The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_uuid.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2002 Marcel Moolenaar
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  *
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include <sys/param.h>
   33 #include <sys/endian.h>
   34 #include <sys/kernel.h>
   35 #include <sys/lock.h>
   36 #include <sys/mutex.h>
   37 #include <sys/sbuf.h>
   38 #include <sys/socket.h>
   39 #include <sys/sysproto.h>
   40 #include <sys/systm.h>
   41 #include <sys/jail.h>
   42 #include <sys/uuid.h>
   43 
   44 #include <net/if.h>
   45 #include <net/if_dl.h>
   46 #include <net/if_types.h>
   47 #include <net/vnet.h>
   48 
   49 /*
   50  * See also:
   51  *      http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
   52  *      http://www.opengroup.org/onlinepubs/009629399/apdxa.htm
   53  *
   54  * Note that the generator state is itself an UUID, but the time and clock
   55  * sequence fields are written in the native byte order.
   56  */
   57 
   58 CTASSERT(sizeof(struct uuid) == 16);
   59 
   60 /* We use an alternative, more convenient representation in the generator. */
   61 struct uuid_private {
   62         union {
   63                 uint64_t        ll;     /* internal, for uuid_last only */
   64                 struct {
   65                         uint32_t        low;
   66                         uint16_t        mid;
   67                         uint16_t        hi;
   68                 } x;
   69         } time;
   70         uint16_t        seq;                    /* Big-endian. */
   71         uint16_t        node[UUID_NODE_LEN>>1];
   72 };
   73 
   74 CTASSERT(sizeof(struct uuid_private) == 16);
   75 
   76 struct uuid_macaddr {
   77         uint16_t        state;
   78 #define UUID_ETHER_EMPTY        0
   79 #define UUID_ETHER_RANDOM       1
   80 #define UUID_ETHER_UNIQUE       2
   81         uint16_t        node[UUID_NODE_LEN>>1];
   82 };
   83 
   84 static struct uuid_private uuid_last;
   85 
   86 #define UUID_NETHER     4
   87 static struct uuid_macaddr uuid_ether[UUID_NETHER];
   88 
   89 static struct mtx uuid_mutex;
   90 MTX_SYSINIT(uuid_lock, &uuid_mutex, "UUID generator mutex lock", MTX_DEF);
   91 
   92 /*
   93  * Return the first MAC address added in the array. If it's empty, then
   94  * construct a sufficiently random multicast MAC address first. Any
   95  * addresses added later will bump the random MAC address up tp the next
   96  * index.
   97  */
   98 static void
   99 uuid_node(uint16_t *node)
  100 {
  101         int i;
  102 
  103         if (uuid_ether[0].state == UUID_ETHER_EMPTY) {
  104                 for (i = 0; i < (UUID_NODE_LEN>>1); i++)
  105                         uuid_ether[0].node[i] = (uint16_t)arc4random();
  106                 *((uint8_t*)uuid_ether[0].node) |= 0x01;
  107                 uuid_ether[0].state = UUID_ETHER_RANDOM;
  108         }
  109         for (i = 0; i < (UUID_NODE_LEN>>1); i++)
  110                 node[i] = uuid_ether[0].node[i];
  111 }
  112 
  113 /*
  114  * Get the current time as a 60 bit count of 100-nanosecond intervals
  115  * since 00:00:00.00, October 15,1582. We apply a magic offset to convert
  116  * the Unix time since 00:00:00.00, January 1, 1970 to the date of the
  117  * Gregorian reform to the Christian calendar.
  118  */
  119 static uint64_t
  120 uuid_time(void)
  121 {
  122         struct bintime bt;
  123         uint64_t time = 0x01B21DD213814000LL;
  124 
  125         bintime(&bt);
  126         time += (uint64_t)bt.sec * 10000000LL;
  127         time += (10000000LL * (uint32_t)(bt.frac >> 32)) >> 32;
  128         return (time & ((1LL << 60) - 1LL));
  129 }
  130 
  131 struct uuid *
  132 kern_uuidgen(struct uuid *store, size_t count)
  133 {
  134         struct uuid_private uuid;
  135         uint64_t time;
  136         size_t n;
  137 
  138         mtx_lock(&uuid_mutex);
  139 
  140         uuid_node(uuid.node);
  141         time = uuid_time();
  142 
  143         if (uuid_last.time.ll == 0LL || uuid_last.node[0] != uuid.node[0] ||
  144             uuid_last.node[1] != uuid.node[1] ||
  145             uuid_last.node[2] != uuid.node[2])
  146                 uuid.seq = (uint16_t)arc4random() & 0x3fff;
  147         else if (uuid_last.time.ll >= time)
  148                 uuid.seq = (uuid_last.seq + 1) & 0x3fff;
  149         else
  150                 uuid.seq = uuid_last.seq;
  151 
  152         uuid_last = uuid;
  153         uuid_last.time.ll = (time + count - 1) & ((1LL << 60) - 1LL);
  154 
  155         mtx_unlock(&uuid_mutex);
  156 
  157         /* Set sequence and variant and deal with byte order. */
  158         uuid.seq = htobe16(uuid.seq | 0x8000);
  159 
  160         for (n = 0; n < count; n++) {
  161                 /* Set time and version (=1). */
  162                 uuid.time.x.low = (uint32_t)time;
  163                 uuid.time.x.mid = (uint16_t)(time >> 32);
  164                 uuid.time.x.hi = ((uint16_t)(time >> 48) & 0xfff) | (1 << 12);
  165                 store[n] = *(struct uuid *)&uuid;
  166                 time++;
  167         }
  168 
  169         return (store);
  170 }
  171 
  172 #ifndef _SYS_SYSPROTO_H_
  173 struct uuidgen_args {
  174         struct uuid *store;
  175         int     count;
  176 };
  177 #endif
  178 int
  179 sys_uuidgen(struct thread *td, struct uuidgen_args *uap)
  180 {
  181         struct uuid *store;
  182         size_t count;
  183         int error;
  184 
  185         /*
  186          * Limit the number of UUIDs that can be created at the same time
  187          * to some arbitrary number. This isn't really necessary, but I
  188          * like to have some sort of upper-bound that's less than 2G :-)
  189          * XXX probably needs to be tunable.
  190          */
  191         if (uap->count < 1 || uap->count > 2048)
  192                 return (EINVAL);
  193 
  194         count = uap->count;
  195         store = malloc(count * sizeof(struct uuid), M_TEMP, M_WAITOK);
  196         kern_uuidgen(store, count);
  197         error = copyout(store, uap->store, count * sizeof(struct uuid));
  198         free(store, M_TEMP);
  199         return (error);
  200 }
  201 
  202 int
  203 uuid_ether_add(const uint8_t *addr)
  204 {
  205         int i, sum;
  206 
  207         /*
  208          * Validate input. No multicast (flag 0x1), no locally administered
  209          * (flag 0x2) and no 'all-zeroes' addresses.
  210          */
  211         if (addr[0] & 0x03)
  212                 return (EINVAL);
  213         sum = 0;
  214         for (i = 0; i < UUID_NODE_LEN; i++)
  215                 sum += addr[i];
  216         if (sum == 0)
  217                 return (EINVAL);
  218 
  219         mtx_lock(&uuid_mutex);
  220 
  221         /* Make sure the MAC isn't known already and that there's space. */
  222         i = 0;
  223         while (i < UUID_NETHER && uuid_ether[i].state == UUID_ETHER_UNIQUE) {
  224                 if (!bcmp(addr, uuid_ether[i].node, UUID_NODE_LEN)) {
  225                         mtx_unlock(&uuid_mutex);
  226                         return (EEXIST);
  227                 }
  228                 i++;
  229         }
  230         if (i == UUID_NETHER) {
  231                 mtx_unlock(&uuid_mutex);
  232                 return (ENOSPC);
  233         }
  234 
  235         /* Insert MAC at index, moving the non-empty entry if possible. */
  236         if (uuid_ether[i].state == UUID_ETHER_RANDOM && i < UUID_NETHER - 1)
  237                 uuid_ether[i + 1] = uuid_ether[i];
  238         uuid_ether[i].state = UUID_ETHER_UNIQUE;
  239         bcopy(addr, uuid_ether[i].node, UUID_NODE_LEN);
  240         mtx_unlock(&uuid_mutex);
  241         return (0);
  242 }
  243 
  244 int
  245 uuid_ether_del(const uint8_t *addr)
  246 {
  247         int i;
  248 
  249         mtx_lock(&uuid_mutex);
  250         i = 0;
  251         while (i < UUID_NETHER && uuid_ether[i].state == UUID_ETHER_UNIQUE &&
  252             bcmp(addr, uuid_ether[i].node, UUID_NODE_LEN))
  253                 i++;
  254         if (i == UUID_NETHER || uuid_ether[i].state != UUID_ETHER_UNIQUE) {
  255                 mtx_unlock(&uuid_mutex);
  256                 return (ENOENT);
  257         }
  258 
  259         /* Remove it by shifting higher index entries down. */
  260         while (i < UUID_NETHER - 1 && uuid_ether[i].state != UUID_ETHER_EMPTY) {
  261                 uuid_ether[i] = uuid_ether[i + 1];
  262                 i++;
  263         }
  264         if (uuid_ether[i].state != UUID_ETHER_EMPTY) {
  265                 uuid_ether[i].state = UUID_ETHER_EMPTY;
  266                 bzero(uuid_ether[i].node, UUID_NODE_LEN);
  267         }
  268         mtx_unlock(&uuid_mutex);
  269         return (0);
  270 }
  271 
  272 int
  273 snprintf_uuid(char *buf, size_t sz, struct uuid *uuid)
  274 {
  275         struct uuid_private *id;
  276         int cnt;
  277 
  278         id = (struct uuid_private *)uuid;
  279         cnt = snprintf(buf, sz, "%08x-%04x-%04x-%04x-%04x%04x%04x",
  280             id->time.x.low, id->time.x.mid, id->time.x.hi, be16toh(id->seq),
  281             be16toh(id->node[0]), be16toh(id->node[1]), be16toh(id->node[2]));
  282         return (cnt);
  283 }
  284 
  285 int
  286 printf_uuid(struct uuid *uuid)
  287 {
  288         char buf[38];
  289 
  290         snprintf_uuid(buf, sizeof(buf), uuid);
  291         return (printf("%s", buf));
  292 }
  293 
  294 int
  295 sbuf_printf_uuid(struct sbuf *sb, struct uuid *uuid)
  296 {
  297         char buf[38];
  298 
  299         snprintf_uuid(buf, sizeof(buf), uuid);
  300         return (sbuf_cat(sb, buf));
  301 }
  302 
  303 /*
  304  * Encode/Decode UUID into byte-stream.
  305  *   http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
  306  *
  307  * 0                   1                   2                   3
  308  *   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  309  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  310  *  |                          time_low                             |
  311  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  312  *  |       time_mid                |         time_hi_and_version   |
  313  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  314  *  |clk_seq_hi_res |  clk_seq_low  |         node (0-1)            |
  315  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  316  *  |                         node (2-5)                            |
  317  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  318  */
  319 
  320 void
  321 le_uuid_enc(void *buf, struct uuid const *uuid)
  322 {
  323         u_char *p;
  324         int i;
  325 
  326         p = buf;
  327         le32enc(p, uuid->time_low);
  328         le16enc(p + 4, uuid->time_mid);
  329         le16enc(p + 6, uuid->time_hi_and_version);
  330         p[8] = uuid->clock_seq_hi_and_reserved;
  331         p[9] = uuid->clock_seq_low;
  332         for (i = 0; i < _UUID_NODE_LEN; i++)
  333                 p[10 + i] = uuid->node[i];
  334 }
  335 
  336 void
  337 le_uuid_dec(void const *buf, struct uuid *uuid)
  338 {
  339         u_char const *p;
  340         int i;
  341 
  342         p = buf;
  343         uuid->time_low = le32dec(p);
  344         uuid->time_mid = le16dec(p + 4);
  345         uuid->time_hi_and_version = le16dec(p + 6);
  346         uuid->clock_seq_hi_and_reserved = p[8];
  347         uuid->clock_seq_low = p[9];
  348         for (i = 0; i < _UUID_NODE_LEN; i++)
  349                 uuid->node[i] = p[10 + i];
  350 }
  351 
  352 void
  353 be_uuid_enc(void *buf, struct uuid const *uuid)
  354 {
  355         u_char *p;
  356         int i;
  357 
  358         p = buf;
  359         be32enc(p, uuid->time_low);
  360         be16enc(p + 4, uuid->time_mid);
  361         be16enc(p + 6, uuid->time_hi_and_version);
  362         p[8] = uuid->clock_seq_hi_and_reserved;
  363         p[9] = uuid->clock_seq_low;
  364         for (i = 0; i < _UUID_NODE_LEN; i++)
  365                 p[10 + i] = uuid->node[i];
  366 }
  367 
  368 void
  369 be_uuid_dec(void const *buf, struct uuid *uuid)
  370 {
  371         u_char const *p;
  372         int i;
  373 
  374         p = buf;
  375         uuid->time_low = be32dec(p);
  376         uuid->time_mid = be16dec(p + 4);
  377         uuid->time_hi_and_version = be16dec(p + 6);
  378         uuid->clock_seq_hi_and_reserved = p[8];
  379         uuid->clock_seq_low = p[9];
  380         for (i = 0; i < _UUID_NODE_LEN; i++)
  381                 uuid->node[i] = p[10 + i];
  382 }
  383 
  384 int
  385 validate_uuid(const char *str, size_t size, struct uuid *uuid, int flags)
  386 {
  387         u_int c[11];
  388         int n;
  389 
  390         if (size == 0 || *str == '\0') {
  391                 /* An empty string may represent a nil UUID. */
  392                 if ((flags & VUUIDF_EMPTYOK) != 0) {
  393                         if (uuid != NULL)
  394                                 bzero(uuid, sizeof(*uuid));
  395                         return (0);
  396                 }
  397 
  398                 return (EINVAL);
  399         }
  400 
  401         /* The UUID string representation has a fixed length. */
  402         if (size != 36)
  403                 return (EINVAL);
  404 
  405         /*
  406          * We only work with "new" UUIDs. New UUIDs have the form:
  407          *      01234567-89ab-cdef-0123-456789abcdef
  408          * The so called "old" UUIDs, which we don't support, have the form:
  409          *      0123456789ab.cd.ef.01.23.45.67.89.ab
  410          */
  411         if (str[8] != '-')
  412                 return (EINVAL);
  413 
  414         /* Now check the format. */
  415         n = sscanf(str, "%8x-%4x-%4x-%2x%2x-%2x%2x%2x%2x%2x%2x", c + 0, c + 1,
  416             c + 2, c + 3, c + 4, c + 5, c + 6, c + 7, c + 8, c + 9, c + 10);
  417         /* Make sure we have all conversions. */
  418         if (n != 11)
  419                 return (EINVAL);
  420 
  421         /* Successful scan. Build the UUID if requested. */
  422         if (uuid != NULL) {
  423                 uuid->time_low = c[0];
  424                 uuid->time_mid = c[1];
  425                 uuid->time_hi_and_version = c[2];
  426                 uuid->clock_seq_hi_and_reserved = c[3];
  427                 uuid->clock_seq_low = c[4];
  428                 for (n = 0; n < 6; n++)
  429                         uuid->node[n] = c[n + 5];
  430         }
  431 
  432         if ((flags & VUUIDF_CHECKSEMANTICS) == 0)
  433                 return (0);
  434 
  435         return (((c[3] & 0x80) != 0x00 &&               /* variant 0? */
  436             (c[3] & 0xc0) != 0x80 &&                    /* variant 1? */
  437             (c[3] & 0xe0) != 0xc0) ? EINVAL : 0);       /* variant 2? */
  438 }
  439 
  440 #define VUUIDF_PARSEFLAGS       (VUUIDF_EMPTYOK | VUUIDF_CHECKSEMANTICS)
  441 
  442 int
  443 parse_uuid(const char *str, struct uuid *uuid)
  444 {
  445 
  446         return (validate_uuid(str, strlen(str), uuid, VUUIDF_PARSEFLAGS));
  447 }
  448 
  449 int
  450 uuidcmp(const struct uuid *uuid1, const struct uuid *uuid2)
  451 {
  452 
  453         return (memcmp(uuid1, uuid2, sizeof(struct uuid)));
  454 }

Cache object: 63b930c39756793195aca19c1d83bbdc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.