The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_timeout.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      From: @(#)kern_clock.c  8.5 (Berkeley) 1/21/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD$");
   39 
   40 #include "opt_kdtrace.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/bus.h>
   45 #include <sys/callout.h>
   46 #include <sys/condvar.h>
   47 #include <sys/interrupt.h>
   48 #include <sys/kernel.h>
   49 #include <sys/ktr.h>
   50 #include <sys/lock.h>
   51 #include <sys/malloc.h>
   52 #include <sys/mutex.h>
   53 #include <sys/proc.h>
   54 #include <sys/sdt.h>
   55 #include <sys/sleepqueue.h>
   56 #include <sys/sysctl.h>
   57 #include <sys/smp.h>
   58 
   59 #ifdef SMP
   60 #include <machine/cpu.h>
   61 #endif
   62 
   63 SDT_PROVIDER_DEFINE(callout_execute);
   64 SDT_PROBE_DEFINE1(callout_execute, kernel, , callout__start,
   65     "struct callout *");
   66 SDT_PROBE_DEFINE1(callout_execute, kernel, , callout__end,
   67     "struct callout *");
   68 
   69 static int avg_depth;
   70 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
   71     "Average number of items examined per softclock call. Units = 1/1000");
   72 static int avg_gcalls;
   73 SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
   74     "Average number of Giant callouts made per softclock call. Units = 1/1000");
   75 static int avg_lockcalls;
   76 SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
   77     "Average number of lock callouts made per softclock call. Units = 1/1000");
   78 static int avg_mpcalls;
   79 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
   80     "Average number of MP callouts made per softclock call. Units = 1/1000");
   81 /*
   82  * TODO:
   83  *      allocate more timeout table slots when table overflows.
   84  */
   85 int callwheelsize, callwheelbits, callwheelmask;
   86 
   87 /*
   88  * The callout cpu migration entity represents informations necessary for
   89  * describing the migrating callout to the new callout cpu.
   90  * The cached informations are very important for deferring migration when
   91  * the migrating callout is already running.
   92  */
   93 struct cc_mig_ent {
   94 #ifdef SMP
   95         void    (*ce_migration_func)(void *);
   96         void    *ce_migration_arg;
   97         int     ce_migration_cpu;
   98         int     ce_migration_ticks;
   99 #endif
  100 };
  101         
  102 /*
  103  * There is one struct callout_cpu per cpu, holding all relevant
  104  * state for the callout processing thread on the individual CPU.
  105  * In particular:
  106  *      cc_ticks is incremented once per tick in callout_cpu().
  107  *      It tracks the global 'ticks' but in a way that the individual
  108  *      threads should not worry about races in the order in which
  109  *      hardclock() and hardclock_cpu() run on the various CPUs.
  110  *      cc_softclock is advanced in callout_cpu() to point to the
  111  *      first entry in cc_callwheel that may need handling. In turn,
  112  *      a softclock() is scheduled so it can serve the various entries i
  113  *      such that cc_softclock <= i <= cc_ticks .
  114  *      XXX maybe cc_softclock and cc_ticks should be volatile ?
  115  *
  116  *      cc_ticks is also used in callout_reset_cpu() to determine
  117  *      when the callout should be served.
  118  */
  119 struct callout_cpu {
  120         struct cc_mig_ent       cc_migrating_entity;
  121         struct mtx              cc_lock;
  122         struct callout          *cc_callout;
  123         struct callout_tailq    *cc_callwheel;
  124         struct callout_list     cc_callfree;
  125         struct callout          *cc_next;
  126         struct callout          *cc_curr;
  127         void                    *cc_cookie;
  128         int                     cc_ticks;
  129         int                     cc_softticks;
  130         int                     cc_cancel;
  131         int                     cc_waiting;
  132         int                     cc_firsttick;
  133 };
  134 
  135 #ifdef SMP
  136 #define cc_migration_func       cc_migrating_entity.ce_migration_func
  137 #define cc_migration_arg        cc_migrating_entity.ce_migration_arg
  138 #define cc_migration_cpu        cc_migrating_entity.ce_migration_cpu
  139 #define cc_migration_ticks      cc_migrating_entity.ce_migration_ticks
  140 
  141 struct callout_cpu cc_cpu[MAXCPU];
  142 #define CPUBLOCK        MAXCPU
  143 #define CC_CPU(cpu)     (&cc_cpu[(cpu)])
  144 #define CC_SELF()       CC_CPU(PCPU_GET(cpuid))
  145 #else
  146 struct callout_cpu cc_cpu;
  147 #define CC_CPU(cpu)     &cc_cpu
  148 #define CC_SELF()       &cc_cpu
  149 #endif
  150 #define CC_LOCK(cc)     mtx_lock_spin(&(cc)->cc_lock)
  151 #define CC_UNLOCK(cc)   mtx_unlock_spin(&(cc)->cc_lock)
  152 #define CC_LOCK_ASSERT(cc)      mtx_assert(&(cc)->cc_lock, MA_OWNED)
  153 
  154 static int timeout_cpu;
  155 void (*callout_new_inserted)(int cpu, int ticks) = NULL;
  156 
  157 static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
  158 
  159 /**
  160  * Locked by cc_lock:
  161  *   cc_curr         - If a callout is in progress, it is curr_callout.
  162  *                     If curr_callout is non-NULL, threads waiting in
  163  *                     callout_drain() will be woken up as soon as the
  164  *                     relevant callout completes.
  165  *   cc_cancel       - Changing to 1 with both callout_lock and c_lock held
  166  *                     guarantees that the current callout will not run.
  167  *                     The softclock() function sets this to 0 before it
  168  *                     drops callout_lock to acquire c_lock, and it calls
  169  *                     the handler only if curr_cancelled is still 0 after
  170  *                     c_lock is successfully acquired.
  171  *   cc_waiting      - If a thread is waiting in callout_drain(), then
  172  *                     callout_wait is nonzero.  Set only when
  173  *                     curr_callout is non-NULL.
  174  */
  175 
  176 /*
  177  * Resets the migration entity tied to a specific callout cpu.
  178  */
  179 static void
  180 cc_cme_cleanup(struct callout_cpu *cc)
  181 {
  182 
  183 #ifdef SMP
  184         cc->cc_migration_cpu = CPUBLOCK;
  185         cc->cc_migration_ticks = 0;
  186         cc->cc_migration_func = NULL;
  187         cc->cc_migration_arg = NULL;
  188 #endif
  189 }
  190 
  191 /*
  192  * Checks if migration is requested by a specific callout cpu.
  193  */
  194 static int
  195 cc_cme_migrating(struct callout_cpu *cc)
  196 {
  197 
  198 #ifdef SMP
  199         return (cc->cc_migration_cpu != CPUBLOCK);
  200 #else
  201         return (0);
  202 #endif
  203 }
  204 
  205 /*
  206  * kern_timeout_callwheel_alloc() - kernel low level callwheel initialization 
  207  *
  208  *      This code is called very early in the kernel initialization sequence,
  209  *      and may be called more then once.
  210  */
  211 caddr_t
  212 kern_timeout_callwheel_alloc(caddr_t v)
  213 {
  214         struct callout_cpu *cc;
  215 
  216         timeout_cpu = PCPU_GET(cpuid);
  217         cc = CC_CPU(timeout_cpu);
  218         /*
  219          * Calculate callout wheel size
  220          */
  221         for (callwheelsize = 1, callwheelbits = 0;
  222              callwheelsize < ncallout;
  223              callwheelsize <<= 1, ++callwheelbits)
  224                 ;
  225         callwheelmask = callwheelsize - 1;
  226 
  227         cc->cc_callout = (struct callout *)v;
  228         v = (caddr_t)(cc->cc_callout + ncallout);
  229         cc->cc_callwheel = (struct callout_tailq *)v;
  230         v = (caddr_t)(cc->cc_callwheel + callwheelsize);
  231         return(v);
  232 }
  233 
  234 static void
  235 callout_cpu_init(struct callout_cpu *cc)
  236 {
  237         struct callout *c;
  238         int i;
  239 
  240         mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
  241         SLIST_INIT(&cc->cc_callfree);
  242         for (i = 0; i < callwheelsize; i++) {
  243                 TAILQ_INIT(&cc->cc_callwheel[i]);
  244         }
  245         cc_cme_cleanup(cc);
  246         if (cc->cc_callout == NULL)
  247                 return;
  248         for (i = 0; i < ncallout; i++) {
  249                 c = &cc->cc_callout[i];
  250                 callout_init(c, 0);
  251                 c->c_flags = CALLOUT_LOCAL_ALLOC;
  252                 SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
  253         }
  254 }
  255 
  256 #ifdef SMP
  257 /*
  258  * Switches the cpu tied to a specific callout.
  259  * The function expects a locked incoming callout cpu and returns with
  260  * locked outcoming callout cpu.
  261  */
  262 static struct callout_cpu *
  263 callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
  264 {
  265         struct callout_cpu *new_cc;
  266 
  267         MPASS(c != NULL && cc != NULL);
  268         CC_LOCK_ASSERT(cc);
  269 
  270         /*
  271          * Avoid interrupts and preemption firing after the callout cpu
  272          * is blocked in order to avoid deadlocks as the new thread
  273          * may be willing to acquire the callout cpu lock.
  274          */
  275         c->c_cpu = CPUBLOCK;
  276         spinlock_enter();
  277         CC_UNLOCK(cc);
  278         new_cc = CC_CPU(new_cpu);
  279         CC_LOCK(new_cc);
  280         spinlock_exit();
  281         c->c_cpu = new_cpu;
  282         return (new_cc);
  283 }
  284 #endif
  285 
  286 /*
  287  * kern_timeout_callwheel_init() - initialize previously reserved callwheel
  288  *                                 space.
  289  *
  290  *      This code is called just once, after the space reserved for the
  291  *      callout wheel has been finalized.
  292  */
  293 void
  294 kern_timeout_callwheel_init(void)
  295 {
  296         callout_cpu_init(CC_CPU(timeout_cpu));
  297 }
  298 
  299 /*
  300  * Start standard softclock thread.
  301  */
  302 static void
  303 start_softclock(void *dummy)
  304 {
  305         struct callout_cpu *cc;
  306 #ifdef SMP
  307         int cpu;
  308 #endif
  309 
  310         cc = CC_CPU(timeout_cpu);
  311         if (swi_add(&clk_intr_event, "clock", softclock, cc, SWI_CLOCK,
  312             INTR_MPSAFE, &cc->cc_cookie))
  313                 panic("died while creating standard software ithreads");
  314 #ifdef SMP
  315         CPU_FOREACH(cpu) {
  316                 if (cpu == timeout_cpu)
  317                         continue;
  318                 cc = CC_CPU(cpu);
  319                 if (swi_add(NULL, "clock", softclock, cc, SWI_CLOCK,
  320                     INTR_MPSAFE, &cc->cc_cookie))
  321                         panic("died while creating standard software ithreads");
  322                 cc->cc_callout = NULL;  /* Only cpu0 handles timeout(). */
  323                 cc->cc_callwheel = malloc(
  324                     sizeof(struct callout_tailq) * callwheelsize, M_CALLOUT,
  325                     M_WAITOK);
  326                 callout_cpu_init(cc);
  327         }
  328 #endif
  329 }
  330 
  331 SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
  332 
  333 void
  334 callout_tick(void)
  335 {
  336         struct callout_cpu *cc;
  337         int need_softclock;
  338         int bucket;
  339 
  340         /*
  341          * Process callouts at a very low cpu priority, so we don't keep the
  342          * relatively high clock interrupt priority any longer than necessary.
  343          */
  344         need_softclock = 0;
  345         cc = CC_SELF();
  346         mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
  347         cc->cc_firsttick = cc->cc_ticks = ticks;
  348         for (; (cc->cc_softticks - cc->cc_ticks) <= 0; cc->cc_softticks++) {
  349                 bucket = cc->cc_softticks & callwheelmask;
  350                 if (!TAILQ_EMPTY(&cc->cc_callwheel[bucket])) {
  351                         need_softclock = 1;
  352                         break;
  353                 }
  354         }
  355         mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
  356         /*
  357          * swi_sched acquires the thread lock, so we don't want to call it
  358          * with cc_lock held; incorrect locking order.
  359          */
  360         if (need_softclock)
  361                 swi_sched(cc->cc_cookie, 0);
  362 }
  363 
  364 int
  365 callout_tickstofirst(int limit)
  366 {
  367         struct callout_cpu *cc;
  368         struct callout *c;
  369         struct callout_tailq *sc;
  370         int curticks;
  371         int skip = 1;
  372 
  373         cc = CC_SELF();
  374         mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
  375         curticks = cc->cc_ticks;
  376         while( skip < ncallout && skip < limit ) {
  377                 sc = &cc->cc_callwheel[ (curticks+skip) & callwheelmask ];
  378                 /* search scanning ticks */
  379                 TAILQ_FOREACH( c, sc, c_links.tqe ){
  380                         if (c->c_time - curticks <= ncallout)
  381                                 goto out;
  382                 }
  383                 skip++;
  384         }
  385 out:
  386         cc->cc_firsttick = curticks + skip;
  387         mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
  388         return (skip);
  389 }
  390 
  391 static struct callout_cpu *
  392 callout_lock(struct callout *c)
  393 {
  394         struct callout_cpu *cc;
  395         int cpu;
  396 
  397         for (;;) {
  398                 cpu = c->c_cpu;
  399 #ifdef SMP
  400                 if (cpu == CPUBLOCK) {
  401                         while (c->c_cpu == CPUBLOCK)
  402                                 cpu_spinwait();
  403                         continue;
  404                 }
  405 #endif
  406                 cc = CC_CPU(cpu);
  407                 CC_LOCK(cc);
  408                 if (cpu == c->c_cpu)
  409                         break;
  410                 CC_UNLOCK(cc);
  411         }
  412         return (cc);
  413 }
  414 
  415 static void
  416 callout_cc_add(struct callout *c, struct callout_cpu *cc, int to_ticks,
  417     void (*func)(void *), void *arg, int cpu)
  418 {
  419 
  420         CC_LOCK_ASSERT(cc);
  421 
  422         if (to_ticks <= 0)
  423                 to_ticks = 1;
  424         c->c_arg = arg;
  425         c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING);
  426         c->c_func = func;
  427         c->c_time = ticks + to_ticks;
  428         TAILQ_INSERT_TAIL(&cc->cc_callwheel[c->c_time & callwheelmask], 
  429             c, c_links.tqe);
  430         if ((c->c_time - cc->cc_firsttick) < 0 &&
  431             callout_new_inserted != NULL) {
  432                 cc->cc_firsttick = c->c_time;
  433                 (*callout_new_inserted)(cpu,
  434                     to_ticks + (ticks - cc->cc_ticks));
  435         }
  436 }
  437 
  438 static void
  439 callout_cc_del(struct callout *c, struct callout_cpu *cc)
  440 {
  441 
  442         if ((c->c_flags & CALLOUT_LOCAL_ALLOC) == 0)
  443                 return;
  444         c->c_func = NULL;
  445         SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
  446 }
  447 
  448 static void
  449 softclock_call_cc(struct callout *c, struct callout_cpu *cc, int *mpcalls,
  450     int *lockcalls, int *gcalls)
  451 {
  452         void (*c_func)(void *);
  453         void *c_arg;
  454         struct lock_class *class;
  455         struct lock_object *c_lock;
  456         int c_flags, sharedlock;
  457 #ifdef SMP
  458         struct callout_cpu *new_cc;
  459         void (*new_func)(void *);
  460         void *new_arg;
  461         int new_cpu, new_ticks;
  462 #endif
  463 #ifdef DIAGNOSTIC
  464         struct bintime bt1, bt2;
  465         struct timespec ts2;
  466         static uint64_t maxdt = 36893488147419102LL;    /* 2 msec */
  467         static timeout_t *lastfunc;
  468 #endif
  469 
  470         KASSERT((c->c_flags & (CALLOUT_PENDING | CALLOUT_ACTIVE)) ==
  471             (CALLOUT_PENDING | CALLOUT_ACTIVE),
  472             ("softclock_call_cc: pend|act %p %x", c, c->c_flags));
  473         class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
  474         sharedlock = (c->c_flags & CALLOUT_SHAREDLOCK) ? 0 : 1;
  475         c_lock = c->c_lock;
  476         c_func = c->c_func;
  477         c_arg = c->c_arg;
  478         c_flags = c->c_flags;
  479         if (c->c_flags & CALLOUT_LOCAL_ALLOC)
  480                 c->c_flags = CALLOUT_LOCAL_ALLOC;
  481         else
  482                 c->c_flags &= ~CALLOUT_PENDING;
  483         cc->cc_curr = c;
  484         cc->cc_cancel = 0;
  485         CC_UNLOCK(cc);
  486         if (c_lock != NULL) {
  487                 class->lc_lock(c_lock, sharedlock);
  488                 /*
  489                  * The callout may have been cancelled
  490                  * while we switched locks.
  491                  */
  492                 if (cc->cc_cancel) {
  493                         class->lc_unlock(c_lock);
  494                         goto skip;
  495                 }
  496                 /* The callout cannot be stopped now. */
  497                 cc->cc_cancel = 1;
  498 
  499                 if (c_lock == &Giant.lock_object) {
  500                         (*gcalls)++;
  501                         CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
  502                             c, c_func, c_arg);
  503                 } else {
  504                         (*lockcalls)++;
  505                         CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
  506                             c, c_func, c_arg);
  507                 }
  508         } else {
  509                 (*mpcalls)++;
  510                 CTR3(KTR_CALLOUT, "callout mpsafe %p func %p arg %p",
  511                     c, c_func, c_arg);
  512         }
  513 #ifdef DIAGNOSTIC
  514         binuptime(&bt1);
  515 #endif
  516         THREAD_NO_SLEEPING();
  517         SDT_PROBE1(callout_execute, kernel, , callout__start, c);
  518         c_func(c_arg);
  519         SDT_PROBE1(callout_execute, kernel, , callout__end, c);
  520         THREAD_SLEEPING_OK();
  521 #ifdef DIAGNOSTIC
  522         binuptime(&bt2);
  523         bintime_sub(&bt2, &bt1);
  524         if (bt2.frac > maxdt) {
  525                 if (lastfunc != c_func || bt2.frac > maxdt * 2) {
  526                         bintime2timespec(&bt2, &ts2);
  527                         printf(
  528                 "Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
  529                             c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
  530                 }
  531                 maxdt = bt2.frac;
  532                 lastfunc = c_func;
  533         }
  534 #endif
  535         CTR1(KTR_CALLOUT, "callout %p finished", c);
  536         if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0)
  537                 class->lc_unlock(c_lock);
  538 skip:
  539         CC_LOCK(cc);
  540         KASSERT(cc->cc_curr == c, ("mishandled cc_curr"));
  541         cc->cc_curr = NULL;
  542         if (cc->cc_waiting) {
  543                 /*
  544                  * There is someone waiting for the
  545                  * callout to complete.
  546                  * If the callout was scheduled for
  547                  * migration just cancel it.
  548                  */
  549                 if (cc_cme_migrating(cc)) {
  550                         cc_cme_cleanup(cc);
  551 
  552                         /*
  553                          * It should be assert here that the callout is not
  554                          * destroyed but that is not easy.
  555                          */
  556                         c->c_flags &= ~CALLOUT_DFRMIGRATION;
  557                 }
  558                 cc->cc_waiting = 0;
  559                 CC_UNLOCK(cc);
  560                 wakeup(&cc->cc_waiting);
  561                 CC_LOCK(cc);
  562         } else if (cc_cme_migrating(cc)) {
  563                 KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0,
  564                     ("Migrating legacy callout %p", c));
  565 #ifdef SMP
  566                 /*
  567                  * If the callout was scheduled for
  568                  * migration just perform it now.
  569                  */
  570                 new_cpu = cc->cc_migration_cpu;
  571                 new_ticks = cc->cc_migration_ticks;
  572                 new_func = cc->cc_migration_func;
  573                 new_arg = cc->cc_migration_arg;
  574                 cc_cme_cleanup(cc);
  575 
  576                 /*
  577                  * It should be assert here that the callout is not destroyed
  578                  * but that is not easy.
  579                  *
  580                  * As first thing, handle deferred callout stops.
  581                  */
  582                 if ((c->c_flags & CALLOUT_DFRMIGRATION) == 0) {
  583                         CTR3(KTR_CALLOUT,
  584                              "deferred cancelled %p func %p arg %p",
  585                              c, new_func, new_arg);
  586                         callout_cc_del(c, cc);
  587                         return;
  588                 }
  589                 c->c_flags &= ~CALLOUT_DFRMIGRATION;
  590 
  591                 new_cc = callout_cpu_switch(c, cc, new_cpu);
  592                 callout_cc_add(c, new_cc, new_ticks, new_func, new_arg,
  593                     new_cpu);
  594                 CC_UNLOCK(new_cc);
  595                 CC_LOCK(cc);
  596 #else
  597                 panic("migration should not happen");
  598 #endif
  599         }
  600         /*
  601          * If the current callout is locally allocated (from
  602          * timeout(9)) then put it on the freelist.
  603          *
  604          * Note: we need to check the cached copy of c_flags because
  605          * if it was not local, then it's not safe to deref the
  606          * callout pointer.
  607          */
  608         KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0 ||
  609             c->c_flags == CALLOUT_LOCAL_ALLOC,
  610             ("corrupted callout"));
  611         if (c_flags & CALLOUT_LOCAL_ALLOC)
  612                 callout_cc_del(c, cc);
  613 }
  614 
  615 /*
  616  * The callout mechanism is based on the work of Adam M. Costello and 
  617  * George Varghese, published in a technical report entitled "Redesigning
  618  * the BSD Callout and Timer Facilities" and modified slightly for inclusion
  619  * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
  620  * used in this implementation was published by G. Varghese and T. Lauck in
  621  * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
  622  * the Efficient Implementation of a Timer Facility" in the Proceedings of
  623  * the 11th ACM Annual Symposium on Operating Systems Principles,
  624  * Austin, Texas Nov 1987.
  625  */
  626 
  627 /*
  628  * Software (low priority) clock interrupt.
  629  * Run periodic events from timeout queue.
  630  */
  631 void
  632 softclock(void *arg)
  633 {
  634         struct callout_cpu *cc;
  635         struct callout *c;
  636         struct callout_tailq *bucket;
  637         int curticks;
  638         int steps;      /* #steps since we last allowed interrupts */
  639         int depth;
  640         int mpcalls;
  641         int lockcalls;
  642         int gcalls;
  643 
  644 #ifndef MAX_SOFTCLOCK_STEPS
  645 #define MAX_SOFTCLOCK_STEPS 100 /* Maximum allowed value of steps. */
  646 #endif /* MAX_SOFTCLOCK_STEPS */
  647 
  648         mpcalls = 0;
  649         lockcalls = 0;
  650         gcalls = 0;
  651         depth = 0;
  652         steps = 0;
  653         cc = (struct callout_cpu *)arg;
  654         CC_LOCK(cc);
  655         while (cc->cc_softticks - 1 != cc->cc_ticks) {
  656                 /*
  657                  * cc_softticks may be modified by hard clock, so cache
  658                  * it while we work on a given bucket.
  659                  */
  660                 curticks = cc->cc_softticks;
  661                 cc->cc_softticks++;
  662                 bucket = &cc->cc_callwheel[curticks & callwheelmask];
  663                 c = TAILQ_FIRST(bucket);
  664                 while (c != NULL) {
  665                         depth++;
  666                         if (c->c_time != curticks) {
  667                                 c = TAILQ_NEXT(c, c_links.tqe);
  668                                 ++steps;
  669                                 if (steps >= MAX_SOFTCLOCK_STEPS) {
  670                                         cc->cc_next = c;
  671                                         /* Give interrupts a chance. */
  672                                         CC_UNLOCK(cc);
  673                                         ;       /* nothing */
  674                                         CC_LOCK(cc);
  675                                         c = cc->cc_next;
  676                                         steps = 0;
  677                                 }
  678                         } else {
  679                                 cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
  680                                 TAILQ_REMOVE(bucket, c, c_links.tqe);
  681                                 softclock_call_cc(c, cc, &mpcalls,
  682                                     &lockcalls, &gcalls);
  683                                 steps = 0;
  684                                 c = cc->cc_next;
  685                         }
  686                 }
  687         }
  688         avg_depth += (depth * 1000 - avg_depth) >> 8;
  689         avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
  690         avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
  691         avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
  692         cc->cc_next = NULL;
  693         CC_UNLOCK(cc);
  694 }
  695 
  696 /*
  697  * timeout --
  698  *      Execute a function after a specified length of time.
  699  *
  700  * untimeout --
  701  *      Cancel previous timeout function call.
  702  *
  703  * callout_handle_init --
  704  *      Initialize a handle so that using it with untimeout is benign.
  705  *
  706  *      See AT&T BCI Driver Reference Manual for specification.  This
  707  *      implementation differs from that one in that although an 
  708  *      identification value is returned from timeout, the original
  709  *      arguments to timeout as well as the identifier are used to
  710  *      identify entries for untimeout.
  711  */
  712 struct callout_handle
  713 timeout(ftn, arg, to_ticks)
  714         timeout_t *ftn;
  715         void *arg;
  716         int to_ticks;
  717 {
  718         struct callout_cpu *cc;
  719         struct callout *new;
  720         struct callout_handle handle;
  721 
  722         cc = CC_CPU(timeout_cpu);
  723         CC_LOCK(cc);
  724         /* Fill in the next free callout structure. */
  725         new = SLIST_FIRST(&cc->cc_callfree);
  726         if (new == NULL)
  727                 /* XXX Attempt to malloc first */
  728                 panic("timeout table full");
  729         SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
  730         callout_reset(new, to_ticks, ftn, arg);
  731         handle.callout = new;
  732         CC_UNLOCK(cc);
  733 
  734         return (handle);
  735 }
  736 
  737 void
  738 untimeout(ftn, arg, handle)
  739         timeout_t *ftn;
  740         void *arg;
  741         struct callout_handle handle;
  742 {
  743         struct callout_cpu *cc;
  744 
  745         /*
  746          * Check for a handle that was initialized
  747          * by callout_handle_init, but never used
  748          * for a real timeout.
  749          */
  750         if (handle.callout == NULL)
  751                 return;
  752 
  753         cc = callout_lock(handle.callout);
  754         if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
  755                 callout_stop(handle.callout);
  756         CC_UNLOCK(cc);
  757 }
  758 
  759 void
  760 callout_handle_init(struct callout_handle *handle)
  761 {
  762         handle->callout = NULL;
  763 }
  764 
  765 /*
  766  * New interface; clients allocate their own callout structures.
  767  *
  768  * callout_reset() - establish or change a timeout
  769  * callout_stop() - disestablish a timeout
  770  * callout_init() - initialize a callout structure so that it can
  771  *      safely be passed to callout_reset() and callout_stop()
  772  *
  773  * <sys/callout.h> defines three convenience macros:
  774  *
  775  * callout_active() - returns truth if callout has not been stopped,
  776  *      drained, or deactivated since the last time the callout was
  777  *      reset.
  778  * callout_pending() - returns truth if callout is still waiting for timeout
  779  * callout_deactivate() - marks the callout as having been serviced
  780  */
  781 int
  782 callout_reset_on(struct callout *c, int to_ticks, void (*ftn)(void *),
  783     void *arg, int cpu)
  784 {
  785         struct callout_cpu *cc;
  786         int cancelled = 0;
  787 
  788         /*
  789          * Don't allow migration of pre-allocated callouts lest they
  790          * become unbalanced.
  791          */
  792         if (c->c_flags & CALLOUT_LOCAL_ALLOC)
  793                 cpu = c->c_cpu;
  794         cc = callout_lock(c);
  795         if (cc->cc_curr == c) {
  796                 /*
  797                  * We're being asked to reschedule a callout which is
  798                  * currently in progress.  If there is a lock then we
  799                  * can cancel the callout if it has not really started.
  800                  */
  801                 if (c->c_lock != NULL && !cc->cc_cancel)
  802                         cancelled = cc->cc_cancel = 1;
  803                 if (cc->cc_waiting) {
  804                         /*
  805                          * Someone has called callout_drain to kill this
  806                          * callout.  Don't reschedule.
  807                          */
  808                         CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
  809                             cancelled ? "cancelled" : "failed to cancel",
  810                             c, c->c_func, c->c_arg);
  811                         CC_UNLOCK(cc);
  812                         return (cancelled);
  813                 }
  814         }
  815         if (c->c_flags & CALLOUT_PENDING) {
  816                 if (cc->cc_next == c) {
  817                         cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
  818                 }
  819                 TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c,
  820                     c_links.tqe);
  821 
  822                 cancelled = 1;
  823                 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
  824         }
  825 
  826 #ifdef SMP
  827         /*
  828          * If the callout must migrate try to perform it immediately.
  829          * If the callout is currently running, just defer the migration
  830          * to a more appropriate moment.
  831          */
  832         if (c->c_cpu != cpu) {
  833                 if (cc->cc_curr == c) {
  834                         cc->cc_migration_cpu = cpu;
  835                         cc->cc_migration_ticks = to_ticks;
  836                         cc->cc_migration_func = ftn;
  837                         cc->cc_migration_arg = arg;
  838                         c->c_flags |= CALLOUT_DFRMIGRATION;
  839                         CTR5(KTR_CALLOUT,
  840                     "migration of %p func %p arg %p in %d to %u deferred",
  841                             c, c->c_func, c->c_arg, to_ticks, cpu);
  842                         CC_UNLOCK(cc);
  843                         return (cancelled);
  844                 }
  845                 cc = callout_cpu_switch(c, cc, cpu);
  846         }
  847 #endif
  848 
  849         callout_cc_add(c, cc, to_ticks, ftn, arg, cpu);
  850         CTR5(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d",
  851             cancelled ? "re" : "", c, c->c_func, c->c_arg, to_ticks);
  852         CC_UNLOCK(cc);
  853 
  854         return (cancelled);
  855 }
  856 
  857 /*
  858  * Common idioms that can be optimized in the future.
  859  */
  860 int
  861 callout_schedule_on(struct callout *c, int to_ticks, int cpu)
  862 {
  863         return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
  864 }
  865 
  866 int
  867 callout_schedule(struct callout *c, int to_ticks)
  868 {
  869         return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
  870 }
  871 
  872 int
  873 _callout_stop_safe(c, safe)
  874         struct  callout *c;
  875         int     safe;
  876 {
  877         struct callout_cpu *cc, *old_cc;
  878         struct lock_class *class;
  879         int use_lock, sq_locked;
  880 
  881         /*
  882          * Some old subsystems don't hold Giant while running a callout_stop(),
  883          * so just discard this check for the moment.
  884          */
  885         if (!safe && c->c_lock != NULL) {
  886                 if (c->c_lock == &Giant.lock_object)
  887                         use_lock = mtx_owned(&Giant);
  888                 else {
  889                         use_lock = 1;
  890                         class = LOCK_CLASS(c->c_lock);
  891                         class->lc_assert(c->c_lock, LA_XLOCKED);
  892                 }
  893         } else
  894                 use_lock = 0;
  895 
  896         sq_locked = 0;
  897         old_cc = NULL;
  898 again:
  899         cc = callout_lock(c);
  900 
  901         /*
  902          * If the callout was migrating while the callout cpu lock was
  903          * dropped,  just drop the sleepqueue lock and check the states
  904          * again.
  905          */
  906         if (sq_locked != 0 && cc != old_cc) {
  907 #ifdef SMP
  908                 CC_UNLOCK(cc);
  909                 sleepq_release(&old_cc->cc_waiting);
  910                 sq_locked = 0;
  911                 old_cc = NULL;
  912                 goto again;
  913 #else
  914                 panic("migration should not happen");
  915 #endif
  916         }
  917 
  918         /*
  919          * If the callout isn't pending, it's not on the queue, so
  920          * don't attempt to remove it from the queue.  We can try to
  921          * stop it by other means however.
  922          */
  923         if (!(c->c_flags & CALLOUT_PENDING)) {
  924                 c->c_flags &= ~CALLOUT_ACTIVE;
  925 
  926                 /*
  927                  * If it wasn't on the queue and it isn't the current
  928                  * callout, then we can't stop it, so just bail.
  929                  */
  930                 if (cc->cc_curr != c) {
  931                         CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
  932                             c, c->c_func, c->c_arg);
  933                         CC_UNLOCK(cc);
  934                         if (sq_locked)
  935                                 sleepq_release(&cc->cc_waiting);
  936                         return (0);
  937                 }
  938 
  939                 if (safe) {
  940                         /*
  941                          * The current callout is running (or just
  942                          * about to run) and blocking is allowed, so
  943                          * just wait for the current invocation to
  944                          * finish.
  945                          */
  946                         while (cc->cc_curr == c) {
  947 
  948                                 /*
  949                                  * Use direct calls to sleepqueue interface
  950                                  * instead of cv/msleep in order to avoid
  951                                  * a LOR between cc_lock and sleepqueue
  952                                  * chain spinlocks.  This piece of code
  953                                  * emulates a msleep_spin() call actually.
  954                                  *
  955                                  * If we already have the sleepqueue chain
  956                                  * locked, then we can safely block.  If we
  957                                  * don't already have it locked, however,
  958                                  * we have to drop the cc_lock to lock
  959                                  * it.  This opens several races, so we
  960                                  * restart at the beginning once we have
  961                                  * both locks.  If nothing has changed, then
  962                                  * we will end up back here with sq_locked
  963                                  * set.
  964                                  */
  965                                 if (!sq_locked) {
  966                                         CC_UNLOCK(cc);
  967                                         sleepq_lock(&cc->cc_waiting);
  968                                         sq_locked = 1;
  969                                         old_cc = cc;
  970                                         goto again;
  971                                 }
  972 
  973                                 /*
  974                                  * Migration could be cancelled here, but
  975                                  * as long as it is still not sure when it
  976                                  * will be packed up, just let softclock()
  977                                  * take care of it.
  978                                  */
  979                                 cc->cc_waiting = 1;
  980                                 DROP_GIANT();
  981                                 CC_UNLOCK(cc);
  982                                 sleepq_add(&cc->cc_waiting,
  983                                     &cc->cc_lock.lock_object, "codrain",
  984                                     SLEEPQ_SLEEP, 0);
  985                                 sleepq_wait(&cc->cc_waiting, 0);
  986                                 sq_locked = 0;
  987                                 old_cc = NULL;
  988 
  989                                 /* Reacquire locks previously released. */
  990                                 PICKUP_GIANT();
  991                                 CC_LOCK(cc);
  992                         }
  993                 } else if (use_lock && !cc->cc_cancel) {
  994                         /*
  995                          * The current callout is waiting for its
  996                          * lock which we hold.  Cancel the callout
  997                          * and return.  After our caller drops the
  998                          * lock, the callout will be skipped in
  999                          * softclock().
 1000                          */
 1001                         cc->cc_cancel = 1;
 1002                         CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
 1003                             c, c->c_func, c->c_arg);
 1004                         KASSERT(!cc_cme_migrating(cc),
 1005                             ("callout wrongly scheduled for migration"));
 1006                         CC_UNLOCK(cc);
 1007                         KASSERT(!sq_locked, ("sleepqueue chain locked"));
 1008                         return (1);
 1009                 } else if ((c->c_flags & CALLOUT_DFRMIGRATION) != 0) {
 1010                         c->c_flags &= ~CALLOUT_DFRMIGRATION;
 1011                         CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
 1012                             c, c->c_func, c->c_arg);
 1013                         CC_UNLOCK(cc);
 1014                         return (1);
 1015                 }
 1016                 CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
 1017                     c, c->c_func, c->c_arg);
 1018                 CC_UNLOCK(cc);
 1019                 KASSERT(!sq_locked, ("sleepqueue chain still locked"));
 1020                 return (0);
 1021         }
 1022         if (sq_locked)
 1023                 sleepq_release(&cc->cc_waiting);
 1024 
 1025         c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
 1026 
 1027         CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
 1028             c, c->c_func, c->c_arg);
 1029         if (cc->cc_next == c)
 1030                 cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
 1031         TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c,
 1032             c_links.tqe);
 1033         callout_cc_del(c, cc);
 1034 
 1035         CC_UNLOCK(cc);
 1036         return (1);
 1037 }
 1038 
 1039 void
 1040 callout_init(c, mpsafe)
 1041         struct  callout *c;
 1042         int mpsafe;
 1043 {
 1044         bzero(c, sizeof *c);
 1045         if (mpsafe) {
 1046                 c->c_lock = NULL;
 1047                 c->c_flags = CALLOUT_RETURNUNLOCKED;
 1048         } else {
 1049                 c->c_lock = &Giant.lock_object;
 1050                 c->c_flags = 0;
 1051         }
 1052         c->c_cpu = timeout_cpu;
 1053 }
 1054 
 1055 void
 1056 _callout_init_lock(c, lock, flags)
 1057         struct  callout *c;
 1058         struct  lock_object *lock;
 1059         int flags;
 1060 {
 1061         bzero(c, sizeof *c);
 1062         c->c_lock = lock;
 1063         KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
 1064             ("callout_init_lock: bad flags %d", flags));
 1065         KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
 1066             ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
 1067         KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
 1068             (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
 1069             __func__));
 1070         c->c_flags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
 1071         c->c_cpu = timeout_cpu;
 1072 }
 1073 
 1074 #ifdef APM_FIXUP_CALLTODO
 1075 /* 
 1076  * Adjust the kernel calltodo timeout list.  This routine is used after 
 1077  * an APM resume to recalculate the calltodo timer list values with the 
 1078  * number of hz's we have been sleeping.  The next hardclock() will detect 
 1079  * that there are fired timers and run softclock() to execute them.
 1080  *
 1081  * Please note, I have not done an exhaustive analysis of what code this
 1082  * might break.  I am motivated to have my select()'s and alarm()'s that
 1083  * have expired during suspend firing upon resume so that the applications
 1084  * which set the timer can do the maintanence the timer was for as close
 1085  * as possible to the originally intended time.  Testing this code for a 
 1086  * week showed that resuming from a suspend resulted in 22 to 25 timers 
 1087  * firing, which seemed independant on whether the suspend was 2 hours or
 1088  * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
 1089  */
 1090 void
 1091 adjust_timeout_calltodo(time_change)
 1092     struct timeval *time_change;
 1093 {
 1094         register struct callout *p;
 1095         unsigned long delta_ticks;
 1096 
 1097         /* 
 1098          * How many ticks were we asleep?
 1099          * (stolen from tvtohz()).
 1100          */
 1101 
 1102         /* Don't do anything */
 1103         if (time_change->tv_sec < 0)
 1104                 return;
 1105         else if (time_change->tv_sec <= LONG_MAX / 1000000)
 1106                 delta_ticks = (time_change->tv_sec * 1000000 +
 1107                                time_change->tv_usec + (tick - 1)) / tick + 1;
 1108         else if (time_change->tv_sec <= LONG_MAX / hz)
 1109                 delta_ticks = time_change->tv_sec * hz +
 1110                               (time_change->tv_usec + (tick - 1)) / tick + 1;
 1111         else
 1112                 delta_ticks = LONG_MAX;
 1113 
 1114         if (delta_ticks > INT_MAX)
 1115                 delta_ticks = INT_MAX;
 1116 
 1117         /* 
 1118          * Now rip through the timer calltodo list looking for timers
 1119          * to expire.
 1120          */
 1121 
 1122         /* don't collide with softclock() */
 1123         CC_LOCK(cc);
 1124         for (p = calltodo.c_next; p != NULL; p = p->c_next) {
 1125                 p->c_time -= delta_ticks;
 1126 
 1127                 /* Break if the timer had more time on it than delta_ticks */
 1128                 if (p->c_time > 0)
 1129                         break;
 1130 
 1131                 /* take back the ticks the timer didn't use (p->c_time <= 0) */
 1132                 delta_ticks = -p->c_time;
 1133         }
 1134         CC_UNLOCK(cc);
 1135 
 1136         return;
 1137 }
 1138 #endif /* APM_FIXUP_CALLTODO */

Cache object: 95c13515083671113fb76782b7f99af4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.