The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_uuid.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002 Marcel Moolenaar
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  *
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/11.2/sys/kern/kern_uuid.c 261858 2014-02-13 22:24:36Z brueffer $");
   29 
   30 #include <sys/param.h>
   31 #include <sys/endian.h>
   32 #include <sys/kernel.h>
   33 #include <sys/lock.h>
   34 #include <sys/mutex.h>
   35 #include <sys/sbuf.h>
   36 #include <sys/socket.h>
   37 #include <sys/sysproto.h>
   38 #include <sys/systm.h>
   39 #include <sys/jail.h>
   40 #include <sys/uuid.h>
   41 
   42 #include <net/if.h>
   43 #include <net/if_dl.h>
   44 #include <net/if_types.h>
   45 #include <net/vnet.h>
   46 
   47 /*
   48  * See also:
   49  *      http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
   50  *      http://www.opengroup.org/onlinepubs/009629399/apdxa.htm
   51  *
   52  * Note that the generator state is itself an UUID, but the time and clock
   53  * sequence fields are written in the native byte order.
   54  */
   55 
   56 CTASSERT(sizeof(struct uuid) == 16);
   57 
   58 /* We use an alternative, more convenient representation in the generator. */
   59 struct uuid_private {
   60         union {
   61                 uint64_t        ll;             /* internal. */
   62                 struct {
   63                         uint32_t        low;
   64                         uint16_t        mid;
   65                         uint16_t        hi;
   66                 } x;
   67         } time;
   68         uint16_t        seq;                    /* Big-endian. */
   69         uint16_t        node[UUID_NODE_LEN>>1];
   70 };
   71 
   72 CTASSERT(sizeof(struct uuid_private) == 16);
   73 
   74 struct uuid_macaddr {
   75         uint16_t        state;
   76 #define UUID_ETHER_EMPTY        0
   77 #define UUID_ETHER_RANDOM       1
   78 #define UUID_ETHER_UNIQUE       2
   79         uint16_t        node[UUID_NODE_LEN>>1];
   80 };
   81 
   82 static struct uuid_private uuid_last;
   83 
   84 #define UUID_NETHER     4
   85 static struct uuid_macaddr uuid_ether[UUID_NETHER];
   86 
   87 static struct mtx uuid_mutex;
   88 MTX_SYSINIT(uuid_lock, &uuid_mutex, "UUID generator mutex lock", MTX_DEF);
   89 
   90 /*
   91  * Return the first MAC address added in the array. If it's empty, then
   92  * construct a sufficiently random multicast MAC address first. Any
   93  * addresses added later will bump the random MAC address up tp the next
   94  * index.
   95  */
   96 static void
   97 uuid_node(uint16_t *node)
   98 {
   99         int i;
  100 
  101         if (uuid_ether[0].state == UUID_ETHER_EMPTY) {
  102                 for (i = 0; i < (UUID_NODE_LEN>>1); i++)
  103                         uuid_ether[0].node[i] = (uint16_t)arc4random();
  104                 *((uint8_t*)uuid_ether[0].node) |= 0x01;
  105                 uuid_ether[0].state = UUID_ETHER_RANDOM;
  106         }
  107         for (i = 0; i < (UUID_NODE_LEN>>1); i++)
  108                 node[i] = uuid_ether[0].node[i];
  109 }
  110 
  111 /*
  112  * Get the current time as a 60 bit count of 100-nanosecond intervals
  113  * since 00:00:00.00, October 15,1582. We apply a magic offset to convert
  114  * the Unix time since 00:00:00.00, January 1, 1970 to the date of the
  115  * Gregorian reform to the Christian calendar.
  116  */
  117 static uint64_t
  118 uuid_time(void)
  119 {
  120         struct bintime bt;
  121         uint64_t time = 0x01B21DD213814000LL;
  122 
  123         bintime(&bt);
  124         time += (uint64_t)bt.sec * 10000000LL;
  125         time += (10000000LL * (uint32_t)(bt.frac >> 32)) >> 32;
  126         return (time & ((1LL << 60) - 1LL));
  127 }
  128 
  129 struct uuid *
  130 kern_uuidgen(struct uuid *store, size_t count)
  131 {
  132         struct uuid_private uuid;
  133         uint64_t time;
  134         size_t n;
  135 
  136         mtx_lock(&uuid_mutex);
  137 
  138         uuid_node(uuid.node);
  139         time = uuid_time();
  140 
  141         if (uuid_last.time.ll == 0LL || uuid_last.node[0] != uuid.node[0] ||
  142             uuid_last.node[1] != uuid.node[1] ||
  143             uuid_last.node[2] != uuid.node[2])
  144                 uuid.seq = (uint16_t)arc4random() & 0x3fff;
  145         else if (uuid_last.time.ll >= time)
  146                 uuid.seq = (uuid_last.seq + 1) & 0x3fff;
  147         else
  148                 uuid.seq = uuid_last.seq;
  149 
  150         uuid_last = uuid;
  151         uuid_last.time.ll = (time + count - 1) & ((1LL << 60) - 1LL);
  152 
  153         mtx_unlock(&uuid_mutex);
  154 
  155         /* Set sequence and variant and deal with byte order. */
  156         uuid.seq = htobe16(uuid.seq | 0x8000);
  157 
  158         for (n = 0; n < count; n++) {
  159                 /* Set time and version (=1). */
  160                 uuid.time.x.low = (uint32_t)time;
  161                 uuid.time.x.mid = (uint16_t)(time >> 32);
  162                 uuid.time.x.hi = ((uint16_t)(time >> 48) & 0xfff) | (1 << 12);
  163                 store[n] = *(struct uuid *)&uuid;
  164                 time++;
  165         }
  166 
  167         return (store);
  168 }
  169 
  170 #ifndef _SYS_SYSPROTO_H_
  171 struct uuidgen_args {
  172         struct uuid *store;
  173         int     count;
  174 };
  175 #endif
  176 int
  177 sys_uuidgen(struct thread *td, struct uuidgen_args *uap)
  178 {
  179         struct uuid *store;
  180         size_t count;
  181         int error;
  182 
  183         /*
  184          * Limit the number of UUIDs that can be created at the same time
  185          * to some arbitrary number. This isn't really necessary, but I
  186          * like to have some sort of upper-bound that's less than 2G :-)
  187          * XXX probably needs to be tunable.
  188          */
  189         if (uap->count < 1 || uap->count > 2048)
  190                 return (EINVAL);
  191 
  192         count = uap->count;
  193         store = malloc(count * sizeof(struct uuid), M_TEMP, M_WAITOK);
  194         kern_uuidgen(store, count);
  195         error = copyout(store, uap->store, count * sizeof(struct uuid));
  196         free(store, M_TEMP);
  197         return (error);
  198 }
  199 
  200 int
  201 uuid_ether_add(const uint8_t *addr)
  202 {
  203         int i, sum;
  204 
  205         /*
  206          * Validate input. No multicast (flag 0x1), no locally administered
  207          * (flag 0x2) and no 'all-zeroes' addresses.
  208          */
  209         if (addr[0] & 0x03)
  210                 return (EINVAL);
  211         sum = 0;
  212         for (i = 0; i < UUID_NODE_LEN; i++)
  213                 sum += addr[i];
  214         if (sum == 0)
  215                 return (EINVAL);
  216 
  217         mtx_lock(&uuid_mutex);
  218 
  219         /* Make sure the MAC isn't known already and that there's space. */
  220         i = 0;
  221         while (i < UUID_NETHER && uuid_ether[i].state == UUID_ETHER_UNIQUE) {
  222                 if (!bcmp(addr, uuid_ether[i].node, UUID_NODE_LEN)) {
  223                         mtx_unlock(&uuid_mutex);
  224                         return (EEXIST);
  225                 }
  226                 i++;
  227         }
  228         if (i == UUID_NETHER) {
  229                 mtx_unlock(&uuid_mutex);
  230                 return (ENOSPC);
  231         }
  232 
  233         /* Insert MAC at index, moving the non-empty entry if possible. */
  234         if (uuid_ether[i].state == UUID_ETHER_RANDOM && i < UUID_NETHER - 1)
  235                 uuid_ether[i + 1] = uuid_ether[i];
  236         uuid_ether[i].state = UUID_ETHER_UNIQUE;
  237         bcopy(addr, uuid_ether[i].node, UUID_NODE_LEN);
  238         mtx_unlock(&uuid_mutex);
  239         return (0);
  240 }
  241 
  242 int
  243 uuid_ether_del(const uint8_t *addr)
  244 {
  245         int i;
  246 
  247         mtx_lock(&uuid_mutex);
  248         i = 0;
  249         while (i < UUID_NETHER && uuid_ether[i].state == UUID_ETHER_UNIQUE &&
  250             bcmp(addr, uuid_ether[i].node, UUID_NODE_LEN))
  251                 i++;
  252         if (i == UUID_NETHER || uuid_ether[i].state != UUID_ETHER_UNIQUE) {
  253                 mtx_unlock(&uuid_mutex);
  254                 return (ENOENT);
  255         }
  256 
  257         /* Remove it by shifting higher index entries down. */
  258         while (i < UUID_NETHER - 1 && uuid_ether[i].state != UUID_ETHER_EMPTY) {
  259                 uuid_ether[i] = uuid_ether[i + 1];
  260                 i++;
  261         }
  262         if (uuid_ether[i].state != UUID_ETHER_EMPTY) {
  263                 uuid_ether[i].state = UUID_ETHER_EMPTY;
  264                 bzero(uuid_ether[i].node, UUID_NODE_LEN);
  265         }
  266         mtx_unlock(&uuid_mutex);
  267         return (0);
  268 }
  269 
  270 int
  271 snprintf_uuid(char *buf, size_t sz, struct uuid *uuid)
  272 {
  273         struct uuid_private *id;
  274         int cnt;
  275 
  276         id = (struct uuid_private *)uuid;
  277         cnt = snprintf(buf, sz, "%08x-%04x-%04x-%04x-%04x%04x%04x",
  278             id->time.x.low, id->time.x.mid, id->time.x.hi, be16toh(id->seq),
  279             be16toh(id->node[0]), be16toh(id->node[1]), be16toh(id->node[2]));
  280         return (cnt);
  281 }
  282 
  283 int
  284 printf_uuid(struct uuid *uuid)
  285 {
  286         char buf[38];
  287 
  288         snprintf_uuid(buf, sizeof(buf), uuid);
  289         return (printf("%s", buf));
  290 }
  291 
  292 int
  293 sbuf_printf_uuid(struct sbuf *sb, struct uuid *uuid)
  294 {
  295         char buf[38];
  296 
  297         snprintf_uuid(buf, sizeof(buf), uuid);
  298         return (sbuf_printf(sb, "%s", buf));
  299 }
  300 
  301 /*
  302  * Encode/Decode UUID into byte-stream.
  303  *   http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
  304  *
  305  * 0                   1                   2                   3
  306  *   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  307  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  308  *  |                          time_low                             |
  309  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  310  *  |       time_mid                |         time_hi_and_version   |
  311  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  312  *  |clk_seq_hi_res |  clk_seq_low  |         node (0-1)            |
  313  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  314  *  |                         node (2-5)                            |
  315  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  316  */
  317 
  318 void
  319 le_uuid_enc(void *buf, struct uuid const *uuid)
  320 {
  321         u_char *p;
  322         int i;
  323 
  324         p = buf;
  325         le32enc(p, uuid->time_low);
  326         le16enc(p + 4, uuid->time_mid);
  327         le16enc(p + 6, uuid->time_hi_and_version);
  328         p[8] = uuid->clock_seq_hi_and_reserved;
  329         p[9] = uuid->clock_seq_low;
  330         for (i = 0; i < _UUID_NODE_LEN; i++)
  331                 p[10 + i] = uuid->node[i];
  332 }
  333 
  334 void
  335 le_uuid_dec(void const *buf, struct uuid *uuid)
  336 {
  337         u_char const *p;
  338         int i;
  339 
  340         p = buf;
  341         uuid->time_low = le32dec(p);
  342         uuid->time_mid = le16dec(p + 4);
  343         uuid->time_hi_and_version = le16dec(p + 6);
  344         uuid->clock_seq_hi_and_reserved = p[8];
  345         uuid->clock_seq_low = p[9];
  346         for (i = 0; i < _UUID_NODE_LEN; i++)
  347                 uuid->node[i] = p[10 + i];
  348 }
  349 
  350 void
  351 be_uuid_enc(void *buf, struct uuid const *uuid)
  352 {
  353         u_char *p;
  354         int i;
  355 
  356         p = buf;
  357         be32enc(p, uuid->time_low);
  358         be16enc(p + 4, uuid->time_mid);
  359         be16enc(p + 6, uuid->time_hi_and_version);
  360         p[8] = uuid->clock_seq_hi_and_reserved;
  361         p[9] = uuid->clock_seq_low;
  362         for (i = 0; i < _UUID_NODE_LEN; i++)
  363                 p[10 + i] = uuid->node[i];
  364 }
  365 
  366 void
  367 be_uuid_dec(void const *buf, struct uuid *uuid)
  368 {
  369         u_char const *p;
  370         int i;
  371 
  372         p = buf;
  373         uuid->time_low = be32dec(p);
  374         uuid->time_mid = be16dec(p + 4);
  375         uuid->time_hi_and_version = be16dec(p + 6);
  376         uuid->clock_seq_hi_and_reserved = p[8];
  377         uuid->clock_seq_low = p[9];
  378         for (i = 0; i < _UUID_NODE_LEN; i++)
  379                 uuid->node[i] = p[10 + i];
  380 }
  381 
  382 int
  383 parse_uuid(const char *str, struct uuid *uuid)
  384 {
  385         u_int c[11];
  386         int n;
  387 
  388         /* An empty string represents a nil UUID. */
  389         if (*str == '\0') {
  390                 bzero(uuid, sizeof(*uuid));
  391                 return (0);
  392         }
  393 
  394         /* The UUID string representation has a fixed length. */
  395         if (strlen(str) != 36)
  396                 return (EINVAL);
  397 
  398         /*
  399          * We only work with "new" UUIDs. New UUIDs have the form:
  400          *      01234567-89ab-cdef-0123-456789abcdef
  401          * The so called "old" UUIDs, which we don't support, have the form:
  402          *      0123456789ab.cd.ef.01.23.45.67.89.ab
  403          */
  404         if (str[8] != '-')
  405                 return (EINVAL);
  406 
  407         n = sscanf(str, "%8x-%4x-%4x-%2x%2x-%2x%2x%2x%2x%2x%2x", c + 0, c + 1,
  408             c + 2, c + 3, c + 4, c + 5, c + 6, c + 7, c + 8, c + 9, c + 10);
  409         /* Make sure we have all conversions. */
  410         if (n != 11)
  411                 return (EINVAL);
  412 
  413         /* Successful scan. Build the UUID. */
  414         uuid->time_low = c[0];
  415         uuid->time_mid = c[1];
  416         uuid->time_hi_and_version = c[2];
  417         uuid->clock_seq_hi_and_reserved = c[3];
  418         uuid->clock_seq_low = c[4];
  419         for (n = 0; n < 6; n++)
  420                 uuid->node[n] = c[n + 5];
  421 
  422         /* Check semantics... */
  423         return (((c[3] & 0x80) != 0x00 &&               /* variant 0? */
  424             (c[3] & 0xc0) != 0x80 &&                    /* variant 1? */
  425             (c[3] & 0xe0) != 0xc0) ? EINVAL : 0);       /* variant 2? */
  426 }

Cache object: 04b700f854886eba048459d9c62da968


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.