The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_timeout.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      From: @(#)kern_clock.c  8.5 (Berkeley) 1/21/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: releng/9.1/sys/kern/kern_timeout.c 235221 2012-05-10 10:16:21Z kib $");
   39 
   40 #include "opt_kdtrace.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/bus.h>
   45 #include <sys/callout.h>
   46 #include <sys/condvar.h>
   47 #include <sys/interrupt.h>
   48 #include <sys/kernel.h>
   49 #include <sys/ktr.h>
   50 #include <sys/lock.h>
   51 #include <sys/malloc.h>
   52 #include <sys/mutex.h>
   53 #include <sys/proc.h>
   54 #include <sys/sdt.h>
   55 #include <sys/sleepqueue.h>
   56 #include <sys/sysctl.h>
   57 #include <sys/smp.h>
   58 
   59 #ifdef SMP
   60 #include <machine/cpu.h>
   61 #endif
   62 
   63 SDT_PROVIDER_DEFINE(callout_execute);
   64 SDT_PROBE_DEFINE(callout_execute, kernel, , callout_start, callout-start);
   65 SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_start, 0,
   66     "struct callout *");
   67 SDT_PROBE_DEFINE(callout_execute, kernel, , callout_end, callout-end); 
   68 SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_end, 0,
   69     "struct callout *");
   70 
   71 static int avg_depth;
   72 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
   73     "Average number of items examined per softclock call. Units = 1/1000");
   74 static int avg_gcalls;
   75 SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
   76     "Average number of Giant callouts made per softclock call. Units = 1/1000");
   77 static int avg_lockcalls;
   78 SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
   79     "Average number of lock callouts made per softclock call. Units = 1/1000");
   80 static int avg_mpcalls;
   81 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
   82     "Average number of MP callouts made per softclock call. Units = 1/1000");
   83 /*
   84  * TODO:
   85  *      allocate more timeout table slots when table overflows.
   86  */
   87 int callwheelsize, callwheelbits, callwheelmask;
   88 
   89 /*
   90  * The callout cpu migration entity represents informations necessary for
   91  * describing the migrating callout to the new callout cpu.
   92  * The cached informations are very important for deferring migration when
   93  * the migrating callout is already running.
   94  */
   95 struct cc_mig_ent {
   96 #ifdef SMP
   97         void    (*ce_migration_func)(void *);
   98         void    *ce_migration_arg;
   99         int     ce_migration_cpu;
  100         int     ce_migration_ticks;
  101 #endif
  102 };
  103         
  104 /*
  105  * There is one struct callout_cpu per cpu, holding all relevant
  106  * state for the callout processing thread on the individual CPU.
  107  * In particular:
  108  *      cc_ticks is incremented once per tick in callout_cpu().
  109  *      It tracks the global 'ticks' but in a way that the individual
  110  *      threads should not worry about races in the order in which
  111  *      hardclock() and hardclock_cpu() run on the various CPUs.
  112  *      cc_softclock is advanced in callout_cpu() to point to the
  113  *      first entry in cc_callwheel that may need handling. In turn,
  114  *      a softclock() is scheduled so it can serve the various entries i
  115  *      such that cc_softclock <= i <= cc_ticks .
  116  *      XXX maybe cc_softclock and cc_ticks should be volatile ?
  117  *
  118  *      cc_ticks is also used in callout_reset_cpu() to determine
  119  *      when the callout should be served.
  120  */
  121 struct callout_cpu {
  122         struct cc_mig_ent       cc_migrating_entity;
  123         struct mtx              cc_lock;
  124         struct callout          *cc_callout;
  125         struct callout_tailq    *cc_callwheel;
  126         struct callout_list     cc_callfree;
  127         struct callout          *cc_next;
  128         struct callout          *cc_curr;
  129         void                    *cc_cookie;
  130         int                     cc_ticks;
  131         int                     cc_softticks;
  132         int                     cc_cancel;
  133         int                     cc_waiting;
  134         int                     cc_firsttick;
  135 };
  136 
  137 #ifdef SMP
  138 #define cc_migration_func       cc_migrating_entity.ce_migration_func
  139 #define cc_migration_arg        cc_migrating_entity.ce_migration_arg
  140 #define cc_migration_cpu        cc_migrating_entity.ce_migration_cpu
  141 #define cc_migration_ticks      cc_migrating_entity.ce_migration_ticks
  142 
  143 struct callout_cpu cc_cpu[MAXCPU];
  144 #define CPUBLOCK        MAXCPU
  145 #define CC_CPU(cpu)     (&cc_cpu[(cpu)])
  146 #define CC_SELF()       CC_CPU(PCPU_GET(cpuid))
  147 #else
  148 struct callout_cpu cc_cpu;
  149 #define CC_CPU(cpu)     &cc_cpu
  150 #define CC_SELF()       &cc_cpu
  151 #endif
  152 #define CC_LOCK(cc)     mtx_lock_spin(&(cc)->cc_lock)
  153 #define CC_UNLOCK(cc)   mtx_unlock_spin(&(cc)->cc_lock)
  154 #define CC_LOCK_ASSERT(cc)      mtx_assert(&(cc)->cc_lock, MA_OWNED)
  155 
  156 static int timeout_cpu;
  157 void (*callout_new_inserted)(int cpu, int ticks) = NULL;
  158 
  159 MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
  160 
  161 /**
  162  * Locked by cc_lock:
  163  *   cc_curr         - If a callout is in progress, it is curr_callout.
  164  *                     If curr_callout is non-NULL, threads waiting in
  165  *                     callout_drain() will be woken up as soon as the
  166  *                     relevant callout completes.
  167  *   cc_cancel       - Changing to 1 with both callout_lock and c_lock held
  168  *                     guarantees that the current callout will not run.
  169  *                     The softclock() function sets this to 0 before it
  170  *                     drops callout_lock to acquire c_lock, and it calls
  171  *                     the handler only if curr_cancelled is still 0 after
  172  *                     c_lock is successfully acquired.
  173  *   cc_waiting      - If a thread is waiting in callout_drain(), then
  174  *                     callout_wait is nonzero.  Set only when
  175  *                     curr_callout is non-NULL.
  176  */
  177 
  178 /*
  179  * Resets the migration entity tied to a specific callout cpu.
  180  */
  181 static void
  182 cc_cme_cleanup(struct callout_cpu *cc)
  183 {
  184 
  185 #ifdef SMP
  186         cc->cc_migration_cpu = CPUBLOCK;
  187         cc->cc_migration_ticks = 0;
  188         cc->cc_migration_func = NULL;
  189         cc->cc_migration_arg = NULL;
  190 #endif
  191 }
  192 
  193 /*
  194  * Checks if migration is requested by a specific callout cpu.
  195  */
  196 static int
  197 cc_cme_migrating(struct callout_cpu *cc)
  198 {
  199 
  200 #ifdef SMP
  201         return (cc->cc_migration_cpu != CPUBLOCK);
  202 #else
  203         return (0);
  204 #endif
  205 }
  206 
  207 /*
  208  * kern_timeout_callwheel_alloc() - kernel low level callwheel initialization 
  209  *
  210  *      This code is called very early in the kernel initialization sequence,
  211  *      and may be called more then once.
  212  */
  213 caddr_t
  214 kern_timeout_callwheel_alloc(caddr_t v)
  215 {
  216         struct callout_cpu *cc;
  217 
  218         timeout_cpu = PCPU_GET(cpuid);
  219         cc = CC_CPU(timeout_cpu);
  220         /*
  221          * Calculate callout wheel size
  222          */
  223         for (callwheelsize = 1, callwheelbits = 0;
  224              callwheelsize < ncallout;
  225              callwheelsize <<= 1, ++callwheelbits)
  226                 ;
  227         callwheelmask = callwheelsize - 1;
  228 
  229         cc->cc_callout = (struct callout *)v;
  230         v = (caddr_t)(cc->cc_callout + ncallout);
  231         cc->cc_callwheel = (struct callout_tailq *)v;
  232         v = (caddr_t)(cc->cc_callwheel + callwheelsize);
  233         return(v);
  234 }
  235 
  236 static void
  237 callout_cpu_init(struct callout_cpu *cc)
  238 {
  239         struct callout *c;
  240         int i;
  241 
  242         mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
  243         SLIST_INIT(&cc->cc_callfree);
  244         for (i = 0; i < callwheelsize; i++) {
  245                 TAILQ_INIT(&cc->cc_callwheel[i]);
  246         }
  247         cc_cme_cleanup(cc);
  248         if (cc->cc_callout == NULL)
  249                 return;
  250         for (i = 0; i < ncallout; i++) {
  251                 c = &cc->cc_callout[i];
  252                 callout_init(c, 0);
  253                 c->c_flags = CALLOUT_LOCAL_ALLOC;
  254                 SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
  255         }
  256 }
  257 
  258 #ifdef SMP
  259 /*
  260  * Switches the cpu tied to a specific callout.
  261  * The function expects a locked incoming callout cpu and returns with
  262  * locked outcoming callout cpu.
  263  */
  264 static struct callout_cpu *
  265 callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
  266 {
  267         struct callout_cpu *new_cc;
  268 
  269         MPASS(c != NULL && cc != NULL);
  270         CC_LOCK_ASSERT(cc);
  271 
  272         /*
  273          * Avoid interrupts and preemption firing after the callout cpu
  274          * is blocked in order to avoid deadlocks as the new thread
  275          * may be willing to acquire the callout cpu lock.
  276          */
  277         c->c_cpu = CPUBLOCK;
  278         spinlock_enter();
  279         CC_UNLOCK(cc);
  280         new_cc = CC_CPU(new_cpu);
  281         CC_LOCK(new_cc);
  282         spinlock_exit();
  283         c->c_cpu = new_cpu;
  284         return (new_cc);
  285 }
  286 #endif
  287 
  288 /*
  289  * kern_timeout_callwheel_init() - initialize previously reserved callwheel
  290  *                                 space.
  291  *
  292  *      This code is called just once, after the space reserved for the
  293  *      callout wheel has been finalized.
  294  */
  295 void
  296 kern_timeout_callwheel_init(void)
  297 {
  298         callout_cpu_init(CC_CPU(timeout_cpu));
  299 }
  300 
  301 /*
  302  * Start standard softclock thread.
  303  */
  304 static void
  305 start_softclock(void *dummy)
  306 {
  307         struct callout_cpu *cc;
  308 #ifdef SMP
  309         int cpu;
  310 #endif
  311 
  312         cc = CC_CPU(timeout_cpu);
  313         if (swi_add(&clk_intr_event, "clock", softclock, cc, SWI_CLOCK,
  314             INTR_MPSAFE, &cc->cc_cookie))
  315                 panic("died while creating standard software ithreads");
  316 #ifdef SMP
  317         CPU_FOREACH(cpu) {
  318                 if (cpu == timeout_cpu)
  319                         continue;
  320                 cc = CC_CPU(cpu);
  321                 if (swi_add(NULL, "clock", softclock, cc, SWI_CLOCK,
  322                     INTR_MPSAFE, &cc->cc_cookie))
  323                         panic("died while creating standard software ithreads");
  324                 cc->cc_callout = NULL;  /* Only cpu0 handles timeout(). */
  325                 cc->cc_callwheel = malloc(
  326                     sizeof(struct callout_tailq) * callwheelsize, M_CALLOUT,
  327                     M_WAITOK);
  328                 callout_cpu_init(cc);
  329         }
  330 #endif
  331 }
  332 
  333 SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
  334 
  335 void
  336 callout_tick(void)
  337 {
  338         struct callout_cpu *cc;
  339         int need_softclock;
  340         int bucket;
  341 
  342         /*
  343          * Process callouts at a very low cpu priority, so we don't keep the
  344          * relatively high clock interrupt priority any longer than necessary.
  345          */
  346         need_softclock = 0;
  347         cc = CC_SELF();
  348         mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
  349         cc->cc_firsttick = cc->cc_ticks = ticks;
  350         for (; (cc->cc_softticks - cc->cc_ticks) <= 0; cc->cc_softticks++) {
  351                 bucket = cc->cc_softticks & callwheelmask;
  352                 if (!TAILQ_EMPTY(&cc->cc_callwheel[bucket])) {
  353                         need_softclock = 1;
  354                         break;
  355                 }
  356         }
  357         mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
  358         /*
  359          * swi_sched acquires the thread lock, so we don't want to call it
  360          * with cc_lock held; incorrect locking order.
  361          */
  362         if (need_softclock)
  363                 swi_sched(cc->cc_cookie, 0);
  364 }
  365 
  366 int
  367 callout_tickstofirst(int limit)
  368 {
  369         struct callout_cpu *cc;
  370         struct callout *c;
  371         struct callout_tailq *sc;
  372         int curticks;
  373         int skip = 1;
  374 
  375         cc = CC_SELF();
  376         mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
  377         curticks = cc->cc_ticks;
  378         while( skip < ncallout && skip < limit ) {
  379                 sc = &cc->cc_callwheel[ (curticks+skip) & callwheelmask ];
  380                 /* search scanning ticks */
  381                 TAILQ_FOREACH( c, sc, c_links.tqe ){
  382                         if (c->c_time - curticks <= ncallout)
  383                                 goto out;
  384                 }
  385                 skip++;
  386         }
  387 out:
  388         cc->cc_firsttick = curticks + skip;
  389         mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
  390         return (skip);
  391 }
  392 
  393 static struct callout_cpu *
  394 callout_lock(struct callout *c)
  395 {
  396         struct callout_cpu *cc;
  397         int cpu;
  398 
  399         for (;;) {
  400                 cpu = c->c_cpu;
  401 #ifdef SMP
  402                 if (cpu == CPUBLOCK) {
  403                         while (c->c_cpu == CPUBLOCK)
  404                                 cpu_spinwait();
  405                         continue;
  406                 }
  407 #endif
  408                 cc = CC_CPU(cpu);
  409                 CC_LOCK(cc);
  410                 if (cpu == c->c_cpu)
  411                         break;
  412                 CC_UNLOCK(cc);
  413         }
  414         return (cc);
  415 }
  416 
  417 static void
  418 callout_cc_add(struct callout *c, struct callout_cpu *cc, int to_ticks,
  419     void (*func)(void *), void *arg, int cpu)
  420 {
  421 
  422         CC_LOCK_ASSERT(cc);
  423 
  424         if (to_ticks <= 0)
  425                 to_ticks = 1;
  426         c->c_arg = arg;
  427         c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING);
  428         c->c_func = func;
  429         c->c_time = ticks + to_ticks;
  430         TAILQ_INSERT_TAIL(&cc->cc_callwheel[c->c_time & callwheelmask], 
  431             c, c_links.tqe);
  432         if ((c->c_time - cc->cc_firsttick) < 0 &&
  433             callout_new_inserted != NULL) {
  434                 cc->cc_firsttick = c->c_time;
  435                 (*callout_new_inserted)(cpu,
  436                     to_ticks + (ticks - cc->cc_ticks));
  437         }
  438 }
  439 
  440 static void
  441 callout_cc_del(struct callout *c, struct callout_cpu *cc)
  442 {
  443 
  444         if (cc->cc_next == c)
  445                 cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
  446         if (c->c_flags & CALLOUT_LOCAL_ALLOC) {
  447                 c->c_func = NULL;
  448                 SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
  449         }
  450 }
  451 
  452 static struct callout *
  453 softclock_call_cc(struct callout *c, struct callout_cpu *cc, int *mpcalls,
  454     int *lockcalls, int *gcalls)
  455 {
  456         void (*c_func)(void *);
  457         void *c_arg;
  458         struct lock_class *class;
  459         struct lock_object *c_lock;
  460         int c_flags, sharedlock;
  461 #ifdef SMP
  462         struct callout_cpu *new_cc;
  463         void (*new_func)(void *);
  464         void *new_arg;
  465         int new_cpu, new_ticks;
  466 #endif
  467 #ifdef DIAGNOSTIC
  468         struct bintime bt1, bt2;
  469         struct timespec ts2;
  470         static uint64_t maxdt = 36893488147419102LL;    /* 2 msec */
  471         static timeout_t *lastfunc;
  472 #endif
  473 
  474         cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
  475         class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
  476         sharedlock = (c->c_flags & CALLOUT_SHAREDLOCK) ? 0 : 1;
  477         c_lock = c->c_lock;
  478         c_func = c->c_func;
  479         c_arg = c->c_arg;
  480         c_flags = c->c_flags;
  481         if (c->c_flags & CALLOUT_LOCAL_ALLOC)
  482                 c->c_flags = CALLOUT_LOCAL_ALLOC;
  483         else
  484                 c->c_flags &= ~CALLOUT_PENDING;
  485         cc->cc_curr = c;
  486         cc->cc_cancel = 0;
  487         CC_UNLOCK(cc);
  488         if (c_lock != NULL) {
  489                 class->lc_lock(c_lock, sharedlock);
  490                 /*
  491                  * The callout may have been cancelled
  492                  * while we switched locks.
  493                  */
  494                 if (cc->cc_cancel) {
  495                         class->lc_unlock(c_lock);
  496                         goto skip;
  497                 }
  498                 /* The callout cannot be stopped now. */
  499                 cc->cc_cancel = 1;
  500 
  501                 if (c_lock == &Giant.lock_object) {
  502                         (*gcalls)++;
  503                         CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
  504                             c, c_func, c_arg);
  505                 } else {
  506                         (*lockcalls)++;
  507                         CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
  508                             c, c_func, c_arg);
  509                 }
  510         } else {
  511                 (*mpcalls)++;
  512                 CTR3(KTR_CALLOUT, "callout mpsafe %p func %p arg %p",
  513                     c, c_func, c_arg);
  514         }
  515 #ifdef DIAGNOSTIC
  516         binuptime(&bt1);
  517 #endif
  518         THREAD_NO_SLEEPING();
  519         SDT_PROBE(callout_execute, kernel, , callout_start, c, 0, 0, 0, 0);
  520         c_func(c_arg);
  521         SDT_PROBE(callout_execute, kernel, , callout_end, c, 0, 0, 0, 0);
  522         THREAD_SLEEPING_OK();
  523 #ifdef DIAGNOSTIC
  524         binuptime(&bt2);
  525         bintime_sub(&bt2, &bt1);
  526         if (bt2.frac > maxdt) {
  527                 if (lastfunc != c_func || bt2.frac > maxdt * 2) {
  528                         bintime2timespec(&bt2, &ts2);
  529                         printf(
  530                 "Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
  531                             c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
  532                 }
  533                 maxdt = bt2.frac;
  534                 lastfunc = c_func;
  535         }
  536 #endif
  537         CTR1(KTR_CALLOUT, "callout %p finished", c);
  538         if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0)
  539                 class->lc_unlock(c_lock);
  540 skip:
  541         CC_LOCK(cc);
  542         /*
  543          * If the current callout is locally allocated (from
  544          * timeout(9)) then put it on the freelist.
  545          *
  546          * Note: we need to check the cached copy of c_flags because
  547          * if it was not local, then it's not safe to deref the
  548          * callout pointer.
  549          */
  550         if (c_flags & CALLOUT_LOCAL_ALLOC) {
  551                 KASSERT(c->c_flags == CALLOUT_LOCAL_ALLOC,
  552                     ("corrupted callout"));
  553                 c->c_func = NULL;
  554                 SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
  555         }
  556         cc->cc_curr = NULL;
  557         if (cc->cc_waiting) {
  558                 /*
  559                  * There is someone waiting for the
  560                  * callout to complete.
  561                  * If the callout was scheduled for
  562                  * migration just cancel it.
  563                  */
  564                 if (cc_cme_migrating(cc))
  565                         cc_cme_cleanup(cc);
  566                 cc->cc_waiting = 0;
  567                 CC_UNLOCK(cc);
  568                 wakeup(&cc->cc_waiting);
  569                 CC_LOCK(cc);
  570         } else if (cc_cme_migrating(cc)) {
  571 #ifdef SMP
  572                 /*
  573                  * If the callout was scheduled for
  574                  * migration just perform it now.
  575                  */
  576                 new_cpu = cc->cc_migration_cpu;
  577                 new_ticks = cc->cc_migration_ticks;
  578                 new_func = cc->cc_migration_func;
  579                 new_arg = cc->cc_migration_arg;
  580                 cc_cme_cleanup(cc);
  581 
  582                 /*
  583                  * Handle deferred callout stops
  584                  */
  585                 if ((c->c_flags & CALLOUT_DFRMIGRATION) == 0) {
  586                         CTR3(KTR_CALLOUT,
  587                              "deferred cancelled %p func %p arg %p",
  588                              c, new_func, new_arg);
  589                         callout_cc_del(c, cc);
  590                         goto nextc;
  591                 }
  592 
  593                 c->c_flags &= ~CALLOUT_DFRMIGRATION;
  594 
  595                 /*
  596                  * It should be assert here that the
  597                  * callout is not destroyed but that
  598                  * is not easy.
  599                  */
  600                 new_cc = callout_cpu_switch(c, cc, new_cpu);
  601                 callout_cc_add(c, new_cc, new_ticks, new_func, new_arg,
  602                     new_cpu);
  603                 CC_UNLOCK(new_cc);
  604                 CC_LOCK(cc);
  605 #else
  606                 panic("migration should not happen");
  607 #endif
  608         }
  609 #ifdef SMP
  610 nextc:
  611 #endif
  612         return (cc->cc_next);
  613 }
  614 
  615 /*
  616  * The callout mechanism is based on the work of Adam M. Costello and 
  617  * George Varghese, published in a technical report entitled "Redesigning
  618  * the BSD Callout and Timer Facilities" and modified slightly for inclusion
  619  * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
  620  * used in this implementation was published by G. Varghese and T. Lauck in
  621  * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
  622  * the Efficient Implementation of a Timer Facility" in the Proceedings of
  623  * the 11th ACM Annual Symposium on Operating Systems Principles,
  624  * Austin, Texas Nov 1987.
  625  */
  626 
  627 /*
  628  * Software (low priority) clock interrupt.
  629  * Run periodic events from timeout queue.
  630  */
  631 void
  632 softclock(void *arg)
  633 {
  634         struct callout_cpu *cc;
  635         struct callout *c;
  636         struct callout_tailq *bucket;
  637         int curticks;
  638         int steps;      /* #steps since we last allowed interrupts */
  639         int depth;
  640         int mpcalls;
  641         int lockcalls;
  642         int gcalls;
  643 
  644 #ifndef MAX_SOFTCLOCK_STEPS
  645 #define MAX_SOFTCLOCK_STEPS 100 /* Maximum allowed value of steps. */
  646 #endif /* MAX_SOFTCLOCK_STEPS */
  647 
  648         mpcalls = 0;
  649         lockcalls = 0;
  650         gcalls = 0;
  651         depth = 0;
  652         steps = 0;
  653         cc = (struct callout_cpu *)arg;
  654         CC_LOCK(cc);
  655         while (cc->cc_softticks - 1 != cc->cc_ticks) {
  656                 /*
  657                  * cc_softticks may be modified by hard clock, so cache
  658                  * it while we work on a given bucket.
  659                  */
  660                 curticks = cc->cc_softticks;
  661                 cc->cc_softticks++;
  662                 bucket = &cc->cc_callwheel[curticks & callwheelmask];
  663                 c = TAILQ_FIRST(bucket);
  664                 while (c != NULL) {
  665                         depth++;
  666                         if (c->c_time != curticks) {
  667                                 c = TAILQ_NEXT(c, c_links.tqe);
  668                                 ++steps;
  669                                 if (steps >= MAX_SOFTCLOCK_STEPS) {
  670                                         cc->cc_next = c;
  671                                         /* Give interrupts a chance. */
  672                                         CC_UNLOCK(cc);
  673                                         ;       /* nothing */
  674                                         CC_LOCK(cc);
  675                                         c = cc->cc_next;
  676                                         steps = 0;
  677                                 }
  678                         } else {
  679                                 TAILQ_REMOVE(bucket, c, c_links.tqe);
  680                                 c = softclock_call_cc(c, cc, &mpcalls,
  681                                     &lockcalls, &gcalls);
  682                                 steps = 0;
  683                         }
  684                 }
  685         }
  686         avg_depth += (depth * 1000 - avg_depth) >> 8;
  687         avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
  688         avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
  689         avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
  690         cc->cc_next = NULL;
  691         CC_UNLOCK(cc);
  692 }
  693 
  694 /*
  695  * timeout --
  696  *      Execute a function after a specified length of time.
  697  *
  698  * untimeout --
  699  *      Cancel previous timeout function call.
  700  *
  701  * callout_handle_init --
  702  *      Initialize a handle so that using it with untimeout is benign.
  703  *
  704  *      See AT&T BCI Driver Reference Manual for specification.  This
  705  *      implementation differs from that one in that although an 
  706  *      identification value is returned from timeout, the original
  707  *      arguments to timeout as well as the identifier are used to
  708  *      identify entries for untimeout.
  709  */
  710 struct callout_handle
  711 timeout(ftn, arg, to_ticks)
  712         timeout_t *ftn;
  713         void *arg;
  714         int to_ticks;
  715 {
  716         struct callout_cpu *cc;
  717         struct callout *new;
  718         struct callout_handle handle;
  719 
  720         cc = CC_CPU(timeout_cpu);
  721         CC_LOCK(cc);
  722         /* Fill in the next free callout structure. */
  723         new = SLIST_FIRST(&cc->cc_callfree);
  724         if (new == NULL)
  725                 /* XXX Attempt to malloc first */
  726                 panic("timeout table full");
  727         SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
  728         callout_reset(new, to_ticks, ftn, arg);
  729         handle.callout = new;
  730         CC_UNLOCK(cc);
  731 
  732         return (handle);
  733 }
  734 
  735 void
  736 untimeout(ftn, arg, handle)
  737         timeout_t *ftn;
  738         void *arg;
  739         struct callout_handle handle;
  740 {
  741         struct callout_cpu *cc;
  742 
  743         /*
  744          * Check for a handle that was initialized
  745          * by callout_handle_init, but never used
  746          * for a real timeout.
  747          */
  748         if (handle.callout == NULL)
  749                 return;
  750 
  751         cc = callout_lock(handle.callout);
  752         if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
  753                 callout_stop(handle.callout);
  754         CC_UNLOCK(cc);
  755 }
  756 
  757 void
  758 callout_handle_init(struct callout_handle *handle)
  759 {
  760         handle->callout = NULL;
  761 }
  762 
  763 /*
  764  * New interface; clients allocate their own callout structures.
  765  *
  766  * callout_reset() - establish or change a timeout
  767  * callout_stop() - disestablish a timeout
  768  * callout_init() - initialize a callout structure so that it can
  769  *      safely be passed to callout_reset() and callout_stop()
  770  *
  771  * <sys/callout.h> defines three convenience macros:
  772  *
  773  * callout_active() - returns truth if callout has not been stopped,
  774  *      drained, or deactivated since the last time the callout was
  775  *      reset.
  776  * callout_pending() - returns truth if callout is still waiting for timeout
  777  * callout_deactivate() - marks the callout as having been serviced
  778  */
  779 int
  780 callout_reset_on(struct callout *c, int to_ticks, void (*ftn)(void *),
  781     void *arg, int cpu)
  782 {
  783         struct callout_cpu *cc;
  784         int cancelled = 0;
  785 
  786         /*
  787          * Don't allow migration of pre-allocated callouts lest they
  788          * become unbalanced.
  789          */
  790         if (c->c_flags & CALLOUT_LOCAL_ALLOC)
  791                 cpu = c->c_cpu;
  792         cc = callout_lock(c);
  793         if (cc->cc_curr == c) {
  794                 /*
  795                  * We're being asked to reschedule a callout which is
  796                  * currently in progress.  If there is a lock then we
  797                  * can cancel the callout if it has not really started.
  798                  */
  799                 if (c->c_lock != NULL && !cc->cc_cancel)
  800                         cancelled = cc->cc_cancel = 1;
  801                 if (cc->cc_waiting) {
  802                         /*
  803                          * Someone has called callout_drain to kill this
  804                          * callout.  Don't reschedule.
  805                          */
  806                         CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
  807                             cancelled ? "cancelled" : "failed to cancel",
  808                             c, c->c_func, c->c_arg);
  809                         CC_UNLOCK(cc);
  810                         return (cancelled);
  811                 }
  812         }
  813         if (c->c_flags & CALLOUT_PENDING) {
  814                 if (cc->cc_next == c) {
  815                         cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
  816                 }
  817                 TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c,
  818                     c_links.tqe);
  819 
  820                 cancelled = 1;
  821                 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
  822         }
  823 
  824 #ifdef SMP
  825         /*
  826          * If the callout must migrate try to perform it immediately.
  827          * If the callout is currently running, just defer the migration
  828          * to a more appropriate moment.
  829          */
  830         if (c->c_cpu != cpu) {
  831                 if (cc->cc_curr == c) {
  832                         cc->cc_migration_cpu = cpu;
  833                         cc->cc_migration_ticks = to_ticks;
  834                         cc->cc_migration_func = ftn;
  835                         cc->cc_migration_arg = arg;
  836                         c->c_flags |= CALLOUT_DFRMIGRATION;
  837                         CTR5(KTR_CALLOUT,
  838                     "migration of %p func %p arg %p in %d to %u deferred",
  839                             c, c->c_func, c->c_arg, to_ticks, cpu);
  840                         CC_UNLOCK(cc);
  841                         return (cancelled);
  842                 }
  843                 cc = callout_cpu_switch(c, cc, cpu);
  844         }
  845 #endif
  846 
  847         callout_cc_add(c, cc, to_ticks, ftn, arg, cpu);
  848         CTR5(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d",
  849             cancelled ? "re" : "", c, c->c_func, c->c_arg, to_ticks);
  850         CC_UNLOCK(cc);
  851 
  852         return (cancelled);
  853 }
  854 
  855 /*
  856  * Common idioms that can be optimized in the future.
  857  */
  858 int
  859 callout_schedule_on(struct callout *c, int to_ticks, int cpu)
  860 {
  861         return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
  862 }
  863 
  864 int
  865 callout_schedule(struct callout *c, int to_ticks)
  866 {
  867         return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
  868 }
  869 
  870 int
  871 _callout_stop_safe(c, safe)
  872         struct  callout *c;
  873         int     safe;
  874 {
  875         struct callout_cpu *cc, *old_cc;
  876         struct lock_class *class;
  877         int use_lock, sq_locked;
  878 
  879         /*
  880          * Some old subsystems don't hold Giant while running a callout_stop(),
  881          * so just discard this check for the moment.
  882          */
  883         if (!safe && c->c_lock != NULL) {
  884                 if (c->c_lock == &Giant.lock_object)
  885                         use_lock = mtx_owned(&Giant);
  886                 else {
  887                         use_lock = 1;
  888                         class = LOCK_CLASS(c->c_lock);
  889                         class->lc_assert(c->c_lock, LA_XLOCKED);
  890                 }
  891         } else
  892                 use_lock = 0;
  893 
  894         sq_locked = 0;
  895         old_cc = NULL;
  896 again:
  897         cc = callout_lock(c);
  898 
  899         /*
  900          * If the callout was migrating while the callout cpu lock was
  901          * dropped,  just drop the sleepqueue lock and check the states
  902          * again.
  903          */
  904         if (sq_locked != 0 && cc != old_cc) {
  905 #ifdef SMP
  906                 CC_UNLOCK(cc);
  907                 sleepq_release(&old_cc->cc_waiting);
  908                 sq_locked = 0;
  909                 old_cc = NULL;
  910                 goto again;
  911 #else
  912                 panic("migration should not happen");
  913 #endif
  914         }
  915 
  916         /*
  917          * If the callout isn't pending, it's not on the queue, so
  918          * don't attempt to remove it from the queue.  We can try to
  919          * stop it by other means however.
  920          */
  921         if (!(c->c_flags & CALLOUT_PENDING)) {
  922                 c->c_flags &= ~CALLOUT_ACTIVE;
  923 
  924                 /*
  925                  * If it wasn't on the queue and it isn't the current
  926                  * callout, then we can't stop it, so just bail.
  927                  */
  928                 if (cc->cc_curr != c) {
  929                         CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
  930                             c, c->c_func, c->c_arg);
  931                         CC_UNLOCK(cc);
  932                         if (sq_locked)
  933                                 sleepq_release(&cc->cc_waiting);
  934                         return (0);
  935                 }
  936 
  937                 if (safe) {
  938                         /*
  939                          * The current callout is running (or just
  940                          * about to run) and blocking is allowed, so
  941                          * just wait for the current invocation to
  942                          * finish.
  943                          */
  944                         while (cc->cc_curr == c) {
  945 
  946                                 /*
  947                                  * Use direct calls to sleepqueue interface
  948                                  * instead of cv/msleep in order to avoid
  949                                  * a LOR between cc_lock and sleepqueue
  950                                  * chain spinlocks.  This piece of code
  951                                  * emulates a msleep_spin() call actually.
  952                                  *
  953                                  * If we already have the sleepqueue chain
  954                                  * locked, then we can safely block.  If we
  955                                  * don't already have it locked, however,
  956                                  * we have to drop the cc_lock to lock
  957                                  * it.  This opens several races, so we
  958                                  * restart at the beginning once we have
  959                                  * both locks.  If nothing has changed, then
  960                                  * we will end up back here with sq_locked
  961                                  * set.
  962                                  */
  963                                 if (!sq_locked) {
  964                                         CC_UNLOCK(cc);
  965                                         sleepq_lock(&cc->cc_waiting);
  966                                         sq_locked = 1;
  967                                         old_cc = cc;
  968                                         goto again;
  969                                 }
  970 
  971                                 /*
  972                                  * Migration could be cancelled here, but
  973                                  * as long as it is still not sure when it
  974                                  * will be packed up, just let softclock()
  975                                  * take care of it.
  976                                  */
  977                                 cc->cc_waiting = 1;
  978                                 DROP_GIANT();
  979                                 CC_UNLOCK(cc);
  980                                 sleepq_add(&cc->cc_waiting,
  981                                     &cc->cc_lock.lock_object, "codrain",
  982                                     SLEEPQ_SLEEP, 0);
  983                                 sleepq_wait(&cc->cc_waiting, 0);
  984                                 sq_locked = 0;
  985                                 old_cc = NULL;
  986 
  987                                 /* Reacquire locks previously released. */
  988                                 PICKUP_GIANT();
  989                                 CC_LOCK(cc);
  990                         }
  991                 } else if (use_lock && !cc->cc_cancel) {
  992                         /*
  993                          * The current callout is waiting for its
  994                          * lock which we hold.  Cancel the callout
  995                          * and return.  After our caller drops the
  996                          * lock, the callout will be skipped in
  997                          * softclock().
  998                          */
  999                         cc->cc_cancel = 1;
 1000                         CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
 1001                             c, c->c_func, c->c_arg);
 1002                         KASSERT(!cc_cme_migrating(cc),
 1003                             ("callout wrongly scheduled for migration"));
 1004                         CC_UNLOCK(cc);
 1005                         KASSERT(!sq_locked, ("sleepqueue chain locked"));
 1006                         return (1);
 1007                 } else if ((c->c_flags & CALLOUT_DFRMIGRATION) != 0) {
 1008                         c->c_flags &= ~CALLOUT_DFRMIGRATION;
 1009                         CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
 1010                             c, c->c_func, c->c_arg);
 1011                         CC_UNLOCK(cc);
 1012                         return (1);
 1013                 }
 1014                 CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
 1015                     c, c->c_func, c->c_arg);
 1016                 CC_UNLOCK(cc);
 1017                 KASSERT(!sq_locked, ("sleepqueue chain still locked"));
 1018                 return (0);
 1019         }
 1020         if (sq_locked)
 1021                 sleepq_release(&cc->cc_waiting);
 1022 
 1023         c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
 1024 
 1025         CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
 1026             c, c->c_func, c->c_arg);
 1027         TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c,
 1028             c_links.tqe);
 1029         callout_cc_del(c, cc);
 1030 
 1031         CC_UNLOCK(cc);
 1032         return (1);
 1033 }
 1034 
 1035 void
 1036 callout_init(c, mpsafe)
 1037         struct  callout *c;
 1038         int mpsafe;
 1039 {
 1040         bzero(c, sizeof *c);
 1041         if (mpsafe) {
 1042                 c->c_lock = NULL;
 1043                 c->c_flags = CALLOUT_RETURNUNLOCKED;
 1044         } else {
 1045                 c->c_lock = &Giant.lock_object;
 1046                 c->c_flags = 0;
 1047         }
 1048         c->c_cpu = timeout_cpu;
 1049 }
 1050 
 1051 void
 1052 _callout_init_lock(c, lock, flags)
 1053         struct  callout *c;
 1054         struct  lock_object *lock;
 1055         int flags;
 1056 {
 1057         bzero(c, sizeof *c);
 1058         c->c_lock = lock;
 1059         KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
 1060             ("callout_init_lock: bad flags %d", flags));
 1061         KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
 1062             ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
 1063         KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
 1064             (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
 1065             __func__));
 1066         c->c_flags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
 1067         c->c_cpu = timeout_cpu;
 1068 }
 1069 
 1070 #ifdef APM_FIXUP_CALLTODO
 1071 /* 
 1072  * Adjust the kernel calltodo timeout list.  This routine is used after 
 1073  * an APM resume to recalculate the calltodo timer list values with the 
 1074  * number of hz's we have been sleeping.  The next hardclock() will detect 
 1075  * that there are fired timers and run softclock() to execute them.
 1076  *
 1077  * Please note, I have not done an exhaustive analysis of what code this
 1078  * might break.  I am motivated to have my select()'s and alarm()'s that
 1079  * have expired during suspend firing upon resume so that the applications
 1080  * which set the timer can do the maintanence the timer was for as close
 1081  * as possible to the originally intended time.  Testing this code for a 
 1082  * week showed that resuming from a suspend resulted in 22 to 25 timers 
 1083  * firing, which seemed independant on whether the suspend was 2 hours or
 1084  * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
 1085  */
 1086 void
 1087 adjust_timeout_calltodo(time_change)
 1088     struct timeval *time_change;
 1089 {
 1090         register struct callout *p;
 1091         unsigned long delta_ticks;
 1092 
 1093         /* 
 1094          * How many ticks were we asleep?
 1095          * (stolen from tvtohz()).
 1096          */
 1097 
 1098         /* Don't do anything */
 1099         if (time_change->tv_sec < 0)
 1100                 return;
 1101         else if (time_change->tv_sec <= LONG_MAX / 1000000)
 1102                 delta_ticks = (time_change->tv_sec * 1000000 +
 1103                                time_change->tv_usec + (tick - 1)) / tick + 1;
 1104         else if (time_change->tv_sec <= LONG_MAX / hz)
 1105                 delta_ticks = time_change->tv_sec * hz +
 1106                               (time_change->tv_usec + (tick - 1)) / tick + 1;
 1107         else
 1108                 delta_ticks = LONG_MAX;
 1109 
 1110         if (delta_ticks > INT_MAX)
 1111                 delta_ticks = INT_MAX;
 1112 
 1113         /* 
 1114          * Now rip through the timer calltodo list looking for timers
 1115          * to expire.
 1116          */
 1117 
 1118         /* don't collide with softclock() */
 1119         CC_LOCK(cc);
 1120         for (p = calltodo.c_next; p != NULL; p = p->c_next) {
 1121                 p->c_time -= delta_ticks;
 1122 
 1123                 /* Break if the timer had more time on it than delta_ticks */
 1124                 if (p->c_time > 0)
 1125                         break;
 1126 
 1127                 /* take back the ticks the timer didn't use (p->c_time <= 0) */
 1128                 delta_ticks = -p->c_time;
 1129         }
 1130         CC_UNLOCK(cc);
 1131 
 1132         return;
 1133 }
 1134 #endif /* APM_FIXUP_CALLTODO */

Cache object: db6cb871d2063610b3f2b895e5c69f6d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.