The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_umtx.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2015, 2016 The FreeBSD Foundation
    5  * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
    6  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
    7  * All rights reserved.
    8  *
    9  * Portions of this software were developed by Konstantin Belousov
   10  * under sponsorship from the FreeBSD Foundation.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice unmodified, this list of conditions, and the following
   17  *    disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_umtx_profiling.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/kernel.h>
   41 #include <sys/fcntl.h>
   42 #include <sys/file.h>
   43 #include <sys/filedesc.h>
   44 #include <sys/limits.h>
   45 #include <sys/lock.h>
   46 #include <sys/malloc.h>
   47 #include <sys/mman.h>
   48 #include <sys/mutex.h>
   49 #include <sys/priv.h>
   50 #include <sys/proc.h>
   51 #include <sys/resource.h>
   52 #include <sys/resourcevar.h>
   53 #include <sys/rwlock.h>
   54 #include <sys/sbuf.h>
   55 #include <sys/sched.h>
   56 #include <sys/smp.h>
   57 #include <sys/sysctl.h>
   58 #include <sys/sysent.h>
   59 #include <sys/systm.h>
   60 #include <sys/sysproto.h>
   61 #include <sys/syscallsubr.h>
   62 #include <sys/taskqueue.h>
   63 #include <sys/time.h>
   64 #include <sys/eventhandler.h>
   65 #include <sys/umtx.h>
   66 
   67 #include <security/mac/mac_framework.h>
   68 
   69 #include <vm/vm.h>
   70 #include <vm/vm_param.h>
   71 #include <vm/pmap.h>
   72 #include <vm/vm_map.h>
   73 #include <vm/vm_object.h>
   74 
   75 #include <machine/atomic.h>
   76 #include <machine/cpu.h>
   77 
   78 #include <compat/freebsd32/freebsd32.h>
   79 #ifdef COMPAT_FREEBSD32
   80 #include <compat/freebsd32/freebsd32_proto.h>
   81 #endif
   82 
   83 #define _UMUTEX_TRY             1
   84 #define _UMUTEX_WAIT            2
   85 
   86 #ifdef UMTX_PROFILING
   87 #define UPROF_PERC_BIGGER(w, f, sw, sf)                                 \
   88         (((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
   89 #endif
   90 
   91 /* Priority inheritance mutex info. */
   92 struct umtx_pi {
   93         /* Owner thread */
   94         struct thread           *pi_owner;
   95 
   96         /* Reference count */
   97         int                     pi_refcount;
   98 
   99         /* List entry to link umtx holding by thread */
  100         TAILQ_ENTRY(umtx_pi)    pi_link;
  101 
  102         /* List entry in hash */
  103         TAILQ_ENTRY(umtx_pi)    pi_hashlink;
  104 
  105         /* List for waiters */
  106         TAILQ_HEAD(,umtx_q)     pi_blocked;
  107 
  108         /* Identify a userland lock object */
  109         struct umtx_key         pi_key;
  110 };
  111 
  112 /* A userland synchronous object user. */
  113 struct umtx_q {
  114         /* Linked list for the hash. */
  115         TAILQ_ENTRY(umtx_q)     uq_link;
  116 
  117         /* Umtx key. */
  118         struct umtx_key         uq_key;
  119 
  120         /* Umtx flags. */
  121         int                     uq_flags;
  122 #define UQF_UMTXQ       0x0001
  123 
  124         /* The thread waits on. */
  125         struct thread           *uq_thread;
  126 
  127         /*
  128          * Blocked on PI mutex. read can use chain lock
  129          * or umtx_lock, write must have both chain lock and
  130          * umtx_lock being hold.
  131          */
  132         struct umtx_pi          *uq_pi_blocked;
  133 
  134         /* On blocked list */
  135         TAILQ_ENTRY(umtx_q)     uq_lockq;
  136 
  137         /* Thread contending with us */
  138         TAILQ_HEAD(,umtx_pi)    uq_pi_contested;
  139 
  140         /* Inherited priority from PP mutex */
  141         u_char                  uq_inherited_pri;
  142 
  143         /* Spare queue ready to be reused */
  144         struct umtxq_queue      *uq_spare_queue;
  145 
  146         /* The queue we on */
  147         struct umtxq_queue      *uq_cur_queue;
  148 };
  149 
  150 TAILQ_HEAD(umtxq_head, umtx_q);
  151 
  152 /* Per-key wait-queue */
  153 struct umtxq_queue {
  154         struct umtxq_head       head;
  155         struct umtx_key         key;
  156         LIST_ENTRY(umtxq_queue) link;
  157         int                     length;
  158 };
  159 
  160 LIST_HEAD(umtxq_list, umtxq_queue);
  161 
  162 /* Userland lock object's wait-queue chain */
  163 struct umtxq_chain {
  164         /* Lock for this chain. */
  165         struct mtx              uc_lock;
  166 
  167         /* List of sleep queues. */
  168         struct umtxq_list       uc_queue[2];
  169 #define UMTX_SHARED_QUEUE       0
  170 #define UMTX_EXCLUSIVE_QUEUE    1
  171 
  172         LIST_HEAD(, umtxq_queue) uc_spare_queue;
  173 
  174         /* Busy flag */
  175         char                    uc_busy;
  176 
  177         /* Chain lock waiters */
  178         int                     uc_waiters;
  179 
  180         /* All PI in the list */
  181         TAILQ_HEAD(,umtx_pi)    uc_pi_list;
  182 
  183 #ifdef UMTX_PROFILING
  184         u_int                   length;
  185         u_int                   max_length;
  186 #endif
  187 };
  188 
  189 #define UMTXQ_LOCKED_ASSERT(uc)         mtx_assert(&(uc)->uc_lock, MA_OWNED)
  190 
  191 /*
  192  * Don't propagate time-sharing priority, there is a security reason,
  193  * a user can simply introduce PI-mutex, let thread A lock the mutex,
  194  * and let another thread B block on the mutex, because B is
  195  * sleeping, its priority will be boosted, this causes A's priority to
  196  * be boosted via priority propagating too and will never be lowered even
  197  * if it is using 100%CPU, this is unfair to other processes.
  198  */
  199 
  200 #define UPRI(td)        (((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
  201                           (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
  202                          PRI_MAX_TIMESHARE : (td)->td_user_pri)
  203 
  204 #define GOLDEN_RATIO_PRIME      2654404609U
  205 #ifndef UMTX_CHAINS
  206 #define UMTX_CHAINS             512
  207 #endif
  208 #define UMTX_SHIFTS             (__WORD_BIT - 9)
  209 
  210 #define GET_SHARE(flags)        \
  211     (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
  212 
  213 #define BUSY_SPINS              200
  214 
  215 struct abs_timeout {
  216         int clockid;
  217         bool is_abs_real;       /* TIMER_ABSTIME && CLOCK_REALTIME* */
  218         struct timespec cur;
  219         struct timespec end;
  220 };
  221 
  222 struct umtx_copyops {
  223         int     (*copyin_timeout)(const void *uaddr, struct timespec *tsp);
  224         int     (*copyin_umtx_time)(const void *uaddr, size_t size,
  225             struct _umtx_time *tp);
  226         int     (*copyin_robust_lists)(const void *uaddr, size_t size,
  227             struct umtx_robust_lists_params *rbp);
  228         int     (*copyout_timeout)(void *uaddr, size_t size,
  229             struct timespec *tsp);
  230         const size_t    timespec_sz;
  231         const size_t    umtx_time_sz;
  232         const bool      compat32;
  233 };
  234 
  235 _Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
  236 _Static_assert(__offsetof(struct umutex, m_spare[0]) ==
  237     __offsetof(struct umutex32, m_spare[0]), "m_spare32");
  238 
  239 int umtx_shm_vnobj_persistent = 0;
  240 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
  241     &umtx_shm_vnobj_persistent, 0,
  242     "False forces destruction of umtx attached to file, on last close");
  243 static int umtx_max_rb = 1000;
  244 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
  245     &umtx_max_rb, 0,
  246     "");
  247 
  248 static uma_zone_t               umtx_pi_zone;
  249 static struct umtxq_chain       umtxq_chains[2][UMTX_CHAINS];
  250 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
  251 static int                      umtx_pi_allocated;
  252 
  253 static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW, 0, "umtx debug");
  254 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
  255     &umtx_pi_allocated, 0, "Allocated umtx_pi");
  256 static int umtx_verbose_rb = 1;
  257 SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
  258     &umtx_verbose_rb, 0,
  259     "");
  260 
  261 #ifdef UMTX_PROFILING
  262 static long max_length;
  263 SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
  264 static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD, 0, "umtx chain stats");
  265 #endif
  266 
  267 static void abs_timeout_update(struct abs_timeout *timo);
  268 
  269 static void umtx_shm_init(void);
  270 static void umtxq_sysinit(void *);
  271 static void umtxq_hash(struct umtx_key *key);
  272 static struct umtxq_chain *umtxq_getchain(struct umtx_key *key);
  273 static void umtxq_lock(struct umtx_key *key);
  274 static void umtxq_unlock(struct umtx_key *key);
  275 static void umtxq_busy(struct umtx_key *key);
  276 static void umtxq_unbusy(struct umtx_key *key);
  277 static void umtxq_insert_queue(struct umtx_q *uq, int q);
  278 static void umtxq_remove_queue(struct umtx_q *uq, int q);
  279 static int umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *);
  280 static int umtxq_count(struct umtx_key *key);
  281 static struct umtx_pi *umtx_pi_alloc(int);
  282 static void umtx_pi_free(struct umtx_pi *pi);
  283 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
  284     bool rb);
  285 static void umtx_thread_cleanup(struct thread *td);
  286 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
  287 
  288 #define umtxq_signal(key, nwake)        umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
  289 #define umtxq_insert(uq)        umtxq_insert_queue((uq), UMTX_SHARED_QUEUE)
  290 #define umtxq_remove(uq)        umtxq_remove_queue((uq), UMTX_SHARED_QUEUE)
  291 
  292 static struct mtx umtx_lock;
  293 
  294 #ifdef UMTX_PROFILING
  295 static void
  296 umtx_init_profiling(void)
  297 {
  298         struct sysctl_oid *chain_oid;
  299         char chain_name[10];
  300         int i;
  301 
  302         for (i = 0; i < UMTX_CHAINS; ++i) {
  303                 snprintf(chain_name, sizeof(chain_name), "%d", i);
  304                 chain_oid = SYSCTL_ADD_NODE(NULL,
  305                     SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO,
  306                     chain_name, CTLFLAG_RD, NULL, "umtx hash stats");
  307                 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  308                     "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
  309                 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  310                     "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
  311         }
  312 }
  313 
  314 static int
  315 sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
  316 {
  317         char buf[512];
  318         struct sbuf sb;
  319         struct umtxq_chain *uc;
  320         u_int fract, i, j, tot, whole;
  321         u_int sf0, sf1, sf2, sf3, sf4;
  322         u_int si0, si1, si2, si3, si4;
  323         u_int sw0, sw1, sw2, sw3, sw4;
  324 
  325         sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
  326         for (i = 0; i < 2; i++) {
  327                 tot = 0;
  328                 for (j = 0; j < UMTX_CHAINS; ++j) {
  329                         uc = &umtxq_chains[i][j];
  330                         mtx_lock(&uc->uc_lock);
  331                         tot += uc->max_length;
  332                         mtx_unlock(&uc->uc_lock);
  333                 }
  334                 if (tot == 0)
  335                         sbuf_printf(&sb, "%u) Empty ", i);
  336                 else {
  337                         sf0 = sf1 = sf2 = sf3 = sf4 = 0;
  338                         si0 = si1 = si2 = si3 = si4 = 0;
  339                         sw0 = sw1 = sw2 = sw3 = sw4 = 0;
  340                         for (j = 0; j < UMTX_CHAINS; j++) {
  341                                 uc = &umtxq_chains[i][j];
  342                                 mtx_lock(&uc->uc_lock);
  343                                 whole = uc->max_length * 100;
  344                                 mtx_unlock(&uc->uc_lock);
  345                                 fract = (whole % tot) * 100;
  346                                 if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
  347                                         sf0 = fract;
  348                                         si0 = j;
  349                                         sw0 = whole;
  350                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw1,
  351                                     sf1)) {
  352                                         sf1 = fract;
  353                                         si1 = j;
  354                                         sw1 = whole;
  355                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw2,
  356                                     sf2)) {
  357                                         sf2 = fract;
  358                                         si2 = j;
  359                                         sw2 = whole;
  360                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw3,
  361                                     sf3)) {
  362                                         sf3 = fract;
  363                                         si3 = j;
  364                                         sw3 = whole;
  365                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw4,
  366                                     sf4)) {
  367                                         sf4 = fract;
  368                                         si4 = j;
  369                                         sw4 = whole;
  370                                 }
  371                         }
  372                         sbuf_printf(&sb, "queue %u:\n", i);
  373                         sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
  374                             sf0 / tot, si0);
  375                         sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
  376                             sf1 / tot, si1);
  377                         sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
  378                             sf2 / tot, si2);
  379                         sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
  380                             sf3 / tot, si3);
  381                         sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
  382                             sf4 / tot, si4);
  383                 }
  384         }
  385         sbuf_trim(&sb);
  386         sbuf_finish(&sb);
  387         sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
  388         sbuf_delete(&sb);
  389         return (0);
  390 }
  391 
  392 static int
  393 sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
  394 {
  395         struct umtxq_chain *uc;
  396         u_int i, j;
  397         int clear, error;
  398 
  399         clear = 0;
  400         error = sysctl_handle_int(oidp, &clear, 0, req);
  401         if (error != 0 || req->newptr == NULL)
  402                 return (error);
  403 
  404         if (clear != 0) {
  405                 for (i = 0; i < 2; ++i) {
  406                         for (j = 0; j < UMTX_CHAINS; ++j) {
  407                                 uc = &umtxq_chains[i][j];
  408                                 mtx_lock(&uc->uc_lock);
  409                                 uc->length = 0;
  410                                 uc->max_length = 0;
  411                                 mtx_unlock(&uc->uc_lock);
  412                         }
  413                 }
  414         }
  415         return (0);
  416 }
  417 
  418 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
  419     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
  420     sysctl_debug_umtx_chains_clear, "I", "Clear umtx chains statistics");
  421 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
  422     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
  423     sysctl_debug_umtx_chains_peaks, "A", "Highest peaks in chains max length");
  424 #endif
  425 
  426 static void
  427 umtxq_sysinit(void *arg __unused)
  428 {
  429         int i, j;
  430 
  431         umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
  432                 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  433         for (i = 0; i < 2; ++i) {
  434                 for (j = 0; j < UMTX_CHAINS; ++j) {
  435                         mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
  436                                  MTX_DEF | MTX_DUPOK);
  437                         LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
  438                         LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
  439                         LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
  440                         TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
  441                         umtxq_chains[i][j].uc_busy = 0;
  442                         umtxq_chains[i][j].uc_waiters = 0;
  443 #ifdef UMTX_PROFILING
  444                         umtxq_chains[i][j].length = 0;
  445                         umtxq_chains[i][j].max_length = 0;
  446 #endif
  447                 }
  448         }
  449 #ifdef UMTX_PROFILING
  450         umtx_init_profiling();
  451 #endif
  452         mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
  453         umtx_shm_init();
  454 }
  455 
  456 struct umtx_q *
  457 umtxq_alloc(void)
  458 {
  459         struct umtx_q *uq;
  460 
  461         uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
  462         uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
  463             M_WAITOK | M_ZERO);
  464         TAILQ_INIT(&uq->uq_spare_queue->head);
  465         TAILQ_INIT(&uq->uq_pi_contested);
  466         uq->uq_inherited_pri = PRI_MAX;
  467         return (uq);
  468 }
  469 
  470 void
  471 umtxq_free(struct umtx_q *uq)
  472 {
  473 
  474         MPASS(uq->uq_spare_queue != NULL);
  475         free(uq->uq_spare_queue, M_UMTX);
  476         free(uq, M_UMTX);
  477 }
  478 
  479 static inline void
  480 umtxq_hash(struct umtx_key *key)
  481 {
  482         unsigned n;
  483 
  484         n = (uintptr_t)key->info.both.a + key->info.both.b;
  485         key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
  486 }
  487 
  488 static inline struct umtxq_chain *
  489 umtxq_getchain(struct umtx_key *key)
  490 {
  491 
  492         if (key->type <= TYPE_SEM)
  493                 return (&umtxq_chains[1][key->hash]);
  494         return (&umtxq_chains[0][key->hash]);
  495 }
  496 
  497 /*
  498  * Lock a chain.
  499  */
  500 static inline void
  501 umtxq_lock(struct umtx_key *key)
  502 {
  503         struct umtxq_chain *uc;
  504 
  505         uc = umtxq_getchain(key);
  506         mtx_lock(&uc->uc_lock);
  507 }
  508 
  509 /*
  510  * Unlock a chain.
  511  */
  512 static inline void
  513 umtxq_unlock(struct umtx_key *key)
  514 {
  515         struct umtxq_chain *uc;
  516 
  517         uc = umtxq_getchain(key);
  518         mtx_unlock(&uc->uc_lock);
  519 }
  520 
  521 /*
  522  * Set chain to busy state when following operation
  523  * may be blocked (kernel mutex can not be used).
  524  */
  525 static inline void
  526 umtxq_busy(struct umtx_key *key)
  527 {
  528         struct umtxq_chain *uc;
  529 
  530         uc = umtxq_getchain(key);
  531         mtx_assert(&uc->uc_lock, MA_OWNED);
  532         if (uc->uc_busy) {
  533 #ifdef SMP
  534                 if (smp_cpus > 1) {
  535                         int count = BUSY_SPINS;
  536                         if (count > 0) {
  537                                 umtxq_unlock(key);
  538                                 while (uc->uc_busy && --count > 0)
  539                                         cpu_spinwait();
  540                                 umtxq_lock(key);
  541                         }
  542                 }
  543 #endif
  544                 while (uc->uc_busy) {
  545                         uc->uc_waiters++;
  546                         msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
  547                         uc->uc_waiters--;
  548                 }
  549         }
  550         uc->uc_busy = 1;
  551 }
  552 
  553 /*
  554  * Unbusy a chain.
  555  */
  556 static inline void
  557 umtxq_unbusy(struct umtx_key *key)
  558 {
  559         struct umtxq_chain *uc;
  560 
  561         uc = umtxq_getchain(key);
  562         mtx_assert(&uc->uc_lock, MA_OWNED);
  563         KASSERT(uc->uc_busy != 0, ("not busy"));
  564         uc->uc_busy = 0;
  565         if (uc->uc_waiters)
  566                 wakeup_one(uc);
  567 }
  568 
  569 static inline void
  570 umtxq_unbusy_unlocked(struct umtx_key *key)
  571 {
  572 
  573         umtxq_lock(key);
  574         umtxq_unbusy(key);
  575         umtxq_unlock(key);
  576 }
  577 
  578 static struct umtxq_queue *
  579 umtxq_queue_lookup(struct umtx_key *key, int q)
  580 {
  581         struct umtxq_queue *uh;
  582         struct umtxq_chain *uc;
  583 
  584         uc = umtxq_getchain(key);
  585         UMTXQ_LOCKED_ASSERT(uc);
  586         LIST_FOREACH(uh, &uc->uc_queue[q], link) {
  587                 if (umtx_key_match(&uh->key, key))
  588                         return (uh);
  589         }
  590 
  591         return (NULL);
  592 }
  593 
  594 static inline void
  595 umtxq_insert_queue(struct umtx_q *uq, int q)
  596 {
  597         struct umtxq_queue *uh;
  598         struct umtxq_chain *uc;
  599 
  600         uc = umtxq_getchain(&uq->uq_key);
  601         UMTXQ_LOCKED_ASSERT(uc);
  602         KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
  603         uh = umtxq_queue_lookup(&uq->uq_key, q);
  604         if (uh != NULL) {
  605                 LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
  606         } else {
  607                 uh = uq->uq_spare_queue;
  608                 uh->key = uq->uq_key;
  609                 LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
  610 #ifdef UMTX_PROFILING
  611                 uc->length++;
  612                 if (uc->length > uc->max_length) {
  613                         uc->max_length = uc->length;
  614                         if (uc->max_length > max_length)
  615                                 max_length = uc->max_length;
  616                 }
  617 #endif
  618         }
  619         uq->uq_spare_queue = NULL;
  620 
  621         TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
  622         uh->length++;
  623         uq->uq_flags |= UQF_UMTXQ;
  624         uq->uq_cur_queue = uh;
  625         return;
  626 }
  627 
  628 static inline void
  629 umtxq_remove_queue(struct umtx_q *uq, int q)
  630 {
  631         struct umtxq_chain *uc;
  632         struct umtxq_queue *uh;
  633 
  634         uc = umtxq_getchain(&uq->uq_key);
  635         UMTXQ_LOCKED_ASSERT(uc);
  636         if (uq->uq_flags & UQF_UMTXQ) {
  637                 uh = uq->uq_cur_queue;
  638                 TAILQ_REMOVE(&uh->head, uq, uq_link);
  639                 uh->length--;
  640                 uq->uq_flags &= ~UQF_UMTXQ;
  641                 if (TAILQ_EMPTY(&uh->head)) {
  642                         KASSERT(uh->length == 0,
  643                             ("inconsistent umtxq_queue length"));
  644 #ifdef UMTX_PROFILING
  645                         uc->length--;
  646 #endif
  647                         LIST_REMOVE(uh, link);
  648                 } else {
  649                         uh = LIST_FIRST(&uc->uc_spare_queue);
  650                         KASSERT(uh != NULL, ("uc_spare_queue is empty"));
  651                         LIST_REMOVE(uh, link);
  652                 }
  653                 uq->uq_spare_queue = uh;
  654                 uq->uq_cur_queue = NULL;
  655         }
  656 }
  657 
  658 /*
  659  * Check if there are multiple waiters
  660  */
  661 static int
  662 umtxq_count(struct umtx_key *key)
  663 {
  664         struct umtxq_queue *uh;
  665 
  666         UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
  667         uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
  668         if (uh != NULL)
  669                 return (uh->length);
  670         return (0);
  671 }
  672 
  673 /*
  674  * Check if there are multiple PI waiters and returns first
  675  * waiter.
  676  */
  677 static int
  678 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
  679 {
  680         struct umtxq_queue *uh;
  681 
  682         *first = NULL;
  683         UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
  684         uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
  685         if (uh != NULL) {
  686                 *first = TAILQ_FIRST(&uh->head);
  687                 return (uh->length);
  688         }
  689         return (0);
  690 }
  691 
  692 /*
  693  * Wake up threads waiting on an userland object.
  694  */
  695 
  696 static int
  697 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
  698 {
  699         struct umtxq_queue *uh;
  700         struct umtx_q *uq;
  701         int ret;
  702 
  703         ret = 0;
  704         UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
  705         uh = umtxq_queue_lookup(key, q);
  706         if (uh != NULL) {
  707                 while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
  708                         umtxq_remove_queue(uq, q);
  709                         wakeup(uq);
  710                         if (++ret >= n_wake)
  711                                 return (ret);
  712                 }
  713         }
  714         return (ret);
  715 }
  716 
  717 
  718 /*
  719  * Wake up specified thread.
  720  */
  721 static inline void
  722 umtxq_signal_thread(struct umtx_q *uq)
  723 {
  724 
  725         UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
  726         umtxq_remove(uq);
  727         wakeup(uq);
  728 }
  729 
  730 static inline int
  731 tstohz(const struct timespec *tsp)
  732 {
  733         struct timeval tv;
  734 
  735         TIMESPEC_TO_TIMEVAL(&tv, tsp);
  736         return tvtohz(&tv);
  737 }
  738 
  739 static void
  740 abs_timeout_init(struct abs_timeout *timo, int clockid, int absolute,
  741         const struct timespec *timeout)
  742 {
  743 
  744         timo->clockid = clockid;
  745         if (!absolute) {
  746                 timo->is_abs_real = false;
  747                 abs_timeout_update(timo);
  748                 timespecadd(&timo->cur, timeout, &timo->end);
  749         } else {
  750                 timo->end = *timeout;
  751                 timo->is_abs_real = clockid == CLOCK_REALTIME ||
  752                     clockid == CLOCK_REALTIME_FAST ||
  753                     clockid == CLOCK_REALTIME_PRECISE;
  754                 /*
  755                  * If is_abs_real, umtxq_sleep will read the clock
  756                  * after setting td_rtcgen; otherwise, read it here.
  757                  */
  758                 if (!timo->is_abs_real) {
  759                         abs_timeout_update(timo);
  760                 }
  761         }
  762 }
  763 
  764 static void
  765 abs_timeout_init2(struct abs_timeout *timo, const struct _umtx_time *umtxtime)
  766 {
  767 
  768         abs_timeout_init(timo, umtxtime->_clockid,
  769             (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
  770 }
  771 
  772 static inline void
  773 abs_timeout_update(struct abs_timeout *timo)
  774 {
  775 
  776         kern_clock_gettime(curthread, timo->clockid, &timo->cur);
  777 }
  778 
  779 static int
  780 abs_timeout_gethz(struct abs_timeout *timo)
  781 {
  782         struct timespec tts;
  783 
  784         if (timespeccmp(&timo->end, &timo->cur, <=))
  785                 return (-1);
  786         timespecsub(&timo->end, &timo->cur, &tts);
  787         return (tstohz(&tts));
  788 }
  789 
  790 static uint32_t
  791 umtx_unlock_val(uint32_t flags, bool rb)
  792 {
  793 
  794         if (rb)
  795                 return (UMUTEX_RB_OWNERDEAD);
  796         else if ((flags & UMUTEX_NONCONSISTENT) != 0)
  797                 return (UMUTEX_RB_NOTRECOV);
  798         else
  799                 return (UMUTEX_UNOWNED);
  800 
  801 }
  802 
  803 /*
  804  * Put thread into sleep state, before sleeping, check if
  805  * thread was removed from umtx queue.
  806  */
  807 static inline int
  808 umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *abstime)
  809 {
  810         struct umtxq_chain *uc;
  811         int error, timo;
  812 
  813         if (abstime != NULL && abstime->is_abs_real) {
  814                 curthread->td_rtcgen = atomic_load_acq_int(&rtc_generation);
  815                 abs_timeout_update(abstime);
  816         }
  817 
  818         uc = umtxq_getchain(&uq->uq_key);
  819         UMTXQ_LOCKED_ASSERT(uc);
  820         for (;;) {
  821                 if (!(uq->uq_flags & UQF_UMTXQ)) {
  822                         error = 0;
  823                         break;
  824                 }
  825                 if (abstime != NULL) {
  826                         timo = abs_timeout_gethz(abstime);
  827                         if (timo < 0) {
  828                                 error = ETIMEDOUT;
  829                                 break;
  830                         }
  831                 } else
  832                         timo = 0;
  833                 error = msleep(uq, &uc->uc_lock, PCATCH | PDROP, wmesg, timo);
  834                 if (error == EINTR || error == ERESTART) {
  835                         umtxq_lock(&uq->uq_key);
  836                         break;
  837                 }
  838                 if (abstime != NULL) {
  839                         if (abstime->is_abs_real)
  840                                 curthread->td_rtcgen =
  841                                     atomic_load_acq_int(&rtc_generation);
  842                         abs_timeout_update(abstime);
  843                 }
  844                 umtxq_lock(&uq->uq_key);
  845         }
  846 
  847         curthread->td_rtcgen = 0;
  848         return (error);
  849 }
  850 
  851 /*
  852  * Convert userspace address into unique logical address.
  853  */
  854 int
  855 umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
  856 {
  857         struct thread *td = curthread;
  858         vm_map_t map;
  859         vm_map_entry_t entry;
  860         vm_pindex_t pindex;
  861         vm_prot_t prot;
  862         boolean_t wired;
  863 
  864         key->type = type;
  865         if (share == THREAD_SHARE) {
  866                 key->shared = 0;
  867                 key->info.private.vs = td->td_proc->p_vmspace;
  868                 key->info.private.addr = (uintptr_t)addr;
  869         } else {
  870                 MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
  871                 map = &td->td_proc->p_vmspace->vm_map;
  872                 if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
  873                     &entry, &key->info.shared.object, &pindex, &prot,
  874                     &wired) != KERN_SUCCESS) {
  875                         return (EFAULT);
  876                 }
  877 
  878                 if ((share == PROCESS_SHARE) ||
  879                     (share == AUTO_SHARE &&
  880                      VM_INHERIT_SHARE == entry->inheritance)) {
  881                         key->shared = 1;
  882                         key->info.shared.offset = (vm_offset_t)addr -
  883                             entry->start + entry->offset;
  884                         vm_object_reference(key->info.shared.object);
  885                 } else {
  886                         key->shared = 0;
  887                         key->info.private.vs = td->td_proc->p_vmspace;
  888                         key->info.private.addr = (uintptr_t)addr;
  889                 }
  890                 vm_map_lookup_done(map, entry);
  891         }
  892 
  893         umtxq_hash(key);
  894         return (0);
  895 }
  896 
  897 /*
  898  * Release key.
  899  */
  900 void
  901 umtx_key_release(struct umtx_key *key)
  902 {
  903         if (key->shared)
  904                 vm_object_deallocate(key->info.shared.object);
  905 }
  906 
  907 /*
  908  * Fetch and compare value, sleep on the address if value is not changed.
  909  */
  910 static int
  911 do_wait(struct thread *td, void *addr, u_long id,
  912     struct _umtx_time *timeout, int compat32, int is_private)
  913 {
  914         struct abs_timeout timo;
  915         struct umtx_q *uq;
  916         u_long tmp;
  917         uint32_t tmp32;
  918         int error = 0;
  919 
  920         uq = td->td_umtxq;
  921         if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
  922                 is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
  923                 return (error);
  924 
  925         if (timeout != NULL)
  926                 abs_timeout_init2(&timo, timeout);
  927 
  928         umtxq_lock(&uq->uq_key);
  929         umtxq_insert(uq);
  930         umtxq_unlock(&uq->uq_key);
  931         if (compat32 == 0) {
  932                 error = fueword(addr, &tmp);
  933                 if (error != 0)
  934                         error = EFAULT;
  935         } else {
  936                 error = fueword32(addr, &tmp32);
  937                 if (error == 0)
  938                         tmp = tmp32;
  939                 else
  940                         error = EFAULT;
  941         }
  942         umtxq_lock(&uq->uq_key);
  943         if (error == 0) {
  944                 if (tmp == id)
  945                         error = umtxq_sleep(uq, "uwait", timeout == NULL ?
  946                             NULL : &timo);
  947                 if ((uq->uq_flags & UQF_UMTXQ) == 0)
  948                         error = 0;
  949                 else
  950                         umtxq_remove(uq);
  951         } else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
  952                 umtxq_remove(uq);
  953         }
  954         umtxq_unlock(&uq->uq_key);
  955         umtx_key_release(&uq->uq_key);
  956         if (error == ERESTART)
  957                 error = EINTR;
  958         return (error);
  959 }
  960 
  961 /*
  962  * Wake up threads sleeping on the specified address.
  963  */
  964 int
  965 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
  966 {
  967         struct umtx_key key;
  968         int ret;
  969 
  970         if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
  971             is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
  972                 return (ret);
  973         umtxq_lock(&key);
  974         umtxq_signal(&key, n_wake);
  975         umtxq_unlock(&key);
  976         umtx_key_release(&key);
  977         return (0);
  978 }
  979 
  980 /*
  981  * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
  982  */
  983 static int
  984 do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
  985     struct _umtx_time *timeout, int mode)
  986 {
  987         struct abs_timeout timo;
  988         struct umtx_q *uq;
  989         uint32_t owner, old, id;
  990         int error, rv;
  991 
  992         id = td->td_tid;
  993         uq = td->td_umtxq;
  994         error = 0;
  995         if (timeout != NULL)
  996                 abs_timeout_init2(&timo, timeout);
  997 
  998         /*
  999          * Care must be exercised when dealing with umtx structure. It
 1000          * can fault on any access.
 1001          */
 1002         for (;;) {
 1003                 rv = fueword32(&m->m_owner, &owner);
 1004                 if (rv == -1)
 1005                         return (EFAULT);
 1006                 if (mode == _UMUTEX_WAIT) {
 1007                         if (owner == UMUTEX_UNOWNED ||
 1008                             owner == UMUTEX_CONTESTED ||
 1009                             owner == UMUTEX_RB_OWNERDEAD ||
 1010                             owner == UMUTEX_RB_NOTRECOV)
 1011                                 return (0);
 1012                 } else {
 1013                         /*
 1014                          * Robust mutex terminated.  Kernel duty is to
 1015                          * return EOWNERDEAD to the userspace.  The
 1016                          * umutex.m_flags UMUTEX_NONCONSISTENT is set
 1017                          * by the common userspace code.
 1018                          */
 1019                         if (owner == UMUTEX_RB_OWNERDEAD) {
 1020                                 rv = casueword32(&m->m_owner,
 1021                                     UMUTEX_RB_OWNERDEAD, &owner,
 1022                                     id | UMUTEX_CONTESTED);
 1023                                 if (rv == -1)
 1024                                         return (EFAULT);
 1025                                 if (rv == 0) {
 1026                                         MPASS(owner == UMUTEX_RB_OWNERDEAD);
 1027                                         return (EOWNERDEAD); /* success */
 1028                                 }
 1029                                 MPASS(rv == 1);
 1030                                 rv = thread_check_susp(td, false);
 1031                                 if (rv != 0)
 1032                                         return (rv);
 1033                                 continue;
 1034                         }
 1035                         if (owner == UMUTEX_RB_NOTRECOV)
 1036                                 return (ENOTRECOVERABLE);
 1037 
 1038                         /*
 1039                          * Try the uncontested case.  This should be
 1040                          * done in userland.
 1041                          */
 1042                         rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
 1043                             &owner, id);
 1044                         /* The address was invalid. */
 1045                         if (rv == -1)
 1046                                 return (EFAULT);
 1047 
 1048                         /* The acquire succeeded. */
 1049                         if (rv == 0) {
 1050                                 MPASS(owner == UMUTEX_UNOWNED);
 1051                                 return (0);
 1052                         }
 1053 
 1054                         /*
 1055                          * If no one owns it but it is contested try
 1056                          * to acquire it.
 1057                          */
 1058                         MPASS(rv == 1);
 1059                         if (owner == UMUTEX_CONTESTED) {
 1060                                 rv = casueword32(&m->m_owner,
 1061                                     UMUTEX_CONTESTED, &owner,
 1062                                     id | UMUTEX_CONTESTED);
 1063                                 /* The address was invalid. */
 1064                                 if (rv == -1)
 1065                                         return (EFAULT);
 1066                                 if (rv == 0) {
 1067                                         MPASS(owner == UMUTEX_CONTESTED);
 1068                                         return (0);
 1069                                 }
 1070                                 if (rv == 1) {
 1071                                         rv = thread_check_susp(td, false);
 1072                                         if (rv != 0)
 1073                                                 return (rv);
 1074                                 }
 1075 
 1076                                 /*
 1077                                  * If this failed the lock has
 1078                                  * changed, restart.
 1079                                  */
 1080                                 continue;
 1081                         }
 1082 
 1083                         /* rv == 1 but not contested, likely store failure */
 1084                         rv = thread_check_susp(td, false);
 1085                         if (rv != 0)
 1086                                 return (rv);
 1087                 }
 1088 
 1089                 if (mode == _UMUTEX_TRY)
 1090                         return (EBUSY);
 1091 
 1092                 /*
 1093                  * If we caught a signal, we have retried and now
 1094                  * exit immediately.
 1095                  */
 1096                 if (error != 0)
 1097                         return (error);
 1098 
 1099                 if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
 1100                     GET_SHARE(flags), &uq->uq_key)) != 0)
 1101                         return (error);
 1102 
 1103                 umtxq_lock(&uq->uq_key);
 1104                 umtxq_busy(&uq->uq_key);
 1105                 umtxq_insert(uq);
 1106                 umtxq_unlock(&uq->uq_key);
 1107 
 1108                 /*
 1109                  * Set the contested bit so that a release in user space
 1110                  * knows to use the system call for unlock.  If this fails
 1111                  * either some one else has acquired the lock or it has been
 1112                  * released.
 1113                  */
 1114                 rv = casueword32(&m->m_owner, owner, &old,
 1115                     owner | UMUTEX_CONTESTED);
 1116 
 1117                 /* The address was invalid or casueword failed to store. */
 1118                 if (rv == -1 || rv == 1) {
 1119                         umtxq_lock(&uq->uq_key);
 1120                         umtxq_remove(uq);
 1121                         umtxq_unbusy(&uq->uq_key);
 1122                         umtxq_unlock(&uq->uq_key);
 1123                         umtx_key_release(&uq->uq_key);
 1124                         if (rv == -1)
 1125                                 return (EFAULT);
 1126                         if (rv == 1) {
 1127                                 rv = thread_check_susp(td, false);
 1128                                 if (rv != 0)
 1129                                         return (rv);
 1130                         }
 1131                         continue;
 1132                 }
 1133 
 1134                 /*
 1135                  * We set the contested bit, sleep. Otherwise the lock changed
 1136                  * and we need to retry or we lost a race to the thread
 1137                  * unlocking the umtx.
 1138                  */
 1139                 umtxq_lock(&uq->uq_key);
 1140                 umtxq_unbusy(&uq->uq_key);
 1141                 MPASS(old == owner);
 1142                 error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
 1143                     NULL : &timo);
 1144                 umtxq_remove(uq);
 1145                 umtxq_unlock(&uq->uq_key);
 1146                 umtx_key_release(&uq->uq_key);
 1147 
 1148                 if (error == 0)
 1149                         error = thread_check_susp(td, false);
 1150         }
 1151 
 1152         return (0);
 1153 }
 1154 
 1155 /*
 1156  * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
 1157  */
 1158 static int
 1159 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
 1160 {
 1161         struct umtx_key key;
 1162         uint32_t owner, old, id, newlock;
 1163         int error, count;
 1164 
 1165         id = td->td_tid;
 1166 
 1167 again:
 1168         /*
 1169          * Make sure we own this mtx.
 1170          */
 1171         error = fueword32(&m->m_owner, &owner);
 1172         if (error == -1)
 1173                 return (EFAULT);
 1174 
 1175         if ((owner & ~UMUTEX_CONTESTED) != id)
 1176                 return (EPERM);
 1177 
 1178         newlock = umtx_unlock_val(flags, rb);
 1179         if ((owner & UMUTEX_CONTESTED) == 0) {
 1180                 error = casueword32(&m->m_owner, owner, &old, newlock);
 1181                 if (error == -1)
 1182                         return (EFAULT);
 1183                 if (error == 1) {
 1184                         error = thread_check_susp(td, false);
 1185                         if (error != 0)
 1186                                 return (error);
 1187                         goto again;
 1188                 }
 1189                 MPASS(old == owner);
 1190                 return (0);
 1191         }
 1192 
 1193         /* We should only ever be in here for contested locks */
 1194         if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
 1195             &key)) != 0)
 1196                 return (error);
 1197 
 1198         umtxq_lock(&key);
 1199         umtxq_busy(&key);
 1200         count = umtxq_count(&key);
 1201         umtxq_unlock(&key);
 1202 
 1203         /*
 1204          * When unlocking the umtx, it must be marked as unowned if
 1205          * there is zero or one thread only waiting for it.
 1206          * Otherwise, it must be marked as contested.
 1207          */
 1208         if (count > 1)
 1209                 newlock |= UMUTEX_CONTESTED;
 1210         error = casueword32(&m->m_owner, owner, &old, newlock);
 1211         umtxq_lock(&key);
 1212         umtxq_signal(&key, 1);
 1213         umtxq_unbusy(&key);
 1214         umtxq_unlock(&key);
 1215         umtx_key_release(&key);
 1216         if (error == -1)
 1217                 return (EFAULT);
 1218         if (error == 1) {
 1219                 if (old != owner)
 1220                         return (EINVAL);
 1221                 error = thread_check_susp(td, false);
 1222                 if (error != 0)
 1223                         return (error);
 1224                 goto again;
 1225         }
 1226         return (0);
 1227 }
 1228 
 1229 /*
 1230  * Check if the mutex is available and wake up a waiter,
 1231  * only for simple mutex.
 1232  */
 1233 static int
 1234 do_wake_umutex(struct thread *td, struct umutex *m)
 1235 {
 1236         struct umtx_key key;
 1237         uint32_t owner;
 1238         uint32_t flags;
 1239         int error;
 1240         int count;
 1241 
 1242 again:
 1243         error = fueword32(&m->m_owner, &owner);
 1244         if (error == -1)
 1245                 return (EFAULT);
 1246 
 1247         if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
 1248             owner != UMUTEX_RB_NOTRECOV)
 1249                 return (0);
 1250 
 1251         error = fueword32(&m->m_flags, &flags);
 1252         if (error == -1)
 1253                 return (EFAULT);
 1254 
 1255         /* We should only ever be in here for contested locks */
 1256         if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
 1257             &key)) != 0)
 1258                 return (error);
 1259 
 1260         umtxq_lock(&key);
 1261         umtxq_busy(&key);
 1262         count = umtxq_count(&key);
 1263         umtxq_unlock(&key);
 1264 
 1265         if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
 1266             owner != UMUTEX_RB_NOTRECOV) {
 1267                 error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
 1268                     UMUTEX_UNOWNED);
 1269                 if (error == -1) {
 1270                         error = EFAULT;
 1271                 } else if (error == 1) {
 1272                         umtxq_lock(&key);
 1273                         umtxq_unbusy(&key);
 1274                         umtxq_unlock(&key);
 1275                         umtx_key_release(&key);
 1276                         error = thread_check_susp(td, false);
 1277                         if (error != 0)
 1278                                 return (error);
 1279                         goto again;
 1280                 }
 1281         }
 1282 
 1283         umtxq_lock(&key);
 1284         if (error == 0 && count != 0) {
 1285                 MPASS((owner & ~UMUTEX_CONTESTED) == 0 ||
 1286                     owner == UMUTEX_RB_OWNERDEAD ||
 1287                     owner == UMUTEX_RB_NOTRECOV);
 1288                 umtxq_signal(&key, 1);
 1289         }
 1290         umtxq_unbusy(&key);
 1291         umtxq_unlock(&key);
 1292         umtx_key_release(&key);
 1293         return (error);
 1294 }
 1295 
 1296 /*
 1297  * Check if the mutex has waiters and tries to fix contention bit.
 1298  */
 1299 static int
 1300 do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
 1301 {
 1302         struct umtx_key key;
 1303         uint32_t owner, old;
 1304         int type;
 1305         int error;
 1306         int count;
 1307 
 1308         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
 1309             UMUTEX_ROBUST)) {
 1310         case 0:
 1311         case UMUTEX_ROBUST:
 1312                 type = TYPE_NORMAL_UMUTEX;
 1313                 break;
 1314         case UMUTEX_PRIO_INHERIT:
 1315                 type = TYPE_PI_UMUTEX;
 1316                 break;
 1317         case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
 1318                 type = TYPE_PI_ROBUST_UMUTEX;
 1319                 break;
 1320         case UMUTEX_PRIO_PROTECT:
 1321                 type = TYPE_PP_UMUTEX;
 1322                 break;
 1323         case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
 1324                 type = TYPE_PP_ROBUST_UMUTEX;
 1325                 break;
 1326         default:
 1327                 return (EINVAL);
 1328         }
 1329         if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
 1330                 return (error);
 1331 
 1332         owner = 0;
 1333         umtxq_lock(&key);
 1334         umtxq_busy(&key);
 1335         count = umtxq_count(&key);
 1336         umtxq_unlock(&key);
 1337 
 1338         error = fueword32(&m->m_owner, &owner);
 1339         if (error == -1)
 1340                 error = EFAULT;
 1341 
 1342         /*
 1343          * Only repair contention bit if there is a waiter, this means
 1344          * the mutex is still being referenced by userland code,
 1345          * otherwise don't update any memory.
 1346          */
 1347         while (error == 0 && (owner & UMUTEX_CONTESTED) == 0 &&
 1348             (count > 1 || (count == 1 && (owner & ~UMUTEX_CONTESTED) != 0))) {
 1349                 error = casueword32(&m->m_owner, owner, &old,
 1350                     owner | UMUTEX_CONTESTED);
 1351                 if (error == -1) {
 1352                         error = EFAULT;
 1353                         break;
 1354                 }
 1355                 if (error == 0) {
 1356                         MPASS(old == owner);
 1357                         break;
 1358                 }
 1359                 owner = old;
 1360                 error = thread_check_susp(td, false);
 1361         }
 1362 
 1363         umtxq_lock(&key);
 1364         if (error == EFAULT) {
 1365                 umtxq_signal(&key, INT_MAX);
 1366         } else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
 1367             owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
 1368                 umtxq_signal(&key, 1);
 1369         umtxq_unbusy(&key);
 1370         umtxq_unlock(&key);
 1371         umtx_key_release(&key);
 1372         return (error);
 1373 }
 1374 
 1375 static inline struct umtx_pi *
 1376 umtx_pi_alloc(int flags)
 1377 {
 1378         struct umtx_pi *pi;
 1379 
 1380         pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
 1381         TAILQ_INIT(&pi->pi_blocked);
 1382         atomic_add_int(&umtx_pi_allocated, 1);
 1383         return (pi);
 1384 }
 1385 
 1386 static inline void
 1387 umtx_pi_free(struct umtx_pi *pi)
 1388 {
 1389         uma_zfree(umtx_pi_zone, pi);
 1390         atomic_add_int(&umtx_pi_allocated, -1);
 1391 }
 1392 
 1393 /*
 1394  * Adjust the thread's position on a pi_state after its priority has been
 1395  * changed.
 1396  */
 1397 static int
 1398 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
 1399 {
 1400         struct umtx_q *uq, *uq1, *uq2;
 1401         struct thread *td1;
 1402 
 1403         mtx_assert(&umtx_lock, MA_OWNED);
 1404         if (pi == NULL)
 1405                 return (0);
 1406 
 1407         uq = td->td_umtxq;
 1408 
 1409         /*
 1410          * Check if the thread needs to be moved on the blocked chain.
 1411          * It needs to be moved if either its priority is lower than
 1412          * the previous thread or higher than the next thread.
 1413          */
 1414         uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
 1415         uq2 = TAILQ_NEXT(uq, uq_lockq);
 1416         if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
 1417             (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
 1418                 /*
 1419                  * Remove thread from blocked chain and determine where
 1420                  * it should be moved to.
 1421                  */
 1422                 TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
 1423                 TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
 1424                         td1 = uq1->uq_thread;
 1425                         MPASS(td1->td_proc->p_magic == P_MAGIC);
 1426                         if (UPRI(td1) > UPRI(td))
 1427                                 break;
 1428                 }
 1429 
 1430                 if (uq1 == NULL)
 1431                         TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
 1432                 else
 1433                         TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
 1434         }
 1435         return (1);
 1436 }
 1437 
 1438 static struct umtx_pi *
 1439 umtx_pi_next(struct umtx_pi *pi)
 1440 {
 1441         struct umtx_q *uq_owner;
 1442 
 1443         if (pi->pi_owner == NULL)
 1444                 return (NULL);
 1445         uq_owner = pi->pi_owner->td_umtxq;
 1446         if (uq_owner == NULL)
 1447                 return (NULL);
 1448         return (uq_owner->uq_pi_blocked);
 1449 }
 1450 
 1451 /*
 1452  * Floyd's Cycle-Finding Algorithm.
 1453  */
 1454 static bool
 1455 umtx_pi_check_loop(struct umtx_pi *pi)
 1456 {
 1457         struct umtx_pi *pi1;    /* fast iterator */
 1458 
 1459         mtx_assert(&umtx_lock, MA_OWNED);
 1460         if (pi == NULL)
 1461                 return (false);
 1462         pi1 = pi;
 1463         for (;;) {
 1464                 pi = umtx_pi_next(pi);
 1465                 if (pi == NULL)
 1466                         break;
 1467                 pi1 = umtx_pi_next(pi1);
 1468                 if (pi1 == NULL)
 1469                         break;
 1470                 pi1 = umtx_pi_next(pi1);
 1471                 if (pi1 == NULL)
 1472                         break;
 1473                 if (pi == pi1)
 1474                         return (true);
 1475         }
 1476         return (false);
 1477 }
 1478 
 1479 /*
 1480  * Propagate priority when a thread is blocked on POSIX
 1481  * PI mutex.
 1482  */
 1483 static void
 1484 umtx_propagate_priority(struct thread *td)
 1485 {
 1486         struct umtx_q *uq;
 1487         struct umtx_pi *pi;
 1488         int pri;
 1489 
 1490         mtx_assert(&umtx_lock, MA_OWNED);
 1491         pri = UPRI(td);
 1492         uq = td->td_umtxq;
 1493         pi = uq->uq_pi_blocked;
 1494         if (pi == NULL)
 1495                 return;
 1496         if (umtx_pi_check_loop(pi))
 1497                 return;
 1498 
 1499         for (;;) {
 1500                 td = pi->pi_owner;
 1501                 if (td == NULL || td == curthread)
 1502                         return;
 1503 
 1504                 MPASS(td->td_proc != NULL);
 1505                 MPASS(td->td_proc->p_magic == P_MAGIC);
 1506 
 1507                 thread_lock(td);
 1508                 if (td->td_lend_user_pri > pri)
 1509                         sched_lend_user_prio(td, pri);
 1510                 else {
 1511                         thread_unlock(td);
 1512                         break;
 1513                 }
 1514                 thread_unlock(td);
 1515 
 1516                 /*
 1517                  * Pick up the lock that td is blocked on.
 1518                  */
 1519                 uq = td->td_umtxq;
 1520                 pi = uq->uq_pi_blocked;
 1521                 if (pi == NULL)
 1522                         break;
 1523                 /* Resort td on the list if needed. */
 1524                 umtx_pi_adjust_thread(pi, td);
 1525         }
 1526 }
 1527 
 1528 /*
 1529  * Unpropagate priority for a PI mutex when a thread blocked on
 1530  * it is interrupted by signal or resumed by others.
 1531  */
 1532 static void
 1533 umtx_repropagate_priority(struct umtx_pi *pi)
 1534 {
 1535         struct umtx_q *uq, *uq_owner;
 1536         struct umtx_pi *pi2;
 1537         int pri;
 1538 
 1539         mtx_assert(&umtx_lock, MA_OWNED);
 1540 
 1541         if (umtx_pi_check_loop(pi))
 1542                 return;
 1543         while (pi != NULL && pi->pi_owner != NULL) {
 1544                 pri = PRI_MAX;
 1545                 uq_owner = pi->pi_owner->td_umtxq;
 1546 
 1547                 TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
 1548                         uq = TAILQ_FIRST(&pi2->pi_blocked);
 1549                         if (uq != NULL) {
 1550                                 if (pri > UPRI(uq->uq_thread))
 1551                                         pri = UPRI(uq->uq_thread);
 1552                         }
 1553                 }
 1554 
 1555                 if (pri > uq_owner->uq_inherited_pri)
 1556                         pri = uq_owner->uq_inherited_pri;
 1557                 thread_lock(pi->pi_owner);
 1558                 sched_lend_user_prio(pi->pi_owner, pri);
 1559                 thread_unlock(pi->pi_owner);
 1560                 if ((pi = uq_owner->uq_pi_blocked) != NULL)
 1561                         umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
 1562         }
 1563 }
 1564 
 1565 /*
 1566  * Insert a PI mutex into owned list.
 1567  */
 1568 static void
 1569 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
 1570 {
 1571         struct umtx_q *uq_owner;
 1572 
 1573         uq_owner = owner->td_umtxq;
 1574         mtx_assert(&umtx_lock, MA_OWNED);
 1575         MPASS(pi->pi_owner == NULL);
 1576         pi->pi_owner = owner;
 1577         TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
 1578 }
 1579 
 1580 
 1581 /*
 1582  * Disown a PI mutex, and remove it from the owned list.
 1583  */
 1584 static void
 1585 umtx_pi_disown(struct umtx_pi *pi)
 1586 {
 1587 
 1588         mtx_assert(&umtx_lock, MA_OWNED);
 1589         TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
 1590         pi->pi_owner = NULL;
 1591 }
 1592 
 1593 /*
 1594  * Claim ownership of a PI mutex.
 1595  */
 1596 static int
 1597 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
 1598 {
 1599         struct umtx_q *uq;
 1600         int pri;
 1601 
 1602         mtx_lock(&umtx_lock);
 1603         if (pi->pi_owner == owner) {
 1604                 mtx_unlock(&umtx_lock);
 1605                 return (0);
 1606         }
 1607 
 1608         if (pi->pi_owner != NULL) {
 1609                 /*
 1610                  * userland may have already messed the mutex, sigh.
 1611                  */
 1612                 mtx_unlock(&umtx_lock);
 1613                 return (EPERM);
 1614         }
 1615         umtx_pi_setowner(pi, owner);
 1616         uq = TAILQ_FIRST(&pi->pi_blocked);
 1617         if (uq != NULL) {
 1618                 pri = UPRI(uq->uq_thread);
 1619                 thread_lock(owner);
 1620                 if (pri < UPRI(owner))
 1621                         sched_lend_user_prio(owner, pri);
 1622                 thread_unlock(owner);
 1623         }
 1624         mtx_unlock(&umtx_lock);
 1625         return (0);
 1626 }
 1627 
 1628 /*
 1629  * Adjust a thread's order position in its blocked PI mutex,
 1630  * this may result new priority propagating process.
 1631  */
 1632 void
 1633 umtx_pi_adjust(struct thread *td, u_char oldpri)
 1634 {
 1635         struct umtx_q *uq;
 1636         struct umtx_pi *pi;
 1637 
 1638         uq = td->td_umtxq;
 1639         mtx_lock(&umtx_lock);
 1640         /*
 1641          * Pick up the lock that td is blocked on.
 1642          */
 1643         pi = uq->uq_pi_blocked;
 1644         if (pi != NULL) {
 1645                 umtx_pi_adjust_thread(pi, td);
 1646                 umtx_repropagate_priority(pi);
 1647         }
 1648         mtx_unlock(&umtx_lock);
 1649 }
 1650 
 1651 /*
 1652  * Sleep on a PI mutex.
 1653  */
 1654 static int
 1655 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
 1656     const char *wmesg, struct abs_timeout *timo, bool shared)
 1657 {
 1658         struct thread *td, *td1;
 1659         struct umtx_q *uq1;
 1660         int error, pri;
 1661 #ifdef INVARIANTS
 1662         struct umtxq_chain *uc;
 1663 
 1664         uc = umtxq_getchain(&pi->pi_key);
 1665 #endif
 1666         error = 0;
 1667         td = uq->uq_thread;
 1668         KASSERT(td == curthread, ("inconsistent uq_thread"));
 1669         UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
 1670         KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
 1671         umtxq_insert(uq);
 1672         mtx_lock(&umtx_lock);
 1673         if (pi->pi_owner == NULL) {
 1674                 mtx_unlock(&umtx_lock);
 1675                 td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
 1676                 mtx_lock(&umtx_lock);
 1677                 if (td1 != NULL) {
 1678                         if (pi->pi_owner == NULL)
 1679                                 umtx_pi_setowner(pi, td1);
 1680                         PROC_UNLOCK(td1->td_proc);
 1681                 }
 1682         }
 1683 
 1684         TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
 1685                 pri = UPRI(uq1->uq_thread);
 1686                 if (pri > UPRI(td))
 1687                         break;
 1688         }
 1689 
 1690         if (uq1 != NULL)
 1691                 TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
 1692         else
 1693                 TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
 1694 
 1695         uq->uq_pi_blocked = pi;
 1696         thread_lock(td);
 1697         td->td_flags |= TDF_UPIBLOCKED;
 1698         thread_unlock(td);
 1699         umtx_propagate_priority(td);
 1700         mtx_unlock(&umtx_lock);
 1701         umtxq_unbusy(&uq->uq_key);
 1702 
 1703         error = umtxq_sleep(uq, wmesg, timo);
 1704         umtxq_remove(uq);
 1705 
 1706         mtx_lock(&umtx_lock);
 1707         uq->uq_pi_blocked = NULL;
 1708         thread_lock(td);
 1709         td->td_flags &= ~TDF_UPIBLOCKED;
 1710         thread_unlock(td);
 1711         TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
 1712         umtx_repropagate_priority(pi);
 1713         mtx_unlock(&umtx_lock);
 1714         umtxq_unlock(&uq->uq_key);
 1715 
 1716         return (error);
 1717 }
 1718 
 1719 /*
 1720  * Add reference count for a PI mutex.
 1721  */
 1722 static void
 1723 umtx_pi_ref(struct umtx_pi *pi)
 1724 {
 1725 
 1726         UMTXQ_LOCKED_ASSERT(umtxq_getchain(&pi->pi_key));
 1727         pi->pi_refcount++;
 1728 }
 1729 
 1730 /*
 1731  * Decrease reference count for a PI mutex, if the counter
 1732  * is decreased to zero, its memory space is freed.
 1733  */
 1734 static void
 1735 umtx_pi_unref(struct umtx_pi *pi)
 1736 {
 1737         struct umtxq_chain *uc;
 1738 
 1739         uc = umtxq_getchain(&pi->pi_key);
 1740         UMTXQ_LOCKED_ASSERT(uc);
 1741         KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
 1742         if (--pi->pi_refcount == 0) {
 1743                 mtx_lock(&umtx_lock);
 1744                 if (pi->pi_owner != NULL)
 1745                         umtx_pi_disown(pi);
 1746                 KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
 1747                         ("blocked queue not empty"));
 1748                 mtx_unlock(&umtx_lock);
 1749                 TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
 1750                 umtx_pi_free(pi);
 1751         }
 1752 }
 1753 
 1754 /*
 1755  * Find a PI mutex in hash table.
 1756  */
 1757 static struct umtx_pi *
 1758 umtx_pi_lookup(struct umtx_key *key)
 1759 {
 1760         struct umtxq_chain *uc;
 1761         struct umtx_pi *pi;
 1762 
 1763         uc = umtxq_getchain(key);
 1764         UMTXQ_LOCKED_ASSERT(uc);
 1765 
 1766         TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
 1767                 if (umtx_key_match(&pi->pi_key, key)) {
 1768                         return (pi);
 1769                 }
 1770         }
 1771         return (NULL);
 1772 }
 1773 
 1774 /*
 1775  * Insert a PI mutex into hash table.
 1776  */
 1777 static inline void
 1778 umtx_pi_insert(struct umtx_pi *pi)
 1779 {
 1780         struct umtxq_chain *uc;
 1781 
 1782         uc = umtxq_getchain(&pi->pi_key);
 1783         UMTXQ_LOCKED_ASSERT(uc);
 1784         TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
 1785 }
 1786 
 1787 /*
 1788  * Lock a PI mutex.
 1789  */
 1790 static int
 1791 do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
 1792     struct _umtx_time *timeout, int try)
 1793 {
 1794         struct abs_timeout timo;
 1795         struct umtx_q *uq;
 1796         struct umtx_pi *pi, *new_pi;
 1797         uint32_t id, old_owner, owner, old;
 1798         int error, rv;
 1799 
 1800         id = td->td_tid;
 1801         uq = td->td_umtxq;
 1802 
 1803         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 1804             TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
 1805             &uq->uq_key)) != 0)
 1806                 return (error);
 1807 
 1808         if (timeout != NULL)
 1809                 abs_timeout_init2(&timo, timeout);
 1810 
 1811         umtxq_lock(&uq->uq_key);
 1812         pi = umtx_pi_lookup(&uq->uq_key);
 1813         if (pi == NULL) {
 1814                 new_pi = umtx_pi_alloc(M_NOWAIT);
 1815                 if (new_pi == NULL) {
 1816                         umtxq_unlock(&uq->uq_key);
 1817                         new_pi = umtx_pi_alloc(M_WAITOK);
 1818                         umtxq_lock(&uq->uq_key);
 1819                         pi = umtx_pi_lookup(&uq->uq_key);
 1820                         if (pi != NULL) {
 1821                                 umtx_pi_free(new_pi);
 1822                                 new_pi = NULL;
 1823                         }
 1824                 }
 1825                 if (new_pi != NULL) {
 1826                         new_pi->pi_key = uq->uq_key;
 1827                         umtx_pi_insert(new_pi);
 1828                         pi = new_pi;
 1829                 }
 1830         }
 1831         umtx_pi_ref(pi);
 1832         umtxq_unlock(&uq->uq_key);
 1833 
 1834         /*
 1835          * Care must be exercised when dealing with umtx structure.  It
 1836          * can fault on any access.
 1837          */
 1838         for (;;) {
 1839                 /*
 1840                  * Try the uncontested case.  This should be done in userland.
 1841                  */
 1842                 rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
 1843                 /* The address was invalid. */
 1844                 if (rv == -1) {
 1845                         error = EFAULT;
 1846                         break;
 1847                 }
 1848                 /* The acquire succeeded. */
 1849                 if (rv == 0) {
 1850                         MPASS(owner == UMUTEX_UNOWNED);
 1851                         error = 0;
 1852                         break;
 1853                 }
 1854 
 1855                 if (owner == UMUTEX_RB_NOTRECOV) {
 1856                         error = ENOTRECOVERABLE;
 1857                         break;
 1858                 }
 1859 
 1860                 /*
 1861                  * Avoid overwriting a possible error from sleep due
 1862                  * to the pending signal with suspension check result.
 1863                  */
 1864                 if (error == 0) {
 1865                         error = thread_check_susp(td, true);
 1866                         if (error != 0)
 1867                                 break;
 1868                 }
 1869 
 1870                 /* If no one owns it but it is contested try to acquire it. */
 1871                 if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
 1872                         old_owner = owner;
 1873                         rv = casueword32(&m->m_owner, owner, &owner,
 1874                             id | UMUTEX_CONTESTED);
 1875                         /* The address was invalid. */
 1876                         if (rv == -1) {
 1877                                 error = EFAULT;
 1878                                 break;
 1879                         }
 1880                         if (rv == 1) {
 1881                                 if (error == 0) {
 1882                                         error = thread_check_susp(td, true);
 1883                                         if (error != 0)
 1884                                                 break;
 1885                                 }
 1886 
 1887                                 /*
 1888                                  * If this failed the lock could
 1889                                  * changed, restart.
 1890                                  */
 1891                                 continue;
 1892                         }
 1893 
 1894                         MPASS(rv == 0);
 1895                         MPASS(owner == old_owner);
 1896                         umtxq_lock(&uq->uq_key);
 1897                         umtxq_busy(&uq->uq_key);
 1898                         error = umtx_pi_claim(pi, td);
 1899                         umtxq_unbusy(&uq->uq_key);
 1900                         umtxq_unlock(&uq->uq_key);
 1901                         if (error != 0) {
 1902                                 /*
 1903                                  * Since we're going to return an
 1904                                  * error, restore the m_owner to its
 1905                                  * previous, unowned state to avoid
 1906                                  * compounding the problem.
 1907                                  */
 1908                                 (void)casuword32(&m->m_owner,
 1909                                     id | UMUTEX_CONTESTED, old_owner);
 1910                         }
 1911                         if (error == 0 && old_owner == UMUTEX_RB_OWNERDEAD)
 1912                                 error = EOWNERDEAD;
 1913                         break;
 1914                 }
 1915 
 1916                 if ((owner & ~UMUTEX_CONTESTED) == id) {
 1917                         error = EDEADLK;
 1918                         break;
 1919                 }
 1920 
 1921                 if (try != 0) {
 1922                         error = EBUSY;
 1923                         break;
 1924                 }
 1925 
 1926                 /*
 1927                  * If we caught a signal, we have retried and now
 1928                  * exit immediately.
 1929                  */
 1930                 if (error != 0)
 1931                         break;
 1932 
 1933                 umtxq_lock(&uq->uq_key);
 1934                 umtxq_busy(&uq->uq_key);
 1935                 umtxq_unlock(&uq->uq_key);
 1936 
 1937                 /*
 1938                  * Set the contested bit so that a release in user space
 1939                  * knows to use the system call for unlock.  If this fails
 1940                  * either some one else has acquired the lock or it has been
 1941                  * released.
 1942                  */
 1943                 rv = casueword32(&m->m_owner, owner, &old, owner |
 1944                     UMUTEX_CONTESTED);
 1945 
 1946                 /* The address was invalid. */
 1947                 if (rv == -1) {
 1948                         umtxq_unbusy_unlocked(&uq->uq_key);
 1949                         error = EFAULT;
 1950                         break;
 1951                 }
 1952                 if (rv == 1) {
 1953                         umtxq_unbusy_unlocked(&uq->uq_key);
 1954                         error = thread_check_susp(td, true);
 1955                         if (error != 0)
 1956                                 break;
 1957 
 1958                         /*
 1959                          * The lock changed and we need to retry or we
 1960                          * lost a race to the thread unlocking the
 1961                          * umtx.  Note that the UMUTEX_RB_OWNERDEAD
 1962                          * value for owner is impossible there.
 1963                          */
 1964                         continue;
 1965                 }
 1966 
 1967                 umtxq_lock(&uq->uq_key);
 1968 
 1969                 /* We set the contested bit, sleep. */
 1970                 MPASS(old == owner);
 1971                 error = umtxq_sleep_pi(uq, pi, owner & ~UMUTEX_CONTESTED,
 1972                     "umtxpi", timeout == NULL ? NULL : &timo,
 1973                     (flags & USYNC_PROCESS_SHARED) != 0);
 1974                 if (error != 0)
 1975                         continue;
 1976 
 1977                 error = thread_check_susp(td, false);
 1978                 if (error != 0)
 1979                         break;
 1980         }
 1981 
 1982         umtxq_lock(&uq->uq_key);
 1983         umtx_pi_unref(pi);
 1984         umtxq_unlock(&uq->uq_key);
 1985 
 1986         umtx_key_release(&uq->uq_key);
 1987         return (error);
 1988 }
 1989 
 1990 /*
 1991  * Unlock a PI mutex.
 1992  */
 1993 static int
 1994 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
 1995 {
 1996         struct umtx_key key;
 1997         struct umtx_q *uq_first, *uq_first2, *uq_me;
 1998         struct umtx_pi *pi, *pi2;
 1999         uint32_t id, new_owner, old, owner;
 2000         int count, error, pri;
 2001 
 2002         id = td->td_tid;
 2003 
 2004 usrloop:
 2005         /*
 2006          * Make sure we own this mtx.
 2007          */
 2008         error = fueword32(&m->m_owner, &owner);
 2009         if (error == -1)
 2010                 return (EFAULT);
 2011 
 2012         if ((owner & ~UMUTEX_CONTESTED) != id)
 2013                 return (EPERM);
 2014 
 2015         new_owner = umtx_unlock_val(flags, rb);
 2016 
 2017         /* This should be done in userland */
 2018         if ((owner & UMUTEX_CONTESTED) == 0) {
 2019                 error = casueword32(&m->m_owner, owner, &old, new_owner);
 2020                 if (error == -1)
 2021                         return (EFAULT);
 2022                 if (error == 1) {
 2023                         error = thread_check_susp(td, true);
 2024                         if (error != 0)
 2025                                 return (error);
 2026                         goto usrloop;
 2027                 }
 2028                 if (old == owner)
 2029                         return (0);
 2030                 owner = old;
 2031         }
 2032 
 2033         /* We should only ever be in here for contested locks */
 2034         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 2035             TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
 2036             &key)) != 0)
 2037                 return (error);
 2038 
 2039         umtxq_lock(&key);
 2040         umtxq_busy(&key);
 2041         count = umtxq_count_pi(&key, &uq_first);
 2042         if (uq_first != NULL) {
 2043                 mtx_lock(&umtx_lock);
 2044                 pi = uq_first->uq_pi_blocked;
 2045                 KASSERT(pi != NULL, ("pi == NULL?"));
 2046                 if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
 2047                         mtx_unlock(&umtx_lock);
 2048                         umtxq_unbusy(&key);
 2049                         umtxq_unlock(&key);
 2050                         umtx_key_release(&key);
 2051                         /* userland messed the mutex */
 2052                         return (EPERM);
 2053                 }
 2054                 uq_me = td->td_umtxq;
 2055                 if (pi->pi_owner == td)
 2056                         umtx_pi_disown(pi);
 2057                 /* get highest priority thread which is still sleeping. */
 2058                 uq_first = TAILQ_FIRST(&pi->pi_blocked);
 2059                 while (uq_first != NULL &&
 2060                     (uq_first->uq_flags & UQF_UMTXQ) == 0) {
 2061                         uq_first = TAILQ_NEXT(uq_first, uq_lockq);
 2062                 }
 2063                 pri = PRI_MAX;
 2064                 TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
 2065                         uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
 2066                         if (uq_first2 != NULL) {
 2067                                 if (pri > UPRI(uq_first2->uq_thread))
 2068                                         pri = UPRI(uq_first2->uq_thread);
 2069                         }
 2070                 }
 2071                 thread_lock(td);
 2072                 sched_lend_user_prio(td, pri);
 2073                 thread_unlock(td);
 2074                 mtx_unlock(&umtx_lock);
 2075                 if (uq_first)
 2076                         umtxq_signal_thread(uq_first);
 2077         } else {
 2078                 pi = umtx_pi_lookup(&key);
 2079                 /*
 2080                  * A umtx_pi can exist if a signal or timeout removed the
 2081                  * last waiter from the umtxq, but there is still
 2082                  * a thread in do_lock_pi() holding the umtx_pi.
 2083                  */
 2084                 if (pi != NULL) {
 2085                         /*
 2086                          * The umtx_pi can be unowned, such as when a thread
 2087                          * has just entered do_lock_pi(), allocated the
 2088                          * umtx_pi, and unlocked the umtxq.
 2089                          * If the current thread owns it, it must disown it.
 2090                          */
 2091                         mtx_lock(&umtx_lock);
 2092                         if (pi->pi_owner == td)
 2093                                 umtx_pi_disown(pi);
 2094                         mtx_unlock(&umtx_lock);
 2095                 }
 2096         }
 2097         umtxq_unlock(&key);
 2098 
 2099         /*
 2100          * When unlocking the umtx, it must be marked as unowned if
 2101          * there is zero or one thread only waiting for it.
 2102          * Otherwise, it must be marked as contested.
 2103          */
 2104 
 2105         if (count > 1)
 2106                 new_owner |= UMUTEX_CONTESTED;
 2107 again:
 2108         error = casueword32(&m->m_owner, owner, &old, new_owner);
 2109         if (error == 1) {
 2110                 error = thread_check_susp(td, false);
 2111                 if (error == 0)
 2112                         goto again;
 2113         }
 2114         umtxq_unbusy_unlocked(&key);
 2115         umtx_key_release(&key);
 2116         if (error == -1)
 2117                 return (EFAULT);
 2118         if (error == 0 && old != owner)
 2119                 return (EINVAL);
 2120         return (error);
 2121 }
 2122 
 2123 /*
 2124  * Lock a PP mutex.
 2125  */
 2126 static int
 2127 do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
 2128     struct _umtx_time *timeout, int try)
 2129 {
 2130         struct abs_timeout timo;
 2131         struct umtx_q *uq, *uq2;
 2132         struct umtx_pi *pi;
 2133         uint32_t ceiling;
 2134         uint32_t owner, id;
 2135         int error, pri, old_inherited_pri, su, rv;
 2136 
 2137         id = td->td_tid;
 2138         uq = td->td_umtxq;
 2139         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 2140             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
 2141             &uq->uq_key)) != 0)
 2142                 return (error);
 2143 
 2144         if (timeout != NULL)
 2145                 abs_timeout_init2(&timo, timeout);
 2146 
 2147         su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
 2148         for (;;) {
 2149                 old_inherited_pri = uq->uq_inherited_pri;
 2150                 umtxq_lock(&uq->uq_key);
 2151                 umtxq_busy(&uq->uq_key);
 2152                 umtxq_unlock(&uq->uq_key);
 2153 
 2154                 rv = fueword32(&m->m_ceilings[0], &ceiling);
 2155                 if (rv == -1) {
 2156                         error = EFAULT;
 2157                         goto out;
 2158                 }
 2159                 ceiling = RTP_PRIO_MAX - ceiling;
 2160                 if (ceiling > RTP_PRIO_MAX) {
 2161                         error = EINVAL;
 2162                         goto out;
 2163                 }
 2164 
 2165                 mtx_lock(&umtx_lock);
 2166                 if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
 2167                         mtx_unlock(&umtx_lock);
 2168                         error = EINVAL;
 2169                         goto out;
 2170                 }
 2171                 if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
 2172                         uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
 2173                         thread_lock(td);
 2174                         if (uq->uq_inherited_pri < UPRI(td))
 2175                                 sched_lend_user_prio(td, uq->uq_inherited_pri);
 2176                         thread_unlock(td);
 2177                 }
 2178                 mtx_unlock(&umtx_lock);
 2179 
 2180                 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
 2181                     id | UMUTEX_CONTESTED);
 2182                 /* The address was invalid. */
 2183                 if (rv == -1) {
 2184                         error = EFAULT;
 2185                         break;
 2186                 }
 2187                 if (rv == 0) {
 2188                         MPASS(owner == UMUTEX_CONTESTED);
 2189                         error = 0;
 2190                         break;
 2191                 }
 2192                 /* rv == 1 */
 2193                 if (owner == UMUTEX_RB_OWNERDEAD) {
 2194                         rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
 2195                             &owner, id | UMUTEX_CONTESTED);
 2196                         if (rv == -1) {
 2197                                 error = EFAULT;
 2198                                 break;
 2199                         }
 2200                         if (rv == 0) {
 2201                                 MPASS(owner == UMUTEX_RB_OWNERDEAD);
 2202                                 error = EOWNERDEAD; /* success */
 2203                                 break;
 2204                         }
 2205 
 2206                         /*
 2207                          *  rv == 1, only check for suspension if we
 2208                          *  did not already catched a signal.  If we
 2209                          *  get an error from the check, the same
 2210                          *  condition is checked by the umtxq_sleep()
 2211                          *  call below, so we should obliterate the
 2212                          *  error to not skip the last loop iteration.
 2213                          */
 2214                         if (error == 0) {
 2215                                 error = thread_check_susp(td, false);
 2216                                 if (error == 0) {
 2217                                         if (try != 0)
 2218                                                 error = EBUSY;
 2219                                         else
 2220                                                 continue;
 2221                                 }
 2222                                 error = 0;
 2223                         }
 2224                 } else if (owner == UMUTEX_RB_NOTRECOV) {
 2225                         error = ENOTRECOVERABLE;
 2226                 }
 2227 
 2228                 if (try != 0)
 2229                         error = EBUSY;
 2230 
 2231                 /*
 2232                  * If we caught a signal, we have retried and now
 2233                  * exit immediately.
 2234                  */
 2235                 if (error != 0)
 2236                         break;
 2237 
 2238                 umtxq_lock(&uq->uq_key);
 2239                 umtxq_insert(uq);
 2240                 umtxq_unbusy(&uq->uq_key);
 2241                 error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
 2242                     NULL : &timo);
 2243                 umtxq_remove(uq);
 2244                 umtxq_unlock(&uq->uq_key);
 2245 
 2246                 mtx_lock(&umtx_lock);
 2247                 uq->uq_inherited_pri = old_inherited_pri;
 2248                 pri = PRI_MAX;
 2249                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 2250                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
 2251                         if (uq2 != NULL) {
 2252                                 if (pri > UPRI(uq2->uq_thread))
 2253                                         pri = UPRI(uq2->uq_thread);
 2254                         }
 2255                 }
 2256                 if (pri > uq->uq_inherited_pri)
 2257                         pri = uq->uq_inherited_pri;
 2258                 thread_lock(td);
 2259                 sched_lend_user_prio(td, pri);
 2260                 thread_unlock(td);
 2261                 mtx_unlock(&umtx_lock);
 2262         }
 2263 
 2264         if (error != 0 && error != EOWNERDEAD) {
 2265                 mtx_lock(&umtx_lock);
 2266                 uq->uq_inherited_pri = old_inherited_pri;
 2267                 pri = PRI_MAX;
 2268                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 2269                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
 2270                         if (uq2 != NULL) {
 2271                                 if (pri > UPRI(uq2->uq_thread))
 2272                                         pri = UPRI(uq2->uq_thread);
 2273                         }
 2274                 }
 2275                 if (pri > uq->uq_inherited_pri)
 2276                         pri = uq->uq_inherited_pri;
 2277                 thread_lock(td);
 2278                 sched_lend_user_prio(td, pri);
 2279                 thread_unlock(td);
 2280                 mtx_unlock(&umtx_lock);
 2281         }
 2282 
 2283 out:
 2284         umtxq_unbusy_unlocked(&uq->uq_key);
 2285         umtx_key_release(&uq->uq_key);
 2286         return (error);
 2287 }
 2288 
 2289 /*
 2290  * Unlock a PP mutex.
 2291  */
 2292 static int
 2293 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
 2294 {
 2295         struct umtx_key key;
 2296         struct umtx_q *uq, *uq2;
 2297         struct umtx_pi *pi;
 2298         uint32_t id, owner, rceiling;
 2299         int error, pri, new_inherited_pri, su;
 2300 
 2301         id = td->td_tid;
 2302         uq = td->td_umtxq;
 2303         su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
 2304 
 2305         /*
 2306          * Make sure we own this mtx.
 2307          */
 2308         error = fueword32(&m->m_owner, &owner);
 2309         if (error == -1)
 2310                 return (EFAULT);
 2311 
 2312         if ((owner & ~UMUTEX_CONTESTED) != id)
 2313                 return (EPERM);
 2314 
 2315         error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
 2316         if (error != 0)
 2317                 return (error);
 2318 
 2319         if (rceiling == -1)
 2320                 new_inherited_pri = PRI_MAX;
 2321         else {
 2322                 rceiling = RTP_PRIO_MAX - rceiling;
 2323                 if (rceiling > RTP_PRIO_MAX)
 2324                         return (EINVAL);
 2325                 new_inherited_pri = PRI_MIN_REALTIME + rceiling;
 2326         }
 2327 
 2328         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 2329             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
 2330             &key)) != 0)
 2331                 return (error);
 2332         umtxq_lock(&key);
 2333         umtxq_busy(&key);
 2334         umtxq_unlock(&key);
 2335         /*
 2336          * For priority protected mutex, always set unlocked state
 2337          * to UMUTEX_CONTESTED, so that userland always enters kernel
 2338          * to lock the mutex, it is necessary because thread priority
 2339          * has to be adjusted for such mutex.
 2340          */
 2341         error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
 2342             UMUTEX_CONTESTED);
 2343 
 2344         umtxq_lock(&key);
 2345         if (error == 0)
 2346                 umtxq_signal(&key, 1);
 2347         umtxq_unbusy(&key);
 2348         umtxq_unlock(&key);
 2349 
 2350         if (error == -1)
 2351                 error = EFAULT;
 2352         else {
 2353                 mtx_lock(&umtx_lock);
 2354                 if (su != 0)
 2355                         uq->uq_inherited_pri = new_inherited_pri;
 2356                 pri = PRI_MAX;
 2357                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 2358                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
 2359                         if (uq2 != NULL) {
 2360                                 if (pri > UPRI(uq2->uq_thread))
 2361                                         pri = UPRI(uq2->uq_thread);
 2362                         }
 2363                 }
 2364                 if (pri > uq->uq_inherited_pri)
 2365                         pri = uq->uq_inherited_pri;
 2366                 thread_lock(td);
 2367                 sched_lend_user_prio(td, pri);
 2368                 thread_unlock(td);
 2369                 mtx_unlock(&umtx_lock);
 2370         }
 2371         umtx_key_release(&key);
 2372         return (error);
 2373 }
 2374 
 2375 static int
 2376 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
 2377     uint32_t *old_ceiling)
 2378 {
 2379         struct umtx_q *uq;
 2380         uint32_t flags, id, owner, save_ceiling;
 2381         int error, rv, rv1;
 2382 
 2383         error = fueword32(&m->m_flags, &flags);
 2384         if (error == -1)
 2385                 return (EFAULT);
 2386         if ((flags & UMUTEX_PRIO_PROTECT) == 0)
 2387                 return (EINVAL);
 2388         if (ceiling > RTP_PRIO_MAX)
 2389                 return (EINVAL);
 2390         id = td->td_tid;
 2391         uq = td->td_umtxq;
 2392         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 2393             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
 2394             &uq->uq_key)) != 0)
 2395                 return (error);
 2396         for (;;) {
 2397                 umtxq_lock(&uq->uq_key);
 2398                 umtxq_busy(&uq->uq_key);
 2399                 umtxq_unlock(&uq->uq_key);
 2400 
 2401                 rv = fueword32(&m->m_ceilings[0], &save_ceiling);
 2402                 if (rv == -1) {
 2403                         error = EFAULT;
 2404                         break;
 2405                 }
 2406 
 2407                 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
 2408                     id | UMUTEX_CONTESTED);
 2409                 if (rv == -1) {
 2410                         error = EFAULT;
 2411                         break;
 2412                 }
 2413 
 2414                 if (rv == 0) {
 2415                         MPASS(owner == UMUTEX_CONTESTED);
 2416                         rv = suword32(&m->m_ceilings[0], ceiling);
 2417                         rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
 2418                         error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
 2419                         break;
 2420                 }
 2421 
 2422                 if ((owner & ~UMUTEX_CONTESTED) == id) {
 2423                         rv = suword32(&m->m_ceilings[0], ceiling);
 2424                         error = rv == 0 ? 0 : EFAULT;
 2425                         break;
 2426                 }
 2427 
 2428                 if (owner == UMUTEX_RB_OWNERDEAD) {
 2429                         error = EOWNERDEAD;
 2430                         break;
 2431                 } else if (owner == UMUTEX_RB_NOTRECOV) {
 2432                         error = ENOTRECOVERABLE;
 2433                         break;
 2434                 }
 2435 
 2436                 /*
 2437                  * If we caught a signal, we have retried and now
 2438                  * exit immediately.
 2439                  */
 2440                 if (error != 0)
 2441                         break;
 2442 
 2443                 /*
 2444                  * We set the contested bit, sleep. Otherwise the lock changed
 2445                  * and we need to retry or we lost a race to the thread
 2446                  * unlocking the umtx.
 2447                  */
 2448                 umtxq_lock(&uq->uq_key);
 2449                 umtxq_insert(uq);
 2450                 umtxq_unbusy(&uq->uq_key);
 2451                 error = umtxq_sleep(uq, "umtxpp", NULL);
 2452                 umtxq_remove(uq);
 2453                 umtxq_unlock(&uq->uq_key);
 2454         }
 2455         umtxq_lock(&uq->uq_key);
 2456         if (error == 0)
 2457                 umtxq_signal(&uq->uq_key, INT_MAX);
 2458         umtxq_unbusy(&uq->uq_key);
 2459         umtxq_unlock(&uq->uq_key);
 2460         umtx_key_release(&uq->uq_key);
 2461         if (error == 0 && old_ceiling != NULL) {
 2462                 rv = suword32(old_ceiling, save_ceiling);
 2463                 error = rv == 0 ? 0 : EFAULT;
 2464         }
 2465         return (error);
 2466 }
 2467 
 2468 /*
 2469  * Lock a userland POSIX mutex.
 2470  */
 2471 static int
 2472 do_lock_umutex(struct thread *td, struct umutex *m,
 2473     struct _umtx_time *timeout, int mode)
 2474 {
 2475         uint32_t flags;
 2476         int error;
 2477 
 2478         error = fueword32(&m->m_flags, &flags);
 2479         if (error == -1)
 2480                 return (EFAULT);
 2481 
 2482         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
 2483         case 0:
 2484                 error = do_lock_normal(td, m, flags, timeout, mode);
 2485                 break;
 2486         case UMUTEX_PRIO_INHERIT:
 2487                 error = do_lock_pi(td, m, flags, timeout, mode);
 2488                 break;
 2489         case UMUTEX_PRIO_PROTECT:
 2490                 error = do_lock_pp(td, m, flags, timeout, mode);
 2491                 break;
 2492         default:
 2493                 return (EINVAL);
 2494         }
 2495         if (timeout == NULL) {
 2496                 if (error == EINTR && mode != _UMUTEX_WAIT)
 2497                         error = ERESTART;
 2498         } else {
 2499                 /* Timed-locking is not restarted. */
 2500                 if (error == ERESTART)
 2501                         error = EINTR;
 2502         }
 2503         return (error);
 2504 }
 2505 
 2506 /*
 2507  * Unlock a userland POSIX mutex.
 2508  */
 2509 static int
 2510 do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
 2511 {
 2512         uint32_t flags;
 2513         int error;
 2514 
 2515         error = fueword32(&m->m_flags, &flags);
 2516         if (error == -1)
 2517                 return (EFAULT);
 2518 
 2519         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
 2520         case 0:
 2521                 return (do_unlock_normal(td, m, flags, rb));
 2522         case UMUTEX_PRIO_INHERIT:
 2523                 return (do_unlock_pi(td, m, flags, rb));
 2524         case UMUTEX_PRIO_PROTECT:
 2525                 return (do_unlock_pp(td, m, flags, rb));
 2526         }
 2527 
 2528         return (EINVAL);
 2529 }
 2530 
 2531 static int
 2532 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
 2533     struct timespec *timeout, u_long wflags)
 2534 {
 2535         struct abs_timeout timo;
 2536         struct umtx_q *uq;
 2537         uint32_t flags, clockid, hasw;
 2538         int error;
 2539 
 2540         uq = td->td_umtxq;
 2541         error = fueword32(&cv->c_flags, &flags);
 2542         if (error == -1)
 2543                 return (EFAULT);
 2544         error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
 2545         if (error != 0)
 2546                 return (error);
 2547 
 2548         if ((wflags & CVWAIT_CLOCKID) != 0) {
 2549                 error = fueword32(&cv->c_clockid, &clockid);
 2550                 if (error == -1) {
 2551                         umtx_key_release(&uq->uq_key);
 2552                         return (EFAULT);
 2553                 }
 2554                 if (clockid < CLOCK_REALTIME ||
 2555                     clockid >= CLOCK_THREAD_CPUTIME_ID) {
 2556                         /* hmm, only HW clock id will work. */
 2557                         umtx_key_release(&uq->uq_key);
 2558                         return (EINVAL);
 2559                 }
 2560         } else {
 2561                 clockid = CLOCK_REALTIME;
 2562         }
 2563 
 2564         umtxq_lock(&uq->uq_key);
 2565         umtxq_busy(&uq->uq_key);
 2566         umtxq_insert(uq);
 2567         umtxq_unlock(&uq->uq_key);
 2568 
 2569         /*
 2570          * Set c_has_waiters to 1 before releasing user mutex, also
 2571          * don't modify cache line when unnecessary.
 2572          */
 2573         error = fueword32(&cv->c_has_waiters, &hasw);
 2574         if (error == 0 && hasw == 0)
 2575                 suword32(&cv->c_has_waiters, 1);
 2576 
 2577         umtxq_unbusy_unlocked(&uq->uq_key);
 2578 
 2579         error = do_unlock_umutex(td, m, false);
 2580 
 2581         if (timeout != NULL)
 2582                 abs_timeout_init(&timo, clockid, (wflags & CVWAIT_ABSTIME) != 0,
 2583                     timeout);
 2584 
 2585         umtxq_lock(&uq->uq_key);
 2586         if (error == 0) {
 2587                 error = umtxq_sleep(uq, "ucond", timeout == NULL ?
 2588                     NULL : &timo);
 2589         }
 2590 
 2591         if ((uq->uq_flags & UQF_UMTXQ) == 0)
 2592                 error = 0;
 2593         else {
 2594                 /*
 2595                  * This must be timeout,interrupted by signal or
 2596                  * surprious wakeup, clear c_has_waiter flag when
 2597                  * necessary.
 2598                  */
 2599                 umtxq_busy(&uq->uq_key);
 2600                 if ((uq->uq_flags & UQF_UMTXQ) != 0) {
 2601                         int oldlen = uq->uq_cur_queue->length;
 2602                         umtxq_remove(uq);
 2603                         if (oldlen == 1) {
 2604                                 umtxq_unlock(&uq->uq_key);
 2605                                 suword32(&cv->c_has_waiters, 0);
 2606                                 umtxq_lock(&uq->uq_key);
 2607                         }
 2608                 }
 2609                 umtxq_unbusy(&uq->uq_key);
 2610                 if (error == ERESTART)
 2611                         error = EINTR;
 2612         }
 2613 
 2614         umtxq_unlock(&uq->uq_key);
 2615         umtx_key_release(&uq->uq_key);
 2616         return (error);
 2617 }
 2618 
 2619 /*
 2620  * Signal a userland condition variable.
 2621  */
 2622 static int
 2623 do_cv_signal(struct thread *td, struct ucond *cv)
 2624 {
 2625         struct umtx_key key;
 2626         int error, cnt, nwake;
 2627         uint32_t flags;
 2628 
 2629         error = fueword32(&cv->c_flags, &flags);
 2630         if (error == -1)
 2631                 return (EFAULT);
 2632         if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
 2633                 return (error);
 2634         umtxq_lock(&key);
 2635         umtxq_busy(&key);
 2636         cnt = umtxq_count(&key);
 2637         nwake = umtxq_signal(&key, 1);
 2638         if (cnt <= nwake) {
 2639                 umtxq_unlock(&key);
 2640                 error = suword32(&cv->c_has_waiters, 0);
 2641                 if (error == -1)
 2642                         error = EFAULT;
 2643                 umtxq_lock(&key);
 2644         }
 2645         umtxq_unbusy(&key);
 2646         umtxq_unlock(&key);
 2647         umtx_key_release(&key);
 2648         return (error);
 2649 }
 2650 
 2651 static int
 2652 do_cv_broadcast(struct thread *td, struct ucond *cv)
 2653 {
 2654         struct umtx_key key;
 2655         int error;
 2656         uint32_t flags;
 2657 
 2658         error = fueword32(&cv->c_flags, &flags);
 2659         if (error == -1)
 2660                 return (EFAULT);
 2661         if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
 2662                 return (error);
 2663 
 2664         umtxq_lock(&key);
 2665         umtxq_busy(&key);
 2666         umtxq_signal(&key, INT_MAX);
 2667         umtxq_unlock(&key);
 2668 
 2669         error = suword32(&cv->c_has_waiters, 0);
 2670         if (error == -1)
 2671                 error = EFAULT;
 2672 
 2673         umtxq_unbusy_unlocked(&key);
 2674 
 2675         umtx_key_release(&key);
 2676         return (error);
 2677 }
 2678 
 2679 static int
 2680 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag,
 2681     struct _umtx_time *timeout)
 2682 {
 2683         struct abs_timeout timo;
 2684         struct umtx_q *uq;
 2685         uint32_t flags, wrflags;
 2686         int32_t state, oldstate;
 2687         int32_t blocked_readers;
 2688         int error, error1, rv;
 2689 
 2690         uq = td->td_umtxq;
 2691         error = fueword32(&rwlock->rw_flags, &flags);
 2692         if (error == -1)
 2693                 return (EFAULT);
 2694         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 2695         if (error != 0)
 2696                 return (error);
 2697 
 2698         if (timeout != NULL)
 2699                 abs_timeout_init2(&timo, timeout);
 2700 
 2701         wrflags = URWLOCK_WRITE_OWNER;
 2702         if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
 2703                 wrflags |= URWLOCK_WRITE_WAITERS;
 2704 
 2705         for (;;) {
 2706                 rv = fueword32(&rwlock->rw_state, &state);
 2707                 if (rv == -1) {
 2708                         umtx_key_release(&uq->uq_key);
 2709                         return (EFAULT);
 2710                 }
 2711 
 2712                 /* try to lock it */
 2713                 while (!(state & wrflags)) {
 2714                         if (__predict_false(URWLOCK_READER_COUNT(state) ==
 2715                             URWLOCK_MAX_READERS)) {
 2716                                 umtx_key_release(&uq->uq_key);
 2717                                 return (EAGAIN);
 2718                         }
 2719                         rv = casueword32(&rwlock->rw_state, state,
 2720                             &oldstate, state + 1);
 2721                         if (rv == -1) {
 2722                                 umtx_key_release(&uq->uq_key);
 2723                                 return (EFAULT);
 2724                         }
 2725                         if (rv == 0) {
 2726                                 MPASS(oldstate == state);
 2727                                 umtx_key_release(&uq->uq_key);
 2728                                 return (0);
 2729                         }
 2730                         error = thread_check_susp(td, true);
 2731                         if (error != 0)
 2732                                 break;
 2733                         state = oldstate;
 2734                 }
 2735 
 2736                 if (error)
 2737                         break;
 2738 
 2739                 /* grab monitor lock */
 2740                 umtxq_lock(&uq->uq_key);
 2741                 umtxq_busy(&uq->uq_key);
 2742                 umtxq_unlock(&uq->uq_key);
 2743 
 2744                 /*
 2745                  * re-read the state, in case it changed between the try-lock above
 2746                  * and the check below
 2747                  */
 2748                 rv = fueword32(&rwlock->rw_state, &state);
 2749                 if (rv == -1)
 2750                         error = EFAULT;
 2751 
 2752                 /* set read contention bit */
 2753                 while (error == 0 && (state & wrflags) &&
 2754                     !(state & URWLOCK_READ_WAITERS)) {
 2755                         rv = casueword32(&rwlock->rw_state, state,
 2756                             &oldstate, state | URWLOCK_READ_WAITERS);
 2757                         if (rv == -1) {
 2758                                 error = EFAULT;
 2759                                 break;
 2760                         }
 2761                         if (rv == 0) {
 2762                                 MPASS(oldstate == state);
 2763                                 goto sleep;
 2764                         }
 2765                         state = oldstate;
 2766                         error = thread_check_susp(td, false);
 2767                         if (error != 0)
 2768                                 break;
 2769                 }
 2770                 if (error != 0) {
 2771                         umtxq_unbusy_unlocked(&uq->uq_key);
 2772                         break;
 2773                 }
 2774 
 2775                 /* state is changed while setting flags, restart */
 2776                 if (!(state & wrflags)) {
 2777                         umtxq_unbusy_unlocked(&uq->uq_key);
 2778                         error = thread_check_susp(td, true);
 2779                         if (error != 0)
 2780                                 break;
 2781                         continue;
 2782                 }
 2783 
 2784 sleep:
 2785                 /*
 2786                  * Contention bit is set, before sleeping, increase
 2787                  * read waiter count.
 2788                  */
 2789                 rv = fueword32(&rwlock->rw_blocked_readers,
 2790                     &blocked_readers);
 2791                 if (rv == -1) {
 2792                         umtxq_unbusy_unlocked(&uq->uq_key);
 2793                         error = EFAULT;
 2794                         break;
 2795                 }
 2796                 suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
 2797 
 2798                 while (state & wrflags) {
 2799                         umtxq_lock(&uq->uq_key);
 2800                         umtxq_insert(uq);
 2801                         umtxq_unbusy(&uq->uq_key);
 2802 
 2803                         error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
 2804                             NULL : &timo);
 2805 
 2806                         umtxq_busy(&uq->uq_key);
 2807                         umtxq_remove(uq);
 2808                         umtxq_unlock(&uq->uq_key);
 2809                         if (error)
 2810                                 break;
 2811                         rv = fueword32(&rwlock->rw_state, &state);
 2812                         if (rv == -1) {
 2813                                 error = EFAULT;
 2814                                 break;
 2815                         }
 2816                 }
 2817 
 2818                 /* decrease read waiter count, and may clear read contention bit */
 2819                 rv = fueword32(&rwlock->rw_blocked_readers,
 2820                     &blocked_readers);
 2821                 if (rv == -1) {
 2822                         umtxq_unbusy_unlocked(&uq->uq_key);
 2823                         error = EFAULT;
 2824                         break;
 2825                 }
 2826                 suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
 2827                 if (blocked_readers == 1) {
 2828                         rv = fueword32(&rwlock->rw_state, &state);
 2829                         if (rv == -1) {
 2830                                 umtxq_unbusy_unlocked(&uq->uq_key);
 2831                                 error = EFAULT;
 2832                                 break;
 2833                         }
 2834                         for (;;) {
 2835                                 rv = casueword32(&rwlock->rw_state, state,
 2836                                     &oldstate, state & ~URWLOCK_READ_WAITERS);
 2837                                 if (rv == -1) {
 2838                                         error = EFAULT;
 2839                                         break;
 2840                                 }
 2841                                 if (rv == 0) {
 2842                                         MPASS(oldstate == state);
 2843                                         break;
 2844                                 }
 2845                                 state = oldstate;
 2846                                 error1 = thread_check_susp(td, false);
 2847                                 if (error1 != 0) {
 2848                                         if (error == 0)
 2849                                                 error = error1;
 2850                                         break;
 2851                                 }
 2852                         }
 2853                 }
 2854 
 2855                 umtxq_unbusy_unlocked(&uq->uq_key);
 2856                 if (error != 0)
 2857                         break;
 2858         }
 2859         umtx_key_release(&uq->uq_key);
 2860         if (error == ERESTART)
 2861                 error = EINTR;
 2862         return (error);
 2863 }
 2864 
 2865 static int
 2866 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
 2867 {
 2868         struct abs_timeout timo;
 2869         struct umtx_q *uq;
 2870         uint32_t flags;
 2871         int32_t state, oldstate;
 2872         int32_t blocked_writers;
 2873         int32_t blocked_readers;
 2874         int error, error1, rv;
 2875 
 2876         uq = td->td_umtxq;
 2877         error = fueword32(&rwlock->rw_flags, &flags);
 2878         if (error == -1)
 2879                 return (EFAULT);
 2880         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 2881         if (error != 0)
 2882                 return (error);
 2883 
 2884         if (timeout != NULL)
 2885                 abs_timeout_init2(&timo, timeout);
 2886 
 2887         blocked_readers = 0;
 2888         for (;;) {
 2889                 rv = fueword32(&rwlock->rw_state, &state);
 2890                 if (rv == -1) {
 2891                         umtx_key_release(&uq->uq_key);
 2892                         return (EFAULT);
 2893                 }
 2894                 while ((state & URWLOCK_WRITE_OWNER) == 0 &&
 2895                     URWLOCK_READER_COUNT(state) == 0) {
 2896                         rv = casueword32(&rwlock->rw_state, state,
 2897                             &oldstate, state | URWLOCK_WRITE_OWNER);
 2898                         if (rv == -1) {
 2899                                 umtx_key_release(&uq->uq_key);
 2900                                 return (EFAULT);
 2901                         }
 2902                         if (rv == 0) {
 2903                                 MPASS(oldstate == state);
 2904                                 umtx_key_release(&uq->uq_key);
 2905                                 return (0);
 2906                         }
 2907                         state = oldstate;
 2908                         error = thread_check_susp(td, true);
 2909                         if (error != 0)
 2910                                 break;
 2911                 }
 2912 
 2913                 if (error) {
 2914                         if ((state & (URWLOCK_WRITE_OWNER |
 2915                             URWLOCK_WRITE_WAITERS)) == 0 &&
 2916                             blocked_readers != 0) {
 2917                                 umtxq_lock(&uq->uq_key);
 2918                                 umtxq_busy(&uq->uq_key);
 2919                                 umtxq_signal_queue(&uq->uq_key, INT_MAX,
 2920                                     UMTX_SHARED_QUEUE);
 2921                                 umtxq_unbusy(&uq->uq_key);
 2922                                 umtxq_unlock(&uq->uq_key);
 2923                         }
 2924 
 2925                         break;
 2926                 }
 2927 
 2928                 /* grab monitor lock */
 2929                 umtxq_lock(&uq->uq_key);
 2930                 umtxq_busy(&uq->uq_key);
 2931                 umtxq_unlock(&uq->uq_key);
 2932 
 2933                 /*
 2934                  * Re-read the state, in case it changed between the
 2935                  * try-lock above and the check below.
 2936                  */
 2937                 rv = fueword32(&rwlock->rw_state, &state);
 2938                 if (rv == -1)
 2939                         error = EFAULT;
 2940 
 2941                 while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
 2942                     URWLOCK_READER_COUNT(state) != 0) &&
 2943                     (state & URWLOCK_WRITE_WAITERS) == 0) {
 2944                         rv = casueword32(&rwlock->rw_state, state,
 2945                             &oldstate, state | URWLOCK_WRITE_WAITERS);
 2946                         if (rv == -1) {
 2947                                 error = EFAULT;
 2948                                 break;
 2949                         }
 2950                         if (rv == 0) {
 2951                                 MPASS(oldstate == state);
 2952                                 goto sleep;
 2953                         }
 2954                         state = oldstate;
 2955                         error = thread_check_susp(td, false);
 2956                         if (error != 0)
 2957                                 break;
 2958                 }
 2959                 if (error != 0) {
 2960                         umtxq_unbusy_unlocked(&uq->uq_key);
 2961                         break;
 2962                 }
 2963 
 2964                 if ((state & URWLOCK_WRITE_OWNER) == 0 &&
 2965                     URWLOCK_READER_COUNT(state) == 0) {
 2966                         umtxq_unbusy_unlocked(&uq->uq_key);
 2967                         error = thread_check_susp(td, false);
 2968                         if (error != 0)
 2969                                 break;
 2970                         continue;
 2971                 }
 2972 sleep:
 2973                 rv = fueword32(&rwlock->rw_blocked_writers,
 2974                     &blocked_writers);
 2975                 if (rv == -1) {
 2976                         umtxq_unbusy_unlocked(&uq->uq_key);
 2977                         error = EFAULT;
 2978                         break;
 2979                 }
 2980                 suword32(&rwlock->rw_blocked_writers, blocked_writers + 1);
 2981 
 2982                 while ((state & URWLOCK_WRITE_OWNER) ||
 2983                     URWLOCK_READER_COUNT(state) != 0) {
 2984                         umtxq_lock(&uq->uq_key);
 2985                         umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
 2986                         umtxq_unbusy(&uq->uq_key);
 2987 
 2988                         error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
 2989                             NULL : &timo);
 2990 
 2991                         umtxq_busy(&uq->uq_key);
 2992                         umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
 2993                         umtxq_unlock(&uq->uq_key);
 2994                         if (error)
 2995                                 break;
 2996                         rv = fueword32(&rwlock->rw_state, &state);
 2997                         if (rv == -1) {
 2998                                 error = EFAULT;
 2999                                 break;
 3000                         }
 3001                 }
 3002 
 3003                 rv = fueword32(&rwlock->rw_blocked_writers,
 3004                     &blocked_writers);
 3005                 if (rv == -1) {
 3006                         umtxq_unbusy_unlocked(&uq->uq_key);
 3007                         error = EFAULT;
 3008                         break;
 3009                 }
 3010                 suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
 3011                 if (blocked_writers == 1) {
 3012                         rv = fueword32(&rwlock->rw_state, &state);
 3013                         if (rv == -1) {
 3014                                 umtxq_unbusy_unlocked(&uq->uq_key);
 3015                                 error = EFAULT;
 3016                                 break;
 3017                         }
 3018                         for (;;) {
 3019                                 rv = casueword32(&rwlock->rw_state, state,
 3020                                     &oldstate, state & ~URWLOCK_WRITE_WAITERS);
 3021                                 if (rv == -1) {
 3022                                         error = EFAULT;
 3023                                         break;
 3024                                 }
 3025                                 if (rv == 0) {
 3026                                         MPASS(oldstate == state);
 3027                                         break;
 3028                                 }
 3029                                 state = oldstate;
 3030                                 error1 = thread_check_susp(td, false);
 3031                                 /*
 3032                                  * We are leaving the URWLOCK_WRITE_WAITERS
 3033                                  * behind, but this should not harm the
 3034                                  * correctness.
 3035                                  */
 3036                                 if (error1 != 0) {
 3037                                         if (error == 0)
 3038                                                 error = error1;
 3039                                         break;
 3040                                 }
 3041                         }
 3042                         rv = fueword32(&rwlock->rw_blocked_readers,
 3043                             &blocked_readers);
 3044                         if (rv == -1) {
 3045                                 umtxq_unbusy_unlocked(&uq->uq_key);
 3046                                 error = EFAULT;
 3047                                 break;
 3048                         }
 3049                 } else
 3050                         blocked_readers = 0;
 3051 
 3052                 umtxq_unbusy_unlocked(&uq->uq_key);
 3053         }
 3054 
 3055         umtx_key_release(&uq->uq_key);
 3056         if (error == ERESTART)
 3057                 error = EINTR;
 3058         return (error);
 3059 }
 3060 
 3061 static int
 3062 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
 3063 {
 3064         struct umtx_q *uq;
 3065         uint32_t flags;
 3066         int32_t state, oldstate;
 3067         int error, rv, q, count;
 3068 
 3069         uq = td->td_umtxq;
 3070         error = fueword32(&rwlock->rw_flags, &flags);
 3071         if (error == -1)
 3072                 return (EFAULT);
 3073         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 3074         if (error != 0)
 3075                 return (error);
 3076 
 3077         error = fueword32(&rwlock->rw_state, &state);
 3078         if (error == -1) {
 3079                 error = EFAULT;
 3080                 goto out;
 3081         }
 3082         if (state & URWLOCK_WRITE_OWNER) {
 3083                 for (;;) {
 3084                         rv = casueword32(&rwlock->rw_state, state,
 3085                             &oldstate, state & ~URWLOCK_WRITE_OWNER);
 3086                         if (rv == -1) {
 3087                                 error = EFAULT;
 3088                                 goto out;
 3089                         }
 3090                         if (rv == 1) {
 3091                                 state = oldstate;
 3092                                 if (!(oldstate & URWLOCK_WRITE_OWNER)) {
 3093                                         error = EPERM;
 3094                                         goto out;
 3095                                 }
 3096                                 error = thread_check_susp(td, true);
 3097                                 if (error != 0)
 3098                                         goto out;
 3099                         } else
 3100                                 break;
 3101                 }
 3102         } else if (URWLOCK_READER_COUNT(state) != 0) {
 3103                 for (;;) {
 3104                         rv = casueword32(&rwlock->rw_state, state,
 3105                             &oldstate, state - 1);
 3106                         if (rv == -1) {
 3107                                 error = EFAULT;
 3108                                 goto out;
 3109                         }
 3110                         if (rv == 1) {
 3111                                 state = oldstate;
 3112                                 if (URWLOCK_READER_COUNT(oldstate) == 0) {
 3113                                         error = EPERM;
 3114                                         goto out;
 3115                                 }
 3116                                 error = thread_check_susp(td, true);
 3117                                 if (error != 0)
 3118                                         goto out;
 3119                         } else
 3120                                 break;
 3121                 }
 3122         } else {
 3123                 error = EPERM;
 3124                 goto out;
 3125         }
 3126 
 3127         count = 0;
 3128 
 3129         if (!(flags & URWLOCK_PREFER_READER)) {
 3130                 if (state & URWLOCK_WRITE_WAITERS) {
 3131                         count = 1;
 3132                         q = UMTX_EXCLUSIVE_QUEUE;
 3133                 } else if (state & URWLOCK_READ_WAITERS) {
 3134                         count = INT_MAX;
 3135                         q = UMTX_SHARED_QUEUE;
 3136                 }
 3137         } else {
 3138                 if (state & URWLOCK_READ_WAITERS) {
 3139                         count = INT_MAX;
 3140                         q = UMTX_SHARED_QUEUE;
 3141                 } else if (state & URWLOCK_WRITE_WAITERS) {
 3142                         count = 1;
 3143                         q = UMTX_EXCLUSIVE_QUEUE;
 3144                 }
 3145         }
 3146 
 3147         if (count) {
 3148                 umtxq_lock(&uq->uq_key);
 3149                 umtxq_busy(&uq->uq_key);
 3150                 umtxq_signal_queue(&uq->uq_key, count, q);
 3151                 umtxq_unbusy(&uq->uq_key);
 3152                 umtxq_unlock(&uq->uq_key);
 3153         }
 3154 out:
 3155         umtx_key_release(&uq->uq_key);
 3156         return (error);
 3157 }
 3158 
 3159 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 3160 static int
 3161 do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
 3162 {
 3163         struct abs_timeout timo;
 3164         struct umtx_q *uq;
 3165         uint32_t flags, count, count1;
 3166         int error, rv, rv1;
 3167 
 3168         uq = td->td_umtxq;
 3169         error = fueword32(&sem->_flags, &flags);
 3170         if (error == -1)
 3171                 return (EFAULT);
 3172         error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
 3173         if (error != 0)
 3174                 return (error);
 3175 
 3176         if (timeout != NULL)
 3177                 abs_timeout_init2(&timo, timeout);
 3178 
 3179 again:
 3180         umtxq_lock(&uq->uq_key);
 3181         umtxq_busy(&uq->uq_key);
 3182         umtxq_insert(uq);
 3183         umtxq_unlock(&uq->uq_key);
 3184         rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
 3185         if (rv != -1)
 3186                 rv1 = fueword32(&sem->_count, &count);
 3187         if (rv == -1 || rv1 == -1 || count != 0 || (rv == 1 && count1 == 0)) {
 3188                 if (rv == 0)
 3189                         suword32(&sem->_has_waiters, 0);
 3190                 umtxq_lock(&uq->uq_key);
 3191                 umtxq_unbusy(&uq->uq_key);
 3192                 umtxq_remove(uq);
 3193                 umtxq_unlock(&uq->uq_key);
 3194                 if (rv == -1 || rv1 == -1) {
 3195                         error = EFAULT;
 3196                         goto out;
 3197                 }
 3198                 if (count != 0) {
 3199                         error = 0;
 3200                         goto out;
 3201                 }
 3202                 MPASS(rv == 1 && count1 == 0);
 3203                 rv = thread_check_susp(td, true);
 3204                 if (rv == 0)
 3205                         goto again;
 3206                 error = rv;
 3207                 goto out;
 3208         }
 3209         umtxq_lock(&uq->uq_key);
 3210         umtxq_unbusy(&uq->uq_key);
 3211 
 3212         error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
 3213 
 3214         if ((uq->uq_flags & UQF_UMTXQ) == 0)
 3215                 error = 0;
 3216         else {
 3217                 umtxq_remove(uq);
 3218                 /* A relative timeout cannot be restarted. */
 3219                 if (error == ERESTART && timeout != NULL &&
 3220                     (timeout->_flags & UMTX_ABSTIME) == 0)
 3221                         error = EINTR;
 3222         }
 3223         umtxq_unlock(&uq->uq_key);
 3224 out:
 3225         umtx_key_release(&uq->uq_key);
 3226         return (error);
 3227 }
 3228 
 3229 /*
 3230  * Signal a userland semaphore.
 3231  */
 3232 static int
 3233 do_sem_wake(struct thread *td, struct _usem *sem)
 3234 {
 3235         struct umtx_key key;
 3236         int error, cnt;
 3237         uint32_t flags;
 3238 
 3239         error = fueword32(&sem->_flags, &flags);
 3240         if (error == -1)
 3241                 return (EFAULT);
 3242         if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
 3243                 return (error);
 3244         umtxq_lock(&key);
 3245         umtxq_busy(&key);
 3246         cnt = umtxq_count(&key);
 3247         if (cnt > 0) {
 3248                 /*
 3249                  * Check if count is greater than 0, this means the memory is
 3250                  * still being referenced by user code, so we can safely
 3251                  * update _has_waiters flag.
 3252                  */
 3253                 if (cnt == 1) {
 3254                         umtxq_unlock(&key);
 3255                         error = suword32(&sem->_has_waiters, 0);
 3256                         umtxq_lock(&key);
 3257                         if (error == -1)
 3258                                 error = EFAULT;
 3259                 }
 3260                 umtxq_signal(&key, 1);
 3261         }
 3262         umtxq_unbusy(&key);
 3263         umtxq_unlock(&key);
 3264         umtx_key_release(&key);
 3265         return (error);
 3266 }
 3267 #endif
 3268 
 3269 static int
 3270 do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
 3271 {
 3272         struct abs_timeout timo;
 3273         struct umtx_q *uq;
 3274         uint32_t count, flags;
 3275         int error, rv;
 3276 
 3277         uq = td->td_umtxq;
 3278         flags = fuword32(&sem->_flags);
 3279         if (timeout != NULL)
 3280                 abs_timeout_init2(&timo, timeout);
 3281 
 3282 again:
 3283         error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
 3284         if (error != 0)
 3285                 return (error);
 3286         umtxq_lock(&uq->uq_key);
 3287         umtxq_busy(&uq->uq_key);
 3288         umtxq_insert(uq);
 3289         umtxq_unlock(&uq->uq_key);
 3290         rv = fueword32(&sem->_count, &count);
 3291         if (rv == -1) {
 3292                 umtxq_lock(&uq->uq_key);
 3293                 umtxq_unbusy(&uq->uq_key);
 3294                 umtxq_remove(uq);
 3295                 umtxq_unlock(&uq->uq_key);
 3296                 umtx_key_release(&uq->uq_key);
 3297                 return (EFAULT);
 3298         }
 3299         for (;;) {
 3300                 if (USEM_COUNT(count) != 0) {
 3301                         umtxq_lock(&uq->uq_key);
 3302                         umtxq_unbusy(&uq->uq_key);
 3303                         umtxq_remove(uq);
 3304                         umtxq_unlock(&uq->uq_key);
 3305                         umtx_key_release(&uq->uq_key);
 3306                         return (0);
 3307                 }
 3308                 if (count == USEM_HAS_WAITERS)
 3309                         break;
 3310                 rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
 3311                 if (rv == 0)
 3312                         break;
 3313                 umtxq_lock(&uq->uq_key);
 3314                 umtxq_unbusy(&uq->uq_key);
 3315                 umtxq_remove(uq);
 3316                 umtxq_unlock(&uq->uq_key);
 3317                 umtx_key_release(&uq->uq_key);
 3318                 if (rv == -1)
 3319                         return (EFAULT);
 3320                 rv = thread_check_susp(td, true);
 3321                 if (rv != 0)
 3322                         return (rv);
 3323                 goto again;
 3324         }
 3325         umtxq_lock(&uq->uq_key);
 3326         umtxq_unbusy(&uq->uq_key);
 3327 
 3328         error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
 3329 
 3330         if ((uq->uq_flags & UQF_UMTXQ) == 0)
 3331                 error = 0;
 3332         else {
 3333                 umtxq_remove(uq);
 3334                 if (timeout != NULL && (timeout->_flags & UMTX_ABSTIME) == 0) {
 3335                         /* A relative timeout cannot be restarted. */
 3336                         if (error == ERESTART)
 3337                                 error = EINTR;
 3338                         if (error == EINTR) {
 3339                                 abs_timeout_update(&timo);
 3340                                 timespecsub(&timo.end, &timo.cur,
 3341                                     &timeout->_timeout);
 3342                         }
 3343                 }
 3344         }
 3345         umtxq_unlock(&uq->uq_key);
 3346         umtx_key_release(&uq->uq_key);
 3347         return (error);
 3348 }
 3349 
 3350 /*
 3351  * Signal a userland semaphore.
 3352  */
 3353 static int
 3354 do_sem2_wake(struct thread *td, struct _usem2 *sem)
 3355 {
 3356         struct umtx_key key;
 3357         int error, cnt, rv;
 3358         uint32_t count, flags;
 3359 
 3360         rv = fueword32(&sem->_flags, &flags);
 3361         if (rv == -1)
 3362                 return (EFAULT);
 3363         if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
 3364                 return (error);
 3365         umtxq_lock(&key);
 3366         umtxq_busy(&key);
 3367         cnt = umtxq_count(&key);
 3368         if (cnt > 0) {
 3369                 /*
 3370                  * If this was the last sleeping thread, clear the waiters
 3371                  * flag in _count.
 3372                  */
 3373                 if (cnt == 1) {
 3374                         umtxq_unlock(&key);
 3375                         rv = fueword32(&sem->_count, &count);
 3376                         while (rv != -1 && count & USEM_HAS_WAITERS) {
 3377                                 rv = casueword32(&sem->_count, count, &count,
 3378                                     count & ~USEM_HAS_WAITERS);
 3379                                 if (rv == 1) {
 3380                                         rv = thread_check_susp(td, true);
 3381                                         if (rv != 0)
 3382                                                 break;
 3383                                 }
 3384                         }
 3385                         if (rv == -1)
 3386                                 error = EFAULT;
 3387                         else if (rv > 0) {
 3388                                 error = rv;
 3389                         }
 3390                         umtxq_lock(&key);
 3391                 }
 3392 
 3393                 umtxq_signal(&key, 1);
 3394         }
 3395         umtxq_unbusy(&key);
 3396         umtxq_unlock(&key);
 3397         umtx_key_release(&key);
 3398         return (error);
 3399 }
 3400 
 3401 inline int
 3402 umtx_copyin_timeout(const void *uaddr, struct timespec *tsp)
 3403 {
 3404         int error;
 3405 
 3406         error = copyin(uaddr, tsp, sizeof(*tsp));
 3407         if (error == 0) {
 3408                 if (tsp->tv_sec < 0 ||
 3409                     tsp->tv_nsec >= 1000000000 ||
 3410                     tsp->tv_nsec < 0)
 3411                         error = EINVAL;
 3412         }
 3413         return (error);
 3414 }
 3415 
 3416 static inline int
 3417 umtx_copyin_umtx_time(const void *uaddr, size_t size, struct _umtx_time *tp)
 3418 {
 3419         int error;
 3420 
 3421         if (size <= sizeof(tp->_timeout)) {
 3422                 tp->_clockid = CLOCK_REALTIME;
 3423                 tp->_flags = 0;
 3424                 error = copyin(uaddr, &tp->_timeout, sizeof(tp->_timeout));
 3425         } else
 3426                 error = copyin(uaddr, tp, sizeof(*tp));
 3427         if (error != 0)
 3428                 return (error);
 3429         if (tp->_timeout.tv_sec < 0 ||
 3430             tp->_timeout.tv_nsec >= 1000000000 || tp->_timeout.tv_nsec < 0)
 3431                 return (EINVAL);
 3432         return (0);
 3433 }
 3434 
 3435 static int
 3436 umtx_copyin_robust_lists(const void *uaddr, size_t size,
 3437     struct umtx_robust_lists_params *rb)
 3438 {
 3439 
 3440         if (size > sizeof(*rb))
 3441                 return (EINVAL);
 3442         return (copyin(uaddr, rb, size));
 3443 }
 3444 
 3445 static int
 3446 umtx_copyout_timeout(void *uaddr, size_t sz, struct timespec *tsp)
 3447 {
 3448 
 3449         /*
 3450          * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
 3451          * and we're only called if sz >= sizeof(timespec) as supplied in the
 3452          * copyops.
 3453          */
 3454         KASSERT(sz >= sizeof(*tsp),
 3455             ("umtx_copyops specifies incorrect sizes"));
 3456 
 3457         return (copyout(tsp, uaddr, sizeof(*tsp)));
 3458 }
 3459 
 3460 static int
 3461 __umtx_op_unimpl(struct thread *td, struct _umtx_op_args *uap,
 3462     const struct umtx_copyops *ops __unused)
 3463 {
 3464 
 3465         return (EOPNOTSUPP);
 3466 }
 3467 
 3468 static int
 3469 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap,
 3470     const struct umtx_copyops *ops)
 3471 {
 3472         struct _umtx_time timeout, *tm_p;
 3473         int error;
 3474 
 3475         if (uap->uaddr2 == NULL)
 3476                 tm_p = NULL;
 3477         else {
 3478                 error = ops->copyin_umtx_time(
 3479                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3480                 if (error != 0)
 3481                         return (error);
 3482                 tm_p = &timeout;
 3483         }
 3484         return (do_wait(td, uap->obj, uap->val, tm_p, ops->compat32, 0));
 3485 }
 3486 
 3487 static int
 3488 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap,
 3489     const struct umtx_copyops *ops)
 3490 {
 3491         struct _umtx_time timeout, *tm_p;
 3492         int error;
 3493 
 3494         if (uap->uaddr2 == NULL)
 3495                 tm_p = NULL;
 3496         else {
 3497                 error = ops->copyin_umtx_time(
 3498                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3499                 if (error != 0)
 3500                         return (error);
 3501                 tm_p = &timeout;
 3502         }
 3503         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
 3504 }
 3505 
 3506 static int
 3507 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap,
 3508     const struct umtx_copyops *ops)
 3509 {
 3510         struct _umtx_time *tm_p, timeout;
 3511         int error;
 3512 
 3513         if (uap->uaddr2 == NULL)
 3514                 tm_p = NULL;
 3515         else {
 3516                 error = ops->copyin_umtx_time(
 3517                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3518                 if (error != 0)
 3519                         return (error);
 3520                 tm_p = &timeout;
 3521         }
 3522         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
 3523 }
 3524 
 3525 static int
 3526 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap,
 3527     const struct umtx_copyops *ops __unused)
 3528 {
 3529 
 3530         return (kern_umtx_wake(td, uap->obj, uap->val, 0));
 3531 }
 3532 
 3533 #define BATCH_SIZE      128
 3534 static int
 3535 __umtx_op_nwake_private_native(struct thread *td, struct _umtx_op_args *uap)
 3536 {
 3537         char *uaddrs[BATCH_SIZE], **upp;
 3538         int count, error, i, pos, tocopy;
 3539 
 3540         upp = (char **)uap->obj;
 3541         error = 0;
 3542         for (count = uap->val, pos = 0; count > 0; count -= tocopy,
 3543             pos += tocopy) {
 3544                 tocopy = MIN(count, BATCH_SIZE);
 3545                 error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
 3546                 if (error != 0)
 3547                         break;
 3548                 for (i = 0; i < tocopy; ++i) {
 3549                         kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
 3550                 }
 3551                 maybe_yield();
 3552         }
 3553         return (error);
 3554 }
 3555 
 3556 static int
 3557 __umtx_op_nwake_private_compat32(struct thread *td, struct _umtx_op_args *uap)
 3558 {
 3559         uint32_t uaddrs[BATCH_SIZE], *upp;
 3560         int count, error, i, pos, tocopy;
 3561 
 3562         upp = (uint32_t *)uap->obj;
 3563         error = 0;
 3564         for (count = uap->val, pos = 0; count > 0; count -= tocopy,
 3565             pos += tocopy) {
 3566                 tocopy = MIN(count, BATCH_SIZE);
 3567                 error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
 3568                 if (error != 0)
 3569                         break;
 3570                 for (i = 0; i < tocopy; ++i) {
 3571                         kern_umtx_wake(td, (void *)(uintptr_t)uaddrs[i],
 3572                             INT_MAX, 1);
 3573                 }
 3574                 maybe_yield();
 3575         }
 3576         return (error);
 3577 }
 3578 
 3579 static int
 3580 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap,
 3581     const struct umtx_copyops *ops)
 3582 {
 3583 
 3584         if (ops->compat32)
 3585                 return (__umtx_op_nwake_private_compat32(td, uap));
 3586         return (__umtx_op_nwake_private_native(td, uap));
 3587 }
 3588 
 3589 static int
 3590 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap,
 3591     const struct umtx_copyops *ops __unused)
 3592 {
 3593 
 3594         return (kern_umtx_wake(td, uap->obj, uap->val, 1));
 3595 }
 3596 
 3597 static int
 3598 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap,
 3599    const struct umtx_copyops *ops)
 3600 {
 3601         struct _umtx_time *tm_p, timeout;
 3602         int error;
 3603 
 3604         /* Allow a null timespec (wait forever). */
 3605         if (uap->uaddr2 == NULL)
 3606                 tm_p = NULL;
 3607         else {
 3608                 error = ops->copyin_umtx_time(
 3609                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3610                 if (error != 0)
 3611                         return (error);
 3612                 tm_p = &timeout;
 3613         }
 3614         return (do_lock_umutex(td, uap->obj, tm_p, 0));
 3615 }
 3616 
 3617 static int
 3618 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap,
 3619     const struct umtx_copyops *ops __unused)
 3620 {
 3621 
 3622         return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
 3623 }
 3624 
 3625 static int
 3626 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap,
 3627     const struct umtx_copyops *ops)
 3628 {
 3629         struct _umtx_time *tm_p, timeout;
 3630         int error;
 3631 
 3632         /* Allow a null timespec (wait forever). */
 3633         if (uap->uaddr2 == NULL)
 3634                 tm_p = NULL;
 3635         else {
 3636                 error = ops->copyin_umtx_time(
 3637                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3638                 if (error != 0)
 3639                         return (error);
 3640                 tm_p = &timeout;
 3641         }
 3642         return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
 3643 }
 3644 
 3645 static int
 3646 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap,
 3647     const struct umtx_copyops *ops __unused)
 3648 {
 3649 
 3650         return (do_wake_umutex(td, uap->obj));
 3651 }
 3652 
 3653 static int
 3654 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap,
 3655     const struct umtx_copyops *ops __unused)
 3656 {
 3657 
 3658         return (do_unlock_umutex(td, uap->obj, false));
 3659 }
 3660 
 3661 static int
 3662 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap,
 3663     const struct umtx_copyops *ops __unused)
 3664 {
 3665 
 3666         return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
 3667 }
 3668 
 3669 static int
 3670 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap,
 3671     const struct umtx_copyops *ops)
 3672 {
 3673         struct timespec *ts, timeout;
 3674         int error;
 3675 
 3676         /* Allow a null timespec (wait forever). */
 3677         if (uap->uaddr2 == NULL)
 3678                 ts = NULL;
 3679         else {
 3680                 error = ops->copyin_timeout(uap->uaddr2, &timeout);
 3681                 if (error != 0)
 3682                         return (error);
 3683                 ts = &timeout;
 3684         }
 3685         return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
 3686 }
 3687 
 3688 static int
 3689 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap,
 3690     const struct umtx_copyops *ops __unused)
 3691 {
 3692 
 3693         return (do_cv_signal(td, uap->obj));
 3694 }
 3695 
 3696 static int
 3697 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap,
 3698     const struct umtx_copyops *ops __unused)
 3699 {
 3700 
 3701         return (do_cv_broadcast(td, uap->obj));
 3702 }
 3703 
 3704 static int
 3705 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap,
 3706     const struct umtx_copyops *ops)
 3707 {
 3708         struct _umtx_time timeout;
 3709         int error;
 3710 
 3711         /* Allow a null timespec (wait forever). */
 3712         if (uap->uaddr2 == NULL) {
 3713                 error = do_rw_rdlock(td, uap->obj, uap->val, 0);
 3714         } else {
 3715                 error = ops->copyin_umtx_time(uap->uaddr2,
 3716                    (size_t)uap->uaddr1, &timeout);
 3717                 if (error != 0)
 3718                         return (error);
 3719                 error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
 3720         }
 3721         return (error);
 3722 }
 3723 
 3724 static int
 3725 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap,
 3726     const struct umtx_copyops *ops)
 3727 {
 3728         struct _umtx_time timeout;
 3729         int error;
 3730 
 3731         /* Allow a null timespec (wait forever). */
 3732         if (uap->uaddr2 == NULL) {
 3733                 error = do_rw_wrlock(td, uap->obj, 0);
 3734         } else {
 3735                 error = ops->copyin_umtx_time(uap->uaddr2,
 3736                    (size_t)uap->uaddr1, &timeout);
 3737                 if (error != 0)
 3738                         return (error);
 3739 
 3740                 error = do_rw_wrlock(td, uap->obj, &timeout);
 3741         }
 3742         return (error);
 3743 }
 3744 
 3745 static int
 3746 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap,
 3747     const struct umtx_copyops *ops __unused)
 3748 {
 3749 
 3750         return (do_rw_unlock(td, uap->obj));
 3751 }
 3752 
 3753 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 3754 static int
 3755 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap,
 3756     const struct umtx_copyops *ops)
 3757 {
 3758         struct _umtx_time *tm_p, timeout;
 3759         int error;
 3760 
 3761         /* Allow a null timespec (wait forever). */
 3762         if (uap->uaddr2 == NULL)
 3763                 tm_p = NULL;
 3764         else {
 3765                 error = ops->copyin_umtx_time(
 3766                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3767                 if (error != 0)
 3768                         return (error);
 3769                 tm_p = &timeout;
 3770         }
 3771         return (do_sem_wait(td, uap->obj, tm_p));
 3772 }
 3773 
 3774 static int
 3775 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap,
 3776     const struct umtx_copyops *ops __unused)
 3777 {
 3778 
 3779         return (do_sem_wake(td, uap->obj));
 3780 }
 3781 #endif
 3782 
 3783 static int
 3784 __umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap,
 3785     const struct umtx_copyops *ops __unused)
 3786 {
 3787 
 3788         return (do_wake2_umutex(td, uap->obj, uap->val));
 3789 }
 3790 
 3791 static int
 3792 __umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap,
 3793     const struct umtx_copyops *ops)
 3794 {
 3795         struct _umtx_time *tm_p, timeout;
 3796         size_t uasize;
 3797         int error;
 3798 
 3799         /* Allow a null timespec (wait forever). */
 3800         if (uap->uaddr2 == NULL) {
 3801                 uasize = 0;
 3802                 tm_p = NULL;
 3803         } else {
 3804                 uasize = (size_t)uap->uaddr1;
 3805                 error = ops->copyin_umtx_time(uap->uaddr2, uasize, &timeout);
 3806                 if (error != 0)
 3807                         return (error);
 3808                 tm_p = &timeout;
 3809         }
 3810         error = do_sem2_wait(td, uap->obj, tm_p);
 3811         if (error == EINTR && uap->uaddr2 != NULL &&
 3812             (timeout._flags & UMTX_ABSTIME) == 0 &&
 3813             uasize >= ops->umtx_time_sz + ops->timespec_sz) {
 3814                 error = ops->copyout_timeout(
 3815                     (void *)((uintptr_t)uap->uaddr2 + ops->umtx_time_sz),
 3816                     uasize - ops->umtx_time_sz, &timeout._timeout);
 3817                 if (error == 0) {
 3818                         error = EINTR;
 3819                 }
 3820         }
 3821 
 3822         return (error);
 3823 }
 3824 
 3825 static int
 3826 __umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap,
 3827     const struct umtx_copyops *ops __unused)
 3828 {
 3829 
 3830         return (do_sem2_wake(td, uap->obj));
 3831 }
 3832 
 3833 #define USHM_OBJ_UMTX(o)                                                \
 3834     ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
 3835 
 3836 #define USHMF_REG_LINKED        0x0001
 3837 #define USHMF_OBJ_LINKED        0x0002
 3838 struct umtx_shm_reg {
 3839         TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
 3840         LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
 3841         struct umtx_key         ushm_key;
 3842         struct ucred            *ushm_cred;
 3843         struct shmfd            *ushm_obj;
 3844         u_int                   ushm_refcnt;
 3845         u_int                   ushm_flags;
 3846 };
 3847 
 3848 LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
 3849 TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
 3850 
 3851 static uma_zone_t umtx_shm_reg_zone;
 3852 static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
 3853 static struct mtx umtx_shm_lock;
 3854 static struct umtx_shm_reg_head umtx_shm_reg_delfree =
 3855     TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
 3856 
 3857 static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
 3858 
 3859 static void
 3860 umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
 3861 {
 3862         struct umtx_shm_reg_head d;
 3863         struct umtx_shm_reg *reg, *reg1;
 3864 
 3865         TAILQ_INIT(&d);
 3866         mtx_lock(&umtx_shm_lock);
 3867         TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
 3868         mtx_unlock(&umtx_shm_lock);
 3869         TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
 3870                 TAILQ_REMOVE(&d, reg, ushm_reg_link);
 3871                 umtx_shm_free_reg(reg);
 3872         }
 3873 }
 3874 
 3875 static struct task umtx_shm_reg_delfree_task =
 3876     TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
 3877 
 3878 static struct umtx_shm_reg *
 3879 umtx_shm_find_reg_locked(const struct umtx_key *key)
 3880 {
 3881         struct umtx_shm_reg *reg;
 3882         struct umtx_shm_reg_head *reg_head;
 3883 
 3884         KASSERT(key->shared, ("umtx_p_find_rg: private key"));
 3885         mtx_assert(&umtx_shm_lock, MA_OWNED);
 3886         reg_head = &umtx_shm_registry[key->hash];
 3887         TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
 3888                 KASSERT(reg->ushm_key.shared,
 3889                     ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
 3890                 if (reg->ushm_key.info.shared.object ==
 3891                     key->info.shared.object &&
 3892                     reg->ushm_key.info.shared.offset ==
 3893                     key->info.shared.offset) {
 3894                         KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
 3895                         KASSERT(reg->ushm_refcnt > 0,
 3896                             ("reg %p refcnt 0 onlist", reg));
 3897                         KASSERT((reg->ushm_flags & USHMF_REG_LINKED) != 0,
 3898                             ("reg %p not linked", reg));
 3899                         reg->ushm_refcnt++;
 3900                         return (reg);
 3901                 }
 3902         }
 3903         return (NULL);
 3904 }
 3905 
 3906 static struct umtx_shm_reg *
 3907 umtx_shm_find_reg(const struct umtx_key *key)
 3908 {
 3909         struct umtx_shm_reg *reg;
 3910 
 3911         mtx_lock(&umtx_shm_lock);
 3912         reg = umtx_shm_find_reg_locked(key);
 3913         mtx_unlock(&umtx_shm_lock);
 3914         return (reg);
 3915 }
 3916 
 3917 static void
 3918 umtx_shm_free_reg(struct umtx_shm_reg *reg)
 3919 {
 3920 
 3921         chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
 3922         crfree(reg->ushm_cred);
 3923         shm_drop(reg->ushm_obj);
 3924         uma_zfree(umtx_shm_reg_zone, reg);
 3925 }
 3926 
 3927 static bool
 3928 umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
 3929 {
 3930         bool res;
 3931 
 3932         mtx_assert(&umtx_shm_lock, MA_OWNED);
 3933         KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
 3934         reg->ushm_refcnt--;
 3935         res = reg->ushm_refcnt == 0;
 3936         if (res || force) {
 3937                 if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
 3938                         TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
 3939                             reg, ushm_reg_link);
 3940                         reg->ushm_flags &= ~USHMF_REG_LINKED;
 3941                 }
 3942                 if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
 3943                         LIST_REMOVE(reg, ushm_obj_link);
 3944                         reg->ushm_flags &= ~USHMF_OBJ_LINKED;
 3945                 }
 3946         }
 3947         return (res);
 3948 }
 3949 
 3950 static void
 3951 umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool force)
 3952 {
 3953         vm_object_t object;
 3954         bool dofree;
 3955 
 3956         if (force) {
 3957                 object = reg->ushm_obj->shm_object;
 3958                 VM_OBJECT_WLOCK(object);
 3959                 object->flags |= OBJ_UMTXDEAD;
 3960                 VM_OBJECT_WUNLOCK(object);
 3961         }
 3962         mtx_lock(&umtx_shm_lock);
 3963         dofree = umtx_shm_unref_reg_locked(reg, force);
 3964         mtx_unlock(&umtx_shm_lock);
 3965         if (dofree)
 3966                 umtx_shm_free_reg(reg);
 3967 }
 3968 
 3969 void
 3970 umtx_shm_object_init(vm_object_t object)
 3971 {
 3972 
 3973         LIST_INIT(USHM_OBJ_UMTX(object));
 3974 }
 3975 
 3976 void
 3977 umtx_shm_object_terminated(vm_object_t object)
 3978 {
 3979         struct umtx_shm_reg *reg, *reg1;
 3980         bool dofree;
 3981 
 3982         dofree = false;
 3983         mtx_lock(&umtx_shm_lock);
 3984         LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
 3985                 if (umtx_shm_unref_reg_locked(reg, true)) {
 3986                         TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
 3987                             ushm_reg_link);
 3988                         dofree = true;
 3989                 }
 3990         }
 3991         mtx_unlock(&umtx_shm_lock);
 3992         if (dofree)
 3993                 taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
 3994 }
 3995 
 3996 static int
 3997 umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
 3998     struct umtx_shm_reg **res)
 3999 {
 4000         struct umtx_shm_reg *reg, *reg1;
 4001         struct ucred *cred;
 4002         int error;
 4003 
 4004         reg = umtx_shm_find_reg(key);
 4005         if (reg != NULL) {
 4006                 *res = reg;
 4007                 return (0);
 4008         }
 4009         cred = td->td_ucred;
 4010         if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
 4011                 return (ENOMEM);
 4012         reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
 4013         reg->ushm_refcnt = 1;
 4014         bcopy(key, &reg->ushm_key, sizeof(*key));
 4015         reg->ushm_obj = shm_alloc(td->td_ucred, O_RDWR);
 4016         reg->ushm_cred = crhold(cred);
 4017         error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
 4018         if (error != 0) {
 4019                 umtx_shm_free_reg(reg);
 4020                 return (error);
 4021         }
 4022         mtx_lock(&umtx_shm_lock);
 4023         reg1 = umtx_shm_find_reg_locked(key);
 4024         if (reg1 != NULL) {
 4025                 mtx_unlock(&umtx_shm_lock);
 4026                 umtx_shm_free_reg(reg);
 4027                 *res = reg1;
 4028                 return (0);
 4029         }
 4030         reg->ushm_refcnt++;
 4031         TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
 4032         LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
 4033             ushm_obj_link);
 4034         reg->ushm_flags = USHMF_REG_LINKED | USHMF_OBJ_LINKED;
 4035         mtx_unlock(&umtx_shm_lock);
 4036         *res = reg;
 4037         return (0);
 4038 }
 4039 
 4040 static int
 4041 umtx_shm_alive(struct thread *td, void *addr)
 4042 {
 4043         vm_map_t map;
 4044         vm_map_entry_t entry;
 4045         vm_object_t object;
 4046         vm_pindex_t pindex;
 4047         vm_prot_t prot;
 4048         int res, ret;
 4049         boolean_t wired;
 4050 
 4051         map = &td->td_proc->p_vmspace->vm_map;
 4052         res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
 4053             &object, &pindex, &prot, &wired);
 4054         if (res != KERN_SUCCESS)
 4055                 return (EFAULT);
 4056         if (object == NULL)
 4057                 ret = EINVAL;
 4058         else
 4059                 ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
 4060         vm_map_lookup_done(map, entry);
 4061         return (ret);
 4062 }
 4063 
 4064 static void
 4065 umtx_shm_init(void)
 4066 {
 4067         int i;
 4068 
 4069         umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
 4070             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
 4071         mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
 4072         for (i = 0; i < nitems(umtx_shm_registry); i++)
 4073                 TAILQ_INIT(&umtx_shm_registry[i]);
 4074 }
 4075 
 4076 static int
 4077 umtx_shm(struct thread *td, void *addr, u_int flags)
 4078 {
 4079         struct umtx_key key;
 4080         struct umtx_shm_reg *reg;
 4081         struct file *fp;
 4082         int error, fd;
 4083 
 4084         if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
 4085             UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
 4086                 return (EINVAL);
 4087         if ((flags & UMTX_SHM_ALIVE) != 0)
 4088                 return (umtx_shm_alive(td, addr));
 4089         error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
 4090         if (error != 0)
 4091                 return (error);
 4092         KASSERT(key.shared == 1, ("non-shared key"));
 4093         if ((flags & UMTX_SHM_CREAT) != 0) {
 4094                 error = umtx_shm_create_reg(td, &key, &reg);
 4095         } else {
 4096                 reg = umtx_shm_find_reg(&key);
 4097                 if (reg == NULL)
 4098                         error = ESRCH;
 4099         }
 4100         umtx_key_release(&key);
 4101         if (error != 0)
 4102                 return (error);
 4103         KASSERT(reg != NULL, ("no reg"));
 4104         if ((flags & UMTX_SHM_DESTROY) != 0) {
 4105                 umtx_shm_unref_reg(reg, true);
 4106         } else {
 4107 #if 0
 4108 #ifdef MAC
 4109                 error = mac_posixshm_check_open(td->td_ucred,
 4110                     reg->ushm_obj, FFLAGS(O_RDWR));
 4111                 if (error == 0)
 4112 #endif
 4113                         error = shm_access(reg->ushm_obj, td->td_ucred,
 4114                             FFLAGS(O_RDWR));
 4115                 if (error == 0)
 4116 #endif
 4117                         error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
 4118                 if (error == 0) {
 4119                         shm_hold(reg->ushm_obj);
 4120                         finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
 4121                             &shm_ops);
 4122                         td->td_retval[0] = fd;
 4123                         fdrop(fp, td);
 4124                 }
 4125         }
 4126         umtx_shm_unref_reg(reg, false);
 4127         return (error);
 4128 }
 4129 
 4130 static int
 4131 __umtx_op_shm(struct thread *td, struct _umtx_op_args *uap,
 4132     const struct umtx_copyops *ops __unused)
 4133 {
 4134 
 4135         return (umtx_shm(td, uap->uaddr1, uap->val));
 4136 }
 4137 
 4138 static int
 4139 __umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap,
 4140     const struct umtx_copyops *ops)
 4141 {
 4142         struct umtx_robust_lists_params rb;
 4143         int error;
 4144 
 4145         if (ops->compat32) {
 4146                 if ((td->td_pflags2 & TDP2_COMPAT32RB) == 0 &&
 4147                     (td->td_rb_list != 0 || td->td_rbp_list != 0 ||
 4148                     td->td_rb_inact != 0))
 4149                         return (EBUSY);
 4150         } else if ((td->td_pflags2 & TDP2_COMPAT32RB) != 0) {
 4151                 return (EBUSY);
 4152         }
 4153 
 4154         bzero(&rb, sizeof(rb));
 4155         error = ops->copyin_robust_lists(uap->uaddr1, uap->val, &rb);
 4156         if (error != 0)
 4157                 return (error);
 4158 
 4159         if (ops->compat32)
 4160                 td->td_pflags2 |= TDP2_COMPAT32RB;
 4161 
 4162         td->td_rb_list = rb.robust_list_offset;
 4163         td->td_rbp_list = rb.robust_priv_list_offset;
 4164         td->td_rb_inact = rb.robust_inact_offset;
 4165         return (0);
 4166 }
 4167 
 4168 #if defined(__i386__) || defined(__amd64__)
 4169 /*
 4170  * Provide the standard 32-bit definitions for x86, since native/compat32 use a
 4171  * 32-bit time_t there.  Other architectures just need the i386 definitions
 4172  * along with their standard compat32.
 4173  */
 4174 struct timespecx32 {
 4175         int64_t                 tv_sec;
 4176         int32_t                 tv_nsec;
 4177 };
 4178 
 4179 struct umtx_timex32 {
 4180         struct  timespecx32     _timeout;
 4181         uint32_t                _flags;
 4182         uint32_t                _clockid;
 4183 };
 4184 
 4185 #ifndef __i386__
 4186 #define timespeci386    timespec32
 4187 #define umtx_timei386   umtx_time32
 4188 #endif
 4189 #else /* !__i386__ && !__amd64__ */
 4190 /* 32-bit architectures can emulate i386, so define these almost everywhere. */
 4191 struct timespeci386 {
 4192         int32_t                 tv_sec;
 4193         int32_t                 tv_nsec;
 4194 };
 4195 
 4196 struct umtx_timei386 {
 4197         struct  timespeci386    _timeout;
 4198         uint32_t                _flags;
 4199         uint32_t                _clockid;
 4200 };
 4201 
 4202 #if defined(__LP64__)
 4203 #define timespecx32     timespec32
 4204 #define umtx_timex32    umtx_time32
 4205 #endif
 4206 #endif
 4207 
 4208 static int
 4209 umtx_copyin_robust_lists32(const void *uaddr, size_t size,
 4210     struct umtx_robust_lists_params *rbp)
 4211 {
 4212         struct umtx_robust_lists_params_compat32 rb32;
 4213         int error;
 4214 
 4215         if (size > sizeof(rb32))
 4216                 return (EINVAL);
 4217         bzero(&rb32, sizeof(rb32));
 4218         error = copyin(uaddr, &rb32, size);
 4219         if (error != 0)
 4220                 return (error);
 4221         CP(rb32, *rbp, robust_list_offset);
 4222         CP(rb32, *rbp, robust_priv_list_offset);
 4223         CP(rb32, *rbp, robust_inact_offset);
 4224         return (0);
 4225 }
 4226 
 4227 #ifndef __i386__
 4228 static inline int
 4229 umtx_copyin_timeouti386(const void *uaddr, struct timespec *tsp)
 4230 {
 4231         struct timespeci386 ts32;
 4232         int error;
 4233 
 4234         error = copyin(uaddr, &ts32, sizeof(ts32));
 4235         if (error == 0) {
 4236                 if (ts32.tv_sec < 0 ||
 4237                     ts32.tv_nsec >= 1000000000 ||
 4238                     ts32.tv_nsec < 0)
 4239                         error = EINVAL;
 4240                 else {
 4241                         CP(ts32, *tsp, tv_sec);
 4242                         CP(ts32, *tsp, tv_nsec);
 4243                 }
 4244         }
 4245         return (error);
 4246 }
 4247 
 4248 static inline int
 4249 umtx_copyin_umtx_timei386(const void *uaddr, size_t size, struct _umtx_time *tp)
 4250 {
 4251         struct umtx_timei386 t32;
 4252         int error;
 4253 
 4254         t32._clockid = CLOCK_REALTIME;
 4255         t32._flags   = 0;
 4256         if (size <= sizeof(t32._timeout))
 4257                 error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
 4258         else
 4259                 error = copyin(uaddr, &t32, sizeof(t32));
 4260         if (error != 0)
 4261                 return (error);
 4262         if (t32._timeout.tv_sec < 0 ||
 4263             t32._timeout.tv_nsec >= 1000000000 || t32._timeout.tv_nsec < 0)
 4264                 return (EINVAL);
 4265         TS_CP(t32, *tp, _timeout);
 4266         CP(t32, *tp, _flags);
 4267         CP(t32, *tp, _clockid);
 4268         return (0);
 4269 }
 4270 
 4271 static int
 4272 umtx_copyout_timeouti386(void *uaddr, size_t sz, struct timespec *tsp)
 4273 {
 4274         struct timespeci386 remain32 = {
 4275                 .tv_sec = tsp->tv_sec,
 4276                 .tv_nsec = tsp->tv_nsec,
 4277         };
 4278 
 4279         /*
 4280          * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
 4281          * and we're only called if sz >= sizeof(timespec) as supplied in the
 4282          * copyops.
 4283          */
 4284         KASSERT(sz >= sizeof(remain32),
 4285             ("umtx_copyops specifies incorrect sizes"));
 4286 
 4287         return (copyout(&remain32, uaddr, sizeof(remain32)));
 4288 }
 4289 #endif /* !__i386__ */
 4290 
 4291 #if defined(__i386__) || defined(__LP64__)
 4292 static inline int
 4293 umtx_copyin_timeoutx32(const void *uaddr, struct timespec *tsp)
 4294 {
 4295         struct timespecx32 ts32;
 4296         int error;
 4297 
 4298         error = copyin(uaddr, &ts32, sizeof(ts32));
 4299         if (error == 0) {
 4300                 if (ts32.tv_sec < 0 ||
 4301                     ts32.tv_nsec >= 1000000000 ||
 4302                     ts32.tv_nsec < 0)
 4303                         error = EINVAL;
 4304                 else {
 4305                         CP(ts32, *tsp, tv_sec);
 4306                         CP(ts32, *tsp, tv_nsec);
 4307                 }
 4308         }
 4309         return (error);
 4310 }
 4311 
 4312 static inline int
 4313 umtx_copyin_umtx_timex32(const void *uaddr, size_t size, struct _umtx_time *tp)
 4314 {
 4315         struct umtx_timex32 t32;
 4316         int error;
 4317 
 4318         t32._clockid = CLOCK_REALTIME;
 4319         t32._flags   = 0;
 4320         if (size <= sizeof(t32._timeout))
 4321                 error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
 4322         else
 4323                 error = copyin(uaddr, &t32, sizeof(t32));
 4324         if (error != 0)
 4325                 return (error);
 4326         if (t32._timeout.tv_sec < 0 ||
 4327             t32._timeout.tv_nsec >= 1000000000 || t32._timeout.tv_nsec < 0)
 4328                 return (EINVAL);
 4329         TS_CP(t32, *tp, _timeout);
 4330         CP(t32, *tp, _flags);
 4331         CP(t32, *tp, _clockid);
 4332         return (0);
 4333 }
 4334 
 4335 static int
 4336 umtx_copyout_timeoutx32(void *uaddr, size_t sz, struct timespec *tsp)
 4337 {
 4338         struct timespecx32 remain32 = {
 4339                 .tv_sec = tsp->tv_sec,
 4340                 .tv_nsec = tsp->tv_nsec,
 4341         };
 4342 
 4343         /*
 4344          * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
 4345          * and we're only called if sz >= sizeof(timespec) as supplied in the
 4346          * copyops.
 4347          */
 4348         KASSERT(sz >= sizeof(remain32),
 4349             ("umtx_copyops specifies incorrect sizes"));
 4350 
 4351         return (copyout(&remain32, uaddr, sizeof(remain32)));
 4352 }
 4353 #endif /* __i386__ || __LP64__ */
 4354 
 4355 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap,
 4356     const struct umtx_copyops *umtx_ops);
 4357 
 4358 static const _umtx_op_func op_table[] = {
 4359         [UMTX_OP_RESERVED0]     = __umtx_op_unimpl,
 4360         [UMTX_OP_RESERVED1]     = __umtx_op_unimpl,
 4361         [UMTX_OP_WAIT]          = __umtx_op_wait,
 4362         [UMTX_OP_WAKE]          = __umtx_op_wake,
 4363         [UMTX_OP_MUTEX_TRYLOCK] = __umtx_op_trylock_umutex,
 4364         [UMTX_OP_MUTEX_LOCK]    = __umtx_op_lock_umutex,
 4365         [UMTX_OP_MUTEX_UNLOCK]  = __umtx_op_unlock_umutex,
 4366         [UMTX_OP_SET_CEILING]   = __umtx_op_set_ceiling,
 4367         [UMTX_OP_CV_WAIT]       = __umtx_op_cv_wait,
 4368         [UMTX_OP_CV_SIGNAL]     = __umtx_op_cv_signal,
 4369         [UMTX_OP_CV_BROADCAST]  = __umtx_op_cv_broadcast,
 4370         [UMTX_OP_WAIT_UINT]     = __umtx_op_wait_uint,
 4371         [UMTX_OP_RW_RDLOCK]     = __umtx_op_rw_rdlock,
 4372         [UMTX_OP_RW_WRLOCK]     = __umtx_op_rw_wrlock,
 4373         [UMTX_OP_RW_UNLOCK]     = __umtx_op_rw_unlock,
 4374         [UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
 4375         [UMTX_OP_WAKE_PRIVATE]  = __umtx_op_wake_private,
 4376         [UMTX_OP_MUTEX_WAIT]    = __umtx_op_wait_umutex,
 4377         [UMTX_OP_MUTEX_WAKE]    = __umtx_op_wake_umutex,
 4378 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 4379         [UMTX_OP_SEM_WAIT]      = __umtx_op_sem_wait,
 4380         [UMTX_OP_SEM_WAKE]      = __umtx_op_sem_wake,
 4381 #else
 4382         [UMTX_OP_SEM_WAIT]      = __umtx_op_unimpl,
 4383         [UMTX_OP_SEM_WAKE]      = __umtx_op_unimpl,
 4384 #endif
 4385         [UMTX_OP_NWAKE_PRIVATE] = __umtx_op_nwake_private,
 4386         [UMTX_OP_MUTEX_WAKE2]   = __umtx_op_wake2_umutex,
 4387         [UMTX_OP_SEM2_WAIT]     = __umtx_op_sem2_wait,
 4388         [UMTX_OP_SEM2_WAKE]     = __umtx_op_sem2_wake,
 4389         [UMTX_OP_SHM]           = __umtx_op_shm,
 4390         [UMTX_OP_ROBUST_LISTS]  = __umtx_op_robust_lists,
 4391 };
 4392 
 4393 static const struct umtx_copyops umtx_native_ops = {
 4394         .copyin_timeout = umtx_copyin_timeout,
 4395         .copyin_umtx_time = umtx_copyin_umtx_time,
 4396         .copyin_robust_lists = umtx_copyin_robust_lists,
 4397         .copyout_timeout = umtx_copyout_timeout,
 4398         .timespec_sz = sizeof(struct timespec),
 4399         .umtx_time_sz = sizeof(struct _umtx_time),
 4400 };
 4401 
 4402 #ifndef __i386__
 4403 static const struct umtx_copyops umtx_native_opsi386 = {
 4404         .copyin_timeout = umtx_copyin_timeouti386,
 4405         .copyin_umtx_time = umtx_copyin_umtx_timei386,
 4406         .copyin_robust_lists = umtx_copyin_robust_lists32,
 4407         .copyout_timeout = umtx_copyout_timeouti386,
 4408         .timespec_sz = sizeof(struct timespeci386),
 4409         .umtx_time_sz = sizeof(struct umtx_timei386),
 4410         .compat32 = true,
 4411 };
 4412 #endif
 4413 
 4414 #if defined(__i386__) || defined(__LP64__)
 4415 /* i386 can emulate other 32-bit archs, too! */
 4416 static const struct umtx_copyops umtx_native_opsx32 = {
 4417         .copyin_timeout = umtx_copyin_timeoutx32,
 4418         .copyin_umtx_time = umtx_copyin_umtx_timex32,
 4419         .copyin_robust_lists = umtx_copyin_robust_lists32,
 4420         .copyout_timeout = umtx_copyout_timeoutx32,
 4421         .timespec_sz = sizeof(struct timespecx32),
 4422         .umtx_time_sz = sizeof(struct umtx_timex32),
 4423         .compat32 = true,
 4424 };
 4425 
 4426 #ifdef COMPAT_FREEBSD32
 4427 #ifdef __amd64__
 4428 #define umtx_native_ops32       umtx_native_opsi386
 4429 #else
 4430 #define umtx_native_ops32       umtx_native_opsx32
 4431 #endif
 4432 #endif /* COMPAT_FREEBSD32 */
 4433 #endif /* __i386__ || __LP64__ */
 4434 
 4435 #define UMTX_OP__FLAGS  (UMTX_OP__32BIT | UMTX_OP__I386)
 4436 
 4437 static int
 4438 kern__umtx_op(struct thread *td, void *obj, int op, unsigned long val,
 4439     void *uaddr1, void *uaddr2, const struct umtx_copyops *ops)
 4440 {
 4441         struct _umtx_op_args uap = {
 4442                 .obj = obj,
 4443                 .op = op & ~UMTX_OP__FLAGS,
 4444                 .val = val,
 4445                 .uaddr1 = uaddr1,
 4446                 .uaddr2 = uaddr2
 4447         };
 4448 
 4449         if ((uap.op >= nitems(op_table)))
 4450                 return (EINVAL);
 4451         return ((*op_table[uap.op])(td, &uap, ops));
 4452 }
 4453 
 4454 int
 4455 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
 4456 {
 4457         static const struct umtx_copyops *umtx_ops;
 4458 
 4459         umtx_ops = &umtx_native_ops;
 4460 #ifdef __LP64__
 4461         if ((uap->op & (UMTX_OP__32BIT | UMTX_OP__I386)) != 0) {
 4462                 if ((uap->op & UMTX_OP__I386) != 0)
 4463                         umtx_ops = &umtx_native_opsi386;
 4464                 else
 4465                         umtx_ops = &umtx_native_opsx32;
 4466         }
 4467 #elif !defined(__i386__)
 4468         /* We consider UMTX_OP__32BIT a nop on !i386 ILP32. */
 4469         if ((uap->op & UMTX_OP__I386) != 0)
 4470                 umtx_ops = &umtx_native_opsi386;
 4471 #else
 4472         /* Likewise, UMTX_OP__I386 is a nop on i386. */
 4473         if ((uap->op & UMTX_OP__32BIT) != 0)
 4474                 umtx_ops = &umtx_native_opsx32;
 4475 #endif
 4476         return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr1,
 4477             uap->uaddr2, umtx_ops));
 4478 }
 4479 
 4480 #ifdef COMPAT_FREEBSD32
 4481 int
 4482 freebsd32__umtx_op(struct thread *td, struct freebsd32__umtx_op_args *uap)
 4483 {
 4484 
 4485         return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr,
 4486             uap->uaddr2, &umtx_native_ops32));
 4487 }
 4488 #endif
 4489 
 4490 void
 4491 umtx_thread_init(struct thread *td)
 4492 {
 4493 
 4494         td->td_umtxq = umtxq_alloc();
 4495         td->td_umtxq->uq_thread = td;
 4496 }
 4497 
 4498 void
 4499 umtx_thread_fini(struct thread *td)
 4500 {
 4501 
 4502         umtxq_free(td->td_umtxq);
 4503 }
 4504 
 4505 /*
 4506  * It will be called when new thread is created, e.g fork().
 4507  */
 4508 void
 4509 umtx_thread_alloc(struct thread *td)
 4510 {
 4511         struct umtx_q *uq;
 4512 
 4513         uq = td->td_umtxq;
 4514         uq->uq_inherited_pri = PRI_MAX;
 4515 
 4516         KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
 4517         KASSERT(uq->uq_thread == td, ("uq_thread != td"));
 4518         KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
 4519         KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
 4520 }
 4521 
 4522 /*
 4523  * exec() hook.
 4524  *
 4525  * Clear robust lists for all process' threads, not delaying the
 4526  * cleanup to thread exit, since the relevant address space is
 4527  * destroyed right now.
 4528  */
 4529 void
 4530 umtx_exec(struct proc *p)
 4531 {
 4532         struct thread *td;
 4533 
 4534         KASSERT(p == curproc, ("need curproc"));
 4535         PROC_LOCK(p);
 4536         KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
 4537             (p->p_flag & P_STOPPED_SINGLE) != 0,
 4538             ("curproc must be single-threaded"));
 4539         FOREACH_THREAD_IN_PROC(p, td) {
 4540                 KASSERT(td == curthread ||
 4541                     ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
 4542                     ("running thread %p %p", p, td));
 4543                 PROC_UNLOCK(p);
 4544                 umtx_thread_cleanup(td);
 4545                 PROC_LOCK(p);
 4546                 td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
 4547         }
 4548         PROC_UNLOCK(p);
 4549 }
 4550 
 4551 /*
 4552  * thread exit hook.
 4553  */
 4554 void
 4555 umtx_thread_exit(struct thread *td)
 4556 {
 4557 
 4558         umtx_thread_cleanup(td);
 4559 }
 4560 
 4561 static int
 4562 umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res, bool compat32)
 4563 {
 4564         u_long res1;
 4565         uint32_t res32;
 4566         int error;
 4567 
 4568         if (compat32) {
 4569                 error = fueword32((void *)ptr, &res32);
 4570                 if (error == 0)
 4571                         res1 = res32;
 4572         } else {
 4573                 error = fueword((void *)ptr, &res1);
 4574         }
 4575         if (error == 0)
 4576                 *res = res1;
 4577         else
 4578                 error = EFAULT;
 4579         return (error);
 4580 }
 4581 
 4582 static void
 4583 umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list,
 4584     bool compat32)
 4585 {
 4586         struct umutex32 m32;
 4587 
 4588         if (compat32) {
 4589                 memcpy(&m32, m, sizeof(m32));
 4590                 *rb_list = m32.m_rb_lnk;
 4591         } else {
 4592                 *rb_list = m->m_rb_lnk;
 4593         }
 4594 }
 4595 
 4596 static int
 4597 umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact,
 4598     bool compat32)
 4599 {
 4600         struct umutex m;
 4601         int error;
 4602 
 4603         KASSERT(td->td_proc == curproc, ("need current vmspace"));
 4604         error = copyin((void *)rbp, &m, sizeof(m));
 4605         if (error != 0)
 4606                 return (error);
 4607         if (rb_list != NULL)
 4608                 umtx_read_rb_list(td, &m, rb_list, compat32);
 4609         if ((m.m_flags & UMUTEX_ROBUST) == 0)
 4610                 return (EINVAL);
 4611         if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
 4612                 /* inact is cleared after unlock, allow the inconsistency */
 4613                 return (inact ? 0 : EINVAL);
 4614         return (do_unlock_umutex(td, (struct umutex *)rbp, true));
 4615 }
 4616 
 4617 static void
 4618 umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
 4619     const char *name, bool compat32)
 4620 {
 4621         int error, i;
 4622         uintptr_t rbp;
 4623         bool inact;
 4624 
 4625         if (rb_list == 0)
 4626                 return;
 4627         error = umtx_read_uptr(td, rb_list, &rbp, compat32);
 4628         for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
 4629                 if (rbp == *rb_inact) {
 4630                         inact = true;
 4631                         *rb_inact = 0;
 4632                 } else
 4633                         inact = false;
 4634                 error = umtx_handle_rb(td, rbp, &rbp, inact, compat32);
 4635         }
 4636         if (i == umtx_max_rb && umtx_verbose_rb) {
 4637                 uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
 4638                     td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
 4639         }
 4640         if (error != 0 && umtx_verbose_rb) {
 4641                 uprintf("comm %s pid %d: handling %srb error %d\n",
 4642                     td->td_proc->p_comm, td->td_proc->p_pid, name, error);
 4643         }
 4644 }
 4645 
 4646 /*
 4647  * Clean up umtx data.
 4648  */
 4649 static void
 4650 umtx_thread_cleanup(struct thread *td)
 4651 {
 4652         struct umtx_q *uq;
 4653         struct umtx_pi *pi;
 4654         uintptr_t rb_inact;
 4655         bool compat32;
 4656 
 4657         /*
 4658          * Disown pi mutexes.
 4659          */
 4660         uq = td->td_umtxq;
 4661         if (uq != NULL) {
 4662                 mtx_lock(&umtx_lock);
 4663                 uq->uq_inherited_pri = PRI_MAX;
 4664                 while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
 4665                         pi->pi_owner = NULL;
 4666                         TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
 4667                 }
 4668                 mtx_unlock(&umtx_lock);
 4669                 thread_lock(td);
 4670                 sched_lend_user_prio(td, PRI_MAX);
 4671                 thread_unlock(td);
 4672         }
 4673 
 4674         compat32 = (td->td_pflags2 & TDP2_COMPAT32RB) != 0;
 4675         td->td_pflags2 &= ~TDP2_COMPAT32RB;
 4676 
 4677         /*
 4678          * Handle terminated robust mutexes.  Must be done after
 4679          * robust pi disown, otherwise unlock could see unowned
 4680          * entries.
 4681          */
 4682         rb_inact = td->td_rb_inact;
 4683         if (rb_inact != 0)
 4684                 (void)umtx_read_uptr(td, rb_inact, &rb_inact, compat32);
 4685         umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "", compat32);
 4686         umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ", compat32);
 4687         if (rb_inact != 0)
 4688                 (void)umtx_handle_rb(td, rb_inact, NULL, true, compat32);
 4689 }

Cache object: ab98c98f3d4193fc063f93d6b6aa08ed


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.