The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_umtx.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
    3  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice unmodified, this list of conditions, and the following
   11  *    disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD: releng/9.0/sys/kern/kern_umtx.c 225617 2011-09-16 13:58:51Z kmacy $");
   30 
   31 #include "opt_compat.h"
   32 #include <sys/param.h>
   33 #include <sys/kernel.h>
   34 #include <sys/limits.h>
   35 #include <sys/lock.h>
   36 #include <sys/malloc.h>
   37 #include <sys/mutex.h>
   38 #include <sys/priv.h>
   39 #include <sys/proc.h>
   40 #include <sys/sched.h>
   41 #include <sys/smp.h>
   42 #include <sys/sysctl.h>
   43 #include <sys/sysent.h>
   44 #include <sys/systm.h>
   45 #include <sys/sysproto.h>
   46 #include <sys/syscallsubr.h>
   47 #include <sys/eventhandler.h>
   48 #include <sys/umtx.h>
   49 
   50 #include <vm/vm.h>
   51 #include <vm/vm_param.h>
   52 #include <vm/pmap.h>
   53 #include <vm/vm_map.h>
   54 #include <vm/vm_object.h>
   55 
   56 #include <machine/cpu.h>
   57 
   58 #ifdef COMPAT_FREEBSD32
   59 #include <compat/freebsd32/freebsd32_proto.h>
   60 #endif
   61 
   62 #define _UMUTEX_TRY             1
   63 #define _UMUTEX_WAIT            2
   64 
   65 /* Priority inheritance mutex info. */
   66 struct umtx_pi {
   67         /* Owner thread */
   68         struct thread           *pi_owner;
   69 
   70         /* Reference count */
   71         int                     pi_refcount;
   72 
   73         /* List entry to link umtx holding by thread */
   74         TAILQ_ENTRY(umtx_pi)    pi_link;
   75 
   76         /* List entry in hash */
   77         TAILQ_ENTRY(umtx_pi)    pi_hashlink;
   78 
   79         /* List for waiters */
   80         TAILQ_HEAD(,umtx_q)     pi_blocked;
   81 
   82         /* Identify a userland lock object */
   83         struct umtx_key         pi_key;
   84 };
   85 
   86 /* A userland synchronous object user. */
   87 struct umtx_q {
   88         /* Linked list for the hash. */
   89         TAILQ_ENTRY(umtx_q)     uq_link;
   90 
   91         /* Umtx key. */
   92         struct umtx_key         uq_key;
   93 
   94         /* Umtx flags. */
   95         int                     uq_flags;
   96 #define UQF_UMTXQ       0x0001
   97 
   98         /* The thread waits on. */
   99         struct thread           *uq_thread;
  100 
  101         /*
  102          * Blocked on PI mutex. read can use chain lock
  103          * or umtx_lock, write must have both chain lock and
  104          * umtx_lock being hold.
  105          */
  106         struct umtx_pi          *uq_pi_blocked;
  107 
  108         /* On blocked list */
  109         TAILQ_ENTRY(umtx_q)     uq_lockq;
  110 
  111         /* Thread contending with us */
  112         TAILQ_HEAD(,umtx_pi)    uq_pi_contested;
  113 
  114         /* Inherited priority from PP mutex */
  115         u_char                  uq_inherited_pri;
  116         
  117         /* Spare queue ready to be reused */
  118         struct umtxq_queue      *uq_spare_queue;
  119 
  120         /* The queue we on */
  121         struct umtxq_queue      *uq_cur_queue;
  122 };
  123 
  124 TAILQ_HEAD(umtxq_head, umtx_q);
  125 
  126 /* Per-key wait-queue */
  127 struct umtxq_queue {
  128         struct umtxq_head       head;
  129         struct umtx_key         key;
  130         LIST_ENTRY(umtxq_queue) link;
  131         int                     length;
  132 };
  133 
  134 LIST_HEAD(umtxq_list, umtxq_queue);
  135 
  136 /* Userland lock object's wait-queue chain */
  137 struct umtxq_chain {
  138         /* Lock for this chain. */
  139         struct mtx              uc_lock;
  140 
  141         /* List of sleep queues. */
  142         struct umtxq_list       uc_queue[2];
  143 #define UMTX_SHARED_QUEUE       0
  144 #define UMTX_EXCLUSIVE_QUEUE    1
  145 
  146         LIST_HEAD(, umtxq_queue) uc_spare_queue;
  147 
  148         /* Busy flag */
  149         char                    uc_busy;
  150 
  151         /* Chain lock waiters */
  152         int                     uc_waiters;
  153 
  154         /* All PI in the list */
  155         TAILQ_HEAD(,umtx_pi)    uc_pi_list;
  156 
  157 };
  158 
  159 #define UMTXQ_LOCKED_ASSERT(uc)         mtx_assert(&(uc)->uc_lock, MA_OWNED)
  160 #define UMTXQ_BUSY_ASSERT(uc)   KASSERT(&(uc)->uc_busy, ("umtx chain is not busy"))
  161 
  162 /*
  163  * Don't propagate time-sharing priority, there is a security reason,
  164  * a user can simply introduce PI-mutex, let thread A lock the mutex,
  165  * and let another thread B block on the mutex, because B is
  166  * sleeping, its priority will be boosted, this causes A's priority to
  167  * be boosted via priority propagating too and will never be lowered even
  168  * if it is using 100%CPU, this is unfair to other processes.
  169  */
  170 
  171 #define UPRI(td)        (((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
  172                           (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
  173                          PRI_MAX_TIMESHARE : (td)->td_user_pri)
  174 
  175 #define GOLDEN_RATIO_PRIME      2654404609U
  176 #define UMTX_CHAINS             512
  177 #define UMTX_SHIFTS             (__WORD_BIT - 9)
  178 
  179 #define GET_SHARE(flags)        \
  180     (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
  181 
  182 #define BUSY_SPINS              200
  183 
  184 static uma_zone_t               umtx_pi_zone;
  185 static struct umtxq_chain       umtxq_chains[2][UMTX_CHAINS];
  186 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
  187 static int                      umtx_pi_allocated;
  188 
  189 SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW, 0, "umtx debug");
  190 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
  191     &umtx_pi_allocated, 0, "Allocated umtx_pi");
  192 
  193 static void umtxq_sysinit(void *);
  194 static void umtxq_hash(struct umtx_key *key);
  195 static struct umtxq_chain *umtxq_getchain(struct umtx_key *key);
  196 static void umtxq_lock(struct umtx_key *key);
  197 static void umtxq_unlock(struct umtx_key *key);
  198 static void umtxq_busy(struct umtx_key *key);
  199 static void umtxq_unbusy(struct umtx_key *key);
  200 static void umtxq_insert_queue(struct umtx_q *uq, int q);
  201 static void umtxq_remove_queue(struct umtx_q *uq, int q);
  202 static int umtxq_sleep(struct umtx_q *uq, const char *wmesg, int timo);
  203 static int umtxq_count(struct umtx_key *key);
  204 static struct umtx_pi *umtx_pi_alloc(int);
  205 static void umtx_pi_free(struct umtx_pi *pi);
  206 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags);
  207 static void umtx_thread_cleanup(struct thread *td);
  208 static void umtx_exec_hook(void *arg __unused, struct proc *p __unused,
  209         struct image_params *imgp __unused);
  210 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
  211 
  212 #define umtxq_signal(key, nwake)        umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
  213 #define umtxq_insert(uq)        umtxq_insert_queue((uq), UMTX_SHARED_QUEUE)
  214 #define umtxq_remove(uq)        umtxq_remove_queue((uq), UMTX_SHARED_QUEUE)
  215 
  216 static struct mtx umtx_lock;
  217 
  218 static void
  219 umtxq_sysinit(void *arg __unused)
  220 {
  221         int i, j;
  222 
  223         umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
  224                 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  225         for (i = 0; i < 2; ++i) {
  226                 for (j = 0; j < UMTX_CHAINS; ++j) {
  227                         mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
  228                                  MTX_DEF | MTX_DUPOK);
  229                         LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
  230                         LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
  231                         LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
  232                         TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
  233                         umtxq_chains[i][j].uc_busy = 0;
  234                         umtxq_chains[i][j].uc_waiters = 0;
  235                 }
  236         }
  237         mtx_init(&umtx_lock, "umtx lock", NULL, MTX_SPIN);
  238         EVENTHANDLER_REGISTER(process_exec, umtx_exec_hook, NULL,
  239             EVENTHANDLER_PRI_ANY);
  240 }
  241 
  242 struct umtx_q *
  243 umtxq_alloc(void)
  244 {
  245         struct umtx_q *uq;
  246 
  247         uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
  248         uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX, M_WAITOK | M_ZERO);
  249         TAILQ_INIT(&uq->uq_spare_queue->head);
  250         TAILQ_INIT(&uq->uq_pi_contested);
  251         uq->uq_inherited_pri = PRI_MAX;
  252         return (uq);
  253 }
  254 
  255 void
  256 umtxq_free(struct umtx_q *uq)
  257 {
  258         MPASS(uq->uq_spare_queue != NULL);
  259         free(uq->uq_spare_queue, M_UMTX);
  260         free(uq, M_UMTX);
  261 }
  262 
  263 static inline void
  264 umtxq_hash(struct umtx_key *key)
  265 {
  266         unsigned n = (uintptr_t)key->info.both.a + key->info.both.b;
  267         key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
  268 }
  269 
  270 static inline struct umtxq_chain *
  271 umtxq_getchain(struct umtx_key *key)
  272 {
  273         if (key->type <= TYPE_SEM)
  274                 return (&umtxq_chains[1][key->hash]);
  275         return (&umtxq_chains[0][key->hash]);
  276 }
  277 
  278 /*
  279  * Lock a chain.
  280  */
  281 static inline void
  282 umtxq_lock(struct umtx_key *key)
  283 {
  284         struct umtxq_chain *uc;
  285 
  286         uc = umtxq_getchain(key);
  287         mtx_lock(&uc->uc_lock);
  288 }
  289 
  290 /*
  291  * Unlock a chain.
  292  */
  293 static inline void
  294 umtxq_unlock(struct umtx_key *key)
  295 {
  296         struct umtxq_chain *uc;
  297 
  298         uc = umtxq_getchain(key);
  299         mtx_unlock(&uc->uc_lock);
  300 }
  301 
  302 /*
  303  * Set chain to busy state when following operation
  304  * may be blocked (kernel mutex can not be used).
  305  */
  306 static inline void
  307 umtxq_busy(struct umtx_key *key)
  308 {
  309         struct umtxq_chain *uc;
  310 
  311         uc = umtxq_getchain(key);
  312         mtx_assert(&uc->uc_lock, MA_OWNED);
  313         if (uc->uc_busy) {
  314 #ifdef SMP
  315                 if (smp_cpus > 1) {
  316                         int count = BUSY_SPINS;
  317                         if (count > 0) {
  318                                 umtxq_unlock(key);
  319                                 while (uc->uc_busy && --count > 0)
  320                                         cpu_spinwait();
  321                                 umtxq_lock(key);
  322                         }
  323                 }
  324 #endif
  325                 while (uc->uc_busy) {
  326                         uc->uc_waiters++;
  327                         msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
  328                         uc->uc_waiters--;
  329                 }
  330         }
  331         uc->uc_busy = 1;
  332 }
  333 
  334 /*
  335  * Unbusy a chain.
  336  */
  337 static inline void
  338 umtxq_unbusy(struct umtx_key *key)
  339 {
  340         struct umtxq_chain *uc;
  341 
  342         uc = umtxq_getchain(key);
  343         mtx_assert(&uc->uc_lock, MA_OWNED);
  344         KASSERT(uc->uc_busy != 0, ("not busy"));
  345         uc->uc_busy = 0;
  346         if (uc->uc_waiters)
  347                 wakeup_one(uc);
  348 }
  349 
  350 static struct umtxq_queue *
  351 umtxq_queue_lookup(struct umtx_key *key, int q)
  352 {
  353         struct umtxq_queue *uh;
  354         struct umtxq_chain *uc;
  355 
  356         uc = umtxq_getchain(key);
  357         UMTXQ_LOCKED_ASSERT(uc);
  358         LIST_FOREACH(uh, &uc->uc_queue[q], link) {
  359                 if (umtx_key_match(&uh->key, key))
  360                         return (uh);
  361         }
  362 
  363         return (NULL);
  364 }
  365 
  366 static inline void
  367 umtxq_insert_queue(struct umtx_q *uq, int q)
  368 {
  369         struct umtxq_queue *uh;
  370         struct umtxq_chain *uc;
  371 
  372         uc = umtxq_getchain(&uq->uq_key);
  373         UMTXQ_LOCKED_ASSERT(uc);
  374         KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
  375         uh = umtxq_queue_lookup(&uq->uq_key, q);
  376         if (uh != NULL) {
  377                 LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
  378         } else {
  379                 uh = uq->uq_spare_queue;
  380                 uh->key = uq->uq_key;
  381                 LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
  382         }
  383         uq->uq_spare_queue = NULL;
  384 
  385         TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
  386         uh->length++;
  387         uq->uq_flags |= UQF_UMTXQ;
  388         uq->uq_cur_queue = uh;
  389         return;
  390 }
  391 
  392 static inline void
  393 umtxq_remove_queue(struct umtx_q *uq, int q)
  394 {
  395         struct umtxq_chain *uc;
  396         struct umtxq_queue *uh;
  397 
  398         uc = umtxq_getchain(&uq->uq_key);
  399         UMTXQ_LOCKED_ASSERT(uc);
  400         if (uq->uq_flags & UQF_UMTXQ) {
  401                 uh = uq->uq_cur_queue;
  402                 TAILQ_REMOVE(&uh->head, uq, uq_link);
  403                 uh->length--;
  404                 uq->uq_flags &= ~UQF_UMTXQ;
  405                 if (TAILQ_EMPTY(&uh->head)) {
  406                         KASSERT(uh->length == 0,
  407                             ("inconsistent umtxq_queue length"));
  408                         LIST_REMOVE(uh, link);
  409                 } else {
  410                         uh = LIST_FIRST(&uc->uc_spare_queue);
  411                         KASSERT(uh != NULL, ("uc_spare_queue is empty"));
  412                         LIST_REMOVE(uh, link);
  413                 }
  414                 uq->uq_spare_queue = uh;
  415                 uq->uq_cur_queue = NULL;
  416         }
  417 }
  418 
  419 /*
  420  * Check if there are multiple waiters
  421  */
  422 static int
  423 umtxq_count(struct umtx_key *key)
  424 {
  425         struct umtxq_chain *uc;
  426         struct umtxq_queue *uh;
  427 
  428         uc = umtxq_getchain(key);
  429         UMTXQ_LOCKED_ASSERT(uc);
  430         uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
  431         if (uh != NULL)
  432                 return (uh->length);
  433         return (0);
  434 }
  435 
  436 /*
  437  * Check if there are multiple PI waiters and returns first
  438  * waiter.
  439  */
  440 static int
  441 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
  442 {
  443         struct umtxq_chain *uc;
  444         struct umtxq_queue *uh;
  445 
  446         *first = NULL;
  447         uc = umtxq_getchain(key);
  448         UMTXQ_LOCKED_ASSERT(uc);
  449         uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
  450         if (uh != NULL) {
  451                 *first = TAILQ_FIRST(&uh->head);
  452                 return (uh->length);
  453         }
  454         return (0);
  455 }
  456 
  457 /*
  458  * Wake up threads waiting on an userland object.
  459  */
  460 
  461 static int
  462 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
  463 {
  464         struct umtxq_chain *uc;
  465         struct umtxq_queue *uh;
  466         struct umtx_q *uq;
  467         int ret;
  468 
  469         ret = 0;
  470         uc = umtxq_getchain(key);
  471         UMTXQ_LOCKED_ASSERT(uc);
  472         uh = umtxq_queue_lookup(key, q);
  473         if (uh != NULL) {
  474                 while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
  475                         umtxq_remove_queue(uq, q);
  476                         wakeup(uq);
  477                         if (++ret >= n_wake)
  478                                 return (ret);
  479                 }
  480         }
  481         return (ret);
  482 }
  483 
  484 
  485 /*
  486  * Wake up specified thread.
  487  */
  488 static inline void
  489 umtxq_signal_thread(struct umtx_q *uq)
  490 {
  491         struct umtxq_chain *uc;
  492 
  493         uc = umtxq_getchain(&uq->uq_key);
  494         UMTXQ_LOCKED_ASSERT(uc);
  495         umtxq_remove(uq);
  496         wakeup(uq);
  497 }
  498 
  499 /*
  500  * Put thread into sleep state, before sleeping, check if
  501  * thread was removed from umtx queue.
  502  */
  503 static inline int
  504 umtxq_sleep(struct umtx_q *uq, const char *wmesg, int timo)
  505 {
  506         struct umtxq_chain *uc;
  507         int error;
  508 
  509         uc = umtxq_getchain(&uq->uq_key);
  510         UMTXQ_LOCKED_ASSERT(uc);
  511         if (!(uq->uq_flags & UQF_UMTXQ))
  512                 return (0);
  513         error = msleep(uq, &uc->uc_lock, PCATCH, wmesg, timo);
  514         if (error == EWOULDBLOCK)
  515                 error = ETIMEDOUT;
  516         return (error);
  517 }
  518 
  519 /*
  520  * Convert userspace address into unique logical address.
  521  */
  522 int
  523 umtx_key_get(void *addr, int type, int share, struct umtx_key *key)
  524 {
  525         struct thread *td = curthread;
  526         vm_map_t map;
  527         vm_map_entry_t entry;
  528         vm_pindex_t pindex;
  529         vm_prot_t prot;
  530         boolean_t wired;
  531 
  532         key->type = type;
  533         if (share == THREAD_SHARE) {
  534                 key->shared = 0;
  535                 key->info.private.vs = td->td_proc->p_vmspace;
  536                 key->info.private.addr = (uintptr_t)addr;
  537         } else {
  538                 MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
  539                 map = &td->td_proc->p_vmspace->vm_map;
  540                 if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
  541                     &entry, &key->info.shared.object, &pindex, &prot,
  542                     &wired) != KERN_SUCCESS) {
  543                         return EFAULT;
  544                 }
  545 
  546                 if ((share == PROCESS_SHARE) ||
  547                     (share == AUTO_SHARE &&
  548                      VM_INHERIT_SHARE == entry->inheritance)) {
  549                         key->shared = 1;
  550                         key->info.shared.offset = entry->offset + entry->start -
  551                                 (vm_offset_t)addr;
  552                         vm_object_reference(key->info.shared.object);
  553                 } else {
  554                         key->shared = 0;
  555                         key->info.private.vs = td->td_proc->p_vmspace;
  556                         key->info.private.addr = (uintptr_t)addr;
  557                 }
  558                 vm_map_lookup_done(map, entry);
  559         }
  560 
  561         umtxq_hash(key);
  562         return (0);
  563 }
  564 
  565 /*
  566  * Release key.
  567  */
  568 void
  569 umtx_key_release(struct umtx_key *key)
  570 {
  571         if (key->shared)
  572                 vm_object_deallocate(key->info.shared.object);
  573 }
  574 
  575 /*
  576  * Lock a umtx object.
  577  */
  578 static int
  579 _do_lock_umtx(struct thread *td, struct umtx *umtx, u_long id, int timo)
  580 {
  581         struct umtx_q *uq;
  582         u_long owner;
  583         u_long old;
  584         int error = 0;
  585 
  586         uq = td->td_umtxq;
  587 
  588         /*
  589          * Care must be exercised when dealing with umtx structure. It
  590          * can fault on any access.
  591          */
  592         for (;;) {
  593                 /*
  594                  * Try the uncontested case.  This should be done in userland.
  595                  */
  596                 owner = casuword(&umtx->u_owner, UMTX_UNOWNED, id);
  597 
  598                 /* The acquire succeeded. */
  599                 if (owner == UMTX_UNOWNED)
  600                         return (0);
  601 
  602                 /* The address was invalid. */
  603                 if (owner == -1)
  604                         return (EFAULT);
  605 
  606                 /* If no one owns it but it is contested try to acquire it. */
  607                 if (owner == UMTX_CONTESTED) {
  608                         owner = casuword(&umtx->u_owner,
  609                             UMTX_CONTESTED, id | UMTX_CONTESTED);
  610 
  611                         if (owner == UMTX_CONTESTED)
  612                                 return (0);
  613 
  614                         /* The address was invalid. */
  615                         if (owner == -1)
  616                                 return (EFAULT);
  617 
  618                         /* If this failed the lock has changed, restart. */
  619                         continue;
  620                 }
  621 
  622                 /*
  623                  * If we caught a signal, we have retried and now
  624                  * exit immediately.
  625                  */
  626                 if (error != 0)
  627                         return (error);
  628 
  629                 if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK,
  630                         AUTO_SHARE, &uq->uq_key)) != 0)
  631                         return (error);
  632 
  633                 umtxq_lock(&uq->uq_key);
  634                 umtxq_busy(&uq->uq_key);
  635                 umtxq_insert(uq);
  636                 umtxq_unbusy(&uq->uq_key);
  637                 umtxq_unlock(&uq->uq_key);
  638 
  639                 /*
  640                  * Set the contested bit so that a release in user space
  641                  * knows to use the system call for unlock.  If this fails
  642                  * either some one else has acquired the lock or it has been
  643                  * released.
  644                  */
  645                 old = casuword(&umtx->u_owner, owner, owner | UMTX_CONTESTED);
  646 
  647                 /* The address was invalid. */
  648                 if (old == -1) {
  649                         umtxq_lock(&uq->uq_key);
  650                         umtxq_remove(uq);
  651                         umtxq_unlock(&uq->uq_key);
  652                         umtx_key_release(&uq->uq_key);
  653                         return (EFAULT);
  654                 }
  655 
  656                 /*
  657                  * We set the contested bit, sleep. Otherwise the lock changed
  658                  * and we need to retry or we lost a race to the thread
  659                  * unlocking the umtx.
  660                  */
  661                 umtxq_lock(&uq->uq_key);
  662                 if (old == owner)
  663                         error = umtxq_sleep(uq, "umtx", timo);
  664                 umtxq_remove(uq);
  665                 umtxq_unlock(&uq->uq_key);
  666                 umtx_key_release(&uq->uq_key);
  667         }
  668 
  669         return (0);
  670 }
  671 
  672 /*
  673  * Lock a umtx object.
  674  */
  675 static int
  676 do_lock_umtx(struct thread *td, struct umtx *umtx, u_long id,
  677         struct timespec *timeout)
  678 {
  679         struct timespec ts, ts2, ts3;
  680         struct timeval tv;
  681         int error;
  682 
  683         if (timeout == NULL) {
  684                 error = _do_lock_umtx(td, umtx, id, 0);
  685                 /* Mutex locking is restarted if it is interrupted. */
  686                 if (error == EINTR)
  687                         error = ERESTART;
  688         } else {
  689                 getnanouptime(&ts);
  690                 timespecadd(&ts, timeout);
  691                 TIMESPEC_TO_TIMEVAL(&tv, timeout);
  692                 for (;;) {
  693                         error = _do_lock_umtx(td, umtx, id, tvtohz(&tv));
  694                         if (error != ETIMEDOUT)
  695                                 break;
  696                         getnanouptime(&ts2);
  697                         if (timespeccmp(&ts2, &ts, >=)) {
  698                                 error = ETIMEDOUT;
  699                                 break;
  700                         }
  701                         ts3 = ts;
  702                         timespecsub(&ts3, &ts2);
  703                         TIMESPEC_TO_TIMEVAL(&tv, &ts3);
  704                 }
  705                 /* Timed-locking is not restarted. */
  706                 if (error == ERESTART)
  707                         error = EINTR;
  708         }
  709         return (error);
  710 }
  711 
  712 /*
  713  * Unlock a umtx object.
  714  */
  715 static int
  716 do_unlock_umtx(struct thread *td, struct umtx *umtx, u_long id)
  717 {
  718         struct umtx_key key;
  719         u_long owner;
  720         u_long old;
  721         int error;
  722         int count;
  723 
  724         /*
  725          * Make sure we own this mtx.
  726          */
  727         owner = fuword(__DEVOLATILE(u_long *, &umtx->u_owner));
  728         if (owner == -1)
  729                 return (EFAULT);
  730 
  731         if ((owner & ~UMTX_CONTESTED) != id)
  732                 return (EPERM);
  733 
  734         /* This should be done in userland */
  735         if ((owner & UMTX_CONTESTED) == 0) {
  736                 old = casuword(&umtx->u_owner, owner, UMTX_UNOWNED);
  737                 if (old == -1)
  738                         return (EFAULT);
  739                 if (old == owner)
  740                         return (0);
  741                 owner = old;
  742         }
  743 
  744         /* We should only ever be in here for contested locks */
  745         if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK, AUTO_SHARE,
  746                 &key)) != 0)
  747                 return (error);
  748 
  749         umtxq_lock(&key);
  750         umtxq_busy(&key);
  751         count = umtxq_count(&key);
  752         umtxq_unlock(&key);
  753 
  754         /*
  755          * When unlocking the umtx, it must be marked as unowned if
  756          * there is zero or one thread only waiting for it.
  757          * Otherwise, it must be marked as contested.
  758          */
  759         old = casuword(&umtx->u_owner, owner,
  760                 count <= 1 ? UMTX_UNOWNED : UMTX_CONTESTED);
  761         umtxq_lock(&key);
  762         umtxq_signal(&key,1);
  763         umtxq_unbusy(&key);
  764         umtxq_unlock(&key);
  765         umtx_key_release(&key);
  766         if (old == -1)
  767                 return (EFAULT);
  768         if (old != owner)
  769                 return (EINVAL);
  770         return (0);
  771 }
  772 
  773 #ifdef COMPAT_FREEBSD32
  774 
  775 /*
  776  * Lock a umtx object.
  777  */
  778 static int
  779 _do_lock_umtx32(struct thread *td, uint32_t *m, uint32_t id, int timo)
  780 {
  781         struct umtx_q *uq;
  782         uint32_t owner;
  783         uint32_t old;
  784         int error = 0;
  785 
  786         uq = td->td_umtxq;
  787 
  788         /*
  789          * Care must be exercised when dealing with umtx structure. It
  790          * can fault on any access.
  791          */
  792         for (;;) {
  793                 /*
  794                  * Try the uncontested case.  This should be done in userland.
  795                  */
  796                 owner = casuword32(m, UMUTEX_UNOWNED, id);
  797 
  798                 /* The acquire succeeded. */
  799                 if (owner == UMUTEX_UNOWNED)
  800                         return (0);
  801 
  802                 /* The address was invalid. */
  803                 if (owner == -1)
  804                         return (EFAULT);
  805 
  806                 /* If no one owns it but it is contested try to acquire it. */
  807                 if (owner == UMUTEX_CONTESTED) {
  808                         owner = casuword32(m,
  809                             UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
  810                         if (owner == UMUTEX_CONTESTED)
  811                                 return (0);
  812 
  813                         /* The address was invalid. */
  814                         if (owner == -1)
  815                                 return (EFAULT);
  816 
  817                         /* If this failed the lock has changed, restart. */
  818                         continue;
  819                 }
  820 
  821                 /*
  822                  * If we caught a signal, we have retried and now
  823                  * exit immediately.
  824                  */
  825                 if (error != 0)
  826                         return (error);
  827 
  828                 if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK,
  829                         AUTO_SHARE, &uq->uq_key)) != 0)
  830                         return (error);
  831 
  832                 umtxq_lock(&uq->uq_key);
  833                 umtxq_busy(&uq->uq_key);
  834                 umtxq_insert(uq);
  835                 umtxq_unbusy(&uq->uq_key);
  836                 umtxq_unlock(&uq->uq_key);
  837 
  838                 /*
  839                  * Set the contested bit so that a release in user space
  840                  * knows to use the system call for unlock.  If this fails
  841                  * either some one else has acquired the lock or it has been
  842                  * released.
  843                  */
  844                 old = casuword32(m, owner, owner | UMUTEX_CONTESTED);
  845 
  846                 /* The address was invalid. */
  847                 if (old == -1) {
  848                         umtxq_lock(&uq->uq_key);
  849                         umtxq_remove(uq);
  850                         umtxq_unlock(&uq->uq_key);
  851                         umtx_key_release(&uq->uq_key);
  852                         return (EFAULT);
  853                 }
  854 
  855                 /*
  856                  * We set the contested bit, sleep. Otherwise the lock changed
  857                  * and we need to retry or we lost a race to the thread
  858                  * unlocking the umtx.
  859                  */
  860                 umtxq_lock(&uq->uq_key);
  861                 if (old == owner)
  862                         error = umtxq_sleep(uq, "umtx", timo);
  863                 umtxq_remove(uq);
  864                 umtxq_unlock(&uq->uq_key);
  865                 umtx_key_release(&uq->uq_key);
  866         }
  867 
  868         return (0);
  869 }
  870 
  871 /*
  872  * Lock a umtx object.
  873  */
  874 static int
  875 do_lock_umtx32(struct thread *td, void *m, uint32_t id,
  876         struct timespec *timeout)
  877 {
  878         struct timespec ts, ts2, ts3;
  879         struct timeval tv;
  880         int error;
  881 
  882         if (timeout == NULL) {
  883                 error = _do_lock_umtx32(td, m, id, 0);
  884                 /* Mutex locking is restarted if it is interrupted. */
  885                 if (error == EINTR)
  886                         error = ERESTART;
  887         } else {
  888                 getnanouptime(&ts);
  889                 timespecadd(&ts, timeout);
  890                 TIMESPEC_TO_TIMEVAL(&tv, timeout);
  891                 for (;;) {
  892                         error = _do_lock_umtx32(td, m, id, tvtohz(&tv));
  893                         if (error != ETIMEDOUT)
  894                                 break;
  895                         getnanouptime(&ts2);
  896                         if (timespeccmp(&ts2, &ts, >=)) {
  897                                 error = ETIMEDOUT;
  898                                 break;
  899                         }
  900                         ts3 = ts;
  901                         timespecsub(&ts3, &ts2);
  902                         TIMESPEC_TO_TIMEVAL(&tv, &ts3);
  903                 }
  904                 /* Timed-locking is not restarted. */
  905                 if (error == ERESTART)
  906                         error = EINTR;
  907         }
  908         return (error);
  909 }
  910 
  911 /*
  912  * Unlock a umtx object.
  913  */
  914 static int
  915 do_unlock_umtx32(struct thread *td, uint32_t *m, uint32_t id)
  916 {
  917         struct umtx_key key;
  918         uint32_t owner;
  919         uint32_t old;
  920         int error;
  921         int count;
  922 
  923         /*
  924          * Make sure we own this mtx.
  925          */
  926         owner = fuword32(m);
  927         if (owner == -1)
  928                 return (EFAULT);
  929 
  930         if ((owner & ~UMUTEX_CONTESTED) != id)
  931                 return (EPERM);
  932 
  933         /* This should be done in userland */
  934         if ((owner & UMUTEX_CONTESTED) == 0) {
  935                 old = casuword32(m, owner, UMUTEX_UNOWNED);
  936                 if (old == -1)
  937                         return (EFAULT);
  938                 if (old == owner)
  939                         return (0);
  940                 owner = old;
  941         }
  942 
  943         /* We should only ever be in here for contested locks */
  944         if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK, AUTO_SHARE,
  945                 &key)) != 0)
  946                 return (error);
  947 
  948         umtxq_lock(&key);
  949         umtxq_busy(&key);
  950         count = umtxq_count(&key);
  951         umtxq_unlock(&key);
  952 
  953         /*
  954          * When unlocking the umtx, it must be marked as unowned if
  955          * there is zero or one thread only waiting for it.
  956          * Otherwise, it must be marked as contested.
  957          */
  958         old = casuword32(m, owner,
  959                 count <= 1 ? UMUTEX_UNOWNED : UMUTEX_CONTESTED);
  960         umtxq_lock(&key);
  961         umtxq_signal(&key,1);
  962         umtxq_unbusy(&key);
  963         umtxq_unlock(&key);
  964         umtx_key_release(&key);
  965         if (old == -1)
  966                 return (EFAULT);
  967         if (old != owner)
  968                 return (EINVAL);
  969         return (0);
  970 }
  971 #endif
  972 
  973 /*
  974  * Fetch and compare value, sleep on the address if value is not changed.
  975  */
  976 static int
  977 do_wait(struct thread *td, void *addr, u_long id,
  978         struct timespec *timeout, int compat32, int is_private)
  979 {
  980         struct umtx_q *uq;
  981         struct timespec ts, ts2, ts3;
  982         struct timeval tv;
  983         u_long tmp;
  984         int error = 0;
  985 
  986         uq = td->td_umtxq;
  987         if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
  988                 is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
  989                 return (error);
  990 
  991         umtxq_lock(&uq->uq_key);
  992         umtxq_insert(uq);
  993         umtxq_unlock(&uq->uq_key);
  994         if (compat32 == 0)
  995                 tmp = fuword(addr);
  996         else
  997                 tmp = (unsigned int)fuword32(addr);
  998         if (tmp != id) {
  999                 umtxq_lock(&uq->uq_key);
 1000                 umtxq_remove(uq);
 1001                 umtxq_unlock(&uq->uq_key);
 1002         } else if (timeout == NULL) {
 1003                 umtxq_lock(&uq->uq_key);
 1004                 error = umtxq_sleep(uq, "uwait", 0);
 1005                 umtxq_remove(uq);
 1006                 umtxq_unlock(&uq->uq_key);
 1007         } else {
 1008                 getnanouptime(&ts);
 1009                 timespecadd(&ts, timeout);
 1010                 TIMESPEC_TO_TIMEVAL(&tv, timeout);
 1011                 umtxq_lock(&uq->uq_key);
 1012                 for (;;) {
 1013                         error = umtxq_sleep(uq, "uwait", tvtohz(&tv));
 1014                         if (!(uq->uq_flags & UQF_UMTXQ)) {
 1015                                 error = 0;
 1016                                 break;
 1017                         }
 1018                         if (error != ETIMEDOUT)
 1019                                 break;
 1020                         umtxq_unlock(&uq->uq_key);
 1021                         getnanouptime(&ts2);
 1022                         if (timespeccmp(&ts2, &ts, >=)) {
 1023                                 error = ETIMEDOUT;
 1024                                 umtxq_lock(&uq->uq_key);
 1025                                 break;
 1026                         }
 1027                         ts3 = ts;
 1028                         timespecsub(&ts3, &ts2);
 1029                         TIMESPEC_TO_TIMEVAL(&tv, &ts3);
 1030                         umtxq_lock(&uq->uq_key);
 1031                 }
 1032                 umtxq_remove(uq);
 1033                 umtxq_unlock(&uq->uq_key);
 1034         }
 1035         umtx_key_release(&uq->uq_key);
 1036         if (error == ERESTART)
 1037                 error = EINTR;
 1038         return (error);
 1039 }
 1040 
 1041 /*
 1042  * Wake up threads sleeping on the specified address.
 1043  */
 1044 int
 1045 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
 1046 {
 1047         struct umtx_key key;
 1048         int ret;
 1049         
 1050         if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
 1051                 is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
 1052                 return (ret);
 1053         umtxq_lock(&key);
 1054         ret = umtxq_signal(&key, n_wake);
 1055         umtxq_unlock(&key);
 1056         umtx_key_release(&key);
 1057         return (0);
 1058 }
 1059 
 1060 /*
 1061  * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
 1062  */
 1063 static int
 1064 _do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags, int timo,
 1065         int mode)
 1066 {
 1067         struct umtx_q *uq;
 1068         uint32_t owner, old, id;
 1069         int error = 0;
 1070 
 1071         id = td->td_tid;
 1072         uq = td->td_umtxq;
 1073 
 1074         /*
 1075          * Care must be exercised when dealing with umtx structure. It
 1076          * can fault on any access.
 1077          */
 1078         for (;;) {
 1079                 owner = fuword32(__DEVOLATILE(void *, &m->m_owner));
 1080                 if (mode == _UMUTEX_WAIT) {
 1081                         if (owner == UMUTEX_UNOWNED || owner == UMUTEX_CONTESTED)
 1082                                 return (0);
 1083                 } else {
 1084                         /*
 1085                          * Try the uncontested case.  This should be done in userland.
 1086                          */
 1087                         owner = casuword32(&m->m_owner, UMUTEX_UNOWNED, id);
 1088 
 1089                         /* The acquire succeeded. */
 1090                         if (owner == UMUTEX_UNOWNED)
 1091                                 return (0);
 1092 
 1093                         /* The address was invalid. */
 1094                         if (owner == -1)
 1095                                 return (EFAULT);
 1096 
 1097                         /* If no one owns it but it is contested try to acquire it. */
 1098                         if (owner == UMUTEX_CONTESTED) {
 1099                                 owner = casuword32(&m->m_owner,
 1100                                     UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
 1101 
 1102                                 if (owner == UMUTEX_CONTESTED)
 1103                                         return (0);
 1104 
 1105                                 /* The address was invalid. */
 1106                                 if (owner == -1)
 1107                                         return (EFAULT);
 1108 
 1109                                 /* If this failed the lock has changed, restart. */
 1110                                 continue;
 1111                         }
 1112                 }
 1113 
 1114                 if ((flags & UMUTEX_ERROR_CHECK) != 0 &&
 1115                     (owner & ~UMUTEX_CONTESTED) == id)
 1116                         return (EDEADLK);
 1117 
 1118                 if (mode == _UMUTEX_TRY)
 1119                         return (EBUSY);
 1120 
 1121                 /*
 1122                  * If we caught a signal, we have retried and now
 1123                  * exit immediately.
 1124                  */
 1125                 if (error != 0)
 1126                         return (error);
 1127 
 1128                 if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
 1129                     GET_SHARE(flags), &uq->uq_key)) != 0)
 1130                         return (error);
 1131 
 1132                 umtxq_lock(&uq->uq_key);
 1133                 umtxq_busy(&uq->uq_key);
 1134                 umtxq_insert(uq);
 1135                 umtxq_unlock(&uq->uq_key);
 1136 
 1137                 /*
 1138                  * Set the contested bit so that a release in user space
 1139                  * knows to use the system call for unlock.  If this fails
 1140                  * either some one else has acquired the lock or it has been
 1141                  * released.
 1142                  */
 1143                 old = casuword32(&m->m_owner, owner, owner | UMUTEX_CONTESTED);
 1144 
 1145                 /* The address was invalid. */
 1146                 if (old == -1) {
 1147                         umtxq_lock(&uq->uq_key);
 1148                         umtxq_remove(uq);
 1149                         umtxq_unbusy(&uq->uq_key);
 1150                         umtxq_unlock(&uq->uq_key);
 1151                         umtx_key_release(&uq->uq_key);
 1152                         return (EFAULT);
 1153                 }
 1154 
 1155                 /*
 1156                  * We set the contested bit, sleep. Otherwise the lock changed
 1157                  * and we need to retry or we lost a race to the thread
 1158                  * unlocking the umtx.
 1159                  */
 1160                 umtxq_lock(&uq->uq_key);
 1161                 umtxq_unbusy(&uq->uq_key);
 1162                 if (old == owner)
 1163                         error = umtxq_sleep(uq, "umtxn", timo);
 1164                 umtxq_remove(uq);
 1165                 umtxq_unlock(&uq->uq_key);
 1166                 umtx_key_release(&uq->uq_key);
 1167         }
 1168 
 1169         return (0);
 1170 }
 1171 
 1172 /*
 1173  * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
 1174  */
 1175 /*
 1176  * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
 1177  */
 1178 static int
 1179 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags)
 1180 {
 1181         struct umtx_key key;
 1182         uint32_t owner, old, id;
 1183         int error;
 1184         int count;
 1185 
 1186         id = td->td_tid;
 1187         /*
 1188          * Make sure we own this mtx.
 1189          */
 1190         owner = fuword32(__DEVOLATILE(uint32_t *, &m->m_owner));
 1191         if (owner == -1)
 1192                 return (EFAULT);
 1193 
 1194         if ((owner & ~UMUTEX_CONTESTED) != id)
 1195                 return (EPERM);
 1196 
 1197         if ((owner & UMUTEX_CONTESTED) == 0) {
 1198                 old = casuword32(&m->m_owner, owner, UMUTEX_UNOWNED);
 1199                 if (old == -1)
 1200                         return (EFAULT);
 1201                 if (old == owner)
 1202                         return (0);
 1203                 owner = old;
 1204         }
 1205 
 1206         /* We should only ever be in here for contested locks */
 1207         if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
 1208             &key)) != 0)
 1209                 return (error);
 1210 
 1211         umtxq_lock(&key);
 1212         umtxq_busy(&key);
 1213         count = umtxq_count(&key);
 1214         umtxq_unlock(&key);
 1215 
 1216         /*
 1217          * When unlocking the umtx, it must be marked as unowned if
 1218          * there is zero or one thread only waiting for it.
 1219          * Otherwise, it must be marked as contested.
 1220          */
 1221         old = casuword32(&m->m_owner, owner,
 1222                 count <= 1 ? UMUTEX_UNOWNED : UMUTEX_CONTESTED);
 1223         umtxq_lock(&key);
 1224         umtxq_signal(&key,1);
 1225         umtxq_unbusy(&key);
 1226         umtxq_unlock(&key);
 1227         umtx_key_release(&key);
 1228         if (old == -1)
 1229                 return (EFAULT);
 1230         if (old != owner)
 1231                 return (EINVAL);
 1232         return (0);
 1233 }
 1234 
 1235 /*
 1236  * Check if the mutex is available and wake up a waiter,
 1237  * only for simple mutex.
 1238  */
 1239 static int
 1240 do_wake_umutex(struct thread *td, struct umutex *m)
 1241 {
 1242         struct umtx_key key;
 1243         uint32_t owner;
 1244         uint32_t flags;
 1245         int error;
 1246         int count;
 1247 
 1248         owner = fuword32(__DEVOLATILE(uint32_t *, &m->m_owner));
 1249         if (owner == -1)
 1250                 return (EFAULT);
 1251 
 1252         if ((owner & ~UMUTEX_CONTESTED) != 0)
 1253                 return (0);
 1254 
 1255         flags = fuword32(&m->m_flags);
 1256 
 1257         /* We should only ever be in here for contested locks */
 1258         if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
 1259             &key)) != 0)
 1260                 return (error);
 1261 
 1262         umtxq_lock(&key);
 1263         umtxq_busy(&key);
 1264         count = umtxq_count(&key);
 1265         umtxq_unlock(&key);
 1266 
 1267         if (count <= 1)
 1268                 owner = casuword32(&m->m_owner, UMUTEX_CONTESTED, UMUTEX_UNOWNED);
 1269 
 1270         umtxq_lock(&key);
 1271         if (count != 0 && (owner & ~UMUTEX_CONTESTED) == 0)
 1272                 umtxq_signal(&key, 1);
 1273         umtxq_unbusy(&key);
 1274         umtxq_unlock(&key);
 1275         umtx_key_release(&key);
 1276         return (0);
 1277 }
 1278 
 1279 static inline struct umtx_pi *
 1280 umtx_pi_alloc(int flags)
 1281 {
 1282         struct umtx_pi *pi;
 1283 
 1284         pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
 1285         TAILQ_INIT(&pi->pi_blocked);
 1286         atomic_add_int(&umtx_pi_allocated, 1);
 1287         return (pi);
 1288 }
 1289 
 1290 static inline void
 1291 umtx_pi_free(struct umtx_pi *pi)
 1292 {
 1293         uma_zfree(umtx_pi_zone, pi);
 1294         atomic_add_int(&umtx_pi_allocated, -1);
 1295 }
 1296 
 1297 /*
 1298  * Adjust the thread's position on a pi_state after its priority has been
 1299  * changed.
 1300  */
 1301 static int
 1302 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
 1303 {
 1304         struct umtx_q *uq, *uq1, *uq2;
 1305         struct thread *td1;
 1306 
 1307         mtx_assert(&umtx_lock, MA_OWNED);
 1308         if (pi == NULL)
 1309                 return (0);
 1310 
 1311         uq = td->td_umtxq;
 1312 
 1313         /*
 1314          * Check if the thread needs to be moved on the blocked chain.
 1315          * It needs to be moved if either its priority is lower than
 1316          * the previous thread or higher than the next thread.
 1317          */
 1318         uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
 1319         uq2 = TAILQ_NEXT(uq, uq_lockq);
 1320         if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
 1321             (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
 1322                 /*
 1323                  * Remove thread from blocked chain and determine where
 1324                  * it should be moved to.
 1325                  */
 1326                 TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
 1327                 TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
 1328                         td1 = uq1->uq_thread;
 1329                         MPASS(td1->td_proc->p_magic == P_MAGIC);
 1330                         if (UPRI(td1) > UPRI(td))
 1331                                 break;
 1332                 }
 1333 
 1334                 if (uq1 == NULL)
 1335                         TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
 1336                 else
 1337                         TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
 1338         }
 1339         return (1);
 1340 }
 1341 
 1342 /*
 1343  * Propagate priority when a thread is blocked on POSIX
 1344  * PI mutex.
 1345  */ 
 1346 static void
 1347 umtx_propagate_priority(struct thread *td)
 1348 {
 1349         struct umtx_q *uq;
 1350         struct umtx_pi *pi;
 1351         int pri;
 1352 
 1353         mtx_assert(&umtx_lock, MA_OWNED);
 1354         pri = UPRI(td);
 1355         uq = td->td_umtxq;
 1356         pi = uq->uq_pi_blocked;
 1357         if (pi == NULL)
 1358                 return;
 1359 
 1360         for (;;) {
 1361                 td = pi->pi_owner;
 1362                 if (td == NULL || td == curthread)
 1363                         return;
 1364 
 1365                 MPASS(td->td_proc != NULL);
 1366                 MPASS(td->td_proc->p_magic == P_MAGIC);
 1367 
 1368                 thread_lock(td);
 1369                 if (td->td_lend_user_pri > pri)
 1370                         sched_lend_user_prio(td, pri);
 1371                 else {
 1372                         thread_unlock(td);
 1373                         break;
 1374                 }
 1375                 thread_unlock(td);
 1376 
 1377                 /*
 1378                  * Pick up the lock that td is blocked on.
 1379                  */
 1380                 uq = td->td_umtxq;
 1381                 pi = uq->uq_pi_blocked;
 1382                 if (pi == NULL)
 1383                         break;
 1384                 /* Resort td on the list if needed. */
 1385                 umtx_pi_adjust_thread(pi, td);
 1386         }
 1387 }
 1388 
 1389 /*
 1390  * Unpropagate priority for a PI mutex when a thread blocked on
 1391  * it is interrupted by signal or resumed by others.
 1392  */
 1393 static void
 1394 umtx_repropagate_priority(struct umtx_pi *pi)
 1395 {
 1396         struct umtx_q *uq, *uq_owner;
 1397         struct umtx_pi *pi2;
 1398         int pri;
 1399 
 1400         mtx_assert(&umtx_lock, MA_OWNED);
 1401 
 1402         while (pi != NULL && pi->pi_owner != NULL) {
 1403                 pri = PRI_MAX;
 1404                 uq_owner = pi->pi_owner->td_umtxq;
 1405 
 1406                 TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
 1407                         uq = TAILQ_FIRST(&pi2->pi_blocked);
 1408                         if (uq != NULL) {
 1409                                 if (pri > UPRI(uq->uq_thread))
 1410                                         pri = UPRI(uq->uq_thread);
 1411                         }
 1412                 }
 1413 
 1414                 if (pri > uq_owner->uq_inherited_pri)
 1415                         pri = uq_owner->uq_inherited_pri;
 1416                 thread_lock(pi->pi_owner);
 1417                 sched_lend_user_prio(pi->pi_owner, pri);
 1418                 thread_unlock(pi->pi_owner);
 1419                 if ((pi = uq_owner->uq_pi_blocked) != NULL)
 1420                         umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
 1421         }
 1422 }
 1423 
 1424 /*
 1425  * Insert a PI mutex into owned list.
 1426  */
 1427 static void
 1428 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
 1429 {
 1430         struct umtx_q *uq_owner;
 1431 
 1432         uq_owner = owner->td_umtxq;
 1433         mtx_assert(&umtx_lock, MA_OWNED);
 1434         if (pi->pi_owner != NULL)
 1435                 panic("pi_ower != NULL");
 1436         pi->pi_owner = owner;
 1437         TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
 1438 }
 1439 
 1440 /*
 1441  * Claim ownership of a PI mutex.
 1442  */
 1443 static int
 1444 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
 1445 {
 1446         struct umtx_q *uq, *uq_owner;
 1447 
 1448         uq_owner = owner->td_umtxq;
 1449         mtx_lock_spin(&umtx_lock);
 1450         if (pi->pi_owner == owner) {
 1451                 mtx_unlock_spin(&umtx_lock);
 1452                 return (0);
 1453         }
 1454 
 1455         if (pi->pi_owner != NULL) {
 1456                 /*
 1457                  * userland may have already messed the mutex, sigh.
 1458                  */
 1459                 mtx_unlock_spin(&umtx_lock);
 1460                 return (EPERM);
 1461         }
 1462         umtx_pi_setowner(pi, owner);
 1463         uq = TAILQ_FIRST(&pi->pi_blocked);
 1464         if (uq != NULL) {
 1465                 int pri;
 1466 
 1467                 pri = UPRI(uq->uq_thread);
 1468                 thread_lock(owner);
 1469                 if (pri < UPRI(owner))
 1470                         sched_lend_user_prio(owner, pri);
 1471                 thread_unlock(owner);
 1472         }
 1473         mtx_unlock_spin(&umtx_lock);
 1474         return (0);
 1475 }
 1476 
 1477 /*
 1478  * Adjust a thread's order position in its blocked PI mutex,
 1479  * this may result new priority propagating process.
 1480  */
 1481 void
 1482 umtx_pi_adjust(struct thread *td, u_char oldpri)
 1483 {
 1484         struct umtx_q *uq;
 1485         struct umtx_pi *pi;
 1486 
 1487         uq = td->td_umtxq;
 1488         mtx_lock_spin(&umtx_lock);
 1489         /*
 1490          * Pick up the lock that td is blocked on.
 1491          */
 1492         pi = uq->uq_pi_blocked;
 1493         if (pi != NULL) {
 1494                 umtx_pi_adjust_thread(pi, td);
 1495                 umtx_repropagate_priority(pi);
 1496         }
 1497         mtx_unlock_spin(&umtx_lock);
 1498 }
 1499 
 1500 /*
 1501  * Sleep on a PI mutex.
 1502  */
 1503 static int
 1504 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi,
 1505         uint32_t owner, const char *wmesg, int timo)
 1506 {
 1507         struct umtxq_chain *uc;
 1508         struct thread *td, *td1;
 1509         struct umtx_q *uq1;
 1510         int pri;
 1511         int error = 0;
 1512 
 1513         td = uq->uq_thread;
 1514         KASSERT(td == curthread, ("inconsistent uq_thread"));
 1515         uc = umtxq_getchain(&uq->uq_key);
 1516         UMTXQ_LOCKED_ASSERT(uc);
 1517         UMTXQ_BUSY_ASSERT(uc);
 1518         umtxq_insert(uq);
 1519         mtx_lock_spin(&umtx_lock);
 1520         if (pi->pi_owner == NULL) {
 1521                 mtx_unlock_spin(&umtx_lock);
 1522                 /* XXX Only look up thread in current process. */
 1523                 td1 = tdfind(owner, curproc->p_pid);
 1524                 mtx_lock_spin(&umtx_lock);
 1525                 if (td1 != NULL) {
 1526                         if (pi->pi_owner == NULL)
 1527                                 umtx_pi_setowner(pi, td1);
 1528                         PROC_UNLOCK(td1->td_proc);
 1529                 }
 1530         }
 1531 
 1532         TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
 1533                 pri = UPRI(uq1->uq_thread);
 1534                 if (pri > UPRI(td))
 1535                         break;
 1536         }
 1537 
 1538         if (uq1 != NULL)
 1539                 TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
 1540         else
 1541                 TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
 1542 
 1543         uq->uq_pi_blocked = pi;
 1544         thread_lock(td);
 1545         td->td_flags |= TDF_UPIBLOCKED;
 1546         thread_unlock(td);
 1547         umtx_propagate_priority(td);
 1548         mtx_unlock_spin(&umtx_lock);
 1549         umtxq_unbusy(&uq->uq_key);
 1550 
 1551         if (uq->uq_flags & UQF_UMTXQ) {
 1552                 error = msleep(uq, &uc->uc_lock, PCATCH, wmesg, timo);
 1553                 if (error == EWOULDBLOCK)
 1554                         error = ETIMEDOUT;
 1555                 if (uq->uq_flags & UQF_UMTXQ) {
 1556                         umtxq_remove(uq);
 1557                 }
 1558         }
 1559         mtx_lock_spin(&umtx_lock);
 1560         uq->uq_pi_blocked = NULL;
 1561         thread_lock(td);
 1562         td->td_flags &= ~TDF_UPIBLOCKED;
 1563         thread_unlock(td);
 1564         TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
 1565         umtx_repropagate_priority(pi);
 1566         mtx_unlock_spin(&umtx_lock);
 1567         umtxq_unlock(&uq->uq_key);
 1568 
 1569         return (error);
 1570 }
 1571 
 1572 /*
 1573  * Add reference count for a PI mutex.
 1574  */
 1575 static void
 1576 umtx_pi_ref(struct umtx_pi *pi)
 1577 {
 1578         struct umtxq_chain *uc;
 1579 
 1580         uc = umtxq_getchain(&pi->pi_key);
 1581         UMTXQ_LOCKED_ASSERT(uc);
 1582         pi->pi_refcount++;
 1583 }
 1584 
 1585 /*
 1586  * Decrease reference count for a PI mutex, if the counter
 1587  * is decreased to zero, its memory space is freed.
 1588  */ 
 1589 static void
 1590 umtx_pi_unref(struct umtx_pi *pi)
 1591 {
 1592         struct umtxq_chain *uc;
 1593 
 1594         uc = umtxq_getchain(&pi->pi_key);
 1595         UMTXQ_LOCKED_ASSERT(uc);
 1596         KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
 1597         if (--pi->pi_refcount == 0) {
 1598                 mtx_lock_spin(&umtx_lock);
 1599                 if (pi->pi_owner != NULL) {
 1600                         TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested,
 1601                                 pi, pi_link);
 1602                         pi->pi_owner = NULL;
 1603                 }
 1604                 KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
 1605                         ("blocked queue not empty"));
 1606                 mtx_unlock_spin(&umtx_lock);
 1607                 TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
 1608                 umtx_pi_free(pi);
 1609         }
 1610 }
 1611 
 1612 /*
 1613  * Find a PI mutex in hash table.
 1614  */
 1615 static struct umtx_pi *
 1616 umtx_pi_lookup(struct umtx_key *key)
 1617 {
 1618         struct umtxq_chain *uc;
 1619         struct umtx_pi *pi;
 1620 
 1621         uc = umtxq_getchain(key);
 1622         UMTXQ_LOCKED_ASSERT(uc);
 1623 
 1624         TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
 1625                 if (umtx_key_match(&pi->pi_key, key)) {
 1626                         return (pi);
 1627                 }
 1628         }
 1629         return (NULL);
 1630 }
 1631 
 1632 /*
 1633  * Insert a PI mutex into hash table.
 1634  */
 1635 static inline void
 1636 umtx_pi_insert(struct umtx_pi *pi)
 1637 {
 1638         struct umtxq_chain *uc;
 1639 
 1640         uc = umtxq_getchain(&pi->pi_key);
 1641         UMTXQ_LOCKED_ASSERT(uc);
 1642         TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
 1643 }
 1644 
 1645 /*
 1646  * Lock a PI mutex.
 1647  */
 1648 static int
 1649 _do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags, int timo,
 1650         int try)
 1651 {
 1652         struct umtx_q *uq;
 1653         struct umtx_pi *pi, *new_pi;
 1654         uint32_t id, owner, old;
 1655         int error;
 1656 
 1657         id = td->td_tid;
 1658         uq = td->td_umtxq;
 1659 
 1660         if ((error = umtx_key_get(m, TYPE_PI_UMUTEX, GET_SHARE(flags),
 1661             &uq->uq_key)) != 0)
 1662                 return (error);
 1663         umtxq_lock(&uq->uq_key);
 1664         pi = umtx_pi_lookup(&uq->uq_key);
 1665         if (pi == NULL) {
 1666                 new_pi = umtx_pi_alloc(M_NOWAIT);
 1667                 if (new_pi == NULL) {
 1668                         umtxq_unlock(&uq->uq_key);
 1669                         new_pi = umtx_pi_alloc(M_WAITOK);
 1670                         umtxq_lock(&uq->uq_key);
 1671                         pi = umtx_pi_lookup(&uq->uq_key);
 1672                         if (pi != NULL) {
 1673                                 umtx_pi_free(new_pi);
 1674                                 new_pi = NULL;
 1675                         }
 1676                 }
 1677                 if (new_pi != NULL) {
 1678                         new_pi->pi_key = uq->uq_key;
 1679                         umtx_pi_insert(new_pi);
 1680                         pi = new_pi;
 1681                 }
 1682         }
 1683         umtx_pi_ref(pi);
 1684         umtxq_unlock(&uq->uq_key);
 1685 
 1686         /*
 1687          * Care must be exercised when dealing with umtx structure.  It
 1688          * can fault on any access.
 1689          */
 1690         for (;;) {
 1691                 /*
 1692                  * Try the uncontested case.  This should be done in userland.
 1693                  */
 1694                 owner = casuword32(&m->m_owner, UMUTEX_UNOWNED, id);
 1695 
 1696                 /* The acquire succeeded. */
 1697                 if (owner == UMUTEX_UNOWNED) {
 1698                         error = 0;
 1699                         break;
 1700                 }
 1701 
 1702                 /* The address was invalid. */
 1703                 if (owner == -1) {
 1704                         error = EFAULT;
 1705                         break;
 1706                 }
 1707 
 1708                 /* If no one owns it but it is contested try to acquire it. */
 1709                 if (owner == UMUTEX_CONTESTED) {
 1710                         owner = casuword32(&m->m_owner,
 1711                             UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
 1712 
 1713                         if (owner == UMUTEX_CONTESTED) {
 1714                                 umtxq_lock(&uq->uq_key);
 1715                                 umtxq_busy(&uq->uq_key);
 1716                                 error = umtx_pi_claim(pi, td);
 1717                                 umtxq_unbusy(&uq->uq_key);
 1718                                 umtxq_unlock(&uq->uq_key);
 1719                                 break;
 1720                         }
 1721 
 1722                         /* The address was invalid. */
 1723                         if (owner == -1) {
 1724                                 error = EFAULT;
 1725                                 break;
 1726                         }
 1727 
 1728                         /* If this failed the lock has changed, restart. */
 1729                         continue;
 1730                 }
 1731 
 1732                 if ((flags & UMUTEX_ERROR_CHECK) != 0 &&
 1733                     (owner & ~UMUTEX_CONTESTED) == id) {
 1734                         error = EDEADLK;
 1735                         break;
 1736                 }
 1737 
 1738                 if (try != 0) {
 1739                         error = EBUSY;
 1740                         break;
 1741                 }
 1742 
 1743                 /*
 1744                  * If we caught a signal, we have retried and now
 1745                  * exit immediately.
 1746                  */
 1747                 if (error != 0)
 1748                         break;
 1749                         
 1750                 umtxq_lock(&uq->uq_key);
 1751                 umtxq_busy(&uq->uq_key);
 1752                 umtxq_unlock(&uq->uq_key);
 1753 
 1754                 /*
 1755                  * Set the contested bit so that a release in user space
 1756                  * knows to use the system call for unlock.  If this fails
 1757                  * either some one else has acquired the lock or it has been
 1758                  * released.
 1759                  */
 1760                 old = casuword32(&m->m_owner, owner, owner | UMUTEX_CONTESTED);
 1761 
 1762                 /* The address was invalid. */
 1763                 if (old == -1) {
 1764                         umtxq_lock(&uq->uq_key);
 1765                         umtxq_unbusy(&uq->uq_key);
 1766                         umtxq_unlock(&uq->uq_key);
 1767                         error = EFAULT;
 1768                         break;
 1769                 }
 1770 
 1771                 umtxq_lock(&uq->uq_key);
 1772                 /*
 1773                  * We set the contested bit, sleep. Otherwise the lock changed
 1774                  * and we need to retry or we lost a race to the thread
 1775                  * unlocking the umtx.
 1776                  */
 1777                 if (old == owner)
 1778                         error = umtxq_sleep_pi(uq, pi, owner & ~UMUTEX_CONTESTED,
 1779                                  "umtxpi", timo);
 1780                 else {
 1781                         umtxq_unbusy(&uq->uq_key);
 1782                         umtxq_unlock(&uq->uq_key);
 1783                 }
 1784         }
 1785 
 1786         umtxq_lock(&uq->uq_key);
 1787         umtx_pi_unref(pi);
 1788         umtxq_unlock(&uq->uq_key);
 1789 
 1790         umtx_key_release(&uq->uq_key);
 1791         return (error);
 1792 }
 1793 
 1794 /*
 1795  * Unlock a PI mutex.
 1796  */
 1797 static int
 1798 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags)
 1799 {
 1800         struct umtx_key key;
 1801         struct umtx_q *uq_first, *uq_first2, *uq_me;
 1802         struct umtx_pi *pi, *pi2;
 1803         uint32_t owner, old, id;
 1804         int error;
 1805         int count;
 1806         int pri;
 1807 
 1808         id = td->td_tid;
 1809         /*
 1810          * Make sure we own this mtx.
 1811          */
 1812         owner = fuword32(__DEVOLATILE(uint32_t *, &m->m_owner));
 1813         if (owner == -1)
 1814                 return (EFAULT);
 1815 
 1816         if ((owner & ~UMUTEX_CONTESTED) != id)
 1817                 return (EPERM);
 1818 
 1819         /* This should be done in userland */
 1820         if ((owner & UMUTEX_CONTESTED) == 0) {
 1821                 old = casuword32(&m->m_owner, owner, UMUTEX_UNOWNED);
 1822                 if (old == -1)
 1823                         return (EFAULT);
 1824                 if (old == owner)
 1825                         return (0);
 1826                 owner = old;
 1827         }
 1828 
 1829         /* We should only ever be in here for contested locks */
 1830         if ((error = umtx_key_get(m, TYPE_PI_UMUTEX, GET_SHARE(flags),
 1831             &key)) != 0)
 1832                 return (error);
 1833 
 1834         umtxq_lock(&key);
 1835         umtxq_busy(&key);
 1836         count = umtxq_count_pi(&key, &uq_first);
 1837         if (uq_first != NULL) {
 1838                 mtx_lock_spin(&umtx_lock);
 1839                 pi = uq_first->uq_pi_blocked;
 1840                 KASSERT(pi != NULL, ("pi == NULL?"));
 1841                 if (pi->pi_owner != curthread) {
 1842                         mtx_unlock_spin(&umtx_lock);
 1843                         umtxq_unbusy(&key);
 1844                         umtxq_unlock(&key);
 1845                         umtx_key_release(&key);
 1846                         /* userland messed the mutex */
 1847                         return (EPERM);
 1848                 }
 1849                 uq_me = curthread->td_umtxq;
 1850                 pi->pi_owner = NULL;
 1851                 TAILQ_REMOVE(&uq_me->uq_pi_contested, pi, pi_link);
 1852                 /* get highest priority thread which is still sleeping. */
 1853                 uq_first = TAILQ_FIRST(&pi->pi_blocked);
 1854                 while (uq_first != NULL && 
 1855                        (uq_first->uq_flags & UQF_UMTXQ) == 0) {
 1856                         uq_first = TAILQ_NEXT(uq_first, uq_lockq);
 1857                 }
 1858                 pri = PRI_MAX;
 1859                 TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
 1860                         uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
 1861                         if (uq_first2 != NULL) {
 1862                                 if (pri > UPRI(uq_first2->uq_thread))
 1863                                         pri = UPRI(uq_first2->uq_thread);
 1864                         }
 1865                 }
 1866                 thread_lock(curthread);
 1867                 sched_lend_user_prio(curthread, pri);
 1868                 thread_unlock(curthread);
 1869                 mtx_unlock_spin(&umtx_lock);
 1870                 if (uq_first)
 1871                         umtxq_signal_thread(uq_first);
 1872         }
 1873         umtxq_unlock(&key);
 1874 
 1875         /*
 1876          * When unlocking the umtx, it must be marked as unowned if
 1877          * there is zero or one thread only waiting for it.
 1878          * Otherwise, it must be marked as contested.
 1879          */
 1880         old = casuword32(&m->m_owner, owner,
 1881                 count <= 1 ? UMUTEX_UNOWNED : UMUTEX_CONTESTED);
 1882 
 1883         umtxq_lock(&key);
 1884         umtxq_unbusy(&key);
 1885         umtxq_unlock(&key);
 1886         umtx_key_release(&key);
 1887         if (old == -1)
 1888                 return (EFAULT);
 1889         if (old != owner)
 1890                 return (EINVAL);
 1891         return (0);
 1892 }
 1893 
 1894 /*
 1895  * Lock a PP mutex.
 1896  */
 1897 static int
 1898 _do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags, int timo,
 1899         int try)
 1900 {
 1901         struct umtx_q *uq, *uq2;
 1902         struct umtx_pi *pi;
 1903         uint32_t ceiling;
 1904         uint32_t owner, id;
 1905         int error, pri, old_inherited_pri, su;
 1906 
 1907         id = td->td_tid;
 1908         uq = td->td_umtxq;
 1909         if ((error = umtx_key_get(m, TYPE_PP_UMUTEX, GET_SHARE(flags),
 1910             &uq->uq_key)) != 0)
 1911                 return (error);
 1912         su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
 1913         for (;;) {
 1914                 old_inherited_pri = uq->uq_inherited_pri;
 1915                 umtxq_lock(&uq->uq_key);
 1916                 umtxq_busy(&uq->uq_key);
 1917                 umtxq_unlock(&uq->uq_key);
 1918 
 1919                 ceiling = RTP_PRIO_MAX - fuword32(&m->m_ceilings[0]);
 1920                 if (ceiling > RTP_PRIO_MAX) {
 1921                         error = EINVAL;
 1922                         goto out;
 1923                 }
 1924 
 1925                 mtx_lock_spin(&umtx_lock);
 1926                 if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
 1927                         mtx_unlock_spin(&umtx_lock);
 1928                         error = EINVAL;
 1929                         goto out;
 1930                 }
 1931                 if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
 1932                         uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
 1933                         thread_lock(td);
 1934                         if (uq->uq_inherited_pri < UPRI(td))
 1935                                 sched_lend_user_prio(td, uq->uq_inherited_pri);
 1936                         thread_unlock(td);
 1937                 }
 1938                 mtx_unlock_spin(&umtx_lock);
 1939 
 1940                 owner = casuword32(&m->m_owner,
 1941                     UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
 1942 
 1943                 if (owner == UMUTEX_CONTESTED) {
 1944                         error = 0;
 1945                         break;
 1946                 }
 1947 
 1948                 /* The address was invalid. */
 1949                 if (owner == -1) {
 1950                         error = EFAULT;
 1951                         break;
 1952                 }
 1953 
 1954                 if ((flags & UMUTEX_ERROR_CHECK) != 0 &&
 1955                     (owner & ~UMUTEX_CONTESTED) == id) {
 1956                         error = EDEADLK;
 1957                         break;
 1958                 }
 1959 
 1960                 if (try != 0) {
 1961                         error = EBUSY;
 1962                         break;
 1963                 }
 1964 
 1965                 /*
 1966                  * If we caught a signal, we have retried and now
 1967                  * exit immediately.
 1968                  */
 1969                 if (error != 0)
 1970                         break;
 1971 
 1972                 umtxq_lock(&uq->uq_key);
 1973                 umtxq_insert(uq);
 1974                 umtxq_unbusy(&uq->uq_key);
 1975                 error = umtxq_sleep(uq, "umtxpp", timo);
 1976                 umtxq_remove(uq);
 1977                 umtxq_unlock(&uq->uq_key);
 1978 
 1979                 mtx_lock_spin(&umtx_lock);
 1980                 uq->uq_inherited_pri = old_inherited_pri;
 1981                 pri = PRI_MAX;
 1982                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 1983                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
 1984                         if (uq2 != NULL) {
 1985                                 if (pri > UPRI(uq2->uq_thread))
 1986                                         pri = UPRI(uq2->uq_thread);
 1987                         }
 1988                 }
 1989                 if (pri > uq->uq_inherited_pri)
 1990                         pri = uq->uq_inherited_pri;
 1991                 thread_lock(td);
 1992                 sched_lend_user_prio(td, pri);
 1993                 thread_unlock(td);
 1994                 mtx_unlock_spin(&umtx_lock);
 1995         }
 1996 
 1997         if (error != 0) {
 1998                 mtx_lock_spin(&umtx_lock);
 1999                 uq->uq_inherited_pri = old_inherited_pri;
 2000                 pri = PRI_MAX;
 2001                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 2002                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
 2003                         if (uq2 != NULL) {
 2004                                 if (pri > UPRI(uq2->uq_thread))
 2005                                         pri = UPRI(uq2->uq_thread);
 2006                         }
 2007                 }
 2008                 if (pri > uq->uq_inherited_pri)
 2009                         pri = uq->uq_inherited_pri;
 2010                 thread_lock(td);
 2011                 sched_lend_user_prio(td, pri);
 2012                 thread_unlock(td);
 2013                 mtx_unlock_spin(&umtx_lock);
 2014         }
 2015 
 2016 out:
 2017         umtxq_lock(&uq->uq_key);
 2018         umtxq_unbusy(&uq->uq_key);
 2019         umtxq_unlock(&uq->uq_key);
 2020         umtx_key_release(&uq->uq_key);
 2021         return (error);
 2022 }
 2023 
 2024 /*
 2025  * Unlock a PP mutex.
 2026  */
 2027 static int
 2028 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags)
 2029 {
 2030         struct umtx_key key;
 2031         struct umtx_q *uq, *uq2;
 2032         struct umtx_pi *pi;
 2033         uint32_t owner, id;
 2034         uint32_t rceiling;
 2035         int error, pri, new_inherited_pri, su;
 2036 
 2037         id = td->td_tid;
 2038         uq = td->td_umtxq;
 2039         su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
 2040 
 2041         /*
 2042          * Make sure we own this mtx.
 2043          */
 2044         owner = fuword32(__DEVOLATILE(uint32_t *, &m->m_owner));
 2045         if (owner == -1)
 2046                 return (EFAULT);
 2047 
 2048         if ((owner & ~UMUTEX_CONTESTED) != id)
 2049                 return (EPERM);
 2050 
 2051         error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
 2052         if (error != 0)
 2053                 return (error);
 2054 
 2055         if (rceiling == -1)
 2056                 new_inherited_pri = PRI_MAX;
 2057         else {
 2058                 rceiling = RTP_PRIO_MAX - rceiling;
 2059                 if (rceiling > RTP_PRIO_MAX)
 2060                         return (EINVAL);
 2061                 new_inherited_pri = PRI_MIN_REALTIME + rceiling;
 2062         }
 2063 
 2064         if ((error = umtx_key_get(m, TYPE_PP_UMUTEX, GET_SHARE(flags),
 2065             &key)) != 0)
 2066                 return (error);
 2067         umtxq_lock(&key);
 2068         umtxq_busy(&key);
 2069         umtxq_unlock(&key);
 2070         /*
 2071          * For priority protected mutex, always set unlocked state
 2072          * to UMUTEX_CONTESTED, so that userland always enters kernel
 2073          * to lock the mutex, it is necessary because thread priority
 2074          * has to be adjusted for such mutex.
 2075          */
 2076         error = suword32(__DEVOLATILE(uint32_t *, &m->m_owner),
 2077                 UMUTEX_CONTESTED);
 2078 
 2079         umtxq_lock(&key);
 2080         if (error == 0)
 2081                 umtxq_signal(&key, 1);
 2082         umtxq_unbusy(&key);
 2083         umtxq_unlock(&key);
 2084 
 2085         if (error == -1)
 2086                 error = EFAULT;
 2087         else {
 2088                 mtx_lock_spin(&umtx_lock);
 2089                 if (su != 0)
 2090                         uq->uq_inherited_pri = new_inherited_pri;
 2091                 pri = PRI_MAX;
 2092                 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
 2093                         uq2 = TAILQ_FIRST(&pi->pi_blocked);
 2094                         if (uq2 != NULL) {
 2095                                 if (pri > UPRI(uq2->uq_thread))
 2096                                         pri = UPRI(uq2->uq_thread);
 2097                         }
 2098                 }
 2099                 if (pri > uq->uq_inherited_pri)
 2100                         pri = uq->uq_inherited_pri;
 2101                 thread_lock(td);
 2102                 sched_lend_user_prio(td, pri);
 2103                 thread_unlock(td);
 2104                 mtx_unlock_spin(&umtx_lock);
 2105         }
 2106         umtx_key_release(&key);
 2107         return (error);
 2108 }
 2109 
 2110 static int
 2111 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
 2112         uint32_t *old_ceiling)
 2113 {
 2114         struct umtx_q *uq;
 2115         uint32_t save_ceiling;
 2116         uint32_t owner, id;
 2117         uint32_t flags;
 2118         int error;
 2119 
 2120         flags = fuword32(&m->m_flags);
 2121         if ((flags & UMUTEX_PRIO_PROTECT) == 0)
 2122                 return (EINVAL);
 2123         if (ceiling > RTP_PRIO_MAX)
 2124                 return (EINVAL);
 2125         id = td->td_tid;
 2126         uq = td->td_umtxq;
 2127         if ((error = umtx_key_get(m, TYPE_PP_UMUTEX, GET_SHARE(flags),
 2128            &uq->uq_key)) != 0)
 2129                 return (error);
 2130         for (;;) {
 2131                 umtxq_lock(&uq->uq_key);
 2132                 umtxq_busy(&uq->uq_key);
 2133                 umtxq_unlock(&uq->uq_key);
 2134 
 2135                 save_ceiling = fuword32(&m->m_ceilings[0]);
 2136 
 2137                 owner = casuword32(&m->m_owner,
 2138                     UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
 2139 
 2140                 if (owner == UMUTEX_CONTESTED) {
 2141                         suword32(&m->m_ceilings[0], ceiling);
 2142                         suword32(__DEVOLATILE(uint32_t *, &m->m_owner),
 2143                                 UMUTEX_CONTESTED);
 2144                         error = 0;
 2145                         break;
 2146                 }
 2147 
 2148                 /* The address was invalid. */
 2149                 if (owner == -1) {
 2150                         error = EFAULT;
 2151                         break;
 2152                 }
 2153 
 2154                 if ((owner & ~UMUTEX_CONTESTED) == id) {
 2155                         suword32(&m->m_ceilings[0], ceiling);
 2156                         error = 0;
 2157                         break;
 2158                 }
 2159 
 2160                 /*
 2161                  * If we caught a signal, we have retried and now
 2162                  * exit immediately.
 2163                  */
 2164                 if (error != 0)
 2165                         break;
 2166 
 2167                 /*
 2168                  * We set the contested bit, sleep. Otherwise the lock changed
 2169                  * and we need to retry or we lost a race to the thread
 2170                  * unlocking the umtx.
 2171                  */
 2172                 umtxq_lock(&uq->uq_key);
 2173                 umtxq_insert(uq);
 2174                 umtxq_unbusy(&uq->uq_key);
 2175                 error = umtxq_sleep(uq, "umtxpp", 0);
 2176                 umtxq_remove(uq);
 2177                 umtxq_unlock(&uq->uq_key);
 2178         }
 2179         umtxq_lock(&uq->uq_key);
 2180         if (error == 0)
 2181                 umtxq_signal(&uq->uq_key, INT_MAX);
 2182         umtxq_unbusy(&uq->uq_key);
 2183         umtxq_unlock(&uq->uq_key);
 2184         umtx_key_release(&uq->uq_key);
 2185         if (error == 0 && old_ceiling != NULL)
 2186                 suword32(old_ceiling, save_ceiling);
 2187         return (error);
 2188 }
 2189 
 2190 static int
 2191 _do_lock_umutex(struct thread *td, struct umutex *m, int flags, int timo,
 2192         int mode)
 2193 {
 2194         switch(flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
 2195         case 0:
 2196                 return (_do_lock_normal(td, m, flags, timo, mode));
 2197         case UMUTEX_PRIO_INHERIT:
 2198                 return (_do_lock_pi(td, m, flags, timo, mode));
 2199         case UMUTEX_PRIO_PROTECT:
 2200                 return (_do_lock_pp(td, m, flags, timo, mode));
 2201         }
 2202         return (EINVAL);
 2203 }
 2204 
 2205 /*
 2206  * Lock a userland POSIX mutex.
 2207  */
 2208 static int
 2209 do_lock_umutex(struct thread *td, struct umutex *m,
 2210         struct timespec *timeout, int mode)
 2211 {
 2212         struct timespec ts, ts2, ts3;
 2213         struct timeval tv;
 2214         uint32_t flags;
 2215         int error;
 2216 
 2217         flags = fuword32(&m->m_flags);
 2218         if (flags == -1)
 2219                 return (EFAULT);
 2220 
 2221         if (timeout == NULL) {
 2222                 error = _do_lock_umutex(td, m, flags, 0, mode);
 2223                 /* Mutex locking is restarted if it is interrupted. */
 2224                 if (error == EINTR && mode != _UMUTEX_WAIT)
 2225                         error = ERESTART;
 2226         } else {
 2227                 getnanouptime(&ts);
 2228                 timespecadd(&ts, timeout);
 2229                 TIMESPEC_TO_TIMEVAL(&tv, timeout);
 2230                 for (;;) {
 2231                         error = _do_lock_umutex(td, m, flags, tvtohz(&tv), mode);
 2232                         if (error != ETIMEDOUT)
 2233                                 break;
 2234                         getnanouptime(&ts2);
 2235                         if (timespeccmp(&ts2, &ts, >=)) {
 2236                                 error = ETIMEDOUT;
 2237                                 break;
 2238                         }
 2239                         ts3 = ts;
 2240                         timespecsub(&ts3, &ts2);
 2241                         TIMESPEC_TO_TIMEVAL(&tv, &ts3);
 2242                 }
 2243                 /* Timed-locking is not restarted. */
 2244                 if (error == ERESTART)
 2245                         error = EINTR;
 2246         }
 2247         return (error);
 2248 }
 2249 
 2250 /*
 2251  * Unlock a userland POSIX mutex.
 2252  */
 2253 static int
 2254 do_unlock_umutex(struct thread *td, struct umutex *m)
 2255 {
 2256         uint32_t flags;
 2257 
 2258         flags = fuword32(&m->m_flags);
 2259         if (flags == -1)
 2260                 return (EFAULT);
 2261 
 2262         switch(flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
 2263         case 0:
 2264                 return (do_unlock_normal(td, m, flags));
 2265         case UMUTEX_PRIO_INHERIT:
 2266                 return (do_unlock_pi(td, m, flags));
 2267         case UMUTEX_PRIO_PROTECT:
 2268                 return (do_unlock_pp(td, m, flags));
 2269         }
 2270 
 2271         return (EINVAL);
 2272 }
 2273 
 2274 static int
 2275 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
 2276         struct timespec *timeout, u_long wflags)
 2277 {
 2278         struct umtx_q *uq;
 2279         struct timeval tv;
 2280         struct timespec cts, ets, tts;
 2281         uint32_t flags;
 2282         uint32_t clockid;
 2283         int error;
 2284 
 2285         uq = td->td_umtxq;
 2286         flags = fuword32(&cv->c_flags);
 2287         error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
 2288         if (error != 0)
 2289                 return (error);
 2290 
 2291         if ((wflags & CVWAIT_CLOCKID) != 0) {
 2292                 clockid = fuword32(&cv->c_clockid);
 2293                 if (clockid < CLOCK_REALTIME ||
 2294                     clockid >= CLOCK_THREAD_CPUTIME_ID) {
 2295                         /* hmm, only HW clock id will work. */
 2296                         return (EINVAL);
 2297                 }
 2298         } else {
 2299                 clockid = CLOCK_REALTIME;
 2300         }
 2301 
 2302         umtxq_lock(&uq->uq_key);
 2303         umtxq_busy(&uq->uq_key);
 2304         umtxq_insert(uq);
 2305         umtxq_unlock(&uq->uq_key);
 2306 
 2307         /*
 2308          * Set c_has_waiters to 1 before releasing user mutex, also
 2309          * don't modify cache line when unnecessary.
 2310          */
 2311         if (fuword32(__DEVOLATILE(uint32_t *, &cv->c_has_waiters)) == 0)
 2312                 suword32(__DEVOLATILE(uint32_t *, &cv->c_has_waiters), 1);
 2313 
 2314         umtxq_lock(&uq->uq_key);
 2315         umtxq_unbusy(&uq->uq_key);
 2316         umtxq_unlock(&uq->uq_key);
 2317 
 2318         error = do_unlock_umutex(td, m);
 2319         
 2320         umtxq_lock(&uq->uq_key);
 2321         if (error == 0) {
 2322                 if (timeout == NULL) {
 2323                         error = umtxq_sleep(uq, "ucond", 0);
 2324                 } else {
 2325                         if ((wflags & CVWAIT_ABSTIME) == 0) {
 2326                                 kern_clock_gettime(td, clockid, &ets);
 2327                                 timespecadd(&ets, timeout);
 2328                                 tts = *timeout;
 2329                         } else { /* absolute time */
 2330                                 ets = *timeout;
 2331                                 tts = *timeout;
 2332                                 kern_clock_gettime(td, clockid, &cts);
 2333                                 timespecsub(&tts, &cts);
 2334                         }
 2335                         TIMESPEC_TO_TIMEVAL(&tv, &tts);
 2336                         for (;;) {
 2337                                 error = umtxq_sleep(uq, "ucond", tvtohz(&tv));
 2338                                 if (error != ETIMEDOUT)
 2339                                         break;
 2340                                 kern_clock_gettime(td, clockid, &cts);
 2341                                 if (timespeccmp(&cts, &ets, >=)) {
 2342                                         error = ETIMEDOUT;
 2343                                         break;
 2344                                 }
 2345                                 tts = ets;
 2346                                 timespecsub(&tts, &cts);
 2347                                 TIMESPEC_TO_TIMEVAL(&tv, &tts);
 2348                         }
 2349                 }
 2350         }
 2351 
 2352         if ((uq->uq_flags & UQF_UMTXQ) == 0)
 2353                 error = 0;
 2354         else {
 2355                 /*
 2356                  * This must be timeout,interrupted by signal or
 2357                  * surprious wakeup, clear c_has_waiter flag when
 2358                  * necessary.
 2359                  */
 2360                 umtxq_busy(&uq->uq_key);
 2361                 if ((uq->uq_flags & UQF_UMTXQ) != 0) {
 2362                         int oldlen = uq->uq_cur_queue->length;
 2363                         umtxq_remove(uq);
 2364                         if (oldlen == 1) {
 2365                                 umtxq_unlock(&uq->uq_key);
 2366                                 suword32(
 2367                                     __DEVOLATILE(uint32_t *,
 2368                                          &cv->c_has_waiters), 0);
 2369                                 umtxq_lock(&uq->uq_key);
 2370                         }
 2371                 }
 2372                 umtxq_unbusy(&uq->uq_key);
 2373                 if (error == ERESTART)
 2374                         error = EINTR;
 2375         }
 2376 
 2377         umtxq_unlock(&uq->uq_key);
 2378         umtx_key_release(&uq->uq_key);
 2379         return (error);
 2380 }
 2381 
 2382 /*
 2383  * Signal a userland condition variable.
 2384  */
 2385 static int
 2386 do_cv_signal(struct thread *td, struct ucond *cv)
 2387 {
 2388         struct umtx_key key;
 2389         int error, cnt, nwake;
 2390         uint32_t flags;
 2391 
 2392         flags = fuword32(&cv->c_flags);
 2393         if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
 2394                 return (error); 
 2395         umtxq_lock(&key);
 2396         umtxq_busy(&key);
 2397         cnt = umtxq_count(&key);
 2398         nwake = umtxq_signal(&key, 1);
 2399         if (cnt <= nwake) {
 2400                 umtxq_unlock(&key);
 2401                 error = suword32(
 2402                     __DEVOLATILE(uint32_t *, &cv->c_has_waiters), 0);
 2403                 umtxq_lock(&key);
 2404         }
 2405         umtxq_unbusy(&key);
 2406         umtxq_unlock(&key);
 2407         umtx_key_release(&key);
 2408         return (error);
 2409 }
 2410 
 2411 static int
 2412 do_cv_broadcast(struct thread *td, struct ucond *cv)
 2413 {
 2414         struct umtx_key key;
 2415         int error;
 2416         uint32_t flags;
 2417 
 2418         flags = fuword32(&cv->c_flags);
 2419         if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
 2420                 return (error); 
 2421 
 2422         umtxq_lock(&key);
 2423         umtxq_busy(&key);
 2424         umtxq_signal(&key, INT_MAX);
 2425         umtxq_unlock(&key);
 2426 
 2427         error = suword32(__DEVOLATILE(uint32_t *, &cv->c_has_waiters), 0);
 2428 
 2429         umtxq_lock(&key);
 2430         umtxq_unbusy(&key);
 2431         umtxq_unlock(&key);
 2432 
 2433         umtx_key_release(&key);
 2434         return (error);
 2435 }
 2436 
 2437 static int
 2438 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag, int timo)
 2439 {
 2440         struct umtx_q *uq;
 2441         uint32_t flags, wrflags;
 2442         int32_t state, oldstate;
 2443         int32_t blocked_readers;
 2444         int error;
 2445 
 2446         uq = td->td_umtxq;
 2447         flags = fuword32(&rwlock->rw_flags);
 2448         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 2449         if (error != 0)
 2450                 return (error);
 2451 
 2452         wrflags = URWLOCK_WRITE_OWNER;
 2453         if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
 2454                 wrflags |= URWLOCK_WRITE_WAITERS;
 2455 
 2456         for (;;) {
 2457                 state = fuword32(__DEVOLATILE(int32_t *, &rwlock->rw_state));
 2458                 /* try to lock it */
 2459                 while (!(state & wrflags)) {
 2460                         if (__predict_false(URWLOCK_READER_COUNT(state) == URWLOCK_MAX_READERS)) {
 2461                                 umtx_key_release(&uq->uq_key);
 2462                                 return (EAGAIN);
 2463                         }
 2464                         oldstate = casuword32(&rwlock->rw_state, state, state + 1);
 2465                         if (oldstate == state) {
 2466                                 umtx_key_release(&uq->uq_key);
 2467                                 return (0);
 2468                         }
 2469                         state = oldstate;
 2470                 }
 2471 
 2472                 if (error)
 2473                         break;
 2474 
 2475                 /* grab monitor lock */
 2476                 umtxq_lock(&uq->uq_key);
 2477                 umtxq_busy(&uq->uq_key);
 2478                 umtxq_unlock(&uq->uq_key);
 2479 
 2480                 /*
 2481                  * re-read the state, in case it changed between the try-lock above
 2482                  * and the check below
 2483                  */
 2484                 state = fuword32(__DEVOLATILE(int32_t *, &rwlock->rw_state));
 2485 
 2486                 /* set read contention bit */
 2487                 while ((state & wrflags) && !(state & URWLOCK_READ_WAITERS)) {
 2488                         oldstate = casuword32(&rwlock->rw_state, state, state | URWLOCK_READ_WAITERS);
 2489                         if (oldstate == state)
 2490                                 goto sleep;
 2491                         state = oldstate;
 2492                 }
 2493 
 2494                 /* state is changed while setting flags, restart */
 2495                 if (!(state & wrflags)) {
 2496                         umtxq_lock(&uq->uq_key);
 2497                         umtxq_unbusy(&uq->uq_key);
 2498                         umtxq_unlock(&uq->uq_key);
 2499                         continue;
 2500                 }
 2501 
 2502 sleep:
 2503                 /* contention bit is set, before sleeping, increase read waiter count */
 2504                 blocked_readers = fuword32(&rwlock->rw_blocked_readers);
 2505                 suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
 2506 
 2507                 while (state & wrflags) {
 2508                         umtxq_lock(&uq->uq_key);
 2509                         umtxq_insert(uq);
 2510                         umtxq_unbusy(&uq->uq_key);
 2511 
 2512                         error = umtxq_sleep(uq, "urdlck", timo);
 2513 
 2514                         umtxq_busy(&uq->uq_key);
 2515                         umtxq_remove(uq);
 2516                         umtxq_unlock(&uq->uq_key);
 2517                         if (error)
 2518                                 break;
 2519                         state = fuword32(__DEVOLATILE(int32_t *, &rwlock->rw_state));
 2520                 }
 2521 
 2522                 /* decrease read waiter count, and may clear read contention bit */
 2523                 blocked_readers = fuword32(&rwlock->rw_blocked_readers);
 2524                 suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
 2525                 if (blocked_readers == 1) {
 2526                         state = fuword32(__DEVOLATILE(int32_t *, &rwlock->rw_state));
 2527                         for (;;) {
 2528                                 oldstate = casuword32(&rwlock->rw_state, state,
 2529                                          state & ~URWLOCK_READ_WAITERS);
 2530                                 if (oldstate == state)
 2531                                         break;
 2532                                 state = oldstate;
 2533                         }
 2534                 }
 2535 
 2536                 umtxq_lock(&uq->uq_key);
 2537                 umtxq_unbusy(&uq->uq_key);
 2538                 umtxq_unlock(&uq->uq_key);
 2539         }
 2540         umtx_key_release(&uq->uq_key);
 2541         return (error);
 2542 }
 2543 
 2544 static int
 2545 do_rw_rdlock2(struct thread *td, void *obj, long val, struct timespec *timeout)
 2546 {
 2547         struct timespec ts, ts2, ts3;
 2548         struct timeval tv;
 2549         int error;
 2550 
 2551         getnanouptime(&ts);
 2552         timespecadd(&ts, timeout);
 2553         TIMESPEC_TO_TIMEVAL(&tv, timeout);
 2554         for (;;) {
 2555                 error = do_rw_rdlock(td, obj, val, tvtohz(&tv));
 2556                 if (error != ETIMEDOUT)
 2557                         break;
 2558                 getnanouptime(&ts2);
 2559                 if (timespeccmp(&ts2, &ts, >=)) {
 2560                         error = ETIMEDOUT;
 2561                         break;
 2562                 }
 2563                 ts3 = ts;
 2564                 timespecsub(&ts3, &ts2);
 2565                 TIMESPEC_TO_TIMEVAL(&tv, &ts3);
 2566         }
 2567         if (error == ERESTART)
 2568                 error = EINTR;
 2569         return (error);
 2570 }
 2571 
 2572 static int
 2573 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, int timo)
 2574 {
 2575         struct umtx_q *uq;
 2576         uint32_t flags;
 2577         int32_t state, oldstate;
 2578         int32_t blocked_writers;
 2579         int32_t blocked_readers;
 2580         int error;
 2581 
 2582         uq = td->td_umtxq;
 2583         flags = fuword32(&rwlock->rw_flags);
 2584         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 2585         if (error != 0)
 2586                 return (error);
 2587 
 2588         blocked_readers = 0;
 2589         for (;;) {
 2590                 state = fuword32(__DEVOLATILE(int32_t *, &rwlock->rw_state));
 2591                 while (!(state & URWLOCK_WRITE_OWNER) && URWLOCK_READER_COUNT(state) == 0) {
 2592                         oldstate = casuword32(&rwlock->rw_state, state, state | URWLOCK_WRITE_OWNER);
 2593                         if (oldstate == state) {
 2594                                 umtx_key_release(&uq->uq_key);
 2595                                 return (0);
 2596                         }
 2597                         state = oldstate;
 2598                 }
 2599 
 2600                 if (error) {
 2601                         if (!(state & (URWLOCK_WRITE_OWNER|URWLOCK_WRITE_WAITERS)) &&
 2602                             blocked_readers != 0) {
 2603                                 umtxq_lock(&uq->uq_key);
 2604                                 umtxq_busy(&uq->uq_key);
 2605                                 umtxq_signal_queue(&uq->uq_key, INT_MAX, UMTX_SHARED_QUEUE);
 2606                                 umtxq_unbusy(&uq->uq_key);
 2607                                 umtxq_unlock(&uq->uq_key);
 2608                         }
 2609 
 2610                         break;
 2611                 }
 2612 
 2613                 /* grab monitor lock */
 2614                 umtxq_lock(&uq->uq_key);
 2615                 umtxq_busy(&uq->uq_key);
 2616                 umtxq_unlock(&uq->uq_key);
 2617 
 2618                 /*
 2619                  * re-read the state, in case it changed between the try-lock above
 2620                  * and the check below
 2621                  */
 2622                 state = fuword32(__DEVOLATILE(int32_t *, &rwlock->rw_state));
 2623 
 2624                 while (((state & URWLOCK_WRITE_OWNER) || URWLOCK_READER_COUNT(state) != 0) &&
 2625                        (state & URWLOCK_WRITE_WAITERS) == 0) {
 2626                         oldstate = casuword32(&rwlock->rw_state, state, state | URWLOCK_WRITE_WAITERS);
 2627                         if (oldstate == state)
 2628                                 goto sleep;
 2629                         state = oldstate;
 2630                 }
 2631 
 2632                 if (!(state & URWLOCK_WRITE_OWNER) && URWLOCK_READER_COUNT(state) == 0) {
 2633                         umtxq_lock(&uq->uq_key);
 2634                         umtxq_unbusy(&uq->uq_key);
 2635                         umtxq_unlock(&uq->uq_key);
 2636                         continue;
 2637                 }
 2638 sleep:
 2639                 blocked_writers = fuword32(&rwlock->rw_blocked_writers);
 2640                 suword32(&rwlock->rw_blocked_writers, blocked_writers+1);
 2641 
 2642                 while ((state & URWLOCK_WRITE_OWNER) || URWLOCK_READER_COUNT(state) != 0) {
 2643                         umtxq_lock(&uq->uq_key);
 2644                         umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
 2645                         umtxq_unbusy(&uq->uq_key);
 2646 
 2647                         error = umtxq_sleep(uq, "uwrlck", timo);
 2648 
 2649                         umtxq_busy(&uq->uq_key);
 2650                         umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
 2651                         umtxq_unlock(&uq->uq_key);
 2652                         if (error)
 2653                                 break;
 2654                         state = fuword32(__DEVOLATILE(int32_t *, &rwlock->rw_state));
 2655                 }
 2656 
 2657                 blocked_writers = fuword32(&rwlock->rw_blocked_writers);
 2658                 suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
 2659                 if (blocked_writers == 1) {
 2660                         state = fuword32(__DEVOLATILE(int32_t *, &rwlock->rw_state));
 2661                         for (;;) {
 2662                                 oldstate = casuword32(&rwlock->rw_state, state,
 2663                                          state & ~URWLOCK_WRITE_WAITERS);
 2664                                 if (oldstate == state)
 2665                                         break;
 2666                                 state = oldstate;
 2667                         }
 2668                         blocked_readers = fuword32(&rwlock->rw_blocked_readers);
 2669                 } else
 2670                         blocked_readers = 0;
 2671 
 2672                 umtxq_lock(&uq->uq_key);
 2673                 umtxq_unbusy(&uq->uq_key);
 2674                 umtxq_unlock(&uq->uq_key);
 2675         }
 2676 
 2677         umtx_key_release(&uq->uq_key);
 2678         return (error);
 2679 }
 2680 
 2681 static int
 2682 do_rw_wrlock2(struct thread *td, void *obj, struct timespec *timeout)
 2683 {
 2684         struct timespec ts, ts2, ts3;
 2685         struct timeval tv;
 2686         int error;
 2687 
 2688         getnanouptime(&ts);
 2689         timespecadd(&ts, timeout);
 2690         TIMESPEC_TO_TIMEVAL(&tv, timeout);
 2691         for (;;) {
 2692                 error = do_rw_wrlock(td, obj, tvtohz(&tv));
 2693                 if (error != ETIMEDOUT)
 2694                         break;
 2695                 getnanouptime(&ts2);
 2696                 if (timespeccmp(&ts2, &ts, >=)) {
 2697                         error = ETIMEDOUT;
 2698                         break;
 2699                 }
 2700                 ts3 = ts;
 2701                 timespecsub(&ts3, &ts2);
 2702                 TIMESPEC_TO_TIMEVAL(&tv, &ts3);
 2703         }
 2704         if (error == ERESTART)
 2705                 error = EINTR;
 2706         return (error);
 2707 }
 2708 
 2709 static int
 2710 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
 2711 {
 2712         struct umtx_q *uq;
 2713         uint32_t flags;
 2714         int32_t state, oldstate;
 2715         int error, q, count;
 2716 
 2717         uq = td->td_umtxq;
 2718         flags = fuword32(&rwlock->rw_flags);
 2719         error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
 2720         if (error != 0)
 2721                 return (error);
 2722 
 2723         state = fuword32(__DEVOLATILE(int32_t *, &rwlock->rw_state));
 2724         if (state & URWLOCK_WRITE_OWNER) {
 2725                 for (;;) {
 2726                         oldstate = casuword32(&rwlock->rw_state, state, 
 2727                                 state & ~URWLOCK_WRITE_OWNER);
 2728                         if (oldstate != state) {
 2729                                 state = oldstate;
 2730                                 if (!(oldstate & URWLOCK_WRITE_OWNER)) {
 2731                                         error = EPERM;
 2732                                         goto out;
 2733                                 }
 2734                         } else
 2735                                 break;
 2736                 }
 2737         } else if (URWLOCK_READER_COUNT(state) != 0) {
 2738                 for (;;) {
 2739                         oldstate = casuword32(&rwlock->rw_state, state,
 2740                                 state - 1);
 2741                         if (oldstate != state) {
 2742                                 state = oldstate;
 2743                                 if (URWLOCK_READER_COUNT(oldstate) == 0) {
 2744                                         error = EPERM;
 2745                                         goto out;
 2746                                 }
 2747                         }
 2748                         else
 2749                                 break;
 2750                 }
 2751         } else {
 2752                 error = EPERM;
 2753                 goto out;
 2754         }
 2755 
 2756         count = 0;
 2757 
 2758         if (!(flags & URWLOCK_PREFER_READER)) {
 2759                 if (state & URWLOCK_WRITE_WAITERS) {
 2760                         count = 1;
 2761                         q = UMTX_EXCLUSIVE_QUEUE;
 2762                 } else if (state & URWLOCK_READ_WAITERS) {
 2763                         count = INT_MAX;
 2764                         q = UMTX_SHARED_QUEUE;
 2765                 }
 2766         } else {
 2767                 if (state & URWLOCK_READ_WAITERS) {
 2768                         count = INT_MAX;
 2769                         q = UMTX_SHARED_QUEUE;
 2770                 } else if (state & URWLOCK_WRITE_WAITERS) {
 2771                         count = 1;
 2772                         q = UMTX_EXCLUSIVE_QUEUE;
 2773                 }
 2774         }
 2775 
 2776         if (count) {
 2777                 umtxq_lock(&uq->uq_key);
 2778                 umtxq_busy(&uq->uq_key);
 2779                 umtxq_signal_queue(&uq->uq_key, count, q);
 2780                 umtxq_unbusy(&uq->uq_key);
 2781                 umtxq_unlock(&uq->uq_key);
 2782         }
 2783 out:
 2784         umtx_key_release(&uq->uq_key);
 2785         return (error);
 2786 }
 2787 
 2788 static int
 2789 do_sem_wait(struct thread *td, struct _usem *sem, struct timespec *timeout)
 2790 {
 2791         struct umtx_q *uq;
 2792         struct timeval tv;
 2793         struct timespec cts, ets, tts;
 2794         uint32_t flags, count;
 2795         int error;
 2796 
 2797         uq = td->td_umtxq;
 2798         flags = fuword32(&sem->_flags);
 2799         error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
 2800         if (error != 0)
 2801                 return (error);
 2802         umtxq_lock(&uq->uq_key);
 2803         umtxq_busy(&uq->uq_key);
 2804         umtxq_insert(uq);
 2805         umtxq_unlock(&uq->uq_key);
 2806 
 2807         if (fuword32(__DEVOLATILE(uint32_t *, &sem->_has_waiters)) == 0)
 2808                 casuword32(__DEVOLATILE(uint32_t *, &sem->_has_waiters), 0, 1);
 2809 
 2810         count = fuword32(__DEVOLATILE(uint32_t *, &sem->_count));
 2811         if (count != 0) {
 2812                 umtxq_lock(&uq->uq_key);
 2813                 umtxq_unbusy(&uq->uq_key);
 2814                 umtxq_remove(uq);
 2815                 umtxq_unlock(&uq->uq_key);
 2816                 umtx_key_release(&uq->uq_key);
 2817                 return (0);
 2818         }
 2819 
 2820         umtxq_lock(&uq->uq_key);
 2821         umtxq_unbusy(&uq->uq_key);
 2822         umtxq_unlock(&uq->uq_key);
 2823 
 2824         umtxq_lock(&uq->uq_key);
 2825         if (timeout == NULL) {
 2826                 error = umtxq_sleep(uq, "usem", 0);
 2827         } else {
 2828                 getnanouptime(&ets);
 2829                 timespecadd(&ets, timeout);
 2830                 TIMESPEC_TO_TIMEVAL(&tv, timeout);
 2831                 for (;;) {
 2832                         error = umtxq_sleep(uq, "usem", tvtohz(&tv));
 2833                         if (error != ETIMEDOUT)
 2834                                 break;
 2835                         getnanouptime(&cts);
 2836                         if (timespeccmp(&cts, &ets, >=)) {
 2837                                 error = ETIMEDOUT;
 2838                                 break;
 2839                         }
 2840                         tts = ets;
 2841                         timespecsub(&tts, &cts);
 2842                         TIMESPEC_TO_TIMEVAL(&tv, &tts);
 2843                 }
 2844         }
 2845 
 2846         if ((uq->uq_flags & UQF_UMTXQ) == 0)
 2847                 error = 0;
 2848         else {
 2849                 umtxq_remove(uq);
 2850                 if (error == ERESTART)
 2851                         error = EINTR;
 2852         }
 2853         umtxq_unlock(&uq->uq_key);
 2854         umtx_key_release(&uq->uq_key);
 2855         return (error);
 2856 }
 2857 
 2858 /*
 2859  * Signal a userland condition variable.
 2860  */
 2861 static int
 2862 do_sem_wake(struct thread *td, struct _usem *sem)
 2863 {
 2864         struct umtx_key key;
 2865         int error, cnt, nwake;
 2866         uint32_t flags;
 2867 
 2868         flags = fuword32(&sem->_flags);
 2869         if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
 2870                 return (error); 
 2871         umtxq_lock(&key);
 2872         umtxq_busy(&key);
 2873         cnt = umtxq_count(&key);
 2874         nwake = umtxq_signal(&key, 1);
 2875         if (cnt <= nwake) {
 2876                 umtxq_unlock(&key);
 2877                 error = suword32(
 2878                     __DEVOLATILE(uint32_t *, &sem->_has_waiters), 0);
 2879                 umtxq_lock(&key);
 2880         }
 2881         umtxq_unbusy(&key);
 2882         umtxq_unlock(&key);
 2883         umtx_key_release(&key);
 2884         return (error);
 2885 }
 2886 
 2887 int
 2888 sys__umtx_lock(struct thread *td, struct _umtx_lock_args *uap)
 2889     /* struct umtx *umtx */
 2890 {
 2891         return _do_lock_umtx(td, uap->umtx, td->td_tid, 0);
 2892 }
 2893 
 2894 int
 2895 sys__umtx_unlock(struct thread *td, struct _umtx_unlock_args *uap)
 2896     /* struct umtx *umtx */
 2897 {
 2898         return do_unlock_umtx(td, uap->umtx, td->td_tid);
 2899 }
 2900 
 2901 static int
 2902 __umtx_op_lock_umtx(struct thread *td, struct _umtx_op_args *uap)
 2903 {
 2904         struct timespec *ts, timeout;
 2905         int error;
 2906 
 2907         /* Allow a null timespec (wait forever). */
 2908         if (uap->uaddr2 == NULL)
 2909                 ts = NULL;
 2910         else {
 2911                 error = copyin(uap->uaddr2, &timeout, sizeof(timeout));
 2912                 if (error != 0)
 2913                         return (error);
 2914                 if (timeout.tv_nsec >= 1000000000 ||
 2915                     timeout.tv_nsec < 0) {
 2916                         return (EINVAL);
 2917                 }
 2918                 ts = &timeout;
 2919         }
 2920         return (do_lock_umtx(td, uap->obj, uap->val, ts));
 2921 }
 2922 
 2923 static int
 2924 __umtx_op_unlock_umtx(struct thread *td, struct _umtx_op_args *uap)
 2925 {
 2926         return (do_unlock_umtx(td, uap->obj, uap->val));
 2927 }
 2928 
 2929 static int
 2930 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap)
 2931 {
 2932         struct timespec *ts, timeout;
 2933         int error;
 2934 
 2935         if (uap->uaddr2 == NULL)
 2936                 ts = NULL;
 2937         else {
 2938                 error = copyin(uap->uaddr2, &timeout, sizeof(timeout));
 2939                 if (error != 0)
 2940                         return (error);
 2941                 if (timeout.tv_nsec >= 1000000000 ||
 2942                     timeout.tv_nsec < 0)
 2943                         return (EINVAL);
 2944                 ts = &timeout;
 2945         }
 2946         return do_wait(td, uap->obj, uap->val, ts, 0, 0);
 2947 }
 2948 
 2949 static int
 2950 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap)
 2951 {
 2952         struct timespec *ts, timeout;
 2953         int error;
 2954 
 2955         if (uap->uaddr2 == NULL)
 2956                 ts = NULL;
 2957         else {
 2958                 error = copyin(uap->uaddr2, &timeout, sizeof(timeout));
 2959                 if (error != 0)
 2960                         return (error);
 2961                 if (timeout.tv_nsec >= 1000000000 ||
 2962                     timeout.tv_nsec < 0)
 2963                         return (EINVAL);
 2964                 ts = &timeout;
 2965         }
 2966         return do_wait(td, uap->obj, uap->val, ts, 1, 0);
 2967 }
 2968 
 2969 static int
 2970 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap)
 2971 {
 2972         struct timespec *ts, timeout;
 2973         int error;
 2974 
 2975         if (uap->uaddr2 == NULL)
 2976                 ts = NULL;
 2977         else {
 2978                 error = copyin(uap->uaddr2, &timeout, sizeof(timeout));
 2979                 if (error != 0)
 2980                         return (error);
 2981                 if (timeout.tv_nsec >= 1000000000 ||
 2982                     timeout.tv_nsec < 0)
 2983                         return (EINVAL);
 2984                 ts = &timeout;
 2985         }
 2986         return do_wait(td, uap->obj, uap->val, ts, 1, 1);
 2987 }
 2988 
 2989 static int
 2990 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap)
 2991 {
 2992         return (kern_umtx_wake(td, uap->obj, uap->val, 0));
 2993 }
 2994 
 2995 #define BATCH_SIZE      128
 2996 static int
 2997 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap)
 2998 {
 2999         int count = uap->val;
 3000         void *uaddrs[BATCH_SIZE];
 3001         char **upp = (char **)uap->obj;
 3002         int tocopy;
 3003         int error = 0;
 3004         int i, pos = 0;
 3005 
 3006         while (count > 0) {
 3007                 tocopy = count;
 3008                 if (tocopy > BATCH_SIZE)
 3009                         tocopy = BATCH_SIZE;
 3010                 error = copyin(upp+pos, uaddrs, tocopy * sizeof(char *));
 3011                 if (error != 0)
 3012                         break;
 3013                 for (i = 0; i < tocopy; ++i)
 3014                         kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
 3015                 count -= tocopy;
 3016                 pos += tocopy;
 3017         }
 3018         return (error);
 3019 }
 3020 
 3021 static int
 3022 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap)
 3023 {
 3024         return (kern_umtx_wake(td, uap->obj, uap->val, 1));
 3025 }
 3026 
 3027 static int
 3028 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap)
 3029 {
 3030         struct timespec *ts, timeout;
 3031         int error;
 3032 
 3033         /* Allow a null timespec (wait forever). */
 3034         if (uap->uaddr2 == NULL)
 3035                 ts = NULL;
 3036         else {
 3037                 error = copyin(uap->uaddr2, &timeout,
 3038                     sizeof(timeout));
 3039                 if (error != 0)
 3040                         return (error);
 3041                 if (timeout.tv_nsec >= 1000000000 ||
 3042                     timeout.tv_nsec < 0) {
 3043                         return (EINVAL);
 3044                 }
 3045                 ts = &timeout;
 3046         }
 3047         return do_lock_umutex(td, uap->obj, ts, 0);
 3048 }
 3049 
 3050 static int
 3051 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap)
 3052 {
 3053         return do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY);
 3054 }
 3055 
 3056 static int
 3057 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap)
 3058 {
 3059         struct timespec *ts, timeout;
 3060         int error;
 3061 
 3062         /* Allow a null timespec (wait forever). */
 3063         if (uap->uaddr2 == NULL)
 3064                 ts = NULL;
 3065         else {
 3066                 error = copyin(uap->uaddr2, &timeout,
 3067                     sizeof(timeout));
 3068                 if (error != 0)
 3069                         return (error);
 3070                 if (timeout.tv_nsec >= 1000000000 ||
 3071                     timeout.tv_nsec < 0) {
 3072                         return (EINVAL);
 3073                 }
 3074                 ts = &timeout;
 3075         }
 3076         return do_lock_umutex(td, uap->obj, ts, _UMUTEX_WAIT);
 3077 }
 3078 
 3079 static int
 3080 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap)
 3081 {
 3082         return do_wake_umutex(td, uap->obj);
 3083 }
 3084 
 3085 static int
 3086 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap)
 3087 {
 3088         return do_unlock_umutex(td, uap->obj);
 3089 }
 3090 
 3091 static int
 3092 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap)
 3093 {
 3094         return do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1);
 3095 }
 3096 
 3097 static int
 3098 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap)
 3099 {
 3100         struct timespec *ts, timeout;
 3101         int error;
 3102 
 3103         /* Allow a null timespec (wait forever). */
 3104         if (uap->uaddr2 == NULL)
 3105                 ts = NULL;
 3106         else {
 3107                 error = copyin(uap->uaddr2, &timeout,
 3108                     sizeof(timeout));
 3109                 if (error != 0)
 3110                         return (error);
 3111                 if (timeout.tv_nsec >= 1000000000 ||
 3112                     timeout.tv_nsec < 0) {
 3113                         return (EINVAL);
 3114                 }
 3115                 ts = &timeout;
 3116         }
 3117         return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
 3118 }
 3119 
 3120 static int
 3121 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap)
 3122 {
 3123         return do_cv_signal(td, uap->obj);
 3124 }
 3125 
 3126 static int
 3127 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap)
 3128 {
 3129         return do_cv_broadcast(td, uap->obj);
 3130 }
 3131 
 3132 static int
 3133 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap)
 3134 {
 3135         struct timespec timeout;
 3136         int error;
 3137 
 3138         /* Allow a null timespec (wait forever). */
 3139         if (uap->uaddr2 == NULL) {
 3140                 error = do_rw_rdlock(td, uap->obj, uap->val, 0);
 3141         } else {
 3142                 error = copyin(uap->uaddr2, &timeout,
 3143                     sizeof(timeout));
 3144                 if (error != 0)
 3145                         return (error);
 3146                 if (timeout.tv_nsec >= 1000000000 ||
 3147                     timeout.tv_nsec < 0) {
 3148                         return (EINVAL);
 3149                 }
 3150                 error = do_rw_rdlock2(td, uap->obj, uap->val, &timeout);
 3151         }
 3152         return (error);
 3153 }
 3154 
 3155 static int
 3156 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap)
 3157 {
 3158         struct timespec timeout;
 3159         int error;
 3160 
 3161         /* Allow a null timespec (wait forever). */
 3162         if (uap->uaddr2 == NULL) {
 3163                 error = do_rw_wrlock(td, uap->obj, 0);
 3164         } else {
 3165                 error = copyin(uap->uaddr2, &timeout,
 3166                     sizeof(timeout));
 3167                 if (error != 0)
 3168                         return (error);
 3169                 if (timeout.tv_nsec >= 1000000000 ||
 3170                     timeout.tv_nsec < 0) {
 3171                         return (EINVAL);
 3172                 }
 3173 
 3174                 error = do_rw_wrlock2(td, uap->obj, &timeout);
 3175         }
 3176         return (error);
 3177 }
 3178 
 3179 static int
 3180 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap)
 3181 {
 3182         return do_rw_unlock(td, uap->obj);
 3183 }
 3184 
 3185 static int
 3186 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap)
 3187 {
 3188         struct timespec *ts, timeout;
 3189         int error;
 3190 
 3191         /* Allow a null timespec (wait forever). */
 3192         if (uap->uaddr2 == NULL)
 3193                 ts = NULL;
 3194         else {
 3195                 error = copyin(uap->uaddr2, &timeout,
 3196                     sizeof(timeout));
 3197                 if (error != 0)
 3198                         return (error);
 3199                 if (timeout.tv_nsec >= 1000000000 ||
 3200                     timeout.tv_nsec < 0) {
 3201                         return (EINVAL);
 3202                 }
 3203                 ts = &timeout;
 3204         }
 3205         return (do_sem_wait(td, uap->obj, ts));
 3206 }
 3207 
 3208 static int
 3209 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap)
 3210 {
 3211         return do_sem_wake(td, uap->obj);
 3212 }
 3213 
 3214 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap);
 3215 
 3216 static _umtx_op_func op_table[] = {
 3217         __umtx_op_lock_umtx,            /* UMTX_OP_LOCK */
 3218         __umtx_op_unlock_umtx,          /* UMTX_OP_UNLOCK */
 3219         __umtx_op_wait,                 /* UMTX_OP_WAIT */
 3220         __umtx_op_wake,                 /* UMTX_OP_WAKE */
 3221         __umtx_op_trylock_umutex,       /* UMTX_OP_MUTEX_TRYLOCK */
 3222         __umtx_op_lock_umutex,          /* UMTX_OP_MUTEX_LOCK */
 3223         __umtx_op_unlock_umutex,        /* UMTX_OP_MUTEX_UNLOCK */
 3224         __umtx_op_set_ceiling,          /* UMTX_OP_SET_CEILING */
 3225         __umtx_op_cv_wait,              /* UMTX_OP_CV_WAIT*/
 3226         __umtx_op_cv_signal,            /* UMTX_OP_CV_SIGNAL */
 3227         __umtx_op_cv_broadcast,         /* UMTX_OP_CV_BROADCAST */
 3228         __umtx_op_wait_uint,            /* UMTX_OP_WAIT_UINT */
 3229         __umtx_op_rw_rdlock,            /* UMTX_OP_RW_RDLOCK */
 3230         __umtx_op_rw_wrlock,            /* UMTX_OP_RW_WRLOCK */
 3231         __umtx_op_rw_unlock,            /* UMTX_OP_RW_UNLOCK */
 3232         __umtx_op_wait_uint_private,    /* UMTX_OP_WAIT_UINT_PRIVATE */
 3233         __umtx_op_wake_private,         /* UMTX_OP_WAKE_PRIVATE */
 3234         __umtx_op_wait_umutex,          /* UMTX_OP_UMUTEX_WAIT */
 3235         __umtx_op_wake_umutex,          /* UMTX_OP_UMUTEX_WAKE */
 3236         __umtx_op_sem_wait,             /* UMTX_OP_SEM_WAIT */
 3237         __umtx_op_sem_wake,             /* UMTX_OP_SEM_WAKE */
 3238         __umtx_op_nwake_private         /* UMTX_OP_NWAKE_PRIVATE */
 3239 };
 3240 
 3241 int
 3242 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
 3243 {
 3244         if ((unsigned)uap->op < UMTX_OP_MAX)
 3245                 return (*op_table[uap->op])(td, uap);
 3246         return (EINVAL);
 3247 }
 3248 
 3249 #ifdef COMPAT_FREEBSD32
 3250 int
 3251 freebsd32_umtx_lock(struct thread *td, struct freebsd32_umtx_lock_args *uap)
 3252     /* struct umtx *umtx */
 3253 {
 3254         return (do_lock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid, NULL));
 3255 }
 3256 
 3257 int
 3258 freebsd32_umtx_unlock(struct thread *td, struct freebsd32_umtx_unlock_args *uap)
 3259     /* struct umtx *umtx */
 3260 {
 3261         return (do_unlock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid));
 3262 }
 3263 
 3264 struct timespec32 {
 3265         uint32_t tv_sec;
 3266         uint32_t tv_nsec;
 3267 };
 3268 
 3269 static inline int
 3270 copyin_timeout32(void *addr, struct timespec *tsp)
 3271 {
 3272         struct timespec32 ts32;
 3273         int error;
 3274 
 3275         error = copyin(addr, &ts32, sizeof(struct timespec32));
 3276         if (error == 0) {
 3277                 tsp->tv_sec = ts32.tv_sec;
 3278                 tsp->tv_nsec = ts32.tv_nsec;
 3279         }
 3280         return (error);
 3281 }
 3282 
 3283 static int
 3284 __umtx_op_lock_umtx_compat32(struct thread *td, struct _umtx_op_args *uap)
 3285 {
 3286         struct timespec *ts, timeout;
 3287         int error;
 3288 
 3289         /* Allow a null timespec (wait forever). */
 3290         if (uap->uaddr2 == NULL)
 3291                 ts = NULL;
 3292         else {
 3293                 error = copyin_timeout32(uap->uaddr2, &timeout);
 3294                 if (error != 0)
 3295                         return (error);
 3296                 if (timeout.tv_nsec >= 1000000000 ||
 3297                     timeout.tv_nsec < 0) {
 3298                         return (EINVAL);
 3299                 }
 3300                 ts = &timeout;
 3301         }
 3302         return (do_lock_umtx32(td, uap->obj, uap->val, ts));
 3303 }
 3304 
 3305 static int
 3306 __umtx_op_unlock_umtx_compat32(struct thread *td, struct _umtx_op_args *uap)
 3307 {
 3308         return (do_unlock_umtx32(td, uap->obj, (uint32_t)uap->val));
 3309 }
 3310 
 3311 static int
 3312 __umtx_op_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
 3313 {
 3314         struct timespec *ts, timeout;
 3315         int error;
 3316 
 3317         if (uap->uaddr2 == NULL)
 3318                 ts = NULL;
 3319         else {
 3320                 error = copyin_timeout32(uap->uaddr2, &timeout);
 3321                 if (error != 0)
 3322                         return (error);
 3323                 if (timeout.tv_nsec >= 1000000000 ||
 3324                     timeout.tv_nsec < 0)
 3325                         return (EINVAL);
 3326                 ts = &timeout;
 3327         }
 3328         return do_wait(td, uap->obj, uap->val, ts, 1, 0);
 3329 }
 3330 
 3331 static int
 3332 __umtx_op_lock_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
 3333 {
 3334         struct timespec *ts, timeout;
 3335         int error;
 3336 
 3337         /* Allow a null timespec (wait forever). */
 3338         if (uap->uaddr2 == NULL)
 3339                 ts = NULL;
 3340         else {
 3341                 error = copyin_timeout32(uap->uaddr2, &timeout);
 3342                 if (error != 0)
 3343                         return (error);
 3344                 if (timeout.tv_nsec >= 1000000000 ||
 3345                     timeout.tv_nsec < 0)
 3346                         return (EINVAL);
 3347                 ts = &timeout;
 3348         }
 3349         return do_lock_umutex(td, uap->obj, ts, 0);
 3350 }
 3351 
 3352 static int
 3353 __umtx_op_wait_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
 3354 {
 3355         struct timespec *ts, timeout;
 3356         int error;
 3357 
 3358         /* Allow a null timespec (wait forever). */
 3359         if (uap->uaddr2 == NULL)
 3360                 ts = NULL;
 3361         else {
 3362                 error = copyin_timeout32(uap->uaddr2, &timeout);
 3363                 if (error != 0)
 3364                         return (error);
 3365                 if (timeout.tv_nsec >= 1000000000 ||
 3366                     timeout.tv_nsec < 0)
 3367                         return (EINVAL);
 3368                 ts = &timeout;
 3369         }
 3370         return do_lock_umutex(td, uap->obj, ts, _UMUTEX_WAIT);
 3371 }
 3372 
 3373 static int
 3374 __umtx_op_cv_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
 3375 {
 3376         struct timespec *ts, timeout;
 3377         int error;
 3378 
 3379         /* Allow a null timespec (wait forever). */
 3380         if (uap->uaddr2 == NULL)
 3381                 ts = NULL;
 3382         else {
 3383                 error = copyin_timeout32(uap->uaddr2, &timeout);
 3384                 if (error != 0)
 3385                         return (error);
 3386                 if (timeout.tv_nsec >= 1000000000 ||
 3387                     timeout.tv_nsec < 0)
 3388                         return (EINVAL);
 3389                 ts = &timeout;
 3390         }
 3391         return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
 3392 }
 3393 
 3394 static int
 3395 __umtx_op_rw_rdlock_compat32(struct thread *td, struct _umtx_op_args *uap)
 3396 {
 3397         struct timespec timeout;
 3398         int error;
 3399 
 3400         /* Allow a null timespec (wait forever). */
 3401         if (uap->uaddr2 == NULL) {
 3402                 error = do_rw_rdlock(td, uap->obj, uap->val, 0);
 3403         } else {
 3404                 error = copyin_timeout32(uap->uaddr2, &timeout);
 3405                 if (error != 0)
 3406                         return (error);
 3407                 if (timeout.tv_nsec >= 1000000000 ||
 3408                     timeout.tv_nsec < 0) {
 3409                         return (EINVAL);
 3410                 }
 3411                 error = do_rw_rdlock2(td, uap->obj, uap->val, &timeout);
 3412         }
 3413         return (error);
 3414 }
 3415 
 3416 static int
 3417 __umtx_op_rw_wrlock_compat32(struct thread *td, struct _umtx_op_args *uap)
 3418 {
 3419         struct timespec timeout;
 3420         int error;
 3421 
 3422         /* Allow a null timespec (wait forever). */
 3423         if (uap->uaddr2 == NULL) {
 3424                 error = do_rw_wrlock(td, uap->obj, 0);
 3425         } else {
 3426                 error = copyin_timeout32(uap->uaddr2, &timeout);
 3427                 if (error != 0)
 3428                         return (error);
 3429                 if (timeout.tv_nsec >= 1000000000 ||
 3430                     timeout.tv_nsec < 0) {
 3431                         return (EINVAL);
 3432                 }
 3433 
 3434                 error = do_rw_wrlock2(td, uap->obj, &timeout);
 3435         }
 3436         return (error);
 3437 }
 3438 
 3439 static int
 3440 __umtx_op_wait_uint_private_compat32(struct thread *td, struct _umtx_op_args *uap)
 3441 {
 3442         struct timespec *ts, timeout;
 3443         int error;
 3444 
 3445         if (uap->uaddr2 == NULL)
 3446                 ts = NULL;
 3447         else {
 3448                 error = copyin_timeout32(uap->uaddr2, &timeout);
 3449                 if (error != 0)
 3450                         return (error);
 3451                 if (timeout.tv_nsec >= 1000000000 ||
 3452                     timeout.tv_nsec < 0)
 3453                         return (EINVAL);
 3454                 ts = &timeout;
 3455         }
 3456         return do_wait(td, uap->obj, uap->val, ts, 1, 1);
 3457 }
 3458 
 3459 static int
 3460 __umtx_op_sem_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
 3461 {
 3462         struct timespec *ts, timeout;
 3463         int error;
 3464 
 3465         /* Allow a null timespec (wait forever). */
 3466         if (uap->uaddr2 == NULL)
 3467                 ts = NULL;
 3468         else {
 3469                 error = copyin_timeout32(uap->uaddr2, &timeout);
 3470                 if (error != 0)
 3471                         return (error);
 3472                 if (timeout.tv_nsec >= 1000000000 ||
 3473                     timeout.tv_nsec < 0)
 3474                         return (EINVAL);
 3475                 ts = &timeout;
 3476         }
 3477         return (do_sem_wait(td, uap->obj, ts));
 3478 }
 3479 
 3480 static int
 3481 __umtx_op_nwake_private32(struct thread *td, struct _umtx_op_args *uap)
 3482 {
 3483         int count = uap->val;
 3484         uint32_t uaddrs[BATCH_SIZE];
 3485         uint32_t **upp = (uint32_t **)uap->obj;
 3486         int tocopy;
 3487         int error = 0;
 3488         int i, pos = 0;
 3489 
 3490         while (count > 0) {
 3491                 tocopy = count;
 3492                 if (tocopy > BATCH_SIZE)
 3493                         tocopy = BATCH_SIZE;
 3494                 error = copyin(upp+pos, uaddrs, tocopy * sizeof(uint32_t));
 3495                 if (error != 0)
 3496                         break;
 3497                 for (i = 0; i < tocopy; ++i)
 3498                         kern_umtx_wake(td, (void *)(intptr_t)uaddrs[i],
 3499                                 INT_MAX, 1);
 3500                 count -= tocopy;
 3501                 pos += tocopy;
 3502         }
 3503         return (error);
 3504 }
 3505 
 3506 static _umtx_op_func op_table_compat32[] = {
 3507         __umtx_op_lock_umtx_compat32,   /* UMTX_OP_LOCK */
 3508         __umtx_op_unlock_umtx_compat32, /* UMTX_OP_UNLOCK */
 3509         __umtx_op_wait_compat32,        /* UMTX_OP_WAIT */
 3510         __umtx_op_wake,                 /* UMTX_OP_WAKE */
 3511         __umtx_op_trylock_umutex,       /* UMTX_OP_MUTEX_LOCK */
 3512         __umtx_op_lock_umutex_compat32, /* UMTX_OP_MUTEX_TRYLOCK */
 3513         __umtx_op_unlock_umutex,        /* UMTX_OP_MUTEX_UNLOCK */
 3514         __umtx_op_set_ceiling,          /* UMTX_OP_SET_CEILING */
 3515         __umtx_op_cv_wait_compat32,     /* UMTX_OP_CV_WAIT*/
 3516         __umtx_op_cv_signal,            /* UMTX_OP_CV_SIGNAL */
 3517         __umtx_op_cv_broadcast,         /* UMTX_OP_CV_BROADCAST */
 3518         __umtx_op_wait_compat32,        /* UMTX_OP_WAIT_UINT */
 3519         __umtx_op_rw_rdlock_compat32,   /* UMTX_OP_RW_RDLOCK */
 3520         __umtx_op_rw_wrlock_compat32,   /* UMTX_OP_RW_WRLOCK */
 3521         __umtx_op_rw_unlock,            /* UMTX_OP_RW_UNLOCK */
 3522         __umtx_op_wait_uint_private_compat32,   /* UMTX_OP_WAIT_UINT_PRIVATE */
 3523         __umtx_op_wake_private,         /* UMTX_OP_WAKE_PRIVATE */
 3524         __umtx_op_wait_umutex_compat32, /* UMTX_OP_UMUTEX_WAIT */
 3525         __umtx_op_wake_umutex,          /* UMTX_OP_UMUTEX_WAKE */
 3526         __umtx_op_sem_wait_compat32,    /* UMTX_OP_SEM_WAIT */
 3527         __umtx_op_sem_wake,             /* UMTX_OP_SEM_WAKE */
 3528         __umtx_op_nwake_private32       /* UMTX_OP_NWAKE_PRIVATE */
 3529 };
 3530 
 3531 int
 3532 freebsd32_umtx_op(struct thread *td, struct freebsd32_umtx_op_args *uap)
 3533 {
 3534         if ((unsigned)uap->op < UMTX_OP_MAX)
 3535                 return (*op_table_compat32[uap->op])(td,
 3536                         (struct _umtx_op_args *)uap);
 3537         return (EINVAL);
 3538 }
 3539 #endif
 3540 
 3541 void
 3542 umtx_thread_init(struct thread *td)
 3543 {
 3544         td->td_umtxq = umtxq_alloc();
 3545         td->td_umtxq->uq_thread = td;
 3546 }
 3547 
 3548 void
 3549 umtx_thread_fini(struct thread *td)
 3550 {
 3551         umtxq_free(td->td_umtxq);
 3552 }
 3553 
 3554 /*
 3555  * It will be called when new thread is created, e.g fork().
 3556  */
 3557 void
 3558 umtx_thread_alloc(struct thread *td)
 3559 {
 3560         struct umtx_q *uq;
 3561 
 3562         uq = td->td_umtxq;
 3563         uq->uq_inherited_pri = PRI_MAX;
 3564 
 3565         KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
 3566         KASSERT(uq->uq_thread == td, ("uq_thread != td"));
 3567         KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
 3568         KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
 3569 }
 3570 
 3571 /*
 3572  * exec() hook.
 3573  */
 3574 static void
 3575 umtx_exec_hook(void *arg __unused, struct proc *p __unused,
 3576         struct image_params *imgp __unused)
 3577 {
 3578         umtx_thread_cleanup(curthread);
 3579 }
 3580 
 3581 /*
 3582  * thread_exit() hook.
 3583  */
 3584 void
 3585 umtx_thread_exit(struct thread *td)
 3586 {
 3587         umtx_thread_cleanup(td);
 3588 }
 3589 
 3590 /*
 3591  * clean up umtx data.
 3592  */
 3593 static void
 3594 umtx_thread_cleanup(struct thread *td)
 3595 {
 3596         struct umtx_q *uq;
 3597         struct umtx_pi *pi;
 3598 
 3599         if ((uq = td->td_umtxq) == NULL)
 3600                 return;
 3601 
 3602         mtx_lock_spin(&umtx_lock);
 3603         uq->uq_inherited_pri = PRI_MAX;
 3604         while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
 3605                 pi->pi_owner = NULL;
 3606                 TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
 3607         }
 3608         mtx_unlock_spin(&umtx_lock);
 3609         thread_lock(td);
 3610         sched_lend_user_prio(td, PRI_MAX);
 3611         thread_unlock(td);
 3612 }

Cache object: 4a13796edcad946a40653da375788c30


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.