FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_umtx.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2015, 2016 The FreeBSD Foundation
5 * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
6 * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
7 * All rights reserved.
8 *
9 * Portions of this software were developed by Konstantin Belousov
10 * under sponsorship from the FreeBSD Foundation.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice unmodified, this list of conditions, and the following
17 * disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include "opt_umtx_profiling.h"
38
39 #include <sys/param.h>
40 #include <sys/kernel.h>
41 #include <sys/fcntl.h>
42 #include <sys/file.h>
43 #include <sys/filedesc.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/mutex.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/resource.h>
52 #include <sys/resourcevar.h>
53 #include <sys/rwlock.h>
54 #include <sys/sbuf.h>
55 #include <sys/sched.h>
56 #include <sys/smp.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 #include <sys/sysproto.h>
60 #include <sys/syscallsubr.h>
61 #include <sys/taskqueue.h>
62 #include <sys/time.h>
63 #include <sys/eventhandler.h>
64 #include <sys/umtx.h>
65 #include <sys/umtxvar.h>
66
67 #include <security/mac/mac_framework.h>
68
69 #include <vm/vm.h>
70 #include <vm/vm_param.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_object.h>
74
75 #include <machine/atomic.h>
76 #include <machine/cpu.h>
77
78 #include <compat/freebsd32/freebsd32.h>
79 #ifdef COMPAT_FREEBSD32
80 #include <compat/freebsd32/freebsd32_proto.h>
81 #endif
82
83 #define _UMUTEX_TRY 1
84 #define _UMUTEX_WAIT 2
85
86 #ifdef UMTX_PROFILING
87 #define UPROF_PERC_BIGGER(w, f, sw, sf) \
88 (((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
89 #endif
90
91 #define UMTXQ_LOCKED_ASSERT(uc) mtx_assert(&(uc)->uc_lock, MA_OWNED)
92 #ifdef INVARIANTS
93 #define UMTXQ_ASSERT_LOCKED_BUSY(key) do { \
94 struct umtxq_chain *uc; \
95 \
96 uc = umtxq_getchain(key); \
97 mtx_assert(&uc->uc_lock, MA_OWNED); \
98 KASSERT(uc->uc_busy != 0, ("umtx chain is not busy")); \
99 } while (0)
100 #else
101 #define UMTXQ_ASSERT_LOCKED_BUSY(key) do {} while (0)
102 #endif
103
104 /*
105 * Don't propagate time-sharing priority, there is a security reason,
106 * a user can simply introduce PI-mutex, let thread A lock the mutex,
107 * and let another thread B block on the mutex, because B is
108 * sleeping, its priority will be boosted, this causes A's priority to
109 * be boosted via priority propagating too and will never be lowered even
110 * if it is using 100%CPU, this is unfair to other processes.
111 */
112
113 #define UPRI(td) (((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
114 (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
115 PRI_MAX_TIMESHARE : (td)->td_user_pri)
116
117 #define GOLDEN_RATIO_PRIME 2654404609U
118 #ifndef UMTX_CHAINS
119 #define UMTX_CHAINS 512
120 #endif
121 #define UMTX_SHIFTS (__WORD_BIT - 9)
122
123 #define GET_SHARE(flags) \
124 (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
125
126 #define BUSY_SPINS 200
127
128 struct umtx_copyops {
129 int (*copyin_timeout)(const void *uaddr, struct timespec *tsp);
130 int (*copyin_umtx_time)(const void *uaddr, size_t size,
131 struct _umtx_time *tp);
132 int (*copyin_robust_lists)(const void *uaddr, size_t size,
133 struct umtx_robust_lists_params *rbp);
134 int (*copyout_timeout)(void *uaddr, size_t size,
135 struct timespec *tsp);
136 const size_t timespec_sz;
137 const size_t umtx_time_sz;
138 const bool compat32;
139 };
140
141 _Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
142 _Static_assert(__offsetof(struct umutex, m_spare[0]) ==
143 __offsetof(struct umutex32, m_spare[0]), "m_spare32");
144
145 int umtx_shm_vnobj_persistent = 0;
146 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
147 &umtx_shm_vnobj_persistent, 0,
148 "False forces destruction of umtx attached to file, on last close");
149 static int umtx_max_rb = 1000;
150 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
151 &umtx_max_rb, 0,
152 "Maximum number of robust mutexes allowed for each thread");
153
154 static uma_zone_t umtx_pi_zone;
155 static struct umtxq_chain umtxq_chains[2][UMTX_CHAINS];
156 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
157 static int umtx_pi_allocated;
158
159 static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
160 "umtx debug");
161 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
162 &umtx_pi_allocated, 0, "Allocated umtx_pi");
163 static int umtx_verbose_rb = 1;
164 SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
165 &umtx_verbose_rb, 0,
166 "");
167
168 #ifdef UMTX_PROFILING
169 static long max_length;
170 SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
171 static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
172 "umtx chain stats");
173 #endif
174
175 static inline void umtx_abs_timeout_init2(struct umtx_abs_timeout *timo,
176 const struct _umtx_time *umtxtime);
177
178 static void umtx_shm_init(void);
179 static void umtxq_sysinit(void *);
180 static void umtxq_hash(struct umtx_key *key);
181 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
182 bool rb);
183 static void umtx_thread_cleanup(struct thread *td);
184 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
185
186 #define umtxq_signal(key, nwake) umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
187
188 static struct mtx umtx_lock;
189
190 #ifdef UMTX_PROFILING
191 static void
192 umtx_init_profiling(void)
193 {
194 struct sysctl_oid *chain_oid;
195 char chain_name[10];
196 int i;
197
198 for (i = 0; i < UMTX_CHAINS; ++i) {
199 snprintf(chain_name, sizeof(chain_name), "%d", i);
200 chain_oid = SYSCTL_ADD_NODE(NULL,
201 SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO,
202 chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
203 "umtx hash stats");
204 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
205 "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
206 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
207 "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
208 }
209 }
210
211 static int
212 sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
213 {
214 char buf[512];
215 struct sbuf sb;
216 struct umtxq_chain *uc;
217 u_int fract, i, j, tot, whole;
218 u_int sf0, sf1, sf2, sf3, sf4;
219 u_int si0, si1, si2, si3, si4;
220 u_int sw0, sw1, sw2, sw3, sw4;
221
222 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
223 for (i = 0; i < 2; i++) {
224 tot = 0;
225 for (j = 0; j < UMTX_CHAINS; ++j) {
226 uc = &umtxq_chains[i][j];
227 mtx_lock(&uc->uc_lock);
228 tot += uc->max_length;
229 mtx_unlock(&uc->uc_lock);
230 }
231 if (tot == 0)
232 sbuf_printf(&sb, "%u) Empty ", i);
233 else {
234 sf0 = sf1 = sf2 = sf3 = sf4 = 0;
235 si0 = si1 = si2 = si3 = si4 = 0;
236 sw0 = sw1 = sw2 = sw3 = sw4 = 0;
237 for (j = 0; j < UMTX_CHAINS; j++) {
238 uc = &umtxq_chains[i][j];
239 mtx_lock(&uc->uc_lock);
240 whole = uc->max_length * 100;
241 mtx_unlock(&uc->uc_lock);
242 fract = (whole % tot) * 100;
243 if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
244 sf0 = fract;
245 si0 = j;
246 sw0 = whole;
247 } else if (UPROF_PERC_BIGGER(whole, fract, sw1,
248 sf1)) {
249 sf1 = fract;
250 si1 = j;
251 sw1 = whole;
252 } else if (UPROF_PERC_BIGGER(whole, fract, sw2,
253 sf2)) {
254 sf2 = fract;
255 si2 = j;
256 sw2 = whole;
257 } else if (UPROF_PERC_BIGGER(whole, fract, sw3,
258 sf3)) {
259 sf3 = fract;
260 si3 = j;
261 sw3 = whole;
262 } else if (UPROF_PERC_BIGGER(whole, fract, sw4,
263 sf4)) {
264 sf4 = fract;
265 si4 = j;
266 sw4 = whole;
267 }
268 }
269 sbuf_printf(&sb, "queue %u:\n", i);
270 sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
271 sf0 / tot, si0);
272 sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
273 sf1 / tot, si1);
274 sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
275 sf2 / tot, si2);
276 sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
277 sf3 / tot, si3);
278 sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
279 sf4 / tot, si4);
280 }
281 }
282 sbuf_trim(&sb);
283 sbuf_finish(&sb);
284 sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
285 sbuf_delete(&sb);
286 return (0);
287 }
288
289 static int
290 sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
291 {
292 struct umtxq_chain *uc;
293 u_int i, j;
294 int clear, error;
295
296 clear = 0;
297 error = sysctl_handle_int(oidp, &clear, 0, req);
298 if (error != 0 || req->newptr == NULL)
299 return (error);
300
301 if (clear != 0) {
302 for (i = 0; i < 2; ++i) {
303 for (j = 0; j < UMTX_CHAINS; ++j) {
304 uc = &umtxq_chains[i][j];
305 mtx_lock(&uc->uc_lock);
306 uc->length = 0;
307 uc->max_length = 0;
308 mtx_unlock(&uc->uc_lock);
309 }
310 }
311 }
312 return (0);
313 }
314
315 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
316 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
317 sysctl_debug_umtx_chains_clear, "I",
318 "Clear umtx chains statistics");
319 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
320 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
321 sysctl_debug_umtx_chains_peaks, "A",
322 "Highest peaks in chains max length");
323 #endif
324
325 static void
326 umtxq_sysinit(void *arg __unused)
327 {
328 int i, j;
329
330 umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
331 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
332 for (i = 0; i < 2; ++i) {
333 for (j = 0; j < UMTX_CHAINS; ++j) {
334 mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
335 MTX_DEF | MTX_DUPOK);
336 LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
337 LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
338 LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
339 TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
340 umtxq_chains[i][j].uc_busy = 0;
341 umtxq_chains[i][j].uc_waiters = 0;
342 #ifdef UMTX_PROFILING
343 umtxq_chains[i][j].length = 0;
344 umtxq_chains[i][j].max_length = 0;
345 #endif
346 }
347 }
348 #ifdef UMTX_PROFILING
349 umtx_init_profiling();
350 #endif
351 mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
352 umtx_shm_init();
353 }
354
355 struct umtx_q *
356 umtxq_alloc(void)
357 {
358 struct umtx_q *uq;
359
360 uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
361 uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
362 M_WAITOK | M_ZERO);
363 TAILQ_INIT(&uq->uq_spare_queue->head);
364 TAILQ_INIT(&uq->uq_pi_contested);
365 uq->uq_inherited_pri = PRI_MAX;
366 return (uq);
367 }
368
369 void
370 umtxq_free(struct umtx_q *uq)
371 {
372
373 MPASS(uq->uq_spare_queue != NULL);
374 free(uq->uq_spare_queue, M_UMTX);
375 free(uq, M_UMTX);
376 }
377
378 static inline void
379 umtxq_hash(struct umtx_key *key)
380 {
381 unsigned n;
382
383 n = (uintptr_t)key->info.both.a + key->info.both.b;
384 key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
385 }
386
387 struct umtxq_chain *
388 umtxq_getchain(struct umtx_key *key)
389 {
390
391 if (key->type <= TYPE_SEM)
392 return (&umtxq_chains[1][key->hash]);
393 return (&umtxq_chains[0][key->hash]);
394 }
395
396 /*
397 * Set chain to busy state when following operation
398 * may be blocked (kernel mutex can not be used).
399 */
400 void
401 umtxq_busy(struct umtx_key *key)
402 {
403 struct umtxq_chain *uc;
404
405 uc = umtxq_getchain(key);
406 mtx_assert(&uc->uc_lock, MA_OWNED);
407 if (uc->uc_busy) {
408 #ifdef SMP
409 if (smp_cpus > 1) {
410 int count = BUSY_SPINS;
411 if (count > 0) {
412 umtxq_unlock(key);
413 while (uc->uc_busy && --count > 0)
414 cpu_spinwait();
415 umtxq_lock(key);
416 }
417 }
418 #endif
419 while (uc->uc_busy) {
420 uc->uc_waiters++;
421 msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
422 uc->uc_waiters--;
423 }
424 }
425 uc->uc_busy = 1;
426 }
427
428 /*
429 * Unbusy a chain.
430 */
431 void
432 umtxq_unbusy(struct umtx_key *key)
433 {
434 struct umtxq_chain *uc;
435
436 uc = umtxq_getchain(key);
437 mtx_assert(&uc->uc_lock, MA_OWNED);
438 KASSERT(uc->uc_busy != 0, ("not busy"));
439 uc->uc_busy = 0;
440 if (uc->uc_waiters)
441 wakeup_one(uc);
442 }
443
444 void
445 umtxq_unbusy_unlocked(struct umtx_key *key)
446 {
447
448 umtxq_lock(key);
449 umtxq_unbusy(key);
450 umtxq_unlock(key);
451 }
452
453 static struct umtxq_queue *
454 umtxq_queue_lookup(struct umtx_key *key, int q)
455 {
456 struct umtxq_queue *uh;
457 struct umtxq_chain *uc;
458
459 uc = umtxq_getchain(key);
460 UMTXQ_LOCKED_ASSERT(uc);
461 LIST_FOREACH(uh, &uc->uc_queue[q], link) {
462 if (umtx_key_match(&uh->key, key))
463 return (uh);
464 }
465
466 return (NULL);
467 }
468
469 void
470 umtxq_insert_queue(struct umtx_q *uq, int q)
471 {
472 struct umtxq_queue *uh;
473 struct umtxq_chain *uc;
474
475 uc = umtxq_getchain(&uq->uq_key);
476 UMTXQ_LOCKED_ASSERT(uc);
477 KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
478 uh = umtxq_queue_lookup(&uq->uq_key, q);
479 if (uh != NULL) {
480 LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
481 } else {
482 uh = uq->uq_spare_queue;
483 uh->key = uq->uq_key;
484 LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
485 #ifdef UMTX_PROFILING
486 uc->length++;
487 if (uc->length > uc->max_length) {
488 uc->max_length = uc->length;
489 if (uc->max_length > max_length)
490 max_length = uc->max_length;
491 }
492 #endif
493 }
494 uq->uq_spare_queue = NULL;
495
496 TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
497 uh->length++;
498 uq->uq_flags |= UQF_UMTXQ;
499 uq->uq_cur_queue = uh;
500 return;
501 }
502
503 void
504 umtxq_remove_queue(struct umtx_q *uq, int q)
505 {
506 struct umtxq_chain *uc;
507 struct umtxq_queue *uh;
508
509 uc = umtxq_getchain(&uq->uq_key);
510 UMTXQ_LOCKED_ASSERT(uc);
511 if (uq->uq_flags & UQF_UMTXQ) {
512 uh = uq->uq_cur_queue;
513 TAILQ_REMOVE(&uh->head, uq, uq_link);
514 uh->length--;
515 uq->uq_flags &= ~UQF_UMTXQ;
516 if (TAILQ_EMPTY(&uh->head)) {
517 KASSERT(uh->length == 0,
518 ("inconsistent umtxq_queue length"));
519 #ifdef UMTX_PROFILING
520 uc->length--;
521 #endif
522 LIST_REMOVE(uh, link);
523 } else {
524 uh = LIST_FIRST(&uc->uc_spare_queue);
525 KASSERT(uh != NULL, ("uc_spare_queue is empty"));
526 LIST_REMOVE(uh, link);
527 }
528 uq->uq_spare_queue = uh;
529 uq->uq_cur_queue = NULL;
530 }
531 }
532
533 /*
534 * Check if there are multiple waiters
535 */
536 int
537 umtxq_count(struct umtx_key *key)
538 {
539 struct umtxq_queue *uh;
540
541 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
542 uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
543 if (uh != NULL)
544 return (uh->length);
545 return (0);
546 }
547
548 /*
549 * Check if there are multiple PI waiters and returns first
550 * waiter.
551 */
552 static int
553 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
554 {
555 struct umtxq_queue *uh;
556
557 *first = NULL;
558 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
559 uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
560 if (uh != NULL) {
561 *first = TAILQ_FIRST(&uh->head);
562 return (uh->length);
563 }
564 return (0);
565 }
566
567 /*
568 * Wake up threads waiting on an userland object by a bit mask.
569 */
570 int
571 umtxq_signal_mask(struct umtx_key *key, int n_wake, u_int bitset)
572 {
573 struct umtxq_queue *uh;
574 struct umtx_q *uq, *uq_temp;
575 int ret;
576
577 ret = 0;
578 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
579 uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
580 if (uh == NULL)
581 return (0);
582 TAILQ_FOREACH_SAFE(uq, &uh->head, uq_link, uq_temp) {
583 if ((uq->uq_bitset & bitset) == 0)
584 continue;
585 umtxq_remove_queue(uq, UMTX_SHARED_QUEUE);
586 wakeup_one(uq);
587 if (++ret >= n_wake)
588 break;
589 }
590 return (ret);
591 }
592
593 /*
594 * Wake up threads waiting on an userland object.
595 */
596
597 static int
598 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
599 {
600 struct umtxq_queue *uh;
601 struct umtx_q *uq;
602 int ret;
603
604 ret = 0;
605 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
606 uh = umtxq_queue_lookup(key, q);
607 if (uh != NULL) {
608 while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
609 umtxq_remove_queue(uq, q);
610 wakeup(uq);
611 if (++ret >= n_wake)
612 return (ret);
613 }
614 }
615 return (ret);
616 }
617
618 /*
619 * Wake up specified thread.
620 */
621 static inline void
622 umtxq_signal_thread(struct umtx_q *uq)
623 {
624
625 UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
626 umtxq_remove(uq);
627 wakeup(uq);
628 }
629
630 /*
631 * Wake up a maximum of n_wake threads that are waiting on an userland
632 * object identified by key. The remaining threads are removed from queue
633 * identified by key and added to the queue identified by key2 (requeued).
634 * The n_requeue specifies an upper limit on the number of threads that
635 * are requeued to the second queue.
636 */
637 int
638 umtxq_requeue(struct umtx_key *key, int n_wake, struct umtx_key *key2,
639 int n_requeue)
640 {
641 struct umtxq_queue *uh, *uh2;
642 struct umtx_q *uq, *uq_temp;
643 int ret;
644
645 ret = 0;
646 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
647 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key2));
648 uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
649 uh2 = umtxq_queue_lookup(key2, UMTX_SHARED_QUEUE);
650 if (uh == NULL)
651 return (0);
652 TAILQ_FOREACH_SAFE(uq, &uh->head, uq_link, uq_temp) {
653 if (++ret <= n_wake) {
654 umtxq_remove(uq);
655 wakeup_one(uq);
656 } else {
657 umtxq_remove(uq);
658 uq->uq_key = *key2;
659 umtxq_insert(uq);
660 if (ret - n_wake == n_requeue)
661 break;
662 }
663 }
664 return (ret);
665 }
666
667 static inline int
668 tstohz(const struct timespec *tsp)
669 {
670 struct timeval tv;
671
672 TIMESPEC_TO_TIMEVAL(&tv, tsp);
673 return tvtohz(&tv);
674 }
675
676 void
677 umtx_abs_timeout_init(struct umtx_abs_timeout *timo, int clockid,
678 int absolute, const struct timespec *timeout)
679 {
680
681 timo->clockid = clockid;
682 if (!absolute) {
683 timo->is_abs_real = false;
684 kern_clock_gettime(curthread, timo->clockid, &timo->cur);
685 timespecadd(&timo->cur, timeout, &timo->end);
686 } else {
687 timo->end = *timeout;
688 timo->is_abs_real = clockid == CLOCK_REALTIME ||
689 clockid == CLOCK_REALTIME_FAST ||
690 clockid == CLOCK_REALTIME_PRECISE ||
691 clockid == CLOCK_SECOND;
692 }
693 }
694
695 static void
696 umtx_abs_timeout_init2(struct umtx_abs_timeout *timo,
697 const struct _umtx_time *umtxtime)
698 {
699
700 umtx_abs_timeout_init(timo, umtxtime->_clockid,
701 (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
702 }
703
704 static int
705 umtx_abs_timeout_getsbt(struct umtx_abs_timeout *timo, sbintime_t *sbt,
706 int *flags)
707 {
708 struct bintime bt, bbt;
709 struct timespec tts;
710 sbintime_t rem;
711
712 switch (timo->clockid) {
713
714 /* Clocks that can be converted into absolute time. */
715 case CLOCK_REALTIME:
716 case CLOCK_REALTIME_PRECISE:
717 case CLOCK_REALTIME_FAST:
718 case CLOCK_MONOTONIC:
719 case CLOCK_MONOTONIC_PRECISE:
720 case CLOCK_MONOTONIC_FAST:
721 case CLOCK_UPTIME:
722 case CLOCK_UPTIME_PRECISE:
723 case CLOCK_UPTIME_FAST:
724 case CLOCK_SECOND:
725 timespec2bintime(&timo->end, &bt);
726 switch (timo->clockid) {
727 case CLOCK_REALTIME:
728 case CLOCK_REALTIME_PRECISE:
729 case CLOCK_REALTIME_FAST:
730 case CLOCK_SECOND:
731 getboottimebin(&bbt);
732 bintime_sub(&bt, &bbt);
733 break;
734 }
735 if (bt.sec < 0)
736 return (ETIMEDOUT);
737 if (bt.sec >= (SBT_MAX >> 32)) {
738 *sbt = 0;
739 *flags = 0;
740 return (0);
741 }
742 *sbt = bttosbt(bt);
743
744 /*
745 * Check if the absolute time should be aligned to
746 * avoid firing multiple timer events in non-periodic
747 * timer mode.
748 */
749 switch (timo->clockid) {
750 case CLOCK_REALTIME_FAST:
751 case CLOCK_MONOTONIC_FAST:
752 case CLOCK_UPTIME_FAST:
753 rem = *sbt % tc_tick_sbt;
754 if (__predict_true(rem != 0))
755 *sbt += tc_tick_sbt - rem;
756 break;
757 case CLOCK_SECOND:
758 rem = *sbt % SBT_1S;
759 if (__predict_true(rem != 0))
760 *sbt += SBT_1S - rem;
761 break;
762 }
763 *flags = C_ABSOLUTE;
764 return (0);
765
766 /* Clocks that has to be periodically polled. */
767 case CLOCK_VIRTUAL:
768 case CLOCK_PROF:
769 case CLOCK_THREAD_CPUTIME_ID:
770 case CLOCK_PROCESS_CPUTIME_ID:
771 default:
772 kern_clock_gettime(curthread, timo->clockid, &timo->cur);
773 if (timespeccmp(&timo->end, &timo->cur, <=))
774 return (ETIMEDOUT);
775 timespecsub(&timo->end, &timo->cur, &tts);
776 *sbt = tick_sbt * tstohz(&tts);
777 *flags = C_HARDCLOCK;
778 return (0);
779 }
780 }
781
782 static uint32_t
783 umtx_unlock_val(uint32_t flags, bool rb)
784 {
785
786 if (rb)
787 return (UMUTEX_RB_OWNERDEAD);
788 else if ((flags & UMUTEX_NONCONSISTENT) != 0)
789 return (UMUTEX_RB_NOTRECOV);
790 else
791 return (UMUTEX_UNOWNED);
792
793 }
794
795 /*
796 * Put thread into sleep state, before sleeping, check if
797 * thread was removed from umtx queue.
798 */
799 int
800 umtxq_sleep(struct umtx_q *uq, const char *wmesg,
801 struct umtx_abs_timeout *timo)
802 {
803 struct umtxq_chain *uc;
804 sbintime_t sbt = 0;
805 int error, flags = 0;
806
807 uc = umtxq_getchain(&uq->uq_key);
808 UMTXQ_LOCKED_ASSERT(uc);
809 for (;;) {
810 if (!(uq->uq_flags & UQF_UMTXQ)) {
811 error = 0;
812 break;
813 }
814 if (timo != NULL) {
815 if (timo->is_abs_real)
816 curthread->td_rtcgen =
817 atomic_load_acq_int(&rtc_generation);
818 error = umtx_abs_timeout_getsbt(timo, &sbt, &flags);
819 if (error != 0)
820 break;
821 }
822 error = msleep_sbt(uq, &uc->uc_lock, PCATCH | PDROP, wmesg,
823 sbt, 0, flags);
824 uc = umtxq_getchain(&uq->uq_key);
825 mtx_lock(&uc->uc_lock);
826 if (error == EINTR || error == ERESTART)
827 break;
828 if (error == EWOULDBLOCK && (flags & C_ABSOLUTE) != 0) {
829 error = ETIMEDOUT;
830 break;
831 }
832 }
833
834 curthread->td_rtcgen = 0;
835 return (error);
836 }
837
838 /*
839 * Convert userspace address into unique logical address.
840 */
841 int
842 umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
843 {
844 struct thread *td = curthread;
845 vm_map_t map;
846 vm_map_entry_t entry;
847 vm_pindex_t pindex;
848 vm_prot_t prot;
849 boolean_t wired;
850
851 key->type = type;
852 if (share == THREAD_SHARE) {
853 key->shared = 0;
854 key->info.private.vs = td->td_proc->p_vmspace;
855 key->info.private.addr = (uintptr_t)addr;
856 } else {
857 MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
858 map = &td->td_proc->p_vmspace->vm_map;
859 if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
860 &entry, &key->info.shared.object, &pindex, &prot,
861 &wired) != KERN_SUCCESS) {
862 return (EFAULT);
863 }
864
865 if ((share == PROCESS_SHARE) ||
866 (share == AUTO_SHARE &&
867 VM_INHERIT_SHARE == entry->inheritance)) {
868 key->shared = 1;
869 key->info.shared.offset = (vm_offset_t)addr -
870 entry->start + entry->offset;
871 vm_object_reference(key->info.shared.object);
872 } else {
873 key->shared = 0;
874 key->info.private.vs = td->td_proc->p_vmspace;
875 key->info.private.addr = (uintptr_t)addr;
876 }
877 vm_map_lookup_done(map, entry);
878 }
879
880 umtxq_hash(key);
881 return (0);
882 }
883
884 /*
885 * Release key.
886 */
887 void
888 umtx_key_release(struct umtx_key *key)
889 {
890 if (key->shared)
891 vm_object_deallocate(key->info.shared.object);
892 }
893
894 #ifdef COMPAT_FREEBSD10
895 /*
896 * Lock a umtx object.
897 */
898 static int
899 do_lock_umtx(struct thread *td, struct umtx *umtx, u_long id,
900 const struct timespec *timeout)
901 {
902 struct umtx_abs_timeout timo;
903 struct umtx_q *uq;
904 u_long owner;
905 u_long old;
906 int error = 0;
907
908 uq = td->td_umtxq;
909 if (timeout != NULL)
910 umtx_abs_timeout_init(&timo, CLOCK_REALTIME, 0, timeout);
911
912 /*
913 * Care must be exercised when dealing with umtx structure. It
914 * can fault on any access.
915 */
916 for (;;) {
917 /*
918 * Try the uncontested case. This should be done in userland.
919 */
920 owner = casuword(&umtx->u_owner, UMTX_UNOWNED, id);
921
922 /* The acquire succeeded. */
923 if (owner == UMTX_UNOWNED)
924 return (0);
925
926 /* The address was invalid. */
927 if (owner == -1)
928 return (EFAULT);
929
930 /* If no one owns it but it is contested try to acquire it. */
931 if (owner == UMTX_CONTESTED) {
932 owner = casuword(&umtx->u_owner,
933 UMTX_CONTESTED, id | UMTX_CONTESTED);
934
935 if (owner == UMTX_CONTESTED)
936 return (0);
937
938 /* The address was invalid. */
939 if (owner == -1)
940 return (EFAULT);
941
942 error = thread_check_susp(td, false);
943 if (error != 0)
944 break;
945
946 /* If this failed the lock has changed, restart. */
947 continue;
948 }
949
950 /*
951 * If we caught a signal, we have retried and now
952 * exit immediately.
953 */
954 if (error != 0)
955 break;
956
957 if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK,
958 AUTO_SHARE, &uq->uq_key)) != 0)
959 return (error);
960
961 umtxq_lock(&uq->uq_key);
962 umtxq_busy(&uq->uq_key);
963 umtxq_insert(uq);
964 umtxq_unbusy(&uq->uq_key);
965 umtxq_unlock(&uq->uq_key);
966
967 /*
968 * Set the contested bit so that a release in user space
969 * knows to use the system call for unlock. If this fails
970 * either some one else has acquired the lock or it has been
971 * released.
972 */
973 old = casuword(&umtx->u_owner, owner, owner | UMTX_CONTESTED);
974
975 /* The address was invalid. */
976 if (old == -1) {
977 umtxq_lock(&uq->uq_key);
978 umtxq_remove(uq);
979 umtxq_unlock(&uq->uq_key);
980 umtx_key_release(&uq->uq_key);
981 return (EFAULT);
982 }
983
984 /*
985 * We set the contested bit, sleep. Otherwise the lock changed
986 * and we need to retry or we lost a race to the thread
987 * unlocking the umtx.
988 */
989 umtxq_lock(&uq->uq_key);
990 if (old == owner)
991 error = umtxq_sleep(uq, "umtx", timeout == NULL ? NULL :
992 &timo);
993 umtxq_remove(uq);
994 umtxq_unlock(&uq->uq_key);
995 umtx_key_release(&uq->uq_key);
996
997 if (error == 0)
998 error = thread_check_susp(td, false);
999 }
1000
1001 if (timeout == NULL) {
1002 /* Mutex locking is restarted if it is interrupted. */
1003 if (error == EINTR)
1004 error = ERESTART;
1005 } else {
1006 /* Timed-locking is not restarted. */
1007 if (error == ERESTART)
1008 error = EINTR;
1009 }
1010 return (error);
1011 }
1012
1013 /*
1014 * Unlock a umtx object.
1015 */
1016 static int
1017 do_unlock_umtx(struct thread *td, struct umtx *umtx, u_long id)
1018 {
1019 struct umtx_key key;
1020 u_long owner;
1021 u_long old;
1022 int error;
1023 int count;
1024
1025 /*
1026 * Make sure we own this mtx.
1027 */
1028 owner = fuword(__DEVOLATILE(u_long *, &umtx->u_owner));
1029 if (owner == -1)
1030 return (EFAULT);
1031
1032 if ((owner & ~UMTX_CONTESTED) != id)
1033 return (EPERM);
1034
1035 /* This should be done in userland */
1036 if ((owner & UMTX_CONTESTED) == 0) {
1037 old = casuword(&umtx->u_owner, owner, UMTX_UNOWNED);
1038 if (old == -1)
1039 return (EFAULT);
1040 if (old == owner)
1041 return (0);
1042 owner = old;
1043 }
1044
1045 /* We should only ever be in here for contested locks */
1046 if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK, AUTO_SHARE,
1047 &key)) != 0)
1048 return (error);
1049
1050 umtxq_lock(&key);
1051 umtxq_busy(&key);
1052 count = umtxq_count(&key);
1053 umtxq_unlock(&key);
1054
1055 /*
1056 * When unlocking the umtx, it must be marked as unowned if
1057 * there is zero or one thread only waiting for it.
1058 * Otherwise, it must be marked as contested.
1059 */
1060 old = casuword(&umtx->u_owner, owner,
1061 count <= 1 ? UMTX_UNOWNED : UMTX_CONTESTED);
1062 umtxq_lock(&key);
1063 umtxq_signal(&key,1);
1064 umtxq_unbusy(&key);
1065 umtxq_unlock(&key);
1066 umtx_key_release(&key);
1067 if (old == -1)
1068 return (EFAULT);
1069 if (old != owner)
1070 return (EINVAL);
1071 return (0);
1072 }
1073
1074 #ifdef COMPAT_FREEBSD32
1075
1076 /*
1077 * Lock a umtx object.
1078 */
1079 static int
1080 do_lock_umtx32(struct thread *td, uint32_t *m, uint32_t id,
1081 const struct timespec *timeout)
1082 {
1083 struct umtx_abs_timeout timo;
1084 struct umtx_q *uq;
1085 uint32_t owner;
1086 uint32_t old;
1087 int error = 0;
1088
1089 uq = td->td_umtxq;
1090
1091 if (timeout != NULL)
1092 umtx_abs_timeout_init(&timo, CLOCK_REALTIME, 0, timeout);
1093
1094 /*
1095 * Care must be exercised when dealing with umtx structure. It
1096 * can fault on any access.
1097 */
1098 for (;;) {
1099 /*
1100 * Try the uncontested case. This should be done in userland.
1101 */
1102 owner = casuword32(m, UMUTEX_UNOWNED, id);
1103
1104 /* The acquire succeeded. */
1105 if (owner == UMUTEX_UNOWNED)
1106 return (0);
1107
1108 /* The address was invalid. */
1109 if (owner == -1)
1110 return (EFAULT);
1111
1112 /* If no one owns it but it is contested try to acquire it. */
1113 if (owner == UMUTEX_CONTESTED) {
1114 owner = casuword32(m,
1115 UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
1116 if (owner == UMUTEX_CONTESTED)
1117 return (0);
1118
1119 /* The address was invalid. */
1120 if (owner == -1)
1121 return (EFAULT);
1122
1123 error = thread_check_susp(td, false);
1124 if (error != 0)
1125 break;
1126
1127 /* If this failed the lock has changed, restart. */
1128 continue;
1129 }
1130
1131 /*
1132 * If we caught a signal, we have retried and now
1133 * exit immediately.
1134 */
1135 if (error != 0)
1136 return (error);
1137
1138 if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK,
1139 AUTO_SHARE, &uq->uq_key)) != 0)
1140 return (error);
1141
1142 umtxq_lock(&uq->uq_key);
1143 umtxq_busy(&uq->uq_key);
1144 umtxq_insert(uq);
1145 umtxq_unbusy(&uq->uq_key);
1146 umtxq_unlock(&uq->uq_key);
1147
1148 /*
1149 * Set the contested bit so that a release in user space
1150 * knows to use the system call for unlock. If this fails
1151 * either some one else has acquired the lock or it has been
1152 * released.
1153 */
1154 old = casuword32(m, owner, owner | UMUTEX_CONTESTED);
1155
1156 /* The address was invalid. */
1157 if (old == -1) {
1158 umtxq_lock(&uq->uq_key);
1159 umtxq_remove(uq);
1160 umtxq_unlock(&uq->uq_key);
1161 umtx_key_release(&uq->uq_key);
1162 return (EFAULT);
1163 }
1164
1165 /*
1166 * We set the contested bit, sleep. Otherwise the lock changed
1167 * and we need to retry or we lost a race to the thread
1168 * unlocking the umtx.
1169 */
1170 umtxq_lock(&uq->uq_key);
1171 if (old == owner)
1172 error = umtxq_sleep(uq, "umtx", timeout == NULL ?
1173 NULL : &timo);
1174 umtxq_remove(uq);
1175 umtxq_unlock(&uq->uq_key);
1176 umtx_key_release(&uq->uq_key);
1177
1178 if (error == 0)
1179 error = thread_check_susp(td, false);
1180 }
1181
1182 if (timeout == NULL) {
1183 /* Mutex locking is restarted if it is interrupted. */
1184 if (error == EINTR)
1185 error = ERESTART;
1186 } else {
1187 /* Timed-locking is not restarted. */
1188 if (error == ERESTART)
1189 error = EINTR;
1190 }
1191 return (error);
1192 }
1193
1194 /*
1195 * Unlock a umtx object.
1196 */
1197 static int
1198 do_unlock_umtx32(struct thread *td, uint32_t *m, uint32_t id)
1199 {
1200 struct umtx_key key;
1201 uint32_t owner;
1202 uint32_t old;
1203 int error;
1204 int count;
1205
1206 /*
1207 * Make sure we own this mtx.
1208 */
1209 owner = fuword32(m);
1210 if (owner == -1)
1211 return (EFAULT);
1212
1213 if ((owner & ~UMUTEX_CONTESTED) != id)
1214 return (EPERM);
1215
1216 /* This should be done in userland */
1217 if ((owner & UMUTEX_CONTESTED) == 0) {
1218 old = casuword32(m, owner, UMUTEX_UNOWNED);
1219 if (old == -1)
1220 return (EFAULT);
1221 if (old == owner)
1222 return (0);
1223 owner = old;
1224 }
1225
1226 /* We should only ever be in here for contested locks */
1227 if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK, AUTO_SHARE,
1228 &key)) != 0)
1229 return (error);
1230
1231 umtxq_lock(&key);
1232 umtxq_busy(&key);
1233 count = umtxq_count(&key);
1234 umtxq_unlock(&key);
1235
1236 /*
1237 * When unlocking the umtx, it must be marked as unowned if
1238 * there is zero or one thread only waiting for it.
1239 * Otherwise, it must be marked as contested.
1240 */
1241 old = casuword32(m, owner,
1242 count <= 1 ? UMUTEX_UNOWNED : UMUTEX_CONTESTED);
1243 umtxq_lock(&key);
1244 umtxq_signal(&key,1);
1245 umtxq_unbusy(&key);
1246 umtxq_unlock(&key);
1247 umtx_key_release(&key);
1248 if (old == -1)
1249 return (EFAULT);
1250 if (old != owner)
1251 return (EINVAL);
1252 return (0);
1253 }
1254 #endif /* COMPAT_FREEBSD32 */
1255 #endif /* COMPAT_FREEBSD10 */
1256
1257 /*
1258 * Fetch and compare value, sleep on the address if value is not changed.
1259 */
1260 static int
1261 do_wait(struct thread *td, void *addr, u_long id,
1262 struct _umtx_time *timeout, int compat32, int is_private)
1263 {
1264 struct umtx_abs_timeout timo;
1265 struct umtx_q *uq;
1266 u_long tmp;
1267 uint32_t tmp32;
1268 int error = 0;
1269
1270 uq = td->td_umtxq;
1271 if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
1272 is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
1273 return (error);
1274
1275 if (timeout != NULL)
1276 umtx_abs_timeout_init2(&timo, timeout);
1277
1278 umtxq_lock(&uq->uq_key);
1279 umtxq_insert(uq);
1280 umtxq_unlock(&uq->uq_key);
1281 if (compat32 == 0) {
1282 error = fueword(addr, &tmp);
1283 if (error != 0)
1284 error = EFAULT;
1285 } else {
1286 error = fueword32(addr, &tmp32);
1287 if (error == 0)
1288 tmp = tmp32;
1289 else
1290 error = EFAULT;
1291 }
1292 umtxq_lock(&uq->uq_key);
1293 if (error == 0) {
1294 if (tmp == id)
1295 error = umtxq_sleep(uq, "uwait", timeout == NULL ?
1296 NULL : &timo);
1297 if ((uq->uq_flags & UQF_UMTXQ) == 0)
1298 error = 0;
1299 else
1300 umtxq_remove(uq);
1301 } else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
1302 umtxq_remove(uq);
1303 }
1304 umtxq_unlock(&uq->uq_key);
1305 umtx_key_release(&uq->uq_key);
1306 if (error == ERESTART)
1307 error = EINTR;
1308 return (error);
1309 }
1310
1311 /*
1312 * Wake up threads sleeping on the specified address.
1313 */
1314 int
1315 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
1316 {
1317 struct umtx_key key;
1318 int ret;
1319
1320 if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
1321 is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
1322 return (ret);
1323 umtxq_lock(&key);
1324 umtxq_signal(&key, n_wake);
1325 umtxq_unlock(&key);
1326 umtx_key_release(&key);
1327 return (0);
1328 }
1329
1330 /*
1331 * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
1332 */
1333 static int
1334 do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
1335 struct _umtx_time *timeout, int mode)
1336 {
1337 struct umtx_abs_timeout timo;
1338 struct umtx_q *uq;
1339 uint32_t owner, old, id;
1340 int error, rv;
1341
1342 id = td->td_tid;
1343 uq = td->td_umtxq;
1344 error = 0;
1345 if (timeout != NULL)
1346 umtx_abs_timeout_init2(&timo, timeout);
1347
1348 /*
1349 * Care must be exercised when dealing with umtx structure. It
1350 * can fault on any access.
1351 */
1352 for (;;) {
1353 rv = fueword32(&m->m_owner, &owner);
1354 if (rv == -1)
1355 return (EFAULT);
1356 if (mode == _UMUTEX_WAIT) {
1357 if (owner == UMUTEX_UNOWNED ||
1358 owner == UMUTEX_CONTESTED ||
1359 owner == UMUTEX_RB_OWNERDEAD ||
1360 owner == UMUTEX_RB_NOTRECOV)
1361 return (0);
1362 } else {
1363 /*
1364 * Robust mutex terminated. Kernel duty is to
1365 * return EOWNERDEAD to the userspace. The
1366 * umutex.m_flags UMUTEX_NONCONSISTENT is set
1367 * by the common userspace code.
1368 */
1369 if (owner == UMUTEX_RB_OWNERDEAD) {
1370 rv = casueword32(&m->m_owner,
1371 UMUTEX_RB_OWNERDEAD, &owner,
1372 id | UMUTEX_CONTESTED);
1373 if (rv == -1)
1374 return (EFAULT);
1375 if (rv == 0) {
1376 MPASS(owner == UMUTEX_RB_OWNERDEAD);
1377 return (EOWNERDEAD); /* success */
1378 }
1379 MPASS(rv == 1);
1380 rv = thread_check_susp(td, false);
1381 if (rv != 0)
1382 return (rv);
1383 continue;
1384 }
1385 if (owner == UMUTEX_RB_NOTRECOV)
1386 return (ENOTRECOVERABLE);
1387
1388 /*
1389 * Try the uncontested case. This should be
1390 * done in userland.
1391 */
1392 rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
1393 &owner, id);
1394 /* The address was invalid. */
1395 if (rv == -1)
1396 return (EFAULT);
1397
1398 /* The acquire succeeded. */
1399 if (rv == 0) {
1400 MPASS(owner == UMUTEX_UNOWNED);
1401 return (0);
1402 }
1403
1404 /*
1405 * If no one owns it but it is contested try
1406 * to acquire it.
1407 */
1408 MPASS(rv == 1);
1409 if (owner == UMUTEX_CONTESTED) {
1410 rv = casueword32(&m->m_owner,
1411 UMUTEX_CONTESTED, &owner,
1412 id | UMUTEX_CONTESTED);
1413 /* The address was invalid. */
1414 if (rv == -1)
1415 return (EFAULT);
1416 if (rv == 0) {
1417 MPASS(owner == UMUTEX_CONTESTED);
1418 return (0);
1419 }
1420 if (rv == 1) {
1421 rv = thread_check_susp(td, false);
1422 if (rv != 0)
1423 return (rv);
1424 }
1425
1426 /*
1427 * If this failed the lock has
1428 * changed, restart.
1429 */
1430 continue;
1431 }
1432
1433 /* rv == 1 but not contested, likely store failure */
1434 rv = thread_check_susp(td, false);
1435 if (rv != 0)
1436 return (rv);
1437 }
1438
1439 if (mode == _UMUTEX_TRY)
1440 return (EBUSY);
1441
1442 /*
1443 * If we caught a signal, we have retried and now
1444 * exit immediately.
1445 */
1446 if (error != 0)
1447 return (error);
1448
1449 if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
1450 GET_SHARE(flags), &uq->uq_key)) != 0)
1451 return (error);
1452
1453 umtxq_lock(&uq->uq_key);
1454 umtxq_busy(&uq->uq_key);
1455 umtxq_insert(uq);
1456 umtxq_unlock(&uq->uq_key);
1457
1458 /*
1459 * Set the contested bit so that a release in user space
1460 * knows to use the system call for unlock. If this fails
1461 * either some one else has acquired the lock or it has been
1462 * released.
1463 */
1464 rv = casueword32(&m->m_owner, owner, &old,
1465 owner | UMUTEX_CONTESTED);
1466
1467 /* The address was invalid or casueword failed to store. */
1468 if (rv == -1 || rv == 1) {
1469 umtxq_lock(&uq->uq_key);
1470 umtxq_remove(uq);
1471 umtxq_unbusy(&uq->uq_key);
1472 umtxq_unlock(&uq->uq_key);
1473 umtx_key_release(&uq->uq_key);
1474 if (rv == -1)
1475 return (EFAULT);
1476 if (rv == 1) {
1477 rv = thread_check_susp(td, false);
1478 if (rv != 0)
1479 return (rv);
1480 }
1481 continue;
1482 }
1483
1484 /*
1485 * We set the contested bit, sleep. Otherwise the lock changed
1486 * and we need to retry or we lost a race to the thread
1487 * unlocking the umtx.
1488 */
1489 umtxq_lock(&uq->uq_key);
1490 umtxq_unbusy(&uq->uq_key);
1491 MPASS(old == owner);
1492 error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
1493 NULL : &timo);
1494 umtxq_remove(uq);
1495 umtxq_unlock(&uq->uq_key);
1496 umtx_key_release(&uq->uq_key);
1497
1498 if (error == 0)
1499 error = thread_check_susp(td, false);
1500 }
1501
1502 return (0);
1503 }
1504
1505 /*
1506 * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
1507 */
1508 static int
1509 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1510 {
1511 struct umtx_key key;
1512 uint32_t owner, old, id, newlock;
1513 int error, count;
1514
1515 id = td->td_tid;
1516
1517 again:
1518 /*
1519 * Make sure we own this mtx.
1520 */
1521 error = fueword32(&m->m_owner, &owner);
1522 if (error == -1)
1523 return (EFAULT);
1524
1525 if ((owner & ~UMUTEX_CONTESTED) != id)
1526 return (EPERM);
1527
1528 newlock = umtx_unlock_val(flags, rb);
1529 if ((owner & UMUTEX_CONTESTED) == 0) {
1530 error = casueword32(&m->m_owner, owner, &old, newlock);
1531 if (error == -1)
1532 return (EFAULT);
1533 if (error == 1) {
1534 error = thread_check_susp(td, false);
1535 if (error != 0)
1536 return (error);
1537 goto again;
1538 }
1539 MPASS(old == owner);
1540 return (0);
1541 }
1542
1543 /* We should only ever be in here for contested locks */
1544 if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1545 &key)) != 0)
1546 return (error);
1547
1548 umtxq_lock(&key);
1549 umtxq_busy(&key);
1550 count = umtxq_count(&key);
1551 umtxq_unlock(&key);
1552
1553 /*
1554 * When unlocking the umtx, it must be marked as unowned if
1555 * there is zero or one thread only waiting for it.
1556 * Otherwise, it must be marked as contested.
1557 */
1558 if (count > 1)
1559 newlock |= UMUTEX_CONTESTED;
1560 error = casueword32(&m->m_owner, owner, &old, newlock);
1561 umtxq_lock(&key);
1562 umtxq_signal(&key, 1);
1563 umtxq_unbusy(&key);
1564 umtxq_unlock(&key);
1565 umtx_key_release(&key);
1566 if (error == -1)
1567 return (EFAULT);
1568 if (error == 1) {
1569 if (old != owner)
1570 return (EINVAL);
1571 error = thread_check_susp(td, false);
1572 if (error != 0)
1573 return (error);
1574 goto again;
1575 }
1576 return (0);
1577 }
1578
1579 /*
1580 * Check if the mutex is available and wake up a waiter,
1581 * only for simple mutex.
1582 */
1583 static int
1584 do_wake_umutex(struct thread *td, struct umutex *m)
1585 {
1586 struct umtx_key key;
1587 uint32_t owner;
1588 uint32_t flags;
1589 int error;
1590 int count;
1591
1592 again:
1593 error = fueword32(&m->m_owner, &owner);
1594 if (error == -1)
1595 return (EFAULT);
1596
1597 if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
1598 owner != UMUTEX_RB_NOTRECOV)
1599 return (0);
1600
1601 error = fueword32(&m->m_flags, &flags);
1602 if (error == -1)
1603 return (EFAULT);
1604
1605 /* We should only ever be in here for contested locks */
1606 if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1607 &key)) != 0)
1608 return (error);
1609
1610 umtxq_lock(&key);
1611 umtxq_busy(&key);
1612 count = umtxq_count(&key);
1613 umtxq_unlock(&key);
1614
1615 if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
1616 owner != UMUTEX_RB_NOTRECOV) {
1617 error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
1618 UMUTEX_UNOWNED);
1619 if (error == -1) {
1620 error = EFAULT;
1621 } else if (error == 1) {
1622 umtxq_lock(&key);
1623 umtxq_unbusy(&key);
1624 umtxq_unlock(&key);
1625 umtx_key_release(&key);
1626 error = thread_check_susp(td, false);
1627 if (error != 0)
1628 return (error);
1629 goto again;
1630 }
1631 }
1632
1633 umtxq_lock(&key);
1634 if (error == 0 && count != 0) {
1635 MPASS((owner & ~UMUTEX_CONTESTED) == 0 ||
1636 owner == UMUTEX_RB_OWNERDEAD ||
1637 owner == UMUTEX_RB_NOTRECOV);
1638 umtxq_signal(&key, 1);
1639 }
1640 umtxq_unbusy(&key);
1641 umtxq_unlock(&key);
1642 umtx_key_release(&key);
1643 return (error);
1644 }
1645
1646 /*
1647 * Check if the mutex has waiters and tries to fix contention bit.
1648 */
1649 static int
1650 do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
1651 {
1652 struct umtx_key key;
1653 uint32_t owner, old;
1654 int type;
1655 int error;
1656 int count;
1657
1658 switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
1659 UMUTEX_ROBUST)) {
1660 case 0:
1661 case UMUTEX_ROBUST:
1662 type = TYPE_NORMAL_UMUTEX;
1663 break;
1664 case UMUTEX_PRIO_INHERIT:
1665 type = TYPE_PI_UMUTEX;
1666 break;
1667 case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
1668 type = TYPE_PI_ROBUST_UMUTEX;
1669 break;
1670 case UMUTEX_PRIO_PROTECT:
1671 type = TYPE_PP_UMUTEX;
1672 break;
1673 case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
1674 type = TYPE_PP_ROBUST_UMUTEX;
1675 break;
1676 default:
1677 return (EINVAL);
1678 }
1679 if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
1680 return (error);
1681
1682 owner = 0;
1683 umtxq_lock(&key);
1684 umtxq_busy(&key);
1685 count = umtxq_count(&key);
1686 umtxq_unlock(&key);
1687
1688 error = fueword32(&m->m_owner, &owner);
1689 if (error == -1)
1690 error = EFAULT;
1691
1692 /*
1693 * Only repair contention bit if there is a waiter, this means
1694 * the mutex is still being referenced by userland code,
1695 * otherwise don't update any memory.
1696 */
1697 while (error == 0 && (owner & UMUTEX_CONTESTED) == 0 &&
1698 (count > 1 || (count == 1 && (owner & ~UMUTEX_CONTESTED) != 0))) {
1699 error = casueword32(&m->m_owner, owner, &old,
1700 owner | UMUTEX_CONTESTED);
1701 if (error == -1) {
1702 error = EFAULT;
1703 break;
1704 }
1705 if (error == 0) {
1706 MPASS(old == owner);
1707 break;
1708 }
1709 owner = old;
1710 error = thread_check_susp(td, false);
1711 }
1712
1713 umtxq_lock(&key);
1714 if (error == EFAULT) {
1715 umtxq_signal(&key, INT_MAX);
1716 } else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
1717 owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
1718 umtxq_signal(&key, 1);
1719 umtxq_unbusy(&key);
1720 umtxq_unlock(&key);
1721 umtx_key_release(&key);
1722 return (error);
1723 }
1724
1725 struct umtx_pi *
1726 umtx_pi_alloc(int flags)
1727 {
1728 struct umtx_pi *pi;
1729
1730 pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
1731 TAILQ_INIT(&pi->pi_blocked);
1732 atomic_add_int(&umtx_pi_allocated, 1);
1733 return (pi);
1734 }
1735
1736 void
1737 umtx_pi_free(struct umtx_pi *pi)
1738 {
1739 uma_zfree(umtx_pi_zone, pi);
1740 atomic_add_int(&umtx_pi_allocated, -1);
1741 }
1742
1743 /*
1744 * Adjust the thread's position on a pi_state after its priority has been
1745 * changed.
1746 */
1747 static int
1748 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
1749 {
1750 struct umtx_q *uq, *uq1, *uq2;
1751 struct thread *td1;
1752
1753 mtx_assert(&umtx_lock, MA_OWNED);
1754 if (pi == NULL)
1755 return (0);
1756
1757 uq = td->td_umtxq;
1758
1759 /*
1760 * Check if the thread needs to be moved on the blocked chain.
1761 * It needs to be moved if either its priority is lower than
1762 * the previous thread or higher than the next thread.
1763 */
1764 uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
1765 uq2 = TAILQ_NEXT(uq, uq_lockq);
1766 if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
1767 (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
1768 /*
1769 * Remove thread from blocked chain and determine where
1770 * it should be moved to.
1771 */
1772 TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1773 TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1774 td1 = uq1->uq_thread;
1775 MPASS(td1->td_proc->p_magic == P_MAGIC);
1776 if (UPRI(td1) > UPRI(td))
1777 break;
1778 }
1779
1780 if (uq1 == NULL)
1781 TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1782 else
1783 TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1784 }
1785 return (1);
1786 }
1787
1788 static struct umtx_pi *
1789 umtx_pi_next(struct umtx_pi *pi)
1790 {
1791 struct umtx_q *uq_owner;
1792
1793 if (pi->pi_owner == NULL)
1794 return (NULL);
1795 uq_owner = pi->pi_owner->td_umtxq;
1796 if (uq_owner == NULL)
1797 return (NULL);
1798 return (uq_owner->uq_pi_blocked);
1799 }
1800
1801 /*
1802 * Floyd's Cycle-Finding Algorithm.
1803 */
1804 static bool
1805 umtx_pi_check_loop(struct umtx_pi *pi)
1806 {
1807 struct umtx_pi *pi1; /* fast iterator */
1808
1809 mtx_assert(&umtx_lock, MA_OWNED);
1810 if (pi == NULL)
1811 return (false);
1812 pi1 = pi;
1813 for (;;) {
1814 pi = umtx_pi_next(pi);
1815 if (pi == NULL)
1816 break;
1817 pi1 = umtx_pi_next(pi1);
1818 if (pi1 == NULL)
1819 break;
1820 pi1 = umtx_pi_next(pi1);
1821 if (pi1 == NULL)
1822 break;
1823 if (pi == pi1)
1824 return (true);
1825 }
1826 return (false);
1827 }
1828
1829 /*
1830 * Propagate priority when a thread is blocked on POSIX
1831 * PI mutex.
1832 */
1833 static void
1834 umtx_propagate_priority(struct thread *td)
1835 {
1836 struct umtx_q *uq;
1837 struct umtx_pi *pi;
1838 int pri;
1839
1840 mtx_assert(&umtx_lock, MA_OWNED);
1841 pri = UPRI(td);
1842 uq = td->td_umtxq;
1843 pi = uq->uq_pi_blocked;
1844 if (pi == NULL)
1845 return;
1846 if (umtx_pi_check_loop(pi))
1847 return;
1848
1849 for (;;) {
1850 td = pi->pi_owner;
1851 if (td == NULL || td == curthread)
1852 return;
1853
1854 MPASS(td->td_proc != NULL);
1855 MPASS(td->td_proc->p_magic == P_MAGIC);
1856
1857 thread_lock(td);
1858 if (td->td_lend_user_pri > pri)
1859 sched_lend_user_prio(td, pri);
1860 else {
1861 thread_unlock(td);
1862 break;
1863 }
1864 thread_unlock(td);
1865
1866 /*
1867 * Pick up the lock that td is blocked on.
1868 */
1869 uq = td->td_umtxq;
1870 pi = uq->uq_pi_blocked;
1871 if (pi == NULL)
1872 break;
1873 /* Resort td on the list if needed. */
1874 umtx_pi_adjust_thread(pi, td);
1875 }
1876 }
1877
1878 /*
1879 * Unpropagate priority for a PI mutex when a thread blocked on
1880 * it is interrupted by signal or resumed by others.
1881 */
1882 static void
1883 umtx_repropagate_priority(struct umtx_pi *pi)
1884 {
1885 struct umtx_q *uq, *uq_owner;
1886 struct umtx_pi *pi2;
1887 int pri;
1888
1889 mtx_assert(&umtx_lock, MA_OWNED);
1890
1891 if (umtx_pi_check_loop(pi))
1892 return;
1893 while (pi != NULL && pi->pi_owner != NULL) {
1894 pri = PRI_MAX;
1895 uq_owner = pi->pi_owner->td_umtxq;
1896
1897 TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
1898 uq = TAILQ_FIRST(&pi2->pi_blocked);
1899 if (uq != NULL) {
1900 if (pri > UPRI(uq->uq_thread))
1901 pri = UPRI(uq->uq_thread);
1902 }
1903 }
1904
1905 if (pri > uq_owner->uq_inherited_pri)
1906 pri = uq_owner->uq_inherited_pri;
1907 thread_lock(pi->pi_owner);
1908 sched_lend_user_prio(pi->pi_owner, pri);
1909 thread_unlock(pi->pi_owner);
1910 if ((pi = uq_owner->uq_pi_blocked) != NULL)
1911 umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
1912 }
1913 }
1914
1915 /*
1916 * Insert a PI mutex into owned list.
1917 */
1918 static void
1919 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
1920 {
1921 struct umtx_q *uq_owner;
1922
1923 uq_owner = owner->td_umtxq;
1924 mtx_assert(&umtx_lock, MA_OWNED);
1925 MPASS(pi->pi_owner == NULL);
1926 pi->pi_owner = owner;
1927 TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
1928 }
1929
1930 /*
1931 * Disown a PI mutex, and remove it from the owned list.
1932 */
1933 static void
1934 umtx_pi_disown(struct umtx_pi *pi)
1935 {
1936
1937 mtx_assert(&umtx_lock, MA_OWNED);
1938 TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
1939 pi->pi_owner = NULL;
1940 }
1941
1942 /*
1943 * Claim ownership of a PI mutex.
1944 */
1945 int
1946 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
1947 {
1948 struct umtx_q *uq;
1949 int pri;
1950
1951 mtx_lock(&umtx_lock);
1952 if (pi->pi_owner == owner) {
1953 mtx_unlock(&umtx_lock);
1954 return (0);
1955 }
1956
1957 if (pi->pi_owner != NULL) {
1958 /*
1959 * userland may have already messed the mutex, sigh.
1960 */
1961 mtx_unlock(&umtx_lock);
1962 return (EPERM);
1963 }
1964 umtx_pi_setowner(pi, owner);
1965 uq = TAILQ_FIRST(&pi->pi_blocked);
1966 if (uq != NULL) {
1967 pri = UPRI(uq->uq_thread);
1968 thread_lock(owner);
1969 if (pri < UPRI(owner))
1970 sched_lend_user_prio(owner, pri);
1971 thread_unlock(owner);
1972 }
1973 mtx_unlock(&umtx_lock);
1974 return (0);
1975 }
1976
1977 /*
1978 * Adjust a thread's order position in its blocked PI mutex,
1979 * this may result new priority propagating process.
1980 */
1981 void
1982 umtx_pi_adjust(struct thread *td, u_char oldpri)
1983 {
1984 struct umtx_q *uq;
1985 struct umtx_pi *pi;
1986
1987 uq = td->td_umtxq;
1988 mtx_lock(&umtx_lock);
1989 /*
1990 * Pick up the lock that td is blocked on.
1991 */
1992 pi = uq->uq_pi_blocked;
1993 if (pi != NULL) {
1994 umtx_pi_adjust_thread(pi, td);
1995 umtx_repropagate_priority(pi);
1996 }
1997 mtx_unlock(&umtx_lock);
1998 }
1999
2000 /*
2001 * Sleep on a PI mutex.
2002 */
2003 int
2004 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
2005 const char *wmesg, struct umtx_abs_timeout *timo, bool shared)
2006 {
2007 struct thread *td, *td1;
2008 struct umtx_q *uq1;
2009 int error, pri;
2010 #ifdef INVARIANTS
2011 struct umtxq_chain *uc;
2012
2013 uc = umtxq_getchain(&pi->pi_key);
2014 #endif
2015 error = 0;
2016 td = uq->uq_thread;
2017 KASSERT(td == curthread, ("inconsistent uq_thread"));
2018 UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
2019 KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
2020 umtxq_insert(uq);
2021 mtx_lock(&umtx_lock);
2022 if (pi->pi_owner == NULL) {
2023 mtx_unlock(&umtx_lock);
2024 td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
2025 mtx_lock(&umtx_lock);
2026 if (td1 != NULL) {
2027 if (pi->pi_owner == NULL)
2028 umtx_pi_setowner(pi, td1);
2029 PROC_UNLOCK(td1->td_proc);
2030 }
2031 }
2032
2033 TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
2034 pri = UPRI(uq1->uq_thread);
2035 if (pri > UPRI(td))
2036 break;
2037 }
2038
2039 if (uq1 != NULL)
2040 TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
2041 else
2042 TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
2043
2044 uq->uq_pi_blocked = pi;
2045 thread_lock(td);
2046 td->td_flags |= TDF_UPIBLOCKED;
2047 thread_unlock(td);
2048 umtx_propagate_priority(td);
2049 mtx_unlock(&umtx_lock);
2050 umtxq_unbusy(&uq->uq_key);
2051
2052 error = umtxq_sleep(uq, wmesg, timo);
2053 umtxq_remove(uq);
2054
2055 mtx_lock(&umtx_lock);
2056 uq->uq_pi_blocked = NULL;
2057 thread_lock(td);
2058 td->td_flags &= ~TDF_UPIBLOCKED;
2059 thread_unlock(td);
2060 TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
2061 umtx_repropagate_priority(pi);
2062 mtx_unlock(&umtx_lock);
2063 umtxq_unlock(&uq->uq_key);
2064
2065 return (error);
2066 }
2067
2068 /*
2069 * Add reference count for a PI mutex.
2070 */
2071 void
2072 umtx_pi_ref(struct umtx_pi *pi)
2073 {
2074
2075 UMTXQ_LOCKED_ASSERT(umtxq_getchain(&pi->pi_key));
2076 pi->pi_refcount++;
2077 }
2078
2079 /*
2080 * Decrease reference count for a PI mutex, if the counter
2081 * is decreased to zero, its memory space is freed.
2082 */
2083 void
2084 umtx_pi_unref(struct umtx_pi *pi)
2085 {
2086 struct umtxq_chain *uc;
2087
2088 uc = umtxq_getchain(&pi->pi_key);
2089 UMTXQ_LOCKED_ASSERT(uc);
2090 KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
2091 if (--pi->pi_refcount == 0) {
2092 mtx_lock(&umtx_lock);
2093 if (pi->pi_owner != NULL)
2094 umtx_pi_disown(pi);
2095 KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
2096 ("blocked queue not empty"));
2097 mtx_unlock(&umtx_lock);
2098 TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
2099 umtx_pi_free(pi);
2100 }
2101 }
2102
2103 /*
2104 * Find a PI mutex in hash table.
2105 */
2106 struct umtx_pi *
2107 umtx_pi_lookup(struct umtx_key *key)
2108 {
2109 struct umtxq_chain *uc;
2110 struct umtx_pi *pi;
2111
2112 uc = umtxq_getchain(key);
2113 UMTXQ_LOCKED_ASSERT(uc);
2114
2115 TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
2116 if (umtx_key_match(&pi->pi_key, key)) {
2117 return (pi);
2118 }
2119 }
2120 return (NULL);
2121 }
2122
2123 /*
2124 * Insert a PI mutex into hash table.
2125 */
2126 void
2127 umtx_pi_insert(struct umtx_pi *pi)
2128 {
2129 struct umtxq_chain *uc;
2130
2131 uc = umtxq_getchain(&pi->pi_key);
2132 UMTXQ_LOCKED_ASSERT(uc);
2133 TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
2134 }
2135
2136 /*
2137 * Drop a PI mutex and wakeup a top waiter.
2138 */
2139 int
2140 umtx_pi_drop(struct thread *td, struct umtx_key *key, bool rb, int *count)
2141 {
2142 struct umtx_q *uq_first, *uq_first2, *uq_me;
2143 struct umtx_pi *pi, *pi2;
2144 int pri;
2145
2146 UMTXQ_ASSERT_LOCKED_BUSY(key);
2147 *count = umtxq_count_pi(key, &uq_first);
2148 if (uq_first != NULL) {
2149 mtx_lock(&umtx_lock);
2150 pi = uq_first->uq_pi_blocked;
2151 KASSERT(pi != NULL, ("pi == NULL?"));
2152 if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
2153 mtx_unlock(&umtx_lock);
2154 /* userland messed the mutex */
2155 return (EPERM);
2156 }
2157 uq_me = td->td_umtxq;
2158 if (pi->pi_owner == td)
2159 umtx_pi_disown(pi);
2160 /* get highest priority thread which is still sleeping. */
2161 uq_first = TAILQ_FIRST(&pi->pi_blocked);
2162 while (uq_first != NULL &&
2163 (uq_first->uq_flags & UQF_UMTXQ) == 0) {
2164 uq_first = TAILQ_NEXT(uq_first, uq_lockq);
2165 }
2166 pri = PRI_MAX;
2167 TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
2168 uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
2169 if (uq_first2 != NULL) {
2170 if (pri > UPRI(uq_first2->uq_thread))
2171 pri = UPRI(uq_first2->uq_thread);
2172 }
2173 }
2174 thread_lock(td);
2175 sched_lend_user_prio(td, pri);
2176 thread_unlock(td);
2177 mtx_unlock(&umtx_lock);
2178 if (uq_first)
2179 umtxq_signal_thread(uq_first);
2180 } else {
2181 pi = umtx_pi_lookup(key);
2182 /*
2183 * A umtx_pi can exist if a signal or timeout removed the
2184 * last waiter from the umtxq, but there is still
2185 * a thread in do_lock_pi() holding the umtx_pi.
2186 */
2187 if (pi != NULL) {
2188 /*
2189 * The umtx_pi can be unowned, such as when a thread
2190 * has just entered do_lock_pi(), allocated the
2191 * umtx_pi, and unlocked the umtxq.
2192 * If the current thread owns it, it must disown it.
2193 */
2194 mtx_lock(&umtx_lock);
2195 if (pi->pi_owner == td)
2196 umtx_pi_disown(pi);
2197 mtx_unlock(&umtx_lock);
2198 }
2199 }
2200 return (0);
2201 }
2202
2203 /*
2204 * Lock a PI mutex.
2205 */
2206 static int
2207 do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
2208 struct _umtx_time *timeout, int try)
2209 {
2210 struct umtx_abs_timeout timo;
2211 struct umtx_q *uq;
2212 struct umtx_pi *pi, *new_pi;
2213 uint32_t id, old_owner, owner, old;
2214 int error, rv;
2215
2216 id = td->td_tid;
2217 uq = td->td_umtxq;
2218
2219 if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2220 TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2221 &uq->uq_key)) != 0)
2222 return (error);
2223
2224 if (timeout != NULL)
2225 umtx_abs_timeout_init2(&timo, timeout);
2226
2227 umtxq_lock(&uq->uq_key);
2228 pi = umtx_pi_lookup(&uq->uq_key);
2229 if (pi == NULL) {
2230 new_pi = umtx_pi_alloc(M_NOWAIT);
2231 if (new_pi == NULL) {
2232 umtxq_unlock(&uq->uq_key);
2233 new_pi = umtx_pi_alloc(M_WAITOK);
2234 umtxq_lock(&uq->uq_key);
2235 pi = umtx_pi_lookup(&uq->uq_key);
2236 if (pi != NULL) {
2237 umtx_pi_free(new_pi);
2238 new_pi = NULL;
2239 }
2240 }
2241 if (new_pi != NULL) {
2242 new_pi->pi_key = uq->uq_key;
2243 umtx_pi_insert(new_pi);
2244 pi = new_pi;
2245 }
2246 }
2247 umtx_pi_ref(pi);
2248 umtxq_unlock(&uq->uq_key);
2249
2250 /*
2251 * Care must be exercised when dealing with umtx structure. It
2252 * can fault on any access.
2253 */
2254 for (;;) {
2255 /*
2256 * Try the uncontested case. This should be done in userland.
2257 */
2258 rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
2259 /* The address was invalid. */
2260 if (rv == -1) {
2261 error = EFAULT;
2262 break;
2263 }
2264 /* The acquire succeeded. */
2265 if (rv == 0) {
2266 MPASS(owner == UMUTEX_UNOWNED);
2267 error = 0;
2268 break;
2269 }
2270
2271 if (owner == UMUTEX_RB_NOTRECOV) {
2272 error = ENOTRECOVERABLE;
2273 break;
2274 }
2275
2276 /*
2277 * Nobody owns it, but the acquire failed. This can happen
2278 * with ll/sc atomics.
2279 */
2280 if (owner == UMUTEX_UNOWNED) {
2281 error = thread_check_susp(td, true);
2282 if (error != 0)
2283 break;
2284 continue;
2285 }
2286
2287 /*
2288 * Avoid overwriting a possible error from sleep due
2289 * to the pending signal with suspension check result.
2290 */
2291 if (error == 0) {
2292 error = thread_check_susp(td, true);
2293 if (error != 0)
2294 break;
2295 }
2296
2297 /* If no one owns it but it is contested try to acquire it. */
2298 if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
2299 old_owner = owner;
2300 rv = casueword32(&m->m_owner, owner, &owner,
2301 id | UMUTEX_CONTESTED);
2302 /* The address was invalid. */
2303 if (rv == -1) {
2304 error = EFAULT;
2305 break;
2306 }
2307 if (rv == 1) {
2308 if (error == 0) {
2309 error = thread_check_susp(td, true);
2310 if (error != 0)
2311 break;
2312 }
2313
2314 /*
2315 * If this failed the lock could
2316 * changed, restart.
2317 */
2318 continue;
2319 }
2320
2321 MPASS(rv == 0);
2322 MPASS(owner == old_owner);
2323 umtxq_lock(&uq->uq_key);
2324 umtxq_busy(&uq->uq_key);
2325 error = umtx_pi_claim(pi, td);
2326 umtxq_unbusy(&uq->uq_key);
2327 umtxq_unlock(&uq->uq_key);
2328 if (error != 0) {
2329 /*
2330 * Since we're going to return an
2331 * error, restore the m_owner to its
2332 * previous, unowned state to avoid
2333 * compounding the problem.
2334 */
2335 (void)casuword32(&m->m_owner,
2336 id | UMUTEX_CONTESTED, old_owner);
2337 }
2338 if (error == 0 && old_owner == UMUTEX_RB_OWNERDEAD)
2339 error = EOWNERDEAD;
2340 break;
2341 }
2342
2343 if ((owner & ~UMUTEX_CONTESTED) == id) {
2344 error = EDEADLK;
2345 break;
2346 }
2347
2348 if (try != 0) {
2349 error = EBUSY;
2350 break;
2351 }
2352
2353 /*
2354 * If we caught a signal, we have retried and now
2355 * exit immediately.
2356 */
2357 if (error != 0)
2358 break;
2359
2360 umtxq_lock(&uq->uq_key);
2361 umtxq_busy(&uq->uq_key);
2362 umtxq_unlock(&uq->uq_key);
2363
2364 /*
2365 * Set the contested bit so that a release in user space
2366 * knows to use the system call for unlock. If this fails
2367 * either some one else has acquired the lock or it has been
2368 * released.
2369 */
2370 rv = casueword32(&m->m_owner, owner, &old, owner |
2371 UMUTEX_CONTESTED);
2372
2373 /* The address was invalid. */
2374 if (rv == -1) {
2375 umtxq_unbusy_unlocked(&uq->uq_key);
2376 error = EFAULT;
2377 break;
2378 }
2379 if (rv == 1) {
2380 umtxq_unbusy_unlocked(&uq->uq_key);
2381 error = thread_check_susp(td, true);
2382 if (error != 0)
2383 break;
2384
2385 /*
2386 * The lock changed and we need to retry or we
2387 * lost a race to the thread unlocking the
2388 * umtx. Note that the UMUTEX_RB_OWNERDEAD
2389 * value for owner is impossible there.
2390 */
2391 continue;
2392 }
2393
2394 umtxq_lock(&uq->uq_key);
2395
2396 /* We set the contested bit, sleep. */
2397 MPASS(old == owner);
2398 error = umtxq_sleep_pi(uq, pi, owner & ~UMUTEX_CONTESTED,
2399 "umtxpi", timeout == NULL ? NULL : &timo,
2400 (flags & USYNC_PROCESS_SHARED) != 0);
2401 if (error != 0)
2402 continue;
2403
2404 error = thread_check_susp(td, false);
2405 if (error != 0)
2406 break;
2407 }
2408
2409 umtxq_lock(&uq->uq_key);
2410 umtx_pi_unref(pi);
2411 umtxq_unlock(&uq->uq_key);
2412
2413 umtx_key_release(&uq->uq_key);
2414 return (error);
2415 }
2416
2417 /*
2418 * Unlock a PI mutex.
2419 */
2420 static int
2421 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2422 {
2423 struct umtx_key key;
2424 uint32_t id, new_owner, old, owner;
2425 int count, error;
2426
2427 id = td->td_tid;
2428
2429 usrloop:
2430 /*
2431 * Make sure we own this mtx.
2432 */
2433 error = fueword32(&m->m_owner, &owner);
2434 if (error == -1)
2435 return (EFAULT);
2436
2437 if ((owner & ~UMUTEX_CONTESTED) != id)
2438 return (EPERM);
2439
2440 new_owner = umtx_unlock_val(flags, rb);
2441
2442 /* This should be done in userland */
2443 if ((owner & UMUTEX_CONTESTED) == 0) {
2444 error = casueword32(&m->m_owner, owner, &old, new_owner);
2445 if (error == -1)
2446 return (EFAULT);
2447 if (error == 1) {
2448 error = thread_check_susp(td, true);
2449 if (error != 0)
2450 return (error);
2451 goto usrloop;
2452 }
2453 if (old == owner)
2454 return (0);
2455 owner = old;
2456 }
2457
2458 /* We should only ever be in here for contested locks */
2459 if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2460 TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2461 &key)) != 0)
2462 return (error);
2463
2464 umtxq_lock(&key);
2465 umtxq_busy(&key);
2466 error = umtx_pi_drop(td, &key, rb, &count);
2467 if (error != 0) {
2468 umtxq_unbusy(&key);
2469 umtxq_unlock(&key);
2470 umtx_key_release(&key);
2471 /* userland messed the mutex */
2472 return (error);
2473 }
2474 umtxq_unlock(&key);
2475
2476 /*
2477 * When unlocking the umtx, it must be marked as unowned if
2478 * there is zero or one thread only waiting for it.
2479 * Otherwise, it must be marked as contested.
2480 */
2481
2482 if (count > 1)
2483 new_owner |= UMUTEX_CONTESTED;
2484 again:
2485 error = casueword32(&m->m_owner, owner, &old, new_owner);
2486 if (error == 1) {
2487 error = thread_check_susp(td, false);
2488 if (error == 0)
2489 goto again;
2490 }
2491 umtxq_unbusy_unlocked(&key);
2492 umtx_key_release(&key);
2493 if (error == -1)
2494 return (EFAULT);
2495 if (error == 0 && old != owner)
2496 return (EINVAL);
2497 return (error);
2498 }
2499
2500 /*
2501 * Lock a PP mutex.
2502 */
2503 static int
2504 do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
2505 struct _umtx_time *timeout, int try)
2506 {
2507 struct umtx_abs_timeout timo;
2508 struct umtx_q *uq, *uq2;
2509 struct umtx_pi *pi;
2510 uint32_t ceiling;
2511 uint32_t owner, id;
2512 int error, pri, old_inherited_pri, su, rv;
2513
2514 id = td->td_tid;
2515 uq = td->td_umtxq;
2516 if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2517 TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2518 &uq->uq_key)) != 0)
2519 return (error);
2520
2521 if (timeout != NULL)
2522 umtx_abs_timeout_init2(&timo, timeout);
2523
2524 su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2525 for (;;) {
2526 old_inherited_pri = uq->uq_inherited_pri;
2527 umtxq_lock(&uq->uq_key);
2528 umtxq_busy(&uq->uq_key);
2529 umtxq_unlock(&uq->uq_key);
2530
2531 rv = fueword32(&m->m_ceilings[0], &ceiling);
2532 if (rv == -1) {
2533 error = EFAULT;
2534 goto out;
2535 }
2536 ceiling = RTP_PRIO_MAX - ceiling;
2537 if (ceiling > RTP_PRIO_MAX) {
2538 error = EINVAL;
2539 goto out;
2540 }
2541
2542 mtx_lock(&umtx_lock);
2543 if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
2544 mtx_unlock(&umtx_lock);
2545 error = EINVAL;
2546 goto out;
2547 }
2548 if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
2549 uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
2550 thread_lock(td);
2551 if (uq->uq_inherited_pri < UPRI(td))
2552 sched_lend_user_prio(td, uq->uq_inherited_pri);
2553 thread_unlock(td);
2554 }
2555 mtx_unlock(&umtx_lock);
2556
2557 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2558 id | UMUTEX_CONTESTED);
2559 /* The address was invalid. */
2560 if (rv == -1) {
2561 error = EFAULT;
2562 break;
2563 }
2564 if (rv == 0) {
2565 MPASS(owner == UMUTEX_CONTESTED);
2566 error = 0;
2567 break;
2568 }
2569 /* rv == 1 */
2570 if (owner == UMUTEX_RB_OWNERDEAD) {
2571 rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
2572 &owner, id | UMUTEX_CONTESTED);
2573 if (rv == -1) {
2574 error = EFAULT;
2575 break;
2576 }
2577 if (rv == 0) {
2578 MPASS(owner == UMUTEX_RB_OWNERDEAD);
2579 error = EOWNERDEAD; /* success */
2580 break;
2581 }
2582
2583 /*
2584 * rv == 1, only check for suspension if we
2585 * did not already catched a signal. If we
2586 * get an error from the check, the same
2587 * condition is checked by the umtxq_sleep()
2588 * call below, so we should obliterate the
2589 * error to not skip the last loop iteration.
2590 */
2591 if (error == 0) {
2592 error = thread_check_susp(td, false);
2593 if (error == 0) {
2594 if (try != 0)
2595 error = EBUSY;
2596 else
2597 continue;
2598 }
2599 error = 0;
2600 }
2601 } else if (owner == UMUTEX_RB_NOTRECOV) {
2602 error = ENOTRECOVERABLE;
2603 }
2604
2605 if (try != 0)
2606 error = EBUSY;
2607
2608 /*
2609 * If we caught a signal, we have retried and now
2610 * exit immediately.
2611 */
2612 if (error != 0)
2613 break;
2614
2615 umtxq_lock(&uq->uq_key);
2616 umtxq_insert(uq);
2617 umtxq_unbusy(&uq->uq_key);
2618 error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
2619 NULL : &timo);
2620 umtxq_remove(uq);
2621 umtxq_unlock(&uq->uq_key);
2622
2623 mtx_lock(&umtx_lock);
2624 uq->uq_inherited_pri = old_inherited_pri;
2625 pri = PRI_MAX;
2626 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2627 uq2 = TAILQ_FIRST(&pi->pi_blocked);
2628 if (uq2 != NULL) {
2629 if (pri > UPRI(uq2->uq_thread))
2630 pri = UPRI(uq2->uq_thread);
2631 }
2632 }
2633 if (pri > uq->uq_inherited_pri)
2634 pri = uq->uq_inherited_pri;
2635 thread_lock(td);
2636 sched_lend_user_prio(td, pri);
2637 thread_unlock(td);
2638 mtx_unlock(&umtx_lock);
2639 }
2640
2641 if (error != 0 && error != EOWNERDEAD) {
2642 mtx_lock(&umtx_lock);
2643 uq->uq_inherited_pri = old_inherited_pri;
2644 pri = PRI_MAX;
2645 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2646 uq2 = TAILQ_FIRST(&pi->pi_blocked);
2647 if (uq2 != NULL) {
2648 if (pri > UPRI(uq2->uq_thread))
2649 pri = UPRI(uq2->uq_thread);
2650 }
2651 }
2652 if (pri > uq->uq_inherited_pri)
2653 pri = uq->uq_inherited_pri;
2654 thread_lock(td);
2655 sched_lend_user_prio(td, pri);
2656 thread_unlock(td);
2657 mtx_unlock(&umtx_lock);
2658 }
2659
2660 out:
2661 umtxq_unbusy_unlocked(&uq->uq_key);
2662 umtx_key_release(&uq->uq_key);
2663 return (error);
2664 }
2665
2666 /*
2667 * Unlock a PP mutex.
2668 */
2669 static int
2670 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2671 {
2672 struct umtx_key key;
2673 struct umtx_q *uq, *uq2;
2674 struct umtx_pi *pi;
2675 uint32_t id, owner, rceiling;
2676 int error, pri, new_inherited_pri, su;
2677
2678 id = td->td_tid;
2679 uq = td->td_umtxq;
2680 su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2681
2682 /*
2683 * Make sure we own this mtx.
2684 */
2685 error = fueword32(&m->m_owner, &owner);
2686 if (error == -1)
2687 return (EFAULT);
2688
2689 if ((owner & ~UMUTEX_CONTESTED) != id)
2690 return (EPERM);
2691
2692 error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
2693 if (error != 0)
2694 return (error);
2695
2696 if (rceiling == -1)
2697 new_inherited_pri = PRI_MAX;
2698 else {
2699 rceiling = RTP_PRIO_MAX - rceiling;
2700 if (rceiling > RTP_PRIO_MAX)
2701 return (EINVAL);
2702 new_inherited_pri = PRI_MIN_REALTIME + rceiling;
2703 }
2704
2705 if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2706 TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2707 &key)) != 0)
2708 return (error);
2709 umtxq_lock(&key);
2710 umtxq_busy(&key);
2711 umtxq_unlock(&key);
2712 /*
2713 * For priority protected mutex, always set unlocked state
2714 * to UMUTEX_CONTESTED, so that userland always enters kernel
2715 * to lock the mutex, it is necessary because thread priority
2716 * has to be adjusted for such mutex.
2717 */
2718 error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
2719 UMUTEX_CONTESTED);
2720
2721 umtxq_lock(&key);
2722 if (error == 0)
2723 umtxq_signal(&key, 1);
2724 umtxq_unbusy(&key);
2725 umtxq_unlock(&key);
2726
2727 if (error == -1)
2728 error = EFAULT;
2729 else {
2730 mtx_lock(&umtx_lock);
2731 if (su != 0)
2732 uq->uq_inherited_pri = new_inherited_pri;
2733 pri = PRI_MAX;
2734 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2735 uq2 = TAILQ_FIRST(&pi->pi_blocked);
2736 if (uq2 != NULL) {
2737 if (pri > UPRI(uq2->uq_thread))
2738 pri = UPRI(uq2->uq_thread);
2739 }
2740 }
2741 if (pri > uq->uq_inherited_pri)
2742 pri = uq->uq_inherited_pri;
2743 thread_lock(td);
2744 sched_lend_user_prio(td, pri);
2745 thread_unlock(td);
2746 mtx_unlock(&umtx_lock);
2747 }
2748 umtx_key_release(&key);
2749 return (error);
2750 }
2751
2752 static int
2753 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
2754 uint32_t *old_ceiling)
2755 {
2756 struct umtx_q *uq;
2757 uint32_t flags, id, owner, save_ceiling;
2758 int error, rv, rv1;
2759
2760 error = fueword32(&m->m_flags, &flags);
2761 if (error == -1)
2762 return (EFAULT);
2763 if ((flags & UMUTEX_PRIO_PROTECT) == 0)
2764 return (EINVAL);
2765 if (ceiling > RTP_PRIO_MAX)
2766 return (EINVAL);
2767 id = td->td_tid;
2768 uq = td->td_umtxq;
2769 if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2770 TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2771 &uq->uq_key)) != 0)
2772 return (error);
2773 for (;;) {
2774 umtxq_lock(&uq->uq_key);
2775 umtxq_busy(&uq->uq_key);
2776 umtxq_unlock(&uq->uq_key);
2777
2778 rv = fueword32(&m->m_ceilings[0], &save_ceiling);
2779 if (rv == -1) {
2780 error = EFAULT;
2781 break;
2782 }
2783
2784 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2785 id | UMUTEX_CONTESTED);
2786 if (rv == -1) {
2787 error = EFAULT;
2788 break;
2789 }
2790
2791 if (rv == 0) {
2792 MPASS(owner == UMUTEX_CONTESTED);
2793 rv = suword32(&m->m_ceilings[0], ceiling);
2794 rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
2795 error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
2796 break;
2797 }
2798
2799 if ((owner & ~UMUTEX_CONTESTED) == id) {
2800 rv = suword32(&m->m_ceilings[0], ceiling);
2801 error = rv == 0 ? 0 : EFAULT;
2802 break;
2803 }
2804
2805 if (owner == UMUTEX_RB_OWNERDEAD) {
2806 error = EOWNERDEAD;
2807 break;
2808 } else if (owner == UMUTEX_RB_NOTRECOV) {
2809 error = ENOTRECOVERABLE;
2810 break;
2811 }
2812
2813 /*
2814 * If we caught a signal, we have retried and now
2815 * exit immediately.
2816 */
2817 if (error != 0)
2818 break;
2819
2820 /*
2821 * We set the contested bit, sleep. Otherwise the lock changed
2822 * and we need to retry or we lost a race to the thread
2823 * unlocking the umtx.
2824 */
2825 umtxq_lock(&uq->uq_key);
2826 umtxq_insert(uq);
2827 umtxq_unbusy(&uq->uq_key);
2828 error = umtxq_sleep(uq, "umtxpp", NULL);
2829 umtxq_remove(uq);
2830 umtxq_unlock(&uq->uq_key);
2831 }
2832 umtxq_lock(&uq->uq_key);
2833 if (error == 0)
2834 umtxq_signal(&uq->uq_key, INT_MAX);
2835 umtxq_unbusy(&uq->uq_key);
2836 umtxq_unlock(&uq->uq_key);
2837 umtx_key_release(&uq->uq_key);
2838 if (error == 0 && old_ceiling != NULL) {
2839 rv = suword32(old_ceiling, save_ceiling);
2840 error = rv == 0 ? 0 : EFAULT;
2841 }
2842 return (error);
2843 }
2844
2845 /*
2846 * Lock a userland POSIX mutex.
2847 */
2848 static int
2849 do_lock_umutex(struct thread *td, struct umutex *m,
2850 struct _umtx_time *timeout, int mode)
2851 {
2852 uint32_t flags;
2853 int error;
2854
2855 error = fueword32(&m->m_flags, &flags);
2856 if (error == -1)
2857 return (EFAULT);
2858
2859 switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2860 case 0:
2861 error = do_lock_normal(td, m, flags, timeout, mode);
2862 break;
2863 case UMUTEX_PRIO_INHERIT:
2864 error = do_lock_pi(td, m, flags, timeout, mode);
2865 break;
2866 case UMUTEX_PRIO_PROTECT:
2867 error = do_lock_pp(td, m, flags, timeout, mode);
2868 break;
2869 default:
2870 return (EINVAL);
2871 }
2872 if (timeout == NULL) {
2873 if (error == EINTR && mode != _UMUTEX_WAIT)
2874 error = ERESTART;
2875 } else {
2876 /* Timed-locking is not restarted. */
2877 if (error == ERESTART)
2878 error = EINTR;
2879 }
2880 return (error);
2881 }
2882
2883 /*
2884 * Unlock a userland POSIX mutex.
2885 */
2886 static int
2887 do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
2888 {
2889 uint32_t flags;
2890 int error;
2891
2892 error = fueword32(&m->m_flags, &flags);
2893 if (error == -1)
2894 return (EFAULT);
2895
2896 switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2897 case 0:
2898 return (do_unlock_normal(td, m, flags, rb));
2899 case UMUTEX_PRIO_INHERIT:
2900 return (do_unlock_pi(td, m, flags, rb));
2901 case UMUTEX_PRIO_PROTECT:
2902 return (do_unlock_pp(td, m, flags, rb));
2903 }
2904
2905 return (EINVAL);
2906 }
2907
2908 static int
2909 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
2910 struct timespec *timeout, u_long wflags)
2911 {
2912 struct umtx_abs_timeout timo;
2913 struct umtx_q *uq;
2914 uint32_t flags, clockid, hasw;
2915 int error;
2916
2917 uq = td->td_umtxq;
2918 error = fueword32(&cv->c_flags, &flags);
2919 if (error == -1)
2920 return (EFAULT);
2921 error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
2922 if (error != 0)
2923 return (error);
2924
2925 if ((wflags & CVWAIT_CLOCKID) != 0) {
2926 error = fueword32(&cv->c_clockid, &clockid);
2927 if (error == -1) {
2928 umtx_key_release(&uq->uq_key);
2929 return (EFAULT);
2930 }
2931 if (clockid < CLOCK_REALTIME ||
2932 clockid >= CLOCK_THREAD_CPUTIME_ID) {
2933 /* hmm, only HW clock id will work. */
2934 umtx_key_release(&uq->uq_key);
2935 return (EINVAL);
2936 }
2937 } else {
2938 clockid = CLOCK_REALTIME;
2939 }
2940
2941 umtxq_lock(&uq->uq_key);
2942 umtxq_busy(&uq->uq_key);
2943 umtxq_insert(uq);
2944 umtxq_unlock(&uq->uq_key);
2945
2946 /*
2947 * Set c_has_waiters to 1 before releasing user mutex, also
2948 * don't modify cache line when unnecessary.
2949 */
2950 error = fueword32(&cv->c_has_waiters, &hasw);
2951 if (error == 0 && hasw == 0)
2952 suword32(&cv->c_has_waiters, 1);
2953
2954 umtxq_unbusy_unlocked(&uq->uq_key);
2955
2956 error = do_unlock_umutex(td, m, false);
2957
2958 if (timeout != NULL)
2959 umtx_abs_timeout_init(&timo, clockid,
2960 (wflags & CVWAIT_ABSTIME) != 0, timeout);
2961
2962 umtxq_lock(&uq->uq_key);
2963 if (error == 0) {
2964 error = umtxq_sleep(uq, "ucond", timeout == NULL ?
2965 NULL : &timo);
2966 }
2967
2968 if ((uq->uq_flags & UQF_UMTXQ) == 0)
2969 error = 0;
2970 else {
2971 /*
2972 * This must be timeout,interrupted by signal or
2973 * surprious wakeup, clear c_has_waiter flag when
2974 * necessary.
2975 */
2976 umtxq_busy(&uq->uq_key);
2977 if ((uq->uq_flags & UQF_UMTXQ) != 0) {
2978 int oldlen = uq->uq_cur_queue->length;
2979 umtxq_remove(uq);
2980 if (oldlen == 1) {
2981 umtxq_unlock(&uq->uq_key);
2982 suword32(&cv->c_has_waiters, 0);
2983 umtxq_lock(&uq->uq_key);
2984 }
2985 }
2986 umtxq_unbusy(&uq->uq_key);
2987 if (error == ERESTART)
2988 error = EINTR;
2989 }
2990
2991 umtxq_unlock(&uq->uq_key);
2992 umtx_key_release(&uq->uq_key);
2993 return (error);
2994 }
2995
2996 /*
2997 * Signal a userland condition variable.
2998 */
2999 static int
3000 do_cv_signal(struct thread *td, struct ucond *cv)
3001 {
3002 struct umtx_key key;
3003 int error, cnt, nwake;
3004 uint32_t flags;
3005
3006 error = fueword32(&cv->c_flags, &flags);
3007 if (error == -1)
3008 return (EFAULT);
3009 if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
3010 return (error);
3011 umtxq_lock(&key);
3012 umtxq_busy(&key);
3013 cnt = umtxq_count(&key);
3014 nwake = umtxq_signal(&key, 1);
3015 if (cnt <= nwake) {
3016 umtxq_unlock(&key);
3017 error = suword32(&cv->c_has_waiters, 0);
3018 if (error == -1)
3019 error = EFAULT;
3020 umtxq_lock(&key);
3021 }
3022 umtxq_unbusy(&key);
3023 umtxq_unlock(&key);
3024 umtx_key_release(&key);
3025 return (error);
3026 }
3027
3028 static int
3029 do_cv_broadcast(struct thread *td, struct ucond *cv)
3030 {
3031 struct umtx_key key;
3032 int error;
3033 uint32_t flags;
3034
3035 error = fueword32(&cv->c_flags, &flags);
3036 if (error == -1)
3037 return (EFAULT);
3038 if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
3039 return (error);
3040
3041 umtxq_lock(&key);
3042 umtxq_busy(&key);
3043 umtxq_signal(&key, INT_MAX);
3044 umtxq_unlock(&key);
3045
3046 error = suword32(&cv->c_has_waiters, 0);
3047 if (error == -1)
3048 error = EFAULT;
3049
3050 umtxq_unbusy_unlocked(&key);
3051
3052 umtx_key_release(&key);
3053 return (error);
3054 }
3055
3056 static int
3057 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag,
3058 struct _umtx_time *timeout)
3059 {
3060 struct umtx_abs_timeout timo;
3061 struct umtx_q *uq;
3062 uint32_t flags, wrflags;
3063 int32_t state, oldstate;
3064 int32_t blocked_readers;
3065 int error, error1, rv;
3066
3067 uq = td->td_umtxq;
3068 error = fueword32(&rwlock->rw_flags, &flags);
3069 if (error == -1)
3070 return (EFAULT);
3071 error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3072 if (error != 0)
3073 return (error);
3074
3075 if (timeout != NULL)
3076 umtx_abs_timeout_init2(&timo, timeout);
3077
3078 wrflags = URWLOCK_WRITE_OWNER;
3079 if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
3080 wrflags |= URWLOCK_WRITE_WAITERS;
3081
3082 for (;;) {
3083 rv = fueword32(&rwlock->rw_state, &state);
3084 if (rv == -1) {
3085 umtx_key_release(&uq->uq_key);
3086 return (EFAULT);
3087 }
3088
3089 /* try to lock it */
3090 while (!(state & wrflags)) {
3091 if (__predict_false(URWLOCK_READER_COUNT(state) ==
3092 URWLOCK_MAX_READERS)) {
3093 umtx_key_release(&uq->uq_key);
3094 return (EAGAIN);
3095 }
3096 rv = casueword32(&rwlock->rw_state, state,
3097 &oldstate, state + 1);
3098 if (rv == -1) {
3099 umtx_key_release(&uq->uq_key);
3100 return (EFAULT);
3101 }
3102 if (rv == 0) {
3103 MPASS(oldstate == state);
3104 umtx_key_release(&uq->uq_key);
3105 return (0);
3106 }
3107 error = thread_check_susp(td, true);
3108 if (error != 0)
3109 break;
3110 state = oldstate;
3111 }
3112
3113 if (error)
3114 break;
3115
3116 /* grab monitor lock */
3117 umtxq_lock(&uq->uq_key);
3118 umtxq_busy(&uq->uq_key);
3119 umtxq_unlock(&uq->uq_key);
3120
3121 /*
3122 * re-read the state, in case it changed between the try-lock above
3123 * and the check below
3124 */
3125 rv = fueword32(&rwlock->rw_state, &state);
3126 if (rv == -1)
3127 error = EFAULT;
3128
3129 /* set read contention bit */
3130 while (error == 0 && (state & wrflags) &&
3131 !(state & URWLOCK_READ_WAITERS)) {
3132 rv = casueword32(&rwlock->rw_state, state,
3133 &oldstate, state | URWLOCK_READ_WAITERS);
3134 if (rv == -1) {
3135 error = EFAULT;
3136 break;
3137 }
3138 if (rv == 0) {
3139 MPASS(oldstate == state);
3140 goto sleep;
3141 }
3142 state = oldstate;
3143 error = thread_check_susp(td, false);
3144 if (error != 0)
3145 break;
3146 }
3147 if (error != 0) {
3148 umtxq_unbusy_unlocked(&uq->uq_key);
3149 break;
3150 }
3151
3152 /* state is changed while setting flags, restart */
3153 if (!(state & wrflags)) {
3154 umtxq_unbusy_unlocked(&uq->uq_key);
3155 error = thread_check_susp(td, true);
3156 if (error != 0)
3157 break;
3158 continue;
3159 }
3160
3161 sleep:
3162 /*
3163 * Contention bit is set, before sleeping, increase
3164 * read waiter count.
3165 */
3166 rv = fueword32(&rwlock->rw_blocked_readers,
3167 &blocked_readers);
3168 if (rv == -1) {
3169 umtxq_unbusy_unlocked(&uq->uq_key);
3170 error = EFAULT;
3171 break;
3172 }
3173 suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
3174
3175 while (state & wrflags) {
3176 umtxq_lock(&uq->uq_key);
3177 umtxq_insert(uq);
3178 umtxq_unbusy(&uq->uq_key);
3179
3180 error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
3181 NULL : &timo);
3182
3183 umtxq_busy(&uq->uq_key);
3184 umtxq_remove(uq);
3185 umtxq_unlock(&uq->uq_key);
3186 if (error)
3187 break;
3188 rv = fueword32(&rwlock->rw_state, &state);
3189 if (rv == -1) {
3190 error = EFAULT;
3191 break;
3192 }
3193 }
3194
3195 /* decrease read waiter count, and may clear read contention bit */
3196 rv = fueword32(&rwlock->rw_blocked_readers,
3197 &blocked_readers);
3198 if (rv == -1) {
3199 umtxq_unbusy_unlocked(&uq->uq_key);
3200 error = EFAULT;
3201 break;
3202 }
3203 suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
3204 if (blocked_readers == 1) {
3205 rv = fueword32(&rwlock->rw_state, &state);
3206 if (rv == -1) {
3207 umtxq_unbusy_unlocked(&uq->uq_key);
3208 error = EFAULT;
3209 break;
3210 }
3211 for (;;) {
3212 rv = casueword32(&rwlock->rw_state, state,
3213 &oldstate, state & ~URWLOCK_READ_WAITERS);
3214 if (rv == -1) {
3215 error = EFAULT;
3216 break;
3217 }
3218 if (rv == 0) {
3219 MPASS(oldstate == state);
3220 break;
3221 }
3222 state = oldstate;
3223 error1 = thread_check_susp(td, false);
3224 if (error1 != 0) {
3225 if (error == 0)
3226 error = error1;
3227 break;
3228 }
3229 }
3230 }
3231
3232 umtxq_unbusy_unlocked(&uq->uq_key);
3233 if (error != 0)
3234 break;
3235 }
3236 umtx_key_release(&uq->uq_key);
3237 if (error == ERESTART)
3238 error = EINTR;
3239 return (error);
3240 }
3241
3242 static int
3243 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
3244 {
3245 struct umtx_abs_timeout timo;
3246 struct umtx_q *uq;
3247 uint32_t flags;
3248 int32_t state, oldstate;
3249 int32_t blocked_writers;
3250 int32_t blocked_readers;
3251 int error, error1, rv;
3252
3253 uq = td->td_umtxq;
3254 error = fueword32(&rwlock->rw_flags, &flags);
3255 if (error == -1)
3256 return (EFAULT);
3257 error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3258 if (error != 0)
3259 return (error);
3260
3261 if (timeout != NULL)
3262 umtx_abs_timeout_init2(&timo, timeout);
3263
3264 blocked_readers = 0;
3265 for (;;) {
3266 rv = fueword32(&rwlock->rw_state, &state);
3267 if (rv == -1) {
3268 umtx_key_release(&uq->uq_key);
3269 return (EFAULT);
3270 }
3271 while ((state & URWLOCK_WRITE_OWNER) == 0 &&
3272 URWLOCK_READER_COUNT(state) == 0) {
3273 rv = casueword32(&rwlock->rw_state, state,
3274 &oldstate, state | URWLOCK_WRITE_OWNER);
3275 if (rv == -1) {
3276 umtx_key_release(&uq->uq_key);
3277 return (EFAULT);
3278 }
3279 if (rv == 0) {
3280 MPASS(oldstate == state);
3281 umtx_key_release(&uq->uq_key);
3282 return (0);
3283 }
3284 state = oldstate;
3285 error = thread_check_susp(td, true);
3286 if (error != 0)
3287 break;
3288 }
3289
3290 if (error) {
3291 if ((state & (URWLOCK_WRITE_OWNER |
3292 URWLOCK_WRITE_WAITERS)) == 0 &&
3293 blocked_readers != 0) {
3294 umtxq_lock(&uq->uq_key);
3295 umtxq_busy(&uq->uq_key);
3296 umtxq_signal_queue(&uq->uq_key, INT_MAX,
3297 UMTX_SHARED_QUEUE);
3298 umtxq_unbusy(&uq->uq_key);
3299 umtxq_unlock(&uq->uq_key);
3300 }
3301
3302 break;
3303 }
3304
3305 /* grab monitor lock */
3306 umtxq_lock(&uq->uq_key);
3307 umtxq_busy(&uq->uq_key);
3308 umtxq_unlock(&uq->uq_key);
3309
3310 /*
3311 * Re-read the state, in case it changed between the
3312 * try-lock above and the check below.
3313 */
3314 rv = fueword32(&rwlock->rw_state, &state);
3315 if (rv == -1)
3316 error = EFAULT;
3317
3318 while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
3319 URWLOCK_READER_COUNT(state) != 0) &&
3320 (state & URWLOCK_WRITE_WAITERS) == 0) {
3321 rv = casueword32(&rwlock->rw_state, state,
3322 &oldstate, state | URWLOCK_WRITE_WAITERS);
3323 if (rv == -1) {
3324 error = EFAULT;
3325 break;
3326 }
3327 if (rv == 0) {
3328 MPASS(oldstate == state);
3329 goto sleep;
3330 }
3331 state = oldstate;
3332 error = thread_check_susp(td, false);
3333 if (error != 0)
3334 break;
3335 }
3336 if (error != 0) {
3337 umtxq_unbusy_unlocked(&uq->uq_key);
3338 break;
3339 }
3340
3341 if ((state & URWLOCK_WRITE_OWNER) == 0 &&
3342 URWLOCK_READER_COUNT(state) == 0) {
3343 umtxq_unbusy_unlocked(&uq->uq_key);
3344 error = thread_check_susp(td, false);
3345 if (error != 0)
3346 break;
3347 continue;
3348 }
3349 sleep:
3350 rv = fueword32(&rwlock->rw_blocked_writers,
3351 &blocked_writers);
3352 if (rv == -1) {
3353 umtxq_unbusy_unlocked(&uq->uq_key);
3354 error = EFAULT;
3355 break;
3356 }
3357 suword32(&rwlock->rw_blocked_writers, blocked_writers + 1);
3358
3359 while ((state & URWLOCK_WRITE_OWNER) ||
3360 URWLOCK_READER_COUNT(state) != 0) {
3361 umtxq_lock(&uq->uq_key);
3362 umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
3363 umtxq_unbusy(&uq->uq_key);
3364
3365 error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
3366 NULL : &timo);
3367
3368 umtxq_busy(&uq->uq_key);
3369 umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
3370 umtxq_unlock(&uq->uq_key);
3371 if (error)
3372 break;
3373 rv = fueword32(&rwlock->rw_state, &state);
3374 if (rv == -1) {
3375 error = EFAULT;
3376 break;
3377 }
3378 }
3379
3380 rv = fueword32(&rwlock->rw_blocked_writers,
3381 &blocked_writers);
3382 if (rv == -1) {
3383 umtxq_unbusy_unlocked(&uq->uq_key);
3384 error = EFAULT;
3385 break;
3386 }
3387 suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
3388 if (blocked_writers == 1) {
3389 rv = fueword32(&rwlock->rw_state, &state);
3390 if (rv == -1) {
3391 umtxq_unbusy_unlocked(&uq->uq_key);
3392 error = EFAULT;
3393 break;
3394 }
3395 for (;;) {
3396 rv = casueword32(&rwlock->rw_state, state,
3397 &oldstate, state & ~URWLOCK_WRITE_WAITERS);
3398 if (rv == -1) {
3399 error = EFAULT;
3400 break;
3401 }
3402 if (rv == 0) {
3403 MPASS(oldstate == state);
3404 break;
3405 }
3406 state = oldstate;
3407 error1 = thread_check_susp(td, false);
3408 /*
3409 * We are leaving the URWLOCK_WRITE_WAITERS
3410 * behind, but this should not harm the
3411 * correctness.
3412 */
3413 if (error1 != 0) {
3414 if (error == 0)
3415 error = error1;
3416 break;
3417 }
3418 }
3419 rv = fueword32(&rwlock->rw_blocked_readers,
3420 &blocked_readers);
3421 if (rv == -1) {
3422 umtxq_unbusy_unlocked(&uq->uq_key);
3423 error = EFAULT;
3424 break;
3425 }
3426 } else
3427 blocked_readers = 0;
3428
3429 umtxq_unbusy_unlocked(&uq->uq_key);
3430 }
3431
3432 umtx_key_release(&uq->uq_key);
3433 if (error == ERESTART)
3434 error = EINTR;
3435 return (error);
3436 }
3437
3438 static int
3439 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
3440 {
3441 struct umtx_q *uq;
3442 uint32_t flags;
3443 int32_t state, oldstate;
3444 int error, rv, q, count;
3445
3446 uq = td->td_umtxq;
3447 error = fueword32(&rwlock->rw_flags, &flags);
3448 if (error == -1)
3449 return (EFAULT);
3450 error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3451 if (error != 0)
3452 return (error);
3453
3454 error = fueword32(&rwlock->rw_state, &state);
3455 if (error == -1) {
3456 error = EFAULT;
3457 goto out;
3458 }
3459 if (state & URWLOCK_WRITE_OWNER) {
3460 for (;;) {
3461 rv = casueword32(&rwlock->rw_state, state,
3462 &oldstate, state & ~URWLOCK_WRITE_OWNER);
3463 if (rv == -1) {
3464 error = EFAULT;
3465 goto out;
3466 }
3467 if (rv == 1) {
3468 state = oldstate;
3469 if (!(oldstate & URWLOCK_WRITE_OWNER)) {
3470 error = EPERM;
3471 goto out;
3472 }
3473 error = thread_check_susp(td, true);
3474 if (error != 0)
3475 goto out;
3476 } else
3477 break;
3478 }
3479 } else if (URWLOCK_READER_COUNT(state) != 0) {
3480 for (;;) {
3481 rv = casueword32(&rwlock->rw_state, state,
3482 &oldstate, state - 1);
3483 if (rv == -1) {
3484 error = EFAULT;
3485 goto out;
3486 }
3487 if (rv == 1) {
3488 state = oldstate;
3489 if (URWLOCK_READER_COUNT(oldstate) == 0) {
3490 error = EPERM;
3491 goto out;
3492 }
3493 error = thread_check_susp(td, true);
3494 if (error != 0)
3495 goto out;
3496 } else
3497 break;
3498 }
3499 } else {
3500 error = EPERM;
3501 goto out;
3502 }
3503
3504 count = 0;
3505
3506 if (!(flags & URWLOCK_PREFER_READER)) {
3507 if (state & URWLOCK_WRITE_WAITERS) {
3508 count = 1;
3509 q = UMTX_EXCLUSIVE_QUEUE;
3510 } else if (state & URWLOCK_READ_WAITERS) {
3511 count = INT_MAX;
3512 q = UMTX_SHARED_QUEUE;
3513 }
3514 } else {
3515 if (state & URWLOCK_READ_WAITERS) {
3516 count = INT_MAX;
3517 q = UMTX_SHARED_QUEUE;
3518 } else if (state & URWLOCK_WRITE_WAITERS) {
3519 count = 1;
3520 q = UMTX_EXCLUSIVE_QUEUE;
3521 }
3522 }
3523
3524 if (count) {
3525 umtxq_lock(&uq->uq_key);
3526 umtxq_busy(&uq->uq_key);
3527 umtxq_signal_queue(&uq->uq_key, count, q);
3528 umtxq_unbusy(&uq->uq_key);
3529 umtxq_unlock(&uq->uq_key);
3530 }
3531 out:
3532 umtx_key_release(&uq->uq_key);
3533 return (error);
3534 }
3535
3536 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3537 static int
3538 do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
3539 {
3540 struct umtx_abs_timeout timo;
3541 struct umtx_q *uq;
3542 uint32_t flags, count, count1;
3543 int error, rv, rv1;
3544
3545 uq = td->td_umtxq;
3546 error = fueword32(&sem->_flags, &flags);
3547 if (error == -1)
3548 return (EFAULT);
3549 error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3550 if (error != 0)
3551 return (error);
3552
3553 if (timeout != NULL)
3554 umtx_abs_timeout_init2(&timo, timeout);
3555
3556 again:
3557 umtxq_lock(&uq->uq_key);
3558 umtxq_busy(&uq->uq_key);
3559 umtxq_insert(uq);
3560 umtxq_unlock(&uq->uq_key);
3561 rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
3562 if (rv != -1)
3563 rv1 = fueword32(&sem->_count, &count);
3564 if (rv == -1 || rv1 == -1 || count != 0 || (rv == 1 && count1 == 0)) {
3565 if (rv == 0)
3566 suword32(&sem->_has_waiters, 0);
3567 umtxq_lock(&uq->uq_key);
3568 umtxq_unbusy(&uq->uq_key);
3569 umtxq_remove(uq);
3570 umtxq_unlock(&uq->uq_key);
3571 if (rv == -1 || rv1 == -1) {
3572 error = EFAULT;
3573 goto out;
3574 }
3575 if (count != 0) {
3576 error = 0;
3577 goto out;
3578 }
3579 MPASS(rv == 1 && count1 == 0);
3580 rv = thread_check_susp(td, true);
3581 if (rv == 0)
3582 goto again;
3583 error = rv;
3584 goto out;
3585 }
3586 umtxq_lock(&uq->uq_key);
3587 umtxq_unbusy(&uq->uq_key);
3588
3589 error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3590
3591 if ((uq->uq_flags & UQF_UMTXQ) == 0)
3592 error = 0;
3593 else {
3594 umtxq_remove(uq);
3595 /* A relative timeout cannot be restarted. */
3596 if (error == ERESTART && timeout != NULL &&
3597 (timeout->_flags & UMTX_ABSTIME) == 0)
3598 error = EINTR;
3599 }
3600 umtxq_unlock(&uq->uq_key);
3601 out:
3602 umtx_key_release(&uq->uq_key);
3603 return (error);
3604 }
3605
3606 /*
3607 * Signal a userland semaphore.
3608 */
3609 static int
3610 do_sem_wake(struct thread *td, struct _usem *sem)
3611 {
3612 struct umtx_key key;
3613 int error, cnt;
3614 uint32_t flags;
3615
3616 error = fueword32(&sem->_flags, &flags);
3617 if (error == -1)
3618 return (EFAULT);
3619 if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3620 return (error);
3621 umtxq_lock(&key);
3622 umtxq_busy(&key);
3623 cnt = umtxq_count(&key);
3624 if (cnt > 0) {
3625 /*
3626 * Check if count is greater than 0, this means the memory is
3627 * still being referenced by user code, so we can safely
3628 * update _has_waiters flag.
3629 */
3630 if (cnt == 1) {
3631 umtxq_unlock(&key);
3632 error = suword32(&sem->_has_waiters, 0);
3633 umtxq_lock(&key);
3634 if (error == -1)
3635 error = EFAULT;
3636 }
3637 umtxq_signal(&key, 1);
3638 }
3639 umtxq_unbusy(&key);
3640 umtxq_unlock(&key);
3641 umtx_key_release(&key);
3642 return (error);
3643 }
3644 #endif
3645
3646 static int
3647 do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
3648 {
3649 struct umtx_abs_timeout timo;
3650 struct umtx_q *uq;
3651 uint32_t count, flags;
3652 int error, rv;
3653
3654 uq = td->td_umtxq;
3655 flags = fuword32(&sem->_flags);
3656 if (timeout != NULL)
3657 umtx_abs_timeout_init2(&timo, timeout);
3658
3659 again:
3660 error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3661 if (error != 0)
3662 return (error);
3663 umtxq_lock(&uq->uq_key);
3664 umtxq_busy(&uq->uq_key);
3665 umtxq_insert(uq);
3666 umtxq_unlock(&uq->uq_key);
3667 rv = fueword32(&sem->_count, &count);
3668 if (rv == -1) {
3669 umtxq_lock(&uq->uq_key);
3670 umtxq_unbusy(&uq->uq_key);
3671 umtxq_remove(uq);
3672 umtxq_unlock(&uq->uq_key);
3673 umtx_key_release(&uq->uq_key);
3674 return (EFAULT);
3675 }
3676 for (;;) {
3677 if (USEM_COUNT(count) != 0) {
3678 umtxq_lock(&uq->uq_key);
3679 umtxq_unbusy(&uq->uq_key);
3680 umtxq_remove(uq);
3681 umtxq_unlock(&uq->uq_key);
3682 umtx_key_release(&uq->uq_key);
3683 return (0);
3684 }
3685 if (count == USEM_HAS_WAITERS)
3686 break;
3687 rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
3688 if (rv == 0)
3689 break;
3690 umtxq_lock(&uq->uq_key);
3691 umtxq_unbusy(&uq->uq_key);
3692 umtxq_remove(uq);
3693 umtxq_unlock(&uq->uq_key);
3694 umtx_key_release(&uq->uq_key);
3695 if (rv == -1)
3696 return (EFAULT);
3697 rv = thread_check_susp(td, true);
3698 if (rv != 0)
3699 return (rv);
3700 goto again;
3701 }
3702 umtxq_lock(&uq->uq_key);
3703 umtxq_unbusy(&uq->uq_key);
3704
3705 error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3706
3707 if ((uq->uq_flags & UQF_UMTXQ) == 0)
3708 error = 0;
3709 else {
3710 umtxq_remove(uq);
3711 if (timeout != NULL && (timeout->_flags & UMTX_ABSTIME) == 0) {
3712 /* A relative timeout cannot be restarted. */
3713 if (error == ERESTART)
3714 error = EINTR;
3715 if (error == EINTR) {
3716 kern_clock_gettime(curthread, timo.clockid,
3717 &timo.cur);
3718 timespecsub(&timo.end, &timo.cur,
3719 &timeout->_timeout);
3720 }
3721 }
3722 }
3723 umtxq_unlock(&uq->uq_key);
3724 umtx_key_release(&uq->uq_key);
3725 return (error);
3726 }
3727
3728 /*
3729 * Signal a userland semaphore.
3730 */
3731 static int
3732 do_sem2_wake(struct thread *td, struct _usem2 *sem)
3733 {
3734 struct umtx_key key;
3735 int error, cnt, rv;
3736 uint32_t count, flags;
3737
3738 rv = fueword32(&sem->_flags, &flags);
3739 if (rv == -1)
3740 return (EFAULT);
3741 if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3742 return (error);
3743 umtxq_lock(&key);
3744 umtxq_busy(&key);
3745 cnt = umtxq_count(&key);
3746 if (cnt > 0) {
3747 /*
3748 * If this was the last sleeping thread, clear the waiters
3749 * flag in _count.
3750 */
3751 if (cnt == 1) {
3752 umtxq_unlock(&key);
3753 rv = fueword32(&sem->_count, &count);
3754 while (rv != -1 && count & USEM_HAS_WAITERS) {
3755 rv = casueword32(&sem->_count, count, &count,
3756 count & ~USEM_HAS_WAITERS);
3757 if (rv == 1) {
3758 rv = thread_check_susp(td, true);
3759 if (rv != 0)
3760 break;
3761 }
3762 }
3763 if (rv == -1)
3764 error = EFAULT;
3765 else if (rv > 0) {
3766 error = rv;
3767 }
3768 umtxq_lock(&key);
3769 }
3770
3771 umtxq_signal(&key, 1);
3772 }
3773 umtxq_unbusy(&key);
3774 umtxq_unlock(&key);
3775 umtx_key_release(&key);
3776 return (error);
3777 }
3778
3779 #ifdef COMPAT_FREEBSD10
3780 int
3781 freebsd10__umtx_lock(struct thread *td, struct freebsd10__umtx_lock_args *uap)
3782 {
3783 return (do_lock_umtx(td, uap->umtx, td->td_tid, 0));
3784 }
3785
3786 int
3787 freebsd10__umtx_unlock(struct thread *td,
3788 struct freebsd10__umtx_unlock_args *uap)
3789 {
3790 return (do_unlock_umtx(td, uap->umtx, td->td_tid));
3791 }
3792 #endif
3793
3794 inline int
3795 umtx_copyin_timeout(const void *uaddr, struct timespec *tsp)
3796 {
3797 int error;
3798
3799 error = copyin(uaddr, tsp, sizeof(*tsp));
3800 if (error == 0) {
3801 if (!timespecvalid_interval(tsp))
3802 error = EINVAL;
3803 }
3804 return (error);
3805 }
3806
3807 static inline int
3808 umtx_copyin_umtx_time(const void *uaddr, size_t size, struct _umtx_time *tp)
3809 {
3810 int error;
3811
3812 if (size <= sizeof(tp->_timeout)) {
3813 tp->_clockid = CLOCK_REALTIME;
3814 tp->_flags = 0;
3815 error = copyin(uaddr, &tp->_timeout, sizeof(tp->_timeout));
3816 } else
3817 error = copyin(uaddr, tp, sizeof(*tp));
3818 if (error != 0)
3819 return (error);
3820 if (!timespecvalid_interval(&tp->_timeout))
3821 return (EINVAL);
3822 return (0);
3823 }
3824
3825 static int
3826 umtx_copyin_robust_lists(const void *uaddr, size_t size,
3827 struct umtx_robust_lists_params *rb)
3828 {
3829
3830 if (size > sizeof(*rb))
3831 return (EINVAL);
3832 return (copyin(uaddr, rb, size));
3833 }
3834
3835 static int
3836 umtx_copyout_timeout(void *uaddr, size_t sz, struct timespec *tsp)
3837 {
3838
3839 /*
3840 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
3841 * and we're only called if sz >= sizeof(timespec) as supplied in the
3842 * copyops.
3843 */
3844 KASSERT(sz >= sizeof(*tsp),
3845 ("umtx_copyops specifies incorrect sizes"));
3846
3847 return (copyout(tsp, uaddr, sizeof(*tsp)));
3848 }
3849
3850 #ifdef COMPAT_FREEBSD10
3851 static int
3852 __umtx_op_lock_umtx(struct thread *td, struct _umtx_op_args *uap,
3853 const struct umtx_copyops *ops)
3854 {
3855 struct timespec *ts, timeout;
3856 int error;
3857
3858 /* Allow a null timespec (wait forever). */
3859 if (uap->uaddr2 == NULL)
3860 ts = NULL;
3861 else {
3862 error = ops->copyin_timeout(uap->uaddr2, &timeout);
3863 if (error != 0)
3864 return (error);
3865 ts = &timeout;
3866 }
3867 #ifdef COMPAT_FREEBSD32
3868 if (ops->compat32)
3869 return (do_lock_umtx32(td, uap->obj, uap->val, ts));
3870 #endif
3871 return (do_lock_umtx(td, uap->obj, uap->val, ts));
3872 }
3873
3874 static int
3875 __umtx_op_unlock_umtx(struct thread *td, struct _umtx_op_args *uap,
3876 const struct umtx_copyops *ops)
3877 {
3878 #ifdef COMPAT_FREEBSD32
3879 if (ops->compat32)
3880 return (do_unlock_umtx32(td, uap->obj, uap->val));
3881 #endif
3882 return (do_unlock_umtx(td, uap->obj, uap->val));
3883 }
3884 #endif /* COMPAT_FREEBSD10 */
3885
3886 #if !defined(COMPAT_FREEBSD10)
3887 static int
3888 __umtx_op_unimpl(struct thread *td __unused, struct _umtx_op_args *uap __unused,
3889 const struct umtx_copyops *ops __unused)
3890 {
3891 return (EOPNOTSUPP);
3892 }
3893 #endif /* COMPAT_FREEBSD10 */
3894
3895 static int
3896 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap,
3897 const struct umtx_copyops *ops)
3898 {
3899 struct _umtx_time timeout, *tm_p;
3900 int error;
3901
3902 if (uap->uaddr2 == NULL)
3903 tm_p = NULL;
3904 else {
3905 error = ops->copyin_umtx_time(
3906 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3907 if (error != 0)
3908 return (error);
3909 tm_p = &timeout;
3910 }
3911 return (do_wait(td, uap->obj, uap->val, tm_p, ops->compat32, 0));
3912 }
3913
3914 static int
3915 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap,
3916 const struct umtx_copyops *ops)
3917 {
3918 struct _umtx_time timeout, *tm_p;
3919 int error;
3920
3921 if (uap->uaddr2 == NULL)
3922 tm_p = NULL;
3923 else {
3924 error = ops->copyin_umtx_time(
3925 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3926 if (error != 0)
3927 return (error);
3928 tm_p = &timeout;
3929 }
3930 return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
3931 }
3932
3933 static int
3934 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap,
3935 const struct umtx_copyops *ops)
3936 {
3937 struct _umtx_time *tm_p, timeout;
3938 int error;
3939
3940 if (uap->uaddr2 == NULL)
3941 tm_p = NULL;
3942 else {
3943 error = ops->copyin_umtx_time(
3944 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3945 if (error != 0)
3946 return (error);
3947 tm_p = &timeout;
3948 }
3949 return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
3950 }
3951
3952 static int
3953 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap,
3954 const struct umtx_copyops *ops __unused)
3955 {
3956
3957 return (kern_umtx_wake(td, uap->obj, uap->val, 0));
3958 }
3959
3960 #define BATCH_SIZE 128
3961 static int
3962 __umtx_op_nwake_private_native(struct thread *td, struct _umtx_op_args *uap)
3963 {
3964 char *uaddrs[BATCH_SIZE], **upp;
3965 int count, error, i, pos, tocopy;
3966
3967 upp = (char **)uap->obj;
3968 error = 0;
3969 for (count = uap->val, pos = 0; count > 0; count -= tocopy,
3970 pos += tocopy) {
3971 tocopy = MIN(count, BATCH_SIZE);
3972 error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
3973 if (error != 0)
3974 break;
3975 for (i = 0; i < tocopy; ++i) {
3976 kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
3977 }
3978 maybe_yield();
3979 }
3980 return (error);
3981 }
3982
3983 static int
3984 __umtx_op_nwake_private_compat32(struct thread *td, struct _umtx_op_args *uap)
3985 {
3986 uint32_t uaddrs[BATCH_SIZE], *upp;
3987 int count, error, i, pos, tocopy;
3988
3989 upp = (uint32_t *)uap->obj;
3990 error = 0;
3991 for (count = uap->val, pos = 0; count > 0; count -= tocopy,
3992 pos += tocopy) {
3993 tocopy = MIN(count, BATCH_SIZE);
3994 error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
3995 if (error != 0)
3996 break;
3997 for (i = 0; i < tocopy; ++i) {
3998 kern_umtx_wake(td, (void *)(uintptr_t)uaddrs[i],
3999 INT_MAX, 1);
4000 }
4001 maybe_yield();
4002 }
4003 return (error);
4004 }
4005
4006 static int
4007 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap,
4008 const struct umtx_copyops *ops)
4009 {
4010
4011 if (ops->compat32)
4012 return (__umtx_op_nwake_private_compat32(td, uap));
4013 return (__umtx_op_nwake_private_native(td, uap));
4014 }
4015
4016 static int
4017 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap,
4018 const struct umtx_copyops *ops __unused)
4019 {
4020
4021 return (kern_umtx_wake(td, uap->obj, uap->val, 1));
4022 }
4023
4024 static int
4025 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap,
4026 const struct umtx_copyops *ops)
4027 {
4028 struct _umtx_time *tm_p, timeout;
4029 int error;
4030
4031 /* Allow a null timespec (wait forever). */
4032 if (uap->uaddr2 == NULL)
4033 tm_p = NULL;
4034 else {
4035 error = ops->copyin_umtx_time(
4036 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4037 if (error != 0)
4038 return (error);
4039 tm_p = &timeout;
4040 }
4041 return (do_lock_umutex(td, uap->obj, tm_p, 0));
4042 }
4043
4044 static int
4045 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap,
4046 const struct umtx_copyops *ops __unused)
4047 {
4048
4049 return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
4050 }
4051
4052 static int
4053 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap,
4054 const struct umtx_copyops *ops)
4055 {
4056 struct _umtx_time *tm_p, timeout;
4057 int error;
4058
4059 /* Allow a null timespec (wait forever). */
4060 if (uap->uaddr2 == NULL)
4061 tm_p = NULL;
4062 else {
4063 error = ops->copyin_umtx_time(
4064 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4065 if (error != 0)
4066 return (error);
4067 tm_p = &timeout;
4068 }
4069 return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
4070 }
4071
4072 static int
4073 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap,
4074 const struct umtx_copyops *ops __unused)
4075 {
4076
4077 return (do_wake_umutex(td, uap->obj));
4078 }
4079
4080 static int
4081 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap,
4082 const struct umtx_copyops *ops __unused)
4083 {
4084
4085 return (do_unlock_umutex(td, uap->obj, false));
4086 }
4087
4088 static int
4089 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap,
4090 const struct umtx_copyops *ops __unused)
4091 {
4092
4093 return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
4094 }
4095
4096 static int
4097 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap,
4098 const struct umtx_copyops *ops)
4099 {
4100 struct timespec *ts, timeout;
4101 int error;
4102
4103 /* Allow a null timespec (wait forever). */
4104 if (uap->uaddr2 == NULL)
4105 ts = NULL;
4106 else {
4107 error = ops->copyin_timeout(uap->uaddr2, &timeout);
4108 if (error != 0)
4109 return (error);
4110 ts = &timeout;
4111 }
4112 return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
4113 }
4114
4115 static int
4116 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap,
4117 const struct umtx_copyops *ops __unused)
4118 {
4119
4120 return (do_cv_signal(td, uap->obj));
4121 }
4122
4123 static int
4124 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap,
4125 const struct umtx_copyops *ops __unused)
4126 {
4127
4128 return (do_cv_broadcast(td, uap->obj));
4129 }
4130
4131 static int
4132 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap,
4133 const struct umtx_copyops *ops)
4134 {
4135 struct _umtx_time timeout;
4136 int error;
4137
4138 /* Allow a null timespec (wait forever). */
4139 if (uap->uaddr2 == NULL) {
4140 error = do_rw_rdlock(td, uap->obj, uap->val, 0);
4141 } else {
4142 error = ops->copyin_umtx_time(uap->uaddr2,
4143 (size_t)uap->uaddr1, &timeout);
4144 if (error != 0)
4145 return (error);
4146 error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
4147 }
4148 return (error);
4149 }
4150
4151 static int
4152 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap,
4153 const struct umtx_copyops *ops)
4154 {
4155 struct _umtx_time timeout;
4156 int error;
4157
4158 /* Allow a null timespec (wait forever). */
4159 if (uap->uaddr2 == NULL) {
4160 error = do_rw_wrlock(td, uap->obj, 0);
4161 } else {
4162 error = ops->copyin_umtx_time(uap->uaddr2,
4163 (size_t)uap->uaddr1, &timeout);
4164 if (error != 0)
4165 return (error);
4166
4167 error = do_rw_wrlock(td, uap->obj, &timeout);
4168 }
4169 return (error);
4170 }
4171
4172 static int
4173 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap,
4174 const struct umtx_copyops *ops __unused)
4175 {
4176
4177 return (do_rw_unlock(td, uap->obj));
4178 }
4179
4180 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4181 static int
4182 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap,
4183 const struct umtx_copyops *ops)
4184 {
4185 struct _umtx_time *tm_p, timeout;
4186 int error;
4187
4188 /* Allow a null timespec (wait forever). */
4189 if (uap->uaddr2 == NULL)
4190 tm_p = NULL;
4191 else {
4192 error = ops->copyin_umtx_time(
4193 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4194 if (error != 0)
4195 return (error);
4196 tm_p = &timeout;
4197 }
4198 return (do_sem_wait(td, uap->obj, tm_p));
4199 }
4200
4201 static int
4202 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap,
4203 const struct umtx_copyops *ops __unused)
4204 {
4205
4206 return (do_sem_wake(td, uap->obj));
4207 }
4208 #endif
4209
4210 static int
4211 __umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap,
4212 const struct umtx_copyops *ops __unused)
4213 {
4214
4215 return (do_wake2_umutex(td, uap->obj, uap->val));
4216 }
4217
4218 static int
4219 __umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap,
4220 const struct umtx_copyops *ops)
4221 {
4222 struct _umtx_time *tm_p, timeout;
4223 size_t uasize;
4224 int error;
4225
4226 /* Allow a null timespec (wait forever). */
4227 if (uap->uaddr2 == NULL) {
4228 uasize = 0;
4229 tm_p = NULL;
4230 } else {
4231 uasize = (size_t)uap->uaddr1;
4232 error = ops->copyin_umtx_time(uap->uaddr2, uasize, &timeout);
4233 if (error != 0)
4234 return (error);
4235 tm_p = &timeout;
4236 }
4237 error = do_sem2_wait(td, uap->obj, tm_p);
4238 if (error == EINTR && uap->uaddr2 != NULL &&
4239 (timeout._flags & UMTX_ABSTIME) == 0 &&
4240 uasize >= ops->umtx_time_sz + ops->timespec_sz) {
4241 error = ops->copyout_timeout(
4242 (void *)((uintptr_t)uap->uaddr2 + ops->umtx_time_sz),
4243 uasize - ops->umtx_time_sz, &timeout._timeout);
4244 if (error == 0) {
4245 error = EINTR;
4246 }
4247 }
4248
4249 return (error);
4250 }
4251
4252 static int
4253 __umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap,
4254 const struct umtx_copyops *ops __unused)
4255 {
4256
4257 return (do_sem2_wake(td, uap->obj));
4258 }
4259
4260 #define USHM_OBJ_UMTX(o) \
4261 ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
4262
4263 #define USHMF_REG_LINKED 0x0001
4264 #define USHMF_OBJ_LINKED 0x0002
4265 struct umtx_shm_reg {
4266 TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
4267 LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
4268 struct umtx_key ushm_key;
4269 struct ucred *ushm_cred;
4270 struct shmfd *ushm_obj;
4271 u_int ushm_refcnt;
4272 u_int ushm_flags;
4273 };
4274
4275 LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
4276 TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
4277
4278 static uma_zone_t umtx_shm_reg_zone;
4279 static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
4280 static struct mtx umtx_shm_lock;
4281 static struct umtx_shm_reg_head umtx_shm_reg_delfree =
4282 TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
4283
4284 static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
4285
4286 static void
4287 umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
4288 {
4289 struct umtx_shm_reg_head d;
4290 struct umtx_shm_reg *reg, *reg1;
4291
4292 TAILQ_INIT(&d);
4293 mtx_lock(&umtx_shm_lock);
4294 TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
4295 mtx_unlock(&umtx_shm_lock);
4296 TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
4297 TAILQ_REMOVE(&d, reg, ushm_reg_link);
4298 umtx_shm_free_reg(reg);
4299 }
4300 }
4301
4302 static struct task umtx_shm_reg_delfree_task =
4303 TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
4304
4305 static struct umtx_shm_reg *
4306 umtx_shm_find_reg_locked(const struct umtx_key *key)
4307 {
4308 struct umtx_shm_reg *reg;
4309 struct umtx_shm_reg_head *reg_head;
4310
4311 KASSERT(key->shared, ("umtx_p_find_rg: private key"));
4312 mtx_assert(&umtx_shm_lock, MA_OWNED);
4313 reg_head = &umtx_shm_registry[key->hash];
4314 TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
4315 KASSERT(reg->ushm_key.shared,
4316 ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
4317 if (reg->ushm_key.info.shared.object ==
4318 key->info.shared.object &&
4319 reg->ushm_key.info.shared.offset ==
4320 key->info.shared.offset) {
4321 KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
4322 KASSERT(reg->ushm_refcnt > 0,
4323 ("reg %p refcnt 0 onlist", reg));
4324 KASSERT((reg->ushm_flags & USHMF_REG_LINKED) != 0,
4325 ("reg %p not linked", reg));
4326 reg->ushm_refcnt++;
4327 return (reg);
4328 }
4329 }
4330 return (NULL);
4331 }
4332
4333 static struct umtx_shm_reg *
4334 umtx_shm_find_reg(const struct umtx_key *key)
4335 {
4336 struct umtx_shm_reg *reg;
4337
4338 mtx_lock(&umtx_shm_lock);
4339 reg = umtx_shm_find_reg_locked(key);
4340 mtx_unlock(&umtx_shm_lock);
4341 return (reg);
4342 }
4343
4344 static void
4345 umtx_shm_free_reg(struct umtx_shm_reg *reg)
4346 {
4347
4348 chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
4349 crfree(reg->ushm_cred);
4350 shm_drop(reg->ushm_obj);
4351 uma_zfree(umtx_shm_reg_zone, reg);
4352 }
4353
4354 static bool
4355 umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
4356 {
4357 bool res;
4358
4359 mtx_assert(&umtx_shm_lock, MA_OWNED);
4360 KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
4361 reg->ushm_refcnt--;
4362 res = reg->ushm_refcnt == 0;
4363 if (res || force) {
4364 if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
4365 TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
4366 reg, ushm_reg_link);
4367 reg->ushm_flags &= ~USHMF_REG_LINKED;
4368 }
4369 if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
4370 LIST_REMOVE(reg, ushm_obj_link);
4371 reg->ushm_flags &= ~USHMF_OBJ_LINKED;
4372 }
4373 }
4374 return (res);
4375 }
4376
4377 static void
4378 umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool force)
4379 {
4380 vm_object_t object;
4381 bool dofree;
4382
4383 if (force) {
4384 object = reg->ushm_obj->shm_object;
4385 VM_OBJECT_WLOCK(object);
4386 vm_object_set_flag(object, OBJ_UMTXDEAD);
4387 VM_OBJECT_WUNLOCK(object);
4388 }
4389 mtx_lock(&umtx_shm_lock);
4390 dofree = umtx_shm_unref_reg_locked(reg, force);
4391 mtx_unlock(&umtx_shm_lock);
4392 if (dofree)
4393 umtx_shm_free_reg(reg);
4394 }
4395
4396 void
4397 umtx_shm_object_init(vm_object_t object)
4398 {
4399
4400 LIST_INIT(USHM_OBJ_UMTX(object));
4401 }
4402
4403 void
4404 umtx_shm_object_terminated(vm_object_t object)
4405 {
4406 struct umtx_shm_reg *reg, *reg1;
4407 bool dofree;
4408
4409 if (LIST_EMPTY(USHM_OBJ_UMTX(object)))
4410 return;
4411
4412 dofree = false;
4413 mtx_lock(&umtx_shm_lock);
4414 LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
4415 if (umtx_shm_unref_reg_locked(reg, true)) {
4416 TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
4417 ushm_reg_link);
4418 dofree = true;
4419 }
4420 }
4421 mtx_unlock(&umtx_shm_lock);
4422 if (dofree)
4423 taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
4424 }
4425
4426 static int
4427 umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
4428 struct umtx_shm_reg **res)
4429 {
4430 struct umtx_shm_reg *reg, *reg1;
4431 struct ucred *cred;
4432 int error;
4433
4434 reg = umtx_shm_find_reg(key);
4435 if (reg != NULL) {
4436 *res = reg;
4437 return (0);
4438 }
4439 cred = td->td_ucred;
4440 if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
4441 return (ENOMEM);
4442 reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
4443 reg->ushm_refcnt = 1;
4444 bcopy(key, ®->ushm_key, sizeof(*key));
4445 reg->ushm_obj = shm_alloc(td->td_ucred, O_RDWR, false);
4446 reg->ushm_cred = crhold(cred);
4447 error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
4448 if (error != 0) {
4449 umtx_shm_free_reg(reg);
4450 return (error);
4451 }
4452 mtx_lock(&umtx_shm_lock);
4453 reg1 = umtx_shm_find_reg_locked(key);
4454 if (reg1 != NULL) {
4455 mtx_unlock(&umtx_shm_lock);
4456 umtx_shm_free_reg(reg);
4457 *res = reg1;
4458 return (0);
4459 }
4460 reg->ushm_refcnt++;
4461 TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
4462 LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
4463 ushm_obj_link);
4464 reg->ushm_flags = USHMF_REG_LINKED | USHMF_OBJ_LINKED;
4465 mtx_unlock(&umtx_shm_lock);
4466 *res = reg;
4467 return (0);
4468 }
4469
4470 static int
4471 umtx_shm_alive(struct thread *td, void *addr)
4472 {
4473 vm_map_t map;
4474 vm_map_entry_t entry;
4475 vm_object_t object;
4476 vm_pindex_t pindex;
4477 vm_prot_t prot;
4478 int res, ret;
4479 boolean_t wired;
4480
4481 map = &td->td_proc->p_vmspace->vm_map;
4482 res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
4483 &object, &pindex, &prot, &wired);
4484 if (res != KERN_SUCCESS)
4485 return (EFAULT);
4486 if (object == NULL)
4487 ret = EINVAL;
4488 else
4489 ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
4490 vm_map_lookup_done(map, entry);
4491 return (ret);
4492 }
4493
4494 static void
4495 umtx_shm_init(void)
4496 {
4497 int i;
4498
4499 umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
4500 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
4501 mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
4502 for (i = 0; i < nitems(umtx_shm_registry); i++)
4503 TAILQ_INIT(&umtx_shm_registry[i]);
4504 }
4505
4506 static int
4507 umtx_shm(struct thread *td, void *addr, u_int flags)
4508 {
4509 struct umtx_key key;
4510 struct umtx_shm_reg *reg;
4511 struct file *fp;
4512 int error, fd;
4513
4514 if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
4515 UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
4516 return (EINVAL);
4517 if ((flags & UMTX_SHM_ALIVE) != 0)
4518 return (umtx_shm_alive(td, addr));
4519 error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
4520 if (error != 0)
4521 return (error);
4522 KASSERT(key.shared == 1, ("non-shared key"));
4523 if ((flags & UMTX_SHM_CREAT) != 0) {
4524 error = umtx_shm_create_reg(td, &key, ®);
4525 } else {
4526 reg = umtx_shm_find_reg(&key);
4527 if (reg == NULL)
4528 error = ESRCH;
4529 }
4530 umtx_key_release(&key);
4531 if (error != 0)
4532 return (error);
4533 KASSERT(reg != NULL, ("no reg"));
4534 if ((flags & UMTX_SHM_DESTROY) != 0) {
4535 umtx_shm_unref_reg(reg, true);
4536 } else {
4537 #if 0
4538 #ifdef MAC
4539 error = mac_posixshm_check_open(td->td_ucred,
4540 reg->ushm_obj, FFLAGS(O_RDWR));
4541 if (error == 0)
4542 #endif
4543 error = shm_access(reg->ushm_obj, td->td_ucred,
4544 FFLAGS(O_RDWR));
4545 if (error == 0)
4546 #endif
4547 error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
4548 if (error == 0) {
4549 shm_hold(reg->ushm_obj);
4550 finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
4551 &shm_ops);
4552 td->td_retval[0] = fd;
4553 fdrop(fp, td);
4554 }
4555 }
4556 umtx_shm_unref_reg(reg, false);
4557 return (error);
4558 }
4559
4560 static int
4561 __umtx_op_shm(struct thread *td, struct _umtx_op_args *uap,
4562 const struct umtx_copyops *ops __unused)
4563 {
4564
4565 return (umtx_shm(td, uap->uaddr1, uap->val));
4566 }
4567
4568 static int
4569 __umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap,
4570 const struct umtx_copyops *ops)
4571 {
4572 struct umtx_robust_lists_params rb;
4573 int error;
4574
4575 if (ops->compat32) {
4576 if ((td->td_pflags2 & TDP2_COMPAT32RB) == 0 &&
4577 (td->td_rb_list != 0 || td->td_rbp_list != 0 ||
4578 td->td_rb_inact != 0))
4579 return (EBUSY);
4580 } else if ((td->td_pflags2 & TDP2_COMPAT32RB) != 0) {
4581 return (EBUSY);
4582 }
4583
4584 bzero(&rb, sizeof(rb));
4585 error = ops->copyin_robust_lists(uap->uaddr1, uap->val, &rb);
4586 if (error != 0)
4587 return (error);
4588
4589 if (ops->compat32)
4590 td->td_pflags2 |= TDP2_COMPAT32RB;
4591
4592 td->td_rb_list = rb.robust_list_offset;
4593 td->td_rbp_list = rb.robust_priv_list_offset;
4594 td->td_rb_inact = rb.robust_inact_offset;
4595 return (0);
4596 }
4597
4598 #if defined(__i386__) || defined(__amd64__)
4599 /*
4600 * Provide the standard 32-bit definitions for x86, since native/compat32 use a
4601 * 32-bit time_t there. Other architectures just need the i386 definitions
4602 * along with their standard compat32.
4603 */
4604 struct timespecx32 {
4605 int64_t tv_sec;
4606 int32_t tv_nsec;
4607 };
4608
4609 struct umtx_timex32 {
4610 struct timespecx32 _timeout;
4611 uint32_t _flags;
4612 uint32_t _clockid;
4613 };
4614
4615 #ifndef __i386__
4616 #define timespeci386 timespec32
4617 #define umtx_timei386 umtx_time32
4618 #endif
4619 #else /* !__i386__ && !__amd64__ */
4620 /* 32-bit architectures can emulate i386, so define these almost everywhere. */
4621 struct timespeci386 {
4622 int32_t tv_sec;
4623 int32_t tv_nsec;
4624 };
4625
4626 struct umtx_timei386 {
4627 struct timespeci386 _timeout;
4628 uint32_t _flags;
4629 uint32_t _clockid;
4630 };
4631
4632 #if defined(__LP64__)
4633 #define timespecx32 timespec32
4634 #define umtx_timex32 umtx_time32
4635 #endif
4636 #endif
4637
4638 static int
4639 umtx_copyin_robust_lists32(const void *uaddr, size_t size,
4640 struct umtx_robust_lists_params *rbp)
4641 {
4642 struct umtx_robust_lists_params_compat32 rb32;
4643 int error;
4644
4645 if (size > sizeof(rb32))
4646 return (EINVAL);
4647 bzero(&rb32, sizeof(rb32));
4648 error = copyin(uaddr, &rb32, size);
4649 if (error != 0)
4650 return (error);
4651 CP(rb32, *rbp, robust_list_offset);
4652 CP(rb32, *rbp, robust_priv_list_offset);
4653 CP(rb32, *rbp, robust_inact_offset);
4654 return (0);
4655 }
4656
4657 #ifndef __i386__
4658 static inline int
4659 umtx_copyin_timeouti386(const void *uaddr, struct timespec *tsp)
4660 {
4661 struct timespeci386 ts32;
4662 int error;
4663
4664 error = copyin(uaddr, &ts32, sizeof(ts32));
4665 if (error == 0) {
4666 if (!timespecvalid_interval(&ts32))
4667 error = EINVAL;
4668 else {
4669 CP(ts32, *tsp, tv_sec);
4670 CP(ts32, *tsp, tv_nsec);
4671 }
4672 }
4673 return (error);
4674 }
4675
4676 static inline int
4677 umtx_copyin_umtx_timei386(const void *uaddr, size_t size, struct _umtx_time *tp)
4678 {
4679 struct umtx_timei386 t32;
4680 int error;
4681
4682 t32._clockid = CLOCK_REALTIME;
4683 t32._flags = 0;
4684 if (size <= sizeof(t32._timeout))
4685 error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
4686 else
4687 error = copyin(uaddr, &t32, sizeof(t32));
4688 if (error != 0)
4689 return (error);
4690 if (!timespecvalid_interval(&t32._timeout))
4691 return (EINVAL);
4692 TS_CP(t32, *tp, _timeout);
4693 CP(t32, *tp, _flags);
4694 CP(t32, *tp, _clockid);
4695 return (0);
4696 }
4697
4698 static int
4699 umtx_copyout_timeouti386(void *uaddr, size_t sz, struct timespec *tsp)
4700 {
4701 struct timespeci386 remain32 = {
4702 .tv_sec = tsp->tv_sec,
4703 .tv_nsec = tsp->tv_nsec,
4704 };
4705
4706 /*
4707 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
4708 * and we're only called if sz >= sizeof(timespec) as supplied in the
4709 * copyops.
4710 */
4711 KASSERT(sz >= sizeof(remain32),
4712 ("umtx_copyops specifies incorrect sizes"));
4713
4714 return (copyout(&remain32, uaddr, sizeof(remain32)));
4715 }
4716 #endif /* !__i386__ */
4717
4718 #if defined(__i386__) || defined(__LP64__)
4719 static inline int
4720 umtx_copyin_timeoutx32(const void *uaddr, struct timespec *tsp)
4721 {
4722 struct timespecx32 ts32;
4723 int error;
4724
4725 error = copyin(uaddr, &ts32, sizeof(ts32));
4726 if (error == 0) {
4727 if (!timespecvalid_interval(&ts32))
4728 error = EINVAL;
4729 else {
4730 CP(ts32, *tsp, tv_sec);
4731 CP(ts32, *tsp, tv_nsec);
4732 }
4733 }
4734 return (error);
4735 }
4736
4737 static inline int
4738 umtx_copyin_umtx_timex32(const void *uaddr, size_t size, struct _umtx_time *tp)
4739 {
4740 struct umtx_timex32 t32;
4741 int error;
4742
4743 t32._clockid = CLOCK_REALTIME;
4744 t32._flags = 0;
4745 if (size <= sizeof(t32._timeout))
4746 error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
4747 else
4748 error = copyin(uaddr, &t32, sizeof(t32));
4749 if (error != 0)
4750 return (error);
4751 if (!timespecvalid_interval(&t32._timeout))
4752 return (EINVAL);
4753 TS_CP(t32, *tp, _timeout);
4754 CP(t32, *tp, _flags);
4755 CP(t32, *tp, _clockid);
4756 return (0);
4757 }
4758
4759 static int
4760 umtx_copyout_timeoutx32(void *uaddr, size_t sz, struct timespec *tsp)
4761 {
4762 struct timespecx32 remain32 = {
4763 .tv_sec = tsp->tv_sec,
4764 .tv_nsec = tsp->tv_nsec,
4765 };
4766
4767 /*
4768 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
4769 * and we're only called if sz >= sizeof(timespec) as supplied in the
4770 * copyops.
4771 */
4772 KASSERT(sz >= sizeof(remain32),
4773 ("umtx_copyops specifies incorrect sizes"));
4774
4775 return (copyout(&remain32, uaddr, sizeof(remain32)));
4776 }
4777 #endif /* __i386__ || __LP64__ */
4778
4779 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap,
4780 const struct umtx_copyops *umtx_ops);
4781
4782 static const _umtx_op_func op_table[] = {
4783 #ifdef COMPAT_FREEBSD10
4784 [UMTX_OP_LOCK] = __umtx_op_lock_umtx,
4785 [UMTX_OP_UNLOCK] = __umtx_op_unlock_umtx,
4786 #else
4787 [UMTX_OP_LOCK] = __umtx_op_unimpl,
4788 [UMTX_OP_UNLOCK] = __umtx_op_unimpl,
4789 #endif
4790 [UMTX_OP_WAIT] = __umtx_op_wait,
4791 [UMTX_OP_WAKE] = __umtx_op_wake,
4792 [UMTX_OP_MUTEX_TRYLOCK] = __umtx_op_trylock_umutex,
4793 [UMTX_OP_MUTEX_LOCK] = __umtx_op_lock_umutex,
4794 [UMTX_OP_MUTEX_UNLOCK] = __umtx_op_unlock_umutex,
4795 [UMTX_OP_SET_CEILING] = __umtx_op_set_ceiling,
4796 [UMTX_OP_CV_WAIT] = __umtx_op_cv_wait,
4797 [UMTX_OP_CV_SIGNAL] = __umtx_op_cv_signal,
4798 [UMTX_OP_CV_BROADCAST] = __umtx_op_cv_broadcast,
4799 [UMTX_OP_WAIT_UINT] = __umtx_op_wait_uint,
4800 [UMTX_OP_RW_RDLOCK] = __umtx_op_rw_rdlock,
4801 [UMTX_OP_RW_WRLOCK] = __umtx_op_rw_wrlock,
4802 [UMTX_OP_RW_UNLOCK] = __umtx_op_rw_unlock,
4803 [UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
4804 [UMTX_OP_WAKE_PRIVATE] = __umtx_op_wake_private,
4805 [UMTX_OP_MUTEX_WAIT] = __umtx_op_wait_umutex,
4806 [UMTX_OP_MUTEX_WAKE] = __umtx_op_wake_umutex,
4807 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4808 [UMTX_OP_SEM_WAIT] = __umtx_op_sem_wait,
4809 [UMTX_OP_SEM_WAKE] = __umtx_op_sem_wake,
4810 #else
4811 [UMTX_OP_SEM_WAIT] = __umtx_op_unimpl,
4812 [UMTX_OP_SEM_WAKE] = __umtx_op_unimpl,
4813 #endif
4814 [UMTX_OP_NWAKE_PRIVATE] = __umtx_op_nwake_private,
4815 [UMTX_OP_MUTEX_WAKE2] = __umtx_op_wake2_umutex,
4816 [UMTX_OP_SEM2_WAIT] = __umtx_op_sem2_wait,
4817 [UMTX_OP_SEM2_WAKE] = __umtx_op_sem2_wake,
4818 [UMTX_OP_SHM] = __umtx_op_shm,
4819 [UMTX_OP_ROBUST_LISTS] = __umtx_op_robust_lists,
4820 };
4821
4822 static const struct umtx_copyops umtx_native_ops = {
4823 .copyin_timeout = umtx_copyin_timeout,
4824 .copyin_umtx_time = umtx_copyin_umtx_time,
4825 .copyin_robust_lists = umtx_copyin_robust_lists,
4826 .copyout_timeout = umtx_copyout_timeout,
4827 .timespec_sz = sizeof(struct timespec),
4828 .umtx_time_sz = sizeof(struct _umtx_time),
4829 };
4830
4831 #ifndef __i386__
4832 static const struct umtx_copyops umtx_native_opsi386 = {
4833 .copyin_timeout = umtx_copyin_timeouti386,
4834 .copyin_umtx_time = umtx_copyin_umtx_timei386,
4835 .copyin_robust_lists = umtx_copyin_robust_lists32,
4836 .copyout_timeout = umtx_copyout_timeouti386,
4837 .timespec_sz = sizeof(struct timespeci386),
4838 .umtx_time_sz = sizeof(struct umtx_timei386),
4839 .compat32 = true,
4840 };
4841 #endif
4842
4843 #if defined(__i386__) || defined(__LP64__)
4844 /* i386 can emulate other 32-bit archs, too! */
4845 static const struct umtx_copyops umtx_native_opsx32 = {
4846 .copyin_timeout = umtx_copyin_timeoutx32,
4847 .copyin_umtx_time = umtx_copyin_umtx_timex32,
4848 .copyin_robust_lists = umtx_copyin_robust_lists32,
4849 .copyout_timeout = umtx_copyout_timeoutx32,
4850 .timespec_sz = sizeof(struct timespecx32),
4851 .umtx_time_sz = sizeof(struct umtx_timex32),
4852 .compat32 = true,
4853 };
4854
4855 #ifdef COMPAT_FREEBSD32
4856 #ifdef __amd64__
4857 #define umtx_native_ops32 umtx_native_opsi386
4858 #else
4859 #define umtx_native_ops32 umtx_native_opsx32
4860 #endif
4861 #endif /* COMPAT_FREEBSD32 */
4862 #endif /* __i386__ || __LP64__ */
4863
4864 #define UMTX_OP__FLAGS (UMTX_OP__32BIT | UMTX_OP__I386)
4865
4866 static int
4867 kern__umtx_op(struct thread *td, void *obj, int op, unsigned long val,
4868 void *uaddr1, void *uaddr2, const struct umtx_copyops *ops)
4869 {
4870 struct _umtx_op_args uap = {
4871 .obj = obj,
4872 .op = op & ~UMTX_OP__FLAGS,
4873 .val = val,
4874 .uaddr1 = uaddr1,
4875 .uaddr2 = uaddr2
4876 };
4877
4878 if ((uap.op >= nitems(op_table)))
4879 return (EINVAL);
4880 return ((*op_table[uap.op])(td, &uap, ops));
4881 }
4882
4883 int
4884 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
4885 {
4886 static const struct umtx_copyops *umtx_ops;
4887
4888 umtx_ops = &umtx_native_ops;
4889 #ifdef __LP64__
4890 if ((uap->op & (UMTX_OP__32BIT | UMTX_OP__I386)) != 0) {
4891 if ((uap->op & UMTX_OP__I386) != 0)
4892 umtx_ops = &umtx_native_opsi386;
4893 else
4894 umtx_ops = &umtx_native_opsx32;
4895 }
4896 #elif !defined(__i386__)
4897 /* We consider UMTX_OP__32BIT a nop on !i386 ILP32. */
4898 if ((uap->op & UMTX_OP__I386) != 0)
4899 umtx_ops = &umtx_native_opsi386;
4900 #else
4901 /* Likewise, UMTX_OP__I386 is a nop on i386. */
4902 if ((uap->op & UMTX_OP__32BIT) != 0)
4903 umtx_ops = &umtx_native_opsx32;
4904 #endif
4905 return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr1,
4906 uap->uaddr2, umtx_ops));
4907 }
4908
4909 #ifdef COMPAT_FREEBSD32
4910 #ifdef COMPAT_FREEBSD10
4911 int
4912 freebsd10_freebsd32_umtx_lock(struct thread *td,
4913 struct freebsd10_freebsd32_umtx_lock_args *uap)
4914 {
4915 return (do_lock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid, NULL));
4916 }
4917
4918 int
4919 freebsd10_freebsd32_umtx_unlock(struct thread *td,
4920 struct freebsd10_freebsd32_umtx_unlock_args *uap)
4921 {
4922 return (do_unlock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid));
4923 }
4924 #endif /* COMPAT_FREEBSD10 */
4925
4926 int
4927 freebsd32__umtx_op(struct thread *td, struct freebsd32__umtx_op_args *uap)
4928 {
4929
4930 return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr,
4931 uap->uaddr2, &umtx_native_ops32));
4932 }
4933 #endif /* COMPAT_FREEBSD32 */
4934
4935 void
4936 umtx_thread_init(struct thread *td)
4937 {
4938
4939 td->td_umtxq = umtxq_alloc();
4940 td->td_umtxq->uq_thread = td;
4941 }
4942
4943 void
4944 umtx_thread_fini(struct thread *td)
4945 {
4946
4947 umtxq_free(td->td_umtxq);
4948 }
4949
4950 /*
4951 * It will be called when new thread is created, e.g fork().
4952 */
4953 void
4954 umtx_thread_alloc(struct thread *td)
4955 {
4956 struct umtx_q *uq;
4957
4958 uq = td->td_umtxq;
4959 uq->uq_inherited_pri = PRI_MAX;
4960
4961 KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
4962 KASSERT(uq->uq_thread == td, ("uq_thread != td"));
4963 KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
4964 KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
4965 }
4966
4967 /*
4968 * exec() hook.
4969 *
4970 * Clear robust lists for all process' threads, not delaying the
4971 * cleanup to thread exit, since the relevant address space is
4972 * destroyed right now.
4973 */
4974 void
4975 umtx_exec(struct proc *p)
4976 {
4977 struct thread *td;
4978
4979 KASSERT(p == curproc, ("need curproc"));
4980 KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
4981 (p->p_flag & P_STOPPED_SINGLE) != 0,
4982 ("curproc must be single-threaded"));
4983 /*
4984 * There is no need to lock the list as only this thread can be
4985 * running.
4986 */
4987 FOREACH_THREAD_IN_PROC(p, td) {
4988 KASSERT(td == curthread ||
4989 ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
4990 ("running thread %p %p", p, td));
4991 umtx_thread_cleanup(td);
4992 td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
4993 }
4994 }
4995
4996 /*
4997 * thread exit hook.
4998 */
4999 void
5000 umtx_thread_exit(struct thread *td)
5001 {
5002
5003 umtx_thread_cleanup(td);
5004 }
5005
5006 static int
5007 umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res, bool compat32)
5008 {
5009 u_long res1;
5010 uint32_t res32;
5011 int error;
5012
5013 if (compat32) {
5014 error = fueword32((void *)ptr, &res32);
5015 if (error == 0)
5016 res1 = res32;
5017 } else {
5018 error = fueword((void *)ptr, &res1);
5019 }
5020 if (error == 0)
5021 *res = res1;
5022 else
5023 error = EFAULT;
5024 return (error);
5025 }
5026
5027 static void
5028 umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list,
5029 bool compat32)
5030 {
5031 struct umutex32 m32;
5032
5033 if (compat32) {
5034 memcpy(&m32, m, sizeof(m32));
5035 *rb_list = m32.m_rb_lnk;
5036 } else {
5037 *rb_list = m->m_rb_lnk;
5038 }
5039 }
5040
5041 static int
5042 umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact,
5043 bool compat32)
5044 {
5045 struct umutex m;
5046 int error;
5047
5048 KASSERT(td->td_proc == curproc, ("need current vmspace"));
5049 error = copyin((void *)rbp, &m, sizeof(m));
5050 if (error != 0)
5051 return (error);
5052 if (rb_list != NULL)
5053 umtx_read_rb_list(td, &m, rb_list, compat32);
5054 if ((m.m_flags & UMUTEX_ROBUST) == 0)
5055 return (EINVAL);
5056 if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
5057 /* inact is cleared after unlock, allow the inconsistency */
5058 return (inact ? 0 : EINVAL);
5059 return (do_unlock_umutex(td, (struct umutex *)rbp, true));
5060 }
5061
5062 static void
5063 umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
5064 const char *name, bool compat32)
5065 {
5066 int error, i;
5067 uintptr_t rbp;
5068 bool inact;
5069
5070 if (rb_list == 0)
5071 return;
5072 error = umtx_read_uptr(td, rb_list, &rbp, compat32);
5073 for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
5074 if (rbp == *rb_inact) {
5075 inact = true;
5076 *rb_inact = 0;
5077 } else
5078 inact = false;
5079 error = umtx_handle_rb(td, rbp, &rbp, inact, compat32);
5080 }
5081 if (i == umtx_max_rb && umtx_verbose_rb) {
5082 uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
5083 td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
5084 }
5085 if (error != 0 && umtx_verbose_rb) {
5086 uprintf("comm %s pid %d: handling %srb error %d\n",
5087 td->td_proc->p_comm, td->td_proc->p_pid, name, error);
5088 }
5089 }
5090
5091 /*
5092 * Clean up umtx data.
5093 */
5094 static void
5095 umtx_thread_cleanup(struct thread *td)
5096 {
5097 struct umtx_q *uq;
5098 struct umtx_pi *pi;
5099 uintptr_t rb_inact;
5100 bool compat32;
5101
5102 /*
5103 * Disown pi mutexes.
5104 */
5105 uq = td->td_umtxq;
5106 if (uq != NULL) {
5107 if (uq->uq_inherited_pri != PRI_MAX ||
5108 !TAILQ_EMPTY(&uq->uq_pi_contested)) {
5109 mtx_lock(&umtx_lock);
5110 uq->uq_inherited_pri = PRI_MAX;
5111 while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
5112 pi->pi_owner = NULL;
5113 TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
5114 }
5115 mtx_unlock(&umtx_lock);
5116 }
5117 sched_lend_user_prio_cond(td, PRI_MAX);
5118 }
5119
5120 compat32 = (td->td_pflags2 & TDP2_COMPAT32RB) != 0;
5121 td->td_pflags2 &= ~TDP2_COMPAT32RB;
5122
5123 if (td->td_rb_inact == 0 && td->td_rb_list == 0 && td->td_rbp_list == 0)
5124 return;
5125
5126 /*
5127 * Handle terminated robust mutexes. Must be done after
5128 * robust pi disown, otherwise unlock could see unowned
5129 * entries.
5130 */
5131 rb_inact = td->td_rb_inact;
5132 if (rb_inact != 0)
5133 (void)umtx_read_uptr(td, rb_inact, &rb_inact, compat32);
5134 umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "", compat32);
5135 umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ", compat32);
5136 if (rb_inact != 0)
5137 (void)umtx_handle_rb(td, rb_inact, NULL, true, compat32);
5138 }
Cache object: 30ff82f82b413740d36f7a055b0638fc
|