The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_umtx.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2015, 2016 The FreeBSD Foundation
    3  * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
    4  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
    5  * All rights reserved.
    6  *
    7  * Portions of this software were developed by Konstantin Belousov
    8  * under sponsorship from the FreeBSD Foundation.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice unmodified, this list of conditions, and the following
   15  *    disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/11.2/sys/kern/kern_umtx.c 330677 2018-03-09 01:17:03Z brooks $");
   34 
   35 #include "opt_compat.h"
   36 #include "opt_umtx_profiling.h"
   37 
   38 #include <sys/param.h>
   39 #include <sys/kernel.h>
   40 #include <sys/fcntl.h>
   41 #include <sys/file.h>
   42 #include <sys/filedesc.h>
   43 #include <sys/limits.h>
   44 #include <sys/lock.h>
   45 #include <sys/malloc.h>
   46 #include <sys/mman.h>
   47 #include <sys/mutex.h>
   48 #include <sys/priv.h>
   49 #include <sys/proc.h>
   50 #include <sys/resource.h>
   51 #include <sys/resourcevar.h>
   52 #include <sys/rwlock.h>
   53 #include <sys/sbuf.h>
   54 #include <sys/sched.h>
   55 #include <sys/smp.h>
   56 #include <sys/sysctl.h>
   57 #include <sys/sysent.h>
   58 #include <sys/systm.h>
   59 #include <sys/sysproto.h>
   60 #include <sys/syscallsubr.h>
   61 #include <sys/taskqueue.h>
   62 #include <sys/time.h>
   63 #include <sys/eventhandler.h>
   64 #include <sys/umtx.h>
   65 
   66 #include <security/mac/mac_framework.h>
   67 
   68 #include <vm/vm.h>
   69 #include <vm/vm_param.h>
   70 #include <vm/pmap.h>
   71 #include <vm/vm_map.h>
   72 #include <vm/vm_object.h>
   73 
   74 #include <machine/atomic.h>
   75 #include <machine/cpu.h>
   76 
   77 #ifdef COMPAT_FREEBSD32
   78 #include <compat/freebsd32/freebsd32_proto.h>
   79 #endif
   80 
   81 #define _UMUTEX_TRY             1
   82 #define _UMUTEX_WAIT            2
   83 
   84 #ifdef UMTX_PROFILING
   85 #define UPROF_PERC_BIGGER(w, f, sw, sf)                                 \
   86         (((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
   87 #endif
   88 
   89 /* Priority inheritance mutex info. */
   90 struct umtx_pi {
   91         /* Owner thread */
   92         struct thread           *pi_owner;
   93 
   94         /* Reference count */
   95         int                     pi_refcount;
   96 
   97         /* List entry to link umtx holding by thread */
   98         TAILQ_ENTRY(umtx_pi)    pi_link;
   99 
  100         /* List entry in hash */
  101         TAILQ_ENTRY(umtx_pi)    pi_hashlink;
  102 
  103         /* List for waiters */
  104         TAILQ_HEAD(,umtx_q)     pi_blocked;
  105 
  106         /* Identify a userland lock object */
  107         struct umtx_key         pi_key;
  108 };
  109 
  110 /* A userland synchronous object user. */
  111 struct umtx_q {
  112         /* Linked list for the hash. */
  113         TAILQ_ENTRY(umtx_q)     uq_link;
  114 
  115         /* Umtx key. */
  116         struct umtx_key         uq_key;
  117 
  118         /* Umtx flags. */
  119         int                     uq_flags;
  120 #define UQF_UMTXQ       0x0001
  121 
  122         /* The thread waits on. */
  123         struct thread           *uq_thread;
  124 
  125         /*
  126          * Blocked on PI mutex. read can use chain lock
  127          * or umtx_lock, write must have both chain lock and
  128          * umtx_lock being hold.
  129          */
  130         struct umtx_pi          *uq_pi_blocked;
  131 
  132         /* On blocked list */
  133         TAILQ_ENTRY(umtx_q)     uq_lockq;
  134 
  135         /* Thread contending with us */
  136         TAILQ_HEAD(,umtx_pi)    uq_pi_contested;
  137 
  138         /* Inherited priority from PP mutex */
  139         u_char                  uq_inherited_pri;
  140         
  141         /* Spare queue ready to be reused */
  142         struct umtxq_queue      *uq_spare_queue;
  143 
  144         /* The queue we on */
  145         struct umtxq_queue      *uq_cur_queue;
  146 };
  147 
  148 TAILQ_HEAD(umtxq_head, umtx_q);
  149 
  150 /* Per-key wait-queue */
  151 struct umtxq_queue {
  152         struct umtxq_head       head;
  153         struct umtx_key         key;
  154         LIST_ENTRY(umtxq_queue) link;
  155         int                     length;
  156 };
  157 
  158 LIST_HEAD(umtxq_list, umtxq_queue);
  159 
  160 /* Userland lock object's wait-queue chain */
  161 struct umtxq_chain {
  162         /* Lock for this chain. */
  163         struct mtx              uc_lock;
  164 
  165         /* List of sleep queues. */
  166         struct umtxq_list       uc_queue[2];
  167 #define UMTX_SHARED_QUEUE       0
  168 #define UMTX_EXCLUSIVE_QUEUE    1
  169 
  170         LIST_HEAD(, umtxq_queue) uc_spare_queue;
  171 
  172         /* Busy flag */
  173         char                    uc_busy;
  174 
  175         /* Chain lock waiters */
  176         int                     uc_waiters;
  177 
  178         /* All PI in the list */
  179         TAILQ_HEAD(,umtx_pi)    uc_pi_list;
  180 
  181 #ifdef UMTX_PROFILING
  182         u_int                   length;
  183         u_int                   max_length;
  184 #endif
  185 };
  186 
  187 #define UMTXQ_LOCKED_ASSERT(uc)         mtx_assert(&(uc)->uc_lock, MA_OWNED)
  188 
  189 /*
  190  * Don't propagate time-sharing priority, there is a security reason,
  191  * a user can simply introduce PI-mutex, let thread A lock the mutex,
  192  * and let another thread B block on the mutex, because B is
  193  * sleeping, its priority will be boosted, this causes A's priority to
  194  * be boosted via priority propagating too and will never be lowered even
  195  * if it is using 100%CPU, this is unfair to other processes.
  196  */
  197 
  198 #define UPRI(td)        (((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
  199                           (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
  200                          PRI_MAX_TIMESHARE : (td)->td_user_pri)
  201 
  202 #define GOLDEN_RATIO_PRIME      2654404609U
  203 #define UMTX_CHAINS             512
  204 #define UMTX_SHIFTS             (__WORD_BIT - 9)
  205 
  206 #define GET_SHARE(flags)        \
  207     (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
  208 
  209 #define BUSY_SPINS              200
  210 
  211 struct abs_timeout {
  212         int clockid;
  213         bool is_abs_real;       /* TIMER_ABSTIME && CLOCK_REALTIME* */
  214         struct timespec cur;
  215         struct timespec end;
  216 };
  217 
  218 #ifdef COMPAT_FREEBSD32
  219 struct umutex32 {
  220         volatile __lwpid_t      m_owner;        /* Owner of the mutex */
  221         __uint32_t              m_flags;        /* Flags of the mutex */
  222         __uint32_t              m_ceilings[2];  /* Priority protect ceiling */
  223         __uint32_t              m_rb_lnk;       /* Robust linkage */
  224         __uint32_t              m_pad;
  225         __uint32_t              m_spare[2];
  226 };
  227 
  228 _Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
  229 _Static_assert(__offsetof(struct umutex, m_spare[0]) ==
  230     __offsetof(struct umutex32, m_spare[0]), "m_spare32");
  231 #endif
  232 
  233 int umtx_shm_vnobj_persistent = 0;
  234 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
  235     &umtx_shm_vnobj_persistent, 0,
  236     "False forces destruction of umtx attached to file, on last close");
  237 static int umtx_max_rb = 1000;
  238 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
  239     &umtx_max_rb, 0,
  240     "");
  241 
  242 static uma_zone_t               umtx_pi_zone;
  243 static struct umtxq_chain       umtxq_chains[2][UMTX_CHAINS];
  244 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
  245 static int                      umtx_pi_allocated;
  246 
  247 static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW, 0, "umtx debug");
  248 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
  249     &umtx_pi_allocated, 0, "Allocated umtx_pi");
  250 static int umtx_verbose_rb = 1;
  251 SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
  252     &umtx_verbose_rb, 0,
  253     "");
  254 
  255 #ifdef UMTX_PROFILING
  256 static long max_length;
  257 SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
  258 static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD, 0, "umtx chain stats");
  259 #endif
  260 
  261 static void abs_timeout_update(struct abs_timeout *timo);
  262 
  263 static void umtx_shm_init(void);
  264 static void umtxq_sysinit(void *);
  265 static void umtxq_hash(struct umtx_key *key);
  266 static struct umtxq_chain *umtxq_getchain(struct umtx_key *key);
  267 static void umtxq_lock(struct umtx_key *key);
  268 static void umtxq_unlock(struct umtx_key *key);
  269 static void umtxq_busy(struct umtx_key *key);
  270 static void umtxq_unbusy(struct umtx_key *key);
  271 static void umtxq_insert_queue(struct umtx_q *uq, int q);
  272 static void umtxq_remove_queue(struct umtx_q *uq, int q);
  273 static int umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *);
  274 static int umtxq_count(struct umtx_key *key);
  275 static struct umtx_pi *umtx_pi_alloc(int);
  276 static void umtx_pi_free(struct umtx_pi *pi);
  277 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
  278     bool rb);
  279 static void umtx_thread_cleanup(struct thread *td);
  280 static void umtx_exec_hook(void *arg __unused, struct proc *p __unused,
  281     struct image_params *imgp __unused);
  282 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
  283 
  284 #define umtxq_signal(key, nwake)        umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
  285 #define umtxq_insert(uq)        umtxq_insert_queue((uq), UMTX_SHARED_QUEUE)
  286 #define umtxq_remove(uq)        umtxq_remove_queue((uq), UMTX_SHARED_QUEUE)
  287 
  288 static struct mtx umtx_lock;
  289 
  290 #ifdef UMTX_PROFILING
  291 static void
  292 umtx_init_profiling(void) 
  293 {
  294         struct sysctl_oid *chain_oid;
  295         char chain_name[10];
  296         int i;
  297 
  298         for (i = 0; i < UMTX_CHAINS; ++i) {
  299                 snprintf(chain_name, sizeof(chain_name), "%d", i);
  300                 chain_oid = SYSCTL_ADD_NODE(NULL, 
  301                     SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO, 
  302                     chain_name, CTLFLAG_RD, NULL, "umtx hash stats");
  303                 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  304                     "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
  305                 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  306                     "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
  307         }
  308 }
  309 
  310 static int
  311 sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
  312 {
  313         char buf[512];
  314         struct sbuf sb;
  315         struct umtxq_chain *uc;
  316         u_int fract, i, j, tot, whole;
  317         u_int sf0, sf1, sf2, sf3, sf4;
  318         u_int si0, si1, si2, si3, si4;
  319         u_int sw0, sw1, sw2, sw3, sw4;
  320 
  321         sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
  322         for (i = 0; i < 2; i++) {
  323                 tot = 0;
  324                 for (j = 0; j < UMTX_CHAINS; ++j) {
  325                         uc = &umtxq_chains[i][j];
  326                         mtx_lock(&uc->uc_lock);
  327                         tot += uc->max_length;
  328                         mtx_unlock(&uc->uc_lock);
  329                 }
  330                 if (tot == 0)
  331                         sbuf_printf(&sb, "%u) Empty ", i);
  332                 else {
  333                         sf0 = sf1 = sf2 = sf3 = sf4 = 0;
  334                         si0 = si1 = si2 = si3 = si4 = 0;
  335                         sw0 = sw1 = sw2 = sw3 = sw4 = 0;
  336                         for (j = 0; j < UMTX_CHAINS; j++) {
  337                                 uc = &umtxq_chains[i][j];
  338                                 mtx_lock(&uc->uc_lock);
  339                                 whole = uc->max_length * 100;
  340                                 mtx_unlock(&uc->uc_lock);
  341                                 fract = (whole % tot) * 100;
  342                                 if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
  343                                         sf0 = fract;
  344                                         si0 = j;
  345                                         sw0 = whole;
  346                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw1,
  347                                     sf1)) {
  348                                         sf1 = fract;
  349                                         si1 = j;
  350                                         sw1 = whole;
  351                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw2,
  352                                     sf2)) {
  353                                         sf2 = fract;
  354                                         si2 = j;
  355                                         sw2 = whole;
  356                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw3,
  357                                     sf3)) {
  358                                         sf3 = fract;
  359                                         si3 = j;
  360                                         sw3 = whole;
  361                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw4,
  362                                     sf4)) {
  363                                         sf4 = fract;
  364                                         si4 = j;
  365                                         sw4 = whole;
  366                                 }
  367                         }
  368                         sbuf_printf(&sb, "queue %u:\n", i);
  369                         sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
  370                             sf0 / tot, si0);
  371                         sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
  372                             sf1 / tot, si1);
  373                         sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
  374                             sf2 / tot, si2);
  375                         sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
  376                             sf3 / tot, si3);
  377                         sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
  378                             sf4 / tot, si4);
  379                 }
  380         }
  381         sbuf_trim(&sb);
  382         sbuf_finish(&sb);
  383         sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
  384         sbuf_delete(&sb);
  385         return (0);
  386 }
  387 
  388 static int
  389 sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
  390 {
  391         struct umtxq_chain *uc;
  392         u_int i, j;
  393         int clear, error;
  394 
  395         clear = 0;
  396         error = sysctl_handle_int(oidp, &clear, 0, req);
  397         if (error != 0 || req->newptr == NULL)
  398                 return (error);
  399 
  400         if (clear != 0) {
  401                 for (i = 0; i < 2; ++i) {
  402                         for (j = 0; j < UMTX_CHAINS; ++j) {
  403                                 uc = &umtxq_chains[i][j];
  404                                 mtx_lock(&uc->uc_lock);
  405                                 uc->length = 0;
  406                                 uc->max_length = 0;     
  407                                 mtx_unlock(&uc->uc_lock);
  408                         }
  409                 }
  410         }
  411         return (0);
  412 }
  413 
  414 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
  415     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
  416     sysctl_debug_umtx_chains_clear, "I", "Clear umtx chains statistics");
  417 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
  418     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
  419     sysctl_debug_umtx_chains_peaks, "A", "Highest peaks in chains max length");
  420 #endif
  421 
  422 static void
  423 umtxq_sysinit(void *arg __unused)
  424 {
  425         int i, j;
  426 
  427         umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
  428                 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  429         for (i = 0; i < 2; ++i) {
  430                 for (j = 0; j < UMTX_CHAINS; ++j) {
  431                         mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
  432                                  MTX_DEF | MTX_DUPOK);
  433                         LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
  434                         LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
  435                         LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
  436                         TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
  437                         umtxq_chains[i][j].uc_busy = 0;
  438                         umtxq_chains[i][j].uc_waiters = 0;
  439 #ifdef UMTX_PROFILING
  440                         umtxq_chains[i][j].length = 0;
  441                         umtxq_chains[i][j].max_length = 0;      
  442 #endif
  443                 }
  444         }
  445 #ifdef UMTX_PROFILING
  446         umtx_init_profiling();
  447 #endif
  448         mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
  449         EVENTHANDLER_REGISTER(process_exec, umtx_exec_hook, NULL,
  450             EVENTHANDLER_PRI_ANY);
  451         umtx_shm_init();
  452 }
  453 
  454 struct umtx_q *
  455 umtxq_alloc(void)
  456 {
  457         struct umtx_q *uq;
  458 
  459         uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
  460         uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
  461             M_WAITOK | M_ZERO);
  462         TAILQ_INIT(&uq->uq_spare_queue->head);
  463         TAILQ_INIT(&uq->uq_pi_contested);
  464         uq->uq_inherited_pri = PRI_MAX;
  465         return (uq);
  466 }
  467 
  468 void
  469 umtxq_free(struct umtx_q *uq)
  470 {
  471 
  472         MPASS(uq->uq_spare_queue != NULL);
  473         free(uq->uq_spare_queue, M_UMTX);
  474         free(uq, M_UMTX);
  475 }
  476 
  477 static inline void
  478 umtxq_hash(struct umtx_key *key)
  479 {
  480         unsigned n;
  481 
  482         n = (uintptr_t)key->info.both.a + key->info.both.b;
  483         key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
  484 }
  485 
  486 static inline struct umtxq_chain *
  487 umtxq_getchain(struct umtx_key *key)
  488 {
  489 
  490         if (key->type <= TYPE_SEM)
  491                 return (&umtxq_chains[1][key->hash]);
  492         return (&umtxq_chains[0][key->hash]);
  493 }
  494 
  495 /*
  496  * Lock a chain.
  497  */
  498 static inline void
  499 umtxq_lock(struct umtx_key *key)
  500 {
  501         struct umtxq_chain *uc;
  502 
  503         uc = umtxq_getchain(key);
  504         mtx_lock(&uc->uc_lock);
  505 }
  506 
  507 /*
  508  * Unlock a chain.
  509  */
  510 static inline void
  511 umtxq_unlock(struct umtx_key *key)
  512 {
  513         struct umtxq_chain *uc;
  514 
  515         uc = umtxq_getchain(key);
  516         mtx_unlock(&uc->uc_lock);
  517 }
  518 
  519 /*
  520  * Set chain to busy state when following operation
  521  * may be blocked (kernel mutex can not be used).
  522  */
  523 static inline void
  524 umtxq_busy(struct umtx_key *key)
  525 {
  526         struct umtxq_chain *uc;
  527 
  528         uc = umtxq_getchain(key);
  529         mtx_assert(&uc->uc_lock, MA_OWNED);
  530         if (uc->uc_busy) {
  531 #ifdef SMP
  532                 if (smp_cpus > 1) {
  533                         int count = BUSY_SPINS;
  534                         if (count > 0) {
  535                                 umtxq_unlock(key);
  536                                 while (uc->uc_busy && --count > 0)
  537                                         cpu_spinwait();
  538                                 umtxq_lock(key);
  539                         }
  540                 }
  541 #endif
  542                 while (uc->uc_busy) {
  543                         uc->uc_waiters++;
  544                         msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
  545                         uc->uc_waiters--;
  546                 }
  547         }
  548         uc->uc_busy = 1;
  549 }
  550 
  551 /*
  552  * Unbusy a chain.
  553  */
  554 static inline void
  555 umtxq_unbusy(struct umtx_key *key)
  556 {
  557         struct umtxq_chain *uc;
  558 
  559         uc = umtxq_getchain(key);
  560         mtx_assert(&uc->uc_lock, MA_OWNED);
  561         KASSERT(uc->uc_busy != 0, ("not busy"));
  562         uc->uc_busy = 0;
  563         if (uc->uc_waiters)
  564                 wakeup_one(uc);
  565 }
  566 
  567 static inline void
  568 umtxq_unbusy_unlocked(struct umtx_key *key)
  569 {
  570 
  571         umtxq_lock(key);
  572         umtxq_unbusy(key);
  573         umtxq_unlock(key);
  574 }
  575 
  576 static struct umtxq_queue *
  577 umtxq_queue_lookup(struct umtx_key *key, int q)
  578 {
  579         struct umtxq_queue *uh;
  580         struct umtxq_chain *uc;
  581 
  582         uc = umtxq_getchain(key);
  583         UMTXQ_LOCKED_ASSERT(uc);
  584         LIST_FOREACH(uh, &uc->uc_queue[q], link) {
  585                 if (umtx_key_match(&uh->key, key))
  586                         return (uh);
  587         }
  588 
  589         return (NULL);
  590 }
  591 
  592 static inline void
  593 umtxq_insert_queue(struct umtx_q *uq, int q)
  594 {
  595         struct umtxq_queue *uh;
  596         struct umtxq_chain *uc;
  597 
  598         uc = umtxq_getchain(&uq->uq_key);
  599         UMTXQ_LOCKED_ASSERT(uc);
  600         KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
  601         uh = umtxq_queue_lookup(&uq->uq_key, q);
  602         if (uh != NULL) {
  603                 LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
  604         } else {
  605                 uh = uq->uq_spare_queue;
  606                 uh->key = uq->uq_key;
  607                 LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
  608 #ifdef UMTX_PROFILING
  609                 uc->length++;
  610                 if (uc->length > uc->max_length) {
  611                         uc->max_length = uc->length;
  612                         if (uc->max_length > max_length)
  613                                 max_length = uc->max_length;    
  614                 }
  615 #endif
  616         }
  617         uq->uq_spare_queue = NULL;
  618 
  619         TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
  620         uh->length++;
  621         uq->uq_flags |= UQF_UMTXQ;
  622         uq->uq_cur_queue = uh;
  623         return;
  624 }
  625 
  626 static inline void
  627 umtxq_remove_queue(struct umtx_q *uq, int q)
  628 {
  629         struct umtxq_chain *uc;
  630         struct umtxq_queue *uh;
  631 
  632         uc = umtxq_getchain(&uq->uq_key);
  633         UMTXQ_LOCKED_ASSERT(uc);
  634         if (uq->uq_flags & UQF_UMTXQ) {
  635                 uh = uq->uq_cur_queue;
  636                 TAILQ_REMOVE(&uh->head, uq, uq_link);
  637                 uh->length--;
  638                 uq->uq_flags &= ~UQF_UMTXQ;
  639                 if (TAILQ_EMPTY(&uh->head)) {
  640                         KASSERT(uh->length == 0,
  641                             ("inconsistent umtxq_queue length"));
  642 #ifdef UMTX_PROFILING
  643                         uc->length--;
  644 #endif
  645                         LIST_REMOVE(uh, link);
  646                 } else {
  647                         uh = LIST_FIRST(&uc->uc_spare_queue);
  648                         KASSERT(uh != NULL, ("uc_spare_queue is empty"));
  649                         LIST_REMOVE(uh, link);
  650                 }
  651                 uq->uq_spare_queue = uh;
  652                 uq->uq_cur_queue = NULL;
  653         }
  654 }
  655 
  656 /*
  657  * Check if there are multiple waiters
  658  */
  659 static int
  660 umtxq_count(struct umtx_key *key)
  661 {
  662         struct umtxq_chain *uc;
  663         struct umtxq_queue *uh;
  664 
  665         uc = umtxq_getchain(key);
  666         UMTXQ_LOCKED_ASSERT(uc);
  667         uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
  668         if (uh != NULL)
  669                 return (uh->length);
  670         return (0);
  671 }
  672 
  673 /*
  674  * Check if there are multiple PI waiters and returns first
  675  * waiter.
  676  */
  677 static int
  678 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
  679 {
  680         struct umtxq_chain *uc;
  681         struct umtxq_queue *uh;
  682 
  683         *first = NULL;
  684         uc = umtxq_getchain(key);
  685         UMTXQ_LOCKED_ASSERT(uc);
  686         uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
  687         if (uh != NULL) {
  688                 *first = TAILQ_FIRST(&uh->head);
  689                 return (uh->length);
  690         }
  691         return (0);
  692 }
  693 
  694 static int
  695 umtxq_check_susp(struct thread *td)
  696 {
  697         struct proc *p;
  698         int error;
  699 
  700         /*
  701          * The check for TDF_NEEDSUSPCHK is racy, but it is enough to
  702          * eventually break the lockstep loop.
  703          */
  704         if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
  705                 return (0);
  706         error = 0;
  707         p = td->td_proc;
  708         PROC_LOCK(p);
  709         if (P_SHOULDSTOP(p) ||
  710             ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
  711                 if (p->p_flag & P_SINGLE_EXIT)
  712                         error = EINTR;
  713                 else
  714                         error = ERESTART;
  715         }
  716         PROC_UNLOCK(p);
  717         return (error);
  718 }
  719 
  720 /*
  721  * Wake up threads waiting on an userland object.
  722  */
  723 
  724 static int
  725 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
  726 {
  727         struct umtxq_chain *uc;
  728         struct umtxq_queue *uh;
  729         struct umtx_q *uq;
  730         int ret;
  731 
  732         ret = 0;
  733         uc = umtxq_getchain(key);
  734         UMTXQ_LOCKED_ASSERT(uc);
  735         uh = umtxq_queue_lookup(key, q);
  736         if (uh != NULL) {
  737                 while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
  738                         umtxq_remove_queue(uq, q);
  739                         wakeup(uq);
  740                         if (++ret >= n_wake)
  741                                 return (ret);
  742                 }
  743         }
  744         return (ret);
  745 }
  746 
  747 
  748 /*
  749  * Wake up specified thread.
  750  */
  751 static inline void
  752 umtxq_signal_thread(struct umtx_q *uq)
  753 {
  754         struct umtxq_chain *uc;
  755 
  756         uc = umtxq_getchain(&uq->uq_key);
  757         UMTXQ_LOCKED_ASSERT(uc);
  758         umtxq_remove(uq);
  759         wakeup(uq);
  760 }
  761 
  762 static inline int 
  763 tstohz(const struct timespec *tsp)
  764 {
  765         struct timeval tv;
  766 
  767         TIMESPEC_TO_TIMEVAL(&tv, tsp);
  768         return tvtohz(&tv);
  769 }
  770 
  771 static void
  772 abs_timeout_init(struct abs_timeout *timo, int clockid, int absolute,
  773         const struct timespec *timeout)
  774 {
  775 
  776         timo->clockid = clockid;
  777         if (!absolute) {
  778                 timo->is_abs_real = false;
  779                 abs_timeout_update(timo);
  780                 timo->end = timo->cur;
  781                 timespecadd(&timo->end, timeout);
  782         } else {
  783                 timo->end = *timeout;
  784                 timo->is_abs_real = clockid == CLOCK_REALTIME ||
  785                     clockid == CLOCK_REALTIME_FAST ||
  786                     clockid == CLOCK_REALTIME_PRECISE;
  787                 /*
  788                  * If is_abs_real, umtxq_sleep will read the clock
  789                  * after setting td_rtcgen; otherwise, read it here.
  790                  */
  791                 if (!timo->is_abs_real) {
  792                         abs_timeout_update(timo);
  793                 }
  794         }
  795 }
  796 
  797 static void
  798 abs_timeout_init2(struct abs_timeout *timo, const struct _umtx_time *umtxtime)
  799 {
  800 
  801         abs_timeout_init(timo, umtxtime->_clockid,
  802             (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
  803 }
  804 
  805 static inline void
  806 abs_timeout_update(struct abs_timeout *timo)
  807 {
  808 
  809         kern_clock_gettime(curthread, timo->clockid, &timo->cur);
  810 }
  811 
  812 static int
  813 abs_timeout_gethz(struct abs_timeout *timo)
  814 {
  815         struct timespec tts;
  816 
  817         if (timespeccmp(&timo->end, &timo->cur, <=))
  818                 return (-1); 
  819         tts = timo->end;
  820         timespecsub(&tts, &timo->cur);
  821         return (tstohz(&tts));
  822 }
  823 
  824 static uint32_t
  825 umtx_unlock_val(uint32_t flags, bool rb)
  826 {
  827 
  828         if (rb)
  829                 return (UMUTEX_RB_OWNERDEAD);
  830         else if ((flags & UMUTEX_NONCONSISTENT) != 0)
  831                 return (UMUTEX_RB_NOTRECOV);
  832         else
  833                 return (UMUTEX_UNOWNED);
  834 
  835 }
  836 
  837 /*
  838  * Put thread into sleep state, before sleeping, check if
  839  * thread was removed from umtx queue.
  840  */
  841 static inline int
  842 umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *abstime)
  843 {
  844         struct umtxq_chain *uc;
  845         int error, timo;
  846 
  847         if (abstime != NULL && abstime->is_abs_real) {
  848                 curthread->td_rtcgen = atomic_load_acq_int(&rtc_generation);
  849                 abs_timeout_update(abstime);
  850         }
  851 
  852         uc = umtxq_getchain(&uq->uq_key);
  853         UMTXQ_LOCKED_ASSERT(uc);
  854         for (;;) {
  855                 if (!(uq->uq_flags & UQF_UMTXQ)) {
  856                         error = 0;
  857                         break;
  858                 }
  859                 if (abstime != NULL) {
  860                         timo = abs_timeout_gethz(abstime);
  861                         if (timo < 0) {
  862                                 error = ETIMEDOUT;
  863                                 break;
  864                         }
  865                 } else
  866                         timo = 0;
  867                 error = msleep(uq, &uc->uc_lock, PCATCH | PDROP, wmesg, timo);
  868                 if (error == EINTR || error == ERESTART) {
  869                         umtxq_lock(&uq->uq_key);
  870                         break;
  871                 }
  872                 if (abstime != NULL) {
  873                         if (abstime->is_abs_real)
  874                                 curthread->td_rtcgen =
  875                                     atomic_load_acq_int(&rtc_generation);
  876                         abs_timeout_update(abstime);
  877                 }
  878                 umtxq_lock(&uq->uq_key);
  879         }
  880 
  881         curthread->td_rtcgen = 0;
  882         return (error);
  883 }
  884 
  885 /*
  886  * Convert userspace address into unique logical address.
  887  */
  888 int
  889 umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
  890 {
  891         struct thread *td = curthread;
  892         vm_map_t map;
  893         vm_map_entry_t entry;
  894         vm_pindex_t pindex;
  895         vm_prot_t prot;
  896         boolean_t wired;
  897 
  898         key->type = type;
  899         if (share == THREAD_SHARE) {
  900                 key->shared = 0;
  901                 key->info.private.vs = td->td_proc->p_vmspace;
  902                 key->info.private.addr = (uintptr_t)addr;
  903         } else {
  904                 MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
  905                 map = &td->td_proc->p_vmspace->vm_map;
  906                 if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
  907                     &entry, &key->info.shared.object, &pindex, &prot,
  908                     &wired) != KERN_SUCCESS) {
  909                         return (EFAULT);
  910                 }
  911 
  912                 if ((share == PROCESS_SHARE) ||
  913                     (share == AUTO_SHARE &&
  914                      VM_INHERIT_SHARE == entry->inheritance)) {
  915                         key->shared = 1;
  916                         key->info.shared.offset = (vm_offset_t)addr -
  917                             entry->start + entry->offset;
  918                         vm_object_reference(key->info.shared.object);
  919                 } else {
  920                         key->shared = 0;
  921                         key->info.private.vs = td->td_proc->p_vmspace;
  922                         key->info.private.addr = (uintptr_t)addr;
  923                 }
  924                 vm_map_lookup_done(map, entry);
  925         }
  926 
  927         umtxq_hash(key);
  928         return (0);
  929 }
  930 
  931 /*
  932  * Release key.
  933  */
  934 void
  935 umtx_key_release(struct umtx_key *key)
  936 {
  937         if (key->shared)
  938                 vm_object_deallocate(key->info.shared.object);
  939 }
  940 
  941 /*
  942  * Fetch and compare value, sleep on the address if value is not changed.
  943  */
  944 static int
  945 do_wait(struct thread *td, void *addr, u_long id,
  946     struct _umtx_time *timeout, int compat32, int is_private)
  947 {
  948         struct abs_timeout timo;
  949         struct umtx_q *uq;
  950         u_long tmp;
  951         uint32_t tmp32;
  952         int error = 0;
  953 
  954         uq = td->td_umtxq;
  955         if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
  956                 is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
  957                 return (error);
  958 
  959         if (timeout != NULL)
  960                 abs_timeout_init2(&timo, timeout);
  961 
  962         umtxq_lock(&uq->uq_key);
  963         umtxq_insert(uq);
  964         umtxq_unlock(&uq->uq_key);
  965         if (compat32 == 0) {
  966                 error = fueword(addr, &tmp);
  967                 if (error != 0)
  968                         error = EFAULT;
  969         } else {
  970                 error = fueword32(addr, &tmp32);
  971                 if (error == 0)
  972                         tmp = tmp32;
  973                 else
  974                         error = EFAULT;
  975         }
  976         umtxq_lock(&uq->uq_key);
  977         if (error == 0) {
  978                 if (tmp == id)
  979                         error = umtxq_sleep(uq, "uwait", timeout == NULL ?
  980                             NULL : &timo);
  981                 if ((uq->uq_flags & UQF_UMTXQ) == 0)
  982                         error = 0;
  983                 else
  984                         umtxq_remove(uq);
  985         } else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
  986                 umtxq_remove(uq);
  987         }
  988         umtxq_unlock(&uq->uq_key);
  989         umtx_key_release(&uq->uq_key);
  990         if (error == ERESTART)
  991                 error = EINTR;
  992         return (error);
  993 }
  994 
  995 /*
  996  * Wake up threads sleeping on the specified address.
  997  */
  998 int
  999 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
 1000 {
 1001         struct umtx_key key;
 1002         int ret;
 1003         
 1004         if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
 1005             is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
 1006                 return (ret);
 1007         umtxq_lock(&key);
 1008         umtxq_signal(&key, n_wake);
 1009         umtxq_unlock(&key);
 1010         umtx_key_release(&key);
 1011         return (0);
 1012 }
 1013 
 1014 /*
 1015  * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
 1016  */
 1017 static int
 1018 do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
 1019     struct _umtx_time *timeout, int mode)
 1020 {
 1021         struct abs_timeout timo;
 1022         struct umtx_q *uq;
 1023         uint32_t owner, old, id;
 1024         int error, rv;
 1025 
 1026         id = td->td_tid;
 1027         uq = td->td_umtxq;
 1028         error = 0;
 1029         if (timeout != NULL)
 1030                 abs_timeout_init2(&timo, timeout);
 1031 
 1032         /*
 1033          * Care must be exercised when dealing with umtx structure. It
 1034          * can fault on any access.
 1035          */
 1036         for (;;) {
 1037                 rv = fueword32(&m->m_owner, &owner);
 1038                 if (rv == -1)
 1039                         return (EFAULT);
 1040                 if (mode == _UMUTEX_WAIT) {
 1041                         if (owner == UMUTEX_UNOWNED ||
 1042                             owner == UMUTEX_CONTESTED ||
 1043                             owner == UMUTEX_RB_OWNERDEAD ||
 1044                             owner == UMUTEX_RB_NOTRECOV)
 1045                                 return (0);
 1046                 } else {
 1047                         /*
 1048                          * Robust mutex terminated.  Kernel duty is to
 1049                          * return EOWNERDEAD to the userspace.  The
 1050                          * umutex.m_flags UMUTEX_NONCONSISTENT is set
 1051                          * by the common userspace code.
 1052                          */
 1053                         if (owner == UMUTEX_RB_OWNERDEAD) {
 1054                                 rv = casueword32(&m->m_owner,
 1055                                     UMUTEX_RB_OWNERDEAD, &owner,
 1056                                     id | UMUTEX_CONTESTED);
 1057                                 if (rv == -1)
 1058                                         return (EFAULT);
 1059                                 if (owner == UMUTEX_RB_OWNERDEAD)
 1060                                         return (EOWNERDEAD); /* success */
 1061                                 rv = umtxq_check_susp(td);
 1062                                 if (rv != 0)
 1063                                         return (rv);
 1064                                 continue;
 1065                         }
 1066                         if (owner == UMUTEX_RB_NOTRECOV)
 1067                                 return (ENOTRECOVERABLE);
 1068 
 1069 
 1070                         /*
 1071                          * Try the uncontested case.  This should be
 1072                          * done in userland.
 1073                          */
 1074                         rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
 1075                             &owner, id);
 1076                         /* The address was invalid. */
 1077                         if (rv == -1)
 1078                                 return (EFAULT);
 1079 
 1080                         /* The acquire succeeded. */
 1081                         if (owner == UMUTEX_UNOWNED)
 1082                                 return (0);
 1083 
 1084                         /*
 1085                          * If no one owns it but it is contested try
 1086                          * to acquire it.
 1087                          */
 1088                         if (owner == UMUTEX_CONTESTED) {
 1089                                 rv = casueword32(&m->m_owner,
 1090                                     UMUTEX_CONTESTED, &owner,
 1091                                     id | UMUTEX_CONTESTED);
 1092                                 /* The address was invalid. */
 1093                                 if (rv == -1)
 1094                                         return (EFAULT);
 1095 
 1096                                 if (owner == UMUTEX_CONTESTED)
 1097                                         return (0);
 1098 
 1099                                 rv = umtxq_check_susp(td);
 1100                                 if (rv != 0)
 1101                                         return (rv);
 1102 
 1103                                 /*
 1104                                  * If this failed the lock has
 1105                                  * changed, restart.
 1106                                  */
 1107                                 continue;
 1108                         }
 1109                 }
 1110 
 1111                 if (mode == _UMUTEX_TRY)
 1112                         return (EBUSY);
 1113 
 1114                 /*
 1115                  * If we caught a signal, we have retried and now
 1116                  * exit immediately.
 1117                  */
 1118                 if (error != 0)
 1119                         return (error);
 1120 
 1121                 if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
 1122                     GET_SHARE(flags), &uq->uq_key)) != 0)
 1123                         return (error);
 1124 
 1125                 umtxq_lock(&uq->uq_key);
 1126                 umtxq_busy(&uq->uq_key);
 1127                 umtxq_insert(uq);
 1128                 umtxq_unlock(&uq->uq_key);
 1129 
 1130                 /*
 1131                  * Set the contested bit so that a release in user space
 1132                  * knows to use the system call for unlock.  If this fails
 1133                  * either some one else has acquired the lock or it has been
 1134                  * released.
 1135                  */
 1136                 rv = casueword32(&m->m_owner, owner, &old,
 1137                     owner | UMUTEX_CONTESTED);
 1138 
 1139                 /* The address was invalid. */
 1140                 if (rv == -1) {
 1141                         umtxq_lock(&uq->uq_key);
 1142                         umtxq_remove(uq);
 1143                         umtxq_unbusy(&uq->uq_key);
 1144                         umtxq_unlock(&uq->uq_key);
 1145                         umtx_key_release(&uq->uq_key);
 1146                         return (EFAULT);
 1147                 }
 1148 
 1149                 /*
 1150                  * We set the contested bit, sleep. Otherwise the lock changed
 1151                  * and we need to retry or we lost a race to the thread
 1152                  * unlocking the umtx.
 1153                  */
 1154                 umtxq_lock(&uq->uq_key);
 1155                 umtxq_unbusy(&uq->uq_key);
 1156                 if (old == owner)
 1157                         error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
 1158                             NULL : &timo);
 1159                 umtxq_remove(uq);
 1160                 umtxq_unlock(&uq->uq_key);
 1161                 umtx_key_release(&uq->uq_key);
 1162 
 1163                 if (error == 0)
 1164                         error = umtxq_check_susp(td);
 1165         }
 1166 
 1167         return (0);
 1168 }
 1169 
 1170 /*
 1171  * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
 1172  */
 1173 static int
 1174 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
 1175 {
 1176         struct umtx_key key;
 1177         uint32_t owner, old, id, newlock;
 1178         int error, count;
 1179 
 1180         id = td->td_tid;
 1181         /*
 1182          * Make sure we own this mtx.
 1183          */
 1184         error = fueword32(&m->m_owner, &owner);
 1185         if (error == -1)
 1186                 return (EFAULT);
 1187 
 1188         if ((owner & ~UMUTEX_CONTESTED) != id)
 1189                 return (EPERM);
 1190 
 1191         newlock = umtx_unlock_val(flags, rb);
 1192         if ((owner & UMUTEX_CONTESTED) == 0) {
 1193                 error = casueword32(&m->m_owner, owner, &old, newlock);
 1194                 if (error == -1)
 1195                         return (EFAULT);
 1196                 if (old == owner)
 1197                         return (0);
 1198                 owner = old;
 1199         }
 1200 
 1201         /* We should only ever be in here for contested locks */
 1202         if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
 1203             &key)) != 0)
 1204                 return (error);
 1205 
 1206         umtxq_lock(&key);
 1207         umtxq_busy(&key);
 1208         count = umtxq_count(&key);
 1209         umtxq_unlock(&key);
 1210 
 1211         /*
 1212          * When unlocking the umtx, it must be marked as unowned if
 1213          * there is zero or one thread only waiting for it.
 1214          * Otherwise, it must be marked as contested.
 1215          */
 1216         if (count > 1)
 1217                 newlock |= UMUTEX_CONTESTED;
 1218         error = casueword32(&m->m_owner, owner, &old, newlock);
 1219         umtxq_lock(&key);
 1220         umtxq_signal(&key, 1);
 1221         umtxq_unbusy(&key);
 1222         umtxq_unlock(&key);
 1223         umtx_key_release(&key);
 1224         if (error == -1)
 1225                 return (EFAULT);
 1226         if (old != owner)
 1227                 return (EINVAL);
 1228         return (0);
 1229 }
 1230 
 1231 /*
 1232  * Check if the mutex is available and wake up a waiter,
 1233  * only for simple mutex.
 1234  */
 1235 static int
 1236 do_wake_umutex(struct thread *td, struct umutex *m)
 1237 {
 1238         struct umtx_key key;
 1239         uint32_t owner;
 1240         uint32_t flags;
 1241         int error;
 1242         int count;
 1243 
 1244         error = fueword32(&m->m_owner, &owner);
 1245         if (error == -1)
 1246                 return (EFAULT);
 1247 
 1248         if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
 1249             owner != UMUTEX_RB_NOTRECOV)
 1250                 return (0);
 1251 
 1252         error = fueword32(&m->m_flags, &flags);
 1253         if (error == -1)
 1254                 return (EFAULT);
 1255 
 1256         /* We should only ever be in here for contested locks */
 1257         if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
 1258             &key)) != 0)
 1259                 return (error);
 1260 
 1261         umtxq_lock(&key);
 1262         umtxq_busy(&key);
 1263         count = umtxq_count(&key);
 1264         umtxq_unlock(&key);
 1265 
 1266         if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
 1267             owner != UMUTEX_RB_NOTRECOV) {
 1268                 error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
 1269                     UMUTEX_UNOWNED);
 1270                 if (error == -1)
 1271                         error = EFAULT;
 1272         }
 1273 
 1274         umtxq_lock(&key);
 1275         if (error == 0 && count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
 1276             owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
 1277                 umtxq_signal(&key, 1);
 1278         umtxq_unbusy(&key);
 1279         umtxq_unlock(&key);
 1280         umtx_key_release(&key);
 1281         return (error);
 1282 }
 1283 
 1284 /*
 1285  * Check if the mutex has waiters and tries to fix contention bit.
 1286  */
 1287 static int
 1288 do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
 1289 {
 1290         struct umtx_key key;
 1291         uint32_t owner, old;
 1292         int type;
 1293         int error;
 1294         int count;
 1295 
 1296         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
 1297             UMUTEX_ROBUST)) {
 1298         case 0:
 1299         case UMUTEX_ROBUST:
 1300                 type = TYPE_NORMAL_UMUTEX;
 1301                 break;
 1302         case UMUTEX_PRIO_INHERIT:
 1303                 type = TYPE_PI_UMUTEX;
 1304                 break;
 1305         case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
 1306                 type = TYPE_PI_ROBUST_UMUTEX;
 1307                 break;
 1308         case UMUTEX_PRIO_PROTECT:
 1309                 type = TYPE_PP_UMUTEX;
 1310                 break;
 1311         case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
 1312                 type = TYPE_PP_ROBUST_UMUTEX;
 1313                 break;
 1314         default:
 1315                 return (EINVAL);
 1316         }
 1317         if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
 1318                 return (error);
 1319 
 1320         owner = 0;
 1321         umtxq_lock(&key);
 1322         umtxq_busy(&key);
 1323         count = umtxq_count(&key);
 1324         umtxq_unlock(&key);
 1325         /*
 1326          * Only repair contention bit if there is a waiter, this means the mutex
 1327          * is still being referenced by userland code, otherwise don't update
 1328          * any memory.
 1329          */
 1330         if (count > 1) {
 1331                 error = fueword32(&m->m_owner, &owner);
 1332                 if (error == -1)
 1333                         error = EFAULT;
 1334                 while (error == 0 && (owner & UMUTEX_CONTESTED) == 0) {
 1335                         error = casueword32(&m->m_owner, owner, &old,
 1336                             owner | UMUTEX_CONTESTED);
 1337                         if (error == -1) {
 1338                                 error = EFAULT;
 1339                                 break;
 1340                         }
 1341                         if (old == owner)
 1342                                 break;
 1343                         owner = old;
 1344                         error = umtxq_check_susp(td);
 1345                         if (error != 0)
 1346                                 break;
 1347                 }
 1348         } else if (count == 1) {
 1349                 error = fueword32(&m->m_owner, &owner);
 1350                 if (error == -1)
 1351                         error = EFAULT;
 1352                 while (error == 0 && (owner & ~UMUTEX_CONTESTED) != 0 &&
 1353                     (owner & UMUTEX_CONTESTED) == 0) {
 1354                         error = casueword32(&m->m_owner, owner, &old,
 1355                             owner | UMUTEX_CONTESTED);
 1356                         if (error == -1) {
 1357                                 error = EFAULT;
 1358                                 break;
 1359                         }
 1360                         if (old == owner)
 1361                                 break;
 1362                         owner = old;
 1363                         error = umtxq_check_susp(td);
 1364                         if (error != 0)
 1365                                 break;
 1366                 }
 1367         }
 1368         umtxq_lock(&key);
 1369         if (error == EFAULT) {
 1370                 umtxq_signal(&key, INT_MAX);
 1371         } else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
 1372             owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
 1373                 umtxq_signal(&key, 1);
 1374         umtxq_unbusy(&key);
 1375         umtxq_unlock(&key);
 1376         umtx_key_release(&key);
 1377         return (error);
 1378 }
 1379 
 1380 static inline struct umtx_pi *
 1381 umtx_pi_alloc(int flags)
 1382 {
 1383         struct umtx_pi *pi;
 1384 
 1385         pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
 1386         TAILQ_INIT(&pi->pi_blocked);
 1387         atomic_add_int(&umtx_pi_allocated, 1);
 1388         return (pi);
 1389 }
 1390 
 1391 static inline void
 1392 umtx_pi_free(struct umtx_pi *pi)
 1393 {
 1394         uma_zfree(umtx_pi_zone, pi);
 1395         atomic_add_int(&umtx_pi_allocated, -1);
 1396 }
 1397 
 1398 /*
 1399  * Adjust the thread's position on a pi_state after its priority has been
 1400  * changed.
 1401  */
 1402 static int
 1403 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
 1404 {
 1405         struct umtx_q *uq, *uq1, *uq2;
 1406         struct thread *td1;
 1407 
 1408         mtx_assert(&umtx_lock, MA_OWNED);
 1409         if (pi == NULL)
 1410                 return (0);
 1411 
 1412         uq = td->td_umtxq;
 1413 
 1414         /*
 1415          * Check if the thread needs to be moved on the blocked chain.
 1416          * It needs to be moved if either its priority is lower than
 1417          * the previous thread or higher than the next thread.
 1418          */
 1419         uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
 1420         uq2 = TAILQ_NEXT(uq, uq_lockq);
 1421         if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
 1422             (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
 1423                 /*
 1424                  * Remove thread from blocked chain and determine where
 1425                  * it should be moved to.
 1426                  */
 1427                 TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
 1428                 TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
 1429                         td1 = uq1->uq_thread;
 1430                         MPASS(td1->td_proc->p_magic == P_MAGIC);
 1431                         if (UPRI(td1) > UPRI(td))
 1432                                 break;
 1433                 }
 1434 
 1435                 if (uq1 == NULL)
 1436                         TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
 1437                 else
 1438                         TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
 1439         }
 1440         return (1);
 1441 }
 1442 
 1443 static struct umtx_pi *
 1444 umtx_pi_next(struct umtx_pi *pi)
 1445 {
 1446         struct umtx_q *uq_owner;
 1447 
 1448         if (pi->pi_owner == NULL)
 1449                 return (NULL);
 1450         uq_owner = pi->pi_owner->td_umtxq;
 1451         if (uq_owner == NULL)
 1452                 return (NULL);
 1453         return (uq_owner->uq_pi_blocked);
 1454 }
 1455 
 1456 /*
 1457  * Floyd's Cycle-Finding Algorithm.
 1458  */
 1459 static bool
 1460 umtx_pi_check_loop(struct umtx_pi *pi)
 1461 {
 1462         struct umtx_pi *pi1;    /* fast iterator */
 1463 
 1464         mtx_assert(&umtx_lock, MA_OWNED);
 1465         if (pi == NULL)
 1466                 return (false);
 1467         pi1 = pi;
 1468         for (;;) {
 1469                 pi = umtx_pi_next(pi);
 1470                 if (pi == NULL)
 1471                         break;
 1472                 pi1 = umtx_pi_next(pi1);
 1473                 if (pi1 == NULL)
 1474                         break;
 1475                 pi1 = umtx_pi_next(pi1);
 1476                 if (pi1 == NULL)
 1477                         break;
 1478                 if (pi == pi1)
 1479                         return (true);
 1480         }
 1481         return (false);
 1482 }
 1483 
 1484 /*
 1485  * Propagate priority when a thread is blocked on POSIX
 1486  * PI mutex.
 1487  */ 
 1488 static void
 1489 umtx_propagate_priority(struct thread *td)
 1490 {
 1491         struct umtx_q *uq;
 1492         struct umtx_pi *pi;
 1493         int pri;
 1494 
 1495         mtx_assert(&umtx_lock, MA_OWNED);
 1496         pri = UPRI(td);
 1497         uq = td->td_umtxq;
 1498         pi = uq->uq_pi_blocked;
 1499         if (pi == NULL)
 1500                 return;
 1501         if (umtx_pi_check_loop(pi))
 1502                 return;
 1503 
 1504         for (;;) {
 1505                 td = pi->pi_owner;
 1506                 if (td == NULL || td == curthread)
 1507                         return;
 1508 
 1509                 MPASS(td->td_proc != NULL);
 1510                 MPASS(td->td_proc->p_magic == P_MAGIC);
 1511 
 1512                 thread_lock(td);
 1513                 if (td->td_lend_user_pri > pri)
 1514                         sched_lend_user_prio(td, pri);
 1515                 else {
 1516                         thread_unlock(td);
 1517                         break;
 1518                 }
 1519                 thread_unlock(td);
 1520 
 1521                 /*
 1522                  * Pick up the lock that td is blocked on.
 1523                  */
 1524                 uq = td->td_umtxq;
 1525                 pi = uq->uq_pi_blocked;
 1526                 if (pi == NULL)
 1527                         break;
 1528                 /* Resort td on the list if needed. */
 1529                 umtx_pi_adjust_thread(pi, td);
 1530         }
 1531 }
 1532 
 1533 /*
 1534  * Unpropagate priority for a PI mutex when a thread blocked on
 1535  * it is interrupted by signal or resumed by others.
 1536  */
 1537 static void
 1538 umtx_repropagate_priority(struct umtx_pi *pi)
 1539 {
 1540         struct umtx_q *uq, *uq_owner;
 1541         struct umtx_pi *pi2;
 1542         int pri;
 1543 
 1544         mtx_assert(&umtx_lock, MA_OWNED);
 1545 
 1546         if (umtx_pi_check_loop(pi))
 1547                 return;
 1548         while (pi != NULL && pi->pi_owner != NULL) {
 1549                 pri = PRI_MAX;
 1550                 uq_owner = pi->pi_owner->td_umtxq;
 1551 
 1552                 TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
 1553                         uq = TAILQ_FIRST(&pi2->pi_blocked);
 1554                         if (uq != NULL) {
 1555                                 if (pri > UPRI(uq->uq_thread))
 1556                                         pri = UPRI(uq->uq_thread);
 1557                         }
 1558                 }
 1559 
 1560                 if (pri > uq_owner->uq_inherited_pri)
 1561                         pri = uq_owner->uq_inherited_pri;
 1562                 thread_lock(pi->pi_owner);
 1563                 sched_lend_user_prio(pi->pi_owner, pri);
 1564                 thread_unlock(pi->pi_owner);
 1565                 if ((pi = uq_owner->uq_pi_blocked) != NULL)
 1566                         umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
 1567         }
 1568 }
 1569 
 1570 /*
 1571  * Insert a PI mutex into owned list.
 1572  */
 1573 static void
 1574 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
 1575 {
 1576         struct umtx_q *uq_owner;
 1577 
 1578         uq_owner = owner->td_umtxq;
 1579         mtx_assert(&umtx_lock, MA_OWNED);
 1580         MPASS(pi->pi_owner == NULL);
 1581         pi->pi_owner = owner;
 1582         TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
 1583 }
 1584 
 1585 
 1586 /*
 1587  * Disown a PI mutex, and remove it from the owned list.
 1588  */
 1589 static void
 1590 umtx_pi_disown(struct umtx_pi *pi)
 1591 {
 1592 
 1593         mtx_assert(&umtx_lock, MA_OWNED);
 1594         TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
 1595         pi->pi_owner = NULL;
 1596 }
 1597 
 1598 /*
 1599  * Claim ownership of a PI mutex.
 1600  */
 1601 static int
 1602 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
 1603 {
 1604         struct umtx_q *uq;
 1605         int pri;
 1606 
 1607         mtx_lock(&umtx_lock);
 1608         if (pi->pi_owner == owner) {
 1609                 mtx_unlock(&umtx_lock);
 1610                 return (0);
 1611         }
 1612 
 1613         if (pi->pi_owner != NULL) {
 1614                 /*
 1615                  * userland may have already messed the mutex, sigh.
 1616                  */
 1617                 mtx_unlock(&umtx_lock);
 1618                 return (EPERM);
 1619         }
 1620         umtx_pi_setowner(pi, owner);
 1621         uq = TAILQ_FIRST(&pi->pi_blocked);
 1622         if (uq != NULL) {
 1623                 pri = UPRI(uq->uq_thread);
 1624                 thread_lock(owner);
 1625                 if (pri < UPRI(owner))
 1626                         sched_lend_user_prio(owner, pri);
 1627                 thread_unlock(owner);
 1628         }
 1629         mtx_unlock(&umtx_lock);
 1630         return (0);
 1631 }
 1632 
 1633 /*
 1634  * Adjust a thread's order position in its blocked PI mutex,
 1635  * this may result new priority propagating process.
 1636  */
 1637 void
 1638 umtx_pi_adjust(struct thread *td, u_char oldpri)
 1639 {
 1640         struct umtx_q *uq;
 1641         struct umtx_pi *pi;
 1642 
 1643         uq = td->td_umtxq;
 1644         mtx_lock(&umtx_lock);
 1645         /*
 1646          * Pick up the lock that td is blocked on.
 1647          */
 1648         pi = uq->uq_pi_blocked;
 1649         if (pi != NULL) {
 1650                 umtx_pi_adjust_thread(pi, td);
 1651                 umtx_repropagate_priority(pi);
 1652         }
 1653         mtx_unlock(&umtx_lock);
 1654 }
 1655 
 1656 /*
 1657  * Sleep on a PI mutex.
 1658  */
 1659 static int
 1660 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
 1661     const char *wmesg, struct abs_timeout *timo, bool shared)
 1662 {
 1663         struct umtxq_chain *uc;
 1664         struct thread *td, *td1;
 1665         struct umtx_q *uq1;
 1666         int error, pri;
 1667 
 1668         error = 0;
 1669         td = uq->uq_thread;
 1670         KASSERT(td == curthread, ("inconsistent uq_thread"));
 1671         uc = umtxq_getchain(&uq->uq_key);
 1672         UMTXQ_LOCKED_ASSERT(uc);
 1673         KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
 1674         umtxq_insert(uq);
 1675         mtx_lock(&umtx_lock);
 1676         if (pi->pi_owner == NULL) {
 1677                 mtx_unlock(&umtx_lock);
 1678                 td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
 1679                 mtx_lock(&umtx_lock);
 1680                 if (td1 != NULL) {
 1681                         if (pi->pi_owner == NULL)
 1682                                 umtx_pi_setowner(pi, td1);
 1683                         PROC_UNLOCK(td1->td_proc);
 1684                 }
 1685         }
 1686 
 1687         TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
 1688                 pri = UPRI(uq1->uq_thread);
 1689                 if (pri > UPRI(td))
 1690                         break;
 1691         }
 1692 
 1693         if (uq1 != NULL)
 1694                 TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
 1695         else
 1696                 TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
 1697 
 1698         uq->uq_pi_blocked = pi;
 1699         thread_lock(td);
 1700         td->td_flags |= TDF_UPIBLOCKED;
 1701         thread_unlock(td);
 1702         umtx_propagate_priority(td);
 1703         mtx_unlock(&umtx_lock);
 1704         umtxq_unbusy(&uq->uq_key);
 1705 
 1706         error = umtxq_sleep(uq, wmesg, timo);
 1707         umtxq_remove(uq);
 1708 
 1709         mtx_lock(&umtx_lock);
 1710         uq->uq_pi_blocked = NULL;
 1711         thread_lock(td);
 1712         td->td_flags &= ~TDF_UPIBLOCKED;
 1713         thread_unlock(td);
 1714         TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
 1715         umtx_repropagate_priority(pi);
 1716         mtx_unlock(&umtx_lock);
 1717         umtxq_unlock(&uq->uq_key);
 1718 
 1719         return (error);
 1720 }
 1721 
 1722 /*
 1723  * Add reference count for a PI mutex.
 1724  */
 1725 static void
 1726 umtx_pi_ref(struct umtx_pi *pi)
 1727 {
 1728         struct umtxq_chain *uc;
 1729 
 1730         uc = umtxq_getchain(&pi->pi_key);
 1731         UMTXQ_LOCKED_ASSERT(uc);
 1732         pi->pi_refcount++;
 1733 }
 1734 
 1735 /*
 1736  * Decrease reference count for a PI mutex, if the counter
 1737  * is decreased to zero, its memory space is freed.
 1738  */ 
 1739 static void
 1740 umtx_pi_unref(struct umtx_pi *pi)
 1741 {
 1742         struct umtxq_chain *uc;
 1743 
 1744         uc = umtxq_getchain(&pi->pi_key);
 1745         UMTXQ_LOCKED_ASSERT(uc);
 1746         KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
 1747         if (--pi->pi_refcount == 0) {
 1748                 mtx_lock(&umtx_lock);
 1749                 if (pi->pi_owner != NULL)
 1750                         umtx_pi_disown(pi);
 1751                 KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
 1752                         ("blocked queue not empty"));
 1753                 mtx_unlock(&umtx_lock);
 1754                 TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
 1755                 umtx_pi_free(pi);
 1756         }
 1757 }
 1758 
 1759 /*
 1760  * Find a PI mutex in hash table.
 1761  */
 1762 static struct umtx_pi *
 1763 umtx_pi_lookup(struct umtx_key *key)
 1764 {
 1765         struct umtxq_chain *uc;
 1766         struct umtx_pi *pi;
 1767 
 1768         uc = umtxq_getchain(key);
 1769         UMTXQ_LOCKED_ASSERT(uc);
 1770 
 1771         TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
 1772                 if (umtx_key_match(&pi->pi_key, key)) {
 1773                         return (pi);
 1774                 }
 1775         }
 1776         return (NULL);
 1777 }
 1778 
 1779 /*
 1780  * Insert a PI mutex into hash table.
 1781  */
 1782 static inline void
 1783 umtx_pi_insert(struct umtx_pi *pi)
 1784 {
 1785         struct umtxq_chain *uc;
 1786 
 1787         uc = umtxq_getchain(&pi->pi_key);
 1788         UMTXQ_LOCKED_ASSERT(uc);
 1789         TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
 1790 }
 1791 
 1792 /*
 1793  * Lock a PI mutex.
 1794  */
 1795 static int
 1796 do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
 1797     struct _umtx_time *timeout, int try)
 1798 {
 1799         struct abs_timeout timo;
 1800         struct umtx_q *uq;
 1801         struct umtx_pi *pi, *new_pi;
 1802         uint32_t id, old_owner, owner, old;
 1803         int error, rv;
 1804 
 1805         id = td->td_tid;
 1806         uq = td->td_umtxq;
 1807 
 1808         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 1809             TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
 1810             &uq->uq_key)) != 0)
 1811                 return (error);
 1812 
 1813         if (timeout != NULL)
 1814                 abs_timeout_init2(&timo, timeout);
 1815 
 1816         umtxq_lock(&uq->uq_key);
 1817         pi = umtx_pi_lookup(&uq->uq_key);
 1818         if (pi == NULL) {
 1819                 new_pi = umtx_pi_alloc(M_NOWAIT);
 1820                 if (new_pi == NULL) {
 1821                         umtxq_unlock(&uq->uq_key);
 1822                         new_pi = umtx_pi_alloc(M_WAITOK);
 1823                         umtxq_lock(&uq->uq_key);
 1824                         pi = umtx_pi_lookup(&uq->uq_key);
 1825                         if (pi != NULL) {
 1826                                 umtx_pi_free(new_pi);
 1827                                 new_pi = NULL;
 1828                         }
 1829                 }
 1830                 if (new_pi != NULL) {
 1831                         new_pi->pi_key = uq->uq_key;
 1832                         umtx_pi_insert(new_pi);
 1833                         pi = new_pi;
 1834                 }
 1835         }
 1836         umtx_pi_ref(pi);
 1837         umtxq_unlock(&uq->uq_key);
 1838 
 1839         /*
 1840          * Care must be exercised when dealing with umtx structure.  It
 1841          * can fault on any access.
 1842          */
 1843         for (;;) {
 1844                 /*
 1845                  * Try the uncontested case.  This should be done in userland.
 1846                  */
 1847                 rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
 1848                 /* The address was invalid. */
 1849                 if (rv == -1) {
 1850                         error = EFAULT;
 1851                         break;
 1852                 }
 1853 
 1854                 /* The acquire succeeded. */
 1855                 if (owner == UMUTEX_UNOWNED) {
 1856                         error = 0;
 1857                         break;
 1858                 }
 1859 
 1860                 if (owner == UMUTEX_RB_NOTRECOV) {
 1861                         error = ENOTRECOVERABLE;
 1862                         break;
 1863                 }
 1864 
 1865                 /* If no one owns it but it is contested try to acquire it. */
 1866                 if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
 1867                         old_owner = owner;
 1868                         rv = casueword32(&m->m_owner, owner, &owner,
 1869                             id | UMUTEX_CONTESTED);
 1870                         /* The address was invalid. */
 1871                         if (rv == -1) {
 1872                                 error = EFAULT;
 1873                                 break;
 1874                         }
 1875 
 1876                         if (owner == old_owner) {
 1877                                 umtxq_lock(&uq->uq_key);
 1878                                 umtxq_busy(&uq->uq_key);
 1879                                 error = umtx_pi_claim(pi, td);
 1880                                 umtxq_unbusy(&uq->uq_key);
 1881                                 umtxq_unlock(&uq->uq_key);
 1882                                 if (error != 0) {
 1883                                         /*
 1884                                          * Since we're going to return an
 1885                                          * error, restore the m_owner to its
 1886                                          * previous, unowned state to avoid
 1887                                          * compounding the problem.
 1888                                          */
 1889                                         (void)casuword32(&m->m_owner,
 1890                                             id | UMUTEX_CONTESTED,
 1891                                             old_owner);
 1892                                 }
 1893                                 if (error == 0 &&
 1894                                     old_owner == UMUTEX_RB_OWNERDEAD)
 1895                                         error = EOWNERDEAD;
 1896                                 break;
 1897                         }
 1898 
 1899                         error = umtxq_check_susp(td);
 1900                         if (error != 0)
 1901                                 break;
 1902 
 1903                         /* If this failed the lock has changed, restart. */
 1904                         continue;
 1905                 }
 1906 
 1907                 if ((owner & ~UMUTEX_CONTESTED) == id) {
 1908                         error = EDEADLK;
 1909                         break;
 1910                 }
 1911 
 1912                 if (try != 0) {
 1913                         error = EBUSY;
 1914                         break;
 1915                 }
 1916 
 1917                 /*
 1918                  * If we caught a signal, we have retried and now
 1919                  * exit immediately.
 1920                  */
 1921                 if (error != 0)
 1922                         break;
 1923                         
 1924                 umtxq_lock(&uq->uq_key);
 1925                 umtxq_busy(&uq->uq_key);
 1926                 umtxq_unlock(&uq->uq_key);
 1927 
 1928                 /*
 1929                  * Set the contested bit so that a release in user space
 1930                  * knows to use the system call for unlock.  If this fails
 1931                  * either some one else has acquired the lock or it has been
 1932                  * released.
 1933                  */
 1934                 rv = casueword32(&m->m_owner, owner, &old, owner |
 1935                     UMUTEX_CONTESTED);
 1936 
 1937                 /* The address was invalid. */
 1938                 if (rv == -1) {
 1939                         umtxq_unbusy_unlocked(&uq->uq_key);
 1940                         error = EFAULT;
 1941                         break;
 1942                 }
 1943 
 1944                 umtxq_lock(&uq->uq_key);
 1945                 /*
 1946                  * We set the contested bit, sleep. Otherwise the lock changed
 1947                  * and we need to retry or we lost a race to the thread
 1948                  * unlocking the umtx.  Note that the UMUTEX_RB_OWNERDEAD
 1949                  * value for owner is impossible there.
 1950                  */
 1951                 if (old == owner) {
 1952                         error = umtxq_sleep_pi(uq, pi,
 1953                             owner & ~UMUTEX_CONTESTED,
 1954                             "umtxpi", timeout == NULL ? NULL : &timo,
 1955                             (flags & USYNC_PROCESS_SHARED) != 0);
 1956                         if (error != 0)
 1957                                 continue;
 1958                 } else {
 1959                         umtxq_unbusy(&uq->uq_key);
 1960                         umtxq_unlock(&uq->uq_key);
 1961                 }
 1962 
 1963                 error = umtxq_check_susp(td);
 1964                 if (error != 0)
 1965                         break;
 1966         }
 1967 
 1968         umtxq_lock(&uq->uq_key);
 1969         umtx_pi_unref(pi);
 1970         umtxq_unlock(&uq->uq_key);
 1971 
 1972         umtx_key_release(&uq->uq_key);
 1973         return (error);
 1974 }
 1975 
 1976 /*
 1977  * Unlock a PI mutex.
 1978  */
 1979 static int
 1980 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
 1981 {
 1982         struct umtx_key key;
 1983         struct umtx_q *uq_first, *uq_first2, *uq_me;
 1984         struct umtx_pi *pi, *pi2;
 1985         uint32_t id, new_owner, old, owner;
 1986         int count, error, pri;
 1987 
 1988         id = td->td_tid;
 1989         /*
 1990          * Make sure we own this mtx.
 1991          */
 1992         error = fueword32(&m->m_owner, &owner);
 1993         if (error == -1)
 1994                 return (EFAULT);
 1995 
 1996         if ((owner & ~UMUTEX_CONTESTED) != id)
 1997                 return (EPERM);
 1998 
 1999         new_owner = umtx_unlock_val(flags, rb);
 2000 
 2001         /* This should be done in userland */
 2002         if ((owner & UMUTEX_CONTESTED) == 0) {
 2003                 error = casueword32(&m->m_owner, owner, &old, new_owner);
 2004                 if (error == -1)
 2005                         return (EFAULT);
 2006                 if (old == owner)
 2007                         return (0);
 2008                 owner = old;
 2009         }
 2010 
 2011         /* We should only ever be in here for contested locks */
 2012         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 2013             TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
 2014             &key)) != 0)
 2015                 return (error);
 2016 
 2017         umtxq_lock(&key);
 2018         umtxq_busy(&key);
 2019         count = umtxq_count_pi(&key, &uq_first);
 2020         if (uq_first != NULL) {
 2021                 mtx_lock(&umtx_lock);
 2022                 pi = uq_first->uq_pi_blocked;
 2023                 KASSERT(pi != NULL, ("pi == NULL?"));
 2024                 if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
 2025                         mtx_unlock(&umtx_lock);
 2026                         umtxq_unbusy(&key);
 2027                         umtxq_unlock(&key);
 2028                         umtx_key_release(&key);
 2029                         /* userland messed the mutex */
 2030                         return (EPERM);
 2031                 }
 2032                 uq_me = td->td_umtxq;
 2033                 if (pi->pi_owner == td)
 2034                         umtx_pi_disown(pi);
 2035                 /* get highest priority thread which is still sleeping. */
 2036                 uq_first = TAILQ_FIRST(&pi->pi_blocked);
 2037                 while (uq_first != NULL && 
 2038                     (uq_first->uq_flags & UQF_UMTXQ) == 0) {
 2039                         uq_first = TAILQ_NEXT(uq_first, uq_lockq);
 2040                 }
 2041                 pri = PRI_MAX;
 2042                 TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
 2043                         uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
 2044                         if (uq_first2 != NULL) {
 2045                                 if (pri > UPRI(uq_first2->uq_thread))
 2046                                         pri = UPRI(uq_first2->uq_thread);
 2047                         }
 2048                 }
 2049                 thread_lock(td);
 2050                 sched_lend_user_prio(td, pri);
 2051                 thread_unlock(td);
 2052                 mtx_unlock(&umtx_lock);
 2053                 if (uq_first)
 2054                         umtxq_signal_thread(uq_first);
 2055         } else {
 2056                 pi = umtx_pi_lookup(&key);
 2057                 /*
 2058                  * A umtx_pi can exist if a signal or timeout removed the
 2059                  * last waiter from the umtxq, but there is still
 2060                  * a thread in do_lock_pi() holding the umtx_pi.
 2061                  */
 2062                 if (pi != NULL) {
 2063                         /*
 2064                          * The umtx_pi can be unowned, such as when a thread
 2065                          * has just entered do_lock_pi(), allocated the
 2066                          * umtx_pi, and unlocked the umtxq.
 2067                          * If the current thread owns it, it must disown it.
 2068                          */
 2069                         mtx_lock(&umtx_lock);
 2070                         if (pi->pi_owner == td)
 2071                                 umtx_pi_disown(pi);
 2072                         mtx_unlock(&umtx_lock);
 2073                 }
 2074         }
 2075         umtxq_unlock(&key);
 2076 
 2077         /*
 2078          * When unlocking the umtx, it must be marked as unowned if
 2079          * there is zero or one thread only waiting for it.
 2080          * Otherwise, it must be marked as contested.
 2081          */
 2082 
 2083         if (count > 1)
 2084                 new_owner |= UMUTEX_CONTESTED;
 2085         error = casueword32(&m->m_owner, owner, &old, new_owner);
 2086 
 2087         umtxq_unbusy_unlocked(&key);
 2088         umtx_key_release(&key);
 2089         if (error == -1)
 2090                 return (EFAULT);
 2091         if (old != owner)
 2092                 return (EINVAL);
 2093         return (0);
 2094 }
 2095 
 2096 /*
 2097  * Lock a PP mutex.
 2098  */
 2099 static int
 2100 do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
 2101     struct _umtx_time *timeout, int try)
 2102 {
 2103         struct abs_timeout timo;
 2104         struct umtx_q *uq, *uq2;
 2105         struct umtx_pi *pi;
 2106         uint32_t ceiling;
 2107         uint32_t owner, id;
 2108         int error, pri, old_inherited_pri, su, rv;
 2109 
 2110         id = td->td_tid;
 2111         uq = td->td_umtxq;
 2112         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 2113             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
 2114             &uq->uq_key)) != 0)
 2115                 return (error);
 2116 
 2117         if (timeout != NULL)
 2118                 abs_timeout_init2(&timo, timeout);
 2119 
 2120         su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
 2121         for (;;) {
 2122                 old_inherited_pri = uq->uq_inherited_pri;
 2123                 umtxq_lock(&uq->uq_key);
 2124                 umtxq_busy(&uq->uq_key);
 2125                 umtxq_unlock(&uq->uq_key);
 2126 
 2127                 rv = fueword32(&m->m_ceilings[0], &ceiling);
 2128                 if (rv == -1) {
 2129                         error = EFAULT;
 2130                         goto out;
 2131                 }
 2132                 ceiling = RTP_PRIO_MAX - ceiling;
 2133                 if (ceiling > RTP_PRIO_MAX) {
 2134                         error = EINVAL;
 2135                         goto out;
 2136                 }
 2137 
 2138                 mtx_lock(&umtx_lock);
 2139                 if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
 2140                         mtx_unlock(&umtx_lock);
 2141                         error = EINVAL;
 2142                         goto out;
 2143                 }
 2144                 if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
 2145                         uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
 2146                         thread_lock(td);
 2147                         if (uq->uq_inherited_pri < UPRI(td))
 2148                                 sched_lend_user_prio(td, uq->uq_inherited_pri);
 2149                         thread_unlock(td);
 2150                 }
 2151                 mtx_unlock(&umtx_lock);
 2152 
 2153                 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
 2154                     id | UMUTEX_CONTESTED);
 2155                 /* The address was invalid. */
 2156                 if (rv == -1) {
 2157                         error = EFAULT;
 2158                         break;
 2159                 }
 2160 
 2161                 if (owner == UMUTEX_CONTESTED) {
 2162                         error = 0;
 2163                         break;
 2164                 } else if (owner == UMUTEX_RB_OWNERDEAD) {
 2165                         rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
 2166                             &owner, id | UMUTEX_CONTESTED);
 2167                         if (rv == -1) {
 2168                                 error = EFAULT;
 2169                                 break;
 2170                         }
 2171                         if (owner == UMUTEX_RB_OWNERDEAD) {
 2172                                 error = EOWNERDEAD; /* success */
 2173                                 break;
 2174                         }
 2175                         error = 0;
 2176                 } else if (owner == UMUTEX_RB_NOTRECOV) {
 2177                         error = ENOTRECOVERABLE;
 2178                         break;
 2179                 }
 2180 
 2181                 if (try != 0) {
 2182                         error = EBUSY;
 2183                         break;
 2184                 }
 2185 
 2186                 /*
 2187                  * If we caught a signal, we have retried and now
 2188                  * exit immediately.
 2189                  */
 2190                 if (error != 0)
 2191                         break;
 2192 
 2193                 umtxq_lock(&uq->uq_key);
 2194                 umtxq_insert(uq);
 2195                 umtxq_unbusy(&uq->uq_key);
 2196                 error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
 2197                     NULL : &timo);
 2198                 umtxq_remove(uq);
 2199                 umtxq_unlock(&uq->uq_key);
 2200 
 2201                 mtx_lock(&umtx_lock);
 2202                 uq->uq_inherited_pri = old_inherited_pri;
 2203                 pri = PRI_MAX;
 2204                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 2205                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
 2206                         if (uq2 != NULL) {
 2207                                 if (pri > UPRI(uq2->uq_thread))
 2208                                         pri = UPRI(uq2->uq_thread);
 2209                         }
 2210                 }
 2211                 if (pri > uq->uq_inherited_pri)
 2212                         pri = uq->uq_inherited_pri;
 2213                 thread_lock(td);
 2214                 sched_lend_user_prio(td, pri);
 2215                 thread_unlock(td);
 2216                 mtx_unlock(&umtx_lock);
 2217         }
 2218 
 2219         if (error != 0 && error != EOWNERDEAD) {
 2220                 mtx_lock(&umtx_lock);
 2221                 uq->uq_inherited_pri = old_inherited_pri;
 2222                 pri = PRI_MAX;
 2223                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 2224                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
 2225                         if (uq2 != NULL) {
 2226                                 if (pri > UPRI(uq2->uq_thread))
 2227                                         pri = UPRI(uq2->uq_thread);
 2228                         }
 2229                 }
 2230                 if (pri > uq->uq_inherited_pri)
 2231                         pri = uq->uq_inherited_pri;
 2232                 thread_lock(td);
 2233                 sched_lend_user_prio(td, pri);
 2234                 thread_unlock(td);
 2235                 mtx_unlock(&umtx_lock);
 2236         }
 2237 
 2238 out:
 2239         umtxq_unbusy_unlocked(&uq->uq_key);
 2240         umtx_key_release(&uq->uq_key);
 2241         return (error);
 2242 }
 2243 
 2244 /*
 2245  * Unlock a PP mutex.
 2246  */
 2247 static int
 2248 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
 2249 {
 2250         struct umtx_key key;
 2251         struct umtx_q *uq, *uq2;
 2252         struct umtx_pi *pi;
 2253         uint32_t id, owner, rceiling;
 2254         int error, pri, new_inherited_pri, su;
 2255 
 2256         id = td->td_tid;
 2257         uq = td->td_umtxq;
 2258         su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
 2259 
 2260         /*
 2261          * Make sure we own this mtx.
 2262          */
 2263         error = fueword32(&m->m_owner, &owner);
 2264         if (error == -1)
 2265                 return (EFAULT);
 2266 
 2267         if ((owner & ~UMUTEX_CONTESTED) != id)
 2268                 return (EPERM);
 2269 
 2270         error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
 2271         if (error != 0)
 2272                 return (error);
 2273 
 2274         if (rceiling == -1)
 2275                 new_inherited_pri = PRI_MAX;
 2276         else {
 2277                 rceiling = RTP_PRIO_MAX - rceiling;
 2278                 if (rceiling > RTP_PRIO_MAX)
 2279                         return (EINVAL);
 2280                 new_inherited_pri = PRI_MIN_REALTIME + rceiling;
 2281         }
 2282 
 2283         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 2284             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
 2285             &key)) != 0)
 2286                 return (error);
 2287         umtxq_lock(&key);
 2288         umtxq_busy(&key);
 2289         umtxq_unlock(&key);
 2290         /*
 2291          * For priority protected mutex, always set unlocked state
 2292          * to UMUTEX_CONTESTED, so that userland always enters kernel
 2293          * to lock the mutex, it is necessary because thread priority
 2294          * has to be adjusted for such mutex.
 2295          */
 2296         error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
 2297             UMUTEX_CONTESTED);
 2298 
 2299         umtxq_lock(&key);
 2300         if (error == 0)
 2301                 umtxq_signal(&key, 1);
 2302         umtxq_unbusy(&key);
 2303         umtxq_unlock(&key);
 2304 
 2305         if (error == -1)
 2306                 error = EFAULT;
 2307         else {
 2308                 mtx_lock(&umtx_lock);
 2309                 if (su != 0)
 2310                         uq->uq_inherited_pri = new_inherited_pri;
 2311                 pri = PRI_MAX;
 2312                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 2313                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
 2314                         if (uq2 != NULL) {
 2315                                 if (pri > UPRI(uq2->uq_thread))
 2316                                         pri = UPRI(uq2->uq_thread);
 2317                         }
 2318                 }
 2319                 if (pri > uq->uq_inherited_pri)
 2320                         pri = uq->uq_inherited_pri;
 2321                 thread_lock(td);
 2322                 sched_lend_user_prio(td, pri);
 2323                 thread_unlock(td);
 2324                 mtx_unlock(&umtx_lock);
 2325         }
 2326         umtx_key_release(&key);
 2327         return (error);
 2328 }
 2329 
 2330 static int
 2331 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
 2332     uint32_t *old_ceiling)
 2333 {
 2334         struct umtx_q *uq;
 2335         uint32_t flags, id, owner, save_ceiling;
 2336         int error, rv, rv1;
 2337 
 2338         error = fueword32(&m->m_flags, &flags);
 2339         if (error == -1)
 2340                 return (EFAULT);
 2341         if ((flags & UMUTEX_PRIO_PROTECT) == 0)
 2342                 return (EINVAL);
 2343         if (ceiling > RTP_PRIO_MAX)
 2344                 return (EINVAL);
 2345         id = td->td_tid;
 2346         uq = td->td_umtxq;
 2347         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 2348             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
 2349             &uq->uq_key)) != 0)
 2350                 return (error);
 2351         for (;;) {
 2352                 umtxq_lock(&uq->uq_key);
 2353                 umtxq_busy(&uq->uq_key);
 2354                 umtxq_unlock(&uq->uq_key);
 2355 
 2356                 rv = fueword32(&m->m_ceilings[0], &save_ceiling);
 2357                 if (rv == -1) {
 2358                         error = EFAULT;
 2359                         break;
 2360                 }
 2361 
 2362                 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
 2363                     id | UMUTEX_CONTESTED);
 2364                 if (rv == -1) {
 2365                         error = EFAULT;
 2366                         break;
 2367                 }
 2368 
 2369                 if (owner == UMUTEX_CONTESTED) {
 2370                         rv = suword32(&m->m_ceilings[0], ceiling);
 2371                         rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
 2372                         error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
 2373                         break;
 2374                 }
 2375 
 2376                 if ((owner & ~UMUTEX_CONTESTED) == id) {
 2377                         rv = suword32(&m->m_ceilings[0], ceiling);
 2378                         error = rv == 0 ? 0 : EFAULT;
 2379                         break;
 2380                 }
 2381 
 2382                 if (owner == UMUTEX_RB_OWNERDEAD) {
 2383                         error = EOWNERDEAD;
 2384                         break;
 2385                 } else if (owner == UMUTEX_RB_NOTRECOV) {
 2386                         error = ENOTRECOVERABLE;
 2387                         break;
 2388                 }
 2389 
 2390                 /*
 2391                  * If we caught a signal, we have retried and now
 2392                  * exit immediately.
 2393                  */
 2394                 if (error != 0)
 2395                         break;
 2396 
 2397                 /*
 2398                  * We set the contested bit, sleep. Otherwise the lock changed
 2399                  * and we need to retry or we lost a race to the thread
 2400                  * unlocking the umtx.
 2401                  */
 2402                 umtxq_lock(&uq->uq_key);
 2403                 umtxq_insert(uq);
 2404                 umtxq_unbusy(&uq->uq_key);
 2405                 error = umtxq_sleep(uq, "umtxpp", NULL);
 2406                 umtxq_remove(uq);
 2407                 umtxq_unlock(&uq->uq_key);
 2408         }
 2409         umtxq_lock(&uq->uq_key);
 2410         if (error == 0)
 2411                 umtxq_signal(&uq->uq_key, INT_MAX);
 2412         umtxq_unbusy(&uq->uq_key);
 2413         umtxq_unlock(&uq->uq_key);
 2414         umtx_key_release(&uq->uq_key);
 2415         if (error == 0 && old_ceiling != NULL) {
 2416                 rv = suword32(old_ceiling, save_ceiling);
 2417                 error = rv == 0 ? 0 : EFAULT;
 2418         }
 2419         return (error);
 2420 }
 2421 
 2422 /*
 2423  * Lock a userland POSIX mutex.
 2424  */
 2425 static int
 2426 do_lock_umutex(struct thread *td, struct umutex *m,
 2427     struct _umtx_time *timeout, int mode)
 2428 {
 2429         uint32_t flags;
 2430         int error;
 2431 
 2432         error = fueword32(&m->m_flags, &flags);
 2433         if (error == -1)
 2434                 return (EFAULT);
 2435 
 2436         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
 2437         case 0:
 2438                 error = do_lock_normal(td, m, flags, timeout, mode);
 2439                 break;
 2440         case UMUTEX_PRIO_INHERIT:
 2441                 error = do_lock_pi(td, m, flags, timeout, mode);
 2442                 break;
 2443         case UMUTEX_PRIO_PROTECT:
 2444                 error = do_lock_pp(td, m, flags, timeout, mode);
 2445                 break;
 2446         default:
 2447                 return (EINVAL);
 2448         }
 2449         if (timeout == NULL) {
 2450                 if (error == EINTR && mode != _UMUTEX_WAIT)
 2451                         error = ERESTART;
 2452         } else {
 2453                 /* Timed-locking is not restarted. */
 2454                 if (error == ERESTART)
 2455                         error = EINTR;
 2456         }
 2457         return (error);
 2458 }
 2459 
 2460 /*
 2461  * Unlock a userland POSIX mutex.
 2462  */
 2463 static int
 2464 do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
 2465 {
 2466         uint32_t flags;
 2467         int error;
 2468 
 2469         error = fueword32(&m->m_flags, &flags);
 2470         if (error == -1)
 2471                 return (EFAULT);
 2472 
 2473         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
 2474         case 0:
 2475                 return (do_unlock_normal(td, m, flags, rb));
 2476         case UMUTEX_PRIO_INHERIT:
 2477                 return (do_unlock_pi(td, m, flags, rb));
 2478         case UMUTEX_PRIO_PROTECT:
 2479                 return (do_unlock_pp(td, m, flags, rb));
 2480         }
 2481 
 2482         return (EINVAL);
 2483 }
 2484 
 2485 static int
 2486 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
 2487     struct timespec *timeout, u_long wflags)
 2488 {
 2489         struct abs_timeout timo;
 2490         struct umtx_q *uq;
 2491         uint32_t flags, clockid, hasw;
 2492         int error;
 2493 
 2494         uq = td->td_umtxq;
 2495         error = fueword32(&cv->c_flags, &flags);
 2496         if (error == -1)
 2497                 return (EFAULT);
 2498         error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
 2499         if (error != 0)
 2500                 return (error);
 2501 
 2502         if ((wflags & CVWAIT_CLOCKID) != 0) {
 2503                 error = fueword32(&cv->c_clockid, &clockid);
 2504                 if (error == -1) {
 2505                         umtx_key_release(&uq->uq_key);
 2506                         return (EFAULT);
 2507                 }
 2508                 if (clockid < CLOCK_REALTIME ||
 2509                     clockid >= CLOCK_THREAD_CPUTIME_ID) {
 2510                         /* hmm, only HW clock id will work. */
 2511                         umtx_key_release(&uq->uq_key);
 2512                         return (EINVAL);
 2513                 }
 2514         } else {
 2515                 clockid = CLOCK_REALTIME;
 2516         }
 2517 
 2518         umtxq_lock(&uq->uq_key);
 2519         umtxq_busy(&uq->uq_key);
 2520         umtxq_insert(uq);
 2521         umtxq_unlock(&uq->uq_key);
 2522 
 2523         /*
 2524          * Set c_has_waiters to 1 before releasing user mutex, also
 2525          * don't modify cache line when unnecessary.
 2526          */
 2527         error = fueword32(&cv->c_has_waiters, &hasw);
 2528         if (error == 0 && hasw == 0)
 2529                 suword32(&cv->c_has_waiters, 1);
 2530 
 2531         umtxq_unbusy_unlocked(&uq->uq_key);
 2532 
 2533         error = do_unlock_umutex(td, m, false);
 2534 
 2535         if (timeout != NULL)
 2536                 abs_timeout_init(&timo, clockid, (wflags & CVWAIT_ABSTIME) != 0,
 2537                     timeout);
 2538         
 2539         umtxq_lock(&uq->uq_key);
 2540         if (error == 0) {
 2541                 error = umtxq_sleep(uq, "ucond", timeout == NULL ?
 2542                     NULL : &timo);
 2543         }
 2544 
 2545         if ((uq->uq_flags & UQF_UMTXQ) == 0)
 2546                 error = 0;
 2547         else {
 2548                 /*
 2549                  * This must be timeout,interrupted by signal or
 2550                  * surprious wakeup, clear c_has_waiter flag when
 2551                  * necessary.
 2552                  */
 2553                 umtxq_busy(&uq->uq_key);
 2554                 if ((uq->uq_flags & UQF_UMTXQ) != 0) {
 2555                         int oldlen = uq->uq_cur_queue->length;
 2556                         umtxq_remove(uq);
 2557                         if (oldlen == 1) {
 2558                                 umtxq_unlock(&uq->uq_key);
 2559                                 suword32(&cv->c_has_waiters, 0);
 2560                                 umtxq_lock(&uq->uq_key);
 2561                         }
 2562                 }
 2563                 umtxq_unbusy(&uq->uq_key);
 2564                 if (error == ERESTART)
 2565                         error = EINTR;
 2566         }
 2567 
 2568         umtxq_unlock(&uq->uq_key);
 2569         umtx_key_release(&uq->uq_key);
 2570         return (error);
 2571 }
 2572 
 2573 /*
 2574  * Signal a userland condition variable.
 2575  */
 2576 static int
 2577 do_cv_signal(struct thread *td, struct ucond *cv)
 2578 {
 2579         struct umtx_key key;
 2580         int error, cnt, nwake;
 2581         uint32_t flags;
 2582 
 2583         error = fueword32(&cv->c_flags, &flags);
 2584         if (error == -1)
 2585                 return (EFAULT);
 2586         if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
 2587                 return (error); 
 2588         umtxq_lock(&key);
 2589         umtxq_busy(&key);
 2590         cnt = umtxq_count(&key);
 2591         nwake = umtxq_signal(&key, 1);
 2592         if (cnt <= nwake) {
 2593                 umtxq_unlock(&key);
 2594                 error = suword32(&cv->c_has_waiters, 0);
 2595                 if (error == -1)
 2596                         error = EFAULT;
 2597                 umtxq_lock(&key);
 2598         }
 2599         umtxq_unbusy(&key);
 2600         umtxq_unlock(&key);
 2601         umtx_key_release(&key);
 2602         return (error);
 2603 }
 2604 
 2605 static int
 2606 do_cv_broadcast(struct thread *td, struct ucond *cv)
 2607 {
 2608         struct umtx_key key;
 2609         int error;
 2610         uint32_t flags;
 2611 
 2612         error = fueword32(&cv->c_flags, &flags);
 2613         if (error == -1)
 2614                 return (EFAULT);
 2615         if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
 2616                 return (error); 
 2617 
 2618         umtxq_lock(&key);
 2619         umtxq_busy(&key);
 2620         umtxq_signal(&key, INT_MAX);
 2621         umtxq_unlock(&key);
 2622 
 2623         error = suword32(&cv->c_has_waiters, 0);
 2624         if (error == -1)
 2625                 error = EFAULT;
 2626 
 2627         umtxq_unbusy_unlocked(&key);
 2628 
 2629         umtx_key_release(&key);
 2630         return (error);
 2631 }
 2632 
 2633 static int
 2634 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag, struct _umtx_time *timeout)
 2635 {
 2636         struct abs_timeout timo;
 2637         struct umtx_q *uq;
 2638         uint32_t flags, wrflags;
 2639         int32_t state, oldstate;
 2640         int32_t blocked_readers;
 2641         int error, error1, rv;
 2642 
 2643         uq = td->td_umtxq;
 2644         error = fueword32(&rwlock->rw_flags, &flags);
 2645         if (error == -1)
 2646                 return (EFAULT);
 2647         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 2648         if (error != 0)
 2649                 return (error);
 2650 
 2651         if (timeout != NULL)
 2652                 abs_timeout_init2(&timo, timeout);
 2653 
 2654         wrflags = URWLOCK_WRITE_OWNER;
 2655         if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
 2656                 wrflags |= URWLOCK_WRITE_WAITERS;
 2657 
 2658         for (;;) {
 2659                 rv = fueword32(&rwlock->rw_state, &state);
 2660                 if (rv == -1) {
 2661                         umtx_key_release(&uq->uq_key);
 2662                         return (EFAULT);
 2663                 }
 2664 
 2665                 /* try to lock it */
 2666                 while (!(state & wrflags)) {
 2667                         if (__predict_false(URWLOCK_READER_COUNT(state) == URWLOCK_MAX_READERS)) {
 2668                                 umtx_key_release(&uq->uq_key);
 2669                                 return (EAGAIN);
 2670                         }
 2671                         rv = casueword32(&rwlock->rw_state, state,
 2672                             &oldstate, state + 1);
 2673                         if (rv == -1) {
 2674                                 umtx_key_release(&uq->uq_key);
 2675                                 return (EFAULT);
 2676                         }
 2677                         if (oldstate == state) {
 2678                                 umtx_key_release(&uq->uq_key);
 2679                                 return (0);
 2680                         }
 2681                         error = umtxq_check_susp(td);
 2682                         if (error != 0)
 2683                                 break;
 2684                         state = oldstate;
 2685                 }
 2686 
 2687                 if (error)
 2688                         break;
 2689 
 2690                 /* grab monitor lock */
 2691                 umtxq_lock(&uq->uq_key);
 2692                 umtxq_busy(&uq->uq_key);
 2693                 umtxq_unlock(&uq->uq_key);
 2694 
 2695                 /*
 2696                  * re-read the state, in case it changed between the try-lock above
 2697                  * and the check below
 2698                  */
 2699                 rv = fueword32(&rwlock->rw_state, &state);
 2700                 if (rv == -1)
 2701                         error = EFAULT;
 2702 
 2703                 /* set read contention bit */
 2704                 while (error == 0 && (state & wrflags) &&
 2705                     !(state & URWLOCK_READ_WAITERS)) {
 2706                         rv = casueword32(&rwlock->rw_state, state,
 2707                             &oldstate, state | URWLOCK_READ_WAITERS);
 2708                         if (rv == -1) {
 2709                                 error = EFAULT;
 2710                                 break;
 2711                         }
 2712                         if (oldstate == state)
 2713                                 goto sleep;
 2714                         state = oldstate;
 2715                         error = umtxq_check_susp(td);
 2716                         if (error != 0)
 2717                                 break;
 2718                 }
 2719                 if (error != 0) {
 2720                         umtxq_unbusy_unlocked(&uq->uq_key);
 2721                         break;
 2722                 }
 2723 
 2724                 /* state is changed while setting flags, restart */
 2725                 if (!(state & wrflags)) {
 2726                         umtxq_unbusy_unlocked(&uq->uq_key);
 2727                         error = umtxq_check_susp(td);
 2728                         if (error != 0)
 2729                                 break;
 2730                         continue;
 2731                 }
 2732 
 2733 sleep:
 2734                 /* contention bit is set, before sleeping, increase read waiter count */
 2735                 rv = fueword32(&rwlock->rw_blocked_readers,
 2736                     &blocked_readers);
 2737                 if (rv == -1) {
 2738                         umtxq_unbusy_unlocked(&uq->uq_key);
 2739                         error = EFAULT;
 2740                         break;
 2741                 }
 2742                 suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
 2743 
 2744                 while (state & wrflags) {
 2745                         umtxq_lock(&uq->uq_key);
 2746                         umtxq_insert(uq);
 2747                         umtxq_unbusy(&uq->uq_key);
 2748 
 2749                         error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
 2750                             NULL : &timo);
 2751 
 2752                         umtxq_busy(&uq->uq_key);
 2753                         umtxq_remove(uq);
 2754                         umtxq_unlock(&uq->uq_key);
 2755                         if (error)
 2756                                 break;
 2757                         rv = fueword32(&rwlock->rw_state, &state);
 2758                         if (rv == -1) {
 2759                                 error = EFAULT;
 2760                                 break;
 2761                         }
 2762                 }
 2763 
 2764                 /* decrease read waiter count, and may clear read contention bit */
 2765                 rv = fueword32(&rwlock->rw_blocked_readers,
 2766                     &blocked_readers);
 2767                 if (rv == -1) {
 2768                         umtxq_unbusy_unlocked(&uq->uq_key);
 2769                         error = EFAULT;
 2770                         break;
 2771                 }
 2772                 suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
 2773                 if (blocked_readers == 1) {
 2774                         rv = fueword32(&rwlock->rw_state, &state);
 2775                         if (rv == -1) {
 2776                                 umtxq_unbusy_unlocked(&uq->uq_key);
 2777                                 error = EFAULT;
 2778                                 break;
 2779                         }
 2780                         for (;;) {
 2781                                 rv = casueword32(&rwlock->rw_state, state,
 2782                                     &oldstate, state & ~URWLOCK_READ_WAITERS);
 2783                                 if (rv == -1) {
 2784                                         error = EFAULT;
 2785                                         break;
 2786                                 }
 2787                                 if (oldstate == state)
 2788                                         break;
 2789                                 state = oldstate;
 2790                                 error1 = umtxq_check_susp(td);
 2791                                 if (error1 != 0) {
 2792                                         if (error == 0)
 2793                                                 error = error1;
 2794                                         break;
 2795                                 }
 2796                         }
 2797                 }
 2798 
 2799                 umtxq_unbusy_unlocked(&uq->uq_key);
 2800                 if (error != 0)
 2801                         break;
 2802         }
 2803         umtx_key_release(&uq->uq_key);
 2804         if (error == ERESTART)
 2805                 error = EINTR;
 2806         return (error);
 2807 }
 2808 
 2809 static int
 2810 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
 2811 {
 2812         struct abs_timeout timo;
 2813         struct umtx_q *uq;
 2814         uint32_t flags;
 2815         int32_t state, oldstate;
 2816         int32_t blocked_writers;
 2817         int32_t blocked_readers;
 2818         int error, error1, rv;
 2819 
 2820         uq = td->td_umtxq;
 2821         error = fueword32(&rwlock->rw_flags, &flags);
 2822         if (error == -1)
 2823                 return (EFAULT);
 2824         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 2825         if (error != 0)
 2826                 return (error);
 2827 
 2828         if (timeout != NULL)
 2829                 abs_timeout_init2(&timo, timeout);
 2830 
 2831         blocked_readers = 0;
 2832         for (;;) {
 2833                 rv = fueword32(&rwlock->rw_state, &state);
 2834                 if (rv == -1) {
 2835                         umtx_key_release(&uq->uq_key);
 2836                         return (EFAULT);
 2837                 }
 2838                 while (!(state & URWLOCK_WRITE_OWNER) && URWLOCK_READER_COUNT(state) == 0) {
 2839                         rv = casueword32(&rwlock->rw_state, state,
 2840                             &oldstate, state | URWLOCK_WRITE_OWNER);
 2841                         if (rv == -1) {
 2842                                 umtx_key_release(&uq->uq_key);
 2843                                 return (EFAULT);
 2844                         }
 2845                         if (oldstate == state) {
 2846                                 umtx_key_release(&uq->uq_key);
 2847                                 return (0);
 2848                         }
 2849                         state = oldstate;
 2850                         error = umtxq_check_susp(td);
 2851                         if (error != 0)
 2852                                 break;
 2853                 }
 2854 
 2855                 if (error) {
 2856                         if (!(state & (URWLOCK_WRITE_OWNER|URWLOCK_WRITE_WAITERS)) &&
 2857                             blocked_readers != 0) {
 2858                                 umtxq_lock(&uq->uq_key);
 2859                                 umtxq_busy(&uq->uq_key);
 2860                                 umtxq_signal_queue(&uq->uq_key, INT_MAX, UMTX_SHARED_QUEUE);
 2861                                 umtxq_unbusy(&uq->uq_key);
 2862                                 umtxq_unlock(&uq->uq_key);
 2863                         }
 2864 
 2865                         break;
 2866                 }
 2867 
 2868                 /* grab monitor lock */
 2869                 umtxq_lock(&uq->uq_key);
 2870                 umtxq_busy(&uq->uq_key);
 2871                 umtxq_unlock(&uq->uq_key);
 2872 
 2873                 /*
 2874                  * re-read the state, in case it changed between the try-lock above
 2875                  * and the check below
 2876                  */
 2877                 rv = fueword32(&rwlock->rw_state, &state);
 2878                 if (rv == -1)
 2879                         error = EFAULT;
 2880 
 2881                 while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
 2882                     URWLOCK_READER_COUNT(state) != 0) &&
 2883                     (state & URWLOCK_WRITE_WAITERS) == 0) {
 2884                         rv = casueword32(&rwlock->rw_state, state,
 2885                             &oldstate, state | URWLOCK_WRITE_WAITERS);
 2886                         if (rv == -1) {
 2887                                 error = EFAULT;
 2888                                 break;
 2889                         }
 2890                         if (oldstate == state)
 2891                                 goto sleep;
 2892                         state = oldstate;
 2893                         error = umtxq_check_susp(td);
 2894                         if (error != 0)
 2895                                 break;
 2896                 }
 2897                 if (error != 0) {
 2898                         umtxq_unbusy_unlocked(&uq->uq_key);
 2899                         break;
 2900                 }
 2901 
 2902                 if (!(state & URWLOCK_WRITE_OWNER) && URWLOCK_READER_COUNT(state) == 0) {
 2903                         umtxq_unbusy_unlocked(&uq->uq_key);
 2904                         error = umtxq_check_susp(td);
 2905                         if (error != 0)
 2906                                 break;
 2907                         continue;
 2908                 }
 2909 sleep:
 2910                 rv = fueword32(&rwlock->rw_blocked_writers,
 2911                     &blocked_writers);
 2912                 if (rv == -1) {
 2913                         umtxq_unbusy_unlocked(&uq->uq_key);
 2914                         error = EFAULT;
 2915                         break;
 2916                 }
 2917                 suword32(&rwlock->rw_blocked_writers, blocked_writers+1);
 2918 
 2919                 while ((state & URWLOCK_WRITE_OWNER) || URWLOCK_READER_COUNT(state) != 0) {
 2920                         umtxq_lock(&uq->uq_key);
 2921                         umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
 2922                         umtxq_unbusy(&uq->uq_key);
 2923 
 2924                         error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
 2925                             NULL : &timo);
 2926 
 2927                         umtxq_busy(&uq->uq_key);
 2928                         umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
 2929                         umtxq_unlock(&uq->uq_key);
 2930                         if (error)
 2931                                 break;
 2932                         rv = fueword32(&rwlock->rw_state, &state);
 2933                         if (rv == -1) {
 2934                                 error = EFAULT;
 2935                                 break;
 2936                         }
 2937                 }
 2938 
 2939                 rv = fueword32(&rwlock->rw_blocked_writers,
 2940                     &blocked_writers);
 2941                 if (rv == -1) {
 2942                         umtxq_unbusy_unlocked(&uq->uq_key);
 2943                         error = EFAULT;
 2944                         break;
 2945                 }
 2946                 suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
 2947                 if (blocked_writers == 1) {
 2948                         rv = fueword32(&rwlock->rw_state, &state);
 2949                         if (rv == -1) {
 2950                                 umtxq_unbusy_unlocked(&uq->uq_key);
 2951                                 error = EFAULT;
 2952                                 break;
 2953                         }
 2954                         for (;;) {
 2955                                 rv = casueword32(&rwlock->rw_state, state,
 2956                                     &oldstate, state & ~URWLOCK_WRITE_WAITERS);
 2957                                 if (rv == -1) {
 2958                                         error = EFAULT;
 2959                                         break;
 2960                                 }
 2961                                 if (oldstate == state)
 2962                                         break;
 2963                                 state = oldstate;
 2964                                 error1 = umtxq_check_susp(td);
 2965                                 /*
 2966                                  * We are leaving the URWLOCK_WRITE_WAITERS
 2967                                  * behind, but this should not harm the
 2968                                  * correctness.
 2969                                  */
 2970                                 if (error1 != 0) {
 2971                                         if (error == 0)
 2972                                                 error = error1;
 2973                                         break;
 2974                                 }
 2975                         }
 2976                         rv = fueword32(&rwlock->rw_blocked_readers,
 2977                             &blocked_readers);
 2978                         if (rv == -1) {
 2979                                 umtxq_unbusy_unlocked(&uq->uq_key);
 2980                                 error = EFAULT;
 2981                                 break;
 2982                         }
 2983                 } else
 2984                         blocked_readers = 0;
 2985 
 2986                 umtxq_unbusy_unlocked(&uq->uq_key);
 2987         }
 2988 
 2989         umtx_key_release(&uq->uq_key);
 2990         if (error == ERESTART)
 2991                 error = EINTR;
 2992         return (error);
 2993 }
 2994 
 2995 static int
 2996 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
 2997 {
 2998         struct umtx_q *uq;
 2999         uint32_t flags;
 3000         int32_t state, oldstate;
 3001         int error, rv, q, count;
 3002 
 3003         uq = td->td_umtxq;
 3004         error = fueword32(&rwlock->rw_flags, &flags);
 3005         if (error == -1)
 3006                 return (EFAULT);
 3007         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 3008         if (error != 0)
 3009                 return (error);
 3010 
 3011         error = fueword32(&rwlock->rw_state, &state);
 3012         if (error == -1) {
 3013                 error = EFAULT;
 3014                 goto out;
 3015         }
 3016         if (state & URWLOCK_WRITE_OWNER) {
 3017                 for (;;) {
 3018                         rv = casueword32(&rwlock->rw_state, state, 
 3019                             &oldstate, state & ~URWLOCK_WRITE_OWNER);
 3020                         if (rv == -1) {
 3021                                 error = EFAULT;
 3022                                 goto out;
 3023                         }
 3024                         if (oldstate != state) {
 3025                                 state = oldstate;
 3026                                 if (!(oldstate & URWLOCK_WRITE_OWNER)) {
 3027                                         error = EPERM;
 3028                                         goto out;
 3029                                 }
 3030                                 error = umtxq_check_susp(td);
 3031                                 if (error != 0)
 3032                                         goto out;
 3033                         } else
 3034                                 break;
 3035                 }
 3036         } else if (URWLOCK_READER_COUNT(state) != 0) {
 3037                 for (;;) {
 3038                         rv = casueword32(&rwlock->rw_state, state,
 3039                             &oldstate, state - 1);
 3040                         if (rv == -1) {
 3041                                 error = EFAULT;
 3042                                 goto out;
 3043                         }
 3044                         if (oldstate != state) {
 3045                                 state = oldstate;
 3046                                 if (URWLOCK_READER_COUNT(oldstate) == 0) {
 3047                                         error = EPERM;
 3048                                         goto out;
 3049                                 }
 3050                                 error = umtxq_check_susp(td);
 3051                                 if (error != 0)
 3052                                         goto out;
 3053                         } else
 3054                                 break;
 3055                 }
 3056         } else {
 3057                 error = EPERM;
 3058                 goto out;
 3059         }
 3060 
 3061         count = 0;
 3062 
 3063         if (!(flags & URWLOCK_PREFER_READER)) {
 3064                 if (state & URWLOCK_WRITE_WAITERS) {
 3065                         count = 1;
 3066                         q = UMTX_EXCLUSIVE_QUEUE;
 3067                 } else if (state & URWLOCK_READ_WAITERS) {
 3068                         count = INT_MAX;
 3069                         q = UMTX_SHARED_QUEUE;
 3070                 }
 3071         } else {
 3072                 if (state & URWLOCK_READ_WAITERS) {
 3073                         count = INT_MAX;
 3074                         q = UMTX_SHARED_QUEUE;
 3075                 } else if (state & URWLOCK_WRITE_WAITERS) {
 3076                         count = 1;
 3077                         q = UMTX_EXCLUSIVE_QUEUE;
 3078                 }
 3079         }
 3080 
 3081         if (count) {
 3082                 umtxq_lock(&uq->uq_key);
 3083                 umtxq_busy(&uq->uq_key);
 3084                 umtxq_signal_queue(&uq->uq_key, count, q);
 3085                 umtxq_unbusy(&uq->uq_key);
 3086                 umtxq_unlock(&uq->uq_key);
 3087         }
 3088 out:
 3089         umtx_key_release(&uq->uq_key);
 3090         return (error);
 3091 }
 3092 
 3093 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 3094 static int
 3095 do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
 3096 {
 3097         struct abs_timeout timo;
 3098         struct umtx_q *uq;
 3099         uint32_t flags, count, count1;
 3100         int error, rv;
 3101 
 3102         uq = td->td_umtxq;
 3103         error = fueword32(&sem->_flags, &flags);
 3104         if (error == -1)
 3105                 return (EFAULT);
 3106         error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
 3107         if (error != 0)
 3108                 return (error);
 3109 
 3110         if (timeout != NULL)
 3111                 abs_timeout_init2(&timo, timeout);
 3112 
 3113         umtxq_lock(&uq->uq_key);
 3114         umtxq_busy(&uq->uq_key);
 3115         umtxq_insert(uq);
 3116         umtxq_unlock(&uq->uq_key);
 3117         rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
 3118         if (rv == 0)
 3119                 rv = fueword32(&sem->_count, &count);
 3120         if (rv == -1 || count != 0) {
 3121                 umtxq_lock(&uq->uq_key);
 3122                 umtxq_unbusy(&uq->uq_key);
 3123                 umtxq_remove(uq);
 3124                 umtxq_unlock(&uq->uq_key);
 3125                 umtx_key_release(&uq->uq_key);
 3126                 return (rv == -1 ? EFAULT : 0);
 3127         }
 3128         umtxq_lock(&uq->uq_key);
 3129         umtxq_unbusy(&uq->uq_key);
 3130 
 3131         error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
 3132 
 3133         if ((uq->uq_flags & UQF_UMTXQ) == 0)
 3134                 error = 0;
 3135         else {
 3136                 umtxq_remove(uq);
 3137                 /* A relative timeout cannot be restarted. */
 3138                 if (error == ERESTART && timeout != NULL &&
 3139                     (timeout->_flags & UMTX_ABSTIME) == 0)
 3140                         error = EINTR;
 3141         }
 3142         umtxq_unlock(&uq->uq_key);
 3143         umtx_key_release(&uq->uq_key);
 3144         return (error);
 3145 }
 3146 
 3147 /*
 3148  * Signal a userland semaphore.
 3149  */
 3150 static int
 3151 do_sem_wake(struct thread *td, struct _usem *sem)
 3152 {
 3153         struct umtx_key key;
 3154         int error, cnt;
 3155         uint32_t flags;
 3156 
 3157         error = fueword32(&sem->_flags, &flags);
 3158         if (error == -1)
 3159                 return (EFAULT);
 3160         if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
 3161                 return (error); 
 3162         umtxq_lock(&key);
 3163         umtxq_busy(&key);
 3164         cnt = umtxq_count(&key);
 3165         if (cnt > 0) {
 3166                 /*
 3167                  * Check if count is greater than 0, this means the memory is
 3168                  * still being referenced by user code, so we can safely
 3169                  * update _has_waiters flag.
 3170                  */
 3171                 if (cnt == 1) {
 3172                         umtxq_unlock(&key);
 3173                         error = suword32(&sem->_has_waiters, 0);
 3174                         umtxq_lock(&key);
 3175                         if (error == -1)
 3176                                 error = EFAULT;
 3177                 }
 3178                 umtxq_signal(&key, 1);
 3179         }
 3180         umtxq_unbusy(&key);
 3181         umtxq_unlock(&key);
 3182         umtx_key_release(&key);
 3183         return (error);
 3184 }
 3185 #endif
 3186 
 3187 static int
 3188 do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
 3189 {
 3190         struct abs_timeout timo;
 3191         struct umtx_q *uq;
 3192         uint32_t count, flags;
 3193         int error, rv;
 3194 
 3195         uq = td->td_umtxq;
 3196         flags = fuword32(&sem->_flags);
 3197         error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
 3198         if (error != 0)
 3199                 return (error);
 3200 
 3201         if (timeout != NULL)
 3202                 abs_timeout_init2(&timo, timeout);
 3203 
 3204         umtxq_lock(&uq->uq_key);
 3205         umtxq_busy(&uq->uq_key);
 3206         umtxq_insert(uq);
 3207         umtxq_unlock(&uq->uq_key);
 3208         rv = fueword32(&sem->_count, &count);
 3209         if (rv == -1) {
 3210                 umtxq_lock(&uq->uq_key);
 3211                 umtxq_unbusy(&uq->uq_key);
 3212                 umtxq_remove(uq);
 3213                 umtxq_unlock(&uq->uq_key);
 3214                 umtx_key_release(&uq->uq_key);
 3215                 return (EFAULT);
 3216         }
 3217         for (;;) {
 3218                 if (USEM_COUNT(count) != 0) {
 3219                         umtxq_lock(&uq->uq_key);
 3220                         umtxq_unbusy(&uq->uq_key);
 3221                         umtxq_remove(uq);
 3222                         umtxq_unlock(&uq->uq_key);
 3223                         umtx_key_release(&uq->uq_key);
 3224                         return (0);
 3225                 }
 3226                 if (count == USEM_HAS_WAITERS)
 3227                         break;
 3228                 rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
 3229                 if (rv == -1) {
 3230                         umtxq_lock(&uq->uq_key);
 3231                         umtxq_unbusy(&uq->uq_key);
 3232                         umtxq_remove(uq);
 3233                         umtxq_unlock(&uq->uq_key);
 3234                         umtx_key_release(&uq->uq_key);
 3235                         return (EFAULT);
 3236                 }
 3237                 if (count == 0)
 3238                         break;
 3239         }
 3240         umtxq_lock(&uq->uq_key);
 3241         umtxq_unbusy(&uq->uq_key);
 3242 
 3243         error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
 3244 
 3245         if ((uq->uq_flags & UQF_UMTXQ) == 0)
 3246                 error = 0;
 3247         else {
 3248                 umtxq_remove(uq);
 3249                 if (timeout != NULL && (timeout->_flags & UMTX_ABSTIME) == 0) {
 3250                         /* A relative timeout cannot be restarted. */
 3251                         if (error == ERESTART)
 3252                                 error = EINTR;
 3253                         if (error == EINTR) {
 3254                                 abs_timeout_update(&timo);
 3255                                 timeout->_timeout = timo.end;
 3256                                 timespecsub(&timeout->_timeout, &timo.cur);
 3257                         }
 3258                 }
 3259         }
 3260         umtxq_unlock(&uq->uq_key);
 3261         umtx_key_release(&uq->uq_key);
 3262         return (error);
 3263 }
 3264 
 3265 /*
 3266  * Signal a userland semaphore.
 3267  */
 3268 static int
 3269 do_sem2_wake(struct thread *td, struct _usem2 *sem)
 3270 {
 3271         struct umtx_key key;
 3272         int error, cnt, rv;
 3273         uint32_t count, flags;
 3274 
 3275         rv = fueword32(&sem->_flags, &flags);
 3276         if (rv == -1)
 3277                 return (EFAULT);
 3278         if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
 3279                 return (error); 
 3280         umtxq_lock(&key);
 3281         umtxq_busy(&key);
 3282         cnt = umtxq_count(&key);
 3283         if (cnt > 0) {
 3284                 /*
 3285                  * If this was the last sleeping thread, clear the waiters
 3286                  * flag in _count.
 3287                  */
 3288                 if (cnt == 1) {
 3289                         umtxq_unlock(&key);
 3290                         rv = fueword32(&sem->_count, &count);
 3291                         while (rv != -1 && count & USEM_HAS_WAITERS)
 3292                                 rv = casueword32(&sem->_count, count, &count,
 3293                                     count & ~USEM_HAS_WAITERS);
 3294                         if (rv == -1)
 3295                                 error = EFAULT;
 3296                         umtxq_lock(&key);
 3297                 }
 3298 
 3299                 umtxq_signal(&key, 1);
 3300         }
 3301         umtxq_unbusy(&key);
 3302         umtxq_unlock(&key);
 3303         umtx_key_release(&key);
 3304         return (error);
 3305 }
 3306 
 3307 inline int
 3308 umtx_copyin_timeout(const void *addr, struct timespec *tsp)
 3309 {
 3310         int error;
 3311 
 3312         error = copyin(addr, tsp, sizeof(struct timespec));
 3313         if (error == 0) {
 3314                 if (tsp->tv_sec < 0 ||
 3315                     tsp->tv_nsec >= 1000000000 ||
 3316                     tsp->tv_nsec < 0)
 3317                         error = EINVAL;
 3318         }
 3319         return (error);
 3320 }
 3321 
 3322 static inline int
 3323 umtx_copyin_umtx_time(const void *addr, size_t size, struct _umtx_time *tp)
 3324 {
 3325         int error;
 3326         
 3327         if (size <= sizeof(struct timespec)) {
 3328                 tp->_clockid = CLOCK_REALTIME;
 3329                 tp->_flags = 0;
 3330                 error = copyin(addr, &tp->_timeout, sizeof(struct timespec));
 3331         } else 
 3332                 error = copyin(addr, tp, sizeof(struct _umtx_time));
 3333         if (error != 0)
 3334                 return (error);
 3335         if (tp->_timeout.tv_sec < 0 ||
 3336             tp->_timeout.tv_nsec >= 1000000000 || tp->_timeout.tv_nsec < 0)
 3337                 return (EINVAL);
 3338         return (0);
 3339 }
 3340 
 3341 static int
 3342 __umtx_op_unimpl(struct thread *td, struct _umtx_op_args *uap)
 3343 {
 3344 
 3345         return (EOPNOTSUPP);
 3346 }
 3347 
 3348 static int
 3349 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap)
 3350 {
 3351         struct _umtx_time timeout, *tm_p;
 3352         int error;
 3353 
 3354         if (uap->uaddr2 == NULL)
 3355                 tm_p = NULL;
 3356         else {
 3357                 error = umtx_copyin_umtx_time(
 3358                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3359                 if (error != 0)
 3360                         return (error);
 3361                 tm_p = &timeout;
 3362         }
 3363         return (do_wait(td, uap->obj, uap->val, tm_p, 0, 0));
 3364 }
 3365 
 3366 static int
 3367 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap)
 3368 {
 3369         struct _umtx_time timeout, *tm_p;
 3370         int error;
 3371 
 3372         if (uap->uaddr2 == NULL)
 3373                 tm_p = NULL;
 3374         else {
 3375                 error = umtx_copyin_umtx_time(
 3376                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3377                 if (error != 0)
 3378                         return (error);
 3379                 tm_p = &timeout;
 3380         }
 3381         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
 3382 }
 3383 
 3384 static int
 3385 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap)
 3386 {
 3387         struct _umtx_time *tm_p, timeout;
 3388         int error;
 3389 
 3390         if (uap->uaddr2 == NULL)
 3391                 tm_p = NULL;
 3392         else {
 3393                 error = umtx_copyin_umtx_time(
 3394                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3395                 if (error != 0)
 3396                         return (error);
 3397                 tm_p = &timeout;
 3398         }
 3399         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
 3400 }
 3401 
 3402 static int
 3403 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap)
 3404 {
 3405 
 3406         return (kern_umtx_wake(td, uap->obj, uap->val, 0));
 3407 }
 3408 
 3409 #define BATCH_SIZE      128
 3410 static int
 3411 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap)
 3412 {
 3413         char *uaddrs[BATCH_SIZE], **upp;
 3414         int count, error, i, pos, tocopy;
 3415 
 3416         upp = (char **)uap->obj;
 3417         error = 0;
 3418         for (count = uap->val, pos = 0; count > 0; count -= tocopy,
 3419             pos += tocopy) {
 3420                 tocopy = MIN(count, BATCH_SIZE);
 3421                 error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
 3422                 if (error != 0)
 3423                         break;
 3424                 for (i = 0; i < tocopy; ++i)
 3425                         kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
 3426                 maybe_yield();
 3427         }
 3428         return (error);
 3429 }
 3430 
 3431 static int
 3432 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap)
 3433 {
 3434 
 3435         return (kern_umtx_wake(td, uap->obj, uap->val, 1));
 3436 }
 3437 
 3438 static int
 3439 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap)
 3440 {
 3441         struct _umtx_time *tm_p, timeout;
 3442         int error;
 3443 
 3444         /* Allow a null timespec (wait forever). */
 3445         if (uap->uaddr2 == NULL)
 3446                 tm_p = NULL;
 3447         else {
 3448                 error = umtx_copyin_umtx_time(
 3449                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3450                 if (error != 0)
 3451                         return (error);
 3452                 tm_p = &timeout;
 3453         }
 3454         return (do_lock_umutex(td, uap->obj, tm_p, 0));
 3455 }
 3456 
 3457 static int
 3458 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap)
 3459 {
 3460 
 3461         return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
 3462 }
 3463 
 3464 static int
 3465 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap)
 3466 {
 3467         struct _umtx_time *tm_p, timeout;
 3468         int error;
 3469 
 3470         /* Allow a null timespec (wait forever). */
 3471         if (uap->uaddr2 == NULL)
 3472                 tm_p = NULL;
 3473         else {
 3474                 error = umtx_copyin_umtx_time(
 3475                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3476                 if (error != 0)
 3477                         return (error);
 3478                 tm_p = &timeout;
 3479         }
 3480         return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
 3481 }
 3482 
 3483 static int
 3484 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap)
 3485 {
 3486 
 3487         return (do_wake_umutex(td, uap->obj));
 3488 }
 3489 
 3490 static int
 3491 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap)
 3492 {
 3493 
 3494         return (do_unlock_umutex(td, uap->obj, false));
 3495 }
 3496 
 3497 static int
 3498 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap)
 3499 {
 3500 
 3501         return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
 3502 }
 3503 
 3504 static int
 3505 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap)
 3506 {
 3507         struct timespec *ts, timeout;
 3508         int error;
 3509 
 3510         /* Allow a null timespec (wait forever). */
 3511         if (uap->uaddr2 == NULL)
 3512                 ts = NULL;
 3513         else {
 3514                 error = umtx_copyin_timeout(uap->uaddr2, &timeout);
 3515                 if (error != 0)
 3516                         return (error);
 3517                 ts = &timeout;
 3518         }
 3519         return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
 3520 }
 3521 
 3522 static int
 3523 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap)
 3524 {
 3525 
 3526         return (do_cv_signal(td, uap->obj));
 3527 }
 3528 
 3529 static int
 3530 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap)
 3531 {
 3532 
 3533         return (do_cv_broadcast(td, uap->obj));
 3534 }
 3535 
 3536 static int
 3537 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap)
 3538 {
 3539         struct _umtx_time timeout;
 3540         int error;
 3541 
 3542         /* Allow a null timespec (wait forever). */
 3543         if (uap->uaddr2 == NULL) {
 3544                 error = do_rw_rdlock(td, uap->obj, uap->val, 0);
 3545         } else {
 3546                 error = umtx_copyin_umtx_time(uap->uaddr2,
 3547                    (size_t)uap->uaddr1, &timeout);
 3548                 if (error != 0)
 3549                         return (error);
 3550                 error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
 3551         }
 3552         return (error);
 3553 }
 3554 
 3555 static int
 3556 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap)
 3557 {
 3558         struct _umtx_time timeout;
 3559         int error;
 3560 
 3561         /* Allow a null timespec (wait forever). */
 3562         if (uap->uaddr2 == NULL) {
 3563                 error = do_rw_wrlock(td, uap->obj, 0);
 3564         } else {
 3565                 error = umtx_copyin_umtx_time(uap->uaddr2, 
 3566                    (size_t)uap->uaddr1, &timeout);
 3567                 if (error != 0)
 3568                         return (error);
 3569 
 3570                 error = do_rw_wrlock(td, uap->obj, &timeout);
 3571         }
 3572         return (error);
 3573 }
 3574 
 3575 static int
 3576 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap)
 3577 {
 3578 
 3579         return (do_rw_unlock(td, uap->obj));
 3580 }
 3581 
 3582 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 3583 static int
 3584 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap)
 3585 {
 3586         struct _umtx_time *tm_p, timeout;
 3587         int error;
 3588 
 3589         /* Allow a null timespec (wait forever). */
 3590         if (uap->uaddr2 == NULL)
 3591                 tm_p = NULL;
 3592         else {
 3593                 error = umtx_copyin_umtx_time(
 3594                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3595                 if (error != 0)
 3596                         return (error);
 3597                 tm_p = &timeout;
 3598         }
 3599         return (do_sem_wait(td, uap->obj, tm_p));
 3600 }
 3601 
 3602 static int
 3603 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap)
 3604 {
 3605 
 3606         return (do_sem_wake(td, uap->obj));
 3607 }
 3608 #endif
 3609 
 3610 static int
 3611 __umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap)
 3612 {
 3613 
 3614         return (do_wake2_umutex(td, uap->obj, uap->val));
 3615 }
 3616 
 3617 static int
 3618 __umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap)
 3619 {
 3620         struct _umtx_time *tm_p, timeout;
 3621         size_t uasize;
 3622         int error;
 3623 
 3624         /* Allow a null timespec (wait forever). */
 3625         if (uap->uaddr2 == NULL) {
 3626                 uasize = 0;
 3627                 tm_p = NULL;
 3628         } else {
 3629                 uasize = (size_t)uap->uaddr1;
 3630                 error = umtx_copyin_umtx_time(uap->uaddr2, uasize, &timeout);
 3631                 if (error != 0)
 3632                         return (error);
 3633                 tm_p = &timeout;
 3634         }
 3635         error = do_sem2_wait(td, uap->obj, tm_p);
 3636         if (error == EINTR && uap->uaddr2 != NULL &&
 3637             (timeout._flags & UMTX_ABSTIME) == 0 &&
 3638             uasize >= sizeof(struct _umtx_time) + sizeof(struct timespec)) {
 3639                 error = copyout(&timeout._timeout,
 3640                     (struct _umtx_time *)uap->uaddr2 + 1,
 3641                     sizeof(struct timespec));
 3642                 if (error == 0) {
 3643                         error = EINTR;
 3644                 }
 3645         }
 3646 
 3647         return (error);
 3648 }
 3649 
 3650 static int
 3651 __umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap)
 3652 {
 3653 
 3654         return (do_sem2_wake(td, uap->obj));
 3655 }
 3656 
 3657 #define USHM_OBJ_UMTX(o)                                                \
 3658     ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
 3659 
 3660 #define USHMF_REG_LINKED        0x0001
 3661 #define USHMF_OBJ_LINKED        0x0002
 3662 struct umtx_shm_reg {
 3663         TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
 3664         LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
 3665         struct umtx_key         ushm_key;
 3666         struct ucred            *ushm_cred;
 3667         struct shmfd            *ushm_obj;
 3668         u_int                   ushm_refcnt;
 3669         u_int                   ushm_flags;
 3670 };
 3671 
 3672 LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
 3673 TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
 3674 
 3675 static uma_zone_t umtx_shm_reg_zone;
 3676 static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
 3677 static struct mtx umtx_shm_lock;
 3678 static struct umtx_shm_reg_head umtx_shm_reg_delfree =
 3679     TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
 3680 
 3681 static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
 3682 
 3683 static void
 3684 umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
 3685 {
 3686         struct umtx_shm_reg_head d;
 3687         struct umtx_shm_reg *reg, *reg1;
 3688 
 3689         TAILQ_INIT(&d);
 3690         mtx_lock(&umtx_shm_lock);
 3691         TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
 3692         mtx_unlock(&umtx_shm_lock);
 3693         TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
 3694                 TAILQ_REMOVE(&d, reg, ushm_reg_link);
 3695                 umtx_shm_free_reg(reg);
 3696         }
 3697 }
 3698 
 3699 static struct task umtx_shm_reg_delfree_task =
 3700     TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
 3701 
 3702 static struct umtx_shm_reg *
 3703 umtx_shm_find_reg_locked(const struct umtx_key *key)
 3704 {
 3705         struct umtx_shm_reg *reg;
 3706         struct umtx_shm_reg_head *reg_head;
 3707 
 3708         KASSERT(key->shared, ("umtx_p_find_rg: private key"));
 3709         mtx_assert(&umtx_shm_lock, MA_OWNED);
 3710         reg_head = &umtx_shm_registry[key->hash];
 3711         TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
 3712                 KASSERT(reg->ushm_key.shared,
 3713                     ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
 3714                 if (reg->ushm_key.info.shared.object ==
 3715                     key->info.shared.object &&
 3716                     reg->ushm_key.info.shared.offset ==
 3717                     key->info.shared.offset) {
 3718                         KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
 3719                         KASSERT(reg->ushm_refcnt > 0,
 3720                             ("reg %p refcnt 0 onlist", reg));
 3721                         KASSERT((reg->ushm_flags & USHMF_REG_LINKED) != 0,
 3722                             ("reg %p not linked", reg));
 3723                         reg->ushm_refcnt++;
 3724                         return (reg);
 3725                 }
 3726         }
 3727         return (NULL);
 3728 }
 3729 
 3730 static struct umtx_shm_reg *
 3731 umtx_shm_find_reg(const struct umtx_key *key)
 3732 {
 3733         struct umtx_shm_reg *reg;
 3734 
 3735         mtx_lock(&umtx_shm_lock);
 3736         reg = umtx_shm_find_reg_locked(key);
 3737         mtx_unlock(&umtx_shm_lock);
 3738         return (reg);
 3739 }
 3740 
 3741 static void
 3742 umtx_shm_free_reg(struct umtx_shm_reg *reg)
 3743 {
 3744 
 3745         chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
 3746         crfree(reg->ushm_cred);
 3747         shm_drop(reg->ushm_obj);
 3748         uma_zfree(umtx_shm_reg_zone, reg);
 3749 }
 3750 
 3751 static bool
 3752 umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
 3753 {
 3754         bool res;
 3755 
 3756         mtx_assert(&umtx_shm_lock, MA_OWNED);
 3757         KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
 3758         reg->ushm_refcnt--;
 3759         res = reg->ushm_refcnt == 0;
 3760         if (res || force) {
 3761                 if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
 3762                         TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
 3763                             reg, ushm_reg_link);
 3764                         reg->ushm_flags &= ~USHMF_REG_LINKED;
 3765                 }
 3766                 if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
 3767                         LIST_REMOVE(reg, ushm_obj_link);
 3768                         reg->ushm_flags &= ~USHMF_OBJ_LINKED;
 3769                 }
 3770         }
 3771         return (res);
 3772 }
 3773 
 3774 static void
 3775 umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool force)
 3776 {
 3777         vm_object_t object;
 3778         bool dofree;
 3779 
 3780         if (force) {
 3781                 object = reg->ushm_obj->shm_object;
 3782                 VM_OBJECT_WLOCK(object);
 3783                 object->flags |= OBJ_UMTXDEAD;
 3784                 VM_OBJECT_WUNLOCK(object);
 3785         }
 3786         mtx_lock(&umtx_shm_lock);
 3787         dofree = umtx_shm_unref_reg_locked(reg, force);
 3788         mtx_unlock(&umtx_shm_lock);
 3789         if (dofree)
 3790                 umtx_shm_free_reg(reg);
 3791 }
 3792 
 3793 void
 3794 umtx_shm_object_init(vm_object_t object)
 3795 {
 3796 
 3797         LIST_INIT(USHM_OBJ_UMTX(object));
 3798 }
 3799 
 3800 void
 3801 umtx_shm_object_terminated(vm_object_t object)
 3802 {
 3803         struct umtx_shm_reg *reg, *reg1;
 3804         bool dofree;
 3805 
 3806         dofree = false;
 3807         mtx_lock(&umtx_shm_lock);
 3808         LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
 3809                 if (umtx_shm_unref_reg_locked(reg, true)) {
 3810                         TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
 3811                             ushm_reg_link);
 3812                         dofree = true;
 3813                 }
 3814         }
 3815         mtx_unlock(&umtx_shm_lock);
 3816         if (dofree)
 3817                 taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
 3818 }
 3819 
 3820 static int
 3821 umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
 3822     struct umtx_shm_reg **res)
 3823 {
 3824         struct umtx_shm_reg *reg, *reg1;
 3825         struct ucred *cred;
 3826         int error;
 3827 
 3828         reg = umtx_shm_find_reg(key);
 3829         if (reg != NULL) {
 3830                 *res = reg;
 3831                 return (0);
 3832         }
 3833         cred = td->td_ucred;
 3834         if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
 3835                 return (ENOMEM);
 3836         reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
 3837         reg->ushm_refcnt = 1;
 3838         bcopy(key, &reg->ushm_key, sizeof(*key));
 3839         reg->ushm_obj = shm_alloc(td->td_ucred, O_RDWR);
 3840         reg->ushm_cred = crhold(cred);
 3841         error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
 3842         if (error != 0) {
 3843                 umtx_shm_free_reg(reg);
 3844                 return (error);
 3845         }
 3846         mtx_lock(&umtx_shm_lock);
 3847         reg1 = umtx_shm_find_reg_locked(key);
 3848         if (reg1 != NULL) {
 3849                 mtx_unlock(&umtx_shm_lock);
 3850                 umtx_shm_free_reg(reg);
 3851                 *res = reg1;
 3852                 return (0);
 3853         }
 3854         reg->ushm_refcnt++;
 3855         TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
 3856         LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
 3857             ushm_obj_link);
 3858         reg->ushm_flags = USHMF_REG_LINKED | USHMF_OBJ_LINKED;
 3859         mtx_unlock(&umtx_shm_lock);
 3860         *res = reg;
 3861         return (0);
 3862 }
 3863 
 3864 static int
 3865 umtx_shm_alive(struct thread *td, void *addr)
 3866 {
 3867         vm_map_t map;
 3868         vm_map_entry_t entry;
 3869         vm_object_t object;
 3870         vm_pindex_t pindex;
 3871         vm_prot_t prot;
 3872         int res, ret;
 3873         boolean_t wired;
 3874 
 3875         map = &td->td_proc->p_vmspace->vm_map;
 3876         res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
 3877             &object, &pindex, &prot, &wired);
 3878         if (res != KERN_SUCCESS)
 3879                 return (EFAULT);
 3880         if (object == NULL)
 3881                 ret = EINVAL;
 3882         else
 3883                 ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
 3884         vm_map_lookup_done(map, entry);
 3885         return (ret);
 3886 }
 3887 
 3888 static void
 3889 umtx_shm_init(void)
 3890 {
 3891         int i;
 3892 
 3893         umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
 3894             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
 3895         mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
 3896         for (i = 0; i < nitems(umtx_shm_registry); i++)
 3897                 TAILQ_INIT(&umtx_shm_registry[i]);
 3898 }
 3899 
 3900 static int
 3901 umtx_shm(struct thread *td, void *addr, u_int flags)
 3902 {
 3903         struct umtx_key key;
 3904         struct umtx_shm_reg *reg;
 3905         struct file *fp;
 3906         int error, fd;
 3907 
 3908         if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
 3909             UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
 3910                 return (EINVAL);
 3911         if ((flags & UMTX_SHM_ALIVE) != 0)
 3912                 return (umtx_shm_alive(td, addr));
 3913         error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
 3914         if (error != 0)
 3915                 return (error);
 3916         KASSERT(key.shared == 1, ("non-shared key"));
 3917         if ((flags & UMTX_SHM_CREAT) != 0) {
 3918                 error = umtx_shm_create_reg(td, &key, &reg);
 3919         } else {
 3920                 reg = umtx_shm_find_reg(&key);
 3921                 if (reg == NULL)
 3922                         error = ESRCH;
 3923         }
 3924         umtx_key_release(&key);
 3925         if (error != 0)
 3926                 return (error);
 3927         KASSERT(reg != NULL, ("no reg"));
 3928         if ((flags & UMTX_SHM_DESTROY) != 0) {
 3929                 umtx_shm_unref_reg(reg, true);
 3930         } else {
 3931 #if 0
 3932 #ifdef MAC
 3933                 error = mac_posixshm_check_open(td->td_ucred,
 3934                     reg->ushm_obj, FFLAGS(O_RDWR));
 3935                 if (error == 0)
 3936 #endif
 3937                         error = shm_access(reg->ushm_obj, td->td_ucred,
 3938                             FFLAGS(O_RDWR));
 3939                 if (error == 0)
 3940 #endif
 3941                         error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
 3942                 if (error == 0) {
 3943                         shm_hold(reg->ushm_obj);
 3944                         finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
 3945                             &shm_ops);
 3946                         td->td_retval[0] = fd;
 3947                         fdrop(fp, td);
 3948                 }
 3949         }
 3950         umtx_shm_unref_reg(reg, false);
 3951         return (error);
 3952 }
 3953 
 3954 static int
 3955 __umtx_op_shm(struct thread *td, struct _umtx_op_args *uap)
 3956 {
 3957 
 3958         return (umtx_shm(td, uap->uaddr1, uap->val));
 3959 }
 3960 
 3961 static int
 3962 umtx_robust_lists(struct thread *td, struct umtx_robust_lists_params *rbp)
 3963 {
 3964 
 3965         td->td_rb_list = rbp->robust_list_offset;
 3966         td->td_rbp_list = rbp->robust_priv_list_offset;
 3967         td->td_rb_inact = rbp->robust_inact_offset;
 3968         return (0);
 3969 }
 3970 
 3971 static int
 3972 __umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap)
 3973 {
 3974         struct umtx_robust_lists_params rb;
 3975         int error;
 3976 
 3977         if (uap->val > sizeof(rb))
 3978                 return (EINVAL);
 3979         bzero(&rb, sizeof(rb));
 3980         error = copyin(uap->uaddr1, &rb, uap->val);
 3981         if (error != 0)
 3982                 return (error);
 3983         return (umtx_robust_lists(td, &rb));
 3984 }
 3985 
 3986 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap);
 3987 
 3988 static const _umtx_op_func op_table[] = {
 3989         [UMTX_OP_RESERVED0]     = __umtx_op_unimpl,
 3990         [UMTX_OP_RESERVED1]     = __umtx_op_unimpl,
 3991         [UMTX_OP_WAIT]          = __umtx_op_wait,
 3992         [UMTX_OP_WAKE]          = __umtx_op_wake,
 3993         [UMTX_OP_MUTEX_TRYLOCK] = __umtx_op_trylock_umutex,
 3994         [UMTX_OP_MUTEX_LOCK]    = __umtx_op_lock_umutex,
 3995         [UMTX_OP_MUTEX_UNLOCK]  = __umtx_op_unlock_umutex,
 3996         [UMTX_OP_SET_CEILING]   = __umtx_op_set_ceiling,
 3997         [UMTX_OP_CV_WAIT]       = __umtx_op_cv_wait,
 3998         [UMTX_OP_CV_SIGNAL]     = __umtx_op_cv_signal,
 3999         [UMTX_OP_CV_BROADCAST]  = __umtx_op_cv_broadcast,
 4000         [UMTX_OP_WAIT_UINT]     = __umtx_op_wait_uint,
 4001         [UMTX_OP_RW_RDLOCK]     = __umtx_op_rw_rdlock,
 4002         [UMTX_OP_RW_WRLOCK]     = __umtx_op_rw_wrlock,
 4003         [UMTX_OP_RW_UNLOCK]     = __umtx_op_rw_unlock,
 4004         [UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
 4005         [UMTX_OP_WAKE_PRIVATE]  = __umtx_op_wake_private,
 4006         [UMTX_OP_MUTEX_WAIT]    = __umtx_op_wait_umutex,
 4007         [UMTX_OP_MUTEX_WAKE]    = __umtx_op_wake_umutex,
 4008 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 4009         [UMTX_OP_SEM_WAIT]      = __umtx_op_sem_wait,
 4010         [UMTX_OP_SEM_WAKE]      = __umtx_op_sem_wake,
 4011 #else
 4012         [UMTX_OP_SEM_WAIT]      = __umtx_op_unimpl,
 4013         [UMTX_OP_SEM_WAKE]      = __umtx_op_unimpl,
 4014 #endif
 4015         [UMTX_OP_NWAKE_PRIVATE] = __umtx_op_nwake_private,
 4016         [UMTX_OP_MUTEX_WAKE2]   = __umtx_op_wake2_umutex,
 4017         [UMTX_OP_SEM2_WAIT]     = __umtx_op_sem2_wait,
 4018         [UMTX_OP_SEM2_WAKE]     = __umtx_op_sem2_wake,
 4019         [UMTX_OP_SHM]           = __umtx_op_shm,
 4020         [UMTX_OP_ROBUST_LISTS]  = __umtx_op_robust_lists,
 4021 };
 4022 
 4023 int
 4024 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
 4025 {
 4026 
 4027         if ((unsigned)uap->op < nitems(op_table))
 4028                 return (*op_table[uap->op])(td, uap);
 4029         return (EINVAL);
 4030 }
 4031 
 4032 #ifdef COMPAT_FREEBSD32
 4033 
 4034 struct timespec32 {
 4035         int32_t tv_sec;
 4036         int32_t tv_nsec;
 4037 };
 4038 
 4039 struct umtx_time32 {
 4040         struct  timespec32      timeout;
 4041         uint32_t                flags;
 4042         uint32_t                clockid;
 4043 };
 4044 
 4045 static inline int
 4046 umtx_copyin_timeout32(void *addr, struct timespec *tsp)
 4047 {
 4048         struct timespec32 ts32;
 4049         int error;
 4050 
 4051         error = copyin(addr, &ts32, sizeof(struct timespec32));
 4052         if (error == 0) {
 4053                 if (ts32.tv_sec < 0 ||
 4054                     ts32.tv_nsec >= 1000000000 ||
 4055                     ts32.tv_nsec < 0)
 4056                         error = EINVAL;
 4057                 else {
 4058                         tsp->tv_sec = ts32.tv_sec;
 4059                         tsp->tv_nsec = ts32.tv_nsec;
 4060                 }
 4061         }
 4062         return (error);
 4063 }
 4064 
 4065 static inline int
 4066 umtx_copyin_umtx_time32(const void *addr, size_t size, struct _umtx_time *tp)
 4067 {
 4068         struct umtx_time32 t32;
 4069         int error;
 4070         
 4071         t32.clockid = CLOCK_REALTIME;
 4072         t32.flags   = 0;
 4073         if (size <= sizeof(struct timespec32))
 4074                 error = copyin(addr, &t32.timeout, sizeof(struct timespec32));
 4075         else 
 4076                 error = copyin(addr, &t32, sizeof(struct umtx_time32));
 4077         if (error != 0)
 4078                 return (error);
 4079         if (t32.timeout.tv_sec < 0 ||
 4080             t32.timeout.tv_nsec >= 1000000000 || t32.timeout.tv_nsec < 0)
 4081                 return (EINVAL);
 4082         tp->_timeout.tv_sec = t32.timeout.tv_sec;
 4083         tp->_timeout.tv_nsec = t32.timeout.tv_nsec;
 4084         tp->_flags = t32.flags;
 4085         tp->_clockid = t32.clockid;
 4086         return (0);
 4087 }
 4088 
 4089 static int
 4090 __umtx_op_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
 4091 {
 4092         struct _umtx_time *tm_p, timeout;
 4093         int error;
 4094 
 4095         if (uap->uaddr2 == NULL)
 4096                 tm_p = NULL;
 4097         else {
 4098                 error = umtx_copyin_umtx_time32(uap->uaddr2,
 4099                         (size_t)uap->uaddr1, &timeout);
 4100                 if (error != 0)
 4101                         return (error);
 4102                 tm_p = &timeout;
 4103         }
 4104         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
 4105 }
 4106 
 4107 static int
 4108 __umtx_op_lock_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
 4109 {
 4110         struct _umtx_time *tm_p, timeout;
 4111         int error;
 4112 
 4113         /* Allow a null timespec (wait forever). */
 4114         if (uap->uaddr2 == NULL)
 4115                 tm_p = NULL;
 4116         else {
 4117                 error = umtx_copyin_umtx_time32(uap->uaddr2,
 4118                             (size_t)uap->uaddr1, &timeout);
 4119                 if (error != 0)
 4120                         return (error);
 4121                 tm_p = &timeout;
 4122         }
 4123         return (do_lock_umutex(td, uap->obj, tm_p, 0));
 4124 }
 4125 
 4126 static int
 4127 __umtx_op_wait_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
 4128 {
 4129         struct _umtx_time *tm_p, timeout;
 4130         int error;
 4131 
 4132         /* Allow a null timespec (wait forever). */
 4133         if (uap->uaddr2 == NULL)
 4134                 tm_p = NULL;
 4135         else {
 4136                 error = umtx_copyin_umtx_time32(uap->uaddr2, 
 4137                     (size_t)uap->uaddr1, &timeout);
 4138                 if (error != 0)
 4139                         return (error);
 4140                 tm_p = &timeout;
 4141         }
 4142         return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
 4143 }
 4144 
 4145 static int
 4146 __umtx_op_cv_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
 4147 {
 4148         struct timespec *ts, timeout;
 4149         int error;
 4150 
 4151         /* Allow a null timespec (wait forever). */
 4152         if (uap->uaddr2 == NULL)
 4153                 ts = NULL;
 4154         else {
 4155                 error = umtx_copyin_timeout32(uap->uaddr2, &timeout);
 4156                 if (error != 0)
 4157                         return (error);
 4158                 ts = &timeout;
 4159         }
 4160         return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
 4161 }
 4162 
 4163 static int
 4164 __umtx_op_rw_rdlock_compat32(struct thread *td, struct _umtx_op_args *uap)
 4165 {
 4166         struct _umtx_time timeout;
 4167         int error;
 4168 
 4169         /* Allow a null timespec (wait forever). */
 4170         if (uap->uaddr2 == NULL) {
 4171                 error = do_rw_rdlock(td, uap->obj, uap->val, 0);
 4172         } else {
 4173                 error = umtx_copyin_umtx_time32(uap->uaddr2,
 4174                     (size_t)uap->uaddr1, &timeout);
 4175                 if (error != 0)
 4176                         return (error);
 4177                 error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
 4178         }
 4179         return (error);
 4180 }
 4181 
 4182 static int
 4183 __umtx_op_rw_wrlock_compat32(struct thread *td, struct _umtx_op_args *uap)
 4184 {
 4185         struct _umtx_time timeout;
 4186         int error;
 4187 
 4188         /* Allow a null timespec (wait forever). */
 4189         if (uap->uaddr2 == NULL) {
 4190                 error = do_rw_wrlock(td, uap->obj, 0);
 4191         } else {
 4192                 error = umtx_copyin_umtx_time32(uap->uaddr2,
 4193                     (size_t)uap->uaddr1, &timeout);
 4194                 if (error != 0)
 4195                         return (error);
 4196                 error = do_rw_wrlock(td, uap->obj, &timeout);
 4197         }
 4198         return (error);
 4199 }
 4200 
 4201 static int
 4202 __umtx_op_wait_uint_private_compat32(struct thread *td, struct _umtx_op_args *uap)
 4203 {
 4204         struct _umtx_time *tm_p, timeout;
 4205         int error;
 4206 
 4207         if (uap->uaddr2 == NULL)
 4208                 tm_p = NULL;
 4209         else {
 4210                 error = umtx_copyin_umtx_time32(
 4211                     uap->uaddr2, (size_t)uap->uaddr1,&timeout);
 4212                 if (error != 0)
 4213                         return (error);
 4214                 tm_p = &timeout;
 4215         }
 4216         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
 4217 }
 4218 
 4219 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 4220 static int
 4221 __umtx_op_sem_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
 4222 {
 4223         struct _umtx_time *tm_p, timeout;
 4224         int error;
 4225 
 4226         /* Allow a null timespec (wait forever). */
 4227         if (uap->uaddr2 == NULL)
 4228                 tm_p = NULL;
 4229         else {
 4230                 error = umtx_copyin_umtx_time32(uap->uaddr2,
 4231                     (size_t)uap->uaddr1, &timeout);
 4232                 if (error != 0)
 4233                         return (error);
 4234                 tm_p = &timeout;
 4235         }
 4236         return (do_sem_wait(td, uap->obj, tm_p));
 4237 }
 4238 #endif
 4239 
 4240 static int
 4241 __umtx_op_sem2_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
 4242 {
 4243         struct _umtx_time *tm_p, timeout;
 4244         size_t uasize;
 4245         int error;
 4246 
 4247         /* Allow a null timespec (wait forever). */
 4248         if (uap->uaddr2 == NULL) {
 4249                 uasize = 0;
 4250                 tm_p = NULL;
 4251         } else {
 4252                 uasize = (size_t)uap->uaddr1;
 4253                 error = umtx_copyin_umtx_time32(uap->uaddr2, uasize, &timeout);
 4254                 if (error != 0)
 4255                         return (error);
 4256                 tm_p = &timeout;
 4257         }
 4258         error = do_sem2_wait(td, uap->obj, tm_p);
 4259         if (error == EINTR && uap->uaddr2 != NULL &&
 4260             (timeout._flags & UMTX_ABSTIME) == 0 &&
 4261             uasize >= sizeof(struct umtx_time32) + sizeof(struct timespec32)) {
 4262                 struct timespec32 remain32 = {
 4263                         .tv_sec = timeout._timeout.tv_sec,
 4264                         .tv_nsec = timeout._timeout.tv_nsec
 4265                 };
 4266                 error = copyout(&remain32,
 4267                     (struct umtx_time32 *)uap->uaddr2 + 1,
 4268                     sizeof(struct timespec32));
 4269                 if (error == 0) {
 4270                         error = EINTR;
 4271                 }
 4272         }
 4273 
 4274         return (error);
 4275 }
 4276 
 4277 static int
 4278 __umtx_op_nwake_private32(struct thread *td, struct _umtx_op_args *uap)
 4279 {
 4280         uint32_t uaddrs[BATCH_SIZE], **upp;
 4281         int count, error, i, pos, tocopy;
 4282 
 4283         upp = (uint32_t **)uap->obj;
 4284         error = 0;
 4285         for (count = uap->val, pos = 0; count > 0; count -= tocopy,
 4286             pos += tocopy) {
 4287                 tocopy = MIN(count, BATCH_SIZE);
 4288                 error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
 4289                 if (error != 0)
 4290                         break;
 4291                 for (i = 0; i < tocopy; ++i)
 4292                         kern_umtx_wake(td, (void *)(intptr_t)uaddrs[i],
 4293                             INT_MAX, 1);
 4294                 maybe_yield();
 4295         }
 4296         return (error);
 4297 }
 4298 
 4299 struct umtx_robust_lists_params_compat32 {
 4300         uint32_t        robust_list_offset;
 4301         uint32_t        robust_priv_list_offset;
 4302         uint32_t        robust_inact_offset;
 4303 };
 4304 
 4305 static int
 4306 __umtx_op_robust_lists_compat32(struct thread *td, struct _umtx_op_args *uap)
 4307 {
 4308         struct umtx_robust_lists_params rb;
 4309         struct umtx_robust_lists_params_compat32 rb32;
 4310         int error;
 4311 
 4312         if (uap->val > sizeof(rb32))
 4313                 return (EINVAL);
 4314         bzero(&rb, sizeof(rb));
 4315         bzero(&rb32, sizeof(rb32));
 4316         error = copyin(uap->uaddr1, &rb32, uap->val);
 4317         if (error != 0)
 4318                 return (error);
 4319         rb.robust_list_offset = rb32.robust_list_offset;
 4320         rb.robust_priv_list_offset = rb32.robust_priv_list_offset;
 4321         rb.robust_inact_offset = rb32.robust_inact_offset;
 4322         return (umtx_robust_lists(td, &rb));
 4323 }
 4324 
 4325 static const _umtx_op_func op_table_compat32[] = {
 4326         [UMTX_OP_RESERVED0]     = __umtx_op_unimpl,
 4327         [UMTX_OP_RESERVED1]     = __umtx_op_unimpl,
 4328         [UMTX_OP_WAIT]          = __umtx_op_wait_compat32,
 4329         [UMTX_OP_WAKE]          = __umtx_op_wake,
 4330         [UMTX_OP_MUTEX_TRYLOCK] = __umtx_op_trylock_umutex,
 4331         [UMTX_OP_MUTEX_LOCK]    = __umtx_op_lock_umutex_compat32,
 4332         [UMTX_OP_MUTEX_UNLOCK]  = __umtx_op_unlock_umutex,
 4333         [UMTX_OP_SET_CEILING]   = __umtx_op_set_ceiling,
 4334         [UMTX_OP_CV_WAIT]       = __umtx_op_cv_wait_compat32,
 4335         [UMTX_OP_CV_SIGNAL]     = __umtx_op_cv_signal,
 4336         [UMTX_OP_CV_BROADCAST]  = __umtx_op_cv_broadcast,
 4337         [UMTX_OP_WAIT_UINT]     = __umtx_op_wait_compat32,
 4338         [UMTX_OP_RW_RDLOCK]     = __umtx_op_rw_rdlock_compat32,
 4339         [UMTX_OP_RW_WRLOCK]     = __umtx_op_rw_wrlock_compat32,
 4340         [UMTX_OP_RW_UNLOCK]     = __umtx_op_rw_unlock,
 4341         [UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private_compat32,
 4342         [UMTX_OP_WAKE_PRIVATE]  = __umtx_op_wake_private,
 4343         [UMTX_OP_MUTEX_WAIT]    = __umtx_op_wait_umutex_compat32,
 4344         [UMTX_OP_MUTEX_WAKE]    = __umtx_op_wake_umutex,
 4345 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 4346         [UMTX_OP_SEM_WAIT]      = __umtx_op_sem_wait_compat32,
 4347         [UMTX_OP_SEM_WAKE]      = __umtx_op_sem_wake,
 4348 #else
 4349         [UMTX_OP_SEM_WAIT]      = __umtx_op_unimpl,
 4350         [UMTX_OP_SEM_WAKE]      = __umtx_op_unimpl,
 4351 #endif
 4352         [UMTX_OP_NWAKE_PRIVATE] = __umtx_op_nwake_private32,
 4353         [UMTX_OP_MUTEX_WAKE2]   = __umtx_op_wake2_umutex,
 4354         [UMTX_OP_SEM2_WAIT]     = __umtx_op_sem2_wait_compat32,
 4355         [UMTX_OP_SEM2_WAKE]     = __umtx_op_sem2_wake,
 4356         [UMTX_OP_SHM]           = __umtx_op_shm,
 4357         [UMTX_OP_ROBUST_LISTS]  = __umtx_op_robust_lists_compat32,
 4358 };
 4359 
 4360 int
 4361 freebsd32_umtx_op(struct thread *td, struct freebsd32_umtx_op_args *uap)
 4362 {
 4363 
 4364         if ((unsigned)uap->op < nitems(op_table_compat32)) {
 4365                 return (*op_table_compat32[uap->op])(td,
 4366                     (struct _umtx_op_args *)uap);
 4367         }
 4368         return (EINVAL);
 4369 }
 4370 #endif
 4371 
 4372 void
 4373 umtx_thread_init(struct thread *td)
 4374 {
 4375 
 4376         td->td_umtxq = umtxq_alloc();
 4377         td->td_umtxq->uq_thread = td;
 4378 }
 4379 
 4380 void
 4381 umtx_thread_fini(struct thread *td)
 4382 {
 4383 
 4384         umtxq_free(td->td_umtxq);
 4385 }
 4386 
 4387 /*
 4388  * It will be called when new thread is created, e.g fork().
 4389  */
 4390 void
 4391 umtx_thread_alloc(struct thread *td)
 4392 {
 4393         struct umtx_q *uq;
 4394 
 4395         uq = td->td_umtxq;
 4396         uq->uq_inherited_pri = PRI_MAX;
 4397 
 4398         KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
 4399         KASSERT(uq->uq_thread == td, ("uq_thread != td"));
 4400         KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
 4401         KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
 4402 }
 4403 
 4404 /*
 4405  * exec() hook.
 4406  *
 4407  * Clear robust lists for all process' threads, not delaying the
 4408  * cleanup to thread_exit hook, since the relevant address space is
 4409  * destroyed right now.
 4410  */
 4411 static void
 4412 umtx_exec_hook(void *arg __unused, struct proc *p,
 4413     struct image_params *imgp __unused)
 4414 {
 4415         struct thread *td;
 4416 
 4417         KASSERT(p == curproc, ("need curproc"));
 4418         PROC_LOCK(p);
 4419         KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
 4420             (p->p_flag & P_STOPPED_SINGLE) != 0,
 4421             ("curproc must be single-threaded"));
 4422         FOREACH_THREAD_IN_PROC(p, td) {
 4423                 KASSERT(td == curthread ||
 4424                     ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
 4425                     ("running thread %p %p", p, td));
 4426                 PROC_UNLOCK(p);
 4427                 umtx_thread_cleanup(td);
 4428                 PROC_LOCK(p);
 4429                 td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
 4430         }
 4431         PROC_UNLOCK(p);
 4432 }
 4433 
 4434 /*
 4435  * thread_exit() hook.
 4436  */
 4437 void
 4438 umtx_thread_exit(struct thread *td)
 4439 {
 4440 
 4441         umtx_thread_cleanup(td);
 4442 }
 4443 
 4444 static int
 4445 umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res)
 4446 {
 4447         u_long res1;
 4448 #ifdef COMPAT_FREEBSD32
 4449         uint32_t res32;
 4450 #endif
 4451         int error;
 4452 
 4453 #ifdef COMPAT_FREEBSD32
 4454         if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
 4455                 error = fueword32((void *)ptr, &res32);
 4456                 if (error == 0)
 4457                         res1 = res32;
 4458         } else
 4459 #endif
 4460         {
 4461                 error = fueword((void *)ptr, &res1);
 4462         }
 4463         if (error == 0)
 4464                 *res = res1;
 4465         else
 4466                 error = EFAULT;
 4467         return (error);
 4468 }
 4469 
 4470 static void
 4471 umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list)
 4472 {
 4473 #ifdef COMPAT_FREEBSD32
 4474         struct umutex32 m32;
 4475 
 4476         if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
 4477                 memcpy(&m32, m, sizeof(m32));
 4478                 *rb_list = m32.m_rb_lnk;
 4479         } else
 4480 #endif
 4481                 *rb_list = m->m_rb_lnk;
 4482 }
 4483 
 4484 static int
 4485 umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact)
 4486 {
 4487         struct umutex m;
 4488         int error;
 4489 
 4490         KASSERT(td->td_proc == curproc, ("need current vmspace"));
 4491         error = copyin((void *)rbp, &m, sizeof(m));
 4492         if (error != 0)
 4493                 return (error);
 4494         if (rb_list != NULL)
 4495                 umtx_read_rb_list(td, &m, rb_list);
 4496         if ((m.m_flags & UMUTEX_ROBUST) == 0)
 4497                 return (EINVAL);
 4498         if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
 4499                 /* inact is cleared after unlock, allow the inconsistency */
 4500                 return (inact ? 0 : EINVAL);
 4501         return (do_unlock_umutex(td, (struct umutex *)rbp, true));
 4502 }
 4503 
 4504 static void
 4505 umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
 4506     const char *name)
 4507 {
 4508         int error, i;
 4509         uintptr_t rbp;
 4510         bool inact;
 4511 
 4512         if (rb_list == 0)
 4513                 return;
 4514         error = umtx_read_uptr(td, rb_list, &rbp);
 4515         for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
 4516                 if (rbp == *rb_inact) {
 4517                         inact = true;
 4518                         *rb_inact = 0;
 4519                 } else
 4520                         inact = false;
 4521                 error = umtx_handle_rb(td, rbp, &rbp, inact);
 4522         }
 4523         if (i == umtx_max_rb && umtx_verbose_rb) {
 4524                 uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
 4525                     td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
 4526         }
 4527         if (error != 0 && umtx_verbose_rb) {
 4528                 uprintf("comm %s pid %d: handling %srb error %d\n",
 4529                     td->td_proc->p_comm, td->td_proc->p_pid, name, error);
 4530         }
 4531 }
 4532 
 4533 /*
 4534  * Clean up umtx data.
 4535  */
 4536 static void
 4537 umtx_thread_cleanup(struct thread *td)
 4538 {
 4539         struct umtx_q *uq;
 4540         struct umtx_pi *pi;
 4541         uintptr_t rb_inact;
 4542 
 4543         /*
 4544          * Disown pi mutexes.
 4545          */
 4546         uq = td->td_umtxq;
 4547         if (uq != NULL) {
 4548                 mtx_lock(&umtx_lock);
 4549                 uq->uq_inherited_pri = PRI_MAX;
 4550                 while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
 4551                         pi->pi_owner = NULL;
 4552                         TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
 4553                 }
 4554                 mtx_unlock(&umtx_lock);
 4555                 thread_lock(td);
 4556                 sched_lend_user_prio(td, PRI_MAX);
 4557                 thread_unlock(td);
 4558         }
 4559 
 4560         /*
 4561          * Handle terminated robust mutexes.  Must be done after
 4562          * robust pi disown, otherwise unlock could see unowned
 4563          * entries.
 4564          */
 4565         rb_inact = td->td_rb_inact;
 4566         if (rb_inact != 0)
 4567                 (void)umtx_read_uptr(td, rb_inact, &rb_inact);
 4568         umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "");
 4569         umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ");
 4570         if (rb_inact != 0)
 4571                 (void)umtx_handle_rb(td, rb_inact, NULL, true);
 4572 }

Cache object: 739dad9c0851e9edc411b9ff1713cbe9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.