The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_umtx.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2015, 2016 The FreeBSD Foundation
    5  * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
    6  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
    7  * All rights reserved.
    8  *
    9  * Portions of this software were developed by Konstantin Belousov
   10  * under sponsorship from the FreeBSD Foundation.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice unmodified, this list of conditions, and the following
   17  *    disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD: releng/12.0/sys/kern/kern_umtx.c 340378 2018-11-12 18:21:17Z brooks $");
   36 
   37 #include "opt_umtx_profiling.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/kernel.h>
   41 #include <sys/fcntl.h>
   42 #include <sys/file.h>
   43 #include <sys/filedesc.h>
   44 #include <sys/limits.h>
   45 #include <sys/lock.h>
   46 #include <sys/malloc.h>
   47 #include <sys/mman.h>
   48 #include <sys/mutex.h>
   49 #include <sys/priv.h>
   50 #include <sys/proc.h>
   51 #include <sys/resource.h>
   52 #include <sys/resourcevar.h>
   53 #include <sys/rwlock.h>
   54 #include <sys/sbuf.h>
   55 #include <sys/sched.h>
   56 #include <sys/smp.h>
   57 #include <sys/sysctl.h>
   58 #include <sys/sysent.h>
   59 #include <sys/systm.h>
   60 #include <sys/sysproto.h>
   61 #include <sys/syscallsubr.h>
   62 #include <sys/taskqueue.h>
   63 #include <sys/time.h>
   64 #include <sys/eventhandler.h>
   65 #include <sys/umtx.h>
   66 
   67 #include <security/mac/mac_framework.h>
   68 
   69 #include <vm/vm.h>
   70 #include <vm/vm_param.h>
   71 #include <vm/pmap.h>
   72 #include <vm/vm_map.h>
   73 #include <vm/vm_object.h>
   74 
   75 #include <machine/atomic.h>
   76 #include <machine/cpu.h>
   77 
   78 #ifdef COMPAT_FREEBSD32
   79 #include <compat/freebsd32/freebsd32_proto.h>
   80 #endif
   81 
   82 #define _UMUTEX_TRY             1
   83 #define _UMUTEX_WAIT            2
   84 
   85 #ifdef UMTX_PROFILING
   86 #define UPROF_PERC_BIGGER(w, f, sw, sf)                                 \
   87         (((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
   88 #endif
   89 
   90 /* Priority inheritance mutex info. */
   91 struct umtx_pi {
   92         /* Owner thread */
   93         struct thread           *pi_owner;
   94 
   95         /* Reference count */
   96         int                     pi_refcount;
   97 
   98         /* List entry to link umtx holding by thread */
   99         TAILQ_ENTRY(umtx_pi)    pi_link;
  100 
  101         /* List entry in hash */
  102         TAILQ_ENTRY(umtx_pi)    pi_hashlink;
  103 
  104         /* List for waiters */
  105         TAILQ_HEAD(,umtx_q)     pi_blocked;
  106 
  107         /* Identify a userland lock object */
  108         struct umtx_key         pi_key;
  109 };
  110 
  111 /* A userland synchronous object user. */
  112 struct umtx_q {
  113         /* Linked list for the hash. */
  114         TAILQ_ENTRY(umtx_q)     uq_link;
  115 
  116         /* Umtx key. */
  117         struct umtx_key         uq_key;
  118 
  119         /* Umtx flags. */
  120         int                     uq_flags;
  121 #define UQF_UMTXQ       0x0001
  122 
  123         /* The thread waits on. */
  124         struct thread           *uq_thread;
  125 
  126         /*
  127          * Blocked on PI mutex. read can use chain lock
  128          * or umtx_lock, write must have both chain lock and
  129          * umtx_lock being hold.
  130          */
  131         struct umtx_pi          *uq_pi_blocked;
  132 
  133         /* On blocked list */
  134         TAILQ_ENTRY(umtx_q)     uq_lockq;
  135 
  136         /* Thread contending with us */
  137         TAILQ_HEAD(,umtx_pi)    uq_pi_contested;
  138 
  139         /* Inherited priority from PP mutex */
  140         u_char                  uq_inherited_pri;
  141         
  142         /* Spare queue ready to be reused */
  143         struct umtxq_queue      *uq_spare_queue;
  144 
  145         /* The queue we on */
  146         struct umtxq_queue      *uq_cur_queue;
  147 };
  148 
  149 TAILQ_HEAD(umtxq_head, umtx_q);
  150 
  151 /* Per-key wait-queue */
  152 struct umtxq_queue {
  153         struct umtxq_head       head;
  154         struct umtx_key         key;
  155         LIST_ENTRY(umtxq_queue) link;
  156         int                     length;
  157 };
  158 
  159 LIST_HEAD(umtxq_list, umtxq_queue);
  160 
  161 /* Userland lock object's wait-queue chain */
  162 struct umtxq_chain {
  163         /* Lock for this chain. */
  164         struct mtx              uc_lock;
  165 
  166         /* List of sleep queues. */
  167         struct umtxq_list       uc_queue[2];
  168 #define UMTX_SHARED_QUEUE       0
  169 #define UMTX_EXCLUSIVE_QUEUE    1
  170 
  171         LIST_HEAD(, umtxq_queue) uc_spare_queue;
  172 
  173         /* Busy flag */
  174         char                    uc_busy;
  175 
  176         /* Chain lock waiters */
  177         int                     uc_waiters;
  178 
  179         /* All PI in the list */
  180         TAILQ_HEAD(,umtx_pi)    uc_pi_list;
  181 
  182 #ifdef UMTX_PROFILING
  183         u_int                   length;
  184         u_int                   max_length;
  185 #endif
  186 };
  187 
  188 #define UMTXQ_LOCKED_ASSERT(uc)         mtx_assert(&(uc)->uc_lock, MA_OWNED)
  189 
  190 /*
  191  * Don't propagate time-sharing priority, there is a security reason,
  192  * a user can simply introduce PI-mutex, let thread A lock the mutex,
  193  * and let another thread B block on the mutex, because B is
  194  * sleeping, its priority will be boosted, this causes A's priority to
  195  * be boosted via priority propagating too and will never be lowered even
  196  * if it is using 100%CPU, this is unfair to other processes.
  197  */
  198 
  199 #define UPRI(td)        (((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
  200                           (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
  201                          PRI_MAX_TIMESHARE : (td)->td_user_pri)
  202 
  203 #define GOLDEN_RATIO_PRIME      2654404609U
  204 #ifndef UMTX_CHAINS
  205 #define UMTX_CHAINS             512
  206 #endif
  207 #define UMTX_SHIFTS             (__WORD_BIT - 9)
  208 
  209 #define GET_SHARE(flags)        \
  210     (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
  211 
  212 #define BUSY_SPINS              200
  213 
  214 struct abs_timeout {
  215         int clockid;
  216         bool is_abs_real;       /* TIMER_ABSTIME && CLOCK_REALTIME* */
  217         struct timespec cur;
  218         struct timespec end;
  219 };
  220 
  221 #ifdef COMPAT_FREEBSD32
  222 struct umutex32 {
  223         volatile __lwpid_t      m_owner;        /* Owner of the mutex */
  224         __uint32_t              m_flags;        /* Flags of the mutex */
  225         __uint32_t              m_ceilings[2];  /* Priority protect ceiling */
  226         __uint32_t              m_rb_lnk;       /* Robust linkage */
  227         __uint32_t              m_pad;
  228         __uint32_t              m_spare[2];
  229 };
  230 
  231 _Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
  232 _Static_assert(__offsetof(struct umutex, m_spare[0]) ==
  233     __offsetof(struct umutex32, m_spare[0]), "m_spare32");
  234 #endif
  235 
  236 int umtx_shm_vnobj_persistent = 0;
  237 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
  238     &umtx_shm_vnobj_persistent, 0,
  239     "False forces destruction of umtx attached to file, on last close");
  240 static int umtx_max_rb = 1000;
  241 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
  242     &umtx_max_rb, 0,
  243     "");
  244 
  245 static uma_zone_t               umtx_pi_zone;
  246 static struct umtxq_chain       umtxq_chains[2][UMTX_CHAINS];
  247 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
  248 static int                      umtx_pi_allocated;
  249 
  250 static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW, 0, "umtx debug");
  251 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
  252     &umtx_pi_allocated, 0, "Allocated umtx_pi");
  253 static int umtx_verbose_rb = 1;
  254 SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
  255     &umtx_verbose_rb, 0,
  256     "");
  257 
  258 #ifdef UMTX_PROFILING
  259 static long max_length;
  260 SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
  261 static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD, 0, "umtx chain stats");
  262 #endif
  263 
  264 static void abs_timeout_update(struct abs_timeout *timo);
  265 
  266 static void umtx_shm_init(void);
  267 static void umtxq_sysinit(void *);
  268 static void umtxq_hash(struct umtx_key *key);
  269 static struct umtxq_chain *umtxq_getchain(struct umtx_key *key);
  270 static void umtxq_lock(struct umtx_key *key);
  271 static void umtxq_unlock(struct umtx_key *key);
  272 static void umtxq_busy(struct umtx_key *key);
  273 static void umtxq_unbusy(struct umtx_key *key);
  274 static void umtxq_insert_queue(struct umtx_q *uq, int q);
  275 static void umtxq_remove_queue(struct umtx_q *uq, int q);
  276 static int umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *);
  277 static int umtxq_count(struct umtx_key *key);
  278 static struct umtx_pi *umtx_pi_alloc(int);
  279 static void umtx_pi_free(struct umtx_pi *pi);
  280 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
  281     bool rb);
  282 static void umtx_thread_cleanup(struct thread *td);
  283 static void umtx_exec_hook(void *arg __unused, struct proc *p __unused,
  284     struct image_params *imgp __unused);
  285 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
  286 
  287 #define umtxq_signal(key, nwake)        umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
  288 #define umtxq_insert(uq)        umtxq_insert_queue((uq), UMTX_SHARED_QUEUE)
  289 #define umtxq_remove(uq)        umtxq_remove_queue((uq), UMTX_SHARED_QUEUE)
  290 
  291 static struct mtx umtx_lock;
  292 
  293 #ifdef UMTX_PROFILING
  294 static void
  295 umtx_init_profiling(void) 
  296 {
  297         struct sysctl_oid *chain_oid;
  298         char chain_name[10];
  299         int i;
  300 
  301         for (i = 0; i < UMTX_CHAINS; ++i) {
  302                 snprintf(chain_name, sizeof(chain_name), "%d", i);
  303                 chain_oid = SYSCTL_ADD_NODE(NULL, 
  304                     SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO, 
  305                     chain_name, CTLFLAG_RD, NULL, "umtx hash stats");
  306                 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  307                     "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
  308                 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  309                     "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
  310         }
  311 }
  312 
  313 static int
  314 sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
  315 {
  316         char buf[512];
  317         struct sbuf sb;
  318         struct umtxq_chain *uc;
  319         u_int fract, i, j, tot, whole;
  320         u_int sf0, sf1, sf2, sf3, sf4;
  321         u_int si0, si1, si2, si3, si4;
  322         u_int sw0, sw1, sw2, sw3, sw4;
  323 
  324         sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
  325         for (i = 0; i < 2; i++) {
  326                 tot = 0;
  327                 for (j = 0; j < UMTX_CHAINS; ++j) {
  328                         uc = &umtxq_chains[i][j];
  329                         mtx_lock(&uc->uc_lock);
  330                         tot += uc->max_length;
  331                         mtx_unlock(&uc->uc_lock);
  332                 }
  333                 if (tot == 0)
  334                         sbuf_printf(&sb, "%u) Empty ", i);
  335                 else {
  336                         sf0 = sf1 = sf2 = sf3 = sf4 = 0;
  337                         si0 = si1 = si2 = si3 = si4 = 0;
  338                         sw0 = sw1 = sw2 = sw3 = sw4 = 0;
  339                         for (j = 0; j < UMTX_CHAINS; j++) {
  340                                 uc = &umtxq_chains[i][j];
  341                                 mtx_lock(&uc->uc_lock);
  342                                 whole = uc->max_length * 100;
  343                                 mtx_unlock(&uc->uc_lock);
  344                                 fract = (whole % tot) * 100;
  345                                 if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
  346                                         sf0 = fract;
  347                                         si0 = j;
  348                                         sw0 = whole;
  349                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw1,
  350                                     sf1)) {
  351                                         sf1 = fract;
  352                                         si1 = j;
  353                                         sw1 = whole;
  354                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw2,
  355                                     sf2)) {
  356                                         sf2 = fract;
  357                                         si2 = j;
  358                                         sw2 = whole;
  359                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw3,
  360                                     sf3)) {
  361                                         sf3 = fract;
  362                                         si3 = j;
  363                                         sw3 = whole;
  364                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw4,
  365                                     sf4)) {
  366                                         sf4 = fract;
  367                                         si4 = j;
  368                                         sw4 = whole;
  369                                 }
  370                         }
  371                         sbuf_printf(&sb, "queue %u:\n", i);
  372                         sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
  373                             sf0 / tot, si0);
  374                         sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
  375                             sf1 / tot, si1);
  376                         sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
  377                             sf2 / tot, si2);
  378                         sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
  379                             sf3 / tot, si3);
  380                         sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
  381                             sf4 / tot, si4);
  382                 }
  383         }
  384         sbuf_trim(&sb);
  385         sbuf_finish(&sb);
  386         sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
  387         sbuf_delete(&sb);
  388         return (0);
  389 }
  390 
  391 static int
  392 sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
  393 {
  394         struct umtxq_chain *uc;
  395         u_int i, j;
  396         int clear, error;
  397 
  398         clear = 0;
  399         error = sysctl_handle_int(oidp, &clear, 0, req);
  400         if (error != 0 || req->newptr == NULL)
  401                 return (error);
  402 
  403         if (clear != 0) {
  404                 for (i = 0; i < 2; ++i) {
  405                         for (j = 0; j < UMTX_CHAINS; ++j) {
  406                                 uc = &umtxq_chains[i][j];
  407                                 mtx_lock(&uc->uc_lock);
  408                                 uc->length = 0;
  409                                 uc->max_length = 0;     
  410                                 mtx_unlock(&uc->uc_lock);
  411                         }
  412                 }
  413         }
  414         return (0);
  415 }
  416 
  417 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
  418     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
  419     sysctl_debug_umtx_chains_clear, "I", "Clear umtx chains statistics");
  420 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
  421     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
  422     sysctl_debug_umtx_chains_peaks, "A", "Highest peaks in chains max length");
  423 #endif
  424 
  425 static void
  426 umtxq_sysinit(void *arg __unused)
  427 {
  428         int i, j;
  429 
  430         umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
  431                 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  432         for (i = 0; i < 2; ++i) {
  433                 for (j = 0; j < UMTX_CHAINS; ++j) {
  434                         mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
  435                                  MTX_DEF | MTX_DUPOK);
  436                         LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
  437                         LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
  438                         LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
  439                         TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
  440                         umtxq_chains[i][j].uc_busy = 0;
  441                         umtxq_chains[i][j].uc_waiters = 0;
  442 #ifdef UMTX_PROFILING
  443                         umtxq_chains[i][j].length = 0;
  444                         umtxq_chains[i][j].max_length = 0;      
  445 #endif
  446                 }
  447         }
  448 #ifdef UMTX_PROFILING
  449         umtx_init_profiling();
  450 #endif
  451         mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
  452         EVENTHANDLER_REGISTER(process_exec, umtx_exec_hook, NULL,
  453             EVENTHANDLER_PRI_ANY);
  454         umtx_shm_init();
  455 }
  456 
  457 struct umtx_q *
  458 umtxq_alloc(void)
  459 {
  460         struct umtx_q *uq;
  461 
  462         uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
  463         uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
  464             M_WAITOK | M_ZERO);
  465         TAILQ_INIT(&uq->uq_spare_queue->head);
  466         TAILQ_INIT(&uq->uq_pi_contested);
  467         uq->uq_inherited_pri = PRI_MAX;
  468         return (uq);
  469 }
  470 
  471 void
  472 umtxq_free(struct umtx_q *uq)
  473 {
  474 
  475         MPASS(uq->uq_spare_queue != NULL);
  476         free(uq->uq_spare_queue, M_UMTX);
  477         free(uq, M_UMTX);
  478 }
  479 
  480 static inline void
  481 umtxq_hash(struct umtx_key *key)
  482 {
  483         unsigned n;
  484 
  485         n = (uintptr_t)key->info.both.a + key->info.both.b;
  486         key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
  487 }
  488 
  489 static inline struct umtxq_chain *
  490 umtxq_getchain(struct umtx_key *key)
  491 {
  492 
  493         if (key->type <= TYPE_SEM)
  494                 return (&umtxq_chains[1][key->hash]);
  495         return (&umtxq_chains[0][key->hash]);
  496 }
  497 
  498 /*
  499  * Lock a chain.
  500  */
  501 static inline void
  502 umtxq_lock(struct umtx_key *key)
  503 {
  504         struct umtxq_chain *uc;
  505 
  506         uc = umtxq_getchain(key);
  507         mtx_lock(&uc->uc_lock);
  508 }
  509 
  510 /*
  511  * Unlock a chain.
  512  */
  513 static inline void
  514 umtxq_unlock(struct umtx_key *key)
  515 {
  516         struct umtxq_chain *uc;
  517 
  518         uc = umtxq_getchain(key);
  519         mtx_unlock(&uc->uc_lock);
  520 }
  521 
  522 /*
  523  * Set chain to busy state when following operation
  524  * may be blocked (kernel mutex can not be used).
  525  */
  526 static inline void
  527 umtxq_busy(struct umtx_key *key)
  528 {
  529         struct umtxq_chain *uc;
  530 
  531         uc = umtxq_getchain(key);
  532         mtx_assert(&uc->uc_lock, MA_OWNED);
  533         if (uc->uc_busy) {
  534 #ifdef SMP
  535                 if (smp_cpus > 1) {
  536                         int count = BUSY_SPINS;
  537                         if (count > 0) {
  538                                 umtxq_unlock(key);
  539                                 while (uc->uc_busy && --count > 0)
  540                                         cpu_spinwait();
  541                                 umtxq_lock(key);
  542                         }
  543                 }
  544 #endif
  545                 while (uc->uc_busy) {
  546                         uc->uc_waiters++;
  547                         msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
  548                         uc->uc_waiters--;
  549                 }
  550         }
  551         uc->uc_busy = 1;
  552 }
  553 
  554 /*
  555  * Unbusy a chain.
  556  */
  557 static inline void
  558 umtxq_unbusy(struct umtx_key *key)
  559 {
  560         struct umtxq_chain *uc;
  561 
  562         uc = umtxq_getchain(key);
  563         mtx_assert(&uc->uc_lock, MA_OWNED);
  564         KASSERT(uc->uc_busy != 0, ("not busy"));
  565         uc->uc_busy = 0;
  566         if (uc->uc_waiters)
  567                 wakeup_one(uc);
  568 }
  569 
  570 static inline void
  571 umtxq_unbusy_unlocked(struct umtx_key *key)
  572 {
  573 
  574         umtxq_lock(key);
  575         umtxq_unbusy(key);
  576         umtxq_unlock(key);
  577 }
  578 
  579 static struct umtxq_queue *
  580 umtxq_queue_lookup(struct umtx_key *key, int q)
  581 {
  582         struct umtxq_queue *uh;
  583         struct umtxq_chain *uc;
  584 
  585         uc = umtxq_getchain(key);
  586         UMTXQ_LOCKED_ASSERT(uc);
  587         LIST_FOREACH(uh, &uc->uc_queue[q], link) {
  588                 if (umtx_key_match(&uh->key, key))
  589                         return (uh);
  590         }
  591 
  592         return (NULL);
  593 }
  594 
  595 static inline void
  596 umtxq_insert_queue(struct umtx_q *uq, int q)
  597 {
  598         struct umtxq_queue *uh;
  599         struct umtxq_chain *uc;
  600 
  601         uc = umtxq_getchain(&uq->uq_key);
  602         UMTXQ_LOCKED_ASSERT(uc);
  603         KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
  604         uh = umtxq_queue_lookup(&uq->uq_key, q);
  605         if (uh != NULL) {
  606                 LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
  607         } else {
  608                 uh = uq->uq_spare_queue;
  609                 uh->key = uq->uq_key;
  610                 LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
  611 #ifdef UMTX_PROFILING
  612                 uc->length++;
  613                 if (uc->length > uc->max_length) {
  614                         uc->max_length = uc->length;
  615                         if (uc->max_length > max_length)
  616                                 max_length = uc->max_length;    
  617                 }
  618 #endif
  619         }
  620         uq->uq_spare_queue = NULL;
  621 
  622         TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
  623         uh->length++;
  624         uq->uq_flags |= UQF_UMTXQ;
  625         uq->uq_cur_queue = uh;
  626         return;
  627 }
  628 
  629 static inline void
  630 umtxq_remove_queue(struct umtx_q *uq, int q)
  631 {
  632         struct umtxq_chain *uc;
  633         struct umtxq_queue *uh;
  634 
  635         uc = umtxq_getchain(&uq->uq_key);
  636         UMTXQ_LOCKED_ASSERT(uc);
  637         if (uq->uq_flags & UQF_UMTXQ) {
  638                 uh = uq->uq_cur_queue;
  639                 TAILQ_REMOVE(&uh->head, uq, uq_link);
  640                 uh->length--;
  641                 uq->uq_flags &= ~UQF_UMTXQ;
  642                 if (TAILQ_EMPTY(&uh->head)) {
  643                         KASSERT(uh->length == 0,
  644                             ("inconsistent umtxq_queue length"));
  645 #ifdef UMTX_PROFILING
  646                         uc->length--;
  647 #endif
  648                         LIST_REMOVE(uh, link);
  649                 } else {
  650                         uh = LIST_FIRST(&uc->uc_spare_queue);
  651                         KASSERT(uh != NULL, ("uc_spare_queue is empty"));
  652                         LIST_REMOVE(uh, link);
  653                 }
  654                 uq->uq_spare_queue = uh;
  655                 uq->uq_cur_queue = NULL;
  656         }
  657 }
  658 
  659 /*
  660  * Check if there are multiple waiters
  661  */
  662 static int
  663 umtxq_count(struct umtx_key *key)
  664 {
  665         struct umtxq_queue *uh;
  666 
  667         UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
  668         uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
  669         if (uh != NULL)
  670                 return (uh->length);
  671         return (0);
  672 }
  673 
  674 /*
  675  * Check if there are multiple PI waiters and returns first
  676  * waiter.
  677  */
  678 static int
  679 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
  680 {
  681         struct umtxq_queue *uh;
  682 
  683         *first = NULL;
  684         UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
  685         uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
  686         if (uh != NULL) {
  687                 *first = TAILQ_FIRST(&uh->head);
  688                 return (uh->length);
  689         }
  690         return (0);
  691 }
  692 
  693 static int
  694 umtxq_check_susp(struct thread *td)
  695 {
  696         struct proc *p;
  697         int error;
  698 
  699         /*
  700          * The check for TDF_NEEDSUSPCHK is racy, but it is enough to
  701          * eventually break the lockstep loop.
  702          */
  703         if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
  704                 return (0);
  705         error = 0;
  706         p = td->td_proc;
  707         PROC_LOCK(p);
  708         if (P_SHOULDSTOP(p) ||
  709             ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
  710                 if (p->p_flag & P_SINGLE_EXIT)
  711                         error = EINTR;
  712                 else
  713                         error = ERESTART;
  714         }
  715         PROC_UNLOCK(p);
  716         return (error);
  717 }
  718 
  719 /*
  720  * Wake up threads waiting on an userland object.
  721  */
  722 
  723 static int
  724 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
  725 {
  726         struct umtxq_queue *uh;
  727         struct umtx_q *uq;
  728         int ret;
  729 
  730         ret = 0;
  731         UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
  732         uh = umtxq_queue_lookup(key, q);
  733         if (uh != NULL) {
  734                 while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
  735                         umtxq_remove_queue(uq, q);
  736                         wakeup(uq);
  737                         if (++ret >= n_wake)
  738                                 return (ret);
  739                 }
  740         }
  741         return (ret);
  742 }
  743 
  744 
  745 /*
  746  * Wake up specified thread.
  747  */
  748 static inline void
  749 umtxq_signal_thread(struct umtx_q *uq)
  750 {
  751 
  752         UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
  753         umtxq_remove(uq);
  754         wakeup(uq);
  755 }
  756 
  757 static inline int 
  758 tstohz(const struct timespec *tsp)
  759 {
  760         struct timeval tv;
  761 
  762         TIMESPEC_TO_TIMEVAL(&tv, tsp);
  763         return tvtohz(&tv);
  764 }
  765 
  766 static void
  767 abs_timeout_init(struct abs_timeout *timo, int clockid, int absolute,
  768         const struct timespec *timeout)
  769 {
  770 
  771         timo->clockid = clockid;
  772         if (!absolute) {
  773                 timo->is_abs_real = false;
  774                 abs_timeout_update(timo);
  775                 timespecadd(&timo->cur, timeout, &timo->end);
  776         } else {
  777                 timo->end = *timeout;
  778                 timo->is_abs_real = clockid == CLOCK_REALTIME ||
  779                     clockid == CLOCK_REALTIME_FAST ||
  780                     clockid == CLOCK_REALTIME_PRECISE;
  781                 /*
  782                  * If is_abs_real, umtxq_sleep will read the clock
  783                  * after setting td_rtcgen; otherwise, read it here.
  784                  */
  785                 if (!timo->is_abs_real) {
  786                         abs_timeout_update(timo);
  787                 }
  788         }
  789 }
  790 
  791 static void
  792 abs_timeout_init2(struct abs_timeout *timo, const struct _umtx_time *umtxtime)
  793 {
  794 
  795         abs_timeout_init(timo, umtxtime->_clockid,
  796             (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
  797 }
  798 
  799 static inline void
  800 abs_timeout_update(struct abs_timeout *timo)
  801 {
  802 
  803         kern_clock_gettime(curthread, timo->clockid, &timo->cur);
  804 }
  805 
  806 static int
  807 abs_timeout_gethz(struct abs_timeout *timo)
  808 {
  809         struct timespec tts;
  810 
  811         if (timespeccmp(&timo->end, &timo->cur, <=))
  812                 return (-1); 
  813         timespecsub(&timo->end, &timo->cur, &tts);
  814         return (tstohz(&tts));
  815 }
  816 
  817 static uint32_t
  818 umtx_unlock_val(uint32_t flags, bool rb)
  819 {
  820 
  821         if (rb)
  822                 return (UMUTEX_RB_OWNERDEAD);
  823         else if ((flags & UMUTEX_NONCONSISTENT) != 0)
  824                 return (UMUTEX_RB_NOTRECOV);
  825         else
  826                 return (UMUTEX_UNOWNED);
  827 
  828 }
  829 
  830 /*
  831  * Put thread into sleep state, before sleeping, check if
  832  * thread was removed from umtx queue.
  833  */
  834 static inline int
  835 umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *abstime)
  836 {
  837         struct umtxq_chain *uc;
  838         int error, timo;
  839 
  840         if (abstime != NULL && abstime->is_abs_real) {
  841                 curthread->td_rtcgen = atomic_load_acq_int(&rtc_generation);
  842                 abs_timeout_update(abstime);
  843         }
  844 
  845         uc = umtxq_getchain(&uq->uq_key);
  846         UMTXQ_LOCKED_ASSERT(uc);
  847         for (;;) {
  848                 if (!(uq->uq_flags & UQF_UMTXQ)) {
  849                         error = 0;
  850                         break;
  851                 }
  852                 if (abstime != NULL) {
  853                         timo = abs_timeout_gethz(abstime);
  854                         if (timo < 0) {
  855                                 error = ETIMEDOUT;
  856                                 break;
  857                         }
  858                 } else
  859                         timo = 0;
  860                 error = msleep(uq, &uc->uc_lock, PCATCH | PDROP, wmesg, timo);
  861                 if (error == EINTR || error == ERESTART) {
  862                         umtxq_lock(&uq->uq_key);
  863                         break;
  864                 }
  865                 if (abstime != NULL) {
  866                         if (abstime->is_abs_real)
  867                                 curthread->td_rtcgen =
  868                                     atomic_load_acq_int(&rtc_generation);
  869                         abs_timeout_update(abstime);
  870                 }
  871                 umtxq_lock(&uq->uq_key);
  872         }
  873 
  874         curthread->td_rtcgen = 0;
  875         return (error);
  876 }
  877 
  878 /*
  879  * Convert userspace address into unique logical address.
  880  */
  881 int
  882 umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
  883 {
  884         struct thread *td = curthread;
  885         vm_map_t map;
  886         vm_map_entry_t entry;
  887         vm_pindex_t pindex;
  888         vm_prot_t prot;
  889         boolean_t wired;
  890 
  891         key->type = type;
  892         if (share == THREAD_SHARE) {
  893                 key->shared = 0;
  894                 key->info.private.vs = td->td_proc->p_vmspace;
  895                 key->info.private.addr = (uintptr_t)addr;
  896         } else {
  897                 MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
  898                 map = &td->td_proc->p_vmspace->vm_map;
  899                 if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
  900                     &entry, &key->info.shared.object, &pindex, &prot,
  901                     &wired) != KERN_SUCCESS) {
  902                         return (EFAULT);
  903                 }
  904 
  905                 if ((share == PROCESS_SHARE) ||
  906                     (share == AUTO_SHARE &&
  907                      VM_INHERIT_SHARE == entry->inheritance)) {
  908                         key->shared = 1;
  909                         key->info.shared.offset = (vm_offset_t)addr -
  910                             entry->start + entry->offset;
  911                         vm_object_reference(key->info.shared.object);
  912                 } else {
  913                         key->shared = 0;
  914                         key->info.private.vs = td->td_proc->p_vmspace;
  915                         key->info.private.addr = (uintptr_t)addr;
  916                 }
  917                 vm_map_lookup_done(map, entry);
  918         }
  919 
  920         umtxq_hash(key);
  921         return (0);
  922 }
  923 
  924 /*
  925  * Release key.
  926  */
  927 void
  928 umtx_key_release(struct umtx_key *key)
  929 {
  930         if (key->shared)
  931                 vm_object_deallocate(key->info.shared.object);
  932 }
  933 
  934 /*
  935  * Fetch and compare value, sleep on the address if value is not changed.
  936  */
  937 static int
  938 do_wait(struct thread *td, void *addr, u_long id,
  939     struct _umtx_time *timeout, int compat32, int is_private)
  940 {
  941         struct abs_timeout timo;
  942         struct umtx_q *uq;
  943         u_long tmp;
  944         uint32_t tmp32;
  945         int error = 0;
  946 
  947         uq = td->td_umtxq;
  948         if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
  949                 is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
  950                 return (error);
  951 
  952         if (timeout != NULL)
  953                 abs_timeout_init2(&timo, timeout);
  954 
  955         umtxq_lock(&uq->uq_key);
  956         umtxq_insert(uq);
  957         umtxq_unlock(&uq->uq_key);
  958         if (compat32 == 0) {
  959                 error = fueword(addr, &tmp);
  960                 if (error != 0)
  961                         error = EFAULT;
  962         } else {
  963                 error = fueword32(addr, &tmp32);
  964                 if (error == 0)
  965                         tmp = tmp32;
  966                 else
  967                         error = EFAULT;
  968         }
  969         umtxq_lock(&uq->uq_key);
  970         if (error == 0) {
  971                 if (tmp == id)
  972                         error = umtxq_sleep(uq, "uwait", timeout == NULL ?
  973                             NULL : &timo);
  974                 if ((uq->uq_flags & UQF_UMTXQ) == 0)
  975                         error = 0;
  976                 else
  977                         umtxq_remove(uq);
  978         } else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
  979                 umtxq_remove(uq);
  980         }
  981         umtxq_unlock(&uq->uq_key);
  982         umtx_key_release(&uq->uq_key);
  983         if (error == ERESTART)
  984                 error = EINTR;
  985         return (error);
  986 }
  987 
  988 /*
  989  * Wake up threads sleeping on the specified address.
  990  */
  991 int
  992 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
  993 {
  994         struct umtx_key key;
  995         int ret;
  996         
  997         if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
  998             is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
  999                 return (ret);
 1000         umtxq_lock(&key);
 1001         umtxq_signal(&key, n_wake);
 1002         umtxq_unlock(&key);
 1003         umtx_key_release(&key);
 1004         return (0);
 1005 }
 1006 
 1007 /*
 1008  * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
 1009  */
 1010 static int
 1011 do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
 1012     struct _umtx_time *timeout, int mode)
 1013 {
 1014         struct abs_timeout timo;
 1015         struct umtx_q *uq;
 1016         uint32_t owner, old, id;
 1017         int error, rv;
 1018 
 1019         id = td->td_tid;
 1020         uq = td->td_umtxq;
 1021         error = 0;
 1022         if (timeout != NULL)
 1023                 abs_timeout_init2(&timo, timeout);
 1024 
 1025         /*
 1026          * Care must be exercised when dealing with umtx structure. It
 1027          * can fault on any access.
 1028          */
 1029         for (;;) {
 1030                 rv = fueword32(&m->m_owner, &owner);
 1031                 if (rv == -1)
 1032                         return (EFAULT);
 1033                 if (mode == _UMUTEX_WAIT) {
 1034                         if (owner == UMUTEX_UNOWNED ||
 1035                             owner == UMUTEX_CONTESTED ||
 1036                             owner == UMUTEX_RB_OWNERDEAD ||
 1037                             owner == UMUTEX_RB_NOTRECOV)
 1038                                 return (0);
 1039                 } else {
 1040                         /*
 1041                          * Robust mutex terminated.  Kernel duty is to
 1042                          * return EOWNERDEAD to the userspace.  The
 1043                          * umutex.m_flags UMUTEX_NONCONSISTENT is set
 1044                          * by the common userspace code.
 1045                          */
 1046                         if (owner == UMUTEX_RB_OWNERDEAD) {
 1047                                 rv = casueword32(&m->m_owner,
 1048                                     UMUTEX_RB_OWNERDEAD, &owner,
 1049                                     id | UMUTEX_CONTESTED);
 1050                                 if (rv == -1)
 1051                                         return (EFAULT);
 1052                                 if (owner == UMUTEX_RB_OWNERDEAD)
 1053                                         return (EOWNERDEAD); /* success */
 1054                                 rv = umtxq_check_susp(td);
 1055                                 if (rv != 0)
 1056                                         return (rv);
 1057                                 continue;
 1058                         }
 1059                         if (owner == UMUTEX_RB_NOTRECOV)
 1060                                 return (ENOTRECOVERABLE);
 1061 
 1062 
 1063                         /*
 1064                          * Try the uncontested case.  This should be
 1065                          * done in userland.
 1066                          */
 1067                         rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
 1068                             &owner, id);
 1069                         /* The address was invalid. */
 1070                         if (rv == -1)
 1071                                 return (EFAULT);
 1072 
 1073                         /* The acquire succeeded. */
 1074                         if (owner == UMUTEX_UNOWNED)
 1075                                 return (0);
 1076 
 1077                         /*
 1078                          * If no one owns it but it is contested try
 1079                          * to acquire it.
 1080                          */
 1081                         if (owner == UMUTEX_CONTESTED) {
 1082                                 rv = casueword32(&m->m_owner,
 1083                                     UMUTEX_CONTESTED, &owner,
 1084                                     id | UMUTEX_CONTESTED);
 1085                                 /* The address was invalid. */
 1086                                 if (rv == -1)
 1087                                         return (EFAULT);
 1088 
 1089                                 if (owner == UMUTEX_CONTESTED)
 1090                                         return (0);
 1091 
 1092                                 rv = umtxq_check_susp(td);
 1093                                 if (rv != 0)
 1094                                         return (rv);
 1095 
 1096                                 /*
 1097                                  * If this failed the lock has
 1098                                  * changed, restart.
 1099                                  */
 1100                                 continue;
 1101                         }
 1102                 }
 1103 
 1104                 if (mode == _UMUTEX_TRY)
 1105                         return (EBUSY);
 1106 
 1107                 /*
 1108                  * If we caught a signal, we have retried and now
 1109                  * exit immediately.
 1110                  */
 1111                 if (error != 0)
 1112                         return (error);
 1113 
 1114                 if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
 1115                     GET_SHARE(flags), &uq->uq_key)) != 0)
 1116                         return (error);
 1117 
 1118                 umtxq_lock(&uq->uq_key);
 1119                 umtxq_busy(&uq->uq_key);
 1120                 umtxq_insert(uq);
 1121                 umtxq_unlock(&uq->uq_key);
 1122 
 1123                 /*
 1124                  * Set the contested bit so that a release in user space
 1125                  * knows to use the system call for unlock.  If this fails
 1126                  * either some one else has acquired the lock or it has been
 1127                  * released.
 1128                  */
 1129                 rv = casueword32(&m->m_owner, owner, &old,
 1130                     owner | UMUTEX_CONTESTED);
 1131 
 1132                 /* The address was invalid. */
 1133                 if (rv == -1) {
 1134                         umtxq_lock(&uq->uq_key);
 1135                         umtxq_remove(uq);
 1136                         umtxq_unbusy(&uq->uq_key);
 1137                         umtxq_unlock(&uq->uq_key);
 1138                         umtx_key_release(&uq->uq_key);
 1139                         return (EFAULT);
 1140                 }
 1141 
 1142                 /*
 1143                  * We set the contested bit, sleep. Otherwise the lock changed
 1144                  * and we need to retry or we lost a race to the thread
 1145                  * unlocking the umtx.
 1146                  */
 1147                 umtxq_lock(&uq->uq_key);
 1148                 umtxq_unbusy(&uq->uq_key);
 1149                 if (old == owner)
 1150                         error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
 1151                             NULL : &timo);
 1152                 umtxq_remove(uq);
 1153                 umtxq_unlock(&uq->uq_key);
 1154                 umtx_key_release(&uq->uq_key);
 1155 
 1156                 if (error == 0)
 1157                         error = umtxq_check_susp(td);
 1158         }
 1159 
 1160         return (0);
 1161 }
 1162 
 1163 /*
 1164  * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
 1165  */
 1166 static int
 1167 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
 1168 {
 1169         struct umtx_key key;
 1170         uint32_t owner, old, id, newlock;
 1171         int error, count;
 1172 
 1173         id = td->td_tid;
 1174         /*
 1175          * Make sure we own this mtx.
 1176          */
 1177         error = fueword32(&m->m_owner, &owner);
 1178         if (error == -1)
 1179                 return (EFAULT);
 1180 
 1181         if ((owner & ~UMUTEX_CONTESTED) != id)
 1182                 return (EPERM);
 1183 
 1184         newlock = umtx_unlock_val(flags, rb);
 1185         if ((owner & UMUTEX_CONTESTED) == 0) {
 1186                 error = casueword32(&m->m_owner, owner, &old, newlock);
 1187                 if (error == -1)
 1188                         return (EFAULT);
 1189                 if (old == owner)
 1190                         return (0);
 1191                 owner = old;
 1192         }
 1193 
 1194         /* We should only ever be in here for contested locks */
 1195         if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
 1196             &key)) != 0)
 1197                 return (error);
 1198 
 1199         umtxq_lock(&key);
 1200         umtxq_busy(&key);
 1201         count = umtxq_count(&key);
 1202         umtxq_unlock(&key);
 1203 
 1204         /*
 1205          * When unlocking the umtx, it must be marked as unowned if
 1206          * there is zero or one thread only waiting for it.
 1207          * Otherwise, it must be marked as contested.
 1208          */
 1209         if (count > 1)
 1210                 newlock |= UMUTEX_CONTESTED;
 1211         error = casueword32(&m->m_owner, owner, &old, newlock);
 1212         umtxq_lock(&key);
 1213         umtxq_signal(&key, 1);
 1214         umtxq_unbusy(&key);
 1215         umtxq_unlock(&key);
 1216         umtx_key_release(&key);
 1217         if (error == -1)
 1218                 return (EFAULT);
 1219         if (old != owner)
 1220                 return (EINVAL);
 1221         return (0);
 1222 }
 1223 
 1224 /*
 1225  * Check if the mutex is available and wake up a waiter,
 1226  * only for simple mutex.
 1227  */
 1228 static int
 1229 do_wake_umutex(struct thread *td, struct umutex *m)
 1230 {
 1231         struct umtx_key key;
 1232         uint32_t owner;
 1233         uint32_t flags;
 1234         int error;
 1235         int count;
 1236 
 1237         error = fueword32(&m->m_owner, &owner);
 1238         if (error == -1)
 1239                 return (EFAULT);
 1240 
 1241         if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
 1242             owner != UMUTEX_RB_NOTRECOV)
 1243                 return (0);
 1244 
 1245         error = fueword32(&m->m_flags, &flags);
 1246         if (error == -1)
 1247                 return (EFAULT);
 1248 
 1249         /* We should only ever be in here for contested locks */
 1250         if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
 1251             &key)) != 0)
 1252                 return (error);
 1253 
 1254         umtxq_lock(&key);
 1255         umtxq_busy(&key);
 1256         count = umtxq_count(&key);
 1257         umtxq_unlock(&key);
 1258 
 1259         if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
 1260             owner != UMUTEX_RB_NOTRECOV) {
 1261                 error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
 1262                     UMUTEX_UNOWNED);
 1263                 if (error == -1)
 1264                         error = EFAULT;
 1265         }
 1266 
 1267         umtxq_lock(&key);
 1268         if (error == 0 && count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
 1269             owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
 1270                 umtxq_signal(&key, 1);
 1271         umtxq_unbusy(&key);
 1272         umtxq_unlock(&key);
 1273         umtx_key_release(&key);
 1274         return (error);
 1275 }
 1276 
 1277 /*
 1278  * Check if the mutex has waiters and tries to fix contention bit.
 1279  */
 1280 static int
 1281 do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
 1282 {
 1283         struct umtx_key key;
 1284         uint32_t owner, old;
 1285         int type;
 1286         int error;
 1287         int count;
 1288 
 1289         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
 1290             UMUTEX_ROBUST)) {
 1291         case 0:
 1292         case UMUTEX_ROBUST:
 1293                 type = TYPE_NORMAL_UMUTEX;
 1294                 break;
 1295         case UMUTEX_PRIO_INHERIT:
 1296                 type = TYPE_PI_UMUTEX;
 1297                 break;
 1298         case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
 1299                 type = TYPE_PI_ROBUST_UMUTEX;
 1300                 break;
 1301         case UMUTEX_PRIO_PROTECT:
 1302                 type = TYPE_PP_UMUTEX;
 1303                 break;
 1304         case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
 1305                 type = TYPE_PP_ROBUST_UMUTEX;
 1306                 break;
 1307         default:
 1308                 return (EINVAL);
 1309         }
 1310         if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
 1311                 return (error);
 1312 
 1313         owner = 0;
 1314         umtxq_lock(&key);
 1315         umtxq_busy(&key);
 1316         count = umtxq_count(&key);
 1317         umtxq_unlock(&key);
 1318         /*
 1319          * Only repair contention bit if there is a waiter, this means the mutex
 1320          * is still being referenced by userland code, otherwise don't update
 1321          * any memory.
 1322          */
 1323         if (count > 1) {
 1324                 error = fueword32(&m->m_owner, &owner);
 1325                 if (error == -1)
 1326                         error = EFAULT;
 1327                 while (error == 0 && (owner & UMUTEX_CONTESTED) == 0) {
 1328                         error = casueword32(&m->m_owner, owner, &old,
 1329                             owner | UMUTEX_CONTESTED);
 1330                         if (error == -1) {
 1331                                 error = EFAULT;
 1332                                 break;
 1333                         }
 1334                         if (old == owner)
 1335                                 break;
 1336                         owner = old;
 1337                         error = umtxq_check_susp(td);
 1338                         if (error != 0)
 1339                                 break;
 1340                 }
 1341         } else if (count == 1) {
 1342                 error = fueword32(&m->m_owner, &owner);
 1343                 if (error == -1)
 1344                         error = EFAULT;
 1345                 while (error == 0 && (owner & ~UMUTEX_CONTESTED) != 0 &&
 1346                     (owner & UMUTEX_CONTESTED) == 0) {
 1347                         error = casueword32(&m->m_owner, owner, &old,
 1348                             owner | UMUTEX_CONTESTED);
 1349                         if (error == -1) {
 1350                                 error = EFAULT;
 1351                                 break;
 1352                         }
 1353                         if (old == owner)
 1354                                 break;
 1355                         owner = old;
 1356                         error = umtxq_check_susp(td);
 1357                         if (error != 0)
 1358                                 break;
 1359                 }
 1360         }
 1361         umtxq_lock(&key);
 1362         if (error == EFAULT) {
 1363                 umtxq_signal(&key, INT_MAX);
 1364         } else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
 1365             owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
 1366                 umtxq_signal(&key, 1);
 1367         umtxq_unbusy(&key);
 1368         umtxq_unlock(&key);
 1369         umtx_key_release(&key);
 1370         return (error);
 1371 }
 1372 
 1373 static inline struct umtx_pi *
 1374 umtx_pi_alloc(int flags)
 1375 {
 1376         struct umtx_pi *pi;
 1377 
 1378         pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
 1379         TAILQ_INIT(&pi->pi_blocked);
 1380         atomic_add_int(&umtx_pi_allocated, 1);
 1381         return (pi);
 1382 }
 1383 
 1384 static inline void
 1385 umtx_pi_free(struct umtx_pi *pi)
 1386 {
 1387         uma_zfree(umtx_pi_zone, pi);
 1388         atomic_add_int(&umtx_pi_allocated, -1);
 1389 }
 1390 
 1391 /*
 1392  * Adjust the thread's position on a pi_state after its priority has been
 1393  * changed.
 1394  */
 1395 static int
 1396 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
 1397 {
 1398         struct umtx_q *uq, *uq1, *uq2;
 1399         struct thread *td1;
 1400 
 1401         mtx_assert(&umtx_lock, MA_OWNED);
 1402         if (pi == NULL)
 1403                 return (0);
 1404 
 1405         uq = td->td_umtxq;
 1406 
 1407         /*
 1408          * Check if the thread needs to be moved on the blocked chain.
 1409          * It needs to be moved if either its priority is lower than
 1410          * the previous thread or higher than the next thread.
 1411          */
 1412         uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
 1413         uq2 = TAILQ_NEXT(uq, uq_lockq);
 1414         if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
 1415             (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
 1416                 /*
 1417                  * Remove thread from blocked chain and determine where
 1418                  * it should be moved to.
 1419                  */
 1420                 TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
 1421                 TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
 1422                         td1 = uq1->uq_thread;
 1423                         MPASS(td1->td_proc->p_magic == P_MAGIC);
 1424                         if (UPRI(td1) > UPRI(td))
 1425                                 break;
 1426                 }
 1427 
 1428                 if (uq1 == NULL)
 1429                         TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
 1430                 else
 1431                         TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
 1432         }
 1433         return (1);
 1434 }
 1435 
 1436 static struct umtx_pi *
 1437 umtx_pi_next(struct umtx_pi *pi)
 1438 {
 1439         struct umtx_q *uq_owner;
 1440 
 1441         if (pi->pi_owner == NULL)
 1442                 return (NULL);
 1443         uq_owner = pi->pi_owner->td_umtxq;
 1444         if (uq_owner == NULL)
 1445                 return (NULL);
 1446         return (uq_owner->uq_pi_blocked);
 1447 }
 1448 
 1449 /*
 1450  * Floyd's Cycle-Finding Algorithm.
 1451  */
 1452 static bool
 1453 umtx_pi_check_loop(struct umtx_pi *pi)
 1454 {
 1455         struct umtx_pi *pi1;    /* fast iterator */
 1456 
 1457         mtx_assert(&umtx_lock, MA_OWNED);
 1458         if (pi == NULL)
 1459                 return (false);
 1460         pi1 = pi;
 1461         for (;;) {
 1462                 pi = umtx_pi_next(pi);
 1463                 if (pi == NULL)
 1464                         break;
 1465                 pi1 = umtx_pi_next(pi1);
 1466                 if (pi1 == NULL)
 1467                         break;
 1468                 pi1 = umtx_pi_next(pi1);
 1469                 if (pi1 == NULL)
 1470                         break;
 1471                 if (pi == pi1)
 1472                         return (true);
 1473         }
 1474         return (false);
 1475 }
 1476 
 1477 /*
 1478  * Propagate priority when a thread is blocked on POSIX
 1479  * PI mutex.
 1480  */ 
 1481 static void
 1482 umtx_propagate_priority(struct thread *td)
 1483 {
 1484         struct umtx_q *uq;
 1485         struct umtx_pi *pi;
 1486         int pri;
 1487 
 1488         mtx_assert(&umtx_lock, MA_OWNED);
 1489         pri = UPRI(td);
 1490         uq = td->td_umtxq;
 1491         pi = uq->uq_pi_blocked;
 1492         if (pi == NULL)
 1493                 return;
 1494         if (umtx_pi_check_loop(pi))
 1495                 return;
 1496 
 1497         for (;;) {
 1498                 td = pi->pi_owner;
 1499                 if (td == NULL || td == curthread)
 1500                         return;
 1501 
 1502                 MPASS(td->td_proc != NULL);
 1503                 MPASS(td->td_proc->p_magic == P_MAGIC);
 1504 
 1505                 thread_lock(td);
 1506                 if (td->td_lend_user_pri > pri)
 1507                         sched_lend_user_prio(td, pri);
 1508                 else {
 1509                         thread_unlock(td);
 1510                         break;
 1511                 }
 1512                 thread_unlock(td);
 1513 
 1514                 /*
 1515                  * Pick up the lock that td is blocked on.
 1516                  */
 1517                 uq = td->td_umtxq;
 1518                 pi = uq->uq_pi_blocked;
 1519                 if (pi == NULL)
 1520                         break;
 1521                 /* Resort td on the list if needed. */
 1522                 umtx_pi_adjust_thread(pi, td);
 1523         }
 1524 }
 1525 
 1526 /*
 1527  * Unpropagate priority for a PI mutex when a thread blocked on
 1528  * it is interrupted by signal or resumed by others.
 1529  */
 1530 static void
 1531 umtx_repropagate_priority(struct umtx_pi *pi)
 1532 {
 1533         struct umtx_q *uq, *uq_owner;
 1534         struct umtx_pi *pi2;
 1535         int pri;
 1536 
 1537         mtx_assert(&umtx_lock, MA_OWNED);
 1538 
 1539         if (umtx_pi_check_loop(pi))
 1540                 return;
 1541         while (pi != NULL && pi->pi_owner != NULL) {
 1542                 pri = PRI_MAX;
 1543                 uq_owner = pi->pi_owner->td_umtxq;
 1544 
 1545                 TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
 1546                         uq = TAILQ_FIRST(&pi2->pi_blocked);
 1547                         if (uq != NULL) {
 1548                                 if (pri > UPRI(uq->uq_thread))
 1549                                         pri = UPRI(uq->uq_thread);
 1550                         }
 1551                 }
 1552 
 1553                 if (pri > uq_owner->uq_inherited_pri)
 1554                         pri = uq_owner->uq_inherited_pri;
 1555                 thread_lock(pi->pi_owner);
 1556                 sched_lend_user_prio(pi->pi_owner, pri);
 1557                 thread_unlock(pi->pi_owner);
 1558                 if ((pi = uq_owner->uq_pi_blocked) != NULL)
 1559                         umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
 1560         }
 1561 }
 1562 
 1563 /*
 1564  * Insert a PI mutex into owned list.
 1565  */
 1566 static void
 1567 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
 1568 {
 1569         struct umtx_q *uq_owner;
 1570 
 1571         uq_owner = owner->td_umtxq;
 1572         mtx_assert(&umtx_lock, MA_OWNED);
 1573         MPASS(pi->pi_owner == NULL);
 1574         pi->pi_owner = owner;
 1575         TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
 1576 }
 1577 
 1578 
 1579 /*
 1580  * Disown a PI mutex, and remove it from the owned list.
 1581  */
 1582 static void
 1583 umtx_pi_disown(struct umtx_pi *pi)
 1584 {
 1585 
 1586         mtx_assert(&umtx_lock, MA_OWNED);
 1587         TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
 1588         pi->pi_owner = NULL;
 1589 }
 1590 
 1591 /*
 1592  * Claim ownership of a PI mutex.
 1593  */
 1594 static int
 1595 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
 1596 {
 1597         struct umtx_q *uq;
 1598         int pri;
 1599 
 1600         mtx_lock(&umtx_lock);
 1601         if (pi->pi_owner == owner) {
 1602                 mtx_unlock(&umtx_lock);
 1603                 return (0);
 1604         }
 1605 
 1606         if (pi->pi_owner != NULL) {
 1607                 /*
 1608                  * userland may have already messed the mutex, sigh.
 1609                  */
 1610                 mtx_unlock(&umtx_lock);
 1611                 return (EPERM);
 1612         }
 1613         umtx_pi_setowner(pi, owner);
 1614         uq = TAILQ_FIRST(&pi->pi_blocked);
 1615         if (uq != NULL) {
 1616                 pri = UPRI(uq->uq_thread);
 1617                 thread_lock(owner);
 1618                 if (pri < UPRI(owner))
 1619                         sched_lend_user_prio(owner, pri);
 1620                 thread_unlock(owner);
 1621         }
 1622         mtx_unlock(&umtx_lock);
 1623         return (0);
 1624 }
 1625 
 1626 /*
 1627  * Adjust a thread's order position in its blocked PI mutex,
 1628  * this may result new priority propagating process.
 1629  */
 1630 void
 1631 umtx_pi_adjust(struct thread *td, u_char oldpri)
 1632 {
 1633         struct umtx_q *uq;
 1634         struct umtx_pi *pi;
 1635 
 1636         uq = td->td_umtxq;
 1637         mtx_lock(&umtx_lock);
 1638         /*
 1639          * Pick up the lock that td is blocked on.
 1640          */
 1641         pi = uq->uq_pi_blocked;
 1642         if (pi != NULL) {
 1643                 umtx_pi_adjust_thread(pi, td);
 1644                 umtx_repropagate_priority(pi);
 1645         }
 1646         mtx_unlock(&umtx_lock);
 1647 }
 1648 
 1649 /*
 1650  * Sleep on a PI mutex.
 1651  */
 1652 static int
 1653 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
 1654     const char *wmesg, struct abs_timeout *timo, bool shared)
 1655 {
 1656         struct thread *td, *td1;
 1657         struct umtx_q *uq1;
 1658         int error, pri;
 1659 #ifdef INVARIANTS
 1660         struct umtxq_chain *uc;
 1661 
 1662         uc = umtxq_getchain(&pi->pi_key);
 1663 #endif
 1664         error = 0;
 1665         td = uq->uq_thread;
 1666         KASSERT(td == curthread, ("inconsistent uq_thread"));
 1667         UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
 1668         KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
 1669         umtxq_insert(uq);
 1670         mtx_lock(&umtx_lock);
 1671         if (pi->pi_owner == NULL) {
 1672                 mtx_unlock(&umtx_lock);
 1673                 td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
 1674                 mtx_lock(&umtx_lock);
 1675                 if (td1 != NULL) {
 1676                         if (pi->pi_owner == NULL)
 1677                                 umtx_pi_setowner(pi, td1);
 1678                         PROC_UNLOCK(td1->td_proc);
 1679                 }
 1680         }
 1681 
 1682         TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
 1683                 pri = UPRI(uq1->uq_thread);
 1684                 if (pri > UPRI(td))
 1685                         break;
 1686         }
 1687 
 1688         if (uq1 != NULL)
 1689                 TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
 1690         else
 1691                 TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
 1692 
 1693         uq->uq_pi_blocked = pi;
 1694         thread_lock(td);
 1695         td->td_flags |= TDF_UPIBLOCKED;
 1696         thread_unlock(td);
 1697         umtx_propagate_priority(td);
 1698         mtx_unlock(&umtx_lock);
 1699         umtxq_unbusy(&uq->uq_key);
 1700 
 1701         error = umtxq_sleep(uq, wmesg, timo);
 1702         umtxq_remove(uq);
 1703 
 1704         mtx_lock(&umtx_lock);
 1705         uq->uq_pi_blocked = NULL;
 1706         thread_lock(td);
 1707         td->td_flags &= ~TDF_UPIBLOCKED;
 1708         thread_unlock(td);
 1709         TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
 1710         umtx_repropagate_priority(pi);
 1711         mtx_unlock(&umtx_lock);
 1712         umtxq_unlock(&uq->uq_key);
 1713 
 1714         return (error);
 1715 }
 1716 
 1717 /*
 1718  * Add reference count for a PI mutex.
 1719  */
 1720 static void
 1721 umtx_pi_ref(struct umtx_pi *pi)
 1722 {
 1723 
 1724         UMTXQ_LOCKED_ASSERT(umtxq_getchain(&pi->pi_key));
 1725         pi->pi_refcount++;
 1726 }
 1727 
 1728 /*
 1729  * Decrease reference count for a PI mutex, if the counter
 1730  * is decreased to zero, its memory space is freed.
 1731  */ 
 1732 static void
 1733 umtx_pi_unref(struct umtx_pi *pi)
 1734 {
 1735         struct umtxq_chain *uc;
 1736 
 1737         uc = umtxq_getchain(&pi->pi_key);
 1738         UMTXQ_LOCKED_ASSERT(uc);
 1739         KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
 1740         if (--pi->pi_refcount == 0) {
 1741                 mtx_lock(&umtx_lock);
 1742                 if (pi->pi_owner != NULL)
 1743                         umtx_pi_disown(pi);
 1744                 KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
 1745                         ("blocked queue not empty"));
 1746                 mtx_unlock(&umtx_lock);
 1747                 TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
 1748                 umtx_pi_free(pi);
 1749         }
 1750 }
 1751 
 1752 /*
 1753  * Find a PI mutex in hash table.
 1754  */
 1755 static struct umtx_pi *
 1756 umtx_pi_lookup(struct umtx_key *key)
 1757 {
 1758         struct umtxq_chain *uc;
 1759         struct umtx_pi *pi;
 1760 
 1761         uc = umtxq_getchain(key);
 1762         UMTXQ_LOCKED_ASSERT(uc);
 1763 
 1764         TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
 1765                 if (umtx_key_match(&pi->pi_key, key)) {
 1766                         return (pi);
 1767                 }
 1768         }
 1769         return (NULL);
 1770 }
 1771 
 1772 /*
 1773  * Insert a PI mutex into hash table.
 1774  */
 1775 static inline void
 1776 umtx_pi_insert(struct umtx_pi *pi)
 1777 {
 1778         struct umtxq_chain *uc;
 1779 
 1780         uc = umtxq_getchain(&pi->pi_key);
 1781         UMTXQ_LOCKED_ASSERT(uc);
 1782         TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
 1783 }
 1784 
 1785 /*
 1786  * Lock a PI mutex.
 1787  */
 1788 static int
 1789 do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
 1790     struct _umtx_time *timeout, int try)
 1791 {
 1792         struct abs_timeout timo;
 1793         struct umtx_q *uq;
 1794         struct umtx_pi *pi, *new_pi;
 1795         uint32_t id, old_owner, owner, old;
 1796         int error, rv;
 1797 
 1798         id = td->td_tid;
 1799         uq = td->td_umtxq;
 1800 
 1801         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 1802             TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
 1803             &uq->uq_key)) != 0)
 1804                 return (error);
 1805 
 1806         if (timeout != NULL)
 1807                 abs_timeout_init2(&timo, timeout);
 1808 
 1809         umtxq_lock(&uq->uq_key);
 1810         pi = umtx_pi_lookup(&uq->uq_key);
 1811         if (pi == NULL) {
 1812                 new_pi = umtx_pi_alloc(M_NOWAIT);
 1813                 if (new_pi == NULL) {
 1814                         umtxq_unlock(&uq->uq_key);
 1815                         new_pi = umtx_pi_alloc(M_WAITOK);
 1816                         umtxq_lock(&uq->uq_key);
 1817                         pi = umtx_pi_lookup(&uq->uq_key);
 1818                         if (pi != NULL) {
 1819                                 umtx_pi_free(new_pi);
 1820                                 new_pi = NULL;
 1821                         }
 1822                 }
 1823                 if (new_pi != NULL) {
 1824                         new_pi->pi_key = uq->uq_key;
 1825                         umtx_pi_insert(new_pi);
 1826                         pi = new_pi;
 1827                 }
 1828         }
 1829         umtx_pi_ref(pi);
 1830         umtxq_unlock(&uq->uq_key);
 1831 
 1832         /*
 1833          * Care must be exercised when dealing with umtx structure.  It
 1834          * can fault on any access.
 1835          */
 1836         for (;;) {
 1837                 /*
 1838                  * Try the uncontested case.  This should be done in userland.
 1839                  */
 1840                 rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
 1841                 /* The address was invalid. */
 1842                 if (rv == -1) {
 1843                         error = EFAULT;
 1844                         break;
 1845                 }
 1846 
 1847                 /* The acquire succeeded. */
 1848                 if (owner == UMUTEX_UNOWNED) {
 1849                         error = 0;
 1850                         break;
 1851                 }
 1852 
 1853                 if (owner == UMUTEX_RB_NOTRECOV) {
 1854                         error = ENOTRECOVERABLE;
 1855                         break;
 1856                 }
 1857 
 1858                 /* If no one owns it but it is contested try to acquire it. */
 1859                 if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
 1860                         old_owner = owner;
 1861                         rv = casueword32(&m->m_owner, owner, &owner,
 1862                             id | UMUTEX_CONTESTED);
 1863                         /* The address was invalid. */
 1864                         if (rv == -1) {
 1865                                 error = EFAULT;
 1866                                 break;
 1867                         }
 1868 
 1869                         if (owner == old_owner) {
 1870                                 umtxq_lock(&uq->uq_key);
 1871                                 umtxq_busy(&uq->uq_key);
 1872                                 error = umtx_pi_claim(pi, td);
 1873                                 umtxq_unbusy(&uq->uq_key);
 1874                                 umtxq_unlock(&uq->uq_key);
 1875                                 if (error != 0) {
 1876                                         /*
 1877                                          * Since we're going to return an
 1878                                          * error, restore the m_owner to its
 1879                                          * previous, unowned state to avoid
 1880                                          * compounding the problem.
 1881                                          */
 1882                                         (void)casuword32(&m->m_owner,
 1883                                             id | UMUTEX_CONTESTED,
 1884                                             old_owner);
 1885                                 }
 1886                                 if (error == 0 &&
 1887                                     old_owner == UMUTEX_RB_OWNERDEAD)
 1888                                         error = EOWNERDEAD;
 1889                                 break;
 1890                         }
 1891 
 1892                         error = umtxq_check_susp(td);
 1893                         if (error != 0)
 1894                                 break;
 1895 
 1896                         /* If this failed the lock has changed, restart. */
 1897                         continue;
 1898                 }
 1899 
 1900                 if ((owner & ~UMUTEX_CONTESTED) == id) {
 1901                         error = EDEADLK;
 1902                         break;
 1903                 }
 1904 
 1905                 if (try != 0) {
 1906                         error = EBUSY;
 1907                         break;
 1908                 }
 1909 
 1910                 /*
 1911                  * If we caught a signal, we have retried and now
 1912                  * exit immediately.
 1913                  */
 1914                 if (error != 0)
 1915                         break;
 1916                         
 1917                 umtxq_lock(&uq->uq_key);
 1918                 umtxq_busy(&uq->uq_key);
 1919                 umtxq_unlock(&uq->uq_key);
 1920 
 1921                 /*
 1922                  * Set the contested bit so that a release in user space
 1923                  * knows to use the system call for unlock.  If this fails
 1924                  * either some one else has acquired the lock or it has been
 1925                  * released.
 1926                  */
 1927                 rv = casueword32(&m->m_owner, owner, &old, owner |
 1928                     UMUTEX_CONTESTED);
 1929 
 1930                 /* The address was invalid. */
 1931                 if (rv == -1) {
 1932                         umtxq_unbusy_unlocked(&uq->uq_key);
 1933                         error = EFAULT;
 1934                         break;
 1935                 }
 1936 
 1937                 umtxq_lock(&uq->uq_key);
 1938                 /*
 1939                  * We set the contested bit, sleep. Otherwise the lock changed
 1940                  * and we need to retry or we lost a race to the thread
 1941                  * unlocking the umtx.  Note that the UMUTEX_RB_OWNERDEAD
 1942                  * value for owner is impossible there.
 1943                  */
 1944                 if (old == owner) {
 1945                         error = umtxq_sleep_pi(uq, pi,
 1946                             owner & ~UMUTEX_CONTESTED,
 1947                             "umtxpi", timeout == NULL ? NULL : &timo,
 1948                             (flags & USYNC_PROCESS_SHARED) != 0);
 1949                         if (error != 0)
 1950                                 continue;
 1951                 } else {
 1952                         umtxq_unbusy(&uq->uq_key);
 1953                         umtxq_unlock(&uq->uq_key);
 1954                 }
 1955 
 1956                 error = umtxq_check_susp(td);
 1957                 if (error != 0)
 1958                         break;
 1959         }
 1960 
 1961         umtxq_lock(&uq->uq_key);
 1962         umtx_pi_unref(pi);
 1963         umtxq_unlock(&uq->uq_key);
 1964 
 1965         umtx_key_release(&uq->uq_key);
 1966         return (error);
 1967 }
 1968 
 1969 /*
 1970  * Unlock a PI mutex.
 1971  */
 1972 static int
 1973 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
 1974 {
 1975         struct umtx_key key;
 1976         struct umtx_q *uq_first, *uq_first2, *uq_me;
 1977         struct umtx_pi *pi, *pi2;
 1978         uint32_t id, new_owner, old, owner;
 1979         int count, error, pri;
 1980 
 1981         id = td->td_tid;
 1982         /*
 1983          * Make sure we own this mtx.
 1984          */
 1985         error = fueword32(&m->m_owner, &owner);
 1986         if (error == -1)
 1987                 return (EFAULT);
 1988 
 1989         if ((owner & ~UMUTEX_CONTESTED) != id)
 1990                 return (EPERM);
 1991 
 1992         new_owner = umtx_unlock_val(flags, rb);
 1993 
 1994         /* This should be done in userland */
 1995         if ((owner & UMUTEX_CONTESTED) == 0) {
 1996                 error = casueword32(&m->m_owner, owner, &old, new_owner);
 1997                 if (error == -1)
 1998                         return (EFAULT);
 1999                 if (old == owner)
 2000                         return (0);
 2001                 owner = old;
 2002         }
 2003 
 2004         /* We should only ever be in here for contested locks */
 2005         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 2006             TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
 2007             &key)) != 0)
 2008                 return (error);
 2009 
 2010         umtxq_lock(&key);
 2011         umtxq_busy(&key);
 2012         count = umtxq_count_pi(&key, &uq_first);
 2013         if (uq_first != NULL) {
 2014                 mtx_lock(&umtx_lock);
 2015                 pi = uq_first->uq_pi_blocked;
 2016                 KASSERT(pi != NULL, ("pi == NULL?"));
 2017                 if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
 2018                         mtx_unlock(&umtx_lock);
 2019                         umtxq_unbusy(&key);
 2020                         umtxq_unlock(&key);
 2021                         umtx_key_release(&key);
 2022                         /* userland messed the mutex */
 2023                         return (EPERM);
 2024                 }
 2025                 uq_me = td->td_umtxq;
 2026                 if (pi->pi_owner == td)
 2027                         umtx_pi_disown(pi);
 2028                 /* get highest priority thread which is still sleeping. */
 2029                 uq_first = TAILQ_FIRST(&pi->pi_blocked);
 2030                 while (uq_first != NULL && 
 2031                     (uq_first->uq_flags & UQF_UMTXQ) == 0) {
 2032                         uq_first = TAILQ_NEXT(uq_first, uq_lockq);
 2033                 }
 2034                 pri = PRI_MAX;
 2035                 TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
 2036                         uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
 2037                         if (uq_first2 != NULL) {
 2038                                 if (pri > UPRI(uq_first2->uq_thread))
 2039                                         pri = UPRI(uq_first2->uq_thread);
 2040                         }
 2041                 }
 2042                 thread_lock(td);
 2043                 sched_lend_user_prio(td, pri);
 2044                 thread_unlock(td);
 2045                 mtx_unlock(&umtx_lock);
 2046                 if (uq_first)
 2047                         umtxq_signal_thread(uq_first);
 2048         } else {
 2049                 pi = umtx_pi_lookup(&key);
 2050                 /*
 2051                  * A umtx_pi can exist if a signal or timeout removed the
 2052                  * last waiter from the umtxq, but there is still
 2053                  * a thread in do_lock_pi() holding the umtx_pi.
 2054                  */
 2055                 if (pi != NULL) {
 2056                         /*
 2057                          * The umtx_pi can be unowned, such as when a thread
 2058                          * has just entered do_lock_pi(), allocated the
 2059                          * umtx_pi, and unlocked the umtxq.
 2060                          * If the current thread owns it, it must disown it.
 2061                          */
 2062                         mtx_lock(&umtx_lock);
 2063                         if (pi->pi_owner == td)
 2064                                 umtx_pi_disown(pi);
 2065                         mtx_unlock(&umtx_lock);
 2066                 }
 2067         }
 2068         umtxq_unlock(&key);
 2069 
 2070         /*
 2071          * When unlocking the umtx, it must be marked as unowned if
 2072          * there is zero or one thread only waiting for it.
 2073          * Otherwise, it must be marked as contested.
 2074          */
 2075 
 2076         if (count > 1)
 2077                 new_owner |= UMUTEX_CONTESTED;
 2078         error = casueword32(&m->m_owner, owner, &old, new_owner);
 2079 
 2080         umtxq_unbusy_unlocked(&key);
 2081         umtx_key_release(&key);
 2082         if (error == -1)
 2083                 return (EFAULT);
 2084         if (old != owner)
 2085                 return (EINVAL);
 2086         return (0);
 2087 }
 2088 
 2089 /*
 2090  * Lock a PP mutex.
 2091  */
 2092 static int
 2093 do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
 2094     struct _umtx_time *timeout, int try)
 2095 {
 2096         struct abs_timeout timo;
 2097         struct umtx_q *uq, *uq2;
 2098         struct umtx_pi *pi;
 2099         uint32_t ceiling;
 2100         uint32_t owner, id;
 2101         int error, pri, old_inherited_pri, su, rv;
 2102 
 2103         id = td->td_tid;
 2104         uq = td->td_umtxq;
 2105         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 2106             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
 2107             &uq->uq_key)) != 0)
 2108                 return (error);
 2109 
 2110         if (timeout != NULL)
 2111                 abs_timeout_init2(&timo, timeout);
 2112 
 2113         su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
 2114         for (;;) {
 2115                 old_inherited_pri = uq->uq_inherited_pri;
 2116                 umtxq_lock(&uq->uq_key);
 2117                 umtxq_busy(&uq->uq_key);
 2118                 umtxq_unlock(&uq->uq_key);
 2119 
 2120                 rv = fueword32(&m->m_ceilings[0], &ceiling);
 2121                 if (rv == -1) {
 2122                         error = EFAULT;
 2123                         goto out;
 2124                 }
 2125                 ceiling = RTP_PRIO_MAX - ceiling;
 2126                 if (ceiling > RTP_PRIO_MAX) {
 2127                         error = EINVAL;
 2128                         goto out;
 2129                 }
 2130 
 2131                 mtx_lock(&umtx_lock);
 2132                 if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
 2133                         mtx_unlock(&umtx_lock);
 2134                         error = EINVAL;
 2135                         goto out;
 2136                 }
 2137                 if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
 2138                         uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
 2139                         thread_lock(td);
 2140                         if (uq->uq_inherited_pri < UPRI(td))
 2141                                 sched_lend_user_prio(td, uq->uq_inherited_pri);
 2142                         thread_unlock(td);
 2143                 }
 2144                 mtx_unlock(&umtx_lock);
 2145 
 2146                 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
 2147                     id | UMUTEX_CONTESTED);
 2148                 /* The address was invalid. */
 2149                 if (rv == -1) {
 2150                         error = EFAULT;
 2151                         break;
 2152                 }
 2153 
 2154                 if (owner == UMUTEX_CONTESTED) {
 2155                         error = 0;
 2156                         break;
 2157                 } else if (owner == UMUTEX_RB_OWNERDEAD) {
 2158                         rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
 2159                             &owner, id | UMUTEX_CONTESTED);
 2160                         if (rv == -1) {
 2161                                 error = EFAULT;
 2162                                 break;
 2163                         }
 2164                         if (owner == UMUTEX_RB_OWNERDEAD) {
 2165                                 error = EOWNERDEAD; /* success */
 2166                                 break;
 2167                         }
 2168                         error = 0;
 2169                 } else if (owner == UMUTEX_RB_NOTRECOV) {
 2170                         error = ENOTRECOVERABLE;
 2171                         break;
 2172                 }
 2173 
 2174                 if (try != 0) {
 2175                         error = EBUSY;
 2176                         break;
 2177                 }
 2178 
 2179                 /*
 2180                  * If we caught a signal, we have retried and now
 2181                  * exit immediately.
 2182                  */
 2183                 if (error != 0)
 2184                         break;
 2185 
 2186                 umtxq_lock(&uq->uq_key);
 2187                 umtxq_insert(uq);
 2188                 umtxq_unbusy(&uq->uq_key);
 2189                 error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
 2190                     NULL : &timo);
 2191                 umtxq_remove(uq);
 2192                 umtxq_unlock(&uq->uq_key);
 2193 
 2194                 mtx_lock(&umtx_lock);
 2195                 uq->uq_inherited_pri = old_inherited_pri;
 2196                 pri = PRI_MAX;
 2197                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 2198                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
 2199                         if (uq2 != NULL) {
 2200                                 if (pri > UPRI(uq2->uq_thread))
 2201                                         pri = UPRI(uq2->uq_thread);
 2202                         }
 2203                 }
 2204                 if (pri > uq->uq_inherited_pri)
 2205                         pri = uq->uq_inherited_pri;
 2206                 thread_lock(td);
 2207                 sched_lend_user_prio(td, pri);
 2208                 thread_unlock(td);
 2209                 mtx_unlock(&umtx_lock);
 2210         }
 2211 
 2212         if (error != 0 && error != EOWNERDEAD) {
 2213                 mtx_lock(&umtx_lock);
 2214                 uq->uq_inherited_pri = old_inherited_pri;
 2215                 pri = PRI_MAX;
 2216                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 2217                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
 2218                         if (uq2 != NULL) {
 2219                                 if (pri > UPRI(uq2->uq_thread))
 2220                                         pri = UPRI(uq2->uq_thread);
 2221                         }
 2222                 }
 2223                 if (pri > uq->uq_inherited_pri)
 2224                         pri = uq->uq_inherited_pri;
 2225                 thread_lock(td);
 2226                 sched_lend_user_prio(td, pri);
 2227                 thread_unlock(td);
 2228                 mtx_unlock(&umtx_lock);
 2229         }
 2230 
 2231 out:
 2232         umtxq_unbusy_unlocked(&uq->uq_key);
 2233         umtx_key_release(&uq->uq_key);
 2234         return (error);
 2235 }
 2236 
 2237 /*
 2238  * Unlock a PP mutex.
 2239  */
 2240 static int
 2241 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
 2242 {
 2243         struct umtx_key key;
 2244         struct umtx_q *uq, *uq2;
 2245         struct umtx_pi *pi;
 2246         uint32_t id, owner, rceiling;
 2247         int error, pri, new_inherited_pri, su;
 2248 
 2249         id = td->td_tid;
 2250         uq = td->td_umtxq;
 2251         su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
 2252 
 2253         /*
 2254          * Make sure we own this mtx.
 2255          */
 2256         error = fueword32(&m->m_owner, &owner);
 2257         if (error == -1)
 2258                 return (EFAULT);
 2259 
 2260         if ((owner & ~UMUTEX_CONTESTED) != id)
 2261                 return (EPERM);
 2262 
 2263         error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
 2264         if (error != 0)
 2265                 return (error);
 2266 
 2267         if (rceiling == -1)
 2268                 new_inherited_pri = PRI_MAX;
 2269         else {
 2270                 rceiling = RTP_PRIO_MAX - rceiling;
 2271                 if (rceiling > RTP_PRIO_MAX)
 2272                         return (EINVAL);
 2273                 new_inherited_pri = PRI_MIN_REALTIME + rceiling;
 2274         }
 2275 
 2276         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 2277             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
 2278             &key)) != 0)
 2279                 return (error);
 2280         umtxq_lock(&key);
 2281         umtxq_busy(&key);
 2282         umtxq_unlock(&key);
 2283         /*
 2284          * For priority protected mutex, always set unlocked state
 2285          * to UMUTEX_CONTESTED, so that userland always enters kernel
 2286          * to lock the mutex, it is necessary because thread priority
 2287          * has to be adjusted for such mutex.
 2288          */
 2289         error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
 2290             UMUTEX_CONTESTED);
 2291 
 2292         umtxq_lock(&key);
 2293         if (error == 0)
 2294                 umtxq_signal(&key, 1);
 2295         umtxq_unbusy(&key);
 2296         umtxq_unlock(&key);
 2297 
 2298         if (error == -1)
 2299                 error = EFAULT;
 2300         else {
 2301                 mtx_lock(&umtx_lock);
 2302                 if (su != 0)
 2303                         uq->uq_inherited_pri = new_inherited_pri;
 2304                 pri = PRI_MAX;
 2305                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 2306                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
 2307                         if (uq2 != NULL) {
 2308                                 if (pri > UPRI(uq2->uq_thread))
 2309                                         pri = UPRI(uq2->uq_thread);
 2310                         }
 2311                 }
 2312                 if (pri > uq->uq_inherited_pri)
 2313                         pri = uq->uq_inherited_pri;
 2314                 thread_lock(td);
 2315                 sched_lend_user_prio(td, pri);
 2316                 thread_unlock(td);
 2317                 mtx_unlock(&umtx_lock);
 2318         }
 2319         umtx_key_release(&key);
 2320         return (error);
 2321 }
 2322 
 2323 static int
 2324 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
 2325     uint32_t *old_ceiling)
 2326 {
 2327         struct umtx_q *uq;
 2328         uint32_t flags, id, owner, save_ceiling;
 2329         int error, rv, rv1;
 2330 
 2331         error = fueword32(&m->m_flags, &flags);
 2332         if (error == -1)
 2333                 return (EFAULT);
 2334         if ((flags & UMUTEX_PRIO_PROTECT) == 0)
 2335                 return (EINVAL);
 2336         if (ceiling > RTP_PRIO_MAX)
 2337                 return (EINVAL);
 2338         id = td->td_tid;
 2339         uq = td->td_umtxq;
 2340         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 2341             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
 2342             &uq->uq_key)) != 0)
 2343                 return (error);
 2344         for (;;) {
 2345                 umtxq_lock(&uq->uq_key);
 2346                 umtxq_busy(&uq->uq_key);
 2347                 umtxq_unlock(&uq->uq_key);
 2348 
 2349                 rv = fueword32(&m->m_ceilings[0], &save_ceiling);
 2350                 if (rv == -1) {
 2351                         error = EFAULT;
 2352                         break;
 2353                 }
 2354 
 2355                 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
 2356                     id | UMUTEX_CONTESTED);
 2357                 if (rv == -1) {
 2358                         error = EFAULT;
 2359                         break;
 2360                 }
 2361 
 2362                 if (owner == UMUTEX_CONTESTED) {
 2363                         rv = suword32(&m->m_ceilings[0], ceiling);
 2364                         rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
 2365                         error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
 2366                         break;
 2367                 }
 2368 
 2369                 if ((owner & ~UMUTEX_CONTESTED) == id) {
 2370                         rv = suword32(&m->m_ceilings[0], ceiling);
 2371                         error = rv == 0 ? 0 : EFAULT;
 2372                         break;
 2373                 }
 2374 
 2375                 if (owner == UMUTEX_RB_OWNERDEAD) {
 2376                         error = EOWNERDEAD;
 2377                         break;
 2378                 } else if (owner == UMUTEX_RB_NOTRECOV) {
 2379                         error = ENOTRECOVERABLE;
 2380                         break;
 2381                 }
 2382 
 2383                 /*
 2384                  * If we caught a signal, we have retried and now
 2385                  * exit immediately.
 2386                  */
 2387                 if (error != 0)
 2388                         break;
 2389 
 2390                 /*
 2391                  * We set the contested bit, sleep. Otherwise the lock changed
 2392                  * and we need to retry or we lost a race to the thread
 2393                  * unlocking the umtx.
 2394                  */
 2395                 umtxq_lock(&uq->uq_key);
 2396                 umtxq_insert(uq);
 2397                 umtxq_unbusy(&uq->uq_key);
 2398                 error = umtxq_sleep(uq, "umtxpp", NULL);
 2399                 umtxq_remove(uq);
 2400                 umtxq_unlock(&uq->uq_key);
 2401         }
 2402         umtxq_lock(&uq->uq_key);
 2403         if (error == 0)
 2404                 umtxq_signal(&uq->uq_key, INT_MAX);
 2405         umtxq_unbusy(&uq->uq_key);
 2406         umtxq_unlock(&uq->uq_key);
 2407         umtx_key_release(&uq->uq_key);
 2408         if (error == 0 && old_ceiling != NULL) {
 2409                 rv = suword32(old_ceiling, save_ceiling);
 2410                 error = rv == 0 ? 0 : EFAULT;
 2411         }
 2412         return (error);
 2413 }
 2414 
 2415 /*
 2416  * Lock a userland POSIX mutex.
 2417  */
 2418 static int
 2419 do_lock_umutex(struct thread *td, struct umutex *m,
 2420     struct _umtx_time *timeout, int mode)
 2421 {
 2422         uint32_t flags;
 2423         int error;
 2424 
 2425         error = fueword32(&m->m_flags, &flags);
 2426         if (error == -1)
 2427                 return (EFAULT);
 2428 
 2429         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
 2430         case 0:
 2431                 error = do_lock_normal(td, m, flags, timeout, mode);
 2432                 break;
 2433         case UMUTEX_PRIO_INHERIT:
 2434                 error = do_lock_pi(td, m, flags, timeout, mode);
 2435                 break;
 2436         case UMUTEX_PRIO_PROTECT:
 2437                 error = do_lock_pp(td, m, flags, timeout, mode);
 2438                 break;
 2439         default:
 2440                 return (EINVAL);
 2441         }
 2442         if (timeout == NULL) {
 2443                 if (error == EINTR && mode != _UMUTEX_WAIT)
 2444                         error = ERESTART;
 2445         } else {
 2446                 /* Timed-locking is not restarted. */
 2447                 if (error == ERESTART)
 2448                         error = EINTR;
 2449         }
 2450         return (error);
 2451 }
 2452 
 2453 /*
 2454  * Unlock a userland POSIX mutex.
 2455  */
 2456 static int
 2457 do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
 2458 {
 2459         uint32_t flags;
 2460         int error;
 2461 
 2462         error = fueword32(&m->m_flags, &flags);
 2463         if (error == -1)
 2464                 return (EFAULT);
 2465 
 2466         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
 2467         case 0:
 2468                 return (do_unlock_normal(td, m, flags, rb));
 2469         case UMUTEX_PRIO_INHERIT:
 2470                 return (do_unlock_pi(td, m, flags, rb));
 2471         case UMUTEX_PRIO_PROTECT:
 2472                 return (do_unlock_pp(td, m, flags, rb));
 2473         }
 2474 
 2475         return (EINVAL);
 2476 }
 2477 
 2478 static int
 2479 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
 2480     struct timespec *timeout, u_long wflags)
 2481 {
 2482         struct abs_timeout timo;
 2483         struct umtx_q *uq;
 2484         uint32_t flags, clockid, hasw;
 2485         int error;
 2486 
 2487         uq = td->td_umtxq;
 2488         error = fueword32(&cv->c_flags, &flags);
 2489         if (error == -1)
 2490                 return (EFAULT);
 2491         error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
 2492         if (error != 0)
 2493                 return (error);
 2494 
 2495         if ((wflags & CVWAIT_CLOCKID) != 0) {
 2496                 error = fueword32(&cv->c_clockid, &clockid);
 2497                 if (error == -1) {
 2498                         umtx_key_release(&uq->uq_key);
 2499                         return (EFAULT);
 2500                 }
 2501                 if (clockid < CLOCK_REALTIME ||
 2502                     clockid >= CLOCK_THREAD_CPUTIME_ID) {
 2503                         /* hmm, only HW clock id will work. */
 2504                         umtx_key_release(&uq->uq_key);
 2505                         return (EINVAL);
 2506                 }
 2507         } else {
 2508                 clockid = CLOCK_REALTIME;
 2509         }
 2510 
 2511         umtxq_lock(&uq->uq_key);
 2512         umtxq_busy(&uq->uq_key);
 2513         umtxq_insert(uq);
 2514         umtxq_unlock(&uq->uq_key);
 2515 
 2516         /*
 2517          * Set c_has_waiters to 1 before releasing user mutex, also
 2518          * don't modify cache line when unnecessary.
 2519          */
 2520         error = fueword32(&cv->c_has_waiters, &hasw);
 2521         if (error == 0 && hasw == 0)
 2522                 suword32(&cv->c_has_waiters, 1);
 2523 
 2524         umtxq_unbusy_unlocked(&uq->uq_key);
 2525 
 2526         error = do_unlock_umutex(td, m, false);
 2527 
 2528         if (timeout != NULL)
 2529                 abs_timeout_init(&timo, clockid, (wflags & CVWAIT_ABSTIME) != 0,
 2530                     timeout);
 2531         
 2532         umtxq_lock(&uq->uq_key);
 2533         if (error == 0) {
 2534                 error = umtxq_sleep(uq, "ucond", timeout == NULL ?
 2535                     NULL : &timo);
 2536         }
 2537 
 2538         if ((uq->uq_flags & UQF_UMTXQ) == 0)
 2539                 error = 0;
 2540         else {
 2541                 /*
 2542                  * This must be timeout,interrupted by signal or
 2543                  * surprious wakeup, clear c_has_waiter flag when
 2544                  * necessary.
 2545                  */
 2546                 umtxq_busy(&uq->uq_key);
 2547                 if ((uq->uq_flags & UQF_UMTXQ) != 0) {
 2548                         int oldlen = uq->uq_cur_queue->length;
 2549                         umtxq_remove(uq);
 2550                         if (oldlen == 1) {
 2551                                 umtxq_unlock(&uq->uq_key);
 2552                                 suword32(&cv->c_has_waiters, 0);
 2553                                 umtxq_lock(&uq->uq_key);
 2554                         }
 2555                 }
 2556                 umtxq_unbusy(&uq->uq_key);
 2557                 if (error == ERESTART)
 2558                         error = EINTR;
 2559         }
 2560 
 2561         umtxq_unlock(&uq->uq_key);
 2562         umtx_key_release(&uq->uq_key);
 2563         return (error);
 2564 }
 2565 
 2566 /*
 2567  * Signal a userland condition variable.
 2568  */
 2569 static int
 2570 do_cv_signal(struct thread *td, struct ucond *cv)
 2571 {
 2572         struct umtx_key key;
 2573         int error, cnt, nwake;
 2574         uint32_t flags;
 2575 
 2576         error = fueword32(&cv->c_flags, &flags);
 2577         if (error == -1)
 2578                 return (EFAULT);
 2579         if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
 2580                 return (error); 
 2581         umtxq_lock(&key);
 2582         umtxq_busy(&key);
 2583         cnt = umtxq_count(&key);
 2584         nwake = umtxq_signal(&key, 1);
 2585         if (cnt <= nwake) {
 2586                 umtxq_unlock(&key);
 2587                 error = suword32(&cv->c_has_waiters, 0);
 2588                 if (error == -1)
 2589                         error = EFAULT;
 2590                 umtxq_lock(&key);
 2591         }
 2592         umtxq_unbusy(&key);
 2593         umtxq_unlock(&key);
 2594         umtx_key_release(&key);
 2595         return (error);
 2596 }
 2597 
 2598 static int
 2599 do_cv_broadcast(struct thread *td, struct ucond *cv)
 2600 {
 2601         struct umtx_key key;
 2602         int error;
 2603         uint32_t flags;
 2604 
 2605         error = fueword32(&cv->c_flags, &flags);
 2606         if (error == -1)
 2607                 return (EFAULT);
 2608         if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
 2609                 return (error); 
 2610 
 2611         umtxq_lock(&key);
 2612         umtxq_busy(&key);
 2613         umtxq_signal(&key, INT_MAX);
 2614         umtxq_unlock(&key);
 2615 
 2616         error = suword32(&cv->c_has_waiters, 0);
 2617         if (error == -1)
 2618                 error = EFAULT;
 2619 
 2620         umtxq_unbusy_unlocked(&key);
 2621 
 2622         umtx_key_release(&key);
 2623         return (error);
 2624 }
 2625 
 2626 static int
 2627 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag, struct _umtx_time *timeout)
 2628 {
 2629         struct abs_timeout timo;
 2630         struct umtx_q *uq;
 2631         uint32_t flags, wrflags;
 2632         int32_t state, oldstate;
 2633         int32_t blocked_readers;
 2634         int error, error1, rv;
 2635 
 2636         uq = td->td_umtxq;
 2637         error = fueword32(&rwlock->rw_flags, &flags);
 2638         if (error == -1)
 2639                 return (EFAULT);
 2640         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 2641         if (error != 0)
 2642                 return (error);
 2643 
 2644         if (timeout != NULL)
 2645                 abs_timeout_init2(&timo, timeout);
 2646 
 2647         wrflags = URWLOCK_WRITE_OWNER;
 2648         if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
 2649                 wrflags |= URWLOCK_WRITE_WAITERS;
 2650 
 2651         for (;;) {
 2652                 rv = fueword32(&rwlock->rw_state, &state);
 2653                 if (rv == -1) {
 2654                         umtx_key_release(&uq->uq_key);
 2655                         return (EFAULT);
 2656                 }
 2657 
 2658                 /* try to lock it */
 2659                 while (!(state & wrflags)) {
 2660                         if (__predict_false(URWLOCK_READER_COUNT(state) == URWLOCK_MAX_READERS)) {
 2661                                 umtx_key_release(&uq->uq_key);
 2662                                 return (EAGAIN);
 2663                         }
 2664                         rv = casueword32(&rwlock->rw_state, state,
 2665                             &oldstate, state + 1);
 2666                         if (rv == -1) {
 2667                                 umtx_key_release(&uq->uq_key);
 2668                                 return (EFAULT);
 2669                         }
 2670                         if (oldstate == state) {
 2671                                 umtx_key_release(&uq->uq_key);
 2672                                 return (0);
 2673                         }
 2674                         error = umtxq_check_susp(td);
 2675                         if (error != 0)
 2676                                 break;
 2677                         state = oldstate;
 2678                 }
 2679 
 2680                 if (error)
 2681                         break;
 2682 
 2683                 /* grab monitor lock */
 2684                 umtxq_lock(&uq->uq_key);
 2685                 umtxq_busy(&uq->uq_key);
 2686                 umtxq_unlock(&uq->uq_key);
 2687 
 2688                 /*
 2689                  * re-read the state, in case it changed between the try-lock above
 2690                  * and the check below
 2691                  */
 2692                 rv = fueword32(&rwlock->rw_state, &state);
 2693                 if (rv == -1)
 2694                         error = EFAULT;
 2695 
 2696                 /* set read contention bit */
 2697                 while (error == 0 && (state & wrflags) &&
 2698                     !(state & URWLOCK_READ_WAITERS)) {
 2699                         rv = casueword32(&rwlock->rw_state, state,
 2700                             &oldstate, state | URWLOCK_READ_WAITERS);
 2701                         if (rv == -1) {
 2702                                 error = EFAULT;
 2703                                 break;
 2704                         }
 2705                         if (oldstate == state)
 2706                                 goto sleep;
 2707                         state = oldstate;
 2708                         error = umtxq_check_susp(td);
 2709                         if (error != 0)
 2710                                 break;
 2711                 }
 2712                 if (error != 0) {
 2713                         umtxq_unbusy_unlocked(&uq->uq_key);
 2714                         break;
 2715                 }
 2716 
 2717                 /* state is changed while setting flags, restart */
 2718                 if (!(state & wrflags)) {
 2719                         umtxq_unbusy_unlocked(&uq->uq_key);
 2720                         error = umtxq_check_susp(td);
 2721                         if (error != 0)
 2722                                 break;
 2723                         continue;
 2724                 }
 2725 
 2726 sleep:
 2727                 /* contention bit is set, before sleeping, increase read waiter count */
 2728                 rv = fueword32(&rwlock->rw_blocked_readers,
 2729                     &blocked_readers);
 2730                 if (rv == -1) {
 2731                         umtxq_unbusy_unlocked(&uq->uq_key);
 2732                         error = EFAULT;
 2733                         break;
 2734                 }
 2735                 suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
 2736 
 2737                 while (state & wrflags) {
 2738                         umtxq_lock(&uq->uq_key);
 2739                         umtxq_insert(uq);
 2740                         umtxq_unbusy(&uq->uq_key);
 2741 
 2742                         error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
 2743                             NULL : &timo);
 2744 
 2745                         umtxq_busy(&uq->uq_key);
 2746                         umtxq_remove(uq);
 2747                         umtxq_unlock(&uq->uq_key);
 2748                         if (error)
 2749                                 break;
 2750                         rv = fueword32(&rwlock->rw_state, &state);
 2751                         if (rv == -1) {
 2752                                 error = EFAULT;
 2753                                 break;
 2754                         }
 2755                 }
 2756 
 2757                 /* decrease read waiter count, and may clear read contention bit */
 2758                 rv = fueword32(&rwlock->rw_blocked_readers,
 2759                     &blocked_readers);
 2760                 if (rv == -1) {
 2761                         umtxq_unbusy_unlocked(&uq->uq_key);
 2762                         error = EFAULT;
 2763                         break;
 2764                 }
 2765                 suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
 2766                 if (blocked_readers == 1) {
 2767                         rv = fueword32(&rwlock->rw_state, &state);
 2768                         if (rv == -1) {
 2769                                 umtxq_unbusy_unlocked(&uq->uq_key);
 2770                                 error = EFAULT;
 2771                                 break;
 2772                         }
 2773                         for (;;) {
 2774                                 rv = casueword32(&rwlock->rw_state, state,
 2775                                     &oldstate, state & ~URWLOCK_READ_WAITERS);
 2776                                 if (rv == -1) {
 2777                                         error = EFAULT;
 2778                                         break;
 2779                                 }
 2780                                 if (oldstate == state)
 2781                                         break;
 2782                                 state = oldstate;
 2783                                 error1 = umtxq_check_susp(td);
 2784                                 if (error1 != 0) {
 2785                                         if (error == 0)
 2786                                                 error = error1;
 2787                                         break;
 2788                                 }
 2789                         }
 2790                 }
 2791 
 2792                 umtxq_unbusy_unlocked(&uq->uq_key);
 2793                 if (error != 0)
 2794                         break;
 2795         }
 2796         umtx_key_release(&uq->uq_key);
 2797         if (error == ERESTART)
 2798                 error = EINTR;
 2799         return (error);
 2800 }
 2801 
 2802 static int
 2803 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
 2804 {
 2805         struct abs_timeout timo;
 2806         struct umtx_q *uq;
 2807         uint32_t flags;
 2808         int32_t state, oldstate;
 2809         int32_t blocked_writers;
 2810         int32_t blocked_readers;
 2811         int error, error1, rv;
 2812 
 2813         uq = td->td_umtxq;
 2814         error = fueword32(&rwlock->rw_flags, &flags);
 2815         if (error == -1)
 2816                 return (EFAULT);
 2817         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 2818         if (error != 0)
 2819                 return (error);
 2820 
 2821         if (timeout != NULL)
 2822                 abs_timeout_init2(&timo, timeout);
 2823 
 2824         blocked_readers = 0;
 2825         for (;;) {
 2826                 rv = fueword32(&rwlock->rw_state, &state);
 2827                 if (rv == -1) {
 2828                         umtx_key_release(&uq->uq_key);
 2829                         return (EFAULT);
 2830                 }
 2831                 while (!(state & URWLOCK_WRITE_OWNER) && URWLOCK_READER_COUNT(state) == 0) {
 2832                         rv = casueword32(&rwlock->rw_state, state,
 2833                             &oldstate, state | URWLOCK_WRITE_OWNER);
 2834                         if (rv == -1) {
 2835                                 umtx_key_release(&uq->uq_key);
 2836                                 return (EFAULT);
 2837                         }
 2838                         if (oldstate == state) {
 2839                                 umtx_key_release(&uq->uq_key);
 2840                                 return (0);
 2841                         }
 2842                         state = oldstate;
 2843                         error = umtxq_check_susp(td);
 2844                         if (error != 0)
 2845                                 break;
 2846                 }
 2847 
 2848                 if (error) {
 2849                         if (!(state & (URWLOCK_WRITE_OWNER|URWLOCK_WRITE_WAITERS)) &&
 2850                             blocked_readers != 0) {
 2851                                 umtxq_lock(&uq->uq_key);
 2852                                 umtxq_busy(&uq->uq_key);
 2853                                 umtxq_signal_queue(&uq->uq_key, INT_MAX, UMTX_SHARED_QUEUE);
 2854                                 umtxq_unbusy(&uq->uq_key);
 2855                                 umtxq_unlock(&uq->uq_key);
 2856                         }
 2857 
 2858                         break;
 2859                 }
 2860 
 2861                 /* grab monitor lock */
 2862                 umtxq_lock(&uq->uq_key);
 2863                 umtxq_busy(&uq->uq_key);
 2864                 umtxq_unlock(&uq->uq_key);
 2865 
 2866                 /*
 2867                  * re-read the state, in case it changed between the try-lock above
 2868                  * and the check below
 2869                  */
 2870                 rv = fueword32(&rwlock->rw_state, &state);
 2871                 if (rv == -1)
 2872                         error = EFAULT;
 2873 
 2874                 while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
 2875                     URWLOCK_READER_COUNT(state) != 0) &&
 2876                     (state & URWLOCK_WRITE_WAITERS) == 0) {
 2877                         rv = casueword32(&rwlock->rw_state, state,
 2878                             &oldstate, state | URWLOCK_WRITE_WAITERS);
 2879                         if (rv == -1) {
 2880                                 error = EFAULT;
 2881                                 break;
 2882                         }
 2883                         if (oldstate == state)
 2884                                 goto sleep;
 2885                         state = oldstate;
 2886                         error = umtxq_check_susp(td);
 2887                         if (error != 0)
 2888                                 break;
 2889                 }
 2890                 if (error != 0) {
 2891                         umtxq_unbusy_unlocked(&uq->uq_key);
 2892                         break;
 2893                 }
 2894 
 2895                 if (!(state & URWLOCK_WRITE_OWNER) && URWLOCK_READER_COUNT(state) == 0) {
 2896                         umtxq_unbusy_unlocked(&uq->uq_key);
 2897                         error = umtxq_check_susp(td);
 2898                         if (error != 0)
 2899                                 break;
 2900                         continue;
 2901                 }
 2902 sleep:
 2903                 rv = fueword32(&rwlock->rw_blocked_writers,
 2904                     &blocked_writers);
 2905                 if (rv == -1) {
 2906                         umtxq_unbusy_unlocked(&uq->uq_key);
 2907                         error = EFAULT;
 2908                         break;
 2909                 }
 2910                 suword32(&rwlock->rw_blocked_writers, blocked_writers+1);
 2911 
 2912                 while ((state & URWLOCK_WRITE_OWNER) || URWLOCK_READER_COUNT(state) != 0) {
 2913                         umtxq_lock(&uq->uq_key);
 2914                         umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
 2915                         umtxq_unbusy(&uq->uq_key);
 2916 
 2917                         error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
 2918                             NULL : &timo);
 2919 
 2920                         umtxq_busy(&uq->uq_key);
 2921                         umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
 2922                         umtxq_unlock(&uq->uq_key);
 2923                         if (error)
 2924                                 break;
 2925                         rv = fueword32(&rwlock->rw_state, &state);
 2926                         if (rv == -1) {
 2927                                 error = EFAULT;
 2928                                 break;
 2929                         }
 2930                 }
 2931 
 2932                 rv = fueword32(&rwlock->rw_blocked_writers,
 2933                     &blocked_writers);
 2934                 if (rv == -1) {
 2935                         umtxq_unbusy_unlocked(&uq->uq_key);
 2936                         error = EFAULT;
 2937                         break;
 2938                 }
 2939                 suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
 2940                 if (blocked_writers == 1) {
 2941                         rv = fueword32(&rwlock->rw_state, &state);
 2942                         if (rv == -1) {
 2943                                 umtxq_unbusy_unlocked(&uq->uq_key);
 2944                                 error = EFAULT;
 2945                                 break;
 2946                         }
 2947                         for (;;) {
 2948                                 rv = casueword32(&rwlock->rw_state, state,
 2949                                     &oldstate, state & ~URWLOCK_WRITE_WAITERS);
 2950                                 if (rv == -1) {
 2951                                         error = EFAULT;
 2952                                         break;
 2953                                 }
 2954                                 if (oldstate == state)
 2955                                         break;
 2956                                 state = oldstate;
 2957                                 error1 = umtxq_check_susp(td);
 2958                                 /*
 2959                                  * We are leaving the URWLOCK_WRITE_WAITERS
 2960                                  * behind, but this should not harm the
 2961                                  * correctness.
 2962                                  */
 2963                                 if (error1 != 0) {
 2964                                         if (error == 0)
 2965                                                 error = error1;
 2966                                         break;
 2967                                 }
 2968                         }
 2969                         rv = fueword32(&rwlock->rw_blocked_readers,
 2970                             &blocked_readers);
 2971                         if (rv == -1) {
 2972                                 umtxq_unbusy_unlocked(&uq->uq_key);
 2973                                 error = EFAULT;
 2974                                 break;
 2975                         }
 2976                 } else
 2977                         blocked_readers = 0;
 2978 
 2979                 umtxq_unbusy_unlocked(&uq->uq_key);
 2980         }
 2981 
 2982         umtx_key_release(&uq->uq_key);
 2983         if (error == ERESTART)
 2984                 error = EINTR;
 2985         return (error);
 2986 }
 2987 
 2988 static int
 2989 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
 2990 {
 2991         struct umtx_q *uq;
 2992         uint32_t flags;
 2993         int32_t state, oldstate;
 2994         int error, rv, q, count;
 2995 
 2996         uq = td->td_umtxq;
 2997         error = fueword32(&rwlock->rw_flags, &flags);
 2998         if (error == -1)
 2999                 return (EFAULT);
 3000         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 3001         if (error != 0)
 3002                 return (error);
 3003 
 3004         error = fueword32(&rwlock->rw_state, &state);
 3005         if (error == -1) {
 3006                 error = EFAULT;
 3007                 goto out;
 3008         }
 3009         if (state & URWLOCK_WRITE_OWNER) {
 3010                 for (;;) {
 3011                         rv = casueword32(&rwlock->rw_state, state, 
 3012                             &oldstate, state & ~URWLOCK_WRITE_OWNER);
 3013                         if (rv == -1) {
 3014                                 error = EFAULT;
 3015                                 goto out;
 3016                         }
 3017                         if (oldstate != state) {
 3018                                 state = oldstate;
 3019                                 if (!(oldstate & URWLOCK_WRITE_OWNER)) {
 3020                                         error = EPERM;
 3021                                         goto out;
 3022                                 }
 3023                                 error = umtxq_check_susp(td);
 3024                                 if (error != 0)
 3025                                         goto out;
 3026                         } else
 3027                                 break;
 3028                 }
 3029         } else if (URWLOCK_READER_COUNT(state) != 0) {
 3030                 for (;;) {
 3031                         rv = casueword32(&rwlock->rw_state, state,
 3032                             &oldstate, state - 1);
 3033                         if (rv == -1) {
 3034                                 error = EFAULT;
 3035                                 goto out;
 3036                         }
 3037                         if (oldstate != state) {
 3038                                 state = oldstate;
 3039                                 if (URWLOCK_READER_COUNT(oldstate) == 0) {
 3040                                         error = EPERM;
 3041                                         goto out;
 3042                                 }
 3043                                 error = umtxq_check_susp(td);
 3044                                 if (error != 0)
 3045                                         goto out;
 3046                         } else
 3047                                 break;
 3048                 }
 3049         } else {
 3050                 error = EPERM;
 3051                 goto out;
 3052         }
 3053 
 3054         count = 0;
 3055 
 3056         if (!(flags & URWLOCK_PREFER_READER)) {
 3057                 if (state & URWLOCK_WRITE_WAITERS) {
 3058                         count = 1;
 3059                         q = UMTX_EXCLUSIVE_QUEUE;
 3060                 } else if (state & URWLOCK_READ_WAITERS) {
 3061                         count = INT_MAX;
 3062                         q = UMTX_SHARED_QUEUE;
 3063                 }
 3064         } else {
 3065                 if (state & URWLOCK_READ_WAITERS) {
 3066                         count = INT_MAX;
 3067                         q = UMTX_SHARED_QUEUE;
 3068                 } else if (state & URWLOCK_WRITE_WAITERS) {
 3069                         count = 1;
 3070                         q = UMTX_EXCLUSIVE_QUEUE;
 3071                 }
 3072         }
 3073 
 3074         if (count) {
 3075                 umtxq_lock(&uq->uq_key);
 3076                 umtxq_busy(&uq->uq_key);
 3077                 umtxq_signal_queue(&uq->uq_key, count, q);
 3078                 umtxq_unbusy(&uq->uq_key);
 3079                 umtxq_unlock(&uq->uq_key);
 3080         }
 3081 out:
 3082         umtx_key_release(&uq->uq_key);
 3083         return (error);
 3084 }
 3085 
 3086 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 3087 static int
 3088 do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
 3089 {
 3090         struct abs_timeout timo;
 3091         struct umtx_q *uq;
 3092         uint32_t flags, count, count1;
 3093         int error, rv;
 3094 
 3095         uq = td->td_umtxq;
 3096         error = fueword32(&sem->_flags, &flags);
 3097         if (error == -1)
 3098                 return (EFAULT);
 3099         error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
 3100         if (error != 0)
 3101                 return (error);
 3102 
 3103         if (timeout != NULL)
 3104                 abs_timeout_init2(&timo, timeout);
 3105 
 3106         umtxq_lock(&uq->uq_key);
 3107         umtxq_busy(&uq->uq_key);
 3108         umtxq_insert(uq);
 3109         umtxq_unlock(&uq->uq_key);
 3110         rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
 3111         if (rv == 0)
 3112                 rv = fueword32(&sem->_count, &count);
 3113         if (rv == -1 || count != 0) {
 3114                 umtxq_lock(&uq->uq_key);
 3115                 umtxq_unbusy(&uq->uq_key);
 3116                 umtxq_remove(uq);
 3117                 umtxq_unlock(&uq->uq_key);
 3118                 umtx_key_release(&uq->uq_key);
 3119                 return (rv == -1 ? EFAULT : 0);
 3120         }
 3121         umtxq_lock(&uq->uq_key);
 3122         umtxq_unbusy(&uq->uq_key);
 3123 
 3124         error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
 3125 
 3126         if ((uq->uq_flags & UQF_UMTXQ) == 0)
 3127                 error = 0;
 3128         else {
 3129                 umtxq_remove(uq);
 3130                 /* A relative timeout cannot be restarted. */
 3131                 if (error == ERESTART && timeout != NULL &&
 3132                     (timeout->_flags & UMTX_ABSTIME) == 0)
 3133                         error = EINTR;
 3134         }
 3135         umtxq_unlock(&uq->uq_key);
 3136         umtx_key_release(&uq->uq_key);
 3137         return (error);
 3138 }
 3139 
 3140 /*
 3141  * Signal a userland semaphore.
 3142  */
 3143 static int
 3144 do_sem_wake(struct thread *td, struct _usem *sem)
 3145 {
 3146         struct umtx_key key;
 3147         int error, cnt;
 3148         uint32_t flags;
 3149 
 3150         error = fueword32(&sem->_flags, &flags);
 3151         if (error == -1)
 3152                 return (EFAULT);
 3153         if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
 3154                 return (error); 
 3155         umtxq_lock(&key);
 3156         umtxq_busy(&key);
 3157         cnt = umtxq_count(&key);
 3158         if (cnt > 0) {
 3159                 /*
 3160                  * Check if count is greater than 0, this means the memory is
 3161                  * still being referenced by user code, so we can safely
 3162                  * update _has_waiters flag.
 3163                  */
 3164                 if (cnt == 1) {
 3165                         umtxq_unlock(&key);
 3166                         error = suword32(&sem->_has_waiters, 0);
 3167                         umtxq_lock(&key);
 3168                         if (error == -1)
 3169                                 error = EFAULT;
 3170                 }
 3171                 umtxq_signal(&key, 1);
 3172         }
 3173         umtxq_unbusy(&key);
 3174         umtxq_unlock(&key);
 3175         umtx_key_release(&key);
 3176         return (error);
 3177 }
 3178 #endif
 3179 
 3180 static int
 3181 do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
 3182 {
 3183         struct abs_timeout timo;
 3184         struct umtx_q *uq;
 3185         uint32_t count, flags;
 3186         int error, rv;
 3187 
 3188         uq = td->td_umtxq;
 3189         flags = fuword32(&sem->_flags);
 3190         error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
 3191         if (error != 0)
 3192                 return (error);
 3193 
 3194         if (timeout != NULL)
 3195                 abs_timeout_init2(&timo, timeout);
 3196 
 3197         umtxq_lock(&uq->uq_key);
 3198         umtxq_busy(&uq->uq_key);
 3199         umtxq_insert(uq);
 3200         umtxq_unlock(&uq->uq_key);
 3201         rv = fueword32(&sem->_count, &count);
 3202         if (rv == -1) {
 3203                 umtxq_lock(&uq->uq_key);
 3204                 umtxq_unbusy(&uq->uq_key);
 3205                 umtxq_remove(uq);
 3206                 umtxq_unlock(&uq->uq_key);
 3207                 umtx_key_release(&uq->uq_key);
 3208                 return (EFAULT);
 3209         }
 3210         for (;;) {
 3211                 if (USEM_COUNT(count) != 0) {
 3212                         umtxq_lock(&uq->uq_key);
 3213                         umtxq_unbusy(&uq->uq_key);
 3214                         umtxq_remove(uq);
 3215                         umtxq_unlock(&uq->uq_key);
 3216                         umtx_key_release(&uq->uq_key);
 3217                         return (0);
 3218                 }
 3219                 if (count == USEM_HAS_WAITERS)
 3220                         break;
 3221                 rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
 3222                 if (rv == -1) {
 3223                         umtxq_lock(&uq->uq_key);
 3224                         umtxq_unbusy(&uq->uq_key);
 3225                         umtxq_remove(uq);
 3226                         umtxq_unlock(&uq->uq_key);
 3227                         umtx_key_release(&uq->uq_key);
 3228                         return (EFAULT);
 3229                 }
 3230                 if (count == 0)
 3231                         break;
 3232         }
 3233         umtxq_lock(&uq->uq_key);
 3234         umtxq_unbusy(&uq->uq_key);
 3235 
 3236         error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
 3237 
 3238         if ((uq->uq_flags & UQF_UMTXQ) == 0)
 3239                 error = 0;
 3240         else {
 3241                 umtxq_remove(uq);
 3242                 if (timeout != NULL && (timeout->_flags & UMTX_ABSTIME) == 0) {
 3243                         /* A relative timeout cannot be restarted. */
 3244                         if (error == ERESTART)
 3245                                 error = EINTR;
 3246                         if (error == EINTR) {
 3247                                 abs_timeout_update(&timo);
 3248                                 timespecsub(&timo.end, &timo.cur,
 3249                                     &timeout->_timeout);
 3250                         }
 3251                 }
 3252         }
 3253         umtxq_unlock(&uq->uq_key);
 3254         umtx_key_release(&uq->uq_key);
 3255         return (error);
 3256 }
 3257 
 3258 /*
 3259  * Signal a userland semaphore.
 3260  */
 3261 static int
 3262 do_sem2_wake(struct thread *td, struct _usem2 *sem)
 3263 {
 3264         struct umtx_key key;
 3265         int error, cnt, rv;
 3266         uint32_t count, flags;
 3267 
 3268         rv = fueword32(&sem->_flags, &flags);
 3269         if (rv == -1)
 3270                 return (EFAULT);
 3271         if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
 3272                 return (error); 
 3273         umtxq_lock(&key);
 3274         umtxq_busy(&key);
 3275         cnt = umtxq_count(&key);
 3276         if (cnt > 0) {
 3277                 /*
 3278                  * If this was the last sleeping thread, clear the waiters
 3279                  * flag in _count.
 3280                  */
 3281                 if (cnt == 1) {
 3282                         umtxq_unlock(&key);
 3283                         rv = fueword32(&sem->_count, &count);
 3284                         while (rv != -1 && count & USEM_HAS_WAITERS)
 3285                                 rv = casueword32(&sem->_count, count, &count,
 3286                                     count & ~USEM_HAS_WAITERS);
 3287                         if (rv == -1)
 3288                                 error = EFAULT;
 3289                         umtxq_lock(&key);
 3290                 }
 3291 
 3292                 umtxq_signal(&key, 1);
 3293         }
 3294         umtxq_unbusy(&key);
 3295         umtxq_unlock(&key);
 3296         umtx_key_release(&key);
 3297         return (error);
 3298 }
 3299 
 3300 inline int
 3301 umtx_copyin_timeout(const void *addr, struct timespec *tsp)
 3302 {
 3303         int error;
 3304 
 3305         error = copyin(addr, tsp, sizeof(struct timespec));
 3306         if (error == 0) {
 3307                 if (tsp->tv_sec < 0 ||
 3308                     tsp->tv_nsec >= 1000000000 ||
 3309                     tsp->tv_nsec < 0)
 3310                         error = EINVAL;
 3311         }
 3312         return (error);
 3313 }
 3314 
 3315 static inline int
 3316 umtx_copyin_umtx_time(const void *addr, size_t size, struct _umtx_time *tp)
 3317 {
 3318         int error;
 3319         
 3320         if (size <= sizeof(struct timespec)) {
 3321                 tp->_clockid = CLOCK_REALTIME;
 3322                 tp->_flags = 0;
 3323                 error = copyin(addr, &tp->_timeout, sizeof(struct timespec));
 3324         } else 
 3325                 error = copyin(addr, tp, sizeof(struct _umtx_time));
 3326         if (error != 0)
 3327                 return (error);
 3328         if (tp->_timeout.tv_sec < 0 ||
 3329             tp->_timeout.tv_nsec >= 1000000000 || tp->_timeout.tv_nsec < 0)
 3330                 return (EINVAL);
 3331         return (0);
 3332 }
 3333 
 3334 static int
 3335 __umtx_op_unimpl(struct thread *td, struct _umtx_op_args *uap)
 3336 {
 3337 
 3338         return (EOPNOTSUPP);
 3339 }
 3340 
 3341 static int
 3342 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap)
 3343 {
 3344         struct _umtx_time timeout, *tm_p;
 3345         int error;
 3346 
 3347         if (uap->uaddr2 == NULL)
 3348                 tm_p = NULL;
 3349         else {
 3350                 error = umtx_copyin_umtx_time(
 3351                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3352                 if (error != 0)
 3353                         return (error);
 3354                 tm_p = &timeout;
 3355         }
 3356         return (do_wait(td, uap->obj, uap->val, tm_p, 0, 0));
 3357 }
 3358 
 3359 static int
 3360 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap)
 3361 {
 3362         struct _umtx_time timeout, *tm_p;
 3363         int error;
 3364 
 3365         if (uap->uaddr2 == NULL)
 3366                 tm_p = NULL;
 3367         else {
 3368                 error = umtx_copyin_umtx_time(
 3369                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3370                 if (error != 0)
 3371                         return (error);
 3372                 tm_p = &timeout;
 3373         }
 3374         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
 3375 }
 3376 
 3377 static int
 3378 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap)
 3379 {
 3380         struct _umtx_time *tm_p, timeout;
 3381         int error;
 3382 
 3383         if (uap->uaddr2 == NULL)
 3384                 tm_p = NULL;
 3385         else {
 3386                 error = umtx_copyin_umtx_time(
 3387                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3388                 if (error != 0)
 3389                         return (error);
 3390                 tm_p = &timeout;
 3391         }
 3392         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
 3393 }
 3394 
 3395 static int
 3396 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap)
 3397 {
 3398 
 3399         return (kern_umtx_wake(td, uap->obj, uap->val, 0));
 3400 }
 3401 
 3402 #define BATCH_SIZE      128
 3403 static int
 3404 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap)
 3405 {
 3406         char *uaddrs[BATCH_SIZE], **upp;
 3407         int count, error, i, pos, tocopy;
 3408 
 3409         upp = (char **)uap->obj;
 3410         error = 0;
 3411         for (count = uap->val, pos = 0; count > 0; count -= tocopy,
 3412             pos += tocopy) {
 3413                 tocopy = MIN(count, BATCH_SIZE);
 3414                 error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
 3415                 if (error != 0)
 3416                         break;
 3417                 for (i = 0; i < tocopy; ++i)
 3418                         kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
 3419                 maybe_yield();
 3420         }
 3421         return (error);
 3422 }
 3423 
 3424 static int
 3425 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap)
 3426 {
 3427 
 3428         return (kern_umtx_wake(td, uap->obj, uap->val, 1));
 3429 }
 3430 
 3431 static int
 3432 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap)
 3433 {
 3434         struct _umtx_time *tm_p, timeout;
 3435         int error;
 3436 
 3437         /* Allow a null timespec (wait forever). */
 3438         if (uap->uaddr2 == NULL)
 3439                 tm_p = NULL;
 3440         else {
 3441                 error = umtx_copyin_umtx_time(
 3442                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3443                 if (error != 0)
 3444                         return (error);
 3445                 tm_p = &timeout;
 3446         }
 3447         return (do_lock_umutex(td, uap->obj, tm_p, 0));
 3448 }
 3449 
 3450 static int
 3451 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap)
 3452 {
 3453 
 3454         return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
 3455 }
 3456 
 3457 static int
 3458 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap)
 3459 {
 3460         struct _umtx_time *tm_p, timeout;
 3461         int error;
 3462 
 3463         /* Allow a null timespec (wait forever). */
 3464         if (uap->uaddr2 == NULL)
 3465                 tm_p = NULL;
 3466         else {
 3467                 error = umtx_copyin_umtx_time(
 3468                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3469                 if (error != 0)
 3470                         return (error);
 3471                 tm_p = &timeout;
 3472         }
 3473         return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
 3474 }
 3475 
 3476 static int
 3477 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap)
 3478 {
 3479 
 3480         return (do_wake_umutex(td, uap->obj));
 3481 }
 3482 
 3483 static int
 3484 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap)
 3485 {
 3486 
 3487         return (do_unlock_umutex(td, uap->obj, false));
 3488 }
 3489 
 3490 static int
 3491 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap)
 3492 {
 3493 
 3494         return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
 3495 }
 3496 
 3497 static int
 3498 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap)
 3499 {
 3500         struct timespec *ts, timeout;
 3501         int error;
 3502 
 3503         /* Allow a null timespec (wait forever). */
 3504         if (uap->uaddr2 == NULL)
 3505                 ts = NULL;
 3506         else {
 3507                 error = umtx_copyin_timeout(uap->uaddr2, &timeout);
 3508                 if (error != 0)
 3509                         return (error);
 3510                 ts = &timeout;
 3511         }
 3512         return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
 3513 }
 3514 
 3515 static int
 3516 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap)
 3517 {
 3518 
 3519         return (do_cv_signal(td, uap->obj));
 3520 }
 3521 
 3522 static int
 3523 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap)
 3524 {
 3525 
 3526         return (do_cv_broadcast(td, uap->obj));
 3527 }
 3528 
 3529 static int
 3530 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap)
 3531 {
 3532         struct _umtx_time timeout;
 3533         int error;
 3534 
 3535         /* Allow a null timespec (wait forever). */
 3536         if (uap->uaddr2 == NULL) {
 3537                 error = do_rw_rdlock(td, uap->obj, uap->val, 0);
 3538         } else {
 3539                 error = umtx_copyin_umtx_time(uap->uaddr2,
 3540                    (size_t)uap->uaddr1, &timeout);
 3541                 if (error != 0)
 3542                         return (error);
 3543                 error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
 3544         }
 3545         return (error);
 3546 }
 3547 
 3548 static int
 3549 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap)
 3550 {
 3551         struct _umtx_time timeout;
 3552         int error;
 3553 
 3554         /* Allow a null timespec (wait forever). */
 3555         if (uap->uaddr2 == NULL) {
 3556                 error = do_rw_wrlock(td, uap->obj, 0);
 3557         } else {
 3558                 error = umtx_copyin_umtx_time(uap->uaddr2, 
 3559                    (size_t)uap->uaddr1, &timeout);
 3560                 if (error != 0)
 3561                         return (error);
 3562 
 3563                 error = do_rw_wrlock(td, uap->obj, &timeout);
 3564         }
 3565         return (error);
 3566 }
 3567 
 3568 static int
 3569 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap)
 3570 {
 3571 
 3572         return (do_rw_unlock(td, uap->obj));
 3573 }
 3574 
 3575 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 3576 static int
 3577 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap)
 3578 {
 3579         struct _umtx_time *tm_p, timeout;
 3580         int error;
 3581 
 3582         /* Allow a null timespec (wait forever). */
 3583         if (uap->uaddr2 == NULL)
 3584                 tm_p = NULL;
 3585         else {
 3586                 error = umtx_copyin_umtx_time(
 3587                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3588                 if (error != 0)
 3589                         return (error);
 3590                 tm_p = &timeout;
 3591         }
 3592         return (do_sem_wait(td, uap->obj, tm_p));
 3593 }
 3594 
 3595 static int
 3596 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap)
 3597 {
 3598 
 3599         return (do_sem_wake(td, uap->obj));
 3600 }
 3601 #endif
 3602 
 3603 static int
 3604 __umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap)
 3605 {
 3606 
 3607         return (do_wake2_umutex(td, uap->obj, uap->val));
 3608 }
 3609 
 3610 static int
 3611 __umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap)
 3612 {
 3613         struct _umtx_time *tm_p, timeout;
 3614         size_t uasize;
 3615         int error;
 3616 
 3617         /* Allow a null timespec (wait forever). */
 3618         if (uap->uaddr2 == NULL) {
 3619                 uasize = 0;
 3620                 tm_p = NULL;
 3621         } else {
 3622                 uasize = (size_t)uap->uaddr1;
 3623                 error = umtx_copyin_umtx_time(uap->uaddr2, uasize, &timeout);
 3624                 if (error != 0)
 3625                         return (error);
 3626                 tm_p = &timeout;
 3627         }
 3628         error = do_sem2_wait(td, uap->obj, tm_p);
 3629         if (error == EINTR && uap->uaddr2 != NULL &&
 3630             (timeout._flags & UMTX_ABSTIME) == 0 &&
 3631             uasize >= sizeof(struct _umtx_time) + sizeof(struct timespec)) {
 3632                 error = copyout(&timeout._timeout,
 3633                     (struct _umtx_time *)uap->uaddr2 + 1,
 3634                     sizeof(struct timespec));
 3635                 if (error == 0) {
 3636                         error = EINTR;
 3637                 }
 3638         }
 3639 
 3640         return (error);
 3641 }
 3642 
 3643 static int
 3644 __umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap)
 3645 {
 3646 
 3647         return (do_sem2_wake(td, uap->obj));
 3648 }
 3649 
 3650 #define USHM_OBJ_UMTX(o)                                                \
 3651     ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
 3652 
 3653 #define USHMF_REG_LINKED        0x0001
 3654 #define USHMF_OBJ_LINKED        0x0002
 3655 struct umtx_shm_reg {
 3656         TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
 3657         LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
 3658         struct umtx_key         ushm_key;
 3659         struct ucred            *ushm_cred;
 3660         struct shmfd            *ushm_obj;
 3661         u_int                   ushm_refcnt;
 3662         u_int                   ushm_flags;
 3663 };
 3664 
 3665 LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
 3666 TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
 3667 
 3668 static uma_zone_t umtx_shm_reg_zone;
 3669 static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
 3670 static struct mtx umtx_shm_lock;
 3671 static struct umtx_shm_reg_head umtx_shm_reg_delfree =
 3672     TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
 3673 
 3674 static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
 3675 
 3676 static void
 3677 umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
 3678 {
 3679         struct umtx_shm_reg_head d;
 3680         struct umtx_shm_reg *reg, *reg1;
 3681 
 3682         TAILQ_INIT(&d);
 3683         mtx_lock(&umtx_shm_lock);
 3684         TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
 3685         mtx_unlock(&umtx_shm_lock);
 3686         TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
 3687                 TAILQ_REMOVE(&d, reg, ushm_reg_link);
 3688                 umtx_shm_free_reg(reg);
 3689         }
 3690 }
 3691 
 3692 static struct task umtx_shm_reg_delfree_task =
 3693     TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
 3694 
 3695 static struct umtx_shm_reg *
 3696 umtx_shm_find_reg_locked(const struct umtx_key *key)
 3697 {
 3698         struct umtx_shm_reg *reg;
 3699         struct umtx_shm_reg_head *reg_head;
 3700 
 3701         KASSERT(key->shared, ("umtx_p_find_rg: private key"));
 3702         mtx_assert(&umtx_shm_lock, MA_OWNED);
 3703         reg_head = &umtx_shm_registry[key->hash];
 3704         TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
 3705                 KASSERT(reg->ushm_key.shared,
 3706                     ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
 3707                 if (reg->ushm_key.info.shared.object ==
 3708                     key->info.shared.object &&
 3709                     reg->ushm_key.info.shared.offset ==
 3710                     key->info.shared.offset) {
 3711                         KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
 3712                         KASSERT(reg->ushm_refcnt > 0,
 3713                             ("reg %p refcnt 0 onlist", reg));
 3714                         KASSERT((reg->ushm_flags & USHMF_REG_LINKED) != 0,
 3715                             ("reg %p not linked", reg));
 3716                         reg->ushm_refcnt++;
 3717                         return (reg);
 3718                 }
 3719         }
 3720         return (NULL);
 3721 }
 3722 
 3723 static struct umtx_shm_reg *
 3724 umtx_shm_find_reg(const struct umtx_key *key)
 3725 {
 3726         struct umtx_shm_reg *reg;
 3727 
 3728         mtx_lock(&umtx_shm_lock);
 3729         reg = umtx_shm_find_reg_locked(key);
 3730         mtx_unlock(&umtx_shm_lock);
 3731         return (reg);
 3732 }
 3733 
 3734 static void
 3735 umtx_shm_free_reg(struct umtx_shm_reg *reg)
 3736 {
 3737 
 3738         chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
 3739         crfree(reg->ushm_cred);
 3740         shm_drop(reg->ushm_obj);
 3741         uma_zfree(umtx_shm_reg_zone, reg);
 3742 }
 3743 
 3744 static bool
 3745 umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
 3746 {
 3747         bool res;
 3748 
 3749         mtx_assert(&umtx_shm_lock, MA_OWNED);
 3750         KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
 3751         reg->ushm_refcnt--;
 3752         res = reg->ushm_refcnt == 0;
 3753         if (res || force) {
 3754                 if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
 3755                         TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
 3756                             reg, ushm_reg_link);
 3757                         reg->ushm_flags &= ~USHMF_REG_LINKED;
 3758                 }
 3759                 if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
 3760                         LIST_REMOVE(reg, ushm_obj_link);
 3761                         reg->ushm_flags &= ~USHMF_OBJ_LINKED;
 3762                 }
 3763         }
 3764         return (res);
 3765 }
 3766 
 3767 static void
 3768 umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool force)
 3769 {
 3770         vm_object_t object;
 3771         bool dofree;
 3772 
 3773         if (force) {
 3774                 object = reg->ushm_obj->shm_object;
 3775                 VM_OBJECT_WLOCK(object);
 3776                 object->flags |= OBJ_UMTXDEAD;
 3777                 VM_OBJECT_WUNLOCK(object);
 3778         }
 3779         mtx_lock(&umtx_shm_lock);
 3780         dofree = umtx_shm_unref_reg_locked(reg, force);
 3781         mtx_unlock(&umtx_shm_lock);
 3782         if (dofree)
 3783                 umtx_shm_free_reg(reg);
 3784 }
 3785 
 3786 void
 3787 umtx_shm_object_init(vm_object_t object)
 3788 {
 3789 
 3790         LIST_INIT(USHM_OBJ_UMTX(object));
 3791 }
 3792 
 3793 void
 3794 umtx_shm_object_terminated(vm_object_t object)
 3795 {
 3796         struct umtx_shm_reg *reg, *reg1;
 3797         bool dofree;
 3798 
 3799         dofree = false;
 3800         mtx_lock(&umtx_shm_lock);
 3801         LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
 3802                 if (umtx_shm_unref_reg_locked(reg, true)) {
 3803                         TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
 3804                             ushm_reg_link);
 3805                         dofree = true;
 3806                 }
 3807         }
 3808         mtx_unlock(&umtx_shm_lock);
 3809         if (dofree)
 3810                 taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
 3811 }
 3812 
 3813 static int
 3814 umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
 3815     struct umtx_shm_reg **res)
 3816 {
 3817         struct umtx_shm_reg *reg, *reg1;
 3818         struct ucred *cred;
 3819         int error;
 3820 
 3821         reg = umtx_shm_find_reg(key);
 3822         if (reg != NULL) {
 3823                 *res = reg;
 3824                 return (0);
 3825         }
 3826         cred = td->td_ucred;
 3827         if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
 3828                 return (ENOMEM);
 3829         reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
 3830         reg->ushm_refcnt = 1;
 3831         bcopy(key, &reg->ushm_key, sizeof(*key));
 3832         reg->ushm_obj = shm_alloc(td->td_ucred, O_RDWR);
 3833         reg->ushm_cred = crhold(cred);
 3834         error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
 3835         if (error != 0) {
 3836                 umtx_shm_free_reg(reg);
 3837                 return (error);
 3838         }
 3839         mtx_lock(&umtx_shm_lock);
 3840         reg1 = umtx_shm_find_reg_locked(key);
 3841         if (reg1 != NULL) {
 3842                 mtx_unlock(&umtx_shm_lock);
 3843                 umtx_shm_free_reg(reg);
 3844                 *res = reg1;
 3845                 return (0);
 3846         }
 3847         reg->ushm_refcnt++;
 3848         TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
 3849         LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
 3850             ushm_obj_link);
 3851         reg->ushm_flags = USHMF_REG_LINKED | USHMF_OBJ_LINKED;
 3852         mtx_unlock(&umtx_shm_lock);
 3853         *res = reg;
 3854         return (0);
 3855 }
 3856 
 3857 static int
 3858 umtx_shm_alive(struct thread *td, void *addr)
 3859 {
 3860         vm_map_t map;
 3861         vm_map_entry_t entry;
 3862         vm_object_t object;
 3863         vm_pindex_t pindex;
 3864         vm_prot_t prot;
 3865         int res, ret;
 3866         boolean_t wired;
 3867 
 3868         map = &td->td_proc->p_vmspace->vm_map;
 3869         res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
 3870             &object, &pindex, &prot, &wired);
 3871         if (res != KERN_SUCCESS)
 3872                 return (EFAULT);
 3873         if (object == NULL)
 3874                 ret = EINVAL;
 3875         else
 3876                 ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
 3877         vm_map_lookup_done(map, entry);
 3878         return (ret);
 3879 }
 3880 
 3881 static void
 3882 umtx_shm_init(void)
 3883 {
 3884         int i;
 3885 
 3886         umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
 3887             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
 3888         mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
 3889         for (i = 0; i < nitems(umtx_shm_registry); i++)
 3890                 TAILQ_INIT(&umtx_shm_registry[i]);
 3891 }
 3892 
 3893 static int
 3894 umtx_shm(struct thread *td, void *addr, u_int flags)
 3895 {
 3896         struct umtx_key key;
 3897         struct umtx_shm_reg *reg;
 3898         struct file *fp;
 3899         int error, fd;
 3900 
 3901         if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
 3902             UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
 3903                 return (EINVAL);
 3904         if ((flags & UMTX_SHM_ALIVE) != 0)
 3905                 return (umtx_shm_alive(td, addr));
 3906         error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
 3907         if (error != 0)
 3908                 return (error);
 3909         KASSERT(key.shared == 1, ("non-shared key"));
 3910         if ((flags & UMTX_SHM_CREAT) != 0) {
 3911                 error = umtx_shm_create_reg(td, &key, &reg);
 3912         } else {
 3913                 reg = umtx_shm_find_reg(&key);
 3914                 if (reg == NULL)
 3915                         error = ESRCH;
 3916         }
 3917         umtx_key_release(&key);
 3918         if (error != 0)
 3919                 return (error);
 3920         KASSERT(reg != NULL, ("no reg"));
 3921         if ((flags & UMTX_SHM_DESTROY) != 0) {
 3922                 umtx_shm_unref_reg(reg, true);
 3923         } else {
 3924 #if 0
 3925 #ifdef MAC
 3926                 error = mac_posixshm_check_open(td->td_ucred,
 3927                     reg->ushm_obj, FFLAGS(O_RDWR));
 3928                 if (error == 0)
 3929 #endif
 3930                         error = shm_access(reg->ushm_obj, td->td_ucred,
 3931                             FFLAGS(O_RDWR));
 3932                 if (error == 0)
 3933 #endif
 3934                         error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
 3935                 if (error == 0) {
 3936                         shm_hold(reg->ushm_obj);
 3937                         finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
 3938                             &shm_ops);
 3939                         td->td_retval[0] = fd;
 3940                         fdrop(fp, td);
 3941                 }
 3942         }
 3943         umtx_shm_unref_reg(reg, false);
 3944         return (error);
 3945 }
 3946 
 3947 static int
 3948 __umtx_op_shm(struct thread *td, struct _umtx_op_args *uap)
 3949 {
 3950 
 3951         return (umtx_shm(td, uap->uaddr1, uap->val));
 3952 }
 3953 
 3954 static int
 3955 umtx_robust_lists(struct thread *td, struct umtx_robust_lists_params *rbp)
 3956 {
 3957 
 3958         td->td_rb_list = rbp->robust_list_offset;
 3959         td->td_rbp_list = rbp->robust_priv_list_offset;
 3960         td->td_rb_inact = rbp->robust_inact_offset;
 3961         return (0);
 3962 }
 3963 
 3964 static int
 3965 __umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap)
 3966 {
 3967         struct umtx_robust_lists_params rb;
 3968         int error;
 3969 
 3970         if (uap->val > sizeof(rb))
 3971                 return (EINVAL);
 3972         bzero(&rb, sizeof(rb));
 3973         error = copyin(uap->uaddr1, &rb, uap->val);
 3974         if (error != 0)
 3975                 return (error);
 3976         return (umtx_robust_lists(td, &rb));
 3977 }
 3978 
 3979 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap);
 3980 
 3981 static const _umtx_op_func op_table[] = {
 3982         [UMTX_OP_RESERVED0]     = __umtx_op_unimpl,
 3983         [UMTX_OP_RESERVED1]     = __umtx_op_unimpl,
 3984         [UMTX_OP_WAIT]          = __umtx_op_wait,
 3985         [UMTX_OP_WAKE]          = __umtx_op_wake,
 3986         [UMTX_OP_MUTEX_TRYLOCK] = __umtx_op_trylock_umutex,
 3987         [UMTX_OP_MUTEX_LOCK]    = __umtx_op_lock_umutex,
 3988         [UMTX_OP_MUTEX_UNLOCK]  = __umtx_op_unlock_umutex,
 3989         [UMTX_OP_SET_CEILING]   = __umtx_op_set_ceiling,
 3990         [UMTX_OP_CV_WAIT]       = __umtx_op_cv_wait,
 3991         [UMTX_OP_CV_SIGNAL]     = __umtx_op_cv_signal,
 3992         [UMTX_OP_CV_BROADCAST]  = __umtx_op_cv_broadcast,
 3993         [UMTX_OP_WAIT_UINT]     = __umtx_op_wait_uint,
 3994         [UMTX_OP_RW_RDLOCK]     = __umtx_op_rw_rdlock,
 3995         [UMTX_OP_RW_WRLOCK]     = __umtx_op_rw_wrlock,
 3996         [UMTX_OP_RW_UNLOCK]     = __umtx_op_rw_unlock,
 3997         [UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
 3998         [UMTX_OP_WAKE_PRIVATE]  = __umtx_op_wake_private,
 3999         [UMTX_OP_MUTEX_WAIT]    = __umtx_op_wait_umutex,
 4000         [UMTX_OP_MUTEX_WAKE]    = __umtx_op_wake_umutex,
 4001 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 4002         [UMTX_OP_SEM_WAIT]      = __umtx_op_sem_wait,
 4003         [UMTX_OP_SEM_WAKE]      = __umtx_op_sem_wake,
 4004 #else
 4005         [UMTX_OP_SEM_WAIT]      = __umtx_op_unimpl,
 4006         [UMTX_OP_SEM_WAKE]      = __umtx_op_unimpl,
 4007 #endif
 4008         [UMTX_OP_NWAKE_PRIVATE] = __umtx_op_nwake_private,
 4009         [UMTX_OP_MUTEX_WAKE2]   = __umtx_op_wake2_umutex,
 4010         [UMTX_OP_SEM2_WAIT]     = __umtx_op_sem2_wait,
 4011         [UMTX_OP_SEM2_WAKE]     = __umtx_op_sem2_wake,
 4012         [UMTX_OP_SHM]           = __umtx_op_shm,
 4013         [UMTX_OP_ROBUST_LISTS]  = __umtx_op_robust_lists,
 4014 };
 4015 
 4016 int
 4017 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
 4018 {
 4019 
 4020         if ((unsigned)uap->op < nitems(op_table))
 4021                 return (*op_table[uap->op])(td, uap);
 4022         return (EINVAL);
 4023 }
 4024 
 4025 #ifdef COMPAT_FREEBSD32
 4026 
 4027 struct timespec32 {
 4028         int32_t tv_sec;
 4029         int32_t tv_nsec;
 4030 };
 4031 
 4032 struct umtx_time32 {
 4033         struct  timespec32      timeout;
 4034         uint32_t                flags;
 4035         uint32_t                clockid;
 4036 };
 4037 
 4038 static inline int
 4039 umtx_copyin_timeout32(void *addr, struct timespec *tsp)
 4040 {
 4041         struct timespec32 ts32;
 4042         int error;
 4043 
 4044         error = copyin(addr, &ts32, sizeof(struct timespec32));
 4045         if (error == 0) {
 4046                 if (ts32.tv_sec < 0 ||
 4047                     ts32.tv_nsec >= 1000000000 ||
 4048                     ts32.tv_nsec < 0)
 4049                         error = EINVAL;
 4050                 else {
 4051                         tsp->tv_sec = ts32.tv_sec;
 4052                         tsp->tv_nsec = ts32.tv_nsec;
 4053                 }
 4054         }
 4055         return (error);
 4056 }
 4057 
 4058 static inline int
 4059 umtx_copyin_umtx_time32(const void *addr, size_t size, struct _umtx_time *tp)
 4060 {
 4061         struct umtx_time32 t32;
 4062         int error;
 4063         
 4064         t32.clockid = CLOCK_REALTIME;
 4065         t32.flags   = 0;
 4066         if (size <= sizeof(struct timespec32))
 4067                 error = copyin(addr, &t32.timeout, sizeof(struct timespec32));
 4068         else 
 4069                 error = copyin(addr, &t32, sizeof(struct umtx_time32));
 4070         if (error != 0)
 4071                 return (error);
 4072         if (t32.timeout.tv_sec < 0 ||
 4073             t32.timeout.tv_nsec >= 1000000000 || t32.timeout.tv_nsec < 0)
 4074                 return (EINVAL);
 4075         tp->_timeout.tv_sec = t32.timeout.tv_sec;
 4076         tp->_timeout.tv_nsec = t32.timeout.tv_nsec;
 4077         tp->_flags = t32.flags;
 4078         tp->_clockid = t32.clockid;
 4079         return (0);
 4080 }
 4081 
 4082 static int
 4083 __umtx_op_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
 4084 {
 4085         struct _umtx_time *tm_p, timeout;
 4086         int error;
 4087 
 4088         if (uap->uaddr2 == NULL)
 4089                 tm_p = NULL;
 4090         else {
 4091                 error = umtx_copyin_umtx_time32(uap->uaddr2,
 4092                         (size_t)uap->uaddr1, &timeout);
 4093                 if (error != 0)
 4094                         return (error);
 4095                 tm_p = &timeout;
 4096         }
 4097         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
 4098 }
 4099 
 4100 static int
 4101 __umtx_op_lock_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
 4102 {
 4103         struct _umtx_time *tm_p, timeout;
 4104         int error;
 4105 
 4106         /* Allow a null timespec (wait forever). */
 4107         if (uap->uaddr2 == NULL)
 4108                 tm_p = NULL;
 4109         else {
 4110                 error = umtx_copyin_umtx_time32(uap->uaddr2,
 4111                             (size_t)uap->uaddr1, &timeout);
 4112                 if (error != 0)
 4113                         return (error);
 4114                 tm_p = &timeout;
 4115         }
 4116         return (do_lock_umutex(td, uap->obj, tm_p, 0));
 4117 }
 4118 
 4119 static int
 4120 __umtx_op_wait_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
 4121 {
 4122         struct _umtx_time *tm_p, timeout;
 4123         int error;
 4124 
 4125         /* Allow a null timespec (wait forever). */
 4126         if (uap->uaddr2 == NULL)
 4127                 tm_p = NULL;
 4128         else {
 4129                 error = umtx_copyin_umtx_time32(uap->uaddr2, 
 4130                     (size_t)uap->uaddr1, &timeout);
 4131                 if (error != 0)
 4132                         return (error);
 4133                 tm_p = &timeout;
 4134         }
 4135         return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
 4136 }
 4137 
 4138 static int
 4139 __umtx_op_cv_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
 4140 {
 4141         struct timespec *ts, timeout;
 4142         int error;
 4143 
 4144         /* Allow a null timespec (wait forever). */
 4145         if (uap->uaddr2 == NULL)
 4146                 ts = NULL;
 4147         else {
 4148                 error = umtx_copyin_timeout32(uap->uaddr2, &timeout);
 4149                 if (error != 0)
 4150                         return (error);
 4151                 ts = &timeout;
 4152         }
 4153         return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
 4154 }
 4155 
 4156 static int
 4157 __umtx_op_rw_rdlock_compat32(struct thread *td, struct _umtx_op_args *uap)
 4158 {
 4159         struct _umtx_time timeout;
 4160         int error;
 4161 
 4162         /* Allow a null timespec (wait forever). */
 4163         if (uap->uaddr2 == NULL) {
 4164                 error = do_rw_rdlock(td, uap->obj, uap->val, 0);
 4165         } else {
 4166                 error = umtx_copyin_umtx_time32(uap->uaddr2,
 4167                     (size_t)uap->uaddr1, &timeout);
 4168                 if (error != 0)
 4169                         return (error);
 4170                 error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
 4171         }
 4172         return (error);
 4173 }
 4174 
 4175 static int
 4176 __umtx_op_rw_wrlock_compat32(struct thread *td, struct _umtx_op_args *uap)
 4177 {
 4178         struct _umtx_time timeout;
 4179         int error;
 4180 
 4181         /* Allow a null timespec (wait forever). */
 4182         if (uap->uaddr2 == NULL) {
 4183                 error = do_rw_wrlock(td, uap->obj, 0);
 4184         } else {
 4185                 error = umtx_copyin_umtx_time32(uap->uaddr2,
 4186                     (size_t)uap->uaddr1, &timeout);
 4187                 if (error != 0)
 4188                         return (error);
 4189                 error = do_rw_wrlock(td, uap->obj, &timeout);
 4190         }
 4191         return (error);
 4192 }
 4193 
 4194 static int
 4195 __umtx_op_wait_uint_private_compat32(struct thread *td, struct _umtx_op_args *uap)
 4196 {
 4197         struct _umtx_time *tm_p, timeout;
 4198         int error;
 4199 
 4200         if (uap->uaddr2 == NULL)
 4201                 tm_p = NULL;
 4202         else {
 4203                 error = umtx_copyin_umtx_time32(
 4204                     uap->uaddr2, (size_t)uap->uaddr1,&timeout);
 4205                 if (error != 0)
 4206                         return (error);
 4207                 tm_p = &timeout;
 4208         }
 4209         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
 4210 }
 4211 
 4212 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 4213 static int
 4214 __umtx_op_sem_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
 4215 {
 4216         struct _umtx_time *tm_p, timeout;
 4217         int error;
 4218 
 4219         /* Allow a null timespec (wait forever). */
 4220         if (uap->uaddr2 == NULL)
 4221                 tm_p = NULL;
 4222         else {
 4223                 error = umtx_copyin_umtx_time32(uap->uaddr2,
 4224                     (size_t)uap->uaddr1, &timeout);
 4225                 if (error != 0)
 4226                         return (error);
 4227                 tm_p = &timeout;
 4228         }
 4229         return (do_sem_wait(td, uap->obj, tm_p));
 4230 }
 4231 #endif
 4232 
 4233 static int
 4234 __umtx_op_sem2_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
 4235 {
 4236         struct _umtx_time *tm_p, timeout;
 4237         size_t uasize;
 4238         int error;
 4239 
 4240         /* Allow a null timespec (wait forever). */
 4241         if (uap->uaddr2 == NULL) {
 4242                 uasize = 0;
 4243                 tm_p = NULL;
 4244         } else {
 4245                 uasize = (size_t)uap->uaddr1;
 4246                 error = umtx_copyin_umtx_time32(uap->uaddr2, uasize, &timeout);
 4247                 if (error != 0)
 4248                         return (error);
 4249                 tm_p = &timeout;
 4250         }
 4251         error = do_sem2_wait(td, uap->obj, tm_p);
 4252         if (error == EINTR && uap->uaddr2 != NULL &&
 4253             (timeout._flags & UMTX_ABSTIME) == 0 &&
 4254             uasize >= sizeof(struct umtx_time32) + sizeof(struct timespec32)) {
 4255                 struct timespec32 remain32 = {
 4256                         .tv_sec = timeout._timeout.tv_sec,
 4257                         .tv_nsec = timeout._timeout.tv_nsec
 4258                 };
 4259                 error = copyout(&remain32,
 4260                     (struct umtx_time32 *)uap->uaddr2 + 1,
 4261                     sizeof(struct timespec32));
 4262                 if (error == 0) {
 4263                         error = EINTR;
 4264                 }
 4265         }
 4266 
 4267         return (error);
 4268 }
 4269 
 4270 static int
 4271 __umtx_op_nwake_private32(struct thread *td, struct _umtx_op_args *uap)
 4272 {
 4273         uint32_t uaddrs[BATCH_SIZE], **upp;
 4274         int count, error, i, pos, tocopy;
 4275 
 4276         upp = (uint32_t **)uap->obj;
 4277         error = 0;
 4278         for (count = uap->val, pos = 0; count > 0; count -= tocopy,
 4279             pos += tocopy) {
 4280                 tocopy = MIN(count, BATCH_SIZE);
 4281                 error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
 4282                 if (error != 0)
 4283                         break;
 4284                 for (i = 0; i < tocopy; ++i)
 4285                         kern_umtx_wake(td, (void *)(intptr_t)uaddrs[i],
 4286                             INT_MAX, 1);
 4287                 maybe_yield();
 4288         }
 4289         return (error);
 4290 }
 4291 
 4292 struct umtx_robust_lists_params_compat32 {
 4293         uint32_t        robust_list_offset;
 4294         uint32_t        robust_priv_list_offset;
 4295         uint32_t        robust_inact_offset;
 4296 };
 4297 
 4298 static int
 4299 __umtx_op_robust_lists_compat32(struct thread *td, struct _umtx_op_args *uap)
 4300 {
 4301         struct umtx_robust_lists_params rb;
 4302         struct umtx_robust_lists_params_compat32 rb32;
 4303         int error;
 4304 
 4305         if (uap->val > sizeof(rb32))
 4306                 return (EINVAL);
 4307         bzero(&rb, sizeof(rb));
 4308         bzero(&rb32, sizeof(rb32));
 4309         error = copyin(uap->uaddr1, &rb32, uap->val);
 4310         if (error != 0)
 4311                 return (error);
 4312         rb.robust_list_offset = rb32.robust_list_offset;
 4313         rb.robust_priv_list_offset = rb32.robust_priv_list_offset;
 4314         rb.robust_inact_offset = rb32.robust_inact_offset;
 4315         return (umtx_robust_lists(td, &rb));
 4316 }
 4317 
 4318 static const _umtx_op_func op_table_compat32[] = {
 4319         [UMTX_OP_RESERVED0]     = __umtx_op_unimpl,
 4320         [UMTX_OP_RESERVED1]     = __umtx_op_unimpl,
 4321         [UMTX_OP_WAIT]          = __umtx_op_wait_compat32,
 4322         [UMTX_OP_WAKE]          = __umtx_op_wake,
 4323         [UMTX_OP_MUTEX_TRYLOCK] = __umtx_op_trylock_umutex,
 4324         [UMTX_OP_MUTEX_LOCK]    = __umtx_op_lock_umutex_compat32,
 4325         [UMTX_OP_MUTEX_UNLOCK]  = __umtx_op_unlock_umutex,
 4326         [UMTX_OP_SET_CEILING]   = __umtx_op_set_ceiling,
 4327         [UMTX_OP_CV_WAIT]       = __umtx_op_cv_wait_compat32,
 4328         [UMTX_OP_CV_SIGNAL]     = __umtx_op_cv_signal,
 4329         [UMTX_OP_CV_BROADCAST]  = __umtx_op_cv_broadcast,
 4330         [UMTX_OP_WAIT_UINT]     = __umtx_op_wait_compat32,
 4331         [UMTX_OP_RW_RDLOCK]     = __umtx_op_rw_rdlock_compat32,
 4332         [UMTX_OP_RW_WRLOCK]     = __umtx_op_rw_wrlock_compat32,
 4333         [UMTX_OP_RW_UNLOCK]     = __umtx_op_rw_unlock,
 4334         [UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private_compat32,
 4335         [UMTX_OP_WAKE_PRIVATE]  = __umtx_op_wake_private,
 4336         [UMTX_OP_MUTEX_WAIT]    = __umtx_op_wait_umutex_compat32,
 4337         [UMTX_OP_MUTEX_WAKE]    = __umtx_op_wake_umutex,
 4338 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 4339         [UMTX_OP_SEM_WAIT]      = __umtx_op_sem_wait_compat32,
 4340         [UMTX_OP_SEM_WAKE]      = __umtx_op_sem_wake,
 4341 #else
 4342         [UMTX_OP_SEM_WAIT]      = __umtx_op_unimpl,
 4343         [UMTX_OP_SEM_WAKE]      = __umtx_op_unimpl,
 4344 #endif
 4345         [UMTX_OP_NWAKE_PRIVATE] = __umtx_op_nwake_private32,
 4346         [UMTX_OP_MUTEX_WAKE2]   = __umtx_op_wake2_umutex,
 4347         [UMTX_OP_SEM2_WAIT]     = __umtx_op_sem2_wait_compat32,
 4348         [UMTX_OP_SEM2_WAKE]     = __umtx_op_sem2_wake,
 4349         [UMTX_OP_SHM]           = __umtx_op_shm,
 4350         [UMTX_OP_ROBUST_LISTS]  = __umtx_op_robust_lists_compat32,
 4351 };
 4352 
 4353 int
 4354 freebsd32__umtx_op(struct thread *td, struct freebsd32__umtx_op_args *uap)
 4355 {
 4356 
 4357         if ((unsigned)uap->op < nitems(op_table_compat32)) {
 4358                 return (*op_table_compat32[uap->op])(td,
 4359                     (struct _umtx_op_args *)uap);
 4360         }
 4361         return (EINVAL);
 4362 }
 4363 #endif
 4364 
 4365 void
 4366 umtx_thread_init(struct thread *td)
 4367 {
 4368 
 4369         td->td_umtxq = umtxq_alloc();
 4370         td->td_umtxq->uq_thread = td;
 4371 }
 4372 
 4373 void
 4374 umtx_thread_fini(struct thread *td)
 4375 {
 4376 
 4377         umtxq_free(td->td_umtxq);
 4378 }
 4379 
 4380 /*
 4381  * It will be called when new thread is created, e.g fork().
 4382  */
 4383 void
 4384 umtx_thread_alloc(struct thread *td)
 4385 {
 4386         struct umtx_q *uq;
 4387 
 4388         uq = td->td_umtxq;
 4389         uq->uq_inherited_pri = PRI_MAX;
 4390 
 4391         KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
 4392         KASSERT(uq->uq_thread == td, ("uq_thread != td"));
 4393         KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
 4394         KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
 4395 }
 4396 
 4397 /*
 4398  * exec() hook.
 4399  *
 4400  * Clear robust lists for all process' threads, not delaying the
 4401  * cleanup to thread_exit hook, since the relevant address space is
 4402  * destroyed right now.
 4403  */
 4404 static void
 4405 umtx_exec_hook(void *arg __unused, struct proc *p,
 4406     struct image_params *imgp __unused)
 4407 {
 4408         struct thread *td;
 4409 
 4410         KASSERT(p == curproc, ("need curproc"));
 4411         PROC_LOCK(p);
 4412         KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
 4413             (p->p_flag & P_STOPPED_SINGLE) != 0,
 4414             ("curproc must be single-threaded"));
 4415         FOREACH_THREAD_IN_PROC(p, td) {
 4416                 KASSERT(td == curthread ||
 4417                     ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
 4418                     ("running thread %p %p", p, td));
 4419                 PROC_UNLOCK(p);
 4420                 umtx_thread_cleanup(td);
 4421                 PROC_LOCK(p);
 4422                 td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
 4423         }
 4424         PROC_UNLOCK(p);
 4425 }
 4426 
 4427 /*
 4428  * thread_exit() hook.
 4429  */
 4430 void
 4431 umtx_thread_exit(struct thread *td)
 4432 {
 4433 
 4434         umtx_thread_cleanup(td);
 4435 }
 4436 
 4437 static int
 4438 umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res)
 4439 {
 4440         u_long res1;
 4441 #ifdef COMPAT_FREEBSD32
 4442         uint32_t res32;
 4443 #endif
 4444         int error;
 4445 
 4446 #ifdef COMPAT_FREEBSD32
 4447         if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
 4448                 error = fueword32((void *)ptr, &res32);
 4449                 if (error == 0)
 4450                         res1 = res32;
 4451         } else
 4452 #endif
 4453         {
 4454                 error = fueword((void *)ptr, &res1);
 4455         }
 4456         if (error == 0)
 4457                 *res = res1;
 4458         else
 4459                 error = EFAULT;
 4460         return (error);
 4461 }
 4462 
 4463 static void
 4464 umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list)
 4465 {
 4466 #ifdef COMPAT_FREEBSD32
 4467         struct umutex32 m32;
 4468 
 4469         if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
 4470                 memcpy(&m32, m, sizeof(m32));
 4471                 *rb_list = m32.m_rb_lnk;
 4472         } else
 4473 #endif
 4474                 *rb_list = m->m_rb_lnk;
 4475 }
 4476 
 4477 static int
 4478 umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact)
 4479 {
 4480         struct umutex m;
 4481         int error;
 4482 
 4483         KASSERT(td->td_proc == curproc, ("need current vmspace"));
 4484         error = copyin((void *)rbp, &m, sizeof(m));
 4485         if (error != 0)
 4486                 return (error);
 4487         if (rb_list != NULL)
 4488                 umtx_read_rb_list(td, &m, rb_list);
 4489         if ((m.m_flags & UMUTEX_ROBUST) == 0)
 4490                 return (EINVAL);
 4491         if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
 4492                 /* inact is cleared after unlock, allow the inconsistency */
 4493                 return (inact ? 0 : EINVAL);
 4494         return (do_unlock_umutex(td, (struct umutex *)rbp, true));
 4495 }
 4496 
 4497 static void
 4498 umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
 4499     const char *name)
 4500 {
 4501         int error, i;
 4502         uintptr_t rbp;
 4503         bool inact;
 4504 
 4505         if (rb_list == 0)
 4506                 return;
 4507         error = umtx_read_uptr(td, rb_list, &rbp);
 4508         for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
 4509                 if (rbp == *rb_inact) {
 4510                         inact = true;
 4511                         *rb_inact = 0;
 4512                 } else
 4513                         inact = false;
 4514                 error = umtx_handle_rb(td, rbp, &rbp, inact);
 4515         }
 4516         if (i == umtx_max_rb && umtx_verbose_rb) {
 4517                 uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
 4518                     td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
 4519         }
 4520         if (error != 0 && umtx_verbose_rb) {
 4521                 uprintf("comm %s pid %d: handling %srb error %d\n",
 4522                     td->td_proc->p_comm, td->td_proc->p_pid, name, error);
 4523         }
 4524 }
 4525 
 4526 /*
 4527  * Clean up umtx data.
 4528  */
 4529 static void
 4530 umtx_thread_cleanup(struct thread *td)
 4531 {
 4532         struct umtx_q *uq;
 4533         struct umtx_pi *pi;
 4534         uintptr_t rb_inact;
 4535 
 4536         /*
 4537          * Disown pi mutexes.
 4538          */
 4539         uq = td->td_umtxq;
 4540         if (uq != NULL) {
 4541                 mtx_lock(&umtx_lock);
 4542                 uq->uq_inherited_pri = PRI_MAX;
 4543                 while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
 4544                         pi->pi_owner = NULL;
 4545                         TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
 4546                 }
 4547                 mtx_unlock(&umtx_lock);
 4548                 thread_lock(td);
 4549                 sched_lend_user_prio(td, PRI_MAX);
 4550                 thread_unlock(td);
 4551         }
 4552 
 4553         /*
 4554          * Handle terminated robust mutexes.  Must be done after
 4555          * robust pi disown, otherwise unlock could see unowned
 4556          * entries.
 4557          */
 4558         rb_inact = td->td_rb_inact;
 4559         if (rb_inact != 0)
 4560                 (void)umtx_read_uptr(td, rb_inact, &rb_inact);
 4561         umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "");
 4562         umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ");
 4563         if (rb_inact != 0)
 4564                 (void)umtx_handle_rb(td, rb_inact, NULL, true);
 4565 }

Cache object: 309e12c73e9e5ac29bacf88b3c23fe1c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.