The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sched_4bsd.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1990, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: releng/12.0/sys/kern/sched_4bsd.c 336007 2018-07-05 17:13:37Z andrew $");
   39 
   40 #include "opt_hwpmc_hooks.h"
   41 #include "opt_sched.h"
   42 
   43 #include <sys/param.h>
   44 #include <sys/systm.h>
   45 #include <sys/cpuset.h>
   46 #include <sys/kernel.h>
   47 #include <sys/ktr.h>
   48 #include <sys/lock.h>
   49 #include <sys/kthread.h>
   50 #include <sys/mutex.h>
   51 #include <sys/proc.h>
   52 #include <sys/resourcevar.h>
   53 #include <sys/sched.h>
   54 #include <sys/sdt.h>
   55 #include <sys/smp.h>
   56 #include <sys/sysctl.h>
   57 #include <sys/sx.h>
   58 #include <sys/turnstile.h>
   59 #include <sys/umtx.h>
   60 #include <machine/pcb.h>
   61 #include <machine/smp.h>
   62 
   63 #ifdef HWPMC_HOOKS
   64 #include <sys/pmckern.h>
   65 #endif
   66 
   67 #ifdef KDTRACE_HOOKS
   68 #include <sys/dtrace_bsd.h>
   69 int                             dtrace_vtime_active;
   70 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
   71 #endif
   72 
   73 /*
   74  * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
   75  * the range 100-256 Hz (approximately).
   76  */
   77 #define ESTCPULIM(e) \
   78     min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
   79     RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
   80 #ifdef SMP
   81 #define INVERSE_ESTCPU_WEIGHT   (8 * smp_cpus)
   82 #else
   83 #define INVERSE_ESTCPU_WEIGHT   8       /* 1 / (priorities per estcpu level). */
   84 #endif
   85 #define NICE_WEIGHT             1       /* Priorities per nice level. */
   86 
   87 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
   88 
   89 /*
   90  * The schedulable entity that runs a context.
   91  * This is  an extension to the thread structure and is tailored to
   92  * the requirements of this scheduler.
   93  * All fields are protected by the scheduler lock.
   94  */
   95 struct td_sched {
   96         fixpt_t         ts_pctcpu;      /* %cpu during p_swtime. */
   97         u_int           ts_estcpu;      /* Estimated cpu utilization. */
   98         int             ts_cpticks;     /* Ticks of cpu time. */
   99         int             ts_slptime;     /* Seconds !RUNNING. */
  100         int             ts_slice;       /* Remaining part of time slice. */
  101         int             ts_flags;
  102         struct runq     *ts_runq;       /* runq the thread is currently on */
  103 #ifdef KTR
  104         char            ts_name[TS_NAME_LEN];
  105 #endif
  106 };
  107 
  108 /* flags kept in td_flags */
  109 #define TDF_DIDRUN      TDF_SCHED0      /* thread actually ran. */
  110 #define TDF_BOUND       TDF_SCHED1      /* Bound to one CPU. */
  111 #define TDF_SLICEEND    TDF_SCHED2      /* Thread time slice is over. */
  112 
  113 /* flags kept in ts_flags */
  114 #define TSF_AFFINITY    0x0001          /* Has a non-"full" CPU set. */
  115 
  116 #define SKE_RUNQ_PCPU(ts)                                               \
  117     ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
  118 
  119 #define THREAD_CAN_SCHED(td, cpu)       \
  120     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
  121 
  122 _Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
  123     sizeof(struct thread0_storage),
  124     "increase struct thread0_storage.t0st_sched size");
  125 
  126 static struct mtx sched_lock;
  127 
  128 static int      realstathz = 127; /* stathz is sometimes 0 and run off of hz. */
  129 static int      sched_tdcnt;    /* Total runnable threads in the system. */
  130 static int      sched_slice = 12; /* Thread run time before rescheduling. */
  131 
  132 static void     setup_runqs(void);
  133 static void     schedcpu(void);
  134 static void     schedcpu_thread(void);
  135 static void     sched_priority(struct thread *td, u_char prio);
  136 static void     sched_setup(void *dummy);
  137 static void     maybe_resched(struct thread *td);
  138 static void     updatepri(struct thread *td);
  139 static void     resetpriority(struct thread *td);
  140 static void     resetpriority_thread(struct thread *td);
  141 #ifdef SMP
  142 static int      sched_pickcpu(struct thread *td);
  143 static int      forward_wakeup(int cpunum);
  144 static void     kick_other_cpu(int pri, int cpuid);
  145 #endif
  146 
  147 static struct kproc_desc sched_kp = {
  148         "schedcpu",
  149         schedcpu_thread,
  150         NULL
  151 };
  152 SYSINIT(schedcpu, SI_SUB_LAST, SI_ORDER_FIRST, kproc_start,
  153     &sched_kp);
  154 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
  155 
  156 static void sched_initticks(void *dummy);
  157 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
  158     NULL);
  159 
  160 /*
  161  * Global run queue.
  162  */
  163 static struct runq runq;
  164 
  165 #ifdef SMP
  166 /*
  167  * Per-CPU run queues
  168  */
  169 static struct runq runq_pcpu[MAXCPU];
  170 long runq_length[MAXCPU];
  171 
  172 static cpuset_t idle_cpus_mask;
  173 #endif
  174 
  175 struct pcpuidlestat {
  176         u_int idlecalls;
  177         u_int oldidlecalls;
  178 };
  179 DPCPU_DEFINE_STATIC(struct pcpuidlestat, idlestat);
  180 
  181 static void
  182 setup_runqs(void)
  183 {
  184 #ifdef SMP
  185         int i;
  186 
  187         for (i = 0; i < MAXCPU; ++i)
  188                 runq_init(&runq_pcpu[i]);
  189 #endif
  190 
  191         runq_init(&runq);
  192 }
  193 
  194 static int
  195 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
  196 {
  197         int error, new_val, period;
  198 
  199         period = 1000000 / realstathz;
  200         new_val = period * sched_slice;
  201         error = sysctl_handle_int(oidp, &new_val, 0, req);
  202         if (error != 0 || req->newptr == NULL)
  203                 return (error);
  204         if (new_val <= 0)
  205                 return (EINVAL);
  206         sched_slice = imax(1, (new_val + period / 2) / period);
  207         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
  208             realstathz);
  209         return (0);
  210 }
  211 
  212 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD, 0, "Scheduler");
  213 
  214 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
  215     "Scheduler name");
  216 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
  217     NULL, 0, sysctl_kern_quantum, "I",
  218     "Quantum for timeshare threads in microseconds");
  219 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
  220     "Quantum for timeshare threads in stathz ticks");
  221 #ifdef SMP
  222 /* Enable forwarding of wakeups to all other cpus */
  223 static SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup, CTLFLAG_RD, NULL,
  224     "Kernel SMP");
  225 
  226 static int runq_fuzz = 1;
  227 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
  228 
  229 static int forward_wakeup_enabled = 1;
  230 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
  231            &forward_wakeup_enabled, 0,
  232            "Forwarding of wakeup to idle CPUs");
  233 
  234 static int forward_wakeups_requested = 0;
  235 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
  236            &forward_wakeups_requested, 0,
  237            "Requests for Forwarding of wakeup to idle CPUs");
  238 
  239 static int forward_wakeups_delivered = 0;
  240 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
  241            &forward_wakeups_delivered, 0,
  242            "Completed Forwarding of wakeup to idle CPUs");
  243 
  244 static int forward_wakeup_use_mask = 1;
  245 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
  246            &forward_wakeup_use_mask, 0,
  247            "Use the mask of idle cpus");
  248 
  249 static int forward_wakeup_use_loop = 0;
  250 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
  251            &forward_wakeup_use_loop, 0,
  252            "Use a loop to find idle cpus");
  253 
  254 #endif
  255 #if 0
  256 static int sched_followon = 0;
  257 SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
  258            &sched_followon, 0,
  259            "allow threads to share a quantum");
  260 #endif
  261 
  262 SDT_PROVIDER_DEFINE(sched);
  263 
  264 SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *", 
  265     "struct proc *", "uint8_t");
  266 SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *", 
  267     "struct proc *", "void *");
  268 SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *", 
  269     "struct proc *", "void *", "int");
  270 SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *", 
  271     "struct proc *", "uint8_t", "struct thread *");
  272 SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
  273 SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
  274     "struct proc *");
  275 SDT_PROBE_DEFINE(sched, , , on__cpu);
  276 SDT_PROBE_DEFINE(sched, , , remain__cpu);
  277 SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
  278     "struct proc *");
  279 
  280 static __inline void
  281 sched_load_add(void)
  282 {
  283 
  284         sched_tdcnt++;
  285         KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
  286         SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
  287 }
  288 
  289 static __inline void
  290 sched_load_rem(void)
  291 {
  292 
  293         sched_tdcnt--;
  294         KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
  295         SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
  296 }
  297 /*
  298  * Arrange to reschedule if necessary, taking the priorities and
  299  * schedulers into account.
  300  */
  301 static void
  302 maybe_resched(struct thread *td)
  303 {
  304 
  305         THREAD_LOCK_ASSERT(td, MA_OWNED);
  306         if (td->td_priority < curthread->td_priority)
  307                 curthread->td_flags |= TDF_NEEDRESCHED;
  308 }
  309 
  310 /*
  311  * This function is called when a thread is about to be put on run queue
  312  * because it has been made runnable or its priority has been adjusted.  It
  313  * determines if the new thread should preempt the current thread.  If so,
  314  * it sets td_owepreempt to request a preemption.
  315  */
  316 int
  317 maybe_preempt(struct thread *td)
  318 {
  319 #ifdef PREEMPTION
  320         struct thread *ctd;
  321         int cpri, pri;
  322 
  323         /*
  324          * The new thread should not preempt the current thread if any of the
  325          * following conditions are true:
  326          *
  327          *  - The kernel is in the throes of crashing (panicstr).
  328          *  - The current thread has a higher (numerically lower) or
  329          *    equivalent priority.  Note that this prevents curthread from
  330          *    trying to preempt to itself.
  331          *  - The current thread has an inhibitor set or is in the process of
  332          *    exiting.  In this case, the current thread is about to switch
  333          *    out anyways, so there's no point in preempting.  If we did,
  334          *    the current thread would not be properly resumed as well, so
  335          *    just avoid that whole landmine.
  336          *  - If the new thread's priority is not a realtime priority and
  337          *    the current thread's priority is not an idle priority and
  338          *    FULL_PREEMPTION is disabled.
  339          *
  340          * If all of these conditions are false, but the current thread is in
  341          * a nested critical section, then we have to defer the preemption
  342          * until we exit the critical section.  Otherwise, switch immediately
  343          * to the new thread.
  344          */
  345         ctd = curthread;
  346         THREAD_LOCK_ASSERT(td, MA_OWNED);
  347         KASSERT((td->td_inhibitors == 0),
  348                         ("maybe_preempt: trying to run inhibited thread"));
  349         pri = td->td_priority;
  350         cpri = ctd->td_priority;
  351         if (panicstr != NULL || pri >= cpri /* || dumping */ ||
  352             TD_IS_INHIBITED(ctd))
  353                 return (0);
  354 #ifndef FULL_PREEMPTION
  355         if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
  356                 return (0);
  357 #endif
  358 
  359         CTR0(KTR_PROC, "maybe_preempt: scheduling preemption");
  360         ctd->td_owepreempt = 1;
  361         return (1);
  362 #else
  363         return (0);
  364 #endif
  365 }
  366 
  367 /*
  368  * Constants for digital decay and forget:
  369  *      90% of (ts_estcpu) usage in 5 * loadav time
  370  *      95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
  371  *          Note that, as ps(1) mentions, this can let percentages
  372  *          total over 100% (I've seen 137.9% for 3 processes).
  373  *
  374  * Note that schedclock() updates ts_estcpu and p_cpticks asynchronously.
  375  *
  376  * We wish to decay away 90% of ts_estcpu in (5 * loadavg) seconds.
  377  * That is, the system wants to compute a value of decay such
  378  * that the following for loop:
  379  *      for (i = 0; i < (5 * loadavg); i++)
  380  *              ts_estcpu *= decay;
  381  * will compute
  382  *      ts_estcpu *= 0.1;
  383  * for all values of loadavg:
  384  *
  385  * Mathematically this loop can be expressed by saying:
  386  *      decay ** (5 * loadavg) ~= .1
  387  *
  388  * The system computes decay as:
  389  *      decay = (2 * loadavg) / (2 * loadavg + 1)
  390  *
  391  * We wish to prove that the system's computation of decay
  392  * will always fulfill the equation:
  393  *      decay ** (5 * loadavg) ~= .1
  394  *
  395  * If we compute b as:
  396  *      b = 2 * loadavg
  397  * then
  398  *      decay = b / (b + 1)
  399  *
  400  * We now need to prove two things:
  401  *      1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
  402  *      2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
  403  *
  404  * Facts:
  405  *         For x close to zero, exp(x) =~ 1 + x, since
  406  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
  407  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
  408  *         For x close to zero, ln(1+x) =~ x, since
  409  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
  410  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
  411  *         ln(.1) =~ -2.30
  412  *
  413  * Proof of (1):
  414  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
  415  *      solving for factor,
  416  *      ln(factor) =~ (-2.30/5*loadav), or
  417  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
  418  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
  419  *
  420  * Proof of (2):
  421  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
  422  *      solving for power,
  423  *      power*ln(b/(b+1)) =~ -2.30, or
  424  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
  425  *
  426  * Actual power values for the implemented algorithm are as follows:
  427  *      loadav: 1       2       3       4
  428  *      power:  5.68    10.32   14.94   19.55
  429  */
  430 
  431 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
  432 #define loadfactor(loadav)      (2 * (loadav))
  433 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
  434 
  435 /* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
  436 static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
  437 SYSCTL_UINT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
  438 
  439 /*
  440  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
  441  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
  442  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
  443  *
  444  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
  445  *      1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
  446  *
  447  * If you don't want to bother with the faster/more-accurate formula, you
  448  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
  449  * (more general) method of calculating the %age of CPU used by a process.
  450  */
  451 #define CCPU_SHIFT      11
  452 
  453 /*
  454  * Recompute process priorities, every hz ticks.
  455  * MP-safe, called without the Giant mutex.
  456  */
  457 /* ARGSUSED */
  458 static void
  459 schedcpu(void)
  460 {
  461         fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
  462         struct thread *td;
  463         struct proc *p;
  464         struct td_sched *ts;
  465         int awake;
  466 
  467         sx_slock(&allproc_lock);
  468         FOREACH_PROC_IN_SYSTEM(p) {
  469                 PROC_LOCK(p);
  470                 if (p->p_state == PRS_NEW) {
  471                         PROC_UNLOCK(p);
  472                         continue;
  473                 }
  474                 FOREACH_THREAD_IN_PROC(p, td) {
  475                         awake = 0;
  476                         ts = td_get_sched(td);
  477                         thread_lock(td);
  478                         /*
  479                          * Increment sleep time (if sleeping).  We
  480                          * ignore overflow, as above.
  481                          */
  482                         /*
  483                          * The td_sched slptimes are not touched in wakeup
  484                          * because the thread may not HAVE everything in
  485                          * memory? XXX I think this is out of date.
  486                          */
  487                         if (TD_ON_RUNQ(td)) {
  488                                 awake = 1;
  489                                 td->td_flags &= ~TDF_DIDRUN;
  490                         } else if (TD_IS_RUNNING(td)) {
  491                                 awake = 1;
  492                                 /* Do not clear TDF_DIDRUN */
  493                         } else if (td->td_flags & TDF_DIDRUN) {
  494                                 awake = 1;
  495                                 td->td_flags &= ~TDF_DIDRUN;
  496                         }
  497 
  498                         /*
  499                          * ts_pctcpu is only for ps and ttyinfo().
  500                          */
  501                         ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
  502                         /*
  503                          * If the td_sched has been idle the entire second,
  504                          * stop recalculating its priority until
  505                          * it wakes up.
  506                          */
  507                         if (ts->ts_cpticks != 0) {
  508 #if     (FSHIFT >= CCPU_SHIFT)
  509                                 ts->ts_pctcpu += (realstathz == 100)
  510                                     ? ((fixpt_t) ts->ts_cpticks) <<
  511                                     (FSHIFT - CCPU_SHIFT) :
  512                                     100 * (((fixpt_t) ts->ts_cpticks)
  513                                     << (FSHIFT - CCPU_SHIFT)) / realstathz;
  514 #else
  515                                 ts->ts_pctcpu += ((FSCALE - ccpu) *
  516                                     (ts->ts_cpticks *
  517                                     FSCALE / realstathz)) >> FSHIFT;
  518 #endif
  519                                 ts->ts_cpticks = 0;
  520                         }
  521                         /*
  522                          * If there are ANY running threads in this process,
  523                          * then don't count it as sleeping.
  524                          * XXX: this is broken.
  525                          */
  526                         if (awake) {
  527                                 if (ts->ts_slptime > 1) {
  528                                         /*
  529                                          * In an ideal world, this should not
  530                                          * happen, because whoever woke us
  531                                          * up from the long sleep should have
  532                                          * unwound the slptime and reset our
  533                                          * priority before we run at the stale
  534                                          * priority.  Should KASSERT at some
  535                                          * point when all the cases are fixed.
  536                                          */
  537                                         updatepri(td);
  538                                 }
  539                                 ts->ts_slptime = 0;
  540                         } else
  541                                 ts->ts_slptime++;
  542                         if (ts->ts_slptime > 1) {
  543                                 thread_unlock(td);
  544                                 continue;
  545                         }
  546                         ts->ts_estcpu = decay_cpu(loadfac, ts->ts_estcpu);
  547                         resetpriority(td);
  548                         resetpriority_thread(td);
  549                         thread_unlock(td);
  550                 }
  551                 PROC_UNLOCK(p);
  552         }
  553         sx_sunlock(&allproc_lock);
  554 }
  555 
  556 /*
  557  * Main loop for a kthread that executes schedcpu once a second.
  558  */
  559 static void
  560 schedcpu_thread(void)
  561 {
  562 
  563         for (;;) {
  564                 schedcpu();
  565                 pause("-", hz);
  566         }
  567 }
  568 
  569 /*
  570  * Recalculate the priority of a process after it has slept for a while.
  571  * For all load averages >= 1 and max ts_estcpu of 255, sleeping for at
  572  * least six times the loadfactor will decay ts_estcpu to zero.
  573  */
  574 static void
  575 updatepri(struct thread *td)
  576 {
  577         struct td_sched *ts;
  578         fixpt_t loadfac;
  579         unsigned int newcpu;
  580 
  581         ts = td_get_sched(td);
  582         loadfac = loadfactor(averunnable.ldavg[0]);
  583         if (ts->ts_slptime > 5 * loadfac)
  584                 ts->ts_estcpu = 0;
  585         else {
  586                 newcpu = ts->ts_estcpu;
  587                 ts->ts_slptime--;       /* was incremented in schedcpu() */
  588                 while (newcpu && --ts->ts_slptime)
  589                         newcpu = decay_cpu(loadfac, newcpu);
  590                 ts->ts_estcpu = newcpu;
  591         }
  592 }
  593 
  594 /*
  595  * Compute the priority of a process when running in user mode.
  596  * Arrange to reschedule if the resulting priority is better
  597  * than that of the current process.
  598  */
  599 static void
  600 resetpriority(struct thread *td)
  601 {
  602         u_int newpriority;
  603 
  604         if (td->td_pri_class != PRI_TIMESHARE)
  605                 return;
  606         newpriority = PUSER +
  607             td_get_sched(td)->ts_estcpu / INVERSE_ESTCPU_WEIGHT +
  608             NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
  609         newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
  610             PRI_MAX_TIMESHARE);
  611         sched_user_prio(td, newpriority);
  612 }
  613 
  614 /*
  615  * Update the thread's priority when the associated process's user
  616  * priority changes.
  617  */
  618 static void
  619 resetpriority_thread(struct thread *td)
  620 {
  621 
  622         /* Only change threads with a time sharing user priority. */
  623         if (td->td_priority < PRI_MIN_TIMESHARE ||
  624             td->td_priority > PRI_MAX_TIMESHARE)
  625                 return;
  626 
  627         /* XXX the whole needresched thing is broken, but not silly. */
  628         maybe_resched(td);
  629 
  630         sched_prio(td, td->td_user_pri);
  631 }
  632 
  633 /* ARGSUSED */
  634 static void
  635 sched_setup(void *dummy)
  636 {
  637 
  638         setup_runqs();
  639 
  640         /* Account for thread0. */
  641         sched_load_add();
  642 }
  643 
  644 /*
  645  * This routine determines time constants after stathz and hz are setup.
  646  */
  647 static void
  648 sched_initticks(void *dummy)
  649 {
  650 
  651         realstathz = stathz ? stathz : hz;
  652         sched_slice = realstathz / 10;  /* ~100ms */
  653         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
  654             realstathz);
  655 }
  656 
  657 /* External interfaces start here */
  658 
  659 /*
  660  * Very early in the boot some setup of scheduler-specific
  661  * parts of proc0 and of some scheduler resources needs to be done.
  662  * Called from:
  663  *  proc0_init()
  664  */
  665 void
  666 schedinit(void)
  667 {
  668 
  669         /*
  670          * Set up the scheduler specific parts of thread0.
  671          */
  672         thread0.td_lock = &sched_lock;
  673         td_get_sched(&thread0)->ts_slice = sched_slice;
  674         mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
  675 }
  676 
  677 int
  678 sched_runnable(void)
  679 {
  680 #ifdef SMP
  681         return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
  682 #else
  683         return runq_check(&runq);
  684 #endif
  685 }
  686 
  687 int
  688 sched_rr_interval(void)
  689 {
  690 
  691         /* Convert sched_slice from stathz to hz. */
  692         return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
  693 }
  694 
  695 /*
  696  * We adjust the priority of the current process.  The priority of a
  697  * process gets worse as it accumulates CPU time.  The cpu usage
  698  * estimator (ts_estcpu) is increased here.  resetpriority() will
  699  * compute a different priority each time ts_estcpu increases by
  700  * INVERSE_ESTCPU_WEIGHT (until PRI_MAX_TIMESHARE is reached).  The
  701  * cpu usage estimator ramps up quite quickly when the process is
  702  * running (linearly), and decays away exponentially, at a rate which
  703  * is proportionally slower when the system is busy.  The basic
  704  * principle is that the system will 90% forget that the process used
  705  * a lot of CPU time in 5 * loadav seconds.  This causes the system to
  706  * favor processes which haven't run much recently, and to round-robin
  707  * among other processes.
  708  */
  709 void
  710 sched_clock(struct thread *td)
  711 {
  712         struct pcpuidlestat *stat;
  713         struct td_sched *ts;
  714 
  715         THREAD_LOCK_ASSERT(td, MA_OWNED);
  716         ts = td_get_sched(td);
  717 
  718         ts->ts_cpticks++;
  719         ts->ts_estcpu = ESTCPULIM(ts->ts_estcpu + 1);
  720         if ((ts->ts_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
  721                 resetpriority(td);
  722                 resetpriority_thread(td);
  723         }
  724 
  725         /*
  726          * Force a context switch if the current thread has used up a full
  727          * time slice (default is 100ms).
  728          */
  729         if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
  730                 ts->ts_slice = sched_slice;
  731                 td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
  732         }
  733 
  734         stat = DPCPU_PTR(idlestat);
  735         stat->oldidlecalls = stat->idlecalls;
  736         stat->idlecalls = 0;
  737 }
  738 
  739 /*
  740  * Charge child's scheduling CPU usage to parent.
  741  */
  742 void
  743 sched_exit(struct proc *p, struct thread *td)
  744 {
  745 
  746         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "proc exit",
  747             "prio:%d", td->td_priority);
  748 
  749         PROC_LOCK_ASSERT(p, MA_OWNED);
  750         sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
  751 }
  752 
  753 void
  754 sched_exit_thread(struct thread *td, struct thread *child)
  755 {
  756 
  757         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "exit",
  758             "prio:%d", child->td_priority);
  759         thread_lock(td);
  760         td_get_sched(td)->ts_estcpu = ESTCPULIM(td_get_sched(td)->ts_estcpu +
  761             td_get_sched(child)->ts_estcpu);
  762         thread_unlock(td);
  763         thread_lock(child);
  764         if ((child->td_flags & TDF_NOLOAD) == 0)
  765                 sched_load_rem();
  766         thread_unlock(child);
  767 }
  768 
  769 void
  770 sched_fork(struct thread *td, struct thread *childtd)
  771 {
  772         sched_fork_thread(td, childtd);
  773 }
  774 
  775 void
  776 sched_fork_thread(struct thread *td, struct thread *childtd)
  777 {
  778         struct td_sched *ts, *tsc;
  779 
  780         childtd->td_oncpu = NOCPU;
  781         childtd->td_lastcpu = NOCPU;
  782         childtd->td_lock = &sched_lock;
  783         childtd->td_cpuset = cpuset_ref(td->td_cpuset);
  784         childtd->td_domain.dr_policy = td->td_cpuset->cs_domain;
  785         childtd->td_priority = childtd->td_base_pri;
  786         ts = td_get_sched(childtd);
  787         bzero(ts, sizeof(*ts));
  788         tsc = td_get_sched(td);
  789         ts->ts_estcpu = tsc->ts_estcpu;
  790         ts->ts_flags |= (tsc->ts_flags & TSF_AFFINITY);
  791         ts->ts_slice = 1;
  792 }
  793 
  794 void
  795 sched_nice(struct proc *p, int nice)
  796 {
  797         struct thread *td;
  798 
  799         PROC_LOCK_ASSERT(p, MA_OWNED);
  800         p->p_nice = nice;
  801         FOREACH_THREAD_IN_PROC(p, td) {
  802                 thread_lock(td);
  803                 resetpriority(td);
  804                 resetpriority_thread(td);
  805                 thread_unlock(td);
  806         }
  807 }
  808 
  809 void
  810 sched_class(struct thread *td, int class)
  811 {
  812         THREAD_LOCK_ASSERT(td, MA_OWNED);
  813         td->td_pri_class = class;
  814 }
  815 
  816 /*
  817  * Adjust the priority of a thread.
  818  */
  819 static void
  820 sched_priority(struct thread *td, u_char prio)
  821 {
  822 
  823 
  824         KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "priority change",
  825             "prio:%d", td->td_priority, "new prio:%d", prio, KTR_ATTR_LINKED,
  826             sched_tdname(curthread));
  827         SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
  828         if (td != curthread && prio > td->td_priority) {
  829                 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
  830                     "lend prio", "prio:%d", td->td_priority, "new prio:%d",
  831                     prio, KTR_ATTR_LINKED, sched_tdname(td));
  832                 SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio, 
  833                     curthread);
  834         }
  835         THREAD_LOCK_ASSERT(td, MA_OWNED);
  836         if (td->td_priority == prio)
  837                 return;
  838         td->td_priority = prio;
  839         if (TD_ON_RUNQ(td) && td->td_rqindex != (prio / RQ_PPQ)) {
  840                 sched_rem(td);
  841                 sched_add(td, SRQ_BORING);
  842         }
  843 }
  844 
  845 /*
  846  * Update a thread's priority when it is lent another thread's
  847  * priority.
  848  */
  849 void
  850 sched_lend_prio(struct thread *td, u_char prio)
  851 {
  852 
  853         td->td_flags |= TDF_BORROWING;
  854         sched_priority(td, prio);
  855 }
  856 
  857 /*
  858  * Restore a thread's priority when priority propagation is
  859  * over.  The prio argument is the minimum priority the thread
  860  * needs to have to satisfy other possible priority lending
  861  * requests.  If the thread's regulary priority is less
  862  * important than prio the thread will keep a priority boost
  863  * of prio.
  864  */
  865 void
  866 sched_unlend_prio(struct thread *td, u_char prio)
  867 {
  868         u_char base_pri;
  869 
  870         if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
  871             td->td_base_pri <= PRI_MAX_TIMESHARE)
  872                 base_pri = td->td_user_pri;
  873         else
  874                 base_pri = td->td_base_pri;
  875         if (prio >= base_pri) {
  876                 td->td_flags &= ~TDF_BORROWING;
  877                 sched_prio(td, base_pri);
  878         } else
  879                 sched_lend_prio(td, prio);
  880 }
  881 
  882 void
  883 sched_prio(struct thread *td, u_char prio)
  884 {
  885         u_char oldprio;
  886 
  887         /* First, update the base priority. */
  888         td->td_base_pri = prio;
  889 
  890         /*
  891          * If the thread is borrowing another thread's priority, don't ever
  892          * lower the priority.
  893          */
  894         if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
  895                 return;
  896 
  897         /* Change the real priority. */
  898         oldprio = td->td_priority;
  899         sched_priority(td, prio);
  900 
  901         /*
  902          * If the thread is on a turnstile, then let the turnstile update
  903          * its state.
  904          */
  905         if (TD_ON_LOCK(td) && oldprio != prio)
  906                 turnstile_adjust(td, oldprio);
  907 }
  908 
  909 void
  910 sched_user_prio(struct thread *td, u_char prio)
  911 {
  912 
  913         THREAD_LOCK_ASSERT(td, MA_OWNED);
  914         td->td_base_user_pri = prio;
  915         if (td->td_lend_user_pri <= prio)
  916                 return;
  917         td->td_user_pri = prio;
  918 }
  919 
  920 void
  921 sched_lend_user_prio(struct thread *td, u_char prio)
  922 {
  923 
  924         THREAD_LOCK_ASSERT(td, MA_OWNED);
  925         td->td_lend_user_pri = prio;
  926         td->td_user_pri = min(prio, td->td_base_user_pri);
  927         if (td->td_priority > td->td_user_pri)
  928                 sched_prio(td, td->td_user_pri);
  929         else if (td->td_priority != td->td_user_pri)
  930                 td->td_flags |= TDF_NEEDRESCHED;
  931 }
  932 
  933 void
  934 sched_sleep(struct thread *td, int pri)
  935 {
  936 
  937         THREAD_LOCK_ASSERT(td, MA_OWNED);
  938         td->td_slptick = ticks;
  939         td_get_sched(td)->ts_slptime = 0;
  940         if (pri != 0 && PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
  941                 sched_prio(td, pri);
  942         if (TD_IS_SUSPENDED(td) || pri >= PSOCK)
  943                 td->td_flags |= TDF_CANSWAP;
  944 }
  945 
  946 void
  947 sched_switch(struct thread *td, struct thread *newtd, int flags)
  948 {
  949         struct mtx *tmtx;
  950         struct td_sched *ts;
  951         struct proc *p;
  952         int preempted;
  953 
  954         tmtx = NULL;
  955         ts = td_get_sched(td);
  956         p = td->td_proc;
  957 
  958         THREAD_LOCK_ASSERT(td, MA_OWNED);
  959 
  960         /* 
  961          * Switch to the sched lock to fix things up and pick
  962          * a new thread.
  963          * Block the td_lock in order to avoid breaking the critical path.
  964          */
  965         if (td->td_lock != &sched_lock) {
  966                 mtx_lock_spin(&sched_lock);
  967                 tmtx = thread_lock_block(td);
  968         }
  969 
  970         if ((td->td_flags & TDF_NOLOAD) == 0)
  971                 sched_load_rem();
  972 
  973         td->td_lastcpu = td->td_oncpu;
  974         preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
  975             (flags & SW_PREEMPT) != 0;
  976         td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
  977         td->td_owepreempt = 0;
  978         td->td_oncpu = NOCPU;
  979 
  980         /*
  981          * At the last moment, if this thread is still marked RUNNING,
  982          * then put it back on the run queue as it has not been suspended
  983          * or stopped or any thing else similar.  We never put the idle
  984          * threads on the run queue, however.
  985          */
  986         if (td->td_flags & TDF_IDLETD) {
  987                 TD_SET_CAN_RUN(td);
  988 #ifdef SMP
  989                 CPU_CLR(PCPU_GET(cpuid), &idle_cpus_mask);
  990 #endif
  991         } else {
  992                 if (TD_IS_RUNNING(td)) {
  993                         /* Put us back on the run queue. */
  994                         sched_add(td, preempted ?
  995                             SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
  996                             SRQ_OURSELF|SRQ_YIELDING);
  997                 }
  998         }
  999         if (newtd) {
 1000                 /*
 1001                  * The thread we are about to run needs to be counted
 1002                  * as if it had been added to the run queue and selected.
 1003                  * It came from:
 1004                  * * A preemption
 1005                  * * An upcall
 1006                  * * A followon
 1007                  */
 1008                 KASSERT((newtd->td_inhibitors == 0),
 1009                         ("trying to run inhibited thread"));
 1010                 newtd->td_flags |= TDF_DIDRUN;
 1011                 TD_SET_RUNNING(newtd);
 1012                 if ((newtd->td_flags & TDF_NOLOAD) == 0)
 1013                         sched_load_add();
 1014         } else {
 1015                 newtd = choosethread();
 1016                 MPASS(newtd->td_lock == &sched_lock);
 1017         }
 1018 
 1019 #if (KTR_COMPILE & KTR_SCHED) != 0
 1020         if (TD_IS_IDLETHREAD(td))
 1021                 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
 1022                     "prio:%d", td->td_priority);
 1023         else
 1024                 KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
 1025                     "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
 1026                     "lockname:\"%s\"", td->td_lockname);
 1027 #endif
 1028 
 1029         if (td != newtd) {
 1030 #ifdef  HWPMC_HOOKS
 1031                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1032                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
 1033 #endif
 1034 
 1035                 SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
 1036 
 1037                 /* I feel sleepy */
 1038                 lock_profile_release_lock(&sched_lock.lock_object);
 1039 #ifdef KDTRACE_HOOKS
 1040                 /*
 1041                  * If DTrace has set the active vtime enum to anything
 1042                  * other than INACTIVE (0), then it should have set the
 1043                  * function to call.
 1044                  */
 1045                 if (dtrace_vtime_active)
 1046                         (*dtrace_vtime_switch_func)(newtd);
 1047 #endif
 1048 
 1049                 cpu_switch(td, newtd, tmtx != NULL ? tmtx : td->td_lock);
 1050                 lock_profile_obtain_lock_success(&sched_lock.lock_object,
 1051                     0, 0, __FILE__, __LINE__);
 1052                 /*
 1053                  * Where am I?  What year is it?
 1054                  * We are in the same thread that went to sleep above,
 1055                  * but any amount of time may have passed. All our context
 1056                  * will still be available as will local variables.
 1057                  * PCPU values however may have changed as we may have
 1058                  * changed CPU so don't trust cached values of them.
 1059                  * New threads will go to fork_exit() instead of here
 1060                  * so if you change things here you may need to change
 1061                  * things there too.
 1062                  *
 1063                  * If the thread above was exiting it will never wake
 1064                  * up again here, so either it has saved everything it
 1065                  * needed to, or the thread_wait() or wait() will
 1066                  * need to reap it.
 1067                  */
 1068 
 1069                 SDT_PROBE0(sched, , , on__cpu);
 1070 #ifdef  HWPMC_HOOKS
 1071                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1072                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
 1073 #endif
 1074         } else
 1075                 SDT_PROBE0(sched, , , remain__cpu);
 1076 
 1077         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 1078             "prio:%d", td->td_priority);
 1079 
 1080 #ifdef SMP
 1081         if (td->td_flags & TDF_IDLETD)
 1082                 CPU_SET(PCPU_GET(cpuid), &idle_cpus_mask);
 1083 #endif
 1084         sched_lock.mtx_lock = (uintptr_t)td;
 1085         td->td_oncpu = PCPU_GET(cpuid);
 1086         MPASS(td->td_lock == &sched_lock);
 1087 }
 1088 
 1089 void
 1090 sched_wakeup(struct thread *td)
 1091 {
 1092         struct td_sched *ts;
 1093 
 1094         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1095         ts = td_get_sched(td);
 1096         td->td_flags &= ~TDF_CANSWAP;
 1097         if (ts->ts_slptime > 1) {
 1098                 updatepri(td);
 1099                 resetpriority(td);
 1100         }
 1101         td->td_slptick = 0;
 1102         ts->ts_slptime = 0;
 1103         ts->ts_slice = sched_slice;
 1104         sched_add(td, SRQ_BORING);
 1105 }
 1106 
 1107 #ifdef SMP
 1108 static int
 1109 forward_wakeup(int cpunum)
 1110 {
 1111         struct pcpu *pc;
 1112         cpuset_t dontuse, map, map2;
 1113         u_int id, me;
 1114         int iscpuset;
 1115 
 1116         mtx_assert(&sched_lock, MA_OWNED);
 1117 
 1118         CTR0(KTR_RUNQ, "forward_wakeup()");
 1119 
 1120         if ((!forward_wakeup_enabled) ||
 1121              (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
 1122                 return (0);
 1123         if (!smp_started || panicstr)
 1124                 return (0);
 1125 
 1126         forward_wakeups_requested++;
 1127 
 1128         /*
 1129          * Check the idle mask we received against what we calculated
 1130          * before in the old version.
 1131          */
 1132         me = PCPU_GET(cpuid);
 1133 
 1134         /* Don't bother if we should be doing it ourself. */
 1135         if (CPU_ISSET(me, &idle_cpus_mask) &&
 1136             (cpunum == NOCPU || me == cpunum))
 1137                 return (0);
 1138 
 1139         CPU_SETOF(me, &dontuse);
 1140         CPU_OR(&dontuse, &stopped_cpus);
 1141         CPU_OR(&dontuse, &hlt_cpus_mask);
 1142         CPU_ZERO(&map2);
 1143         if (forward_wakeup_use_loop) {
 1144                 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
 1145                         id = pc->pc_cpuid;
 1146                         if (!CPU_ISSET(id, &dontuse) &&
 1147                             pc->pc_curthread == pc->pc_idlethread) {
 1148                                 CPU_SET(id, &map2);
 1149                         }
 1150                 }
 1151         }
 1152 
 1153         if (forward_wakeup_use_mask) {
 1154                 map = idle_cpus_mask;
 1155                 CPU_NAND(&map, &dontuse);
 1156 
 1157                 /* If they are both on, compare and use loop if different. */
 1158                 if (forward_wakeup_use_loop) {
 1159                         if (CPU_CMP(&map, &map2)) {
 1160                                 printf("map != map2, loop method preferred\n");
 1161                                 map = map2;
 1162                         }
 1163                 }
 1164         } else {
 1165                 map = map2;
 1166         }
 1167 
 1168         /* If we only allow a specific CPU, then mask off all the others. */
 1169         if (cpunum != NOCPU) {
 1170                 KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
 1171                 iscpuset = CPU_ISSET(cpunum, &map);
 1172                 if (iscpuset == 0)
 1173                         CPU_ZERO(&map);
 1174                 else
 1175                         CPU_SETOF(cpunum, &map);
 1176         }
 1177         if (!CPU_EMPTY(&map)) {
 1178                 forward_wakeups_delivered++;
 1179                 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
 1180                         id = pc->pc_cpuid;
 1181                         if (!CPU_ISSET(id, &map))
 1182                                 continue;
 1183                         if (cpu_idle_wakeup(pc->pc_cpuid))
 1184                                 CPU_CLR(id, &map);
 1185                 }
 1186                 if (!CPU_EMPTY(&map))
 1187                         ipi_selected(map, IPI_AST);
 1188                 return (1);
 1189         }
 1190         if (cpunum == NOCPU)
 1191                 printf("forward_wakeup: Idle processor not found\n");
 1192         return (0);
 1193 }
 1194 
 1195 static void
 1196 kick_other_cpu(int pri, int cpuid)
 1197 {
 1198         struct pcpu *pcpu;
 1199         int cpri;
 1200 
 1201         pcpu = pcpu_find(cpuid);
 1202         if (CPU_ISSET(cpuid, &idle_cpus_mask)) {
 1203                 forward_wakeups_delivered++;
 1204                 if (!cpu_idle_wakeup(cpuid))
 1205                         ipi_cpu(cpuid, IPI_AST);
 1206                 return;
 1207         }
 1208 
 1209         cpri = pcpu->pc_curthread->td_priority;
 1210         if (pri >= cpri)
 1211                 return;
 1212 
 1213 #if defined(IPI_PREEMPTION) && defined(PREEMPTION)
 1214 #if !defined(FULL_PREEMPTION)
 1215         if (pri <= PRI_MAX_ITHD)
 1216 #endif /* ! FULL_PREEMPTION */
 1217         {
 1218                 ipi_cpu(cpuid, IPI_PREEMPT);
 1219                 return;
 1220         }
 1221 #endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
 1222 
 1223         pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
 1224         ipi_cpu(cpuid, IPI_AST);
 1225         return;
 1226 }
 1227 #endif /* SMP */
 1228 
 1229 #ifdef SMP
 1230 static int
 1231 sched_pickcpu(struct thread *td)
 1232 {
 1233         int best, cpu;
 1234 
 1235         mtx_assert(&sched_lock, MA_OWNED);
 1236 
 1237         if (td->td_lastcpu != NOCPU && THREAD_CAN_SCHED(td, td->td_lastcpu))
 1238                 best = td->td_lastcpu;
 1239         else
 1240                 best = NOCPU;
 1241         CPU_FOREACH(cpu) {
 1242                 if (!THREAD_CAN_SCHED(td, cpu))
 1243                         continue;
 1244         
 1245                 if (best == NOCPU)
 1246                         best = cpu;
 1247                 else if (runq_length[cpu] < runq_length[best])
 1248                         best = cpu;
 1249         }
 1250         KASSERT(best != NOCPU, ("no valid CPUs"));
 1251 
 1252         return (best);
 1253 }
 1254 #endif
 1255 
 1256 void
 1257 sched_add(struct thread *td, int flags)
 1258 #ifdef SMP
 1259 {
 1260         cpuset_t tidlemsk;
 1261         struct td_sched *ts;
 1262         u_int cpu, cpuid;
 1263         int forwarded = 0;
 1264         int single_cpu = 0;
 1265 
 1266         ts = td_get_sched(td);
 1267         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1268         KASSERT((td->td_inhibitors == 0),
 1269             ("sched_add: trying to run inhibited thread"));
 1270         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 1271             ("sched_add: bad thread state"));
 1272         KASSERT(td->td_flags & TDF_INMEM,
 1273             ("sched_add: thread swapped out"));
 1274 
 1275         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 1276             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 1277             sched_tdname(curthread));
 1278         KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 1279             KTR_ATTR_LINKED, sched_tdname(td));
 1280         SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
 1281             flags & SRQ_PREEMPTED);
 1282 
 1283 
 1284         /*
 1285          * Now that the thread is moving to the run-queue, set the lock
 1286          * to the scheduler's lock.
 1287          */
 1288         if (td->td_lock != &sched_lock) {
 1289                 mtx_lock_spin(&sched_lock);
 1290                 thread_lock_set(td, &sched_lock);
 1291         }
 1292         TD_SET_RUNQ(td);
 1293 
 1294         /*
 1295          * If SMP is started and the thread is pinned or otherwise limited to
 1296          * a specific set of CPUs, queue the thread to a per-CPU run queue.
 1297          * Otherwise, queue the thread to the global run queue.
 1298          *
 1299          * If SMP has not yet been started we must use the global run queue
 1300          * as per-CPU state may not be initialized yet and we may crash if we
 1301          * try to access the per-CPU run queues.
 1302          */
 1303         if (smp_started && (td->td_pinned != 0 || td->td_flags & TDF_BOUND ||
 1304             ts->ts_flags & TSF_AFFINITY)) {
 1305                 if (td->td_pinned != 0)
 1306                         cpu = td->td_lastcpu;
 1307                 else if (td->td_flags & TDF_BOUND) {
 1308                         /* Find CPU from bound runq. */
 1309                         KASSERT(SKE_RUNQ_PCPU(ts),
 1310                             ("sched_add: bound td_sched not on cpu runq"));
 1311                         cpu = ts->ts_runq - &runq_pcpu[0];
 1312                 } else
 1313                         /* Find a valid CPU for our cpuset */
 1314                         cpu = sched_pickcpu(td);
 1315                 ts->ts_runq = &runq_pcpu[cpu];
 1316                 single_cpu = 1;
 1317                 CTR3(KTR_RUNQ,
 1318                     "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
 1319                     cpu);
 1320         } else {
 1321                 CTR2(KTR_RUNQ,
 1322                     "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts,
 1323                     td);
 1324                 cpu = NOCPU;
 1325                 ts->ts_runq = &runq;
 1326         }
 1327 
 1328         if ((td->td_flags & TDF_NOLOAD) == 0)
 1329                 sched_load_add();
 1330         runq_add(ts->ts_runq, td, flags);
 1331         if (cpu != NOCPU)
 1332                 runq_length[cpu]++;
 1333 
 1334         cpuid = PCPU_GET(cpuid);
 1335         if (single_cpu && cpu != cpuid) {
 1336                 kick_other_cpu(td->td_priority, cpu);
 1337         } else {
 1338                 if (!single_cpu) {
 1339                         tidlemsk = idle_cpus_mask;
 1340                         CPU_NAND(&tidlemsk, &hlt_cpus_mask);
 1341                         CPU_CLR(cpuid, &tidlemsk);
 1342 
 1343                         if (!CPU_ISSET(cpuid, &idle_cpus_mask) &&
 1344                             ((flags & SRQ_INTR) == 0) &&
 1345                             !CPU_EMPTY(&tidlemsk))
 1346                                 forwarded = forward_wakeup(cpu);
 1347                 }
 1348 
 1349                 if (!forwarded) {
 1350                         if (!maybe_preempt(td))
 1351                                 maybe_resched(td);
 1352                 }
 1353         }
 1354 }
 1355 #else /* SMP */
 1356 {
 1357         struct td_sched *ts;
 1358 
 1359         ts = td_get_sched(td);
 1360         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1361         KASSERT((td->td_inhibitors == 0),
 1362             ("sched_add: trying to run inhibited thread"));
 1363         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 1364             ("sched_add: bad thread state"));
 1365         KASSERT(td->td_flags & TDF_INMEM,
 1366             ("sched_add: thread swapped out"));
 1367         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 1368             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 1369             sched_tdname(curthread));
 1370         KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 1371             KTR_ATTR_LINKED, sched_tdname(td));
 1372         SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
 1373             flags & SRQ_PREEMPTED);
 1374 
 1375         /*
 1376          * Now that the thread is moving to the run-queue, set the lock
 1377          * to the scheduler's lock.
 1378          */
 1379         if (td->td_lock != &sched_lock) {
 1380                 mtx_lock_spin(&sched_lock);
 1381                 thread_lock_set(td, &sched_lock);
 1382         }
 1383         TD_SET_RUNQ(td);
 1384         CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
 1385         ts->ts_runq = &runq;
 1386 
 1387         if ((td->td_flags & TDF_NOLOAD) == 0)
 1388                 sched_load_add();
 1389         runq_add(ts->ts_runq, td, flags);
 1390         if (!maybe_preempt(td))
 1391                 maybe_resched(td);
 1392 }
 1393 #endif /* SMP */
 1394 
 1395 void
 1396 sched_rem(struct thread *td)
 1397 {
 1398         struct td_sched *ts;
 1399 
 1400         ts = td_get_sched(td);
 1401         KASSERT(td->td_flags & TDF_INMEM,
 1402             ("sched_rem: thread swapped out"));
 1403         KASSERT(TD_ON_RUNQ(td),
 1404             ("sched_rem: thread not on run queue"));
 1405         mtx_assert(&sched_lock, MA_OWNED);
 1406         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
 1407             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 1408             sched_tdname(curthread));
 1409         SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
 1410 
 1411         if ((td->td_flags & TDF_NOLOAD) == 0)
 1412                 sched_load_rem();
 1413 #ifdef SMP
 1414         if (ts->ts_runq != &runq)
 1415                 runq_length[ts->ts_runq - runq_pcpu]--;
 1416 #endif
 1417         runq_remove(ts->ts_runq, td);
 1418         TD_SET_CAN_RUN(td);
 1419 }
 1420 
 1421 /*
 1422  * Select threads to run.  Note that running threads still consume a
 1423  * slot.
 1424  */
 1425 struct thread *
 1426 sched_choose(void)
 1427 {
 1428         struct thread *td;
 1429         struct runq *rq;
 1430 
 1431         mtx_assert(&sched_lock,  MA_OWNED);
 1432 #ifdef SMP
 1433         struct thread *tdcpu;
 1434 
 1435         rq = &runq;
 1436         td = runq_choose_fuzz(&runq, runq_fuzz);
 1437         tdcpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
 1438 
 1439         if (td == NULL ||
 1440             (tdcpu != NULL &&
 1441              tdcpu->td_priority < td->td_priority)) {
 1442                 CTR2(KTR_RUNQ, "choosing td %p from pcpu runq %d", tdcpu,
 1443                      PCPU_GET(cpuid));
 1444                 td = tdcpu;
 1445                 rq = &runq_pcpu[PCPU_GET(cpuid)];
 1446         } else {
 1447                 CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", td);
 1448         }
 1449 
 1450 #else
 1451         rq = &runq;
 1452         td = runq_choose(&runq);
 1453 #endif
 1454 
 1455         if (td) {
 1456 #ifdef SMP
 1457                 if (td == tdcpu)
 1458                         runq_length[PCPU_GET(cpuid)]--;
 1459 #endif
 1460                 runq_remove(rq, td);
 1461                 td->td_flags |= TDF_DIDRUN;
 1462 
 1463                 KASSERT(td->td_flags & TDF_INMEM,
 1464                     ("sched_choose: thread swapped out"));
 1465                 return (td);
 1466         }
 1467         return (PCPU_GET(idlethread));
 1468 }
 1469 
 1470 void
 1471 sched_preempt(struct thread *td)
 1472 {
 1473 
 1474         SDT_PROBE2(sched, , , surrender, td, td->td_proc);
 1475         thread_lock(td);
 1476         if (td->td_critnest > 1)
 1477                 td->td_owepreempt = 1;
 1478         else
 1479                 mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT, NULL);
 1480         thread_unlock(td);
 1481 }
 1482 
 1483 void
 1484 sched_userret_slowpath(struct thread *td)
 1485 {
 1486 
 1487         thread_lock(td);
 1488         td->td_priority = td->td_user_pri;
 1489         td->td_base_pri = td->td_user_pri;
 1490         thread_unlock(td);
 1491 }
 1492 
 1493 void
 1494 sched_bind(struct thread *td, int cpu)
 1495 {
 1496         struct td_sched *ts;
 1497 
 1498         THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
 1499         KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
 1500 
 1501         ts = td_get_sched(td);
 1502 
 1503         td->td_flags |= TDF_BOUND;
 1504 #ifdef SMP
 1505         ts->ts_runq = &runq_pcpu[cpu];
 1506         if (PCPU_GET(cpuid) == cpu)
 1507                 return;
 1508 
 1509         mi_switch(SW_VOL, NULL);
 1510 #endif
 1511 }
 1512 
 1513 void
 1514 sched_unbind(struct thread* td)
 1515 {
 1516         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1517         KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
 1518         td->td_flags &= ~TDF_BOUND;
 1519 }
 1520 
 1521 int
 1522 sched_is_bound(struct thread *td)
 1523 {
 1524         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1525         return (td->td_flags & TDF_BOUND);
 1526 }
 1527 
 1528 void
 1529 sched_relinquish(struct thread *td)
 1530 {
 1531         thread_lock(td);
 1532         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
 1533         thread_unlock(td);
 1534 }
 1535 
 1536 int
 1537 sched_load(void)
 1538 {
 1539         return (sched_tdcnt);
 1540 }
 1541 
 1542 int
 1543 sched_sizeof_proc(void)
 1544 {
 1545         return (sizeof(struct proc));
 1546 }
 1547 
 1548 int
 1549 sched_sizeof_thread(void)
 1550 {
 1551         return (sizeof(struct thread) + sizeof(struct td_sched));
 1552 }
 1553 
 1554 fixpt_t
 1555 sched_pctcpu(struct thread *td)
 1556 {
 1557         struct td_sched *ts;
 1558 
 1559         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1560         ts = td_get_sched(td);
 1561         return (ts->ts_pctcpu);
 1562 }
 1563 
 1564 #ifdef RACCT
 1565 /*
 1566  * Calculates the contribution to the thread cpu usage for the latest
 1567  * (unfinished) second.
 1568  */
 1569 fixpt_t
 1570 sched_pctcpu_delta(struct thread *td)
 1571 {
 1572         struct td_sched *ts;
 1573         fixpt_t delta;
 1574         int realstathz;
 1575 
 1576         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1577         ts = td_get_sched(td);
 1578         delta = 0;
 1579         realstathz = stathz ? stathz : hz;
 1580         if (ts->ts_cpticks != 0) {
 1581 #if     (FSHIFT >= CCPU_SHIFT)
 1582                 delta = (realstathz == 100)
 1583                     ? ((fixpt_t) ts->ts_cpticks) <<
 1584                     (FSHIFT - CCPU_SHIFT) :
 1585                     100 * (((fixpt_t) ts->ts_cpticks)
 1586                     << (FSHIFT - CCPU_SHIFT)) / realstathz;
 1587 #else
 1588                 delta = ((FSCALE - ccpu) *
 1589                     (ts->ts_cpticks *
 1590                     FSCALE / realstathz)) >> FSHIFT;
 1591 #endif
 1592         }
 1593 
 1594         return (delta);
 1595 }
 1596 #endif
 1597 
 1598 u_int
 1599 sched_estcpu(struct thread *td)
 1600 {
 1601         
 1602         return (td_get_sched(td)->ts_estcpu);
 1603 }
 1604 
 1605 /*
 1606  * The actual idle process.
 1607  */
 1608 void
 1609 sched_idletd(void *dummy)
 1610 {
 1611         struct pcpuidlestat *stat;
 1612 
 1613         THREAD_NO_SLEEPING();
 1614         stat = DPCPU_PTR(idlestat);
 1615         for (;;) {
 1616                 mtx_assert(&Giant, MA_NOTOWNED);
 1617 
 1618                 while (sched_runnable() == 0) {
 1619                         cpu_idle(stat->idlecalls + stat->oldidlecalls > 64);
 1620                         stat->idlecalls++;
 1621                 }
 1622 
 1623                 mtx_lock_spin(&sched_lock);
 1624                 mi_switch(SW_VOL | SWT_IDLE, NULL);
 1625                 mtx_unlock_spin(&sched_lock);
 1626         }
 1627 }
 1628 
 1629 /*
 1630  * A CPU is entering for the first time or a thread is exiting.
 1631  */
 1632 void
 1633 sched_throw(struct thread *td)
 1634 {
 1635         /*
 1636          * Correct spinlock nesting.  The idle thread context that we are
 1637          * borrowing was created so that it would start out with a single
 1638          * spin lock (sched_lock) held in fork_trampoline().  Since we've
 1639          * explicitly acquired locks in this function, the nesting count
 1640          * is now 2 rather than 1.  Since we are nested, calling
 1641          * spinlock_exit() will simply adjust the counts without allowing
 1642          * spin lock using code to interrupt us.
 1643          */
 1644         if (td == NULL) {
 1645                 mtx_lock_spin(&sched_lock);
 1646                 spinlock_exit();
 1647                 PCPU_SET(switchtime, cpu_ticks());
 1648                 PCPU_SET(switchticks, ticks);
 1649         } else {
 1650                 lock_profile_release_lock(&sched_lock.lock_object);
 1651                 MPASS(td->td_lock == &sched_lock);
 1652                 td->td_lastcpu = td->td_oncpu;
 1653                 td->td_oncpu = NOCPU;
 1654         }
 1655         mtx_assert(&sched_lock, MA_OWNED);
 1656         KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
 1657         cpu_throw(td, choosethread());  /* doesn't return */
 1658 }
 1659 
 1660 void
 1661 sched_fork_exit(struct thread *td)
 1662 {
 1663 
 1664         /*
 1665          * Finish setting up thread glue so that it begins execution in a
 1666          * non-nested critical section with sched_lock held but not recursed.
 1667          */
 1668         td->td_oncpu = PCPU_GET(cpuid);
 1669         sched_lock.mtx_lock = (uintptr_t)td;
 1670         lock_profile_obtain_lock_success(&sched_lock.lock_object,
 1671             0, 0, __FILE__, __LINE__);
 1672         THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
 1673 
 1674         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 1675             "prio:%d", td->td_priority);
 1676         SDT_PROBE0(sched, , , on__cpu);
 1677 }
 1678 
 1679 char *
 1680 sched_tdname(struct thread *td)
 1681 {
 1682 #ifdef KTR
 1683         struct td_sched *ts;
 1684 
 1685         ts = td_get_sched(td);
 1686         if (ts->ts_name[0] == '\0')
 1687                 snprintf(ts->ts_name, sizeof(ts->ts_name),
 1688                     "%s tid %d", td->td_name, td->td_tid);
 1689         return (ts->ts_name);
 1690 #else   
 1691         return (td->td_name);
 1692 #endif
 1693 }
 1694 
 1695 #ifdef KTR
 1696 void
 1697 sched_clear_tdname(struct thread *td)
 1698 {
 1699         struct td_sched *ts;
 1700 
 1701         ts = td_get_sched(td);
 1702         ts->ts_name[0] = '\0';
 1703 }
 1704 #endif
 1705 
 1706 void
 1707 sched_affinity(struct thread *td)
 1708 {
 1709 #ifdef SMP
 1710         struct td_sched *ts;
 1711         int cpu;
 1712 
 1713         THREAD_LOCK_ASSERT(td, MA_OWNED);       
 1714 
 1715         /*
 1716          * Set the TSF_AFFINITY flag if there is at least one CPU this
 1717          * thread can't run on.
 1718          */
 1719         ts = td_get_sched(td);
 1720         ts->ts_flags &= ~TSF_AFFINITY;
 1721         CPU_FOREACH(cpu) {
 1722                 if (!THREAD_CAN_SCHED(td, cpu)) {
 1723                         ts->ts_flags |= TSF_AFFINITY;
 1724                         break;
 1725                 }
 1726         }
 1727 
 1728         /*
 1729          * If this thread can run on all CPUs, nothing else to do.
 1730          */
 1731         if (!(ts->ts_flags & TSF_AFFINITY))
 1732                 return;
 1733 
 1734         /* Pinned threads and bound threads should be left alone. */
 1735         if (td->td_pinned != 0 || td->td_flags & TDF_BOUND)
 1736                 return;
 1737 
 1738         switch (td->td_state) {
 1739         case TDS_RUNQ:
 1740                 /*
 1741                  * If we are on a per-CPU runqueue that is in the set,
 1742                  * then nothing needs to be done.
 1743                  */
 1744                 if (ts->ts_runq != &runq &&
 1745                     THREAD_CAN_SCHED(td, ts->ts_runq - runq_pcpu))
 1746                         return;
 1747 
 1748                 /* Put this thread on a valid per-CPU runqueue. */
 1749                 sched_rem(td);
 1750                 sched_add(td, SRQ_BORING);
 1751                 break;
 1752         case TDS_RUNNING:
 1753                 /*
 1754                  * See if our current CPU is in the set.  If not, force a
 1755                  * context switch.
 1756                  */
 1757                 if (THREAD_CAN_SCHED(td, td->td_oncpu))
 1758                         return;
 1759 
 1760                 td->td_flags |= TDF_NEEDRESCHED;
 1761                 if (td != curthread)
 1762                         ipi_cpu(cpu, IPI_AST);
 1763                 break;
 1764         default:
 1765                 break;
 1766         }
 1767 #endif
 1768 }

Cache object: 3e86d61037935d0369d84da84cf79a82


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.