The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_time.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1989, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)kern_time.c 8.1 (Berkeley) 6/10/93
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_ktrace.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/limits.h>
   42 #include <sys/clock.h>
   43 #include <sys/lock.h>
   44 #include <sys/mutex.h>
   45 #include <sys/sysproto.h>
   46 #include <sys/resourcevar.h>
   47 #include <sys/signalvar.h>
   48 #include <sys/kernel.h>
   49 #include <sys/sleepqueue.h>
   50 #include <sys/syscallsubr.h>
   51 #include <sys/sysctl.h>
   52 #include <sys/sysent.h>
   53 #include <sys/priv.h>
   54 #include <sys/proc.h>
   55 #include <sys/posix4.h>
   56 #include <sys/time.h>
   57 #include <sys/timers.h>
   58 #include <sys/timetc.h>
   59 #include <sys/vnode.h>
   60 #ifdef KTRACE
   61 #include <sys/ktrace.h>
   62 #endif
   63 
   64 #include <vm/vm.h>
   65 #include <vm/vm_extern.h>
   66 
   67 #define MAX_CLOCKS      (CLOCK_MONOTONIC+1)
   68 #define CPUCLOCK_BIT            0x80000000
   69 #define CPUCLOCK_PROCESS_BIT    0x40000000
   70 #define CPUCLOCK_ID_MASK        (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
   71 #define MAKE_THREAD_CPUCLOCK(tid)       (CPUCLOCK_BIT|(tid))
   72 #define MAKE_PROCESS_CPUCLOCK(pid)      \
   73         (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
   74 
   75 #define NS_PER_SEC      1000000000
   76 
   77 static struct kclock    posix_clocks[MAX_CLOCKS];
   78 static uma_zone_t       itimer_zone = NULL;
   79 
   80 /*
   81  * Time of day and interval timer support.
   82  *
   83  * These routines provide the kernel entry points to get and set
   84  * the time-of-day and per-process interval timers.  Subroutines
   85  * here provide support for adding and subtracting timeval structures
   86  * and decrementing interval timers, optionally reloading the interval
   87  * timers when they expire.
   88  */
   89 
   90 static int      settime(struct thread *, struct timeval *);
   91 static void     timevalfix(struct timeval *);
   92 static int      user_clock_nanosleep(struct thread *td, clockid_t clock_id,
   93                     int flags, const struct timespec *ua_rqtp,
   94                     struct timespec *ua_rmtp);
   95 
   96 static void     itimer_start(void);
   97 static int      itimer_init(void *, int, int);
   98 static void     itimer_fini(void *, int);
   99 static void     itimer_enter(struct itimer *);
  100 static void     itimer_leave(struct itimer *);
  101 static struct itimer *itimer_find(struct proc *, int);
  102 static void     itimers_alloc(struct proc *);
  103 static int      realtimer_create(struct itimer *);
  104 static int      realtimer_gettime(struct itimer *, struct itimerspec *);
  105 static int      realtimer_settime(struct itimer *, int,
  106                         struct itimerspec *, struct itimerspec *);
  107 static int      realtimer_delete(struct itimer *);
  108 static void     realtimer_clocktime(clockid_t, struct timespec *);
  109 static void     realtimer_expire(void *);
  110 static void     realtimer_expire_l(struct itimer *it, bool proc_locked);
  111 
  112 static int      register_posix_clock(int, const struct kclock *);
  113 static void     itimer_fire(struct itimer *it);
  114 static int      itimespecfix(struct timespec *ts);
  115 
  116 #define CLOCK_CALL(clock, call, arglist)                \
  117         ((*posix_clocks[clock].call) arglist)
  118 
  119 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
  120 
  121 static int
  122 settime(struct thread *td, struct timeval *tv)
  123 {
  124         struct timeval delta, tv1, tv2;
  125         static struct timeval maxtime, laststep;
  126         struct timespec ts;
  127 
  128         microtime(&tv1);
  129         delta = *tv;
  130         timevalsub(&delta, &tv1);
  131 
  132         /*
  133          * If the system is secure, we do not allow the time to be 
  134          * set to a value earlier than 1 second less than the highest
  135          * time we have yet seen. The worst a miscreant can do in
  136          * this circumstance is "freeze" time. He couldn't go
  137          * back to the past.
  138          *
  139          * We similarly do not allow the clock to be stepped more
  140          * than one second, nor more than once per second. This allows
  141          * a miscreant to make the clock march double-time, but no worse.
  142          */
  143         if (securelevel_gt(td->td_ucred, 1) != 0) {
  144                 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
  145                         /*
  146                          * Update maxtime to latest time we've seen.
  147                          */
  148                         if (tv1.tv_sec > maxtime.tv_sec)
  149                                 maxtime = tv1;
  150                         tv2 = *tv;
  151                         timevalsub(&tv2, &maxtime);
  152                         if (tv2.tv_sec < -1) {
  153                                 tv->tv_sec = maxtime.tv_sec - 1;
  154                                 printf("Time adjustment clamped to -1 second\n");
  155                         }
  156                 } else {
  157                         if (tv1.tv_sec == laststep.tv_sec)
  158                                 return (EPERM);
  159                         if (delta.tv_sec > 1) {
  160                                 tv->tv_sec = tv1.tv_sec + 1;
  161                                 printf("Time adjustment clamped to +1 second\n");
  162                         }
  163                         laststep = *tv;
  164                 }
  165         }
  166 
  167         ts.tv_sec = tv->tv_sec;
  168         ts.tv_nsec = tv->tv_usec * 1000;
  169         tc_setclock(&ts);
  170         resettodr();
  171         return (0);
  172 }
  173 
  174 #ifndef _SYS_SYSPROTO_H_
  175 struct clock_getcpuclockid2_args {
  176         id_t id;
  177         int which,
  178         clockid_t *clock_id;
  179 };
  180 #endif
  181 /* ARGSUSED */
  182 int
  183 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
  184 {
  185         clockid_t clk_id;
  186         int error;
  187 
  188         error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
  189         if (error == 0)
  190                 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
  191         return (error);
  192 }
  193 
  194 int
  195 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
  196     clockid_t *clk_id)
  197 {
  198         struct proc *p;
  199         pid_t pid;
  200         lwpid_t tid;
  201         int error;
  202 
  203         switch (which) {
  204         case CPUCLOCK_WHICH_PID:
  205                 if (id != 0) {
  206                         error = pget(id, PGET_CANSEE | PGET_NOTID, &p);
  207                         if (error != 0)
  208                                 return (error);
  209                         PROC_UNLOCK(p);
  210                         pid = id;
  211                 } else {
  212                         pid = td->td_proc->p_pid;
  213                 }
  214                 *clk_id = MAKE_PROCESS_CPUCLOCK(pid);
  215                 return (0);
  216         case CPUCLOCK_WHICH_TID:
  217                 tid = id == 0 ? td->td_tid : id;
  218                 *clk_id = MAKE_THREAD_CPUCLOCK(tid);
  219                 return (0);
  220         default:
  221                 return (EINVAL);
  222         }
  223 }
  224 
  225 #ifndef _SYS_SYSPROTO_H_
  226 struct clock_gettime_args {
  227         clockid_t clock_id;
  228         struct  timespec *tp;
  229 };
  230 #endif
  231 /* ARGSUSED */
  232 int
  233 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
  234 {
  235         struct timespec ats;
  236         int error;
  237 
  238         error = kern_clock_gettime(td, uap->clock_id, &ats);
  239         if (error == 0)
  240                 error = copyout(&ats, uap->tp, sizeof(ats));
  241 
  242         return (error);
  243 }
  244 
  245 static inline void
  246 cputick2timespec(uint64_t runtime, struct timespec *ats)
  247 {
  248         runtime = cputick2usec(runtime);
  249         ats->tv_sec = runtime / 1000000;
  250         ats->tv_nsec = runtime % 1000000 * 1000;
  251 }
  252 
  253 void
  254 kern_thread_cputime(struct thread *targettd, struct timespec *ats)
  255 {
  256         uint64_t runtime, curtime, switchtime;
  257 
  258         if (targettd == NULL) { /* current thread */
  259                 critical_enter();
  260                 switchtime = PCPU_GET(switchtime);
  261                 curtime = cpu_ticks();
  262                 runtime = curthread->td_runtime;
  263                 critical_exit();
  264                 runtime += curtime - switchtime;
  265         } else {
  266                 PROC_LOCK_ASSERT(targettd->td_proc, MA_OWNED);
  267                 thread_lock(targettd);
  268                 runtime = targettd->td_runtime;
  269                 thread_unlock(targettd);
  270         }
  271         cputick2timespec(runtime, ats);
  272 }
  273 
  274 void
  275 kern_process_cputime(struct proc *targetp, struct timespec *ats)
  276 {
  277         uint64_t runtime;
  278         struct rusage ru;
  279 
  280         PROC_LOCK_ASSERT(targetp, MA_OWNED);
  281         PROC_STATLOCK(targetp);
  282         rufetch(targetp, &ru);
  283         runtime = targetp->p_rux.rux_runtime;
  284         if (curthread->td_proc == targetp)
  285                 runtime += cpu_ticks() - PCPU_GET(switchtime);
  286         PROC_STATUNLOCK(targetp);
  287         cputick2timespec(runtime, ats);
  288 }
  289 
  290 static int
  291 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  292 {
  293         struct proc *p, *p2;
  294         struct thread *td2;
  295         lwpid_t tid;
  296         pid_t pid;
  297         int error;
  298 
  299         p = td->td_proc;
  300         if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
  301                 tid = clock_id & CPUCLOCK_ID_MASK;
  302                 td2 = tdfind(tid, p->p_pid);
  303                 if (td2 == NULL)
  304                         return (EINVAL);
  305                 kern_thread_cputime(td2, ats);
  306                 PROC_UNLOCK(td2->td_proc);
  307         } else {
  308                 pid = clock_id & CPUCLOCK_ID_MASK;
  309                 error = pget(pid, PGET_CANSEE, &p2);
  310                 if (error != 0)
  311                         return (EINVAL);
  312                 kern_process_cputime(p2, ats);
  313                 PROC_UNLOCK(p2);
  314         }
  315         return (0);
  316 }
  317 
  318 int
  319 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  320 {
  321         struct timeval sys, user;
  322         struct proc *p;
  323 
  324         p = td->td_proc;
  325         switch (clock_id) {
  326         case CLOCK_REALTIME:            /* Default to precise. */
  327         case CLOCK_REALTIME_PRECISE:
  328                 nanotime(ats);
  329                 break;
  330         case CLOCK_REALTIME_FAST:
  331                 getnanotime(ats);
  332                 break;
  333         case CLOCK_VIRTUAL:
  334                 PROC_LOCK(p);
  335                 PROC_STATLOCK(p);
  336                 calcru(p, &user, &sys);
  337                 PROC_STATUNLOCK(p);
  338                 PROC_UNLOCK(p);
  339                 TIMEVAL_TO_TIMESPEC(&user, ats);
  340                 break;
  341         case CLOCK_PROF:
  342                 PROC_LOCK(p);
  343                 PROC_STATLOCK(p);
  344                 calcru(p, &user, &sys);
  345                 PROC_STATUNLOCK(p);
  346                 PROC_UNLOCK(p);
  347                 timevaladd(&user, &sys);
  348                 TIMEVAL_TO_TIMESPEC(&user, ats);
  349                 break;
  350         case CLOCK_MONOTONIC:           /* Default to precise. */
  351         case CLOCK_MONOTONIC_PRECISE:
  352         case CLOCK_UPTIME:
  353         case CLOCK_UPTIME_PRECISE:
  354                 nanouptime(ats);
  355                 break;
  356         case CLOCK_UPTIME_FAST:
  357         case CLOCK_MONOTONIC_FAST:
  358                 getnanouptime(ats);
  359                 break;
  360         case CLOCK_SECOND:
  361                 ats->tv_sec = time_second;
  362                 ats->tv_nsec = 0;
  363                 break;
  364         case CLOCK_THREAD_CPUTIME_ID:
  365                 kern_thread_cputime(NULL, ats);
  366                 break;
  367         case CLOCK_PROCESS_CPUTIME_ID:
  368                 PROC_LOCK(p);
  369                 kern_process_cputime(p, ats);
  370                 PROC_UNLOCK(p);
  371                 break;
  372         default:
  373                 if ((int)clock_id >= 0)
  374                         return (EINVAL);
  375                 return (get_cputime(td, clock_id, ats));
  376         }
  377         return (0);
  378 }
  379 
  380 #ifndef _SYS_SYSPROTO_H_
  381 struct clock_settime_args {
  382         clockid_t clock_id;
  383         const struct    timespec *tp;
  384 };
  385 #endif
  386 /* ARGSUSED */
  387 int
  388 sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
  389 {
  390         struct timespec ats;
  391         int error;
  392 
  393         if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
  394                 return (error);
  395         return (kern_clock_settime(td, uap->clock_id, &ats));
  396 }
  397 
  398 static int allow_insane_settime = 0;
  399 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN,
  400     &allow_insane_settime, 0,
  401     "do not perform possibly restrictive checks on settime(2) args");
  402 
  403 int
  404 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  405 {
  406         struct timeval atv;
  407         int error;
  408 
  409         if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
  410                 return (error);
  411         if (clock_id != CLOCK_REALTIME)
  412                 return (EINVAL);
  413         if (ats->tv_nsec < 0 || ats->tv_nsec >= NS_PER_SEC || ats->tv_sec < 0)
  414                 return (EINVAL);
  415         if (!allow_insane_settime &&
  416             (ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60 ||
  417             ats->tv_sec < utc_offset()))
  418                 return (EINVAL);
  419         /* XXX Don't convert nsec->usec and back */
  420         TIMESPEC_TO_TIMEVAL(&atv, ats);
  421         error = settime(td, &atv);
  422         return (error);
  423 }
  424 
  425 #ifndef _SYS_SYSPROTO_H_
  426 struct clock_getres_args {
  427         clockid_t clock_id;
  428         struct  timespec *tp;
  429 };
  430 #endif
  431 int
  432 sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
  433 {
  434         struct timespec ts;
  435         int error;
  436 
  437         if (uap->tp == NULL)
  438                 return (0);
  439 
  440         error = kern_clock_getres(td, uap->clock_id, &ts);
  441         if (error == 0)
  442                 error = copyout(&ts, uap->tp, sizeof(ts));
  443         return (error);
  444 }
  445 
  446 int
  447 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
  448 {
  449 
  450         ts->tv_sec = 0;
  451         switch (clock_id) {
  452         case CLOCK_REALTIME:
  453         case CLOCK_REALTIME_FAST:
  454         case CLOCK_REALTIME_PRECISE:
  455         case CLOCK_MONOTONIC:
  456         case CLOCK_MONOTONIC_FAST:
  457         case CLOCK_MONOTONIC_PRECISE:
  458         case CLOCK_UPTIME:
  459         case CLOCK_UPTIME_FAST:
  460         case CLOCK_UPTIME_PRECISE:
  461                 /*
  462                  * Round up the result of the division cheaply by adding 1.
  463                  * Rounding up is especially important if rounding down
  464                  * would give 0.  Perfect rounding is unimportant.
  465                  */
  466                 ts->tv_nsec = NS_PER_SEC / tc_getfrequency() + 1;
  467                 break;
  468         case CLOCK_VIRTUAL:
  469         case CLOCK_PROF:
  470                 /* Accurately round up here because we can do so cheaply. */
  471                 ts->tv_nsec = howmany(NS_PER_SEC, hz);
  472                 break;
  473         case CLOCK_SECOND:
  474                 ts->tv_sec = 1;
  475                 ts->tv_nsec = 0;
  476                 break;
  477         case CLOCK_THREAD_CPUTIME_ID:
  478         case CLOCK_PROCESS_CPUTIME_ID:
  479         cputime:
  480                 /* sync with cputick2usec */
  481                 ts->tv_nsec = 1000000 / cpu_tickrate();
  482                 if (ts->tv_nsec == 0)
  483                         ts->tv_nsec = 1000;
  484                 break;
  485         default:
  486                 if ((int)clock_id < 0)
  487                         goto cputime;
  488                 return (EINVAL);
  489         }
  490         return (0);
  491 }
  492 
  493 int
  494 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
  495 {
  496 
  497         return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt,
  498             rmt));
  499 }
  500 
  501 static uint8_t nanowait[MAXCPU];
  502 
  503 int
  504 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
  505     const struct timespec *rqt, struct timespec *rmt)
  506 {
  507         struct timespec ts, now;
  508         sbintime_t sbt, sbtt, prec, tmp;
  509         time_t over;
  510         int error;
  511         bool is_abs_real;
  512 
  513         if (rqt->tv_nsec < 0 || rqt->tv_nsec >= NS_PER_SEC)
  514                 return (EINVAL);
  515         if ((flags & ~TIMER_ABSTIME) != 0)
  516                 return (EINVAL);
  517         switch (clock_id) {
  518         case CLOCK_REALTIME:
  519         case CLOCK_REALTIME_PRECISE:
  520         case CLOCK_REALTIME_FAST:
  521         case CLOCK_SECOND:
  522                 is_abs_real = (flags & TIMER_ABSTIME) != 0;
  523                 break;
  524         case CLOCK_MONOTONIC:
  525         case CLOCK_MONOTONIC_PRECISE:
  526         case CLOCK_MONOTONIC_FAST:
  527         case CLOCK_UPTIME:
  528         case CLOCK_UPTIME_PRECISE:
  529         case CLOCK_UPTIME_FAST:
  530                 is_abs_real = false;
  531                 break;
  532         case CLOCK_VIRTUAL:
  533         case CLOCK_PROF:
  534         case CLOCK_PROCESS_CPUTIME_ID:
  535                 return (ENOTSUP);
  536         case CLOCK_THREAD_CPUTIME_ID:
  537         default:
  538                 return (EINVAL);
  539         }
  540         do {
  541                 ts = *rqt;
  542                 if ((flags & TIMER_ABSTIME) != 0) {
  543                         if (is_abs_real)
  544                                 td->td_rtcgen =
  545                                     atomic_load_acq_int(&rtc_generation);
  546                         error = kern_clock_gettime(td, clock_id, &now);
  547                         KASSERT(error == 0, ("kern_clock_gettime: %d", error));
  548                         timespecsub(&ts, &now, &ts);
  549                 }
  550                 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) {
  551                         error = EWOULDBLOCK;
  552                         break;
  553                 }
  554                 if (ts.tv_sec > INT32_MAX / 2) {
  555                         over = ts.tv_sec - INT32_MAX / 2;
  556                         ts.tv_sec -= over;
  557                 } else
  558                         over = 0;
  559                 tmp = tstosbt(ts);
  560                 prec = tmp;
  561                 prec >>= tc_precexp;
  562                 if (TIMESEL(&sbt, tmp))
  563                         sbt += tc_tick_sbt;
  564                 sbt += tmp;
  565                 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
  566                     sbt, prec, C_ABSOLUTE);
  567         } while (error == 0 && is_abs_real && td->td_rtcgen == 0);
  568         td->td_rtcgen = 0;
  569         if (error != EWOULDBLOCK) {
  570                 if (TIMESEL(&sbtt, tmp))
  571                         sbtt += tc_tick_sbt;
  572                 if (sbtt >= sbt)
  573                         return (0);
  574                 if (error == ERESTART)
  575                         error = EINTR;
  576                 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) {
  577                         ts = sbttots(sbt - sbtt);
  578                         ts.tv_sec += over;
  579                         if (ts.tv_sec < 0)
  580                                 timespecclear(&ts);
  581                         *rmt = ts;
  582                 }
  583                 return (error);
  584         }
  585         return (0);
  586 }
  587 
  588 #ifndef _SYS_SYSPROTO_H_
  589 struct nanosleep_args {
  590         struct  timespec *rqtp;
  591         struct  timespec *rmtp;
  592 };
  593 #endif
  594 /* ARGSUSED */
  595 int
  596 sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
  597 {
  598 
  599         return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME,
  600             uap->rqtp, uap->rmtp));
  601 }
  602 
  603 #ifndef _SYS_SYSPROTO_H_
  604 struct clock_nanosleep_args {
  605         clockid_t clock_id;
  606         int       flags;
  607         struct  timespec *rqtp;
  608         struct  timespec *rmtp;
  609 };
  610 #endif
  611 /* ARGSUSED */
  612 int
  613 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap)
  614 {
  615         int error;
  616 
  617         error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp,
  618             uap->rmtp);
  619         return (kern_posix_error(td, error));
  620 }
  621 
  622 static int
  623 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
  624     const struct timespec *ua_rqtp, struct timespec *ua_rmtp)
  625 {
  626         struct timespec rmt, rqt;
  627         int error, error2;
  628 
  629         error = copyin(ua_rqtp, &rqt, sizeof(rqt));
  630         if (error)
  631                 return (error);
  632         error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
  633         if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
  634                 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt));
  635                 if (error2 != 0)
  636                         error = error2;
  637         }
  638         return (error);
  639 }
  640 
  641 #ifndef _SYS_SYSPROTO_H_
  642 struct gettimeofday_args {
  643         struct  timeval *tp;
  644         struct  timezone *tzp;
  645 };
  646 #endif
  647 /* ARGSUSED */
  648 int
  649 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
  650 {
  651         struct timeval atv;
  652         struct timezone rtz;
  653         int error = 0;
  654 
  655         if (uap->tp) {
  656                 microtime(&atv);
  657                 error = copyout(&atv, uap->tp, sizeof (atv));
  658         }
  659         if (error == 0 && uap->tzp != NULL) {
  660                 rtz.tz_minuteswest = 0;
  661                 rtz.tz_dsttime = 0;
  662                 error = copyout(&rtz, uap->tzp, sizeof (rtz));
  663         }
  664         return (error);
  665 }
  666 
  667 #ifndef _SYS_SYSPROTO_H_
  668 struct settimeofday_args {
  669         struct  timeval *tv;
  670         struct  timezone *tzp;
  671 };
  672 #endif
  673 /* ARGSUSED */
  674 int
  675 sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
  676 {
  677         struct timeval atv, *tvp;
  678         struct timezone atz, *tzp;
  679         int error;
  680 
  681         if (uap->tv) {
  682                 error = copyin(uap->tv, &atv, sizeof(atv));
  683                 if (error)
  684                         return (error);
  685                 tvp = &atv;
  686         } else
  687                 tvp = NULL;
  688         if (uap->tzp) {
  689                 error = copyin(uap->tzp, &atz, sizeof(atz));
  690                 if (error)
  691                         return (error);
  692                 tzp = &atz;
  693         } else
  694                 tzp = NULL;
  695         return (kern_settimeofday(td, tvp, tzp));
  696 }
  697 
  698 int
  699 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
  700 {
  701         int error;
  702 
  703         error = priv_check(td, PRIV_SETTIMEOFDAY);
  704         if (error)
  705                 return (error);
  706         /* Verify all parameters before changing time. */
  707         if (tv) {
  708                 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 ||
  709                     tv->tv_sec < 0)
  710                         return (EINVAL);
  711                 error = settime(td, tv);
  712         }
  713         return (error);
  714 }
  715 
  716 /*
  717  * Get value of an interval timer.  The process virtual and profiling virtual
  718  * time timers are kept in the p_stats area, since they can be swapped out.
  719  * These are kept internally in the way they are specified externally: in
  720  * time until they expire.
  721  *
  722  * The real time interval timer is kept in the process table slot for the
  723  * process, and its value (it_value) is kept as an absolute time rather than
  724  * as a delta, so that it is easy to keep periodic real-time signals from
  725  * drifting.
  726  *
  727  * Virtual time timers are processed in the hardclock() routine of
  728  * kern_clock.c.  The real time timer is processed by a timeout routine,
  729  * called from the softclock() routine.  Since a callout may be delayed in
  730  * real time due to interrupt processing in the system, it is possible for
  731  * the real time timeout routine (realitexpire, given below), to be delayed
  732  * in real time past when it is supposed to occur.  It does not suffice,
  733  * therefore, to reload the real timer .it_value from the real time timers
  734  * .it_interval.  Rather, we compute the next time in absolute time the timer
  735  * should go off.
  736  */
  737 #ifndef _SYS_SYSPROTO_H_
  738 struct getitimer_args {
  739         u_int   which;
  740         struct  itimerval *itv;
  741 };
  742 #endif
  743 int
  744 sys_getitimer(struct thread *td, struct getitimer_args *uap)
  745 {
  746         struct itimerval aitv;
  747         int error;
  748 
  749         error = kern_getitimer(td, uap->which, &aitv);
  750         if (error != 0)
  751                 return (error);
  752         return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
  753 }
  754 
  755 int
  756 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
  757 {
  758         struct proc *p = td->td_proc;
  759         struct timeval ctv;
  760 
  761         if (which > ITIMER_PROF)
  762                 return (EINVAL);
  763 
  764         if (which == ITIMER_REAL) {
  765                 /*
  766                  * Convert from absolute to relative time in .it_value
  767                  * part of real time timer.  If time for real time timer
  768                  * has passed return 0, else return difference between
  769                  * current time and time for the timer to go off.
  770                  */
  771                 PROC_LOCK(p);
  772                 *aitv = p->p_realtimer;
  773                 PROC_UNLOCK(p);
  774                 if (timevalisset(&aitv->it_value)) {
  775                         microuptime(&ctv);
  776                         if (timevalcmp(&aitv->it_value, &ctv, <))
  777                                 timevalclear(&aitv->it_value);
  778                         else
  779                                 timevalsub(&aitv->it_value, &ctv);
  780                 }
  781         } else {
  782                 PROC_ITIMLOCK(p);
  783                 *aitv = p->p_stats->p_timer[which];
  784                 PROC_ITIMUNLOCK(p);
  785         }
  786 #ifdef KTRACE
  787         if (KTRPOINT(td, KTR_STRUCT))
  788                 ktritimerval(aitv);
  789 #endif
  790         return (0);
  791 }
  792 
  793 #ifndef _SYS_SYSPROTO_H_
  794 struct setitimer_args {
  795         u_int   which;
  796         struct  itimerval *itv, *oitv;
  797 };
  798 #endif
  799 int
  800 sys_setitimer(struct thread *td, struct setitimer_args *uap)
  801 {
  802         struct itimerval aitv, oitv;
  803         int error;
  804 
  805         if (uap->itv == NULL) {
  806                 uap->itv = uap->oitv;
  807                 return (sys_getitimer(td, (struct getitimer_args *)uap));
  808         }
  809 
  810         if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
  811                 return (error);
  812         error = kern_setitimer(td, uap->which, &aitv, &oitv);
  813         if (error != 0 || uap->oitv == NULL)
  814                 return (error);
  815         return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
  816 }
  817 
  818 int
  819 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
  820     struct itimerval *oitv)
  821 {
  822         struct proc *p = td->td_proc;
  823         struct timeval ctv;
  824         sbintime_t sbt, pr;
  825 
  826         if (aitv == NULL)
  827                 return (kern_getitimer(td, which, oitv));
  828 
  829         if (which > ITIMER_PROF)
  830                 return (EINVAL);
  831 #ifdef KTRACE
  832         if (KTRPOINT(td, KTR_STRUCT))
  833                 ktritimerval(aitv);
  834 #endif
  835         if (itimerfix(&aitv->it_value) ||
  836             aitv->it_value.tv_sec > INT32_MAX / 2)
  837                 return (EINVAL);
  838         if (!timevalisset(&aitv->it_value))
  839                 timevalclear(&aitv->it_interval);
  840         else if (itimerfix(&aitv->it_interval) ||
  841             aitv->it_interval.tv_sec > INT32_MAX / 2)
  842                 return (EINVAL);
  843 
  844         if (which == ITIMER_REAL) {
  845                 PROC_LOCK(p);
  846                 if (timevalisset(&p->p_realtimer.it_value))
  847                         callout_stop(&p->p_itcallout);
  848                 microuptime(&ctv);
  849                 if (timevalisset(&aitv->it_value)) {
  850                         pr = tvtosbt(aitv->it_value) >> tc_precexp;
  851                         timevaladd(&aitv->it_value, &ctv);
  852                         sbt = tvtosbt(aitv->it_value);
  853                         callout_reset_sbt(&p->p_itcallout, sbt, pr,
  854                             realitexpire, p, C_ABSOLUTE);
  855                 }
  856                 *oitv = p->p_realtimer;
  857                 p->p_realtimer = *aitv;
  858                 PROC_UNLOCK(p);
  859                 if (timevalisset(&oitv->it_value)) {
  860                         if (timevalcmp(&oitv->it_value, &ctv, <))
  861                                 timevalclear(&oitv->it_value);
  862                         else
  863                                 timevalsub(&oitv->it_value, &ctv);
  864                 }
  865         } else {
  866                 if (aitv->it_interval.tv_sec == 0 &&
  867                     aitv->it_interval.tv_usec != 0 &&
  868                     aitv->it_interval.tv_usec < tick)
  869                         aitv->it_interval.tv_usec = tick;
  870                 if (aitv->it_value.tv_sec == 0 &&
  871                     aitv->it_value.tv_usec != 0 &&
  872                     aitv->it_value.tv_usec < tick)
  873                         aitv->it_value.tv_usec = tick;
  874                 PROC_ITIMLOCK(p);
  875                 *oitv = p->p_stats->p_timer[which];
  876                 p->p_stats->p_timer[which] = *aitv;
  877                 PROC_ITIMUNLOCK(p);
  878         }
  879 #ifdef KTRACE
  880         if (KTRPOINT(td, KTR_STRUCT))
  881                 ktritimerval(oitv);
  882 #endif
  883         return (0);
  884 }
  885 
  886 static void
  887 realitexpire_reset_callout(struct proc *p, sbintime_t *isbtp)
  888 {
  889         sbintime_t prec;
  890 
  891         prec = isbtp == NULL ? tvtosbt(p->p_realtimer.it_interval) : *isbtp;
  892         callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
  893             prec >> tc_precexp, realitexpire, p, C_ABSOLUTE);
  894 }
  895 
  896 void
  897 itimer_proc_continue(struct proc *p)
  898 {
  899         struct timeval ctv;
  900         struct itimer *it;
  901         int id;
  902 
  903         PROC_LOCK_ASSERT(p, MA_OWNED);
  904 
  905         if ((p->p_flag2 & P2_ITSTOPPED) != 0) {
  906                 p->p_flag2 &= ~P2_ITSTOPPED;
  907                 microuptime(&ctv);
  908                 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >=))
  909                         realitexpire(p);
  910                 else
  911                         realitexpire_reset_callout(p, NULL);
  912         }
  913 
  914         if (p->p_itimers != NULL) {
  915                 for (id = 3; id < TIMER_MAX; id++) {
  916                         it = p->p_itimers->its_timers[id];
  917                         if (it == NULL)
  918                                 continue;
  919                         if ((it->it_flags & ITF_PSTOPPED) != 0) {
  920                                 ITIMER_LOCK(it);
  921                                 if ((it->it_flags & ITF_PSTOPPED) != 0) {
  922                                         it->it_flags &= ~ITF_PSTOPPED;
  923                                         if ((it->it_flags & ITF_DELETING) == 0)
  924                                                 realtimer_expire_l(it, true);
  925                                 }
  926                                 ITIMER_UNLOCK(it);
  927                         }
  928                 }
  929         }
  930 }
  931 
  932 /*
  933  * Real interval timer expired:
  934  * send process whose timer expired an alarm signal.
  935  * If time is not set up to reload, then just return.
  936  * Else compute next time timer should go off which is > current time.
  937  * This is where delay in processing this timeout causes multiple
  938  * SIGALRM calls to be compressed into one.
  939  * tvtohz() always adds 1 to allow for the time until the next clock
  940  * interrupt being strictly less than 1 clock tick, but we don't want
  941  * that here since we want to appear to be in sync with the clock
  942  * interrupt even when we're delayed.
  943  */
  944 void
  945 realitexpire(void *arg)
  946 {
  947         struct proc *p;
  948         struct timeval ctv;
  949         sbintime_t isbt;
  950 
  951         p = (struct proc *)arg;
  952         kern_psignal(p, SIGALRM);
  953         if (!timevalisset(&p->p_realtimer.it_interval)) {
  954                 timevalclear(&p->p_realtimer.it_value);
  955                 if (p->p_flag & P_WEXIT)
  956                         wakeup(&p->p_itcallout);
  957                 return;
  958         }
  959 
  960         isbt = tvtosbt(p->p_realtimer.it_interval);
  961         if (isbt >= sbt_timethreshold)
  962                 getmicrouptime(&ctv);
  963         else
  964                 microuptime(&ctv);
  965         do {
  966                 timevaladd(&p->p_realtimer.it_value,
  967                     &p->p_realtimer.it_interval);
  968         } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
  969 
  970         if (P_SHOULDSTOP(p) || P_KILLED(p)) {
  971                 p->p_flag2 |= P2_ITSTOPPED;
  972                 return;
  973         }
  974 
  975         p->p_flag2 &= ~P2_ITSTOPPED;
  976         realitexpire_reset_callout(p, &isbt);
  977 }
  978 
  979 /*
  980  * Check that a proposed value to load into the .it_value or
  981  * .it_interval part of an interval timer is acceptable, and
  982  * fix it to have at least minimal value (i.e. if it is less
  983  * than the resolution of the clock, round it up.)
  984  */
  985 int
  986 itimerfix(struct timeval *tv)
  987 {
  988 
  989         if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
  990                 return (EINVAL);
  991         if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
  992             tv->tv_usec < (u_int)tick / 16)
  993                 tv->tv_usec = (u_int)tick / 16;
  994         return (0);
  995 }
  996 
  997 /*
  998  * Decrement an interval timer by a specified number
  999  * of microseconds, which must be less than a second,
 1000  * i.e. < 1000000.  If the timer expires, then reload
 1001  * it.  In this case, carry over (usec - old value) to
 1002  * reduce the value reloaded into the timer so that
 1003  * the timer does not drift.  This routine assumes
 1004  * that it is called in a context where the timers
 1005  * on which it is operating cannot change in value.
 1006  */
 1007 int
 1008 itimerdecr(struct itimerval *itp, int usec)
 1009 {
 1010 
 1011         if (itp->it_value.tv_usec < usec) {
 1012                 if (itp->it_value.tv_sec == 0) {
 1013                         /* expired, and already in next interval */
 1014                         usec -= itp->it_value.tv_usec;
 1015                         goto expire;
 1016                 }
 1017                 itp->it_value.tv_usec += 1000000;
 1018                 itp->it_value.tv_sec--;
 1019         }
 1020         itp->it_value.tv_usec -= usec;
 1021         usec = 0;
 1022         if (timevalisset(&itp->it_value))
 1023                 return (1);
 1024         /* expired, exactly at end of interval */
 1025 expire:
 1026         if (timevalisset(&itp->it_interval)) {
 1027                 itp->it_value = itp->it_interval;
 1028                 itp->it_value.tv_usec -= usec;
 1029                 if (itp->it_value.tv_usec < 0) {
 1030                         itp->it_value.tv_usec += 1000000;
 1031                         itp->it_value.tv_sec--;
 1032                 }
 1033         } else
 1034                 itp->it_value.tv_usec = 0;              /* sec is already 0 */
 1035         return (0);
 1036 }
 1037 
 1038 /*
 1039  * Add and subtract routines for timevals.
 1040  * N.B.: subtract routine doesn't deal with
 1041  * results which are before the beginning,
 1042  * it just gets very confused in this case.
 1043  * Caveat emptor.
 1044  */
 1045 void
 1046 timevaladd(struct timeval *t1, const struct timeval *t2)
 1047 {
 1048 
 1049         t1->tv_sec += t2->tv_sec;
 1050         t1->tv_usec += t2->tv_usec;
 1051         timevalfix(t1);
 1052 }
 1053 
 1054 void
 1055 timevalsub(struct timeval *t1, const struct timeval *t2)
 1056 {
 1057 
 1058         t1->tv_sec -= t2->tv_sec;
 1059         t1->tv_usec -= t2->tv_usec;
 1060         timevalfix(t1);
 1061 }
 1062 
 1063 static void
 1064 timevalfix(struct timeval *t1)
 1065 {
 1066 
 1067         if (t1->tv_usec < 0) {
 1068                 t1->tv_sec--;
 1069                 t1->tv_usec += 1000000;
 1070         }
 1071         if (t1->tv_usec >= 1000000) {
 1072                 t1->tv_sec++;
 1073                 t1->tv_usec -= 1000000;
 1074         }
 1075 }
 1076 
 1077 /*
 1078  * ratecheck(): simple time-based rate-limit checking.
 1079  */
 1080 int
 1081 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
 1082 {
 1083         struct timeval tv, delta;
 1084         int rv = 0;
 1085 
 1086         getmicrouptime(&tv);            /* NB: 10ms precision */
 1087         delta = tv;
 1088         timevalsub(&delta, lasttime);
 1089 
 1090         /*
 1091          * check for 0,0 is so that the message will be seen at least once,
 1092          * even if interval is huge.
 1093          */
 1094         if (timevalcmp(&delta, mininterval, >=) ||
 1095             (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
 1096                 *lasttime = tv;
 1097                 rv = 1;
 1098         }
 1099 
 1100         return (rv);
 1101 }
 1102 
 1103 /*
 1104  * ppsratecheck(): packets (or events) per second limitation.
 1105  *
 1106  * Return 0 if the limit is to be enforced (e.g. the caller
 1107  * should drop a packet because of the rate limitation).
 1108  *
 1109  * maxpps of 0 always causes zero to be returned.  maxpps of -1
 1110  * always causes 1 to be returned; this effectively defeats rate
 1111  * limiting.
 1112  *
 1113  * Note that we maintain the struct timeval for compatibility
 1114  * with other bsd systems.  We reuse the storage and just monitor
 1115  * clock ticks for minimal overhead.  
 1116  */
 1117 int
 1118 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
 1119 {
 1120         int now;
 1121 
 1122         /*
 1123          * Reset the last time and counter if this is the first call
 1124          * or more than a second has passed since the last update of
 1125          * lasttime.
 1126          */
 1127         now = ticks;
 1128         if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
 1129                 lasttime->tv_sec = now;
 1130                 *curpps = 1;
 1131                 return (maxpps != 0);
 1132         } else {
 1133                 (*curpps)++;            /* NB: ignore potential overflow */
 1134                 return (maxpps < 0 || *curpps <= maxpps);
 1135         }
 1136 }
 1137 
 1138 static void
 1139 itimer_start(void)
 1140 {
 1141         static const struct kclock rt_clock = {
 1142                 .timer_create  = realtimer_create,
 1143                 .timer_delete  = realtimer_delete,
 1144                 .timer_settime = realtimer_settime,
 1145                 .timer_gettime = realtimer_gettime,
 1146         };
 1147 
 1148         itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
 1149                 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
 1150         register_posix_clock(CLOCK_REALTIME,  &rt_clock);
 1151         register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
 1152         p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
 1153         p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
 1154         p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
 1155 }
 1156 
 1157 static int
 1158 register_posix_clock(int clockid, const struct kclock *clk)
 1159 {
 1160         if ((unsigned)clockid >= MAX_CLOCKS) {
 1161                 printf("%s: invalid clockid\n", __func__);
 1162                 return (0);
 1163         }
 1164         posix_clocks[clockid] = *clk;
 1165         return (1);
 1166 }
 1167 
 1168 static int
 1169 itimer_init(void *mem, int size, int flags)
 1170 {
 1171         struct itimer *it;
 1172 
 1173         it = (struct itimer *)mem;
 1174         mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
 1175         return (0);
 1176 }
 1177 
 1178 static void
 1179 itimer_fini(void *mem, int size)
 1180 {
 1181         struct itimer *it;
 1182 
 1183         it = (struct itimer *)mem;
 1184         mtx_destroy(&it->it_mtx);
 1185 }
 1186 
 1187 static void
 1188 itimer_enter(struct itimer *it)
 1189 {
 1190 
 1191         mtx_assert(&it->it_mtx, MA_OWNED);
 1192         it->it_usecount++;
 1193 }
 1194 
 1195 static void
 1196 itimer_leave(struct itimer *it)
 1197 {
 1198 
 1199         mtx_assert(&it->it_mtx, MA_OWNED);
 1200         KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
 1201 
 1202         if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
 1203                 wakeup(it);
 1204 }
 1205 
 1206 #ifndef _SYS_SYSPROTO_H_
 1207 struct ktimer_create_args {
 1208         clockid_t clock_id;
 1209         struct sigevent * evp;
 1210         int * timerid;
 1211 };
 1212 #endif
 1213 int
 1214 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
 1215 {
 1216         struct sigevent *evp, ev;
 1217         int id;
 1218         int error;
 1219 
 1220         if (uap->evp == NULL) {
 1221                 evp = NULL;
 1222         } else {
 1223                 error = copyin(uap->evp, &ev, sizeof(ev));
 1224                 if (error != 0)
 1225                         return (error);
 1226                 evp = &ev;
 1227         }
 1228         error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
 1229         if (error == 0) {
 1230                 error = copyout(&id, uap->timerid, sizeof(int));
 1231                 if (error != 0)
 1232                         kern_ktimer_delete(td, id);
 1233         }
 1234         return (error);
 1235 }
 1236 
 1237 int
 1238 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
 1239     int *timerid, int preset_id)
 1240 {
 1241         struct proc *p = td->td_proc;
 1242         struct itimer *it;
 1243         int id;
 1244         int error;
 1245 
 1246         if (clock_id < 0 || clock_id >= MAX_CLOCKS)
 1247                 return (EINVAL);
 1248 
 1249         if (posix_clocks[clock_id].timer_create == NULL)
 1250                 return (EINVAL);
 1251 
 1252         if (evp != NULL) {
 1253                 if (evp->sigev_notify != SIGEV_NONE &&
 1254                     evp->sigev_notify != SIGEV_SIGNAL &&
 1255                     evp->sigev_notify != SIGEV_THREAD_ID)
 1256                         return (EINVAL);
 1257                 if ((evp->sigev_notify == SIGEV_SIGNAL ||
 1258                      evp->sigev_notify == SIGEV_THREAD_ID) &&
 1259                         !_SIG_VALID(evp->sigev_signo))
 1260                         return (EINVAL);
 1261         }
 1262 
 1263         if (p->p_itimers == NULL)
 1264                 itimers_alloc(p);
 1265 
 1266         it = uma_zalloc(itimer_zone, M_WAITOK);
 1267         it->it_flags = 0;
 1268         it->it_usecount = 0;
 1269         it->it_active = 0;
 1270         timespecclear(&it->it_time.it_value);
 1271         timespecclear(&it->it_time.it_interval);
 1272         it->it_overrun = 0;
 1273         it->it_overrun_last = 0;
 1274         it->it_clockid = clock_id;
 1275         it->it_timerid = -1;
 1276         it->it_proc = p;
 1277         ksiginfo_init(&it->it_ksi);
 1278         it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
 1279         error = CLOCK_CALL(clock_id, timer_create, (it));
 1280         if (error != 0)
 1281                 goto out;
 1282 
 1283         PROC_LOCK(p);
 1284         if (preset_id != -1) {
 1285                 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
 1286                 id = preset_id;
 1287                 if (p->p_itimers->its_timers[id] != NULL) {
 1288                         PROC_UNLOCK(p);
 1289                         error = 0;
 1290                         goto out;
 1291                 }
 1292         } else {
 1293                 /*
 1294                  * Find a free timer slot, skipping those reserved
 1295                  * for setitimer().
 1296                  */
 1297                 for (id = 3; id < TIMER_MAX; id++)
 1298                         if (p->p_itimers->its_timers[id] == NULL)
 1299                                 break;
 1300                 if (id == TIMER_MAX) {
 1301                         PROC_UNLOCK(p);
 1302                         error = EAGAIN;
 1303                         goto out;
 1304                 }
 1305         }
 1306         it->it_timerid = id;
 1307         p->p_itimers->its_timers[id] = it;
 1308         if (evp != NULL)
 1309                 it->it_sigev = *evp;
 1310         else {
 1311                 it->it_sigev.sigev_notify = SIGEV_SIGNAL;
 1312                 switch (clock_id) {
 1313                 default:
 1314                 case CLOCK_REALTIME:
 1315                         it->it_sigev.sigev_signo = SIGALRM;
 1316                         break;
 1317                 case CLOCK_VIRTUAL:
 1318                         it->it_sigev.sigev_signo = SIGVTALRM;
 1319                         break;
 1320                 case CLOCK_PROF:
 1321                         it->it_sigev.sigev_signo = SIGPROF;
 1322                         break;
 1323                 }
 1324                 it->it_sigev.sigev_value.sival_int = id;
 1325         }
 1326 
 1327         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1328             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1329                 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
 1330                 it->it_ksi.ksi_code = SI_TIMER;
 1331                 it->it_ksi.ksi_value = it->it_sigev.sigev_value;
 1332                 it->it_ksi.ksi_timerid = id;
 1333         }
 1334         PROC_UNLOCK(p);
 1335         *timerid = id;
 1336         return (0);
 1337 
 1338 out:
 1339         ITIMER_LOCK(it);
 1340         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1341         ITIMER_UNLOCK(it);
 1342         uma_zfree(itimer_zone, it);
 1343         return (error);
 1344 }
 1345 
 1346 #ifndef _SYS_SYSPROTO_H_
 1347 struct ktimer_delete_args {
 1348         int timerid;
 1349 };
 1350 #endif
 1351 int
 1352 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
 1353 {
 1354 
 1355         return (kern_ktimer_delete(td, uap->timerid));
 1356 }
 1357 
 1358 static struct itimer *
 1359 itimer_find(struct proc *p, int timerid)
 1360 {
 1361         struct itimer *it;
 1362 
 1363         PROC_LOCK_ASSERT(p, MA_OWNED);
 1364         if ((p->p_itimers == NULL) ||
 1365             (timerid < 0) || (timerid >= TIMER_MAX) ||
 1366             (it = p->p_itimers->its_timers[timerid]) == NULL) {
 1367                 return (NULL);
 1368         }
 1369         ITIMER_LOCK(it);
 1370         if ((it->it_flags & ITF_DELETING) != 0) {
 1371                 ITIMER_UNLOCK(it);
 1372                 it = NULL;
 1373         }
 1374         return (it);
 1375 }
 1376 
 1377 int
 1378 kern_ktimer_delete(struct thread *td, int timerid)
 1379 {
 1380         struct proc *p = td->td_proc;
 1381         struct itimer *it;
 1382 
 1383         PROC_LOCK(p);
 1384         it = itimer_find(p, timerid);
 1385         if (it == NULL) {
 1386                 PROC_UNLOCK(p);
 1387                 return (EINVAL);
 1388         }
 1389         PROC_UNLOCK(p);
 1390 
 1391         it->it_flags |= ITF_DELETING;
 1392         while (it->it_usecount > 0) {
 1393                 it->it_flags |= ITF_WANTED;
 1394                 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
 1395         }
 1396         it->it_flags &= ~ITF_WANTED;
 1397         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1398         ITIMER_UNLOCK(it);
 1399 
 1400         PROC_LOCK(p);
 1401         if (KSI_ONQ(&it->it_ksi))
 1402                 sigqueue_take(&it->it_ksi);
 1403         p->p_itimers->its_timers[timerid] = NULL;
 1404         PROC_UNLOCK(p);
 1405         uma_zfree(itimer_zone, it);
 1406         return (0);
 1407 }
 1408 
 1409 #ifndef _SYS_SYSPROTO_H_
 1410 struct ktimer_settime_args {
 1411         int timerid;
 1412         int flags;
 1413         const struct itimerspec * value;
 1414         struct itimerspec * ovalue;
 1415 };
 1416 #endif
 1417 int
 1418 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
 1419 {
 1420         struct itimerspec val, oval, *ovalp;
 1421         int error;
 1422 
 1423         error = copyin(uap->value, &val, sizeof(val));
 1424         if (error != 0)
 1425                 return (error);
 1426         ovalp = uap->ovalue != NULL ? &oval : NULL;
 1427         error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
 1428         if (error == 0 && uap->ovalue != NULL)
 1429                 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
 1430         return (error);
 1431 }
 1432 
 1433 int
 1434 kern_ktimer_settime(struct thread *td, int timer_id, int flags,
 1435     struct itimerspec *val, struct itimerspec *oval)
 1436 {
 1437         struct proc *p;
 1438         struct itimer *it;
 1439         int error;
 1440 
 1441         p = td->td_proc;
 1442         PROC_LOCK(p);
 1443         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1444                 PROC_UNLOCK(p);
 1445                 error = EINVAL;
 1446         } else {
 1447                 PROC_UNLOCK(p);
 1448                 itimer_enter(it);
 1449                 error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
 1450                     flags, val, oval));
 1451                 itimer_leave(it);
 1452                 ITIMER_UNLOCK(it);
 1453         }
 1454         return (error);
 1455 }
 1456 
 1457 #ifndef _SYS_SYSPROTO_H_
 1458 struct ktimer_gettime_args {
 1459         int timerid;
 1460         struct itimerspec * value;
 1461 };
 1462 #endif
 1463 int
 1464 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
 1465 {
 1466         struct itimerspec val;
 1467         int error;
 1468 
 1469         error = kern_ktimer_gettime(td, uap->timerid, &val);
 1470         if (error == 0)
 1471                 error = copyout(&val, uap->value, sizeof(val));
 1472         return (error);
 1473 }
 1474 
 1475 int
 1476 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
 1477 {
 1478         struct proc *p;
 1479         struct itimer *it;
 1480         int error;
 1481 
 1482         p = td->td_proc;
 1483         PROC_LOCK(p);
 1484         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1485                 PROC_UNLOCK(p);
 1486                 error = EINVAL;
 1487         } else {
 1488                 PROC_UNLOCK(p);
 1489                 itimer_enter(it);
 1490                 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
 1491                 itimer_leave(it);
 1492                 ITIMER_UNLOCK(it);
 1493         }
 1494         return (error);
 1495 }
 1496 
 1497 #ifndef _SYS_SYSPROTO_H_
 1498 struct timer_getoverrun_args {
 1499         int timerid;
 1500 };
 1501 #endif
 1502 int
 1503 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
 1504 {
 1505 
 1506         return (kern_ktimer_getoverrun(td, uap->timerid));
 1507 }
 1508 
 1509 int
 1510 kern_ktimer_getoverrun(struct thread *td, int timer_id)
 1511 {
 1512         struct proc *p = td->td_proc;
 1513         struct itimer *it;
 1514         int error ;
 1515 
 1516         PROC_LOCK(p);
 1517         if (timer_id < 3 ||
 1518             (it = itimer_find(p, timer_id)) == NULL) {
 1519                 PROC_UNLOCK(p);
 1520                 error = EINVAL;
 1521         } else {
 1522                 td->td_retval[0] = it->it_overrun_last;
 1523                 ITIMER_UNLOCK(it);
 1524                 PROC_UNLOCK(p);
 1525                 error = 0;
 1526         }
 1527         return (error);
 1528 }
 1529 
 1530 static int
 1531 realtimer_create(struct itimer *it)
 1532 {
 1533         callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
 1534         return (0);
 1535 }
 1536 
 1537 static int
 1538 realtimer_delete(struct itimer *it)
 1539 {
 1540         mtx_assert(&it->it_mtx, MA_OWNED);
 1541 
 1542         /*
 1543          * clear timer's value and interval to tell realtimer_expire
 1544          * to not rearm the timer.
 1545          */
 1546         timespecclear(&it->it_time.it_value);
 1547         timespecclear(&it->it_time.it_interval);
 1548         ITIMER_UNLOCK(it);
 1549         callout_drain(&it->it_callout);
 1550         ITIMER_LOCK(it);
 1551         return (0);
 1552 }
 1553 
 1554 static int
 1555 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
 1556 {
 1557         struct timespec cts;
 1558 
 1559         mtx_assert(&it->it_mtx, MA_OWNED);
 1560 
 1561         realtimer_clocktime(it->it_clockid, &cts);
 1562         *ovalue = it->it_time;
 1563         if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
 1564                 timespecsub(&ovalue->it_value, &cts, &ovalue->it_value);
 1565                 if (ovalue->it_value.tv_sec < 0 ||
 1566                     (ovalue->it_value.tv_sec == 0 &&
 1567                      ovalue->it_value.tv_nsec == 0)) {
 1568                         ovalue->it_value.tv_sec  = 0;
 1569                         ovalue->it_value.tv_nsec = 1;
 1570                 }
 1571         }
 1572         return (0);
 1573 }
 1574 
 1575 static int
 1576 realtimer_settime(struct itimer *it, int flags, struct itimerspec *value,
 1577     struct itimerspec *ovalue)
 1578 {
 1579         struct timespec cts, ts;
 1580         struct timeval tv;
 1581         struct itimerspec val;
 1582 
 1583         mtx_assert(&it->it_mtx, MA_OWNED);
 1584 
 1585         val = *value;
 1586         if (itimespecfix(&val.it_value))
 1587                 return (EINVAL);
 1588 
 1589         if (timespecisset(&val.it_value)) {
 1590                 if (itimespecfix(&val.it_interval))
 1591                         return (EINVAL);
 1592         } else {
 1593                 timespecclear(&val.it_interval);
 1594         }
 1595 
 1596         if (ovalue != NULL)
 1597                 realtimer_gettime(it, ovalue);
 1598 
 1599         it->it_time = val;
 1600         if (timespecisset(&val.it_value)) {
 1601                 realtimer_clocktime(it->it_clockid, &cts);
 1602                 ts = val.it_value;
 1603                 if ((flags & TIMER_ABSTIME) == 0) {
 1604                         /* Convert to absolute time. */
 1605                         timespecadd(&it->it_time.it_value, &cts,
 1606                             &it->it_time.it_value);
 1607                 } else {
 1608                         timespecsub(&ts, &cts, &ts);
 1609                         /*
 1610                          * We don't care if ts is negative, tztohz will
 1611                          * fix it.
 1612                          */
 1613                 }
 1614                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1615                 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
 1616                     it);
 1617         } else {
 1618                 callout_stop(&it->it_callout);
 1619         }
 1620 
 1621         return (0);
 1622 }
 1623 
 1624 static void
 1625 realtimer_clocktime(clockid_t id, struct timespec *ts)
 1626 {
 1627         if (id == CLOCK_REALTIME)
 1628                 getnanotime(ts);
 1629         else    /* CLOCK_MONOTONIC */
 1630                 getnanouptime(ts);
 1631 }
 1632 
 1633 int
 1634 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
 1635 {
 1636         struct itimer *it;
 1637 
 1638         PROC_LOCK_ASSERT(p, MA_OWNED);
 1639         it = itimer_find(p, timerid);
 1640         if (it != NULL) {
 1641                 ksi->ksi_overrun = it->it_overrun;
 1642                 it->it_overrun_last = it->it_overrun;
 1643                 it->it_overrun = 0;
 1644                 ITIMER_UNLOCK(it);
 1645                 return (0);
 1646         }
 1647         return (EINVAL);
 1648 }
 1649 
 1650 static int
 1651 itimespecfix(struct timespec *ts)
 1652 {
 1653 
 1654         if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= NS_PER_SEC)
 1655                 return (EINVAL);
 1656         if ((UINT64_MAX - ts->tv_nsec) / NS_PER_SEC < ts->tv_sec)
 1657                 return (EINVAL);
 1658         if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
 1659                 ts->tv_nsec = tick * 1000;
 1660         return (0);
 1661 }
 1662 
 1663 #define timespectons(tsp)                       \
 1664         ((uint64_t)(tsp)->tv_sec * NS_PER_SEC + (tsp)->tv_nsec)
 1665 #define timespecfromns(ns) (struct timespec){   \
 1666         .tv_sec = (ns) / NS_PER_SEC,            \
 1667         .tv_nsec = (ns) % NS_PER_SEC            \
 1668 }
 1669 
 1670 static void
 1671 realtimer_expire_l(struct itimer *it, bool proc_locked)
 1672 {
 1673         struct timespec cts, ts;
 1674         struct timeval tv;
 1675         struct proc *p;
 1676         uint64_t interval, now, overruns, value;
 1677 
 1678         realtimer_clocktime(it->it_clockid, &cts);
 1679         /* Only fire if time is reached. */
 1680         if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
 1681                 if (timespecisset(&it->it_time.it_interval)) {
 1682                         timespecadd(&it->it_time.it_value,
 1683                             &it->it_time.it_interval,
 1684                             &it->it_time.it_value);
 1685 
 1686                         interval = timespectons(&it->it_time.it_interval);
 1687                         value = timespectons(&it->it_time.it_value);
 1688                         now = timespectons(&cts);
 1689 
 1690                         if (now >= value) {
 1691                                 /*
 1692                                  * We missed at least one period.
 1693                                  */
 1694                                 overruns = howmany(now - value + 1, interval);
 1695                                 if (it->it_overrun + overruns >=
 1696                                     it->it_overrun &&
 1697                                     it->it_overrun + overruns <= INT_MAX) {
 1698                                         it->it_overrun += (int)overruns;
 1699                                 } else {
 1700                                         it->it_overrun = INT_MAX;
 1701                                         it->it_ksi.ksi_errno = ERANGE;
 1702                                 }
 1703                                 value =
 1704                                     now + interval - (now - value) % interval;
 1705                                 it->it_time.it_value = timespecfromns(value);
 1706                         }
 1707                 } else {
 1708                         /* single shot timer ? */
 1709                         timespecclear(&it->it_time.it_value);
 1710                 }
 1711 
 1712                 p = it->it_proc;
 1713                 if (timespecisset(&it->it_time.it_value)) {
 1714                         if (P_SHOULDSTOP(p) || P_KILLED(p)) {
 1715                                 it->it_flags |= ITF_PSTOPPED;
 1716                         } else {
 1717                                 timespecsub(&it->it_time.it_value, &cts, &ts);
 1718                                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1719                                 callout_reset(&it->it_callout, tvtohz(&tv),
 1720                                     realtimer_expire, it);
 1721                         }
 1722                 }
 1723 
 1724                 itimer_enter(it);
 1725                 ITIMER_UNLOCK(it);
 1726                 if (proc_locked)
 1727                         PROC_UNLOCK(p);
 1728                 itimer_fire(it);
 1729                 if (proc_locked)
 1730                         PROC_LOCK(p);
 1731                 ITIMER_LOCK(it);
 1732                 itimer_leave(it);
 1733         } else if (timespecisset(&it->it_time.it_value)) {
 1734                 p = it->it_proc;
 1735                 if (P_SHOULDSTOP(p) || P_KILLED(p)) {
 1736                         it->it_flags |= ITF_PSTOPPED;
 1737                 } else {
 1738                         ts = it->it_time.it_value;
 1739                         timespecsub(&ts, &cts, &ts);
 1740                         TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1741                         callout_reset(&it->it_callout, tvtohz(&tv),
 1742                             realtimer_expire, it);
 1743                 }
 1744         }
 1745 }
 1746 
 1747 /* Timeout callback for realtime timer */
 1748 static void
 1749 realtimer_expire(void *arg)
 1750 {
 1751         realtimer_expire_l(arg, false);
 1752 }
 1753 
 1754 static void
 1755 itimer_fire(struct itimer *it)
 1756 {
 1757         struct proc *p = it->it_proc;
 1758         struct thread *td;
 1759 
 1760         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1761             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1762                 if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
 1763                         ITIMER_LOCK(it);
 1764                         timespecclear(&it->it_time.it_value);
 1765                         timespecclear(&it->it_time.it_interval);
 1766                         callout_stop(&it->it_callout);
 1767                         ITIMER_UNLOCK(it);
 1768                         return;
 1769                 }
 1770                 if (!KSI_ONQ(&it->it_ksi)) {
 1771                         it->it_ksi.ksi_errno = 0;
 1772                         ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
 1773                         tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
 1774                 } else {
 1775                         if (it->it_overrun < INT_MAX)
 1776                                 it->it_overrun++;
 1777                         else
 1778                                 it->it_ksi.ksi_errno = ERANGE;
 1779                 }
 1780                 PROC_UNLOCK(p);
 1781         }
 1782 }
 1783 
 1784 static void
 1785 itimers_alloc(struct proc *p)
 1786 {
 1787         struct itimers *its;
 1788         int i;
 1789 
 1790         its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
 1791         LIST_INIT(&its->its_virtual);
 1792         LIST_INIT(&its->its_prof);
 1793         TAILQ_INIT(&its->its_worklist);
 1794         for (i = 0; i < TIMER_MAX; i++)
 1795                 its->its_timers[i] = NULL;
 1796         PROC_LOCK(p);
 1797         if (p->p_itimers == NULL) {
 1798                 p->p_itimers = its;
 1799                 PROC_UNLOCK(p);
 1800         }
 1801         else {
 1802                 PROC_UNLOCK(p);
 1803                 free(its, M_SUBPROC);
 1804         }
 1805 }
 1806 
 1807 /* Clean up timers when some process events are being triggered. */
 1808 static void
 1809 itimers_event_exit_exec(int start_idx, struct proc *p)
 1810 {
 1811         struct itimers *its;
 1812         struct itimer *it;
 1813         int i;
 1814 
 1815         its = p->p_itimers;
 1816         if (its == NULL)
 1817                 return;
 1818 
 1819         for (i = start_idx; i < TIMER_MAX; ++i) {
 1820                 if ((it = its->its_timers[i]) != NULL)
 1821                         kern_ktimer_delete(curthread, i);
 1822         }
 1823         if (its->its_timers[0] == NULL && its->its_timers[1] == NULL &&
 1824             its->its_timers[2] == NULL) {
 1825                 /* Synchronize with itimer_proc_continue(). */
 1826                 PROC_LOCK(p);
 1827                 p->p_itimers = NULL;
 1828                 PROC_UNLOCK(p);
 1829                 free(its, M_SUBPROC);
 1830         }
 1831 }
 1832 
 1833 void
 1834 itimers_exec(struct proc *p)
 1835 {
 1836         /*
 1837          * According to susv3, XSI interval timers should be inherited
 1838          * by new image.
 1839          */
 1840         itimers_event_exit_exec(3, p);
 1841 }
 1842 
 1843 void
 1844 itimers_exit(struct proc *p)
 1845 {
 1846         itimers_event_exit_exec(0, p);
 1847 }

Cache object: 1cb0ef9aa86ae63001e7fde645d63bf7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.