The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_time.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)kern_time.c 8.1 (Berkeley) 6/10/93
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/limits.h>
   38 #include <sys/clock.h>
   39 #include <sys/lock.h>
   40 #include <sys/mutex.h>
   41 #include <sys/sysproto.h>
   42 #include <sys/eventhandler.h>
   43 #include <sys/resourcevar.h>
   44 #include <sys/signalvar.h>
   45 #include <sys/kernel.h>
   46 #include <sys/syscallsubr.h>
   47 #include <sys/sysctl.h>
   48 #include <sys/sysent.h>
   49 #include <sys/priv.h>
   50 #include <sys/proc.h>
   51 #include <sys/posix4.h>
   52 #include <sys/time.h>
   53 #include <sys/timers.h>
   54 #include <sys/timetc.h>
   55 #include <sys/vnode.h>
   56 
   57 #include <vm/vm.h>
   58 #include <vm/vm_extern.h>
   59 
   60 #define MAX_CLOCKS      (CLOCK_MONOTONIC+1)
   61 #define CPUCLOCK_BIT            0x80000000
   62 #define CPUCLOCK_PROCESS_BIT    0x40000000
   63 #define CPUCLOCK_ID_MASK        (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
   64 #define MAKE_THREAD_CPUCLOCK(tid)       (CPUCLOCK_BIT|(tid))
   65 #define MAKE_PROCESS_CPUCLOCK(pid)      \
   66         (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
   67 
   68 static struct kclock    posix_clocks[MAX_CLOCKS];
   69 static uma_zone_t       itimer_zone = NULL;
   70 
   71 /*
   72  * Time of day and interval timer support.
   73  *
   74  * These routines provide the kernel entry points to get and set
   75  * the time-of-day and per-process interval timers.  Subroutines
   76  * here provide support for adding and subtracting timeval structures
   77  * and decrementing interval timers, optionally reloading the interval
   78  * timers when they expire.
   79  */
   80 
   81 static int      settime(struct thread *, struct timeval *);
   82 static void     timevalfix(struct timeval *);
   83 
   84 static void     itimer_start(void);
   85 static int      itimer_init(void *, int, int);
   86 static void     itimer_fini(void *, int);
   87 static void     itimer_enter(struct itimer *);
   88 static void     itimer_leave(struct itimer *);
   89 static struct itimer *itimer_find(struct proc *, int);
   90 static void     itimers_alloc(struct proc *);
   91 static void     itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
   92 static void     itimers_event_hook_exit(void *arg, struct proc *p);
   93 static int      realtimer_create(struct itimer *);
   94 static int      realtimer_gettime(struct itimer *, struct itimerspec *);
   95 static int      realtimer_settime(struct itimer *, int,
   96                         struct itimerspec *, struct itimerspec *);
   97 static int      realtimer_delete(struct itimer *);
   98 static void     realtimer_clocktime(clockid_t, struct timespec *);
   99 static void     realtimer_expire(void *);
  100 
  101 int             register_posix_clock(int, struct kclock *);
  102 void            itimer_fire(struct itimer *it);
  103 int             itimespecfix(struct timespec *ts);
  104 
  105 #define CLOCK_CALL(clock, call, arglist)                \
  106         ((*posix_clocks[clock].call) arglist)
  107 
  108 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
  109 
  110 
  111 static int
  112 settime(struct thread *td, struct timeval *tv)
  113 {
  114         struct timeval delta, tv1, tv2;
  115         static struct timeval maxtime, laststep;
  116         struct timespec ts;
  117         int s;
  118 
  119         s = splclock();
  120         microtime(&tv1);
  121         delta = *tv;
  122         timevalsub(&delta, &tv1);
  123 
  124         /*
  125          * If the system is secure, we do not allow the time to be 
  126          * set to a value earlier than 1 second less than the highest
  127          * time we have yet seen. The worst a miscreant can do in
  128          * this circumstance is "freeze" time. He couldn't go
  129          * back to the past.
  130          *
  131          * We similarly do not allow the clock to be stepped more
  132          * than one second, nor more than once per second. This allows
  133          * a miscreant to make the clock march double-time, but no worse.
  134          */
  135         if (securelevel_gt(td->td_ucred, 1) != 0) {
  136                 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
  137                         /*
  138                          * Update maxtime to latest time we've seen.
  139                          */
  140                         if (tv1.tv_sec > maxtime.tv_sec)
  141                                 maxtime = tv1;
  142                         tv2 = *tv;
  143                         timevalsub(&tv2, &maxtime);
  144                         if (tv2.tv_sec < -1) {
  145                                 tv->tv_sec = maxtime.tv_sec - 1;
  146                                 printf("Time adjustment clamped to -1 second\n");
  147                         }
  148                 } else {
  149                         if (tv1.tv_sec == laststep.tv_sec) {
  150                                 splx(s);
  151                                 return (EPERM);
  152                         }
  153                         if (delta.tv_sec > 1) {
  154                                 tv->tv_sec = tv1.tv_sec + 1;
  155                                 printf("Time adjustment clamped to +1 second\n");
  156                         }
  157                         laststep = *tv;
  158                 }
  159         }
  160 
  161         ts.tv_sec = tv->tv_sec;
  162         ts.tv_nsec = tv->tv_usec * 1000;
  163         mtx_lock(&Giant);
  164         tc_setclock(&ts);
  165         resettodr();
  166         mtx_unlock(&Giant);
  167         return (0);
  168 }
  169 
  170 #ifndef _SYS_SYSPROTO_H_
  171 struct clock_getcpuclockid2_args {
  172         id_t id;
  173         int which,
  174         clockid_t *clock_id;
  175 };
  176 #endif
  177 /* ARGSUSED */
  178 int
  179 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
  180 {
  181         clockid_t clk_id;
  182         int error;
  183 
  184         error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
  185         if (error == 0)
  186                 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
  187         return (error);
  188 }
  189 
  190 int
  191 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
  192     clockid_t *clk_id)
  193 {
  194         struct proc *p;
  195         pid_t pid;
  196         lwpid_t tid;
  197         int error;
  198 
  199         switch (which) {
  200         case CPUCLOCK_WHICH_PID:
  201                 if (id != 0) {
  202                         error = pget(id, PGET_CANSEE | PGET_NOTID, &p);
  203                         if (error != 0)
  204                                 return (error);
  205                         PROC_UNLOCK(p);
  206                         pid = id;
  207                 } else {
  208                         pid = td->td_proc->p_pid;
  209                 }
  210                 *clk_id = MAKE_PROCESS_CPUCLOCK(pid);
  211                 return (0);
  212         case CPUCLOCK_WHICH_TID:
  213                 tid = id == 0 ? td->td_tid : id;
  214                 *clk_id = MAKE_THREAD_CPUCLOCK(tid);
  215                 return (0);
  216         default:
  217                 return (EINVAL);
  218         }
  219 }
  220 
  221 #ifndef _SYS_SYSPROTO_H_
  222 struct clock_gettime_args {
  223         clockid_t clock_id;
  224         struct  timespec *tp;
  225 };
  226 #endif
  227 /* ARGSUSED */
  228 int
  229 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
  230 {
  231         struct timespec ats;
  232         int error;
  233 
  234         error = kern_clock_gettime(td, uap->clock_id, &ats);
  235         if (error == 0)
  236                 error = copyout(&ats, uap->tp, sizeof(ats));
  237 
  238         return (error);
  239 }
  240 
  241 static inline void 
  242 cputick2timespec(uint64_t runtime, struct timespec *ats)
  243 {
  244         runtime = cputick2usec(runtime);
  245         ats->tv_sec = runtime / 1000000;
  246         ats->tv_nsec = runtime % 1000000 * 1000;
  247 }
  248 
  249 static void
  250 get_thread_cputime(struct thread *targettd, struct timespec *ats)
  251 {
  252         uint64_t runtime, curtime, switchtime;
  253 
  254         if (targettd == NULL) { /* current thread */
  255                 critical_enter();
  256                 switchtime = PCPU_GET(switchtime);
  257                 curtime = cpu_ticks();
  258                 runtime = curthread->td_runtime;
  259                 critical_exit();
  260                 runtime += curtime - switchtime;
  261         } else {
  262                 thread_lock(targettd);
  263                 runtime = targettd->td_runtime;
  264                 thread_unlock(targettd);
  265         }
  266         cputick2timespec(runtime, ats);
  267 }
  268 
  269 static void
  270 get_process_cputime(struct proc *targetp, struct timespec *ats)
  271 {
  272         uint64_t runtime;
  273         struct rusage ru;
  274 
  275         PROC_SLOCK(targetp);
  276         rufetch(targetp, &ru);
  277         runtime = targetp->p_rux.rux_runtime;
  278         PROC_SUNLOCK(targetp);
  279         cputick2timespec(runtime, ats);
  280 }
  281 
  282 static int
  283 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  284 {
  285         struct proc *p, *p2;
  286         struct thread *td2;
  287         lwpid_t tid;
  288         pid_t pid;
  289         int error;
  290 
  291         p = td->td_proc;
  292         if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
  293                 tid = clock_id & CPUCLOCK_ID_MASK;
  294                 td2 = tdfind(tid, p->p_pid);
  295                 if (td2 == NULL)
  296                         return (EINVAL);
  297                 get_thread_cputime(td2, ats);
  298                 PROC_UNLOCK(td2->td_proc);
  299         } else {
  300                 pid = clock_id & CPUCLOCK_ID_MASK;
  301                 error = pget(pid, PGET_CANSEE, &p2);
  302                 if (error != 0)
  303                         return (EINVAL);
  304                 get_process_cputime(p2, ats);
  305                 PROC_UNLOCK(p2);
  306         }
  307         return (0);
  308 }
  309 
  310 int
  311 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  312 {
  313         struct timeval sys, user;
  314         struct proc *p;
  315 
  316         p = td->td_proc;
  317         switch (clock_id) {
  318         case CLOCK_REALTIME:            /* Default to precise. */
  319         case CLOCK_REALTIME_PRECISE:
  320                 nanotime(ats);
  321                 break;
  322         case CLOCK_REALTIME_FAST:
  323                 getnanotime(ats);
  324                 break;
  325         case CLOCK_VIRTUAL:
  326                 PROC_LOCK(p);
  327                 PROC_SLOCK(p);
  328                 calcru(p, &user, &sys);
  329                 PROC_SUNLOCK(p);
  330                 PROC_UNLOCK(p);
  331                 TIMEVAL_TO_TIMESPEC(&user, ats);
  332                 break;
  333         case CLOCK_PROF:
  334                 PROC_LOCK(p);
  335                 PROC_SLOCK(p);
  336                 calcru(p, &user, &sys);
  337                 PROC_SUNLOCK(p);
  338                 PROC_UNLOCK(p);
  339                 timevaladd(&user, &sys);
  340                 TIMEVAL_TO_TIMESPEC(&user, ats);
  341                 break;
  342         case CLOCK_MONOTONIC:           /* Default to precise. */
  343         case CLOCK_MONOTONIC_PRECISE:
  344         case CLOCK_UPTIME:
  345         case CLOCK_UPTIME_PRECISE:
  346                 nanouptime(ats);
  347                 break;
  348         case CLOCK_UPTIME_FAST:
  349         case CLOCK_MONOTONIC_FAST:
  350                 getnanouptime(ats);
  351                 break;
  352         case CLOCK_SECOND:
  353                 ats->tv_sec = time_second;
  354                 ats->tv_nsec = 0;
  355                 break;
  356         case CLOCK_THREAD_CPUTIME_ID:
  357                 get_thread_cputime(NULL, ats);
  358                 break;
  359         case CLOCK_PROCESS_CPUTIME_ID:
  360                 PROC_LOCK(p);
  361                 get_process_cputime(p, ats);
  362                 PROC_UNLOCK(p);
  363                 break;
  364         default:
  365                 if ((int)clock_id >= 0)
  366                         return (EINVAL);
  367                 return (get_cputime(td, clock_id, ats));
  368         }
  369         return (0);
  370 }
  371 
  372 #ifndef _SYS_SYSPROTO_H_
  373 struct clock_settime_args {
  374         clockid_t clock_id;
  375         const struct    timespec *tp;
  376 };
  377 #endif
  378 /* ARGSUSED */
  379 int
  380 sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
  381 {
  382         struct timespec ats;
  383         int error;
  384 
  385         if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
  386                 return (error);
  387         return (kern_clock_settime(td, uap->clock_id, &ats));
  388 }
  389 
  390 int
  391 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  392 {
  393         struct timeval atv;
  394         int error;
  395 
  396         if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
  397                 return (error);
  398         if (clock_id != CLOCK_REALTIME)
  399                 return (EINVAL);
  400         if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
  401                 return (EINVAL);
  402         /* XXX Don't convert nsec->usec and back */
  403         TIMESPEC_TO_TIMEVAL(&atv, ats);
  404         error = settime(td, &atv);
  405         return (error);
  406 }
  407 
  408 #ifndef _SYS_SYSPROTO_H_
  409 struct clock_getres_args {
  410         clockid_t clock_id;
  411         struct  timespec *tp;
  412 };
  413 #endif
  414 int
  415 sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
  416 {
  417         struct timespec ts;
  418         int error;
  419 
  420         if (uap->tp == NULL)
  421                 return (0);
  422 
  423         error = kern_clock_getres(td, uap->clock_id, &ts);
  424         if (error == 0)
  425                 error = copyout(&ts, uap->tp, sizeof(ts));
  426         return (error);
  427 }
  428 
  429 int
  430 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
  431 {
  432 
  433         ts->tv_sec = 0;
  434         switch (clock_id) {
  435         case CLOCK_REALTIME:
  436         case CLOCK_REALTIME_FAST:
  437         case CLOCK_REALTIME_PRECISE:
  438         case CLOCK_MONOTONIC:
  439         case CLOCK_MONOTONIC_FAST:
  440         case CLOCK_MONOTONIC_PRECISE:
  441         case CLOCK_UPTIME:
  442         case CLOCK_UPTIME_FAST:
  443         case CLOCK_UPTIME_PRECISE:
  444                 /*
  445                  * Round up the result of the division cheaply by adding 1.
  446                  * Rounding up is especially important if rounding down
  447                  * would give 0.  Perfect rounding is unimportant.
  448                  */
  449                 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
  450                 break;
  451         case CLOCK_VIRTUAL:
  452         case CLOCK_PROF:
  453                 /* Accurately round up here because we can do so cheaply. */
  454                 ts->tv_nsec = (1000000000 + hz - 1) / hz;
  455                 break;
  456         case CLOCK_SECOND:
  457                 ts->tv_sec = 1;
  458                 ts->tv_nsec = 0;
  459                 break;
  460         case CLOCK_THREAD_CPUTIME_ID:
  461         case CLOCK_PROCESS_CPUTIME_ID:
  462         cputime:
  463                 /* sync with cputick2usec */
  464                 ts->tv_nsec = 1000000 / cpu_tickrate();
  465                 if (ts->tv_nsec == 0)
  466                         ts->tv_nsec = 1000;
  467                 break;
  468         default:
  469                 if ((int)clock_id < 0)
  470                         goto cputime;
  471                 return (EINVAL);
  472         }
  473         return (0);
  474 }
  475 
  476 static int nanowait;
  477 
  478 int
  479 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
  480 {
  481         struct timespec ts, ts2, ts3;
  482         struct timeval tv;
  483         int error;
  484 
  485         if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
  486                 return (EINVAL);
  487         if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
  488                 return (0);
  489         getnanouptime(&ts);
  490         timespecadd(&ts, rqt);
  491         TIMESPEC_TO_TIMEVAL(&tv, rqt);
  492         for (;;) {
  493                 error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
  494                     tvtohz(&tv));
  495                 getnanouptime(&ts2);
  496                 if (error != EWOULDBLOCK) {
  497                         if (error == ERESTART)
  498                                 error = EINTR;
  499                         if (rmt != NULL) {
  500                                 timespecsub(&ts, &ts2);
  501                                 if (ts.tv_sec < 0)
  502                                         timespecclear(&ts);
  503                                 *rmt = ts;
  504                         }
  505                         return (error);
  506                 }
  507                 if (timespeccmp(&ts2, &ts, >=))
  508                         return (0);
  509                 ts3 = ts;
  510                 timespecsub(&ts3, &ts2);
  511                 TIMESPEC_TO_TIMEVAL(&tv, &ts3);
  512         }
  513 }
  514 
  515 #ifndef _SYS_SYSPROTO_H_
  516 struct nanosleep_args {
  517         struct  timespec *rqtp;
  518         struct  timespec *rmtp;
  519 };
  520 #endif
  521 /* ARGSUSED */
  522 int
  523 sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
  524 {
  525         struct timespec rmt, rqt;
  526         int error;
  527 
  528         error = copyin(uap->rqtp, &rqt, sizeof(rqt));
  529         if (error)
  530                 return (error);
  531 
  532         if (uap->rmtp &&
  533             !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
  534                         return (EFAULT);
  535         error = kern_nanosleep(td, &rqt, &rmt);
  536         if (error && uap->rmtp) {
  537                 int error2;
  538 
  539                 error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
  540                 if (error2)
  541                         error = error2;
  542         }
  543         return (error);
  544 }
  545 
  546 #ifndef _SYS_SYSPROTO_H_
  547 struct gettimeofday_args {
  548         struct  timeval *tp;
  549         struct  timezone *tzp;
  550 };
  551 #endif
  552 /* ARGSUSED */
  553 int
  554 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
  555 {
  556         struct timeval atv;
  557         struct timezone rtz;
  558         int error = 0;
  559 
  560         if (uap->tp) {
  561                 microtime(&atv);
  562                 error = copyout(&atv, uap->tp, sizeof (atv));
  563         }
  564         if (error == 0 && uap->tzp != NULL) {
  565                 rtz.tz_minuteswest = tz_minuteswest;
  566                 rtz.tz_dsttime = tz_dsttime;
  567                 error = copyout(&rtz, uap->tzp, sizeof (rtz));
  568         }
  569         return (error);
  570 }
  571 
  572 #ifndef _SYS_SYSPROTO_H_
  573 struct settimeofday_args {
  574         struct  timeval *tv;
  575         struct  timezone *tzp;
  576 };
  577 #endif
  578 /* ARGSUSED */
  579 int
  580 sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
  581 {
  582         struct timeval atv, *tvp;
  583         struct timezone atz, *tzp;
  584         int error;
  585 
  586         if (uap->tv) {
  587                 error = copyin(uap->tv, &atv, sizeof(atv));
  588                 if (error)
  589                         return (error);
  590                 tvp = &atv;
  591         } else
  592                 tvp = NULL;
  593         if (uap->tzp) {
  594                 error = copyin(uap->tzp, &atz, sizeof(atz));
  595                 if (error)
  596                         return (error);
  597                 tzp = &atz;
  598         } else
  599                 tzp = NULL;
  600         return (kern_settimeofday(td, tvp, tzp));
  601 }
  602 
  603 int
  604 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
  605 {
  606         int error;
  607 
  608         error = priv_check(td, PRIV_SETTIMEOFDAY);
  609         if (error)
  610                 return (error);
  611         /* Verify all parameters before changing time. */
  612         if (tv) {
  613                 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
  614                         return (EINVAL);
  615                 error = settime(td, tv);
  616         }
  617         if (tzp && error == 0) {
  618                 tz_minuteswest = tzp->tz_minuteswest;
  619                 tz_dsttime = tzp->tz_dsttime;
  620         }
  621         return (error);
  622 }
  623 
  624 /*
  625  * Get value of an interval timer.  The process virtual and profiling virtual
  626  * time timers are kept in the p_stats area, since they can be swapped out.
  627  * These are kept internally in the way they are specified externally: in
  628  * time until they expire.
  629  *
  630  * The real time interval timer is kept in the process table slot for the
  631  * process, and its value (it_value) is kept as an absolute time rather than
  632  * as a delta, so that it is easy to keep periodic real-time signals from
  633  * drifting.
  634  *
  635  * Virtual time timers are processed in the hardclock() routine of
  636  * kern_clock.c.  The real time timer is processed by a timeout routine,
  637  * called from the softclock() routine.  Since a callout may be delayed in
  638  * real time due to interrupt processing in the system, it is possible for
  639  * the real time timeout routine (realitexpire, given below), to be delayed
  640  * in real time past when it is supposed to occur.  It does not suffice,
  641  * therefore, to reload the real timer .it_value from the real time timers
  642  * .it_interval.  Rather, we compute the next time in absolute time the timer
  643  * should go off.
  644  */
  645 #ifndef _SYS_SYSPROTO_H_
  646 struct getitimer_args {
  647         u_int   which;
  648         struct  itimerval *itv;
  649 };
  650 #endif
  651 int
  652 sys_getitimer(struct thread *td, struct getitimer_args *uap)
  653 {
  654         struct itimerval aitv;
  655         int error;
  656 
  657         error = kern_getitimer(td, uap->which, &aitv);
  658         if (error != 0)
  659                 return (error);
  660         return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
  661 }
  662 
  663 int
  664 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
  665 {
  666         struct proc *p = td->td_proc;
  667         struct timeval ctv;
  668 
  669         if (which > ITIMER_PROF)
  670                 return (EINVAL);
  671 
  672         if (which == ITIMER_REAL) {
  673                 /*
  674                  * Convert from absolute to relative time in .it_value
  675                  * part of real time timer.  If time for real time timer
  676                  * has passed return 0, else return difference between
  677                  * current time and time for the timer to go off.
  678                  */
  679                 PROC_LOCK(p);
  680                 *aitv = p->p_realtimer;
  681                 PROC_UNLOCK(p);
  682                 if (timevalisset(&aitv->it_value)) {
  683                         getmicrouptime(&ctv);
  684                         if (timevalcmp(&aitv->it_value, &ctv, <))
  685                                 timevalclear(&aitv->it_value);
  686                         else
  687                                 timevalsub(&aitv->it_value, &ctv);
  688                 }
  689         } else {
  690                 PROC_SLOCK(p);
  691                 *aitv = p->p_stats->p_timer[which];
  692                 PROC_SUNLOCK(p);
  693         }
  694         return (0);
  695 }
  696 
  697 #ifndef _SYS_SYSPROTO_H_
  698 struct setitimer_args {
  699         u_int   which;
  700         struct  itimerval *itv, *oitv;
  701 };
  702 #endif
  703 int
  704 sys_setitimer(struct thread *td, struct setitimer_args *uap)
  705 {
  706         struct itimerval aitv, oitv;
  707         int error;
  708 
  709         if (uap->itv == NULL) {
  710                 uap->itv = uap->oitv;
  711                 return (sys_getitimer(td, (struct getitimer_args *)uap));
  712         }
  713 
  714         if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
  715                 return (error);
  716         error = kern_setitimer(td, uap->which, &aitv, &oitv);
  717         if (error != 0 || uap->oitv == NULL)
  718                 return (error);
  719         return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
  720 }
  721 
  722 int
  723 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
  724     struct itimerval *oitv)
  725 {
  726         struct proc *p = td->td_proc;
  727         struct timeval ctv;
  728 
  729         if (aitv == NULL)
  730                 return (kern_getitimer(td, which, oitv));
  731 
  732         if (which > ITIMER_PROF)
  733                 return (EINVAL);
  734         if (itimerfix(&aitv->it_value))
  735                 return (EINVAL);
  736         if (!timevalisset(&aitv->it_value))
  737                 timevalclear(&aitv->it_interval);
  738         else if (itimerfix(&aitv->it_interval))
  739                 return (EINVAL);
  740 
  741         if (which == ITIMER_REAL) {
  742                 PROC_LOCK(p);
  743                 if (timevalisset(&p->p_realtimer.it_value))
  744                         callout_stop(&p->p_itcallout);
  745                 getmicrouptime(&ctv);
  746                 if (timevalisset(&aitv->it_value)) {
  747                         callout_reset(&p->p_itcallout, tvtohz(&aitv->it_value),
  748                             realitexpire, p);
  749                         timevaladd(&aitv->it_value, &ctv);
  750                 }
  751                 *oitv = p->p_realtimer;
  752                 p->p_realtimer = *aitv;
  753                 PROC_UNLOCK(p);
  754                 if (timevalisset(&oitv->it_value)) {
  755                         if (timevalcmp(&oitv->it_value, &ctv, <))
  756                                 timevalclear(&oitv->it_value);
  757                         else
  758                                 timevalsub(&oitv->it_value, &ctv);
  759                 }
  760         } else {
  761                 PROC_SLOCK(p);
  762                 *oitv = p->p_stats->p_timer[which];
  763                 p->p_stats->p_timer[which] = *aitv;
  764                 PROC_SUNLOCK(p);
  765         }
  766         return (0);
  767 }
  768 
  769 /*
  770  * Real interval timer expired:
  771  * send process whose timer expired an alarm signal.
  772  * If time is not set up to reload, then just return.
  773  * Else compute next time timer should go off which is > current time.
  774  * This is where delay in processing this timeout causes multiple
  775  * SIGALRM calls to be compressed into one.
  776  * tvtohz() always adds 1 to allow for the time until the next clock
  777  * interrupt being strictly less than 1 clock tick, but we don't want
  778  * that here since we want to appear to be in sync with the clock
  779  * interrupt even when we're delayed.
  780  */
  781 void
  782 realitexpire(void *arg)
  783 {
  784         struct proc *p;
  785         struct timeval ctv, ntv;
  786 
  787         p = (struct proc *)arg;
  788         kern_psignal(p, SIGALRM);
  789         if (!timevalisset(&p->p_realtimer.it_interval)) {
  790                 timevalclear(&p->p_realtimer.it_value);
  791                 if (p->p_flag & P_WEXIT)
  792                         wakeup(&p->p_itcallout);
  793                 return;
  794         }
  795         for (;;) {
  796                 timevaladd(&p->p_realtimer.it_value,
  797                     &p->p_realtimer.it_interval);
  798                 getmicrouptime(&ctv);
  799                 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
  800                         ntv = p->p_realtimer.it_value;
  801                         timevalsub(&ntv, &ctv);
  802                         callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
  803                             realitexpire, p);
  804                         return;
  805                 }
  806         }
  807         /*NOTREACHED*/
  808 }
  809 
  810 /*
  811  * Check that a proposed value to load into the .it_value or
  812  * .it_interval part of an interval timer is acceptable, and
  813  * fix it to have at least minimal value (i.e. if it is less
  814  * than the resolution of the clock, round it up.)
  815  */
  816 int
  817 itimerfix(struct timeval *tv)
  818 {
  819 
  820         if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
  821                 return (EINVAL);
  822         if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
  823                 tv->tv_usec = tick;
  824         return (0);
  825 }
  826 
  827 /*
  828  * Decrement an interval timer by a specified number
  829  * of microseconds, which must be less than a second,
  830  * i.e. < 1000000.  If the timer expires, then reload
  831  * it.  In this case, carry over (usec - old value) to
  832  * reduce the value reloaded into the timer so that
  833  * the timer does not drift.  This routine assumes
  834  * that it is called in a context where the timers
  835  * on which it is operating cannot change in value.
  836  */
  837 int
  838 itimerdecr(struct itimerval *itp, int usec)
  839 {
  840 
  841         if (itp->it_value.tv_usec < usec) {
  842                 if (itp->it_value.tv_sec == 0) {
  843                         /* expired, and already in next interval */
  844                         usec -= itp->it_value.tv_usec;
  845                         goto expire;
  846                 }
  847                 itp->it_value.tv_usec += 1000000;
  848                 itp->it_value.tv_sec--;
  849         }
  850         itp->it_value.tv_usec -= usec;
  851         usec = 0;
  852         if (timevalisset(&itp->it_value))
  853                 return (1);
  854         /* expired, exactly at end of interval */
  855 expire:
  856         if (timevalisset(&itp->it_interval)) {
  857                 itp->it_value = itp->it_interval;
  858                 itp->it_value.tv_usec -= usec;
  859                 if (itp->it_value.tv_usec < 0) {
  860                         itp->it_value.tv_usec += 1000000;
  861                         itp->it_value.tv_sec--;
  862                 }
  863         } else
  864                 itp->it_value.tv_usec = 0;              /* sec is already 0 */
  865         return (0);
  866 }
  867 
  868 /*
  869  * Add and subtract routines for timevals.
  870  * N.B.: subtract routine doesn't deal with
  871  * results which are before the beginning,
  872  * it just gets very confused in this case.
  873  * Caveat emptor.
  874  */
  875 void
  876 timevaladd(struct timeval *t1, const struct timeval *t2)
  877 {
  878 
  879         t1->tv_sec += t2->tv_sec;
  880         t1->tv_usec += t2->tv_usec;
  881         timevalfix(t1);
  882 }
  883 
  884 void
  885 timevalsub(struct timeval *t1, const struct timeval *t2)
  886 {
  887 
  888         t1->tv_sec -= t2->tv_sec;
  889         t1->tv_usec -= t2->tv_usec;
  890         timevalfix(t1);
  891 }
  892 
  893 static void
  894 timevalfix(struct timeval *t1)
  895 {
  896 
  897         if (t1->tv_usec < 0) {
  898                 t1->tv_sec--;
  899                 t1->tv_usec += 1000000;
  900         }
  901         if (t1->tv_usec >= 1000000) {
  902                 t1->tv_sec++;
  903                 t1->tv_usec -= 1000000;
  904         }
  905 }
  906 
  907 /*
  908  * ratecheck(): simple time-based rate-limit checking.
  909  */
  910 int
  911 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
  912 {
  913         struct timeval tv, delta;
  914         int rv = 0;
  915 
  916         getmicrouptime(&tv);            /* NB: 10ms precision */
  917         delta = tv;
  918         timevalsub(&delta, lasttime);
  919 
  920         /*
  921          * check for 0,0 is so that the message will be seen at least once,
  922          * even if interval is huge.
  923          */
  924         if (timevalcmp(&delta, mininterval, >=) ||
  925             (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
  926                 *lasttime = tv;
  927                 rv = 1;
  928         }
  929 
  930         return (rv);
  931 }
  932 
  933 /*
  934  * ppsratecheck(): packets (or events) per second limitation.
  935  *
  936  * Return 0 if the limit is to be enforced (e.g. the caller
  937  * should drop a packet because of the rate limitation).
  938  *
  939  * maxpps of 0 always causes zero to be returned.  maxpps of -1
  940  * always causes 1 to be returned; this effectively defeats rate
  941  * limiting.
  942  *
  943  * Note that we maintain the struct timeval for compatibility
  944  * with other bsd systems.  We reuse the storage and just monitor
  945  * clock ticks for minimal overhead.  
  946  */
  947 int
  948 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
  949 {
  950         int now;
  951 
  952         /*
  953          * Reset the last time and counter if this is the first call
  954          * or more than a second has passed since the last update of
  955          * lasttime.
  956          */
  957         now = ticks;
  958         if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
  959                 lasttime->tv_sec = now;
  960                 *curpps = 1;
  961                 return (maxpps != 0);
  962         } else {
  963                 (*curpps)++;            /* NB: ignore potential overflow */
  964                 return (maxpps < 0 || *curpps < maxpps);
  965         }
  966 }
  967 
  968 static void
  969 itimer_start(void)
  970 {
  971         struct kclock rt_clock = {
  972                 .timer_create  = realtimer_create,
  973                 .timer_delete  = realtimer_delete,
  974                 .timer_settime = realtimer_settime,
  975                 .timer_gettime = realtimer_gettime,
  976                 .event_hook    = NULL
  977         };
  978 
  979         itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
  980                 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
  981         register_posix_clock(CLOCK_REALTIME,  &rt_clock);
  982         register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
  983         p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
  984         p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
  985         p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
  986         EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
  987                 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
  988         EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
  989                 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
  990 }
  991 
  992 int
  993 register_posix_clock(int clockid, struct kclock *clk)
  994 {
  995         if ((unsigned)clockid >= MAX_CLOCKS) {
  996                 printf("%s: invalid clockid\n", __func__);
  997                 return (0);
  998         }
  999         posix_clocks[clockid] = *clk;
 1000         return (1);
 1001 }
 1002 
 1003 static int
 1004 itimer_init(void *mem, int size, int flags)
 1005 {
 1006         struct itimer *it;
 1007 
 1008         it = (struct itimer *)mem;
 1009         mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
 1010         return (0);
 1011 }
 1012 
 1013 static void
 1014 itimer_fini(void *mem, int size)
 1015 {
 1016         struct itimer *it;
 1017 
 1018         it = (struct itimer *)mem;
 1019         mtx_destroy(&it->it_mtx);
 1020 }
 1021 
 1022 static void
 1023 itimer_enter(struct itimer *it)
 1024 {
 1025 
 1026         mtx_assert(&it->it_mtx, MA_OWNED);
 1027         it->it_usecount++;
 1028 }
 1029 
 1030 static void
 1031 itimer_leave(struct itimer *it)
 1032 {
 1033 
 1034         mtx_assert(&it->it_mtx, MA_OWNED);
 1035         KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
 1036 
 1037         if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
 1038                 wakeup(it);
 1039 }
 1040 
 1041 #ifndef _SYS_SYSPROTO_H_
 1042 struct ktimer_create_args {
 1043         clockid_t clock_id;
 1044         struct sigevent * evp;
 1045         int * timerid;
 1046 };
 1047 #endif
 1048 int
 1049 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
 1050 {
 1051         struct sigevent *evp, ev;
 1052         int id;
 1053         int error;
 1054 
 1055         if (uap->evp == NULL) {
 1056                 evp = NULL;
 1057         } else {
 1058                 error = copyin(uap->evp, &ev, sizeof(ev));
 1059                 if (error != 0)
 1060                         return (error);
 1061                 evp = &ev;
 1062         }
 1063         error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
 1064         if (error == 0) {
 1065                 error = copyout(&id, uap->timerid, sizeof(int));
 1066                 if (error != 0)
 1067                         kern_ktimer_delete(td, id);
 1068         }
 1069         return (error);
 1070 }
 1071 
 1072 int
 1073 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
 1074     int *timerid, int preset_id)
 1075 {
 1076         struct proc *p = td->td_proc;
 1077         struct itimer *it;
 1078         int id;
 1079         int error;
 1080 
 1081         if (clock_id < 0 || clock_id >= MAX_CLOCKS)
 1082                 return (EINVAL);
 1083 
 1084         if (posix_clocks[clock_id].timer_create == NULL)
 1085                 return (EINVAL);
 1086 
 1087         if (evp != NULL) {
 1088                 if (evp->sigev_notify != SIGEV_NONE &&
 1089                     evp->sigev_notify != SIGEV_SIGNAL &&
 1090                     evp->sigev_notify != SIGEV_THREAD_ID)
 1091                         return (EINVAL);
 1092                 if ((evp->sigev_notify == SIGEV_SIGNAL ||
 1093                      evp->sigev_notify == SIGEV_THREAD_ID) &&
 1094                         !_SIG_VALID(evp->sigev_signo))
 1095                         return (EINVAL);
 1096         }
 1097         
 1098         if (p->p_itimers == NULL)
 1099                 itimers_alloc(p);
 1100         
 1101         it = uma_zalloc(itimer_zone, M_WAITOK);
 1102         it->it_flags = 0;
 1103         it->it_usecount = 0;
 1104         it->it_active = 0;
 1105         timespecclear(&it->it_time.it_value);
 1106         timespecclear(&it->it_time.it_interval);
 1107         it->it_overrun = 0;
 1108         it->it_overrun_last = 0;
 1109         it->it_clockid = clock_id;
 1110         it->it_timerid = -1;
 1111         it->it_proc = p;
 1112         ksiginfo_init(&it->it_ksi);
 1113         it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
 1114         error = CLOCK_CALL(clock_id, timer_create, (it));
 1115         if (error != 0)
 1116                 goto out;
 1117 
 1118         PROC_LOCK(p);
 1119         if (preset_id != -1) {
 1120                 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
 1121                 id = preset_id;
 1122                 if (p->p_itimers->its_timers[id] != NULL) {
 1123                         PROC_UNLOCK(p);
 1124                         error = 0;
 1125                         goto out;
 1126                 }
 1127         } else {
 1128                 /*
 1129                  * Find a free timer slot, skipping those reserved
 1130                  * for setitimer().
 1131                  */
 1132                 for (id = 3; id < TIMER_MAX; id++)
 1133                         if (p->p_itimers->its_timers[id] == NULL)
 1134                                 break;
 1135                 if (id == TIMER_MAX) {
 1136                         PROC_UNLOCK(p);
 1137                         error = EAGAIN;
 1138                         goto out;
 1139                 }
 1140         }
 1141         it->it_timerid = id;
 1142         p->p_itimers->its_timers[id] = it;
 1143         if (evp != NULL)
 1144                 it->it_sigev = *evp;
 1145         else {
 1146                 it->it_sigev.sigev_notify = SIGEV_SIGNAL;
 1147                 switch (clock_id) {
 1148                 default:
 1149                 case CLOCK_REALTIME:
 1150                         it->it_sigev.sigev_signo = SIGALRM;
 1151                         break;
 1152                 case CLOCK_VIRTUAL:
 1153                         it->it_sigev.sigev_signo = SIGVTALRM;
 1154                         break;
 1155                 case CLOCK_PROF:
 1156                         it->it_sigev.sigev_signo = SIGPROF;
 1157                         break;
 1158                 }
 1159                 it->it_sigev.sigev_value.sival_int = id;
 1160         }
 1161 
 1162         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1163             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1164                 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
 1165                 it->it_ksi.ksi_code = SI_TIMER;
 1166                 it->it_ksi.ksi_value = it->it_sigev.sigev_value;
 1167                 it->it_ksi.ksi_timerid = id;
 1168         }
 1169         PROC_UNLOCK(p);
 1170         *timerid = id;
 1171         return (0);
 1172 
 1173 out:
 1174         ITIMER_LOCK(it);
 1175         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1176         ITIMER_UNLOCK(it);
 1177         uma_zfree(itimer_zone, it);
 1178         return (error);
 1179 }
 1180 
 1181 #ifndef _SYS_SYSPROTO_H_
 1182 struct ktimer_delete_args {
 1183         int timerid;
 1184 };
 1185 #endif
 1186 int
 1187 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
 1188 {
 1189 
 1190         return (kern_ktimer_delete(td, uap->timerid));
 1191 }
 1192 
 1193 static struct itimer *
 1194 itimer_find(struct proc *p, int timerid)
 1195 {
 1196         struct itimer *it;
 1197 
 1198         PROC_LOCK_ASSERT(p, MA_OWNED);
 1199         if ((p->p_itimers == NULL) ||
 1200             (timerid < 0) || (timerid >= TIMER_MAX) ||
 1201             (it = p->p_itimers->its_timers[timerid]) == NULL) {
 1202                 return (NULL);
 1203         }
 1204         ITIMER_LOCK(it);
 1205         if ((it->it_flags & ITF_DELETING) != 0) {
 1206                 ITIMER_UNLOCK(it);
 1207                 it = NULL;
 1208         }
 1209         return (it);
 1210 }
 1211 
 1212 int
 1213 kern_ktimer_delete(struct thread *td, int timerid)
 1214 {
 1215         struct proc *p = td->td_proc;
 1216         struct itimer *it;
 1217 
 1218         PROC_LOCK(p);
 1219         it = itimer_find(p, timerid);
 1220         if (it == NULL) {
 1221                 PROC_UNLOCK(p);
 1222                 return (EINVAL);
 1223         }
 1224         PROC_UNLOCK(p);
 1225 
 1226         it->it_flags |= ITF_DELETING;
 1227         while (it->it_usecount > 0) {
 1228                 it->it_flags |= ITF_WANTED;
 1229                 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
 1230         }
 1231         it->it_flags &= ~ITF_WANTED;
 1232         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1233         ITIMER_UNLOCK(it);
 1234 
 1235         PROC_LOCK(p);
 1236         if (KSI_ONQ(&it->it_ksi))
 1237                 sigqueue_take(&it->it_ksi);
 1238         p->p_itimers->its_timers[timerid] = NULL;
 1239         PROC_UNLOCK(p);
 1240         uma_zfree(itimer_zone, it);
 1241         return (0);
 1242 }
 1243 
 1244 #ifndef _SYS_SYSPROTO_H_
 1245 struct ktimer_settime_args {
 1246         int timerid;
 1247         int flags;
 1248         const struct itimerspec * value;
 1249         struct itimerspec * ovalue;
 1250 };
 1251 #endif
 1252 int
 1253 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
 1254 {
 1255         struct itimerspec val, oval, *ovalp;
 1256         int error;
 1257 
 1258         error = copyin(uap->value, &val, sizeof(val));
 1259         if (error != 0)
 1260                 return (error);
 1261         ovalp = uap->ovalue != NULL ? &oval : NULL;
 1262         error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
 1263         if (error == 0 && uap->ovalue != NULL)
 1264                 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
 1265         return (error);
 1266 }
 1267 
 1268 int
 1269 kern_ktimer_settime(struct thread *td, int timer_id, int flags,
 1270     struct itimerspec *val, struct itimerspec *oval)
 1271 {
 1272         struct proc *p;
 1273         struct itimer *it;
 1274         int error;
 1275 
 1276         p = td->td_proc;
 1277         PROC_LOCK(p);
 1278         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1279                 PROC_UNLOCK(p);
 1280                 error = EINVAL;
 1281         } else {
 1282                 PROC_UNLOCK(p);
 1283                 itimer_enter(it);
 1284                 error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
 1285                     flags, val, oval));
 1286                 itimer_leave(it);
 1287                 ITIMER_UNLOCK(it);
 1288         }
 1289         return (error);
 1290 }
 1291 
 1292 #ifndef _SYS_SYSPROTO_H_
 1293 struct ktimer_gettime_args {
 1294         int timerid;
 1295         struct itimerspec * value;
 1296 };
 1297 #endif
 1298 int
 1299 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
 1300 {
 1301         struct itimerspec val;
 1302         int error;
 1303 
 1304         error = kern_ktimer_gettime(td, uap->timerid, &val);
 1305         if (error == 0)
 1306                 error = copyout(&val, uap->value, sizeof(val));
 1307         return (error);
 1308 }
 1309 
 1310 int
 1311 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
 1312 {
 1313         struct proc *p;
 1314         struct itimer *it;
 1315         int error;
 1316 
 1317         p = td->td_proc;
 1318         PROC_LOCK(p);
 1319         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1320                 PROC_UNLOCK(p);
 1321                 error = EINVAL;
 1322         } else {
 1323                 PROC_UNLOCK(p);
 1324                 itimer_enter(it);
 1325                 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
 1326                 itimer_leave(it);
 1327                 ITIMER_UNLOCK(it);
 1328         }
 1329         return (error);
 1330 }
 1331 
 1332 #ifndef _SYS_SYSPROTO_H_
 1333 struct timer_getoverrun_args {
 1334         int timerid;
 1335 };
 1336 #endif
 1337 int
 1338 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
 1339 {
 1340 
 1341         return (kern_ktimer_getoverrun(td, uap->timerid));
 1342 }
 1343 
 1344 int
 1345 kern_ktimer_getoverrun(struct thread *td, int timer_id)
 1346 {
 1347         struct proc *p = td->td_proc;
 1348         struct itimer *it;
 1349         int error ;
 1350 
 1351         PROC_LOCK(p);
 1352         if (timer_id < 3 ||
 1353             (it = itimer_find(p, timer_id)) == NULL) {
 1354                 PROC_UNLOCK(p);
 1355                 error = EINVAL;
 1356         } else {
 1357                 td->td_retval[0] = it->it_overrun_last;
 1358                 ITIMER_UNLOCK(it);
 1359                 PROC_UNLOCK(p);
 1360                 error = 0;
 1361         }
 1362         return (error);
 1363 }
 1364 
 1365 static int
 1366 realtimer_create(struct itimer *it)
 1367 {
 1368         callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
 1369         return (0);
 1370 }
 1371 
 1372 static int
 1373 realtimer_delete(struct itimer *it)
 1374 {
 1375         mtx_assert(&it->it_mtx, MA_OWNED);
 1376         
 1377         /*
 1378          * clear timer's value and interval to tell realtimer_expire
 1379          * to not rearm the timer.
 1380          */
 1381         timespecclear(&it->it_time.it_value);
 1382         timespecclear(&it->it_time.it_interval);
 1383         ITIMER_UNLOCK(it);
 1384         callout_drain(&it->it_callout);
 1385         ITIMER_LOCK(it);
 1386         return (0);
 1387 }
 1388 
 1389 static int
 1390 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
 1391 {
 1392         struct timespec cts;
 1393 
 1394         mtx_assert(&it->it_mtx, MA_OWNED);
 1395 
 1396         realtimer_clocktime(it->it_clockid, &cts);
 1397         *ovalue = it->it_time;
 1398         if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
 1399                 timespecsub(&ovalue->it_value, &cts);
 1400                 if (ovalue->it_value.tv_sec < 0 ||
 1401                     (ovalue->it_value.tv_sec == 0 &&
 1402                      ovalue->it_value.tv_nsec == 0)) {
 1403                         ovalue->it_value.tv_sec  = 0;
 1404                         ovalue->it_value.tv_nsec = 1;
 1405                 }
 1406         }
 1407         return (0);
 1408 }
 1409 
 1410 static int
 1411 realtimer_settime(struct itimer *it, int flags,
 1412         struct itimerspec *value, struct itimerspec *ovalue)
 1413 {
 1414         struct timespec cts, ts;
 1415         struct timeval tv;
 1416         struct itimerspec val;
 1417 
 1418         mtx_assert(&it->it_mtx, MA_OWNED);
 1419 
 1420         val = *value;
 1421         if (itimespecfix(&val.it_value))
 1422                 return (EINVAL);
 1423 
 1424         if (timespecisset(&val.it_value)) {
 1425                 if (itimespecfix(&val.it_interval))
 1426                         return (EINVAL);
 1427         } else {
 1428                 timespecclear(&val.it_interval);
 1429         }
 1430         
 1431         if (ovalue != NULL)
 1432                 realtimer_gettime(it, ovalue);
 1433 
 1434         it->it_time = val;
 1435         if (timespecisset(&val.it_value)) {
 1436                 realtimer_clocktime(it->it_clockid, &cts);
 1437                 ts = val.it_value;
 1438                 if ((flags & TIMER_ABSTIME) == 0) {
 1439                         /* Convert to absolute time. */
 1440                         timespecadd(&it->it_time.it_value, &cts);
 1441                 } else {
 1442                         timespecsub(&ts, &cts);
 1443                         /*
 1444                          * We don't care if ts is negative, tztohz will
 1445                          * fix it.
 1446                          */
 1447                 }
 1448                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1449                 callout_reset(&it->it_callout, tvtohz(&tv),
 1450                         realtimer_expire, it);
 1451         } else {
 1452                 callout_stop(&it->it_callout);
 1453         }
 1454 
 1455         return (0);
 1456 }
 1457 
 1458 static void
 1459 realtimer_clocktime(clockid_t id, struct timespec *ts)
 1460 {
 1461         if (id == CLOCK_REALTIME)
 1462                 getnanotime(ts);
 1463         else    /* CLOCK_MONOTONIC */
 1464                 getnanouptime(ts);
 1465 }
 1466 
 1467 int
 1468 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
 1469 {
 1470         struct itimer *it;
 1471 
 1472         PROC_LOCK_ASSERT(p, MA_OWNED);
 1473         it = itimer_find(p, timerid);
 1474         if (it != NULL) {
 1475                 ksi->ksi_overrun = it->it_overrun;
 1476                 it->it_overrun_last = it->it_overrun;
 1477                 it->it_overrun = 0;
 1478                 ITIMER_UNLOCK(it);
 1479                 return (0);
 1480         }
 1481         return (EINVAL);
 1482 }
 1483 
 1484 int
 1485 itimespecfix(struct timespec *ts)
 1486 {
 1487 
 1488         if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 1489                 return (EINVAL);
 1490         if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
 1491                 ts->tv_nsec = tick * 1000;
 1492         return (0);
 1493 }
 1494 
 1495 /* Timeout callback for realtime timer */
 1496 static void
 1497 realtimer_expire(void *arg)
 1498 {
 1499         struct timespec cts, ts;
 1500         struct timeval tv;
 1501         struct itimer *it;
 1502 
 1503         it = (struct itimer *)arg;
 1504 
 1505         realtimer_clocktime(it->it_clockid, &cts);
 1506         /* Only fire if time is reached. */
 1507         if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
 1508                 if (timespecisset(&it->it_time.it_interval)) {
 1509                         timespecadd(&it->it_time.it_value,
 1510                                     &it->it_time.it_interval);
 1511                         while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
 1512                                 if (it->it_overrun < INT_MAX)
 1513                                         it->it_overrun++;
 1514                                 else
 1515                                         it->it_ksi.ksi_errno = ERANGE;
 1516                                 timespecadd(&it->it_time.it_value,
 1517                                             &it->it_time.it_interval);
 1518                         }
 1519                 } else {
 1520                         /* single shot timer ? */
 1521                         timespecclear(&it->it_time.it_value);
 1522                 }
 1523                 if (timespecisset(&it->it_time.it_value)) {
 1524                         ts = it->it_time.it_value;
 1525                         timespecsub(&ts, &cts);
 1526                         TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1527                         callout_reset(&it->it_callout, tvtohz(&tv),
 1528                                  realtimer_expire, it);
 1529                 }
 1530                 itimer_enter(it);
 1531                 ITIMER_UNLOCK(it);
 1532                 itimer_fire(it);
 1533                 ITIMER_LOCK(it);
 1534                 itimer_leave(it);
 1535         } else if (timespecisset(&it->it_time.it_value)) {
 1536                 ts = it->it_time.it_value;
 1537                 timespecsub(&ts, &cts);
 1538                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1539                 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
 1540                         it);
 1541         }
 1542 }
 1543 
 1544 void
 1545 itimer_fire(struct itimer *it)
 1546 {
 1547         struct proc *p = it->it_proc;
 1548         struct thread *td;
 1549 
 1550         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1551             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1552                 if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
 1553                         ITIMER_LOCK(it);
 1554                         timespecclear(&it->it_time.it_value);
 1555                         timespecclear(&it->it_time.it_interval);
 1556                         callout_stop(&it->it_callout);
 1557                         ITIMER_UNLOCK(it);
 1558                         return;
 1559                 }
 1560                 if (!KSI_ONQ(&it->it_ksi)) {
 1561                         it->it_ksi.ksi_errno = 0;
 1562                         ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
 1563                         tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
 1564                 } else {
 1565                         if (it->it_overrun < INT_MAX)
 1566                                 it->it_overrun++;
 1567                         else
 1568                                 it->it_ksi.ksi_errno = ERANGE;
 1569                 }
 1570                 PROC_UNLOCK(p);
 1571         }
 1572 }
 1573 
 1574 static void
 1575 itimers_alloc(struct proc *p)
 1576 {
 1577         struct itimers *its;
 1578         int i;
 1579 
 1580         its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
 1581         LIST_INIT(&its->its_virtual);
 1582         LIST_INIT(&its->its_prof);
 1583         TAILQ_INIT(&its->its_worklist);
 1584         for (i = 0; i < TIMER_MAX; i++)
 1585                 its->its_timers[i] = NULL;
 1586         PROC_LOCK(p);
 1587         if (p->p_itimers == NULL) {
 1588                 p->p_itimers = its;
 1589                 PROC_UNLOCK(p);
 1590         }
 1591         else {
 1592                 PROC_UNLOCK(p);
 1593                 free(its, M_SUBPROC);
 1594         }
 1595 }
 1596 
 1597 static void
 1598 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
 1599 {
 1600         itimers_event_hook_exit(arg, p);
 1601 }
 1602 
 1603 /* Clean up timers when some process events are being triggered. */
 1604 static void
 1605 itimers_event_hook_exit(void *arg, struct proc *p)
 1606 {
 1607         struct itimers *its;
 1608         struct itimer *it;
 1609         int event = (int)(intptr_t)arg;
 1610         int i;
 1611 
 1612         if (p->p_itimers != NULL) {
 1613                 its = p->p_itimers;
 1614                 for (i = 0; i < MAX_CLOCKS; ++i) {
 1615                         if (posix_clocks[i].event_hook != NULL)
 1616                                 CLOCK_CALL(i, event_hook, (p, i, event));
 1617                 }
 1618                 /*
 1619                  * According to susv3, XSI interval timers should be inherited
 1620                  * by new image.
 1621                  */
 1622                 if (event == ITIMER_EV_EXEC)
 1623                         i = 3;
 1624                 else if (event == ITIMER_EV_EXIT)
 1625                         i = 0;
 1626                 else
 1627                         panic("unhandled event");
 1628                 for (; i < TIMER_MAX; ++i) {
 1629                         if ((it = its->its_timers[i]) != NULL)
 1630                                 kern_ktimer_delete(curthread, i);
 1631                 }
 1632                 if (its->its_timers[0] == NULL &&
 1633                     its->its_timers[1] == NULL &&
 1634                     its->its_timers[2] == NULL) {
 1635                         free(its, M_SUBPROC);
 1636                         p->p_itimers = NULL;
 1637                 }
 1638         }
 1639 }

Cache object: 9ba8f874e268ec6c6a7e15fa0976c93d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.