != SIGEV_THREAD_ID)
 1201                         return (EINVAL);
 1202                 if ((evp->sigev_notify == SIGEV_SIGNAL ||
 1203                      evp->sigev_notify == SIGEV_THREAD_ID) &&
 1204                         !_SIG_VALID(evp->sigev_signo))
 1205                         return (EINVAL);
 1206         }
 1207 
 1208         if (p->p_itimers == NULL)
 1209                 itimers_alloc(p);
 1210 
 1211         it = uma_zalloc(itimer_zone, M_WAITOK);
 1212         it->it_flags = 0;
 1213         it->it_usecount = 0;
 1214         it->it_active = 0;
 1215         timespecclear(&it->it_time.it_value);
 1216         timespecclear(&it->it_time.it_interval);
 1217         it->it_overrun = 0;
 1218         it->it_overrun_last = 0;
 1219         it->it_clockid = clock_id;
 1220         it->it_timerid = -1;
 1221         it->it_proc = p;
 1222         ksiginfo_init(&it->it_ksi);
 1223         it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
 1224         error = CLOCK_CALL(clock_id, timer_create, (it));
 1225         if (error != 0)
 1226                 goto out;
 1227 
 1228         PROC_LOCK(p);
 1229         if (preset_id != -1) {
 1230                 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
 1231                 id = preset_id;
 1232                 if (p->p_itimers->its_timers[id] != NULL) {
 1233                         PROC_UNLOCK(p);
 1234                         error = 0;
 1235                         goto out;
 1236                 }
 1237         } else {
 1238                 /*
 1239                  * Find a free timer slot, skipping those reserved
 1240                  * for setitimer().
 1241                  */
 1242                 for (id = 3; id < TIMER_MAX; id++)
 1243                         if (p->p_itimers->its_timers[id] == NULL)
 1244                                 break;
 1245                 if (id == TIMER_MAX) {
 1246                         PROC_UNLOCK(p);
 1247                         error = EAGAIN;
 1248                         goto out;
 1249                 }
 1250         }
 1251         it->it_timerid = id;
 1252         p->p_itimers->its_timers[id] = it;
 1253         if (evp != NULL)
 1254                 it->it_sigev = *evp;
 1255         else {
 1256                 it->it_sigev.sigev_notify = SIGEV_SIGNAL;
 1257                 switch (clock_id) {
 1258                 default:
 1259                 case CLOCK_REALTIME:
 1260                         it->it_sigev.sigev_signo = SIGALRM;
 1261                         break;
 1262                 case CLOCK_VIRTUAL:
 1263                         it->it_sigev.sigev_signo = SIGVTALRM;
 1264                         break;
 1265                 case CLOCK_PROF:
 1266                         it->it_sigev.sigev_signo = SIGPROF;
 1267                         break;
 1268                 }
 1269                 it->it_sigev.sigev_value.sival_int = id;
 1270         }
 1271 
 1272         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1273             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1274                 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
 1275                 it->it_ksi.ksi_code = SI_TIMER;
 1276                 it->it_ksi.ksi_value = it->it_sigev.sigev_value;
 1277                 it->it_ksi.ksi_timerid = id;
 1278         }
 1279         PROC_UNLOCK(p);
 1280         *timerid = id;
 1281         return (0);
 1282 
 1283 out:
 1284         ITIMER_LOCK(it);
 1285         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1286         ITIMER_UNLOCK(it);
 1287         uma_zfree(itimer_zone, it);
 1288         return (error);
 1289 }
 1290 
 1291 #ifndef _SYS_SYSPROTO_H_
 1292 struct ktimer_delete_args {
 1293         int timerid;
 1294 };
 1295 #endif
 1296 int
 1297 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
 1298 {
 1299 
 1300         return (kern_ktimer_delete(td, uap->timerid));
 1301 }
 1302 
 1303 static struct itimer *
 1304 itimer_find(struct proc *p, int timerid)
 1305 {
 1306         struct itimer *it;
 1307 
 1308         PROC_LOCK_ASSERT(p, MA_OWNED);
 1309         if ((p->p_itimers == NULL) ||
 1310             (timerid < 0) || (timerid >= TIMER_MAX) ||
 1311             (it = p->p_itimers->its_timers[timerid]) == NULL) {
 1312                 return (NULL);
 1313         }
 1314         ITIMER_LOCK(it);
 1315         if ((it->it_flags & ITF_DELETING) != 0) {
 1316                 ITIMER_UNLOCK(it);
 1317                 it = NULL;
 1318         }
 1319         return (it);
 1320 }
 1321 
 1322 int
 1323 kern_ktimer_delete(struct thread *td, int timerid)
 1324 {
 1325         struct proc *p = td->td_proc;
 1326         struct itimer *it;
 1327 
 1328         PROC_LOCK(p);
 1329         it = itimer_find(p, timerid);
 1330         if (it == NULL) {
 1331                 PROC_UNLOCK(p);
 1332                 return (EINVAL);
 1333         }
 1334         PROC_UNLOCK(p);
 1335 
 1336         it->it_flags |= ITF_DELETING;
 1337         while (it->it_usecount > 0) {
 1338                 it->it_flags |= ITF_WANTED;
 1339                 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
 1340         }
 1341         it->it_flags &= ~ITF_WANTED;
 1342         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1343         ITIMER_UNLOCK(it);
 1344 
 1345         PROC_LOCK(p);
 1346         if (KSI_ONQ(&it->it_ksi))
 1347                 sigqueue_take(&it->it_ksi);
 1348         p->p_itimers->its_timers[timerid] = NULL;
 1349         PROC_UNLOCK(p);
 1350         uma_zfree(itimer_zone, it);
 1351         return (0);
 1352 }
 1353 
 1354 #ifndef _SYS_SYSPROTO_H_
 1355 struct ktimer_settime_args {
 1356         int timerid;
 1357         int flags;
 1358         const struct itimerspec * value;
 1359         struct itimerspec * ovalue;
 1360 };
 1361 #endif
 1362 int
 1363 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
 1364 {
 1365         struct itimerspec val, oval, *ovalp;
 1366         int error;
 1367 
 1368         error = copyin(uap->value, &val, sizeof(val));
 1369         if (error != 0)
 1370                 return (error);
 1371         ovalp = uap->ovalue != NULL ? &oval : NULL;
 1372         error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
 1373         if (error == 0 && uap->ovalue != NULL)
 1374                 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
 1375         return (error);
 1376 }
 1377 
 1378 int
 1379 kern_ktimer_settime(struct thread *td, int timer_id, int flags,
 1380     struct itimerspec *val, struct itimerspec *oval)
 1381 {
 1382         struct proc *p;
 1383         struct itimer *it;
 1384         int error;
 1385 
 1386         p = td->td_proc;
 1387         PROC_LOCK(p);
 1388         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1389                 PROC_UNLOCK(p);
 1390                 error = EINVAL;
 1391         } else {
 1392                 PROC_UNLOCK(p);
 1393                 itimer_enter(it);
 1394                 error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
 1395                     flags, val, oval));
 1396                 itimer_leave(it);
 1397                 ITIMER_UNLOCK(it);
 1398         }
 1399         return (error);
 1400 }
 1401 
 1402 #ifndef _SYS_SYSPROTO_H_
 1403 struct ktimer_gettime_args {
 1404         int timerid;
 1405         struct itimerspec * value;
 1406 };
 1407 #endif
 1408 int
 1409 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
 1410 {
 1411         struct itimerspec val;
 1412         int error;
 1413 
 1414         error = kern_ktimer_gettime(td, uap->timerid, &val);
 1415         if (error == 0)
 1416                 error = copyout(&val, uap->value, sizeof(val));
 1417         return (error);
 1418 }
 1419 
 1420 int
 1421 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
 1422 {
 1423         struct proc *p;
 1424         struct itimer *it;
 1425         int error;
 1426 
 1427         p = td->td_proc;
 1428         PROC_LOCK(p);
 1429         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1430                 PROC_UNLOCK(p);
 1431                 error = EINVAL;
 1432         } else {
 1433                 PROC_UNLOCK(p);
 1434                 itimer_enter(it);
 1435                 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
 1436                 itimer_leave(it);
 1437                 ITIMER_UNLOCK(it);
 1438         }
 1439         return (error);
 1440 }
 1441 
 1442 #ifndef _SYS_SYSPROTO_H_
 1443 struct timer_getoverrun_args {
 1444         int timerid;
 1445 };
 1446 #endif
 1447 int
 1448 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
 1449 {
 1450 
 1451         return (kern_ktimer_getoverrun(td, uap->timerid));
 1452 }
 1453 
 1454 int
 1455 kern_ktimer_getoverrun(struct thread *td, int timer_id)
 1456 {
 1457         struct proc *p = td->td_proc;
 1458         struct itimer *it;
 1459         int error ;
 1460 
 1461         PROC_LOCK(p);
 1462         if (timer_id < 3 ||
 1463             (it = itimer_find(p, timer_id)) == NULL) {
 1464                 PROC_UNLOCK(p);
 1465                 error = EINVAL;
 1466         } else {
 1467                 td->td_retval[0] = it->it_overrun_last;
 1468                 ITIMER_UNLOCK(it);
 1469                 PROC_UNLOCK(p);
 1470                 error = 0;
 1471         }
 1472         return (error);
 1473 }
 1474 
 1475 static int
 1476 realtimer_create(struct itimer *it)
 1477 {
 1478         callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
 1479         return (0);
 1480 }
 1481 
 1482 static int
 1483 realtimer_delete(struct itimer *it)
 1484 {
 1485         mtx_assert(&it->it_mtx, MA_OWNED);
 1486 
 1487         /*
 1488          * clear timer's value and interval to tell realtimer_expire
 1489          * to not rearm the timer.
 1490          */
 1491         timespecclear(&it->it_time.it_value);
 1492         timespecclear(&it->it_time.it_interval);
 1493         ITIMER_UNLOCK(it);
 1494         callout_drain(&it->it_callout);
 1495         ITIMER_LOCK(it);
 1496         return (0);
 1497 }
 1498 
 1499 static int
 1500 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
 1501 {
 1502         struct timespec cts;
 1503 
 1504         mtx_assert(&it->it_mtx, MA_OWNED);
 1505 
 1506         realtimer_clocktime(it->it_clockid, &cts);
 1507         *ovalue = it->it_time;
 1508         if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
 1509                 timespecsub(&ovalue->it_value, &cts, &ovalue->it_value);
 1510                 if (ovalue->it_value.tv_sec < 0 ||
 1511                     (ovalue->it_value.tv_sec == 0 &&
 1512                      ovalue->it_value.tv_nsec == 0)) {
 1513                         ovalue->it_value.tv_sec  = 0;
 1514                         ovalue->it_value.tv_nsec = 1;
 1515                 }
 1516         }
 1517         return (0);
 1518 }
 1519 
 1520 static int
 1521 realtimer_settime(struct itimer *it, int flags,
 1522         struct itimerspec *value, struct itimerspec *ovalue)
 1523 {
 1524         struct timespec cts, ts;
 1525         struct timeval tv;
 1526         struct itimerspec val;
 1527 
 1528         mtx_assert(&it->it_mtx, MA_OWNED);
 1529 
 1530         val = *value;
 1531         if (itimespecfix(&val.it_value))
 1532                 return (EINVAL);
 1533 
 1534         if (timespecisset(&val.it_value)) {
 1535                 if (itimespecfix(&val.it_interval))
 1536                         return (EINVAL);
 1537         } else {
 1538                 timespecclear(&val.it_interval);
 1539         }
 1540 
 1541         if (ovalue != NULL)
 1542                 realtimer_gettime(it, ovalue);
 1543 
 1544         it->it_time = val;
 1545         if (timespecisset(&val.it_value)) {
 1546                 realtimer_clocktime(it->it_clockid, &cts);
 1547                 ts = val.it_value;
 1548                 if ((flags & TIMER_ABSTIME) == 0) {
 1549                         /* Convert to absolute time. */
 1550                         timespecadd(&it->it_time.it_value, &cts,
 1551                                 &it->it_time.it_value);
 1552                 } else {
 1553                         timespecsub(&ts, &cts, &ts);
 1554                         /*
 1555                          * We don't care if ts is negative, tztohz will
 1556                          * fix it.
 1557                          */
 1558                 }
 1559                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1560                 callout_reset(&it->it_callout, tvtohz(&tv),
 1561                         realtimer_expire, it);
 1562         } else {
 1563                 callout_stop(&it->it_callout);
 1564         }
 1565 
 1566         return (0);
 1567 }
 1568 
 1569 static void
 1570 realtimer_clocktime(clockid_t id, struct timespec *ts)
 1571 {
 1572         if (id == CLOCK_REALTIME)
 1573                 getnanotime(ts);
 1574         else    /* CLOCK_MONOTONIC */
 1575                 getnanouptime(ts);
 1576 }
 1577 
 1578 int
 1579 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
 1580 {
 1581         struct itimer *it;
 1582 
 1583         PROC_LOCK_ASSERT(p, MA_OWNED);
 1584         it = itimer_find(p, timerid);
 1585         if (it != NULL) {
 1586                 ksi->ksi_overrun = it->it_overrun;
 1587                 it->it_overrun_last = it->it_overrun;
 1588                 it->it_overrun = 0;
 1589                 ITIMER_UNLOCK(it);
 1590                 return (0);
 1591         }
 1592         return (EINVAL);
 1593 }
 1594 
 1595 int
 1596 itimespecfix(struct timespec *ts)
 1597 {
 1598 
 1599         if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 1600                 return (EINVAL);
 1601         if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
 1602                 ts->tv_nsec = tick * 1000;
 1603         return (0);
 1604 }
 1605 
 1606 /* Timeout callback for realtime timer */
 1607 static void
 1608 realtimer_expire(void *arg)
 1609 {
 1610         struct timespec cts, ts;
 1611         struct timeval tv;
 1612         struct itimer *it;
 1613 
 1614         it = (struct itimer *)arg;
 1615 
 1616         realtimer_clocktime(it->it_clockid, &cts);
 1617         /* Only fire if time is reached. */
 1618         if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
 1619                 if (timespecisset(&it->it_time.it_interval)) {
 1620                         timespecadd(&it->it_time.it_value,
 1621                                     &it->it_time.it_interval,
 1622                                     &it->it_time.it_value);
 1623                         while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
 1624                                 if (it->it_overrun < INT_MAX)
 1625                                         it->it_overrun++;
 1626                                 else
 1627                                         it->it_ksi.ksi_errno = ERANGE;
 1628                                 timespecadd(&it->it_time.it_value,
 1629                                             &it->it_time.it_interval,
 1630                                             &it->it_time.it_value);
 1631                         }
 1632                 } else {
 1633                         /* single shot timer ? */
 1634                         timespecclear(&it->it_time.it_value);
 1635                 }
 1636                 if (timespecisset(&it->it_time.it_value)) {
 1637                         timespecsub(&it->it_time.it_value, &cts, &ts);
 1638                         TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1639                         callout_reset(&it->it_callout, tvtohz(&tv),
 1640                                  realtimer_expire, it);
 1641                 }
 1642                 itimer_enter(it);
 1643                 ITIMER_UNLOCK(it);
 1644                 itimer_fire(it);
 1645                 ITIMER_LOCK(it);
 1646                 itimer_leave(it);
 1647         } else if (timespecisset(&it->it_time.it_value)) {
 1648                 ts = it->it_time.it_value;
 1649                 timespecsub(&ts, &cts, &ts);
 1650                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1651                 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
 1652                         it);
 1653         }
 1654 }
 1655 
 1656 void
 1657 itimer_fire(struct itimer *it)
 1658 {
 1659         struct proc *p = it->it_proc;
 1660         struct thread *td;
 1661 
 1662         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1663             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1664                 if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
 1665                         ITIMER_LOCK(it);
 1666                         timespecclear(&it->it_time.it_value);
 1667                         timespecclear(&it->it_time.it_interval);
 1668                         callout_stop(&it->it_callout);
 1669                         ITIMER_UNLOCK(it);
 1670                         return;
 1671                 }
 1672                 if (!KSI_ONQ(&it->it_ksi)) {
 1673                         it->it_ksi.ksi_errno = 0;
 1674                         ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
 1675                         tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
 1676                 } else {
 1677                         if (it->it_overrun < INT_MAX)
 1678                                 it->it_overrun++;
 1679                         else
 1680                                 it->it_ksi.ksi_errno = ERANGE;
 1681                 }
 1682                 PROC_UNLOCK(p);
 1683         }
 1684 }
 1685 
 1686 static void
 1687 itimers_alloc(struct proc *p)
 1688 {
 1689         struct itimers *its;
 1690         int i;
 1691 
 1692         its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
 1693         LIST_INIT(&its->its_virtual);
 1694         LIST_INIT(&its->its_prof);
 1695         TAILQ_INIT(&its->its_worklist);
 1696         for (i = 0; i < TIMER_MAX; i++)
 1697                 its->its_timers[i] = NULL;
 1698         PROC_LOCK(p);
 1699         if (p->p_itimers == NULL) {
 1700                 p->p_itimers = its;
 1701                 PROC_UNLOCK(p);
 1702         }
 1703         else {
 1704                 PROC_UNLOCK(p);
 1705                 free(its, M_SUBPROC);
 1706         }
 1707 }
 1708 
 1709 /* Clean up timers when some process events are being triggered. */
 1710 static void
 1711 itimers_event_exit_exec(int start_idx, struct proc *p)
 1712 {
 1713         struct itimers *its;
 1714         struct itimer *it;
 1715         int i;
 1716 
 1717         its = p->p_itimers;
 1718         if (its == NULL)
 1719                 return;
 1720 
 1721         for (i = start_idx; i < TIMER_MAX; ++i) {
 1722                 if ((it = its->its_timers[i]) != NULL)
 1723                         kern_ktimer_delete(curthread, i);
 1724         }
 1725         if (its->its_timers[0] == NULL && its->its_timers[1] == NULL &&
 1726             its->its_timers[2] == NULL) {
 1727                 free(its, M_SUBPROC);
 1728                 p->p_itimers = NULL;
 1729         }
 1730 }
 1731 
 1732 void
 1733 itimers_exec(struct proc *p)
 1734 {
 1735         /*
 1736          * According to susv3, XSI interval timers should be inherited
 1737          * by new image.
 1738          */
 1739         itimers_event_exit_exec(3, p);
 1740 }
 1741 
 1742 void
 1743 itimers_exit(struct proc *p)
 1744 {
 1745         itimers_event_exit_exec(0, p);
 1746 }

Cache object: acd399302807d2014d690ab131658374


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.