The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_umtx.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2015, 2016 The FreeBSD Foundation
    5  * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
    6  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
    7  * All rights reserved.
    8  *
    9  * Portions of this software were developed by Konstantin Belousov
   10  * under sponsorship from the FreeBSD Foundation.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice unmodified, this list of conditions, and the following
   17  *    disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_umtx_profiling.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/kernel.h>
   41 #include <sys/fcntl.h>
   42 #include <sys/file.h>
   43 #include <sys/filedesc.h>
   44 #include <sys/limits.h>
   45 #include <sys/lock.h>
   46 #include <sys/malloc.h>
   47 #include <sys/mman.h>
   48 #include <sys/mutex.h>
   49 #include <sys/priv.h>
   50 #include <sys/proc.h>
   51 #include <sys/resource.h>
   52 #include <sys/resourcevar.h>
   53 #include <sys/rwlock.h>
   54 #include <sys/sbuf.h>
   55 #include <sys/sched.h>
   56 #include <sys/smp.h>
   57 #include <sys/sysctl.h>
   58 #include <sys/sysent.h>
   59 #include <sys/systm.h>
   60 #include <sys/sysproto.h>
   61 #include <sys/syscallsubr.h>
   62 #include <sys/taskqueue.h>
   63 #include <sys/time.h>
   64 #include <sys/eventhandler.h>
   65 #include <sys/umtx.h>
   66 
   67 #include <security/mac/mac_framework.h>
   68 
   69 #include <vm/vm.h>
   70 #include <vm/vm_param.h>
   71 #include <vm/pmap.h>
   72 #include <vm/vm_map.h>
   73 #include <vm/vm_object.h>
   74 
   75 #include <machine/atomic.h>
   76 #include <machine/cpu.h>
   77 
   78 #include <compat/freebsd32/freebsd32.h>
   79 #ifdef COMPAT_FREEBSD32
   80 #include <compat/freebsd32/freebsd32_proto.h>
   81 #endif
   82 
   83 #define _UMUTEX_TRY             1
   84 #define _UMUTEX_WAIT            2
   85 
   86 #ifdef UMTX_PROFILING
   87 #define UPROF_PERC_BIGGER(w, f, sw, sf)                                 \
   88         (((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
   89 #endif
   90 
   91 /* Priority inheritance mutex info. */
   92 struct umtx_pi {
   93         /* Owner thread */
   94         struct thread           *pi_owner;
   95 
   96         /* Reference count */
   97         int                     pi_refcount;
   98 
   99         /* List entry to link umtx holding by thread */
  100         TAILQ_ENTRY(umtx_pi)    pi_link;
  101 
  102         /* List entry in hash */
  103         TAILQ_ENTRY(umtx_pi)    pi_hashlink;
  104 
  105         /* List for waiters */
  106         TAILQ_HEAD(,umtx_q)     pi_blocked;
  107 
  108         /* Identify a userland lock object */
  109         struct umtx_key         pi_key;
  110 };
  111 
  112 /* A userland synchronous object user. */
  113 struct umtx_q {
  114         /* Linked list for the hash. */
  115         TAILQ_ENTRY(umtx_q)     uq_link;
  116 
  117         /* Umtx key. */
  118         struct umtx_key         uq_key;
  119 
  120         /* Umtx flags. */
  121         int                     uq_flags;
  122 #define UQF_UMTXQ       0x0001
  123 
  124         /* The thread waits on. */
  125         struct thread           *uq_thread;
  126 
  127         /*
  128          * Blocked on PI mutex. read can use chain lock
  129          * or umtx_lock, write must have both chain lock and
  130          * umtx_lock being hold.
  131          */
  132         struct umtx_pi          *uq_pi_blocked;
  133 
  134         /* On blocked list */
  135         TAILQ_ENTRY(umtx_q)     uq_lockq;
  136 
  137         /* Thread contending with us */
  138         TAILQ_HEAD(,umtx_pi)    uq_pi_contested;
  139 
  140         /* Inherited priority from PP mutex */
  141         u_char                  uq_inherited_pri;
  142 
  143         /* Spare queue ready to be reused */
  144         struct umtxq_queue      *uq_spare_queue;
  145 
  146         /* The queue we on */
  147         struct umtxq_queue      *uq_cur_queue;
  148 };
  149 
  150 TAILQ_HEAD(umtxq_head, umtx_q);
  151 
  152 /* Per-key wait-queue */
  153 struct umtxq_queue {
  154         struct umtxq_head       head;
  155         struct umtx_key         key;
  156         LIST_ENTRY(umtxq_queue) link;
  157         int                     length;
  158 };
  159 
  160 LIST_HEAD(umtxq_list, umtxq_queue);
  161 
  162 /* Userland lock object's wait-queue chain */
  163 struct umtxq_chain {
  164         /* Lock for this chain. */
  165         struct mtx              uc_lock;
  166 
  167         /* List of sleep queues. */
  168         struct umtxq_list       uc_queue[2];
  169 #define UMTX_SHARED_QUEUE       0
  170 #define UMTX_EXCLUSIVE_QUEUE    1
  171 
  172         LIST_HEAD(, umtxq_queue) uc_spare_queue;
  173 
  174         /* Busy flag */
  175         char                    uc_busy;
  176 
  177         /* Chain lock waiters */
  178         int                     uc_waiters;
  179 
  180         /* All PI in the list */
  181         TAILQ_HEAD(,umtx_pi)    uc_pi_list;
  182 
  183 #ifdef UMTX_PROFILING
  184         u_int                   length;
  185         u_int                   max_length;
  186 #endif
  187 };
  188 
  189 #define UMTXQ_LOCKED_ASSERT(uc)         mtx_assert(&(uc)->uc_lock, MA_OWNED)
  190 
  191 /*
  192  * Don't propagate time-sharing priority, there is a security reason,
  193  * a user can simply introduce PI-mutex, let thread A lock the mutex,
  194  * and let another thread B block on the mutex, because B is
  195  * sleeping, its priority will be boosted, this causes A's priority to
  196  * be boosted via priority propagating too and will never be lowered even
  197  * if it is using 100%CPU, this is unfair to other processes.
  198  */
  199 
  200 #define UPRI(td)        (((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
  201                           (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
  202                          PRI_MAX_TIMESHARE : (td)->td_user_pri)
  203 
  204 #define GOLDEN_RATIO_PRIME      2654404609U
  205 #ifndef UMTX_CHAINS
  206 #define UMTX_CHAINS             512
  207 #endif
  208 #define UMTX_SHIFTS             (__WORD_BIT - 9)
  209 
  210 #define GET_SHARE(flags)        \
  211     (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
  212 
  213 #define BUSY_SPINS              200
  214 
  215 struct abs_timeout {
  216         int clockid;
  217         bool is_abs_real;       /* TIMER_ABSTIME && CLOCK_REALTIME* */
  218         struct timespec cur;
  219         struct timespec end;
  220 };
  221 
  222 struct umtx_copyops {
  223         int     (*copyin_timeout)(const void *uaddr, struct timespec *tsp);
  224         int     (*copyin_umtx_time)(const void *uaddr, size_t size,
  225             struct _umtx_time *tp);
  226         int     (*copyin_robust_lists)(const void *uaddr, size_t size,
  227             struct umtx_robust_lists_params *rbp);
  228         int     (*copyout_timeout)(void *uaddr, size_t size,
  229             struct timespec *tsp);
  230         const size_t    timespec_sz;
  231         const size_t    umtx_time_sz;
  232         const bool      compat32;
  233 };
  234 
  235 _Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
  236 _Static_assert(__offsetof(struct umutex, m_spare[0]) ==
  237     __offsetof(struct umutex32, m_spare[0]), "m_spare32");
  238 
  239 int umtx_shm_vnobj_persistent = 0;
  240 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
  241     &umtx_shm_vnobj_persistent, 0,
  242     "False forces destruction of umtx attached to file, on last close");
  243 static int umtx_max_rb = 1000;
  244 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
  245     &umtx_max_rb, 0,
  246     "Maximum number of robust mutexes allowed for each thread");
  247 
  248 static uma_zone_t               umtx_pi_zone;
  249 static struct umtxq_chain       umtxq_chains[2][UMTX_CHAINS];
  250 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
  251 static int                      umtx_pi_allocated;
  252 
  253 static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  254     "umtx debug");
  255 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
  256     &umtx_pi_allocated, 0, "Allocated umtx_pi");
  257 static int umtx_verbose_rb = 1;
  258 SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
  259     &umtx_verbose_rb, 0,
  260     "");
  261 
  262 #ifdef UMTX_PROFILING
  263 static long max_length;
  264 SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
  265 static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  266     "umtx chain stats");
  267 #endif
  268 
  269 static void abs_timeout_update(struct abs_timeout *timo);
  270 
  271 static void umtx_shm_init(void);
  272 static void umtxq_sysinit(void *);
  273 static void umtxq_hash(struct umtx_key *key);
  274 static struct umtxq_chain *umtxq_getchain(struct umtx_key *key);
  275 static void umtxq_lock(struct umtx_key *key);
  276 static void umtxq_unlock(struct umtx_key *key);
  277 static void umtxq_busy(struct umtx_key *key);
  278 static void umtxq_unbusy(struct umtx_key *key);
  279 static void umtxq_insert_queue(struct umtx_q *uq, int q);
  280 static void umtxq_remove_queue(struct umtx_q *uq, int q);
  281 static int umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *);
  282 static int umtxq_count(struct umtx_key *key);
  283 static struct umtx_pi *umtx_pi_alloc(int);
  284 static void umtx_pi_free(struct umtx_pi *pi);
  285 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
  286     bool rb);
  287 static void umtx_thread_cleanup(struct thread *td);
  288 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
  289 
  290 #define umtxq_signal(key, nwake)        umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
  291 #define umtxq_insert(uq)        umtxq_insert_queue((uq), UMTX_SHARED_QUEUE)
  292 #define umtxq_remove(uq)        umtxq_remove_queue((uq), UMTX_SHARED_QUEUE)
  293 
  294 static struct mtx umtx_lock;
  295 
  296 #ifdef UMTX_PROFILING
  297 static void
  298 umtx_init_profiling(void)
  299 {
  300         struct sysctl_oid *chain_oid;
  301         char chain_name[10];
  302         int i;
  303 
  304         for (i = 0; i < UMTX_CHAINS; ++i) {
  305                 snprintf(chain_name, sizeof(chain_name), "%d", i);
  306                 chain_oid = SYSCTL_ADD_NODE(NULL,
  307                     SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO,
  308                     chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
  309                     "umtx hash stats");
  310                 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  311                     "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
  312                 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  313                     "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
  314         }
  315 }
  316 
  317 static int
  318 sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
  319 {
  320         char buf[512];
  321         struct sbuf sb;
  322         struct umtxq_chain *uc;
  323         u_int fract, i, j, tot, whole;
  324         u_int sf0, sf1, sf2, sf3, sf4;
  325         u_int si0, si1, si2, si3, si4;
  326         u_int sw0, sw1, sw2, sw3, sw4;
  327 
  328         sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
  329         for (i = 0; i < 2; i++) {
  330                 tot = 0;
  331                 for (j = 0; j < UMTX_CHAINS; ++j) {
  332                         uc = &umtxq_chains[i][j];
  333                         mtx_lock(&uc->uc_lock);
  334                         tot += uc->max_length;
  335                         mtx_unlock(&uc->uc_lock);
  336                 }
  337                 if (tot == 0)
  338                         sbuf_printf(&sb, "%u) Empty ", i);
  339                 else {
  340                         sf0 = sf1 = sf2 = sf3 = sf4 = 0;
  341                         si0 = si1 = si2 = si3 = si4 = 0;
  342                         sw0 = sw1 = sw2 = sw3 = sw4 = 0;
  343                         for (j = 0; j < UMTX_CHAINS; j++) {
  344                                 uc = &umtxq_chains[i][j];
  345                                 mtx_lock(&uc->uc_lock);
  346                                 whole = uc->max_length * 100;
  347                                 mtx_unlock(&uc->uc_lock);
  348                                 fract = (whole % tot) * 100;
  349                                 if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
  350                                         sf0 = fract;
  351                                         si0 = j;
  352                                         sw0 = whole;
  353                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw1,
  354                                     sf1)) {
  355                                         sf1 = fract;
  356                                         si1 = j;
  357                                         sw1 = whole;
  358                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw2,
  359                                     sf2)) {
  360                                         sf2 = fract;
  361                                         si2 = j;
  362                                         sw2 = whole;
  363                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw3,
  364                                     sf3)) {
  365                                         sf3 = fract;
  366                                         si3 = j;
  367                                         sw3 = whole;
  368                                 } else if (UPROF_PERC_BIGGER(whole, fract, sw4,
  369                                     sf4)) {
  370                                         sf4 = fract;
  371                                         si4 = j;
  372                                         sw4 = whole;
  373                                 }
  374                         }
  375                         sbuf_printf(&sb, "queue %u:\n", i);
  376                         sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
  377                             sf0 / tot, si0);
  378                         sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
  379                             sf1 / tot, si1);
  380                         sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
  381                             sf2 / tot, si2);
  382                         sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
  383                             sf3 / tot, si3);
  384                         sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
  385                             sf4 / tot, si4);
  386                 }
  387         }
  388         sbuf_trim(&sb);
  389         sbuf_finish(&sb);
  390         sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
  391         sbuf_delete(&sb);
  392         return (0);
  393 }
  394 
  395 static int
  396 sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
  397 {
  398         struct umtxq_chain *uc;
  399         u_int i, j;
  400         int clear, error;
  401 
  402         clear = 0;
  403         error = sysctl_handle_int(oidp, &clear, 0, req);
  404         if (error != 0 || req->newptr == NULL)
  405                 return (error);
  406 
  407         if (clear != 0) {
  408                 for (i = 0; i < 2; ++i) {
  409                         for (j = 0; j < UMTX_CHAINS; ++j) {
  410                                 uc = &umtxq_chains[i][j];
  411                                 mtx_lock(&uc->uc_lock);
  412                                 uc->length = 0;
  413                                 uc->max_length = 0;
  414                                 mtx_unlock(&uc->uc_lock);
  415                         }
  416                 }
  417         }
  418         return (0);
  419 }
  420 
  421 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
  422     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
  423     sysctl_debug_umtx_chains_clear, "I",
  424     "Clear umtx chains statistics");
  425 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
  426     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
  427     sysctl_debug_umtx_chains_peaks, "A",
  428     "Highest peaks in chains max length");
  429 #endif
  430 
  431 static void
  432 umtxq_sysinit(void *arg __unused)
  433 {
  434         int i, j;
  435 
  436         umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
  437                 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  438         for (i = 0; i < 2; ++i) {
  439                 for (j = 0; j < UMTX_CHAINS; ++j) {
  440                         mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
  441                                  MTX_DEF | MTX_DUPOK);
  442                         LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
  443                         LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
  444                         LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
  445                         TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
  446                         umtxq_chains[i][j].uc_busy = 0;
  447                         umtxq_chains[i][j].uc_waiters = 0;
  448 #ifdef UMTX_PROFILING
  449                         umtxq_chains[i][j].length = 0;
  450                         umtxq_chains[i][j].max_length = 0;
  451 #endif
  452                 }
  453         }
  454 #ifdef UMTX_PROFILING
  455         umtx_init_profiling();
  456 #endif
  457         mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
  458         umtx_shm_init();
  459 }
  460 
  461 struct umtx_q *
  462 umtxq_alloc(void)
  463 {
  464         struct umtx_q *uq;
  465 
  466         uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
  467         uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
  468             M_WAITOK | M_ZERO);
  469         TAILQ_INIT(&uq->uq_spare_queue->head);
  470         TAILQ_INIT(&uq->uq_pi_contested);
  471         uq->uq_inherited_pri = PRI_MAX;
  472         return (uq);
  473 }
  474 
  475 void
  476 umtxq_free(struct umtx_q *uq)
  477 {
  478 
  479         MPASS(uq->uq_spare_queue != NULL);
  480         free(uq->uq_spare_queue, M_UMTX);
  481         free(uq, M_UMTX);
  482 }
  483 
  484 static inline void
  485 umtxq_hash(struct umtx_key *key)
  486 {
  487         unsigned n;
  488 
  489         n = (uintptr_t)key->info.both.a + key->info.both.b;
  490         key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
  491 }
  492 
  493 static inline struct umtxq_chain *
  494 umtxq_getchain(struct umtx_key *key)
  495 {
  496 
  497         if (key->type <= TYPE_SEM)
  498                 return (&umtxq_chains[1][key->hash]);
  499         return (&umtxq_chains[0][key->hash]);
  500 }
  501 
  502 /*
  503  * Lock a chain.
  504  */
  505 static inline void
  506 umtxq_lock(struct umtx_key *key)
  507 {
  508         struct umtxq_chain *uc;
  509 
  510         uc = umtxq_getchain(key);
  511         mtx_lock(&uc->uc_lock);
  512 }
  513 
  514 /*
  515  * Unlock a chain.
  516  */
  517 static inline void
  518 umtxq_unlock(struct umtx_key *key)
  519 {
  520         struct umtxq_chain *uc;
  521 
  522         uc = umtxq_getchain(key);
  523         mtx_unlock(&uc->uc_lock);
  524 }
  525 
  526 /*
  527  * Set chain to busy state when following operation
  528  * may be blocked (kernel mutex can not be used).
  529  */
  530 static inline void
  531 umtxq_busy(struct umtx_key *key)
  532 {
  533         struct umtxq_chain *uc;
  534 
  535         uc = umtxq_getchain(key);
  536         mtx_assert(&uc->uc_lock, MA_OWNED);
  537         if (uc->uc_busy) {
  538 #ifdef SMP
  539                 if (smp_cpus > 1) {
  540                         int count = BUSY_SPINS;
  541                         if (count > 0) {
  542                                 umtxq_unlock(key);
  543                                 while (uc->uc_busy && --count > 0)
  544                                         cpu_spinwait();
  545                                 umtxq_lock(key);
  546                         }
  547                 }
  548 #endif
  549                 while (uc->uc_busy) {
  550                         uc->uc_waiters++;
  551                         msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
  552                         uc->uc_waiters--;
  553                 }
  554         }
  555         uc->uc_busy = 1;
  556 }
  557 
  558 /*
  559  * Unbusy a chain.
  560  */
  561 static inline void
  562 umtxq_unbusy(struct umtx_key *key)
  563 {
  564         struct umtxq_chain *uc;
  565 
  566         uc = umtxq_getchain(key);
  567         mtx_assert(&uc->uc_lock, MA_OWNED);
  568         KASSERT(uc->uc_busy != 0, ("not busy"));
  569         uc->uc_busy = 0;
  570         if (uc->uc_waiters)
  571                 wakeup_one(uc);
  572 }
  573 
  574 static inline void
  575 umtxq_unbusy_unlocked(struct umtx_key *key)
  576 {
  577 
  578         umtxq_lock(key);
  579         umtxq_unbusy(key);
  580         umtxq_unlock(key);
  581 }
  582 
  583 static struct umtxq_queue *
  584 umtxq_queue_lookup(struct umtx_key *key, int q)
  585 {
  586         struct umtxq_queue *uh;
  587         struct umtxq_chain *uc;
  588 
  589         uc = umtxq_getchain(key);
  590         UMTXQ_LOCKED_ASSERT(uc);
  591         LIST_FOREACH(uh, &uc->uc_queue[q], link) {
  592                 if (umtx_key_match(&uh->key, key))
  593                         return (uh);
  594         }
  595 
  596         return (NULL);
  597 }
  598 
  599 static inline void
  600 umtxq_insert_queue(struct umtx_q *uq, int q)
  601 {
  602         struct umtxq_queue *uh;
  603         struct umtxq_chain *uc;
  604 
  605         uc = umtxq_getchain(&uq->uq_key);
  606         UMTXQ_LOCKED_ASSERT(uc);
  607         KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
  608         uh = umtxq_queue_lookup(&uq->uq_key, q);
  609         if (uh != NULL) {
  610                 LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
  611         } else {
  612                 uh = uq->uq_spare_queue;
  613                 uh->key = uq->uq_key;
  614                 LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
  615 #ifdef UMTX_PROFILING
  616                 uc->length++;
  617                 if (uc->length > uc->max_length) {
  618                         uc->max_length = uc->length;
  619                         if (uc->max_length > max_length)
  620                                 max_length = uc->max_length;
  621                 }
  622 #endif
  623         }
  624         uq->uq_spare_queue = NULL;
  625 
  626         TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
  627         uh->length++;
  628         uq->uq_flags |= UQF_UMTXQ;
  629         uq->uq_cur_queue = uh;
  630         return;
  631 }
  632 
  633 static inline void
  634 umtxq_remove_queue(struct umtx_q *uq, int q)
  635 {
  636         struct umtxq_chain *uc;
  637         struct umtxq_queue *uh;
  638 
  639         uc = umtxq_getchain(&uq->uq_key);
  640         UMTXQ_LOCKED_ASSERT(uc);
  641         if (uq->uq_flags & UQF_UMTXQ) {
  642                 uh = uq->uq_cur_queue;
  643                 TAILQ_REMOVE(&uh->head, uq, uq_link);
  644                 uh->length--;
  645                 uq->uq_flags &= ~UQF_UMTXQ;
  646                 if (TAILQ_EMPTY(&uh->head)) {
  647                         KASSERT(uh->length == 0,
  648                             ("inconsistent umtxq_queue length"));
  649 #ifdef UMTX_PROFILING
  650                         uc->length--;
  651 #endif
  652                         LIST_REMOVE(uh, link);
  653                 } else {
  654                         uh = LIST_FIRST(&uc->uc_spare_queue);
  655                         KASSERT(uh != NULL, ("uc_spare_queue is empty"));
  656                         LIST_REMOVE(uh, link);
  657                 }
  658                 uq->uq_spare_queue = uh;
  659                 uq->uq_cur_queue = NULL;
  660         }
  661 }
  662 
  663 /*
  664  * Check if there are multiple waiters
  665  */
  666 static int
  667 umtxq_count(struct umtx_key *key)
  668 {
  669         struct umtxq_queue *uh;
  670 
  671         UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
  672         uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
  673         if (uh != NULL)
  674                 return (uh->length);
  675         return (0);
  676 }
  677 
  678 /*
  679  * Check if there are multiple PI waiters and returns first
  680  * waiter.
  681  */
  682 static int
  683 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
  684 {
  685         struct umtxq_queue *uh;
  686 
  687         *first = NULL;
  688         UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
  689         uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
  690         if (uh != NULL) {
  691                 *first = TAILQ_FIRST(&uh->head);
  692                 return (uh->length);
  693         }
  694         return (0);
  695 }
  696 
  697 /*
  698  * Wake up threads waiting on an userland object.
  699  */
  700 
  701 static int
  702 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
  703 {
  704         struct umtxq_queue *uh;
  705         struct umtx_q *uq;
  706         int ret;
  707 
  708         ret = 0;
  709         UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
  710         uh = umtxq_queue_lookup(key, q);
  711         if (uh != NULL) {
  712                 while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
  713                         umtxq_remove_queue(uq, q);
  714                         wakeup(uq);
  715                         if (++ret >= n_wake)
  716                                 return (ret);
  717                 }
  718         }
  719         return (ret);
  720 }
  721 
  722 /*
  723  * Wake up specified thread.
  724  */
  725 static inline void
  726 umtxq_signal_thread(struct umtx_q *uq)
  727 {
  728 
  729         UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
  730         umtxq_remove(uq);
  731         wakeup(uq);
  732 }
  733 
  734 static inline int
  735 tstohz(const struct timespec *tsp)
  736 {
  737         struct timeval tv;
  738 
  739         TIMESPEC_TO_TIMEVAL(&tv, tsp);
  740         return tvtohz(&tv);
  741 }
  742 
  743 static void
  744 abs_timeout_init(struct abs_timeout *timo, int clockid, int absolute,
  745         const struct timespec *timeout)
  746 {
  747 
  748         timo->clockid = clockid;
  749         if (!absolute) {
  750                 timo->is_abs_real = false;
  751                 abs_timeout_update(timo);
  752                 timespecadd(&timo->cur, timeout, &timo->end);
  753         } else {
  754                 timo->end = *timeout;
  755                 timo->is_abs_real = clockid == CLOCK_REALTIME ||
  756                     clockid == CLOCK_REALTIME_FAST ||
  757                     clockid == CLOCK_REALTIME_PRECISE;
  758                 /*
  759                  * If is_abs_real, umtxq_sleep will read the clock
  760                  * after setting td_rtcgen; otherwise, read it here.
  761                  */
  762                 if (!timo->is_abs_real) {
  763                         abs_timeout_update(timo);
  764                 }
  765         }
  766 }
  767 
  768 static void
  769 abs_timeout_init2(struct abs_timeout *timo, const struct _umtx_time *umtxtime)
  770 {
  771 
  772         abs_timeout_init(timo, umtxtime->_clockid,
  773             (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
  774 }
  775 
  776 static inline void
  777 abs_timeout_update(struct abs_timeout *timo)
  778 {
  779 
  780         kern_clock_gettime(curthread, timo->clockid, &timo->cur);
  781 }
  782 
  783 static int
  784 abs_timeout_gethz(struct abs_timeout *timo)
  785 {
  786         struct timespec tts;
  787 
  788         if (timespeccmp(&timo->end, &timo->cur, <=))
  789                 return (-1);
  790         timespecsub(&timo->end, &timo->cur, &tts);
  791         return (tstohz(&tts));
  792 }
  793 
  794 static uint32_t
  795 umtx_unlock_val(uint32_t flags, bool rb)
  796 {
  797 
  798         if (rb)
  799                 return (UMUTEX_RB_OWNERDEAD);
  800         else if ((flags & UMUTEX_NONCONSISTENT) != 0)
  801                 return (UMUTEX_RB_NOTRECOV);
  802         else
  803                 return (UMUTEX_UNOWNED);
  804 
  805 }
  806 
  807 /*
  808  * Put thread into sleep state, before sleeping, check if
  809  * thread was removed from umtx queue.
  810  */
  811 static inline int
  812 umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *abstime)
  813 {
  814         struct umtxq_chain *uc;
  815         int error, timo;
  816 
  817         if (abstime != NULL && abstime->is_abs_real) {
  818                 curthread->td_rtcgen = atomic_load_acq_int(&rtc_generation);
  819                 abs_timeout_update(abstime);
  820         }
  821 
  822         uc = umtxq_getchain(&uq->uq_key);
  823         UMTXQ_LOCKED_ASSERT(uc);
  824         for (;;) {
  825                 if (!(uq->uq_flags & UQF_UMTXQ)) {
  826                         error = 0;
  827                         break;
  828                 }
  829                 if (abstime != NULL) {
  830                         timo = abs_timeout_gethz(abstime);
  831                         if (timo < 0) {
  832                                 error = ETIMEDOUT;
  833                                 break;
  834                         }
  835                 } else
  836                         timo = 0;
  837                 error = msleep(uq, &uc->uc_lock, PCATCH | PDROP, wmesg, timo);
  838                 if (error == EINTR || error == ERESTART) {
  839                         umtxq_lock(&uq->uq_key);
  840                         break;
  841                 }
  842                 if (abstime != NULL) {
  843                         if (abstime->is_abs_real)
  844                                 curthread->td_rtcgen =
  845                                     atomic_load_acq_int(&rtc_generation);
  846                         abs_timeout_update(abstime);
  847                 }
  848                 umtxq_lock(&uq->uq_key);
  849         }
  850 
  851         curthread->td_rtcgen = 0;
  852         return (error);
  853 }
  854 
  855 /*
  856  * Convert userspace address into unique logical address.
  857  */
  858 int
  859 umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
  860 {
  861         struct thread *td = curthread;
  862         vm_map_t map;
  863         vm_map_entry_t entry;
  864         vm_pindex_t pindex;
  865         vm_prot_t prot;
  866         boolean_t wired;
  867 
  868         key->type = type;
  869         if (share == THREAD_SHARE) {
  870                 key->shared = 0;
  871                 key->info.private.vs = td->td_proc->p_vmspace;
  872                 key->info.private.addr = (uintptr_t)addr;
  873         } else {
  874                 MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
  875                 map = &td->td_proc->p_vmspace->vm_map;
  876                 if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
  877                     &entry, &key->info.shared.object, &pindex, &prot,
  878                     &wired) != KERN_SUCCESS) {
  879                         return (EFAULT);
  880                 }
  881 
  882                 if ((share == PROCESS_SHARE) ||
  883                     (share == AUTO_SHARE &&
  884                      VM_INHERIT_SHARE == entry->inheritance)) {
  885                         key->shared = 1;
  886                         key->info.shared.offset = (vm_offset_t)addr -
  887                             entry->start + entry->offset;
  888                         vm_object_reference(key->info.shared.object);
  889                 } else {
  890                         key->shared = 0;
  891                         key->info.private.vs = td->td_proc->p_vmspace;
  892                         key->info.private.addr = (uintptr_t)addr;
  893                 }
  894                 vm_map_lookup_done(map, entry);
  895         }
  896 
  897         umtxq_hash(key);
  898         return (0);
  899 }
  900 
  901 /*
  902  * Release key.
  903  */
  904 void
  905 umtx_key_release(struct umtx_key *key)
  906 {
  907         if (key->shared)
  908                 vm_object_deallocate(key->info.shared.object);
  909 }
  910 
  911 /*
  912  * Fetch and compare value, sleep on the address if value is not changed.
  913  */
  914 static int
  915 do_wait(struct thread *td, void *addr, u_long id,
  916     struct _umtx_time *timeout, int compat32, int is_private)
  917 {
  918         struct abs_timeout timo;
  919         struct umtx_q *uq;
  920         u_long tmp;
  921         uint32_t tmp32;
  922         int error = 0;
  923 
  924         uq = td->td_umtxq;
  925         if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
  926                 is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
  927                 return (error);
  928 
  929         if (timeout != NULL)
  930                 abs_timeout_init2(&timo, timeout);
  931 
  932         umtxq_lock(&uq->uq_key);
  933         umtxq_insert(uq);
  934         umtxq_unlock(&uq->uq_key);
  935         if (compat32 == 0) {
  936                 error = fueword(addr, &tmp);
  937                 if (error != 0)
  938                         error = EFAULT;
  939         } else {
  940                 error = fueword32(addr, &tmp32);
  941                 if (error == 0)
  942                         tmp = tmp32;
  943                 else
  944                         error = EFAULT;
  945         }
  946         umtxq_lock(&uq->uq_key);
  947         if (error == 0) {
  948                 if (tmp == id)
  949                         error = umtxq_sleep(uq, "uwait", timeout == NULL ?
  950                             NULL : &timo);
  951                 if ((uq->uq_flags & UQF_UMTXQ) == 0)
  952                         error = 0;
  953                 else
  954                         umtxq_remove(uq);
  955         } else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
  956                 umtxq_remove(uq);
  957         }
  958         umtxq_unlock(&uq->uq_key);
  959         umtx_key_release(&uq->uq_key);
  960         if (error == ERESTART)
  961                 error = EINTR;
  962         return (error);
  963 }
  964 
  965 /*
  966  * Wake up threads sleeping on the specified address.
  967  */
  968 int
  969 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
  970 {
  971         struct umtx_key key;
  972         int ret;
  973 
  974         if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
  975             is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
  976                 return (ret);
  977         umtxq_lock(&key);
  978         umtxq_signal(&key, n_wake);
  979         umtxq_unlock(&key);
  980         umtx_key_release(&key);
  981         return (0);
  982 }
  983 
  984 /*
  985  * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
  986  */
  987 static int
  988 do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
  989     struct _umtx_time *timeout, int mode)
  990 {
  991         struct abs_timeout timo;
  992         struct umtx_q *uq;
  993         uint32_t owner, old, id;
  994         int error, rv;
  995 
  996         id = td->td_tid;
  997         uq = td->td_umtxq;
  998         error = 0;
  999         if (timeout != NULL)
 1000                 abs_timeout_init2(&timo, timeout);
 1001 
 1002         /*
 1003          * Care must be exercised when dealing with umtx structure. It
 1004          * can fault on any access.
 1005          */
 1006         for (;;) {
 1007                 rv = fueword32(&m->m_owner, &owner);
 1008                 if (rv == -1)
 1009                         return (EFAULT);
 1010                 if (mode == _UMUTEX_WAIT) {
 1011                         if (owner == UMUTEX_UNOWNED ||
 1012                             owner == UMUTEX_CONTESTED ||
 1013                             owner == UMUTEX_RB_OWNERDEAD ||
 1014                             owner == UMUTEX_RB_NOTRECOV)
 1015                                 return (0);
 1016                 } else {
 1017                         /*
 1018                          * Robust mutex terminated.  Kernel duty is to
 1019                          * return EOWNERDEAD to the userspace.  The
 1020                          * umutex.m_flags UMUTEX_NONCONSISTENT is set
 1021                          * by the common userspace code.
 1022                          */
 1023                         if (owner == UMUTEX_RB_OWNERDEAD) {
 1024                                 rv = casueword32(&m->m_owner,
 1025                                     UMUTEX_RB_OWNERDEAD, &owner,
 1026                                     id | UMUTEX_CONTESTED);
 1027                                 if (rv == -1)
 1028                                         return (EFAULT);
 1029                                 if (rv == 0) {
 1030                                         MPASS(owner == UMUTEX_RB_OWNERDEAD);
 1031                                         return (EOWNERDEAD); /* success */
 1032                                 }
 1033                                 MPASS(rv == 1);
 1034                                 rv = thread_check_susp(td, false);
 1035                                 if (rv != 0)
 1036                                         return (rv);
 1037                                 continue;
 1038                         }
 1039                         if (owner == UMUTEX_RB_NOTRECOV)
 1040                                 return (ENOTRECOVERABLE);
 1041 
 1042                         /*
 1043                          * Try the uncontested case.  This should be
 1044                          * done in userland.
 1045                          */
 1046                         rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
 1047                             &owner, id);
 1048                         /* The address was invalid. */
 1049                         if (rv == -1)
 1050                                 return (EFAULT);
 1051 
 1052                         /* The acquire succeeded. */
 1053                         if (rv == 0) {
 1054                                 MPASS(owner == UMUTEX_UNOWNED);
 1055                                 return (0);
 1056                         }
 1057 
 1058                         /*
 1059                          * If no one owns it but it is contested try
 1060                          * to acquire it.
 1061                          */
 1062                         MPASS(rv == 1);
 1063                         if (owner == UMUTEX_CONTESTED) {
 1064                                 rv = casueword32(&m->m_owner,
 1065                                     UMUTEX_CONTESTED, &owner,
 1066                                     id | UMUTEX_CONTESTED);
 1067                                 /* The address was invalid. */
 1068                                 if (rv == -1)
 1069                                         return (EFAULT);
 1070                                 if (rv == 0) {
 1071                                         MPASS(owner == UMUTEX_CONTESTED);
 1072                                         return (0);
 1073                                 }
 1074                                 if (rv == 1) {
 1075                                         rv = thread_check_susp(td, false);
 1076                                         if (rv != 0)
 1077                                                 return (rv);
 1078                                 }
 1079 
 1080                                 /*
 1081                                  * If this failed the lock has
 1082                                  * changed, restart.
 1083                                  */
 1084                                 continue;
 1085                         }
 1086 
 1087                         /* rv == 1 but not contested, likely store failure */
 1088                         rv = thread_check_susp(td, false);
 1089                         if (rv != 0)
 1090                                 return (rv);
 1091                 }
 1092 
 1093                 if (mode == _UMUTEX_TRY)
 1094                         return (EBUSY);
 1095 
 1096                 /*
 1097                  * If we caught a signal, we have retried and now
 1098                  * exit immediately.
 1099                  */
 1100                 if (error != 0)
 1101                         return (error);
 1102 
 1103                 if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
 1104                     GET_SHARE(flags), &uq->uq_key)) != 0)
 1105                         return (error);
 1106 
 1107                 umtxq_lock(&uq->uq_key);
 1108                 umtxq_busy(&uq->uq_key);
 1109                 umtxq_insert(uq);
 1110                 umtxq_unlock(&uq->uq_key);
 1111 
 1112                 /*
 1113                  * Set the contested bit so that a release in user space
 1114                  * knows to use the system call for unlock.  If this fails
 1115                  * either some one else has acquired the lock or it has been
 1116                  * released.
 1117                  */
 1118                 rv = casueword32(&m->m_owner, owner, &old,
 1119                     owner | UMUTEX_CONTESTED);
 1120 
 1121                 /* The address was invalid or casueword failed to store. */
 1122                 if (rv == -1 || rv == 1) {
 1123                         umtxq_lock(&uq->uq_key);
 1124                         umtxq_remove(uq);
 1125                         umtxq_unbusy(&uq->uq_key);
 1126                         umtxq_unlock(&uq->uq_key);
 1127                         umtx_key_release(&uq->uq_key);
 1128                         if (rv == -1)
 1129                                 return (EFAULT);
 1130                         if (rv == 1) {
 1131                                 rv = thread_check_susp(td, false);
 1132                                 if (rv != 0)
 1133                                         return (rv);
 1134                         }
 1135                         continue;
 1136                 }
 1137 
 1138                 /*
 1139                  * We set the contested bit, sleep. Otherwise the lock changed
 1140                  * and we need to retry or we lost a race to the thread
 1141                  * unlocking the umtx.
 1142                  */
 1143                 umtxq_lock(&uq->uq_key);
 1144                 umtxq_unbusy(&uq->uq_key);
 1145                 MPASS(old == owner);
 1146                 error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
 1147                     NULL : &timo);
 1148                 umtxq_remove(uq);
 1149                 umtxq_unlock(&uq->uq_key);
 1150                 umtx_key_release(&uq->uq_key);
 1151 
 1152                 if (error == 0)
 1153                         error = thread_check_susp(td, false);
 1154         }
 1155 
 1156         return (0);
 1157 }
 1158 
 1159 /*
 1160  * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
 1161  */
 1162 static int
 1163 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
 1164 {
 1165         struct umtx_key key;
 1166         uint32_t owner, old, id, newlock;
 1167         int error, count;
 1168 
 1169         id = td->td_tid;
 1170 
 1171 again:
 1172         /*
 1173          * Make sure we own this mtx.
 1174          */
 1175         error = fueword32(&m->m_owner, &owner);
 1176         if (error == -1)
 1177                 return (EFAULT);
 1178 
 1179         if ((owner & ~UMUTEX_CONTESTED) != id)
 1180                 return (EPERM);
 1181 
 1182         newlock = umtx_unlock_val(flags, rb);
 1183         if ((owner & UMUTEX_CONTESTED) == 0) {
 1184                 error = casueword32(&m->m_owner, owner, &old, newlock);
 1185                 if (error == -1)
 1186                         return (EFAULT);
 1187                 if (error == 1) {
 1188                         error = thread_check_susp(td, false);
 1189                         if (error != 0)
 1190                                 return (error);
 1191                         goto again;
 1192                 }
 1193                 MPASS(old == owner);
 1194                 return (0);
 1195         }
 1196 
 1197         /* We should only ever be in here for contested locks */
 1198         if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
 1199             &key)) != 0)
 1200                 return (error);
 1201 
 1202         umtxq_lock(&key);
 1203         umtxq_busy(&key);
 1204         count = umtxq_count(&key);
 1205         umtxq_unlock(&key);
 1206 
 1207         /*
 1208          * When unlocking the umtx, it must be marked as unowned if
 1209          * there is zero or one thread only waiting for it.
 1210          * Otherwise, it must be marked as contested.
 1211          */
 1212         if (count > 1)
 1213                 newlock |= UMUTEX_CONTESTED;
 1214         error = casueword32(&m->m_owner, owner, &old, newlock);
 1215         umtxq_lock(&key);
 1216         umtxq_signal(&key, 1);
 1217         umtxq_unbusy(&key);
 1218         umtxq_unlock(&key);
 1219         umtx_key_release(&key);
 1220         if (error == -1)
 1221                 return (EFAULT);
 1222         if (error == 1) {
 1223                 if (old != owner)
 1224                         return (EINVAL);
 1225                 error = thread_check_susp(td, false);
 1226                 if (error != 0)
 1227                         return (error);
 1228                 goto again;
 1229         }
 1230         return (0);
 1231 }
 1232 
 1233 /*
 1234  * Check if the mutex is available and wake up a waiter,
 1235  * only for simple mutex.
 1236  */
 1237 static int
 1238 do_wake_umutex(struct thread *td, struct umutex *m)
 1239 {
 1240         struct umtx_key key;
 1241         uint32_t owner;
 1242         uint32_t flags;
 1243         int error;
 1244         int count;
 1245 
 1246 again:
 1247         error = fueword32(&m->m_owner, &owner);
 1248         if (error == -1)
 1249                 return (EFAULT);
 1250 
 1251         if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
 1252             owner != UMUTEX_RB_NOTRECOV)
 1253                 return (0);
 1254 
 1255         error = fueword32(&m->m_flags, &flags);
 1256         if (error == -1)
 1257                 return (EFAULT);
 1258 
 1259         /* We should only ever be in here for contested locks */
 1260         if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
 1261             &key)) != 0)
 1262                 return (error);
 1263 
 1264         umtxq_lock(&key);
 1265         umtxq_busy(&key);
 1266         count = umtxq_count(&key);
 1267         umtxq_unlock(&key);
 1268 
 1269         if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
 1270             owner != UMUTEX_RB_NOTRECOV) {
 1271                 error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
 1272                     UMUTEX_UNOWNED);
 1273                 if (error == -1) {
 1274                         error = EFAULT;
 1275                 } else if (error == 1) {
 1276                         umtxq_lock(&key);
 1277                         umtxq_unbusy(&key);
 1278                         umtxq_unlock(&key);
 1279                         umtx_key_release(&key);
 1280                         error = thread_check_susp(td, false);
 1281                         if (error != 0)
 1282                                 return (error);
 1283                         goto again;
 1284                 }
 1285         }
 1286 
 1287         umtxq_lock(&key);
 1288         if (error == 0 && count != 0) {
 1289                 MPASS((owner & ~UMUTEX_CONTESTED) == 0 ||
 1290                     owner == UMUTEX_RB_OWNERDEAD ||
 1291                     owner == UMUTEX_RB_NOTRECOV);
 1292                 umtxq_signal(&key, 1);
 1293         }
 1294         umtxq_unbusy(&key);
 1295         umtxq_unlock(&key);
 1296         umtx_key_release(&key);
 1297         return (error);
 1298 }
 1299 
 1300 /*
 1301  * Check if the mutex has waiters and tries to fix contention bit.
 1302  */
 1303 static int
 1304 do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
 1305 {
 1306         struct umtx_key key;
 1307         uint32_t owner, old;
 1308         int type;
 1309         int error;
 1310         int count;
 1311 
 1312         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
 1313             UMUTEX_ROBUST)) {
 1314         case 0:
 1315         case UMUTEX_ROBUST:
 1316                 type = TYPE_NORMAL_UMUTEX;
 1317                 break;
 1318         case UMUTEX_PRIO_INHERIT:
 1319                 type = TYPE_PI_UMUTEX;
 1320                 break;
 1321         case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
 1322                 type = TYPE_PI_ROBUST_UMUTEX;
 1323                 break;
 1324         case UMUTEX_PRIO_PROTECT:
 1325                 type = TYPE_PP_UMUTEX;
 1326                 break;
 1327         case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
 1328                 type = TYPE_PP_ROBUST_UMUTEX;
 1329                 break;
 1330         default:
 1331                 return (EINVAL);
 1332         }
 1333         if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
 1334                 return (error);
 1335 
 1336         owner = 0;
 1337         umtxq_lock(&key);
 1338         umtxq_busy(&key);
 1339         count = umtxq_count(&key);
 1340         umtxq_unlock(&key);
 1341 
 1342         error = fueword32(&m->m_owner, &owner);
 1343         if (error == -1)
 1344                 error = EFAULT;
 1345 
 1346         /*
 1347          * Only repair contention bit if there is a waiter, this means
 1348          * the mutex is still being referenced by userland code,
 1349          * otherwise don't update any memory.
 1350          */
 1351         while (error == 0 && (owner & UMUTEX_CONTESTED) == 0 &&
 1352             (count > 1 || (count == 1 && (owner & ~UMUTEX_CONTESTED) != 0))) {
 1353                 error = casueword32(&m->m_owner, owner, &old,
 1354                     owner | UMUTEX_CONTESTED);
 1355                 if (error == -1) {
 1356                         error = EFAULT;
 1357                         break;
 1358                 }
 1359                 if (error == 0) {
 1360                         MPASS(old == owner);
 1361                         break;
 1362                 }
 1363                 owner = old;
 1364                 error = thread_check_susp(td, false);
 1365         }
 1366 
 1367         umtxq_lock(&key);
 1368         if (error == EFAULT) {
 1369                 umtxq_signal(&key, INT_MAX);
 1370         } else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
 1371             owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
 1372                 umtxq_signal(&key, 1);
 1373         umtxq_unbusy(&key);
 1374         umtxq_unlock(&key);
 1375         umtx_key_release(&key);
 1376         return (error);
 1377 }
 1378 
 1379 static inline struct umtx_pi *
 1380 umtx_pi_alloc(int flags)
 1381 {
 1382         struct umtx_pi *pi;
 1383 
 1384         pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
 1385         TAILQ_INIT(&pi->pi_blocked);
 1386         atomic_add_int(&umtx_pi_allocated, 1);
 1387         return (pi);
 1388 }
 1389 
 1390 static inline void
 1391 umtx_pi_free(struct umtx_pi *pi)
 1392 {
 1393         uma_zfree(umtx_pi_zone, pi);
 1394         atomic_add_int(&umtx_pi_allocated, -1);
 1395 }
 1396 
 1397 /*
 1398  * Adjust the thread's position on a pi_state after its priority has been
 1399  * changed.
 1400  */
 1401 static int
 1402 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
 1403 {
 1404         struct umtx_q *uq, *uq1, *uq2;
 1405         struct thread *td1;
 1406 
 1407         mtx_assert(&umtx_lock, MA_OWNED);
 1408         if (pi == NULL)
 1409                 return (0);
 1410 
 1411         uq = td->td_umtxq;
 1412 
 1413         /*
 1414          * Check if the thread needs to be moved on the blocked chain.
 1415          * It needs to be moved if either its priority is lower than
 1416          * the previous thread or higher than the next thread.
 1417          */
 1418         uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
 1419         uq2 = TAILQ_NEXT(uq, uq_lockq);
 1420         if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
 1421             (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
 1422                 /*
 1423                  * Remove thread from blocked chain and determine where
 1424                  * it should be moved to.
 1425                  */
 1426                 TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
 1427                 TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
 1428                         td1 = uq1->uq_thread;
 1429                         MPASS(td1->td_proc->p_magic == P_MAGIC);
 1430                         if (UPRI(td1) > UPRI(td))
 1431                                 break;
 1432                 }
 1433 
 1434                 if (uq1 == NULL)
 1435                         TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
 1436                 else
 1437                         TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
 1438         }
 1439         return (1);
 1440 }
 1441 
 1442 static struct umtx_pi *
 1443 umtx_pi_next(struct umtx_pi *pi)
 1444 {
 1445         struct umtx_q *uq_owner;
 1446 
 1447         if (pi->pi_owner == NULL)
 1448                 return (NULL);
 1449         uq_owner = pi->pi_owner->td_umtxq;
 1450         if (uq_owner == NULL)
 1451                 return (NULL);
 1452         return (uq_owner->uq_pi_blocked);
 1453 }
 1454 
 1455 /*
 1456  * Floyd's Cycle-Finding Algorithm.
 1457  */
 1458 static bool
 1459 umtx_pi_check_loop(struct umtx_pi *pi)
 1460 {
 1461         struct umtx_pi *pi1;    /* fast iterator */
 1462 
 1463         mtx_assert(&umtx_lock, MA_OWNED);
 1464         if (pi == NULL)
 1465                 return (false);
 1466         pi1 = pi;
 1467         for (;;) {
 1468                 pi = umtx_pi_next(pi);
 1469                 if (pi == NULL)
 1470                         break;
 1471                 pi1 = umtx_pi_next(pi1);
 1472                 if (pi1 == NULL)
 1473                         break;
 1474                 pi1 = umtx_pi_next(pi1);
 1475                 if (pi1 == NULL)
 1476                         break;
 1477                 if (pi == pi1)
 1478                         return (true);
 1479         }
 1480         return (false);
 1481 }
 1482 
 1483 /*
 1484  * Propagate priority when a thread is blocked on POSIX
 1485  * PI mutex.
 1486  */
 1487 static void
 1488 umtx_propagate_priority(struct thread *td)
 1489 {
 1490         struct umtx_q *uq;
 1491         struct umtx_pi *pi;
 1492         int pri;
 1493 
 1494         mtx_assert(&umtx_lock, MA_OWNED);
 1495         pri = UPRI(td);
 1496         uq = td->td_umtxq;
 1497         pi = uq->uq_pi_blocked;
 1498         if (pi == NULL)
 1499                 return;
 1500         if (umtx_pi_check_loop(pi))
 1501                 return;
 1502 
 1503         for (;;) {
 1504                 td = pi->pi_owner;
 1505                 if (td == NULL || td == curthread)
 1506                         return;
 1507 
 1508                 MPASS(td->td_proc != NULL);
 1509                 MPASS(td->td_proc->p_magic == P_MAGIC);
 1510 
 1511                 thread_lock(td);
 1512                 if (td->td_lend_user_pri > pri)
 1513                         sched_lend_user_prio(td, pri);
 1514                 else {
 1515                         thread_unlock(td);
 1516                         break;
 1517                 }
 1518                 thread_unlock(td);
 1519 
 1520                 /*
 1521                  * Pick up the lock that td is blocked on.
 1522                  */
 1523                 uq = td->td_umtxq;
 1524                 pi = uq->uq_pi_blocked;
 1525                 if (pi == NULL)
 1526                         break;
 1527                 /* Resort td on the list if needed. */
 1528                 umtx_pi_adjust_thread(pi, td);
 1529         }
 1530 }
 1531 
 1532 /*
 1533  * Unpropagate priority for a PI mutex when a thread blocked on
 1534  * it is interrupted by signal or resumed by others.
 1535  */
 1536 static void
 1537 umtx_repropagate_priority(struct umtx_pi *pi)
 1538 {
 1539         struct umtx_q *uq, *uq_owner;
 1540         struct umtx_pi *pi2;
 1541         int pri;
 1542 
 1543         mtx_assert(&umtx_lock, MA_OWNED);
 1544 
 1545         if (umtx_pi_check_loop(pi))
 1546                 return;
 1547         while (pi != NULL && pi->pi_owner != NULL) {
 1548                 pri = PRI_MAX;
 1549                 uq_owner = pi->pi_owner->td_umtxq;
 1550 
 1551                 TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
 1552                         uq = TAILQ_FIRST(&pi2->pi_blocked);
 1553                         if (uq != NULL) {
 1554                                 if (pri > UPRI(uq->uq_thread))
 1555                                         pri = UPRI(uq->uq_thread);
 1556                         }
 1557                 }
 1558 
 1559                 if (pri > uq_owner->uq_inherited_pri)
 1560                         pri = uq_owner->uq_inherited_pri;
 1561                 thread_lock(pi->pi_owner);
 1562                 sched_lend_user_prio(pi->pi_owner, pri);
 1563                 thread_unlock(pi->pi_owner);
 1564                 if ((pi = uq_owner->uq_pi_blocked) != NULL)
 1565                         umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
 1566         }
 1567 }
 1568 
 1569 /*
 1570  * Insert a PI mutex into owned list.
 1571  */
 1572 static void
 1573 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
 1574 {
 1575         struct umtx_q *uq_owner;
 1576 
 1577         uq_owner = owner->td_umtxq;
 1578         mtx_assert(&umtx_lock, MA_OWNED);
 1579         MPASS(pi->pi_owner == NULL);
 1580         pi->pi_owner = owner;
 1581         TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
 1582 }
 1583 
 1584 /*
 1585  * Disown a PI mutex, and remove it from the owned list.
 1586  */
 1587 static void
 1588 umtx_pi_disown(struct umtx_pi *pi)
 1589 {
 1590 
 1591         mtx_assert(&umtx_lock, MA_OWNED);
 1592         TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
 1593         pi->pi_owner = NULL;
 1594 }
 1595 
 1596 /*
 1597  * Claim ownership of a PI mutex.
 1598  */
 1599 static int
 1600 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
 1601 {
 1602         struct umtx_q *uq;
 1603         int pri;
 1604 
 1605         mtx_lock(&umtx_lock);
 1606         if (pi->pi_owner == owner) {
 1607                 mtx_unlock(&umtx_lock);
 1608                 return (0);
 1609         }
 1610 
 1611         if (pi->pi_owner != NULL) {
 1612                 /*
 1613                  * userland may have already messed the mutex, sigh.
 1614                  */
 1615                 mtx_unlock(&umtx_lock);
 1616                 return (EPERM);
 1617         }
 1618         umtx_pi_setowner(pi, owner);
 1619         uq = TAILQ_FIRST(&pi->pi_blocked);
 1620         if (uq != NULL) {
 1621                 pri = UPRI(uq->uq_thread);
 1622                 thread_lock(owner);
 1623                 if (pri < UPRI(owner))
 1624                         sched_lend_user_prio(owner, pri);
 1625                 thread_unlock(owner);
 1626         }
 1627         mtx_unlock(&umtx_lock);
 1628         return (0);
 1629 }
 1630 
 1631 /*
 1632  * Adjust a thread's order position in its blocked PI mutex,
 1633  * this may result new priority propagating process.
 1634  */
 1635 void
 1636 umtx_pi_adjust(struct thread *td, u_char oldpri)
 1637 {
 1638         struct umtx_q *uq;
 1639         struct umtx_pi *pi;
 1640 
 1641         uq = td->td_umtxq;
 1642         mtx_lock(&umtx_lock);
 1643         /*
 1644          * Pick up the lock that td is blocked on.
 1645          */
 1646         pi = uq->uq_pi_blocked;
 1647         if (pi != NULL) {
 1648                 umtx_pi_adjust_thread(pi, td);
 1649                 umtx_repropagate_priority(pi);
 1650         }
 1651         mtx_unlock(&umtx_lock);
 1652 }
 1653 
 1654 /*
 1655  * Sleep on a PI mutex.
 1656  */
 1657 static int
 1658 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
 1659     const char *wmesg, struct abs_timeout *timo, bool shared)
 1660 {
 1661         struct thread *td, *td1;
 1662         struct umtx_q *uq1;
 1663         int error, pri;
 1664 #ifdef INVARIANTS
 1665         struct umtxq_chain *uc;
 1666 
 1667         uc = umtxq_getchain(&pi->pi_key);
 1668 #endif
 1669         error = 0;
 1670         td = uq->uq_thread;
 1671         KASSERT(td == curthread, ("inconsistent uq_thread"));
 1672         UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
 1673         KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
 1674         umtxq_insert(uq);
 1675         mtx_lock(&umtx_lock);
 1676         if (pi->pi_owner == NULL) {
 1677                 mtx_unlock(&umtx_lock);
 1678                 td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
 1679                 mtx_lock(&umtx_lock);
 1680                 if (td1 != NULL) {
 1681                         if (pi->pi_owner == NULL)
 1682                                 umtx_pi_setowner(pi, td1);
 1683                         PROC_UNLOCK(td1->td_proc);
 1684                 }
 1685         }
 1686 
 1687         TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
 1688                 pri = UPRI(uq1->uq_thread);
 1689                 if (pri > UPRI(td))
 1690                         break;
 1691         }
 1692 
 1693         if (uq1 != NULL)
 1694                 TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
 1695         else
 1696                 TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
 1697 
 1698         uq->uq_pi_blocked = pi;
 1699         thread_lock(td);
 1700         td->td_flags |= TDF_UPIBLOCKED;
 1701         thread_unlock(td);
 1702         umtx_propagate_priority(td);
 1703         mtx_unlock(&umtx_lock);
 1704         umtxq_unbusy(&uq->uq_key);
 1705 
 1706         error = umtxq_sleep(uq, wmesg, timo);
 1707         umtxq_remove(uq);
 1708 
 1709         mtx_lock(&umtx_lock);
 1710         uq->uq_pi_blocked = NULL;
 1711         thread_lock(td);
 1712         td->td_flags &= ~TDF_UPIBLOCKED;
 1713         thread_unlock(td);
 1714         TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
 1715         umtx_repropagate_priority(pi);
 1716         mtx_unlock(&umtx_lock);
 1717         umtxq_unlock(&uq->uq_key);
 1718 
 1719         return (error);
 1720 }
 1721 
 1722 /*
 1723  * Add reference count for a PI mutex.
 1724  */
 1725 static void
 1726 umtx_pi_ref(struct umtx_pi *pi)
 1727 {
 1728 
 1729         UMTXQ_LOCKED_ASSERT(umtxq_getchain(&pi->pi_key));
 1730         pi->pi_refcount++;
 1731 }
 1732 
 1733 /*
 1734  * Decrease reference count for a PI mutex, if the counter
 1735  * is decreased to zero, its memory space is freed.
 1736  */
 1737 static void
 1738 umtx_pi_unref(struct umtx_pi *pi)
 1739 {
 1740         struct umtxq_chain *uc;
 1741 
 1742         uc = umtxq_getchain(&pi->pi_key);
 1743         UMTXQ_LOCKED_ASSERT(uc);
 1744         KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
 1745         if (--pi->pi_refcount == 0) {
 1746                 mtx_lock(&umtx_lock);
 1747                 if (pi->pi_owner != NULL)
 1748                         umtx_pi_disown(pi);
 1749                 KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
 1750                         ("blocked queue not empty"));
 1751                 mtx_unlock(&umtx_lock);
 1752                 TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
 1753                 umtx_pi_free(pi);
 1754         }
 1755 }
 1756 
 1757 /*
 1758  * Find a PI mutex in hash table.
 1759  */
 1760 static struct umtx_pi *
 1761 umtx_pi_lookup(struct umtx_key *key)
 1762 {
 1763         struct umtxq_chain *uc;
 1764         struct umtx_pi *pi;
 1765 
 1766         uc = umtxq_getchain(key);
 1767         UMTXQ_LOCKED_ASSERT(uc);
 1768 
 1769         TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
 1770                 if (umtx_key_match(&pi->pi_key, key)) {
 1771                         return (pi);
 1772                 }
 1773         }
 1774         return (NULL);
 1775 }
 1776 
 1777 /*
 1778  * Insert a PI mutex into hash table.
 1779  */
 1780 static inline void
 1781 umtx_pi_insert(struct umtx_pi *pi)
 1782 {
 1783         struct umtxq_chain *uc;
 1784 
 1785         uc = umtxq_getchain(&pi->pi_key);
 1786         UMTXQ_LOCKED_ASSERT(uc);
 1787         TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
 1788 }
 1789 
 1790 /*
 1791  * Lock a PI mutex.
 1792  */
 1793 static int
 1794 do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
 1795     struct _umtx_time *timeout, int try)
 1796 {
 1797         struct abs_timeout timo;
 1798         struct umtx_q *uq;
 1799         struct umtx_pi *pi, *new_pi;
 1800         uint32_t id, old_owner, owner, old;
 1801         int error, rv;
 1802 
 1803         id = td->td_tid;
 1804         uq = td->td_umtxq;
 1805 
 1806         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 1807             TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
 1808             &uq->uq_key)) != 0)
 1809                 return (error);
 1810 
 1811         if (timeout != NULL)
 1812                 abs_timeout_init2(&timo, timeout);
 1813 
 1814         umtxq_lock(&uq->uq_key);
 1815         pi = umtx_pi_lookup(&uq->uq_key);
 1816         if (pi == NULL) {
 1817                 new_pi = umtx_pi_alloc(M_NOWAIT);
 1818                 if (new_pi == NULL) {
 1819                         umtxq_unlock(&uq->uq_key);
 1820                         new_pi = umtx_pi_alloc(M_WAITOK);
 1821                         umtxq_lock(&uq->uq_key);
 1822                         pi = umtx_pi_lookup(&uq->uq_key);
 1823                         if (pi != NULL) {
 1824                                 umtx_pi_free(new_pi);
 1825                                 new_pi = NULL;
 1826                         }
 1827                 }
 1828                 if (new_pi != NULL) {
 1829                         new_pi->pi_key = uq->uq_key;
 1830                         umtx_pi_insert(new_pi);
 1831                         pi = new_pi;
 1832                 }
 1833         }
 1834         umtx_pi_ref(pi);
 1835         umtxq_unlock(&uq->uq_key);
 1836 
 1837         /*
 1838          * Care must be exercised when dealing with umtx structure.  It
 1839          * can fault on any access.
 1840          */
 1841         for (;;) {
 1842                 /*
 1843                  * Try the uncontested case.  This should be done in userland.
 1844                  */
 1845                 rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
 1846                 /* The address was invalid. */
 1847                 if (rv == -1) {
 1848                         error = EFAULT;
 1849                         break;
 1850                 }
 1851                 /* The acquire succeeded. */
 1852                 if (rv == 0) {
 1853                         MPASS(owner == UMUTEX_UNOWNED);
 1854                         error = 0;
 1855                         break;
 1856                 }
 1857 
 1858                 if (owner == UMUTEX_RB_NOTRECOV) {
 1859                         error = ENOTRECOVERABLE;
 1860                         break;
 1861                 }
 1862 
 1863                 /*
 1864                  * Avoid overwriting a possible error from sleep due
 1865                  * to the pending signal with suspension check result.
 1866                  */
 1867                 if (error == 0) {
 1868                         error = thread_check_susp(td, true);
 1869                         if (error != 0)
 1870                                 break;
 1871                 }
 1872 
 1873                 /* If no one owns it but it is contested try to acquire it. */
 1874                 if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
 1875                         old_owner = owner;
 1876                         rv = casueword32(&m->m_owner, owner, &owner,
 1877                             id | UMUTEX_CONTESTED);
 1878                         /* The address was invalid. */
 1879                         if (rv == -1) {
 1880                                 error = EFAULT;
 1881                                 break;
 1882                         }
 1883                         if (rv == 1) {
 1884                                 if (error == 0) {
 1885                                         error = thread_check_susp(td, true);
 1886                                         if (error != 0)
 1887                                                 break;
 1888                                 }
 1889 
 1890                                 /*
 1891                                  * If this failed the lock could
 1892                                  * changed, restart.
 1893                                  */
 1894                                 continue;
 1895                         }
 1896 
 1897                         MPASS(rv == 0);
 1898                         MPASS(owner == old_owner);
 1899                         umtxq_lock(&uq->uq_key);
 1900                         umtxq_busy(&uq->uq_key);
 1901                         error = umtx_pi_claim(pi, td);
 1902                         umtxq_unbusy(&uq->uq_key);
 1903                         umtxq_unlock(&uq->uq_key);
 1904                         if (error != 0) {
 1905                                 /*
 1906                                  * Since we're going to return an
 1907                                  * error, restore the m_owner to its
 1908                                  * previous, unowned state to avoid
 1909                                  * compounding the problem.
 1910                                  */
 1911                                 (void)casuword32(&m->m_owner,
 1912                                     id | UMUTEX_CONTESTED, old_owner);
 1913                         }
 1914                         if (error == 0 && old_owner == UMUTEX_RB_OWNERDEAD)
 1915                                 error = EOWNERDEAD;
 1916                         break;
 1917                 }
 1918 
 1919                 if ((owner & ~UMUTEX_CONTESTED) == id) {
 1920                         error = EDEADLK;
 1921                         break;
 1922                 }
 1923 
 1924                 if (try != 0) {
 1925                         error = EBUSY;
 1926                         break;
 1927                 }
 1928 
 1929                 /*
 1930                  * If we caught a signal, we have retried and now
 1931                  * exit immediately.
 1932                  */
 1933                 if (error != 0)
 1934                         break;
 1935 
 1936                 umtxq_lock(&uq->uq_key);
 1937                 umtxq_busy(&uq->uq_key);
 1938                 umtxq_unlock(&uq->uq_key);
 1939 
 1940                 /*
 1941                  * Set the contested bit so that a release in user space
 1942                  * knows to use the system call for unlock.  If this fails
 1943                  * either some one else has acquired the lock or it has been
 1944                  * released.
 1945                  */
 1946                 rv = casueword32(&m->m_owner, owner, &old, owner |
 1947                     UMUTEX_CONTESTED);
 1948 
 1949                 /* The address was invalid. */
 1950                 if (rv == -1) {
 1951                         umtxq_unbusy_unlocked(&uq->uq_key);
 1952                         error = EFAULT;
 1953                         break;
 1954                 }
 1955                 if (rv == 1) {
 1956                         umtxq_unbusy_unlocked(&uq->uq_key);
 1957                         error = thread_check_susp(td, true);
 1958                         if (error != 0)
 1959                                 break;
 1960 
 1961                         /*
 1962                          * The lock changed and we need to retry or we
 1963                          * lost a race to the thread unlocking the
 1964                          * umtx.  Note that the UMUTEX_RB_OWNERDEAD
 1965                          * value for owner is impossible there.
 1966                          */
 1967                         continue;
 1968                 }
 1969 
 1970                 umtxq_lock(&uq->uq_key);
 1971 
 1972                 /* We set the contested bit, sleep. */
 1973                 MPASS(old == owner);
 1974                 error = umtxq_sleep_pi(uq, pi, owner & ~UMUTEX_CONTESTED,
 1975                     "umtxpi", timeout == NULL ? NULL : &timo,
 1976                     (flags & USYNC_PROCESS_SHARED) != 0);
 1977                 if (error != 0)
 1978                         continue;
 1979 
 1980                 error = thread_check_susp(td, false);
 1981                 if (error != 0)
 1982                         break;
 1983         }
 1984 
 1985         umtxq_lock(&uq->uq_key);
 1986         umtx_pi_unref(pi);
 1987         umtxq_unlock(&uq->uq_key);
 1988 
 1989         umtx_key_release(&uq->uq_key);
 1990         return (error);
 1991 }
 1992 
 1993 /*
 1994  * Unlock a PI mutex.
 1995  */
 1996 static int
 1997 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
 1998 {
 1999         struct umtx_key key;
 2000         struct umtx_q *uq_first, *uq_first2, *uq_me;
 2001         struct umtx_pi *pi, *pi2;
 2002         uint32_t id, new_owner, old, owner;
 2003         int count, error, pri;
 2004 
 2005         id = td->td_tid;
 2006 
 2007 usrloop:
 2008         /*
 2009          * Make sure we own this mtx.
 2010          */
 2011         error = fueword32(&m->m_owner, &owner);
 2012         if (error == -1)
 2013                 return (EFAULT);
 2014 
 2015         if ((owner & ~UMUTEX_CONTESTED) != id)
 2016                 return (EPERM);
 2017 
 2018         new_owner = umtx_unlock_val(flags, rb);
 2019 
 2020         /* This should be done in userland */
 2021         if ((owner & UMUTEX_CONTESTED) == 0) {
 2022                 error = casueword32(&m->m_owner, owner, &old, new_owner);
 2023                 if (error == -1)
 2024                         return (EFAULT);
 2025                 if (error == 1) {
 2026                         error = thread_check_susp(td, true);
 2027                         if (error != 0)
 2028                                 return (error);
 2029                         goto usrloop;
 2030                 }
 2031                 if (old == owner)
 2032                         return (0);
 2033                 owner = old;
 2034         }
 2035 
 2036         /* We should only ever be in here for contested locks */
 2037         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 2038             TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
 2039             &key)) != 0)
 2040                 return (error);
 2041 
 2042         umtxq_lock(&key);
 2043         umtxq_busy(&key);
 2044         count = umtxq_count_pi(&key, &uq_first);
 2045         if (uq_first != NULL) {
 2046                 mtx_lock(&umtx_lock);
 2047                 pi = uq_first->uq_pi_blocked;
 2048                 KASSERT(pi != NULL, ("pi == NULL?"));
 2049                 if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
 2050                         mtx_unlock(&umtx_lock);
 2051                         umtxq_unbusy(&key);
 2052                         umtxq_unlock(&key);
 2053                         umtx_key_release(&key);
 2054                         /* userland messed the mutex */
 2055                         return (EPERM);
 2056                 }
 2057                 uq_me = td->td_umtxq;
 2058                 if (pi->pi_owner == td)
 2059                         umtx_pi_disown(pi);
 2060                 /* get highest priority thread which is still sleeping. */
 2061                 uq_first = TAILQ_FIRST(&pi->pi_blocked);
 2062                 while (uq_first != NULL &&
 2063                     (uq_first->uq_flags & UQF_UMTXQ) == 0) {
 2064                         uq_first = TAILQ_NEXT(uq_first, uq_lockq);
 2065                 }
 2066                 pri = PRI_MAX;
 2067                 TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
 2068                         uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
 2069                         if (uq_first2 != NULL) {
 2070                                 if (pri > UPRI(uq_first2->uq_thread))
 2071                                         pri = UPRI(uq_first2->uq_thread);
 2072                         }
 2073                 }
 2074                 thread_lock(td);
 2075                 sched_lend_user_prio(td, pri);
 2076                 thread_unlock(td);
 2077                 mtx_unlock(&umtx_lock);
 2078                 if (uq_first)
 2079                         umtxq_signal_thread(uq_first);
 2080         } else {
 2081                 pi = umtx_pi_lookup(&key);
 2082                 /*
 2083                  * A umtx_pi can exist if a signal or timeout removed the
 2084                  * last waiter from the umtxq, but there is still
 2085                  * a thread in do_lock_pi() holding the umtx_pi.
 2086                  */
 2087                 if (pi != NULL) {
 2088                         /*
 2089                          * The umtx_pi can be unowned, such as when a thread
 2090                          * has just entered do_lock_pi(), allocated the
 2091                          * umtx_pi, and unlocked the umtxq.
 2092                          * If the current thread owns it, it must disown it.
 2093                          */
 2094                         mtx_lock(&umtx_lock);
 2095                         if (pi->pi_owner == td)
 2096                                 umtx_pi_disown(pi);
 2097                         mtx_unlock(&umtx_lock);
 2098                 }
 2099         }
 2100         umtxq_unlock(&key);
 2101 
 2102         /*
 2103          * When unlocking the umtx, it must be marked as unowned if
 2104          * there is zero or one thread only waiting for it.
 2105          * Otherwise, it must be marked as contested.
 2106          */
 2107 
 2108         if (count > 1)
 2109                 new_owner |= UMUTEX_CONTESTED;
 2110 again:
 2111         error = casueword32(&m->m_owner, owner, &old, new_owner);
 2112         if (error == 1) {
 2113                 error = thread_check_susp(td, false);
 2114                 if (error == 0)
 2115                         goto again;
 2116         }
 2117         umtxq_unbusy_unlocked(&key);
 2118         umtx_key_release(&key);
 2119         if (error == -1)
 2120                 return (EFAULT);
 2121         if (error == 0 && old != owner)
 2122                 return (EINVAL);
 2123         return (error);
 2124 }
 2125 
 2126 /*
 2127  * Lock a PP mutex.
 2128  */
 2129 static int
 2130 do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
 2131     struct _umtx_time *timeout, int try)
 2132 {
 2133         struct abs_timeout timo;
 2134         struct umtx_q *uq, *uq2;
 2135         struct umtx_pi *pi;
 2136         uint32_t ceiling;
 2137         uint32_t owner, id;
 2138         int error, pri, old_inherited_pri, su, rv;
 2139 
 2140         id = td->td_tid;
 2141         uq = td->td_umtxq;
 2142         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 2143             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
 2144             &uq->uq_key)) != 0)
 2145                 return (error);
 2146 
 2147         if (timeout != NULL)
 2148                 abs_timeout_init2(&timo, timeout);
 2149 
 2150         su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
 2151         for (;;) {
 2152                 old_inherited_pri = uq->uq_inherited_pri;
 2153                 umtxq_lock(&uq->uq_key);
 2154                 umtxq_busy(&uq->uq_key);
 2155                 umtxq_unlock(&uq->uq_key);
 2156 
 2157                 rv = fueword32(&m->m_ceilings[0], &ceiling);
 2158                 if (rv == -1) {
 2159                         error = EFAULT;
 2160                         goto out;
 2161                 }
 2162                 ceiling = RTP_PRIO_MAX - ceiling;
 2163                 if (ceiling > RTP_PRIO_MAX) {
 2164                         error = EINVAL;
 2165                         goto out;
 2166                 }
 2167 
 2168                 mtx_lock(&umtx_lock);
 2169                 if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
 2170                         mtx_unlock(&umtx_lock);
 2171                         error = EINVAL;
 2172                         goto out;
 2173                 }
 2174                 if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
 2175                         uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
 2176                         thread_lock(td);
 2177                         if (uq->uq_inherited_pri < UPRI(td))
 2178                                 sched_lend_user_prio(td, uq->uq_inherited_pri);
 2179                         thread_unlock(td);
 2180                 }
 2181                 mtx_unlock(&umtx_lock);
 2182 
 2183                 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
 2184                     id | UMUTEX_CONTESTED);
 2185                 /* The address was invalid. */
 2186                 if (rv == -1) {
 2187                         error = EFAULT;
 2188                         break;
 2189                 }
 2190                 if (rv == 0) {
 2191                         MPASS(owner == UMUTEX_CONTESTED);
 2192                         error = 0;
 2193                         break;
 2194                 }
 2195                 /* rv == 1 */
 2196                 if (owner == UMUTEX_RB_OWNERDEAD) {
 2197                         rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
 2198                             &owner, id | UMUTEX_CONTESTED);
 2199                         if (rv == -1) {
 2200                                 error = EFAULT;
 2201                                 break;
 2202                         }
 2203                         if (rv == 0) {
 2204                                 MPASS(owner == UMUTEX_RB_OWNERDEAD);
 2205                                 error = EOWNERDEAD; /* success */
 2206                                 break;
 2207                         }
 2208 
 2209                         /*
 2210                          *  rv == 1, only check for suspension if we
 2211                          *  did not already catched a signal.  If we
 2212                          *  get an error from the check, the same
 2213                          *  condition is checked by the umtxq_sleep()
 2214                          *  call below, so we should obliterate the
 2215                          *  error to not skip the last loop iteration.
 2216                          */
 2217                         if (error == 0) {
 2218                                 error = thread_check_susp(td, false);
 2219                                 if (error == 0) {
 2220                                         if (try != 0)
 2221                                                 error = EBUSY;
 2222                                         else
 2223                                                 continue;
 2224                                 }
 2225                                 error = 0;
 2226                         }
 2227                 } else if (owner == UMUTEX_RB_NOTRECOV) {
 2228                         error = ENOTRECOVERABLE;
 2229                 }
 2230 
 2231                 if (try != 0)
 2232                         error = EBUSY;
 2233 
 2234                 /*
 2235                  * If we caught a signal, we have retried and now
 2236                  * exit immediately.
 2237                  */
 2238                 if (error != 0)
 2239                         break;
 2240 
 2241                 umtxq_lock(&uq->uq_key);
 2242                 umtxq_insert(uq);
 2243                 umtxq_unbusy(&uq->uq_key);
 2244                 error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
 2245                     NULL : &timo);
 2246                 umtxq_remove(uq);
 2247                 umtxq_unlock(&uq->uq_key);
 2248 
 2249                 mtx_lock(&umtx_lock);
 2250                 uq->uq_inherited_pri = old_inherited_pri;
 2251                 pri = PRI_MAX;
 2252                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 2253                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
 2254                         if (uq2 != NULL) {
 2255                                 if (pri > UPRI(uq2->uq_thread))
 2256                                         pri = UPRI(uq2->uq_thread);
 2257                         }
 2258                 }
 2259                 if (pri > uq->uq_inherited_pri)
 2260                         pri = uq->uq_inherited_pri;
 2261                 thread_lock(td);
 2262                 sched_lend_user_prio(td, pri);
 2263                 thread_unlock(td);
 2264                 mtx_unlock(&umtx_lock);
 2265         }
 2266 
 2267         if (error != 0 && error != EOWNERDEAD) {
 2268                 mtx_lock(&umtx_lock);
 2269                 uq->uq_inherited_pri = old_inherited_pri;
 2270                 pri = PRI_MAX;
 2271                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 2272                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
 2273                         if (uq2 != NULL) {
 2274                                 if (pri > UPRI(uq2->uq_thread))
 2275                                         pri = UPRI(uq2->uq_thread);
 2276                         }
 2277                 }
 2278                 if (pri > uq->uq_inherited_pri)
 2279                         pri = uq->uq_inherited_pri;
 2280                 thread_lock(td);
 2281                 sched_lend_user_prio(td, pri);
 2282                 thread_unlock(td);
 2283                 mtx_unlock(&umtx_lock);
 2284         }
 2285 
 2286 out:
 2287         umtxq_unbusy_unlocked(&uq->uq_key);
 2288         umtx_key_release(&uq->uq_key);
 2289         return (error);
 2290 }
 2291 
 2292 /*
 2293  * Unlock a PP mutex.
 2294  */
 2295 static int
 2296 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
 2297 {
 2298         struct umtx_key key;
 2299         struct umtx_q *uq, *uq2;
 2300         struct umtx_pi *pi;
 2301         uint32_t id, owner, rceiling;
 2302         int error, pri, new_inherited_pri, su;
 2303 
 2304         id = td->td_tid;
 2305         uq = td->td_umtxq;
 2306         su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
 2307 
 2308         /*
 2309          * Make sure we own this mtx.
 2310          */
 2311         error = fueword32(&m->m_owner, &owner);
 2312         if (error == -1)
 2313                 return (EFAULT);
 2314 
 2315         if ((owner & ~UMUTEX_CONTESTED) != id)
 2316                 return (EPERM);
 2317 
 2318         error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
 2319         if (error != 0)
 2320                 return (error);
 2321 
 2322         if (rceiling == -1)
 2323                 new_inherited_pri = PRI_MAX;
 2324         else {
 2325                 rceiling = RTP_PRIO_MAX - rceiling;
 2326                 if (rceiling > RTP_PRIO_MAX)
 2327                         return (EINVAL);
 2328                 new_inherited_pri = PRI_MIN_REALTIME + rceiling;
 2329         }
 2330 
 2331         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 2332             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
 2333             &key)) != 0)
 2334                 return (error);
 2335         umtxq_lock(&key);
 2336         umtxq_busy(&key);
 2337         umtxq_unlock(&key);
 2338         /*
 2339          * For priority protected mutex, always set unlocked state
 2340          * to UMUTEX_CONTESTED, so that userland always enters kernel
 2341          * to lock the mutex, it is necessary because thread priority
 2342          * has to be adjusted for such mutex.
 2343          */
 2344         error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
 2345             UMUTEX_CONTESTED);
 2346 
 2347         umtxq_lock(&key);
 2348         if (error == 0)
 2349                 umtxq_signal(&key, 1);
 2350         umtxq_unbusy(&key);
 2351         umtxq_unlock(&key);
 2352 
 2353         if (error == -1)
 2354                 error = EFAULT;
 2355         else {
 2356                 mtx_lock(&umtx_lock);
 2357                 if (su != 0)
 2358                         uq->uq_inherited_pri = new_inherited_pri;
 2359                 pri = PRI_MAX;
 2360                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 2361                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
 2362                         if (uq2 != NULL) {
 2363                                 if (pri > UPRI(uq2->uq_thread))
 2364                                         pri = UPRI(uq2->uq_thread);
 2365                         }
 2366                 }
 2367                 if (pri > uq->uq_inherited_pri)
 2368                         pri = uq->uq_inherited_pri;
 2369                 thread_lock(td);
 2370                 sched_lend_user_prio(td, pri);
 2371                 thread_unlock(td);
 2372                 mtx_unlock(&umtx_lock);
 2373         }
 2374         umtx_key_release(&key);
 2375         return (error);
 2376 }
 2377 
 2378 static int
 2379 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
 2380     uint32_t *old_ceiling)
 2381 {
 2382         struct umtx_q *uq;
 2383         uint32_t flags, id, owner, save_ceiling;
 2384         int error, rv, rv1;
 2385 
 2386         error = fueword32(&m->m_flags, &flags);
 2387         if (error == -1)
 2388                 return (EFAULT);
 2389         if ((flags & UMUTEX_PRIO_PROTECT) == 0)
 2390                 return (EINVAL);
 2391         if (ceiling > RTP_PRIO_MAX)
 2392                 return (EINVAL);
 2393         id = td->td_tid;
 2394         uq = td->td_umtxq;
 2395         if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
 2396             TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
 2397             &uq->uq_key)) != 0)
 2398                 return (error);
 2399         for (;;) {
 2400                 umtxq_lock(&uq->uq_key);
 2401                 umtxq_busy(&uq->uq_key);
 2402                 umtxq_unlock(&uq->uq_key);
 2403 
 2404                 rv = fueword32(&m->m_ceilings[0], &save_ceiling);
 2405                 if (rv == -1) {
 2406                         error = EFAULT;
 2407                         break;
 2408                 }
 2409 
 2410                 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
 2411                     id | UMUTEX_CONTESTED);
 2412                 if (rv == -1) {
 2413                         error = EFAULT;
 2414                         break;
 2415                 }
 2416 
 2417                 if (rv == 0) {
 2418                         MPASS(owner == UMUTEX_CONTESTED);
 2419                         rv = suword32(&m->m_ceilings[0], ceiling);
 2420                         rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
 2421                         error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
 2422                         break;
 2423                 }
 2424 
 2425                 if ((owner & ~UMUTEX_CONTESTED) == id) {
 2426                         rv = suword32(&m->m_ceilings[0], ceiling);
 2427                         error = rv == 0 ? 0 : EFAULT;
 2428                         break;
 2429                 }
 2430 
 2431                 if (owner == UMUTEX_RB_OWNERDEAD) {
 2432                         error = EOWNERDEAD;
 2433                         break;
 2434                 } else if (owner == UMUTEX_RB_NOTRECOV) {
 2435                         error = ENOTRECOVERABLE;
 2436                         break;
 2437                 }
 2438 
 2439                 /*
 2440                  * If we caught a signal, we have retried and now
 2441                  * exit immediately.
 2442                  */
 2443                 if (error != 0)
 2444                         break;
 2445 
 2446                 /*
 2447                  * We set the contested bit, sleep. Otherwise the lock changed
 2448                  * and we need to retry or we lost a race to the thread
 2449                  * unlocking the umtx.
 2450                  */
 2451                 umtxq_lock(&uq->uq_key);
 2452                 umtxq_insert(uq);
 2453                 umtxq_unbusy(&uq->uq_key);
 2454                 error = umtxq_sleep(uq, "umtxpp", NULL);
 2455                 umtxq_remove(uq);
 2456                 umtxq_unlock(&uq->uq_key);
 2457         }
 2458         umtxq_lock(&uq->uq_key);
 2459         if (error == 0)
 2460                 umtxq_signal(&uq->uq_key, INT_MAX);
 2461         umtxq_unbusy(&uq->uq_key);
 2462         umtxq_unlock(&uq->uq_key);
 2463         umtx_key_release(&uq->uq_key);
 2464         if (error == 0 && old_ceiling != NULL) {
 2465                 rv = suword32(old_ceiling, save_ceiling);
 2466                 error = rv == 0 ? 0 : EFAULT;
 2467         }
 2468         return (error);
 2469 }
 2470 
 2471 /*
 2472  * Lock a userland POSIX mutex.
 2473  */
 2474 static int
 2475 do_lock_umutex(struct thread *td, struct umutex *m,
 2476     struct _umtx_time *timeout, int mode)
 2477 {
 2478         uint32_t flags;
 2479         int error;
 2480 
 2481         error = fueword32(&m->m_flags, &flags);
 2482         if (error == -1)
 2483                 return (EFAULT);
 2484 
 2485         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
 2486         case 0:
 2487                 error = do_lock_normal(td, m, flags, timeout, mode);
 2488                 break;
 2489         case UMUTEX_PRIO_INHERIT:
 2490                 error = do_lock_pi(td, m, flags, timeout, mode);
 2491                 break;
 2492         case UMUTEX_PRIO_PROTECT:
 2493                 error = do_lock_pp(td, m, flags, timeout, mode);
 2494                 break;
 2495         default:
 2496                 return (EINVAL);
 2497         }
 2498         if (timeout == NULL) {
 2499                 if (error == EINTR && mode != _UMUTEX_WAIT)
 2500                         error = ERESTART;
 2501         } else {
 2502                 /* Timed-locking is not restarted. */
 2503                 if (error == ERESTART)
 2504                         error = EINTR;
 2505         }
 2506         return (error);
 2507 }
 2508 
 2509 /*
 2510  * Unlock a userland POSIX mutex.
 2511  */
 2512 static int
 2513 do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
 2514 {
 2515         uint32_t flags;
 2516         int error;
 2517 
 2518         error = fueword32(&m->m_flags, &flags);
 2519         if (error == -1)
 2520                 return (EFAULT);
 2521 
 2522         switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
 2523         case 0:
 2524                 return (do_unlock_normal(td, m, flags, rb));
 2525         case UMUTEX_PRIO_INHERIT:
 2526                 return (do_unlock_pi(td, m, flags, rb));
 2527         case UMUTEX_PRIO_PROTECT:
 2528                 return (do_unlock_pp(td, m, flags, rb));
 2529         }
 2530 
 2531         return (EINVAL);
 2532 }
 2533 
 2534 static int
 2535 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
 2536     struct timespec *timeout, u_long wflags)
 2537 {
 2538         struct abs_timeout timo;
 2539         struct umtx_q *uq;
 2540         uint32_t flags, clockid, hasw;
 2541         int error;
 2542 
 2543         uq = td->td_umtxq;
 2544         error = fueword32(&cv->c_flags, &flags);
 2545         if (error == -1)
 2546                 return (EFAULT);
 2547         error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
 2548         if (error != 0)
 2549                 return (error);
 2550 
 2551         if ((wflags & CVWAIT_CLOCKID) != 0) {
 2552                 error = fueword32(&cv->c_clockid, &clockid);
 2553                 if (error == -1) {
 2554                         umtx_key_release(&uq->uq_key);
 2555                         return (EFAULT);
 2556                 }
 2557                 if (clockid < CLOCK_REALTIME ||
 2558                     clockid >= CLOCK_THREAD_CPUTIME_ID) {
 2559                         /* hmm, only HW clock id will work. */
 2560                         umtx_key_release(&uq->uq_key);
 2561                         return (EINVAL);
 2562                 }
 2563         } else {
 2564                 clockid = CLOCK_REALTIME;
 2565         }
 2566 
 2567         umtxq_lock(&uq->uq_key);
 2568         umtxq_busy(&uq->uq_key);
 2569         umtxq_insert(uq);
 2570         umtxq_unlock(&uq->uq_key);
 2571 
 2572         /*
 2573          * Set c_has_waiters to 1 before releasing user mutex, also
 2574          * don't modify cache line when unnecessary.
 2575          */
 2576         error = fueword32(&cv->c_has_waiters, &hasw);
 2577         if (error == 0 && hasw == 0)
 2578                 suword32(&cv->c_has_waiters, 1);
 2579 
 2580         umtxq_unbusy_unlocked(&uq->uq_key);
 2581 
 2582         error = do_unlock_umutex(td, m, false);
 2583 
 2584         if (timeout != NULL)
 2585                 abs_timeout_init(&timo, clockid, (wflags & CVWAIT_ABSTIME) != 0,
 2586                     timeout);
 2587 
 2588         umtxq_lock(&uq->uq_key);
 2589         if (error == 0) {
 2590                 error = umtxq_sleep(uq, "ucond", timeout == NULL ?
 2591                     NULL : &timo);
 2592         }
 2593 
 2594         if ((uq->uq_flags & UQF_UMTXQ) == 0)
 2595                 error = 0;
 2596         else {
 2597                 /*
 2598                  * This must be timeout,interrupted by signal or
 2599                  * surprious wakeup, clear c_has_waiter flag when
 2600                  * necessary.
 2601                  */
 2602                 umtxq_busy(&uq->uq_key);
 2603                 if ((uq->uq_flags & UQF_UMTXQ) != 0) {
 2604                         int oldlen = uq->uq_cur_queue->length;
 2605                         umtxq_remove(uq);
 2606                         if (oldlen == 1) {
 2607                                 umtxq_unlock(&uq->uq_key);
 2608                                 suword32(&cv->c_has_waiters, 0);
 2609                                 umtxq_lock(&uq->uq_key);
 2610                         }
 2611                 }
 2612                 umtxq_unbusy(&uq->uq_key);
 2613                 if (error == ERESTART)
 2614                         error = EINTR;
 2615         }
 2616 
 2617         umtxq_unlock(&uq->uq_key);
 2618         umtx_key_release(&uq->uq_key);
 2619         return (error);
 2620 }
 2621 
 2622 /*
 2623  * Signal a userland condition variable.
 2624  */
 2625 static int
 2626 do_cv_signal(struct thread *td, struct ucond *cv)
 2627 {
 2628         struct umtx_key key;
 2629         int error, cnt, nwake;
 2630         uint32_t flags;
 2631 
 2632         error = fueword32(&cv->c_flags, &flags);
 2633         if (error == -1)
 2634                 return (EFAULT);
 2635         if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
 2636                 return (error);
 2637         umtxq_lock(&key);
 2638         umtxq_busy(&key);
 2639         cnt = umtxq_count(&key);
 2640         nwake = umtxq_signal(&key, 1);
 2641         if (cnt <= nwake) {
 2642                 umtxq_unlock(&key);
 2643                 error = suword32(&cv->c_has_waiters, 0);
 2644                 if (error == -1)
 2645                         error = EFAULT;
 2646                 umtxq_lock(&key);
 2647         }
 2648         umtxq_unbusy(&key);
 2649         umtxq_unlock(&key);
 2650         umtx_key_release(&key);
 2651         return (error);
 2652 }
 2653 
 2654 static int
 2655 do_cv_broadcast(struct thread *td, struct ucond *cv)
 2656 {
 2657         struct umtx_key key;
 2658         int error;
 2659         uint32_t flags;
 2660 
 2661         error = fueword32(&cv->c_flags, &flags);
 2662         if (error == -1)
 2663                 return (EFAULT);
 2664         if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
 2665                 return (error);
 2666 
 2667         umtxq_lock(&key);
 2668         umtxq_busy(&key);
 2669         umtxq_signal(&key, INT_MAX);
 2670         umtxq_unlock(&key);
 2671 
 2672         error = suword32(&cv->c_has_waiters, 0);
 2673         if (error == -1)
 2674                 error = EFAULT;
 2675 
 2676         umtxq_unbusy_unlocked(&key);
 2677 
 2678         umtx_key_release(&key);
 2679         return (error);
 2680 }
 2681 
 2682 static int
 2683 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag,
 2684     struct _umtx_time *timeout)
 2685 {
 2686         struct abs_timeout timo;
 2687         struct umtx_q *uq;
 2688         uint32_t flags, wrflags;
 2689         int32_t state, oldstate;
 2690         int32_t blocked_readers;
 2691         int error, error1, rv;
 2692 
 2693         uq = td->td_umtxq;
 2694         error = fueword32(&rwlock->rw_flags, &flags);
 2695         if (error == -1)
 2696                 return (EFAULT);
 2697         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 2698         if (error != 0)
 2699                 return (error);
 2700 
 2701         if (timeout != NULL)
 2702                 abs_timeout_init2(&timo, timeout);
 2703 
 2704         wrflags = URWLOCK_WRITE_OWNER;
 2705         if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
 2706                 wrflags |= URWLOCK_WRITE_WAITERS;
 2707 
 2708         for (;;) {
 2709                 rv = fueword32(&rwlock->rw_state, &state);
 2710                 if (rv == -1) {
 2711                         umtx_key_release(&uq->uq_key);
 2712                         return (EFAULT);
 2713                 }
 2714 
 2715                 /* try to lock it */
 2716                 while (!(state & wrflags)) {
 2717                         if (__predict_false(URWLOCK_READER_COUNT(state) ==
 2718                             URWLOCK_MAX_READERS)) {
 2719                                 umtx_key_release(&uq->uq_key);
 2720                                 return (EAGAIN);
 2721                         }
 2722                         rv = casueword32(&rwlock->rw_state, state,
 2723                             &oldstate, state + 1);
 2724                         if (rv == -1) {
 2725                                 umtx_key_release(&uq->uq_key);
 2726                                 return (EFAULT);
 2727                         }
 2728                         if (rv == 0) {
 2729                                 MPASS(oldstate == state);
 2730                                 umtx_key_release(&uq->uq_key);
 2731                                 return (0);
 2732                         }
 2733                         error = thread_check_susp(td, true);
 2734                         if (error != 0)
 2735                                 break;
 2736                         state = oldstate;
 2737                 }
 2738 
 2739                 if (error)
 2740                         break;
 2741 
 2742                 /* grab monitor lock */
 2743                 umtxq_lock(&uq->uq_key);
 2744                 umtxq_busy(&uq->uq_key);
 2745                 umtxq_unlock(&uq->uq_key);
 2746 
 2747                 /*
 2748                  * re-read the state, in case it changed between the try-lock above
 2749                  * and the check below
 2750                  */
 2751                 rv = fueword32(&rwlock->rw_state, &state);
 2752                 if (rv == -1)
 2753                         error = EFAULT;
 2754 
 2755                 /* set read contention bit */
 2756                 while (error == 0 && (state & wrflags) &&
 2757                     !(state & URWLOCK_READ_WAITERS)) {
 2758                         rv = casueword32(&rwlock->rw_state, state,
 2759                             &oldstate, state | URWLOCK_READ_WAITERS);
 2760                         if (rv == -1) {
 2761                                 error = EFAULT;
 2762                                 break;
 2763                         }
 2764                         if (rv == 0) {
 2765                                 MPASS(oldstate == state);
 2766                                 goto sleep;
 2767                         }
 2768                         state = oldstate;
 2769                         error = thread_check_susp(td, false);
 2770                         if (error != 0)
 2771                                 break;
 2772                 }
 2773                 if (error != 0) {
 2774                         umtxq_unbusy_unlocked(&uq->uq_key);
 2775                         break;
 2776                 }
 2777 
 2778                 /* state is changed while setting flags, restart */
 2779                 if (!(state & wrflags)) {
 2780                         umtxq_unbusy_unlocked(&uq->uq_key);
 2781                         error = thread_check_susp(td, true);
 2782                         if (error != 0)
 2783                                 break;
 2784                         continue;
 2785                 }
 2786 
 2787 sleep:
 2788                 /*
 2789                  * Contention bit is set, before sleeping, increase
 2790                  * read waiter count.
 2791                  */
 2792                 rv = fueword32(&rwlock->rw_blocked_readers,
 2793                     &blocked_readers);
 2794                 if (rv == -1) {
 2795                         umtxq_unbusy_unlocked(&uq->uq_key);
 2796                         error = EFAULT;
 2797                         break;
 2798                 }
 2799                 suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
 2800 
 2801                 while (state & wrflags) {
 2802                         umtxq_lock(&uq->uq_key);
 2803                         umtxq_insert(uq);
 2804                         umtxq_unbusy(&uq->uq_key);
 2805 
 2806                         error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
 2807                             NULL : &timo);
 2808 
 2809                         umtxq_busy(&uq->uq_key);
 2810                         umtxq_remove(uq);
 2811                         umtxq_unlock(&uq->uq_key);
 2812                         if (error)
 2813                                 break;
 2814                         rv = fueword32(&rwlock->rw_state, &state);
 2815                         if (rv == -1) {
 2816                                 error = EFAULT;
 2817                                 break;
 2818                         }
 2819                 }
 2820 
 2821                 /* decrease read waiter count, and may clear read contention bit */
 2822                 rv = fueword32(&rwlock->rw_blocked_readers,
 2823                     &blocked_readers);
 2824                 if (rv == -1) {
 2825                         umtxq_unbusy_unlocked(&uq->uq_key);
 2826                         error = EFAULT;
 2827                         break;
 2828                 }
 2829                 suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
 2830                 if (blocked_readers == 1) {
 2831                         rv = fueword32(&rwlock->rw_state, &state);
 2832                         if (rv == -1) {
 2833                                 umtxq_unbusy_unlocked(&uq->uq_key);
 2834                                 error = EFAULT;
 2835                                 break;
 2836                         }
 2837                         for (;;) {
 2838                                 rv = casueword32(&rwlock->rw_state, state,
 2839                                     &oldstate, state & ~URWLOCK_READ_WAITERS);
 2840                                 if (rv == -1) {
 2841                                         error = EFAULT;
 2842                                         break;
 2843                                 }
 2844                                 if (rv == 0) {
 2845                                         MPASS(oldstate == state);
 2846                                         break;
 2847                                 }
 2848                                 state = oldstate;
 2849                                 error1 = thread_check_susp(td, false);
 2850                                 if (error1 != 0) {
 2851                                         if (error == 0)
 2852                                                 error = error1;
 2853                                         break;
 2854                                 }
 2855                         }
 2856                 }
 2857 
 2858                 umtxq_unbusy_unlocked(&uq->uq_key);
 2859                 if (error != 0)
 2860                         break;
 2861         }
 2862         umtx_key_release(&uq->uq_key);
 2863         if (error == ERESTART)
 2864                 error = EINTR;
 2865         return (error);
 2866 }
 2867 
 2868 static int
 2869 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
 2870 {
 2871         struct abs_timeout timo;
 2872         struct umtx_q *uq;
 2873         uint32_t flags;
 2874         int32_t state, oldstate;
 2875         int32_t blocked_writers;
 2876         int32_t blocked_readers;
 2877         int error, error1, rv;
 2878 
 2879         uq = td->td_umtxq;
 2880         error = fueword32(&rwlock->rw_flags, &flags);
 2881         if (error == -1)
 2882                 return (EFAULT);
 2883         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 2884         if (error != 0)
 2885                 return (error);
 2886 
 2887         if (timeout != NULL)
 2888                 abs_timeout_init2(&timo, timeout);
 2889 
 2890         blocked_readers = 0;
 2891         for (;;) {
 2892                 rv = fueword32(&rwlock->rw_state, &state);
 2893                 if (rv == -1) {
 2894                         umtx_key_release(&uq->uq_key);
 2895                         return (EFAULT);
 2896                 }
 2897                 while ((state & URWLOCK_WRITE_OWNER) == 0 &&
 2898                     URWLOCK_READER_COUNT(state) == 0) {
 2899                         rv = casueword32(&rwlock->rw_state, state,
 2900                             &oldstate, state | URWLOCK_WRITE_OWNER);
 2901                         if (rv == -1) {
 2902                                 umtx_key_release(&uq->uq_key);
 2903                                 return (EFAULT);
 2904                         }
 2905                         if (rv == 0) {
 2906                                 MPASS(oldstate == state);
 2907                                 umtx_key_release(&uq->uq_key);
 2908                                 return (0);
 2909                         }
 2910                         state = oldstate;
 2911                         error = thread_check_susp(td, true);
 2912                         if (error != 0)
 2913                                 break;
 2914                 }
 2915 
 2916                 if (error) {
 2917                         if ((state & (URWLOCK_WRITE_OWNER |
 2918                             URWLOCK_WRITE_WAITERS)) == 0 &&
 2919                             blocked_readers != 0) {
 2920                                 umtxq_lock(&uq->uq_key);
 2921                                 umtxq_busy(&uq->uq_key);
 2922                                 umtxq_signal_queue(&uq->uq_key, INT_MAX,
 2923                                     UMTX_SHARED_QUEUE);
 2924                                 umtxq_unbusy(&uq->uq_key);
 2925                                 umtxq_unlock(&uq->uq_key);
 2926                         }
 2927 
 2928                         break;
 2929                 }
 2930 
 2931                 /* grab monitor lock */
 2932                 umtxq_lock(&uq->uq_key);
 2933                 umtxq_busy(&uq->uq_key);
 2934                 umtxq_unlock(&uq->uq_key);
 2935 
 2936                 /*
 2937                  * Re-read the state, in case it changed between the
 2938                  * try-lock above and the check below.
 2939                  */
 2940                 rv = fueword32(&rwlock->rw_state, &state);
 2941                 if (rv == -1)
 2942                         error = EFAULT;
 2943 
 2944                 while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
 2945                     URWLOCK_READER_COUNT(state) != 0) &&
 2946                     (state & URWLOCK_WRITE_WAITERS) == 0) {
 2947                         rv = casueword32(&rwlock->rw_state, state,
 2948                             &oldstate, state | URWLOCK_WRITE_WAITERS);
 2949                         if (rv == -1) {
 2950                                 error = EFAULT;
 2951                                 break;
 2952                         }
 2953                         if (rv == 0) {
 2954                                 MPASS(oldstate == state);
 2955                                 goto sleep;
 2956                         }
 2957                         state = oldstate;
 2958                         error = thread_check_susp(td, false);
 2959                         if (error != 0)
 2960                                 break;
 2961                 }
 2962                 if (error != 0) {
 2963                         umtxq_unbusy_unlocked(&uq->uq_key);
 2964                         break;
 2965                 }
 2966 
 2967                 if ((state & URWLOCK_WRITE_OWNER) == 0 &&
 2968                     URWLOCK_READER_COUNT(state) == 0) {
 2969                         umtxq_unbusy_unlocked(&uq->uq_key);
 2970                         error = thread_check_susp(td, false);
 2971                         if (error != 0)
 2972                                 break;
 2973                         continue;
 2974                 }
 2975 sleep:
 2976                 rv = fueword32(&rwlock->rw_blocked_writers,
 2977                     &blocked_writers);
 2978                 if (rv == -1) {
 2979                         umtxq_unbusy_unlocked(&uq->uq_key);
 2980                         error = EFAULT;
 2981                         break;
 2982                 }
 2983                 suword32(&rwlock->rw_blocked_writers, blocked_writers + 1);
 2984 
 2985                 while ((state & URWLOCK_WRITE_OWNER) ||
 2986                     URWLOCK_READER_COUNT(state) != 0) {
 2987                         umtxq_lock(&uq->uq_key);
 2988                         umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
 2989                         umtxq_unbusy(&uq->uq_key);
 2990 
 2991                         error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
 2992                             NULL : &timo);
 2993 
 2994                         umtxq_busy(&uq->uq_key);
 2995                         umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
 2996                         umtxq_unlock(&uq->uq_key);
 2997                         if (error)
 2998                                 break;
 2999                         rv = fueword32(&rwlock->rw_state, &state);
 3000                         if (rv == -1) {
 3001                                 error = EFAULT;
 3002                                 break;
 3003                         }
 3004                 }
 3005 
 3006                 rv = fueword32(&rwlock->rw_blocked_writers,
 3007                     &blocked_writers);
 3008                 if (rv == -1) {
 3009                         umtxq_unbusy_unlocked(&uq->uq_key);
 3010                         error = EFAULT;
 3011                         break;
 3012                 }
 3013                 suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
 3014                 if (blocked_writers == 1) {
 3015                         rv = fueword32(&rwlock->rw_state, &state);
 3016                         if (rv == -1) {
 3017                                 umtxq_unbusy_unlocked(&uq->uq_key);
 3018                                 error = EFAULT;
 3019                                 break;
 3020                         }
 3021                         for (;;) {
 3022                                 rv = casueword32(&rwlock->rw_state, state,
 3023                                     &oldstate, state & ~URWLOCK_WRITE_WAITERS);
 3024                                 if (rv == -1) {
 3025                                         error = EFAULT;
 3026                                         break;
 3027                                 }
 3028                                 if (rv == 0) {
 3029                                         MPASS(oldstate == state);
 3030                                         break;
 3031                                 }
 3032                                 state = oldstate;
 3033                                 error1 = thread_check_susp(td, false);
 3034                                 /*
 3035                                  * We are leaving the URWLOCK_WRITE_WAITERS
 3036                                  * behind, but this should not harm the
 3037                                  * correctness.
 3038                                  */
 3039                                 if (error1 != 0) {
 3040                                         if (error == 0)
 3041                                                 error = error1;
 3042                                         break;
 3043                                 }
 3044                         }
 3045                         rv = fueword32(&rwlock->rw_blocked_readers,
 3046                             &blocked_readers);
 3047                         if (rv == -1) {
 3048                                 umtxq_unbusy_unlocked(&uq->uq_key);
 3049                                 error = EFAULT;
 3050                                 break;
 3051                         }
 3052                 } else
 3053                         blocked_readers = 0;
 3054 
 3055                 umtxq_unbusy_unlocked(&uq->uq_key);
 3056         }
 3057 
 3058         umtx_key_release(&uq->uq_key);
 3059         if (error == ERESTART)
 3060                 error = EINTR;
 3061         return (error);
 3062 }
 3063 
 3064 static int
 3065 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
 3066 {
 3067         struct umtx_q *uq;
 3068         uint32_t flags;
 3069         int32_t state, oldstate;
 3070         int error, rv, q, count;
 3071 
 3072         uq = td->td_umtxq;
 3073         error = fueword32(&rwlock->rw_flags, &flags);
 3074         if (error == -1)
 3075                 return (EFAULT);
 3076         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 3077         if (error != 0)
 3078                 return (error);
 3079 
 3080         error = fueword32(&rwlock->rw_state, &state);
 3081         if (error == -1) {
 3082                 error = EFAULT;
 3083                 goto out;
 3084         }
 3085         if (state & URWLOCK_WRITE_OWNER) {
 3086                 for (;;) {
 3087                         rv = casueword32(&rwlock->rw_state, state,
 3088                             &oldstate, state & ~URWLOCK_WRITE_OWNER);
 3089                         if (rv == -1) {
 3090                                 error = EFAULT;
 3091                                 goto out;
 3092                         }
 3093                         if (rv == 1) {
 3094                                 state = oldstate;
 3095                                 if (!(oldstate & URWLOCK_WRITE_OWNER)) {
 3096                                         error = EPERM;
 3097                                         goto out;
 3098                                 }
 3099                                 error = thread_check_susp(td, true);
 3100                                 if (error != 0)
 3101                                         goto out;
 3102                         } else
 3103                                 break;
 3104                 }
 3105         } else if (URWLOCK_READER_COUNT(state) != 0) {
 3106                 for (;;) {
 3107                         rv = casueword32(&rwlock->rw_state, state,
 3108                             &oldstate, state - 1);
 3109                         if (rv == -1) {
 3110                                 error = EFAULT;
 3111                                 goto out;
 3112                         }
 3113                         if (rv == 1) {
 3114                                 state = oldstate;
 3115                                 if (URWLOCK_READER_COUNT(oldstate) == 0) {
 3116                                         error = EPERM;
 3117                                         goto out;
 3118                                 }
 3119                                 error = thread_check_susp(td, true);
 3120                                 if (error != 0)
 3121                                         goto out;
 3122                         } else
 3123                                 break;
 3124                 }
 3125         } else {
 3126                 error = EPERM;
 3127                 goto out;
 3128         }
 3129 
 3130         count = 0;
 3131 
 3132         if (!(flags & URWLOCK_PREFER_READER)) {
 3133                 if (state & URWLOCK_WRITE_WAITERS) {
 3134                         count = 1;
 3135                         q = UMTX_EXCLUSIVE_QUEUE;
 3136                 } else if (state & URWLOCK_READ_WAITERS) {
 3137                         count = INT_MAX;
 3138                         q = UMTX_SHARED_QUEUE;
 3139                 }
 3140         } else {
 3141                 if (state & URWLOCK_READ_WAITERS) {
 3142                         count = INT_MAX;
 3143                         q = UMTX_SHARED_QUEUE;
 3144                 } else if (state & URWLOCK_WRITE_WAITERS) {
 3145                         count = 1;
 3146                         q = UMTX_EXCLUSIVE_QUEUE;
 3147                 }
 3148         }
 3149 
 3150         if (count) {
 3151                 umtxq_lock(&uq->uq_key);
 3152                 umtxq_busy(&uq->uq_key);
 3153                 umtxq_signal_queue(&uq->uq_key, count, q);
 3154                 umtxq_unbusy(&uq->uq_key);
 3155                 umtxq_unlock(&uq->uq_key);
 3156         }
 3157 out:
 3158         umtx_key_release(&uq->uq_key);
 3159         return (error);
 3160 }
 3161 
 3162 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 3163 static int
 3164 do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
 3165 {
 3166         struct abs_timeout timo;
 3167         struct umtx_q *uq;
 3168         uint32_t flags, count, count1;
 3169         int error, rv, rv1;
 3170 
 3171         uq = td->td_umtxq;
 3172         error = fueword32(&sem->_flags, &flags);
 3173         if (error == -1)
 3174                 return (EFAULT);
 3175         error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
 3176         if (error != 0)
 3177                 return (error);
 3178 
 3179         if (timeout != NULL)
 3180                 abs_timeout_init2(&timo, timeout);
 3181 
 3182 again:
 3183         umtxq_lock(&uq->uq_key);
 3184         umtxq_busy(&uq->uq_key);
 3185         umtxq_insert(uq);
 3186         umtxq_unlock(&uq->uq_key);
 3187         rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
 3188         if (rv == 0)
 3189                 rv1 = fueword32(&sem->_count, &count);
 3190         if (rv == -1 || (rv == 0 && (rv1 == -1 || count != 0)) ||
 3191             (rv == 1 && count1 == 0)) {
 3192                 umtxq_lock(&uq->uq_key);
 3193                 umtxq_unbusy(&uq->uq_key);
 3194                 umtxq_remove(uq);
 3195                 umtxq_unlock(&uq->uq_key);
 3196                 if (rv == 1) {
 3197                         rv = thread_check_susp(td, true);
 3198                         if (rv == 0)
 3199                                 goto again;
 3200                         error = rv;
 3201                         goto out;
 3202                 }
 3203                 if (rv == 0)
 3204                         rv = rv1;
 3205                 error = rv == -1 ? EFAULT : 0;
 3206                 goto out;
 3207         }
 3208         umtxq_lock(&uq->uq_key);
 3209         umtxq_unbusy(&uq->uq_key);
 3210 
 3211         error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
 3212 
 3213         if ((uq->uq_flags & UQF_UMTXQ) == 0)
 3214                 error = 0;
 3215         else {
 3216                 umtxq_remove(uq);
 3217                 /* A relative timeout cannot be restarted. */
 3218                 if (error == ERESTART && timeout != NULL &&
 3219                     (timeout->_flags & UMTX_ABSTIME) == 0)
 3220                         error = EINTR;
 3221         }
 3222         umtxq_unlock(&uq->uq_key);
 3223 out:
 3224         umtx_key_release(&uq->uq_key);
 3225         return (error);
 3226 }
 3227 
 3228 /*
 3229  * Signal a userland semaphore.
 3230  */
 3231 static int
 3232 do_sem_wake(struct thread *td, struct _usem *sem)
 3233 {
 3234         struct umtx_key key;
 3235         int error, cnt;
 3236         uint32_t flags;
 3237 
 3238         error = fueword32(&sem->_flags, &flags);
 3239         if (error == -1)
 3240                 return (EFAULT);
 3241         if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
 3242                 return (error);
 3243         umtxq_lock(&key);
 3244         umtxq_busy(&key);
 3245         cnt = umtxq_count(&key);
 3246         if (cnt > 0) {
 3247                 /*
 3248                  * Check if count is greater than 0, this means the memory is
 3249                  * still being referenced by user code, so we can safely
 3250                  * update _has_waiters flag.
 3251                  */
 3252                 if (cnt == 1) {
 3253                         umtxq_unlock(&key);
 3254                         error = suword32(&sem->_has_waiters, 0);
 3255                         umtxq_lock(&key);
 3256                         if (error == -1)
 3257                                 error = EFAULT;
 3258                 }
 3259                 umtxq_signal(&key, 1);
 3260         }
 3261         umtxq_unbusy(&key);
 3262         umtxq_unlock(&key);
 3263         umtx_key_release(&key);
 3264         return (error);
 3265 }
 3266 #endif
 3267 
 3268 static int
 3269 do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
 3270 {
 3271         struct abs_timeout timo;
 3272         struct umtx_q *uq;
 3273         uint32_t count, flags;
 3274         int error, rv;
 3275 
 3276         uq = td->td_umtxq;
 3277         flags = fuword32(&sem->_flags);
 3278         if (timeout != NULL)
 3279                 abs_timeout_init2(&timo, timeout);
 3280 
 3281 again:
 3282         error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
 3283         if (error != 0)
 3284                 return (error);
 3285         umtxq_lock(&uq->uq_key);
 3286         umtxq_busy(&uq->uq_key);
 3287         umtxq_insert(uq);
 3288         umtxq_unlock(&uq->uq_key);
 3289         rv = fueword32(&sem->_count, &count);
 3290         if (rv == -1) {
 3291                 umtxq_lock(&uq->uq_key);
 3292                 umtxq_unbusy(&uq->uq_key);
 3293                 umtxq_remove(uq);
 3294                 umtxq_unlock(&uq->uq_key);
 3295                 umtx_key_release(&uq->uq_key);
 3296                 return (EFAULT);
 3297         }
 3298         for (;;) {
 3299                 if (USEM_COUNT(count) != 0) {
 3300                         umtxq_lock(&uq->uq_key);
 3301                         umtxq_unbusy(&uq->uq_key);
 3302                         umtxq_remove(uq);
 3303                         umtxq_unlock(&uq->uq_key);
 3304                         umtx_key_release(&uq->uq_key);
 3305                         return (0);
 3306                 }
 3307                 if (count == USEM_HAS_WAITERS)
 3308                         break;
 3309                 rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
 3310                 if (rv == 0)
 3311                         break;
 3312                 umtxq_lock(&uq->uq_key);
 3313                 umtxq_unbusy(&uq->uq_key);
 3314                 umtxq_remove(uq);
 3315                 umtxq_unlock(&uq->uq_key);
 3316                 umtx_key_release(&uq->uq_key);
 3317                 if (rv == -1)
 3318                         return (EFAULT);
 3319                 rv = thread_check_susp(td, true);
 3320                 if (rv != 0)
 3321                         return (rv);
 3322                 goto again;
 3323         }
 3324         umtxq_lock(&uq->uq_key);
 3325         umtxq_unbusy(&uq->uq_key);
 3326 
 3327         error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
 3328 
 3329         if ((uq->uq_flags & UQF_UMTXQ) == 0)
 3330                 error = 0;
 3331         else {
 3332                 umtxq_remove(uq);
 3333                 if (timeout != NULL && (timeout->_flags & UMTX_ABSTIME) == 0) {
 3334                         /* A relative timeout cannot be restarted. */
 3335                         if (error == ERESTART)
 3336                                 error = EINTR;
 3337                         if (error == EINTR) {
 3338                                 abs_timeout_update(&timo);
 3339                                 timespecsub(&timo.end, &timo.cur,
 3340                                     &timeout->_timeout);
 3341                         }
 3342                 }
 3343         }
 3344         umtxq_unlock(&uq->uq_key);
 3345         umtx_key_release(&uq->uq_key);
 3346         return (error);
 3347 }
 3348 
 3349 /*
 3350  * Signal a userland semaphore.
 3351  */
 3352 static int
 3353 do_sem2_wake(struct thread *td, struct _usem2 *sem)
 3354 {
 3355         struct umtx_key key;
 3356         int error, cnt, rv;
 3357         uint32_t count, flags;
 3358 
 3359         rv = fueword32(&sem->_flags, &flags);
 3360         if (rv == -1)
 3361                 return (EFAULT);
 3362         if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
 3363                 return (error);
 3364         umtxq_lock(&key);
 3365         umtxq_busy(&key);
 3366         cnt = umtxq_count(&key);
 3367         if (cnt > 0) {
 3368                 /*
 3369                  * If this was the last sleeping thread, clear the waiters
 3370                  * flag in _count.
 3371                  */
 3372                 if (cnt == 1) {
 3373                         umtxq_unlock(&key);
 3374                         rv = fueword32(&sem->_count, &count);
 3375                         while (rv != -1 && count & USEM_HAS_WAITERS) {
 3376                                 rv = casueword32(&sem->_count, count, &count,
 3377                                     count & ~USEM_HAS_WAITERS);
 3378                                 if (rv == 1) {
 3379                                         rv = thread_check_susp(td, true);
 3380                                         if (rv != 0)
 3381                                                 break;
 3382                                 }
 3383                         }
 3384                         if (rv == -1)
 3385                                 error = EFAULT;
 3386                         else if (rv > 0) {
 3387                                 error = rv;
 3388                         }
 3389                         umtxq_lock(&key);
 3390                 }
 3391 
 3392                 umtxq_signal(&key, 1);
 3393         }
 3394         umtxq_unbusy(&key);
 3395         umtxq_unlock(&key);
 3396         umtx_key_release(&key);
 3397         return (error);
 3398 }
 3399 
 3400 inline int
 3401 umtx_copyin_timeout(const void *uaddr, struct timespec *tsp)
 3402 {
 3403         int error;
 3404 
 3405         error = copyin(uaddr, tsp, sizeof(*tsp));
 3406         if (error == 0) {
 3407                 if (tsp->tv_sec < 0 ||
 3408                     tsp->tv_nsec >= 1000000000 ||
 3409                     tsp->tv_nsec < 0)
 3410                         error = EINVAL;
 3411         }
 3412         return (error);
 3413 }
 3414 
 3415 static inline int
 3416 umtx_copyin_umtx_time(const void *uaddr, size_t size, struct _umtx_time *tp)
 3417 {
 3418         int error;
 3419 
 3420         if (size <= sizeof(tp->_timeout)) {
 3421                 tp->_clockid = CLOCK_REALTIME;
 3422                 tp->_flags = 0;
 3423                 error = copyin(uaddr, &tp->_timeout, sizeof(tp->_timeout));
 3424         } else
 3425                 error = copyin(uaddr, tp, sizeof(*tp));
 3426         if (error != 0)
 3427                 return (error);
 3428         if (tp->_timeout.tv_sec < 0 ||
 3429             tp->_timeout.tv_nsec >= 1000000000 || tp->_timeout.tv_nsec < 0)
 3430                 return (EINVAL);
 3431         return (0);
 3432 }
 3433 
 3434 static int
 3435 umtx_copyin_robust_lists(const void *uaddr, size_t size,
 3436     struct umtx_robust_lists_params *rb)
 3437 {
 3438 
 3439         if (size > sizeof(*rb))
 3440                 return (EINVAL);
 3441         return (copyin(uaddr, rb, size));
 3442 }
 3443 
 3444 static int
 3445 umtx_copyout_timeout(void *uaddr, size_t sz, struct timespec *tsp)
 3446 {
 3447 
 3448         /*
 3449          * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
 3450          * and we're only called if sz >= sizeof(timespec) as supplied in the
 3451          * copyops.
 3452          */
 3453         KASSERT(sz >= sizeof(*tsp),
 3454             ("umtx_copyops specifies incorrect sizes"));
 3455 
 3456         return (copyout(tsp, uaddr, sizeof(*tsp)));
 3457 }
 3458 
 3459 static int
 3460 __umtx_op_unimpl(struct thread *td, struct _umtx_op_args *uap,
 3461     const struct umtx_copyops *ops __unused)
 3462 {
 3463 
 3464         return (EOPNOTSUPP);
 3465 }
 3466 
 3467 static int
 3468 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap,
 3469     const struct umtx_copyops *ops)
 3470 {
 3471         struct _umtx_time timeout, *tm_p;
 3472         int error;
 3473 
 3474         if (uap->uaddr2 == NULL)
 3475                 tm_p = NULL;
 3476         else {
 3477                 error = ops->copyin_umtx_time(
 3478                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3479                 if (error != 0)
 3480                         return (error);
 3481                 tm_p = &timeout;
 3482         }
 3483         return (do_wait(td, uap->obj, uap->val, tm_p, ops->compat32, 0));
 3484 }
 3485 
 3486 static int
 3487 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap,
 3488     const struct umtx_copyops *ops)
 3489 {
 3490         struct _umtx_time timeout, *tm_p;
 3491         int error;
 3492 
 3493         if (uap->uaddr2 == NULL)
 3494                 tm_p = NULL;
 3495         else {
 3496                 error = ops->copyin_umtx_time(
 3497                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3498                 if (error != 0)
 3499                         return (error);
 3500                 tm_p = &timeout;
 3501         }
 3502         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
 3503 }
 3504 
 3505 static int
 3506 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap,
 3507     const struct umtx_copyops *ops)
 3508 {
 3509         struct _umtx_time *tm_p, timeout;
 3510         int error;
 3511 
 3512         if (uap->uaddr2 == NULL)
 3513                 tm_p = NULL;
 3514         else {
 3515                 error = ops->copyin_umtx_time(
 3516                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3517                 if (error != 0)
 3518                         return (error);
 3519                 tm_p = &timeout;
 3520         }
 3521         return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
 3522 }
 3523 
 3524 static int
 3525 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap,
 3526     const struct umtx_copyops *ops __unused)
 3527 {
 3528 
 3529         return (kern_umtx_wake(td, uap->obj, uap->val, 0));
 3530 }
 3531 
 3532 #define BATCH_SIZE      128
 3533 static int
 3534 __umtx_op_nwake_private_native(struct thread *td, struct _umtx_op_args *uap)
 3535 {
 3536         char *uaddrs[BATCH_SIZE], **upp;
 3537         int count, error, i, pos, tocopy;
 3538 
 3539         upp = (char **)uap->obj;
 3540         error = 0;
 3541         for (count = uap->val, pos = 0; count > 0; count -= tocopy,
 3542             pos += tocopy) {
 3543                 tocopy = MIN(count, BATCH_SIZE);
 3544                 error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
 3545                 if (error != 0)
 3546                         break;
 3547                 for (i = 0; i < tocopy; ++i) {
 3548                         kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
 3549                 }
 3550                 maybe_yield();
 3551         }
 3552         return (error);
 3553 }
 3554 
 3555 static int
 3556 __umtx_op_nwake_private_compat32(struct thread *td, struct _umtx_op_args *uap)
 3557 {
 3558         uint32_t uaddrs[BATCH_SIZE], *upp;
 3559         int count, error, i, pos, tocopy;
 3560 
 3561         upp = (uint32_t *)uap->obj;
 3562         error = 0;
 3563         for (count = uap->val, pos = 0; count > 0; count -= tocopy,
 3564             pos += tocopy) {
 3565                 tocopy = MIN(count, BATCH_SIZE);
 3566                 error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
 3567                 if (error != 0)
 3568                         break;
 3569                 for (i = 0; i < tocopy; ++i) {
 3570                         kern_umtx_wake(td, (void *)(uintptr_t)uaddrs[i],
 3571                             INT_MAX, 1);
 3572                 }
 3573                 maybe_yield();
 3574         }
 3575         return (error);
 3576 }
 3577 
 3578 static int
 3579 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap,
 3580     const struct umtx_copyops *ops)
 3581 {
 3582 
 3583         if (ops->compat32)
 3584                 return (__umtx_op_nwake_private_compat32(td, uap));
 3585         return (__umtx_op_nwake_private_native(td, uap));
 3586 }
 3587 
 3588 static int
 3589 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap,
 3590     const struct umtx_copyops *ops __unused)
 3591 {
 3592 
 3593         return (kern_umtx_wake(td, uap->obj, uap->val, 1));
 3594 }
 3595 
 3596 static int
 3597 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap,
 3598    const struct umtx_copyops *ops)
 3599 {
 3600         struct _umtx_time *tm_p, timeout;
 3601         int error;
 3602 
 3603         /* Allow a null timespec (wait forever). */
 3604         if (uap->uaddr2 == NULL)
 3605                 tm_p = NULL;
 3606         else {
 3607                 error = ops->copyin_umtx_time(
 3608                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3609                 if (error != 0)
 3610                         return (error);
 3611                 tm_p = &timeout;
 3612         }
 3613         return (do_lock_umutex(td, uap->obj, tm_p, 0));
 3614 }
 3615 
 3616 static int
 3617 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap,
 3618     const struct umtx_copyops *ops __unused)
 3619 {
 3620 
 3621         return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
 3622 }
 3623 
 3624 static int
 3625 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap,
 3626     const struct umtx_copyops *ops)
 3627 {
 3628         struct _umtx_time *tm_p, timeout;
 3629         int error;
 3630 
 3631         /* Allow a null timespec (wait forever). */
 3632         if (uap->uaddr2 == NULL)
 3633                 tm_p = NULL;
 3634         else {
 3635                 error = ops->copyin_umtx_time(
 3636                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3637                 if (error != 0)
 3638                         return (error);
 3639                 tm_p = &timeout;
 3640         }
 3641         return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
 3642 }
 3643 
 3644 static int
 3645 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap,
 3646     const struct umtx_copyops *ops __unused)
 3647 {
 3648 
 3649         return (do_wake_umutex(td, uap->obj));
 3650 }
 3651 
 3652 static int
 3653 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap,
 3654     const struct umtx_copyops *ops __unused)
 3655 {
 3656 
 3657         return (do_unlock_umutex(td, uap->obj, false));
 3658 }
 3659 
 3660 static int
 3661 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap,
 3662     const struct umtx_copyops *ops __unused)
 3663 {
 3664 
 3665         return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
 3666 }
 3667 
 3668 static int
 3669 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap,
 3670     const struct umtx_copyops *ops)
 3671 {
 3672         struct timespec *ts, timeout;
 3673         int error;
 3674 
 3675         /* Allow a null timespec (wait forever). */
 3676         if (uap->uaddr2 == NULL)
 3677                 ts = NULL;
 3678         else {
 3679                 error = ops->copyin_timeout(uap->uaddr2, &timeout);
 3680                 if (error != 0)
 3681                         return (error);
 3682                 ts = &timeout;
 3683         }
 3684         return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
 3685 }
 3686 
 3687 static int
 3688 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap,
 3689     const struct umtx_copyops *ops __unused)
 3690 {
 3691 
 3692         return (do_cv_signal(td, uap->obj));
 3693 }
 3694 
 3695 static int
 3696 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap,
 3697     const struct umtx_copyops *ops __unused)
 3698 {
 3699 
 3700         return (do_cv_broadcast(td, uap->obj));
 3701 }
 3702 
 3703 static int
 3704 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap,
 3705     const struct umtx_copyops *ops)
 3706 {
 3707         struct _umtx_time timeout;
 3708         int error;
 3709 
 3710         /* Allow a null timespec (wait forever). */
 3711         if (uap->uaddr2 == NULL) {
 3712                 error = do_rw_rdlock(td, uap->obj, uap->val, 0);
 3713         } else {
 3714                 error = ops->copyin_umtx_time(uap->uaddr2,
 3715                    (size_t)uap->uaddr1, &timeout);
 3716                 if (error != 0)
 3717                         return (error);
 3718                 error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
 3719         }
 3720         return (error);
 3721 }
 3722 
 3723 static int
 3724 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap,
 3725     const struct umtx_copyops *ops)
 3726 {
 3727         struct _umtx_time timeout;
 3728         int error;
 3729 
 3730         /* Allow a null timespec (wait forever). */
 3731         if (uap->uaddr2 == NULL) {
 3732                 error = do_rw_wrlock(td, uap->obj, 0);
 3733         } else {
 3734                 error = ops->copyin_umtx_time(uap->uaddr2,
 3735                    (size_t)uap->uaddr1, &timeout);
 3736                 if (error != 0)
 3737                         return (error);
 3738 
 3739                 error = do_rw_wrlock(td, uap->obj, &timeout);
 3740         }
 3741         return (error);
 3742 }
 3743 
 3744 static int
 3745 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap,
 3746     const struct umtx_copyops *ops __unused)
 3747 {
 3748 
 3749         return (do_rw_unlock(td, uap->obj));
 3750 }
 3751 
 3752 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 3753 static int
 3754 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap,
 3755     const struct umtx_copyops *ops)
 3756 {
 3757         struct _umtx_time *tm_p, timeout;
 3758         int error;
 3759 
 3760         /* Allow a null timespec (wait forever). */
 3761         if (uap->uaddr2 == NULL)
 3762                 tm_p = NULL;
 3763         else {
 3764                 error = ops->copyin_umtx_time(
 3765                     uap->uaddr2, (size_t)uap->uaddr1, &timeout);
 3766                 if (error != 0)
 3767                         return (error);
 3768                 tm_p = &timeout;
 3769         }
 3770         return (do_sem_wait(td, uap->obj, tm_p));
 3771 }
 3772 
 3773 static int
 3774 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap,
 3775     const struct umtx_copyops *ops __unused)
 3776 {
 3777 
 3778         return (do_sem_wake(td, uap->obj));
 3779 }
 3780 #endif
 3781 
 3782 static int
 3783 __umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap,
 3784     const struct umtx_copyops *ops __unused)
 3785 {
 3786 
 3787         return (do_wake2_umutex(td, uap->obj, uap->val));
 3788 }
 3789 
 3790 static int
 3791 __umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap,
 3792     const struct umtx_copyops *ops)
 3793 {
 3794         struct _umtx_time *tm_p, timeout;
 3795         size_t uasize;
 3796         int error;
 3797 
 3798         /* Allow a null timespec (wait forever). */
 3799         if (uap->uaddr2 == NULL) {
 3800                 uasize = 0;
 3801                 tm_p = NULL;
 3802         } else {
 3803                 uasize = (size_t)uap->uaddr1;
 3804                 error = ops->copyin_umtx_time(uap->uaddr2, uasize, &timeout);
 3805                 if (error != 0)
 3806                         return (error);
 3807                 tm_p = &timeout;
 3808         }
 3809         error = do_sem2_wait(td, uap->obj, tm_p);
 3810         if (error == EINTR && uap->uaddr2 != NULL &&
 3811             (timeout._flags & UMTX_ABSTIME) == 0 &&
 3812             uasize >= ops->umtx_time_sz + ops->timespec_sz) {
 3813                 error = ops->copyout_timeout(
 3814                     (void *)((uintptr_t)uap->uaddr2 + ops->umtx_time_sz),
 3815                     uasize - ops->umtx_time_sz, &timeout._timeout);
 3816                 if (error == 0) {
 3817                         error = EINTR;
 3818                 }
 3819         }
 3820 
 3821         return (error);
 3822 }
 3823 
 3824 static int
 3825 __umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap,
 3826     const struct umtx_copyops *ops __unused)
 3827 {
 3828 
 3829         return (do_sem2_wake(td, uap->obj));
 3830 }
 3831 
 3832 #define USHM_OBJ_UMTX(o)                                                \
 3833     ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
 3834 
 3835 #define USHMF_REG_LINKED        0x0001
 3836 #define USHMF_OBJ_LINKED        0x0002
 3837 struct umtx_shm_reg {
 3838         TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
 3839         LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
 3840         struct umtx_key         ushm_key;
 3841         struct ucred            *ushm_cred;
 3842         struct shmfd            *ushm_obj;
 3843         u_int                   ushm_refcnt;
 3844         u_int                   ushm_flags;
 3845 };
 3846 
 3847 LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
 3848 TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
 3849 
 3850 static uma_zone_t umtx_shm_reg_zone;
 3851 static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
 3852 static struct mtx umtx_shm_lock;
 3853 static struct umtx_shm_reg_head umtx_shm_reg_delfree =
 3854     TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
 3855 
 3856 static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
 3857 
 3858 static void
 3859 umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
 3860 {
 3861         struct umtx_shm_reg_head d;
 3862         struct umtx_shm_reg *reg, *reg1;
 3863 
 3864         TAILQ_INIT(&d);
 3865         mtx_lock(&umtx_shm_lock);
 3866         TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
 3867         mtx_unlock(&umtx_shm_lock);
 3868         TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
 3869                 TAILQ_REMOVE(&d, reg, ushm_reg_link);
 3870                 umtx_shm_free_reg(reg);
 3871         }
 3872 }
 3873 
 3874 static struct task umtx_shm_reg_delfree_task =
 3875     TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
 3876 
 3877 static struct umtx_shm_reg *
 3878 umtx_shm_find_reg_locked(const struct umtx_key *key)
 3879 {
 3880         struct umtx_shm_reg *reg;
 3881         struct umtx_shm_reg_head *reg_head;
 3882 
 3883         KASSERT(key->shared, ("umtx_p_find_rg: private key"));
 3884         mtx_assert(&umtx_shm_lock, MA_OWNED);
 3885         reg_head = &umtx_shm_registry[key->hash];
 3886         TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
 3887                 KASSERT(reg->ushm_key.shared,
 3888                     ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
 3889                 if (reg->ushm_key.info.shared.object ==
 3890                     key->info.shared.object &&
 3891                     reg->ushm_key.info.shared.offset ==
 3892                     key->info.shared.offset) {
 3893                         KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
 3894                         KASSERT(reg->ushm_refcnt > 0,
 3895                             ("reg %p refcnt 0 onlist", reg));
 3896                         KASSERT((reg->ushm_flags & USHMF_REG_LINKED) != 0,
 3897                             ("reg %p not linked", reg));
 3898                         reg->ushm_refcnt++;
 3899                         return (reg);
 3900                 }
 3901         }
 3902         return (NULL);
 3903 }
 3904 
 3905 static struct umtx_shm_reg *
 3906 umtx_shm_find_reg(const struct umtx_key *key)
 3907 {
 3908         struct umtx_shm_reg *reg;
 3909 
 3910         mtx_lock(&umtx_shm_lock);
 3911         reg = umtx_shm_find_reg_locked(key);
 3912         mtx_unlock(&umtx_shm_lock);
 3913         return (reg);
 3914 }
 3915 
 3916 static void
 3917 umtx_shm_free_reg(struct umtx_shm_reg *reg)
 3918 {
 3919 
 3920         chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
 3921         crfree(reg->ushm_cred);
 3922         shm_drop(reg->ushm_obj);
 3923         uma_zfree(umtx_shm_reg_zone, reg);
 3924 }
 3925 
 3926 static bool
 3927 umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
 3928 {
 3929         bool res;
 3930 
 3931         mtx_assert(&umtx_shm_lock, MA_OWNED);
 3932         KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
 3933         reg->ushm_refcnt--;
 3934         res = reg->ushm_refcnt == 0;
 3935         if (res || force) {
 3936                 if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
 3937                         TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
 3938                             reg, ushm_reg_link);
 3939                         reg->ushm_flags &= ~USHMF_REG_LINKED;
 3940                 }
 3941                 if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
 3942                         LIST_REMOVE(reg, ushm_obj_link);
 3943                         reg->ushm_flags &= ~USHMF_OBJ_LINKED;
 3944                 }
 3945         }
 3946         return (res);
 3947 }
 3948 
 3949 static void
 3950 umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool force)
 3951 {
 3952         vm_object_t object;
 3953         bool dofree;
 3954 
 3955         if (force) {
 3956                 object = reg->ushm_obj->shm_object;
 3957                 VM_OBJECT_WLOCK(object);
 3958                 object->flags |= OBJ_UMTXDEAD;
 3959                 VM_OBJECT_WUNLOCK(object);
 3960         }
 3961         mtx_lock(&umtx_shm_lock);
 3962         dofree = umtx_shm_unref_reg_locked(reg, force);
 3963         mtx_unlock(&umtx_shm_lock);
 3964         if (dofree)
 3965                 umtx_shm_free_reg(reg);
 3966 }
 3967 
 3968 void
 3969 umtx_shm_object_init(vm_object_t object)
 3970 {
 3971 
 3972         LIST_INIT(USHM_OBJ_UMTX(object));
 3973 }
 3974 
 3975 void
 3976 umtx_shm_object_terminated(vm_object_t object)
 3977 {
 3978         struct umtx_shm_reg *reg, *reg1;
 3979         bool dofree;
 3980 
 3981         if (LIST_EMPTY(USHM_OBJ_UMTX(object)))
 3982                 return;
 3983 
 3984         dofree = false;
 3985         mtx_lock(&umtx_shm_lock);
 3986         LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
 3987                 if (umtx_shm_unref_reg_locked(reg, true)) {
 3988                         TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
 3989                             ushm_reg_link);
 3990                         dofree = true;
 3991                 }
 3992         }
 3993         mtx_unlock(&umtx_shm_lock);
 3994         if (dofree)
 3995                 taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
 3996 }
 3997 
 3998 static int
 3999 umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
 4000     struct umtx_shm_reg **res)
 4001 {
 4002         struct umtx_shm_reg *reg, *reg1;
 4003         struct ucred *cred;
 4004         int error;
 4005 
 4006         reg = umtx_shm_find_reg(key);
 4007         if (reg != NULL) {
 4008                 *res = reg;
 4009                 return (0);
 4010         }
 4011         cred = td->td_ucred;
 4012         if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
 4013                 return (ENOMEM);
 4014         reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
 4015         reg->ushm_refcnt = 1;
 4016         bcopy(key, &reg->ushm_key, sizeof(*key));
 4017         reg->ushm_obj = shm_alloc(td->td_ucred, O_RDWR, false);
 4018         reg->ushm_cred = crhold(cred);
 4019         error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
 4020         if (error != 0) {
 4021                 umtx_shm_free_reg(reg);
 4022                 return (error);
 4023         }
 4024         mtx_lock(&umtx_shm_lock);
 4025         reg1 = umtx_shm_find_reg_locked(key);
 4026         if (reg1 != NULL) {
 4027                 mtx_unlock(&umtx_shm_lock);
 4028                 umtx_shm_free_reg(reg);
 4029                 *res = reg1;
 4030                 return (0);
 4031         }
 4032         reg->ushm_refcnt++;
 4033         TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
 4034         LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
 4035             ushm_obj_link);
 4036         reg->ushm_flags = USHMF_REG_LINKED | USHMF_OBJ_LINKED;
 4037         mtx_unlock(&umtx_shm_lock);
 4038         *res = reg;
 4039         return (0);
 4040 }
 4041 
 4042 static int
 4043 umtx_shm_alive(struct thread *td, void *addr)
 4044 {
 4045         vm_map_t map;
 4046         vm_map_entry_t entry;
 4047         vm_object_t object;
 4048         vm_pindex_t pindex;
 4049         vm_prot_t prot;
 4050         int res, ret;
 4051         boolean_t wired;
 4052 
 4053         map = &td->td_proc->p_vmspace->vm_map;
 4054         res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
 4055             &object, &pindex, &prot, &wired);
 4056         if (res != KERN_SUCCESS)
 4057                 return (EFAULT);
 4058         if (object == NULL)
 4059                 ret = EINVAL;
 4060         else
 4061                 ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
 4062         vm_map_lookup_done(map, entry);
 4063         return (ret);
 4064 }
 4065 
 4066 static void
 4067 umtx_shm_init(void)
 4068 {
 4069         int i;
 4070 
 4071         umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
 4072             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
 4073         mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
 4074         for (i = 0; i < nitems(umtx_shm_registry); i++)
 4075                 TAILQ_INIT(&umtx_shm_registry[i]);
 4076 }
 4077 
 4078 static int
 4079 umtx_shm(struct thread *td, void *addr, u_int flags)
 4080 {
 4081         struct umtx_key key;
 4082         struct umtx_shm_reg *reg;
 4083         struct file *fp;
 4084         int error, fd;
 4085 
 4086         if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
 4087             UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
 4088                 return (EINVAL);
 4089         if ((flags & UMTX_SHM_ALIVE) != 0)
 4090                 return (umtx_shm_alive(td, addr));
 4091         error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
 4092         if (error != 0)
 4093                 return (error);
 4094         KASSERT(key.shared == 1, ("non-shared key"));
 4095         if ((flags & UMTX_SHM_CREAT) != 0) {
 4096                 error = umtx_shm_create_reg(td, &key, &reg);
 4097         } else {
 4098                 reg = umtx_shm_find_reg(&key);
 4099                 if (reg == NULL)
 4100                         error = ESRCH;
 4101         }
 4102         umtx_key_release(&key);
 4103         if (error != 0)
 4104                 return (error);
 4105         KASSERT(reg != NULL, ("no reg"));
 4106         if ((flags & UMTX_SHM_DESTROY) != 0) {
 4107                 umtx_shm_unref_reg(reg, true);
 4108         } else {
 4109 #if 0
 4110 #ifdef MAC
 4111                 error = mac_posixshm_check_open(td->td_ucred,
 4112                     reg->ushm_obj, FFLAGS(O_RDWR));
 4113                 if (error == 0)
 4114 #endif
 4115                         error = shm_access(reg->ushm_obj, td->td_ucred,
 4116                             FFLAGS(O_RDWR));
 4117                 if (error == 0)
 4118 #endif
 4119                         error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
 4120                 if (error == 0) {
 4121                         shm_hold(reg->ushm_obj);
 4122                         finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
 4123                             &shm_ops);
 4124                         td->td_retval[0] = fd;
 4125                         fdrop(fp, td);
 4126                 }
 4127         }
 4128         umtx_shm_unref_reg(reg, false);
 4129         return (error);
 4130 }
 4131 
 4132 static int
 4133 __umtx_op_shm(struct thread *td, struct _umtx_op_args *uap,
 4134     const struct umtx_copyops *ops __unused)
 4135 {
 4136 
 4137         return (umtx_shm(td, uap->uaddr1, uap->val));
 4138 }
 4139 
 4140 static int
 4141 __umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap,
 4142     const struct umtx_copyops *ops)
 4143 {
 4144         struct umtx_robust_lists_params rb;
 4145         int error;
 4146 
 4147         if (ops->compat32) {
 4148                 if ((td->td_pflags2 & TDP2_COMPAT32RB) == 0 &&
 4149                     (td->td_rb_list != 0 || td->td_rbp_list != 0 ||
 4150                     td->td_rb_inact != 0))
 4151                         return (EBUSY);
 4152         } else if ((td->td_pflags2 & TDP2_COMPAT32RB) != 0) {
 4153                 return (EBUSY);
 4154         }
 4155 
 4156         bzero(&rb, sizeof(rb));
 4157         error = ops->copyin_robust_lists(uap->uaddr1, uap->val, &rb);
 4158         if (error != 0)
 4159                 return (error);
 4160 
 4161         if (ops->compat32)
 4162                 td->td_pflags2 |= TDP2_COMPAT32RB;
 4163 
 4164         td->td_rb_list = rb.robust_list_offset;
 4165         td->td_rbp_list = rb.robust_priv_list_offset;
 4166         td->td_rb_inact = rb.robust_inact_offset;
 4167         return (0);
 4168 }
 4169 
 4170 #if defined(__i386__) || defined(__amd64__)
 4171 /*
 4172  * Provide the standard 32-bit definitions for x86, since native/compat32 use a
 4173  * 32-bit time_t there.  Other architectures just need the i386 definitions
 4174  * along with their standard compat32.
 4175  */
 4176 struct timespecx32 {
 4177         int64_t                 tv_sec;
 4178         int32_t                 tv_nsec;
 4179 };
 4180 
 4181 struct umtx_timex32 {
 4182         struct  timespecx32     _timeout;
 4183         uint32_t                _flags;
 4184         uint32_t                _clockid;
 4185 };
 4186 
 4187 #ifndef __i386__
 4188 #define timespeci386    timespec32
 4189 #define umtx_timei386   umtx_time32
 4190 #endif
 4191 #else /* !__i386__ && !__amd64__ */
 4192 /* 32-bit architectures can emulate i386, so define these almost everywhere. */
 4193 struct timespeci386 {
 4194         int32_t                 tv_sec;
 4195         int32_t                 tv_nsec;
 4196 };
 4197 
 4198 struct umtx_timei386 {
 4199         struct  timespeci386    _timeout;
 4200         uint32_t                _flags;
 4201         uint32_t                _clockid;
 4202 };
 4203 
 4204 #if defined(__LP64__)
 4205 #define timespecx32     timespec32
 4206 #define umtx_timex32    umtx_time32
 4207 #endif
 4208 #endif
 4209 
 4210 static int
 4211 umtx_copyin_robust_lists32(const void *uaddr, size_t size,
 4212     struct umtx_robust_lists_params *rbp)
 4213 {
 4214         struct umtx_robust_lists_params_compat32 rb32;
 4215         int error;
 4216 
 4217         if (size > sizeof(rb32))
 4218                 return (EINVAL);
 4219         bzero(&rb32, sizeof(rb32));
 4220         error = copyin(uaddr, &rb32, size);
 4221         if (error != 0)
 4222                 return (error);
 4223         CP(rb32, *rbp, robust_list_offset);
 4224         CP(rb32, *rbp, robust_priv_list_offset);
 4225         CP(rb32, *rbp, robust_inact_offset);
 4226         return (0);
 4227 }
 4228 
 4229 #ifndef __i386__
 4230 static inline int
 4231 umtx_copyin_timeouti386(const void *uaddr, struct timespec *tsp)
 4232 {
 4233         struct timespeci386 ts32;
 4234         int error;
 4235 
 4236         error = copyin(uaddr, &ts32, sizeof(ts32));
 4237         if (error == 0) {
 4238                 if (ts32.tv_sec < 0 ||
 4239                     ts32.tv_nsec >= 1000000000 ||
 4240                     ts32.tv_nsec < 0)
 4241                         error = EINVAL;
 4242                 else {
 4243                         CP(ts32, *tsp, tv_sec);
 4244                         CP(ts32, *tsp, tv_nsec);
 4245                 }
 4246         }
 4247         return (error);
 4248 }
 4249 
 4250 static inline int
 4251 umtx_copyin_umtx_timei386(const void *uaddr, size_t size, struct _umtx_time *tp)
 4252 {
 4253         struct umtx_timei386 t32;
 4254         int error;
 4255 
 4256         t32._clockid = CLOCK_REALTIME;
 4257         t32._flags   = 0;
 4258         if (size <= sizeof(t32._timeout))
 4259                 error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
 4260         else
 4261                 error = copyin(uaddr, &t32, sizeof(t32));
 4262         if (error != 0)
 4263                 return (error);
 4264         if (t32._timeout.tv_sec < 0 ||
 4265             t32._timeout.tv_nsec >= 1000000000 || t32._timeout.tv_nsec < 0)
 4266                 return (EINVAL);
 4267         TS_CP(t32, *tp, _timeout);
 4268         CP(t32, *tp, _flags);
 4269         CP(t32, *tp, _clockid);
 4270         return (0);
 4271 }
 4272 
 4273 static int
 4274 umtx_copyout_timeouti386(void *uaddr, size_t sz, struct timespec *tsp)
 4275 {
 4276         struct timespeci386 remain32 = {
 4277                 .tv_sec = tsp->tv_sec,
 4278                 .tv_nsec = tsp->tv_nsec,
 4279         };
 4280 
 4281         /*
 4282          * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
 4283          * and we're only called if sz >= sizeof(timespec) as supplied in the
 4284          * copyops.
 4285          */
 4286         KASSERT(sz >= sizeof(remain32),
 4287             ("umtx_copyops specifies incorrect sizes"));
 4288 
 4289         return (copyout(&remain32, uaddr, sizeof(remain32)));
 4290 }
 4291 #endif /* !__i386__ */
 4292 
 4293 #if defined(__i386__) || defined(__LP64__)
 4294 static inline int
 4295 umtx_copyin_timeoutx32(const void *uaddr, struct timespec *tsp)
 4296 {
 4297         struct timespecx32 ts32;
 4298         int error;
 4299 
 4300         error = copyin(uaddr, &ts32, sizeof(ts32));
 4301         if (error == 0) {
 4302                 if (ts32.tv_sec < 0 ||
 4303                     ts32.tv_nsec >= 1000000000 ||
 4304                     ts32.tv_nsec < 0)
 4305                         error = EINVAL;
 4306                 else {
 4307                         CP(ts32, *tsp, tv_sec);
 4308                         CP(ts32, *tsp, tv_nsec);
 4309                 }
 4310         }
 4311         return (error);
 4312 }
 4313 
 4314 static inline int
 4315 umtx_copyin_umtx_timex32(const void *uaddr, size_t size, struct _umtx_time *tp)
 4316 {
 4317         struct umtx_timex32 t32;
 4318         int error;
 4319 
 4320         t32._clockid = CLOCK_REALTIME;
 4321         t32._flags   = 0;
 4322         if (size <= sizeof(t32._timeout))
 4323                 error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
 4324         else
 4325                 error = copyin(uaddr, &t32, sizeof(t32));
 4326         if (error != 0)
 4327                 return (error);
 4328         if (t32._timeout.tv_sec < 0 ||
 4329             t32._timeout.tv_nsec >= 1000000000 || t32._timeout.tv_nsec < 0)
 4330                 return (EINVAL);
 4331         TS_CP(t32, *tp, _timeout);
 4332         CP(t32, *tp, _flags);
 4333         CP(t32, *tp, _clockid);
 4334         return (0);
 4335 }
 4336 
 4337 static int
 4338 umtx_copyout_timeoutx32(void *uaddr, size_t sz, struct timespec *tsp)
 4339 {
 4340         struct timespecx32 remain32 = {
 4341                 .tv_sec = tsp->tv_sec,
 4342                 .tv_nsec = tsp->tv_nsec,
 4343         };
 4344 
 4345         /*
 4346          * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
 4347          * and we're only called if sz >= sizeof(timespec) as supplied in the
 4348          * copyops.
 4349          */
 4350         KASSERT(sz >= sizeof(remain32),
 4351             ("umtx_copyops specifies incorrect sizes"));
 4352 
 4353         return (copyout(&remain32, uaddr, sizeof(remain32)));
 4354 }
 4355 #endif /* __i386__ || __LP64__ */
 4356 
 4357 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap,
 4358     const struct umtx_copyops *umtx_ops);
 4359 
 4360 static const _umtx_op_func op_table[] = {
 4361         [UMTX_OP_RESERVED0]     = __umtx_op_unimpl,
 4362         [UMTX_OP_RESERVED1]     = __umtx_op_unimpl,
 4363         [UMTX_OP_WAIT]          = __umtx_op_wait,
 4364         [UMTX_OP_WAKE]          = __umtx_op_wake,
 4365         [UMTX_OP_MUTEX_TRYLOCK] = __umtx_op_trylock_umutex,
 4366         [UMTX_OP_MUTEX_LOCK]    = __umtx_op_lock_umutex,
 4367         [UMTX_OP_MUTEX_UNLOCK]  = __umtx_op_unlock_umutex,
 4368         [UMTX_OP_SET_CEILING]   = __umtx_op_set_ceiling,
 4369         [UMTX_OP_CV_WAIT]       = __umtx_op_cv_wait,
 4370         [UMTX_OP_CV_SIGNAL]     = __umtx_op_cv_signal,
 4371         [UMTX_OP_CV_BROADCAST]  = __umtx_op_cv_broadcast,
 4372         [UMTX_OP_WAIT_UINT]     = __umtx_op_wait_uint,
 4373         [UMTX_OP_RW_RDLOCK]     = __umtx_op_rw_rdlock,
 4374         [UMTX_OP_RW_WRLOCK]     = __umtx_op_rw_wrlock,
 4375         [UMTX_OP_RW_UNLOCK]     = __umtx_op_rw_unlock,
 4376         [UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
 4377         [UMTX_OP_WAKE_PRIVATE]  = __umtx_op_wake_private,
 4378         [UMTX_OP_MUTEX_WAIT]    = __umtx_op_wait_umutex,
 4379         [UMTX_OP_MUTEX_WAKE]    = __umtx_op_wake_umutex,
 4380 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
 4381         [UMTX_OP_SEM_WAIT]      = __umtx_op_sem_wait,
 4382         [UMTX_OP_SEM_WAKE]      = __umtx_op_sem_wake,
 4383 #else
 4384         [UMTX_OP_SEM_WAIT]      = __umtx_op_unimpl,
 4385         [UMTX_OP_SEM_WAKE]      = __umtx_op_unimpl,
 4386 #endif
 4387         [UMTX_OP_NWAKE_PRIVATE] = __umtx_op_nwake_private,
 4388         [UMTX_OP_MUTEX_WAKE2]   = __umtx_op_wake2_umutex,
 4389         [UMTX_OP_SEM2_WAIT]     = __umtx_op_sem2_wait,
 4390         [UMTX_OP_SEM2_WAKE]     = __umtx_op_sem2_wake,
 4391         [UMTX_OP_SHM]           = __umtx_op_shm,
 4392         [UMTX_OP_ROBUST_LISTS]  = __umtx_op_robust_lists,
 4393 };
 4394 
 4395 static const struct umtx_copyops umtx_native_ops = {
 4396         .copyin_timeout = umtx_copyin_timeout,
 4397         .copyin_umtx_time = umtx_copyin_umtx_time,
 4398         .copyin_robust_lists = umtx_copyin_robust_lists,
 4399         .copyout_timeout = umtx_copyout_timeout,
 4400         .timespec_sz = sizeof(struct timespec),
 4401         .umtx_time_sz = sizeof(struct _umtx_time),
 4402 };
 4403 
 4404 #ifndef __i386__
 4405 static const struct umtx_copyops umtx_native_opsi386 = {
 4406         .copyin_timeout = umtx_copyin_timeouti386,
 4407         .copyin_umtx_time = umtx_copyin_umtx_timei386,
 4408         .copyin_robust_lists = umtx_copyin_robust_lists32,
 4409         .copyout_timeout = umtx_copyout_timeouti386,
 4410         .timespec_sz = sizeof(struct timespeci386),
 4411         .umtx_time_sz = sizeof(struct umtx_timei386),
 4412         .compat32 = true,
 4413 };
 4414 #endif
 4415 
 4416 #if defined(__i386__) || defined(__LP64__)
 4417 /* i386 can emulate other 32-bit archs, too! */
 4418 static const struct umtx_copyops umtx_native_opsx32 = {
 4419         .copyin_timeout = umtx_copyin_timeoutx32,
 4420         .copyin_umtx_time = umtx_copyin_umtx_timex32,
 4421         .copyin_robust_lists = umtx_copyin_robust_lists32,
 4422         .copyout_timeout = umtx_copyout_timeoutx32,
 4423         .timespec_sz = sizeof(struct timespecx32),
 4424         .umtx_time_sz = sizeof(struct umtx_timex32),
 4425         .compat32 = true,
 4426 };
 4427 
 4428 #ifdef COMPAT_FREEBSD32
 4429 #ifdef __amd64__
 4430 #define umtx_native_ops32       umtx_native_opsi386
 4431 #else
 4432 #define umtx_native_ops32       umtx_native_opsx32
 4433 #endif
 4434 #endif /* COMPAT_FREEBSD32 */
 4435 #endif /* __i386__ || __LP64__ */
 4436 
 4437 #define UMTX_OP__FLAGS  (UMTX_OP__32BIT | UMTX_OP__I386)
 4438 
 4439 static int
 4440 kern__umtx_op(struct thread *td, void *obj, int op, unsigned long val,
 4441     void *uaddr1, void *uaddr2, const struct umtx_copyops *ops)
 4442 {
 4443         struct _umtx_op_args uap = {
 4444                 .obj = obj,
 4445                 .op = op & ~UMTX_OP__FLAGS,
 4446                 .val = val,
 4447                 .uaddr1 = uaddr1,
 4448                 .uaddr2 = uaddr2
 4449         };
 4450 
 4451         if ((uap.op >= nitems(op_table)))
 4452                 return (EINVAL);
 4453         return ((*op_table[uap.op])(td, &uap, ops));
 4454 }
 4455 
 4456 int
 4457 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
 4458 {
 4459         static const struct umtx_copyops *umtx_ops;
 4460 
 4461         umtx_ops = &umtx_native_ops;
 4462 #ifdef __LP64__
 4463         if ((uap->op & (UMTX_OP__32BIT | UMTX_OP__I386)) != 0) {
 4464                 if ((uap->op & UMTX_OP__I386) != 0)
 4465                         umtx_ops = &umtx_native_opsi386;
 4466                 else
 4467                         umtx_ops = &umtx_native_opsx32;
 4468         }
 4469 #elif !defined(__i386__)
 4470         /* We consider UMTX_OP__32BIT a nop on !i386 ILP32. */
 4471         if ((uap->op & UMTX_OP__I386) != 0)
 4472                 umtx_ops = &umtx_native_opsi386;
 4473 #else
 4474         /* Likewise, UMTX_OP__I386 is a nop on i386. */
 4475         if ((uap->op & UMTX_OP__32BIT) != 0)
 4476                 umtx_ops = &umtx_native_opsx32;
 4477 #endif
 4478         return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr1,
 4479             uap->uaddr2, umtx_ops));
 4480 }
 4481 
 4482 #ifdef COMPAT_FREEBSD32
 4483 int
 4484 freebsd32__umtx_op(struct thread *td, struct freebsd32__umtx_op_args *uap)
 4485 {
 4486 
 4487         return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr,
 4488             uap->uaddr2, &umtx_native_ops32));
 4489 }
 4490 #endif
 4491 
 4492 void
 4493 umtx_thread_init(struct thread *td)
 4494 {
 4495 
 4496         td->td_umtxq = umtxq_alloc();
 4497         td->td_umtxq->uq_thread = td;
 4498 }
 4499 
 4500 void
 4501 umtx_thread_fini(struct thread *td)
 4502 {
 4503 
 4504         umtxq_free(td->td_umtxq);
 4505 }
 4506 
 4507 /*
 4508  * It will be called when new thread is created, e.g fork().
 4509  */
 4510 void
 4511 umtx_thread_alloc(struct thread *td)
 4512 {
 4513         struct umtx_q *uq;
 4514 
 4515         uq = td->td_umtxq;
 4516         uq->uq_inherited_pri = PRI_MAX;
 4517 
 4518         KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
 4519         KASSERT(uq->uq_thread == td, ("uq_thread != td"));
 4520         KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
 4521         KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
 4522 }
 4523 
 4524 /*
 4525  * exec() hook.
 4526  *
 4527  * Clear robust lists for all process' threads, not delaying the
 4528  * cleanup to thread exit, since the relevant address space is
 4529  * destroyed right now.
 4530  */
 4531 void
 4532 umtx_exec(struct proc *p)
 4533 {
 4534         struct thread *td;
 4535 
 4536         KASSERT(p == curproc, ("need curproc"));
 4537         KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
 4538             (p->p_flag & P_STOPPED_SINGLE) != 0,
 4539             ("curproc must be single-threaded"));
 4540         /*
 4541          * There is no need to lock the list as only this thread can be
 4542          * running.
 4543          */
 4544         FOREACH_THREAD_IN_PROC(p, td) {
 4545                 KASSERT(td == curthread ||
 4546                     ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
 4547                     ("running thread %p %p", p, td));
 4548                 umtx_thread_cleanup(td);
 4549                 td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
 4550         }
 4551 }
 4552 
 4553 /*
 4554  * thread exit hook.
 4555  */
 4556 void
 4557 umtx_thread_exit(struct thread *td)
 4558 {
 4559 
 4560         umtx_thread_cleanup(td);
 4561 }
 4562 
 4563 static int
 4564 umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res, bool compat32)
 4565 {
 4566         u_long res1;
 4567         uint32_t res32;
 4568         int error;
 4569 
 4570         if (compat32) {
 4571                 error = fueword32((void *)ptr, &res32);
 4572                 if (error == 0)
 4573                         res1 = res32;
 4574         } else {
 4575                 error = fueword((void *)ptr, &res1);
 4576         }
 4577         if (error == 0)
 4578                 *res = res1;
 4579         else
 4580                 error = EFAULT;
 4581         return (error);
 4582 }
 4583 
 4584 static void
 4585 umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list,
 4586     bool compat32)
 4587 {
 4588         struct umutex32 m32;
 4589 
 4590         if (compat32) {
 4591                 memcpy(&m32, m, sizeof(m32));
 4592                 *rb_list = m32.m_rb_lnk;
 4593         } else {
 4594                 *rb_list = m->m_rb_lnk;
 4595         }
 4596 }
 4597 
 4598 static int
 4599 umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact,
 4600     bool compat32)
 4601 {
 4602         struct umutex m;
 4603         int error;
 4604 
 4605         KASSERT(td->td_proc == curproc, ("need current vmspace"));
 4606         error = copyin((void *)rbp, &m, sizeof(m));
 4607         if (error != 0)
 4608                 return (error);
 4609         if (rb_list != NULL)
 4610                 umtx_read_rb_list(td, &m, rb_list, compat32);
 4611         if ((m.m_flags & UMUTEX_ROBUST) == 0)
 4612                 return (EINVAL);
 4613         if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
 4614                 /* inact is cleared after unlock, allow the inconsistency */
 4615                 return (inact ? 0 : EINVAL);
 4616         return (do_unlock_umutex(td, (struct umutex *)rbp, true));
 4617 }
 4618 
 4619 static void
 4620 umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
 4621     const char *name, bool compat32)
 4622 {
 4623         int error, i;
 4624         uintptr_t rbp;
 4625         bool inact;
 4626 
 4627         if (rb_list == 0)
 4628                 return;
 4629         error = umtx_read_uptr(td, rb_list, &rbp, compat32);
 4630         for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
 4631                 if (rbp == *rb_inact) {
 4632                         inact = true;
 4633                         *rb_inact = 0;
 4634                 } else
 4635                         inact = false;
 4636                 error = umtx_handle_rb(td, rbp, &rbp, inact, compat32);
 4637         }
 4638         if (i == umtx_max_rb && umtx_verbose_rb) {
 4639                 uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
 4640                     td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
 4641         }
 4642         if (error != 0 && umtx_verbose_rb) {
 4643                 uprintf("comm %s pid %d: handling %srb error %d\n",
 4644                     td->td_proc->p_comm, td->td_proc->p_pid, name, error);
 4645         }
 4646 }
 4647 
 4648 /*
 4649  * Clean up umtx data.
 4650  */
 4651 static void
 4652 umtx_thread_cleanup(struct thread *td)
 4653 {
 4654         struct umtx_q *uq;
 4655         struct umtx_pi *pi;
 4656         uintptr_t rb_inact;
 4657         bool compat32;
 4658 
 4659         /*
 4660          * Disown pi mutexes.
 4661          */
 4662         uq = td->td_umtxq;
 4663         if (uq != NULL) {
 4664                 if (uq->uq_inherited_pri != PRI_MAX ||
 4665                     !TAILQ_EMPTY(&uq->uq_pi_contested)) {
 4666                         mtx_lock(&umtx_lock);
 4667                         uq->uq_inherited_pri = PRI_MAX;
 4668                         while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
 4669                                 pi->pi_owner = NULL;
 4670                                 TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
 4671                         }
 4672                         mtx_unlock(&umtx_lock);
 4673                 }
 4674                 sched_lend_user_prio_cond(td, PRI_MAX);
 4675         }
 4676 
 4677         compat32 = (td->td_pflags2 & TDP2_COMPAT32RB) != 0;
 4678         td->td_pflags2 &= ~TDP2_COMPAT32RB;
 4679 
 4680         if (td->td_rb_inact == 0 && td->td_rb_list == 0 && td->td_rbp_list == 0)
 4681                 return;
 4682 
 4683         /*
 4684          * Handle terminated robust mutexes.  Must be done after
 4685          * robust pi disown, otherwise unlock could see unowned
 4686          * entries.
 4687          */
 4688         rb_inact = td->td_rb_inact;
 4689         if (rb_inact != 0)
 4690                 (void)umtx_read_uptr(td, rb_inact, &rb_inact, compat32);
 4691         umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "", compat32);
 4692         umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ", compat32);
 4693         if (rb_inact != 0)
 4694                 (void)umtx_handle_rb(td, rb_inact, NULL, true, compat32);
 4695 }

Cache object: 85cd4b7e470732a20643dea5463bc2a3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.