The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sched_4bsd.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1990, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD$");
   39 
   40 #include "opt_hwpmc_hooks.h"
   41 #include "opt_sched.h"
   42 
   43 #include <sys/param.h>
   44 #include <sys/systm.h>
   45 #include <sys/cpuset.h>
   46 #include <sys/kernel.h>
   47 #include <sys/ktr.h>
   48 #include <sys/lock.h>
   49 #include <sys/kthread.h>
   50 #include <sys/mutex.h>
   51 #include <sys/proc.h>
   52 #include <sys/resourcevar.h>
   53 #include <sys/sched.h>
   54 #include <sys/sdt.h>
   55 #include <sys/smp.h>
   56 #include <sys/sysctl.h>
   57 #include <sys/sx.h>
   58 #include <sys/turnstile.h>
   59 #include <sys/umtxvar.h>
   60 #include <machine/pcb.h>
   61 #include <machine/smp.h>
   62 
   63 #ifdef HWPMC_HOOKS
   64 #include <sys/pmckern.h>
   65 #endif
   66 
   67 #ifdef KDTRACE_HOOKS
   68 #include <sys/dtrace_bsd.h>
   69 int __read_mostly               dtrace_vtime_active;
   70 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
   71 #endif
   72 
   73 /*
   74  * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
   75  * the range 100-256 Hz (approximately).
   76  */
   77 #define ESTCPULIM(e) \
   78     min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
   79     RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
   80 #ifdef SMP
   81 #define INVERSE_ESTCPU_WEIGHT   (8 * smp_cpus)
   82 #else
   83 #define INVERSE_ESTCPU_WEIGHT   8       /* 1 / (priorities per estcpu level). */
   84 #endif
   85 #define NICE_WEIGHT             1       /* Priorities per nice level. */
   86 
   87 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
   88 
   89 /*
   90  * The schedulable entity that runs a context.
   91  * This is  an extension to the thread structure and is tailored to
   92  * the requirements of this scheduler.
   93  * All fields are protected by the scheduler lock.
   94  */
   95 struct td_sched {
   96         fixpt_t         ts_pctcpu;      /* %cpu during p_swtime. */
   97         u_int           ts_estcpu;      /* Estimated cpu utilization. */
   98         int             ts_cpticks;     /* Ticks of cpu time. */
   99         int             ts_slptime;     /* Seconds !RUNNING. */
  100         int             ts_slice;       /* Remaining part of time slice. */
  101         int             ts_flags;
  102         struct runq     *ts_runq;       /* runq the thread is currently on */
  103 #ifdef KTR
  104         char            ts_name[TS_NAME_LEN];
  105 #endif
  106 };
  107 
  108 /* flags kept in td_flags */
  109 #define TDF_DIDRUN      TDF_SCHED0      /* thread actually ran. */
  110 #define TDF_BOUND       TDF_SCHED1      /* Bound to one CPU. */
  111 #define TDF_SLICEEND    TDF_SCHED2      /* Thread time slice is over. */
  112 
  113 /* flags kept in ts_flags */
  114 #define TSF_AFFINITY    0x0001          /* Has a non-"full" CPU set. */
  115 
  116 #define SKE_RUNQ_PCPU(ts)                                               \
  117     ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
  118 
  119 #define THREAD_CAN_SCHED(td, cpu)       \
  120     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
  121 
  122 _Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
  123     sizeof(struct thread0_storage),
  124     "increase struct thread0_storage.t0st_sched size");
  125 
  126 static struct mtx sched_lock;
  127 
  128 static int      realstathz = 127; /* stathz is sometimes 0 and run off of hz. */
  129 static int      sched_tdcnt;    /* Total runnable threads in the system. */
  130 static int      sched_slice = 12; /* Thread run time before rescheduling. */
  131 
  132 static void     setup_runqs(void);
  133 static void     schedcpu(void);
  134 static void     schedcpu_thread(void);
  135 static void     sched_priority(struct thread *td, u_char prio);
  136 static void     sched_setup(void *dummy);
  137 static void     maybe_resched(struct thread *td);
  138 static void     updatepri(struct thread *td);
  139 static void     resetpriority(struct thread *td);
  140 static void     resetpriority_thread(struct thread *td);
  141 #ifdef SMP
  142 static int      sched_pickcpu(struct thread *td);
  143 static int      forward_wakeup(int cpunum);
  144 static void     kick_other_cpu(int pri, int cpuid);
  145 #endif
  146 
  147 static struct kproc_desc sched_kp = {
  148         "schedcpu",
  149         schedcpu_thread,
  150         NULL
  151 };
  152 SYSINIT(schedcpu, SI_SUB_LAST, SI_ORDER_FIRST, kproc_start,
  153     &sched_kp);
  154 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
  155 
  156 static void sched_initticks(void *dummy);
  157 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
  158     NULL);
  159 
  160 /*
  161  * Global run queue.
  162  */
  163 static struct runq runq;
  164 
  165 #ifdef SMP
  166 /*
  167  * Per-CPU run queues
  168  */
  169 static struct runq runq_pcpu[MAXCPU];
  170 long runq_length[MAXCPU];
  171 
  172 static cpuset_t idle_cpus_mask;
  173 #endif
  174 
  175 struct pcpuidlestat {
  176         u_int idlecalls;
  177         u_int oldidlecalls;
  178 };
  179 DPCPU_DEFINE_STATIC(struct pcpuidlestat, idlestat);
  180 
  181 static void
  182 setup_runqs(void)
  183 {
  184 #ifdef SMP
  185         int i;
  186 
  187         for (i = 0; i < MAXCPU; ++i)
  188                 runq_init(&runq_pcpu[i]);
  189 #endif
  190 
  191         runq_init(&runq);
  192 }
  193 
  194 static int
  195 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
  196 {
  197         int error, new_val, period;
  198 
  199         period = 1000000 / realstathz;
  200         new_val = period * sched_slice;
  201         error = sysctl_handle_int(oidp, &new_val, 0, req);
  202         if (error != 0 || req->newptr == NULL)
  203                 return (error);
  204         if (new_val <= 0)
  205                 return (EINVAL);
  206         sched_slice = imax(1, (new_val + period / 2) / period);
  207         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
  208             realstathz);
  209         return (0);
  210 }
  211 
  212 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  213     "Scheduler");
  214 
  215 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
  216     "Scheduler name");
  217 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum,
  218     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
  219     sysctl_kern_quantum, "I",
  220     "Quantum for timeshare threads in microseconds");
  221 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
  222     "Quantum for timeshare threads in stathz ticks");
  223 #ifdef SMP
  224 /* Enable forwarding of wakeups to all other cpus */
  225 static SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup,
  226     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
  227     "Kernel SMP");
  228 
  229 static int runq_fuzz = 1;
  230 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
  231 
  232 static int forward_wakeup_enabled = 1;
  233 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
  234            &forward_wakeup_enabled, 0,
  235            "Forwarding of wakeup to idle CPUs");
  236 
  237 static int forward_wakeups_requested = 0;
  238 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
  239            &forward_wakeups_requested, 0,
  240            "Requests for Forwarding of wakeup to idle CPUs");
  241 
  242 static int forward_wakeups_delivered = 0;
  243 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
  244            &forward_wakeups_delivered, 0,
  245            "Completed Forwarding of wakeup to idle CPUs");
  246 
  247 static int forward_wakeup_use_mask = 1;
  248 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
  249            &forward_wakeup_use_mask, 0,
  250            "Use the mask of idle cpus");
  251 
  252 static int forward_wakeup_use_loop = 0;
  253 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
  254            &forward_wakeup_use_loop, 0,
  255            "Use a loop to find idle cpus");
  256 
  257 #endif
  258 #if 0
  259 static int sched_followon = 0;
  260 SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
  261            &sched_followon, 0,
  262            "allow threads to share a quantum");
  263 #endif
  264 
  265 SDT_PROVIDER_DEFINE(sched);
  266 
  267 SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *", 
  268     "struct proc *", "uint8_t");
  269 SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *", 
  270     "struct proc *", "void *");
  271 SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *", 
  272     "struct proc *", "void *", "int");
  273 SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *", 
  274     "struct proc *", "uint8_t", "struct thread *");
  275 SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
  276 SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
  277     "struct proc *");
  278 SDT_PROBE_DEFINE(sched, , , on__cpu);
  279 SDT_PROBE_DEFINE(sched, , , remain__cpu);
  280 SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
  281     "struct proc *");
  282 
  283 static __inline void
  284 sched_load_add(void)
  285 {
  286 
  287         sched_tdcnt++;
  288         KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
  289         SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
  290 }
  291 
  292 static __inline void
  293 sched_load_rem(void)
  294 {
  295 
  296         sched_tdcnt--;
  297         KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
  298         SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
  299 }
  300 /*
  301  * Arrange to reschedule if necessary, taking the priorities and
  302  * schedulers into account.
  303  */
  304 static void
  305 maybe_resched(struct thread *td)
  306 {
  307 
  308         THREAD_LOCK_ASSERT(td, MA_OWNED);
  309         if (td->td_priority < curthread->td_priority)
  310                 curthread->td_flags |= TDF_NEEDRESCHED;
  311 }
  312 
  313 /*
  314  * This function is called when a thread is about to be put on run queue
  315  * because it has been made runnable or its priority has been adjusted.  It
  316  * determines if the new thread should preempt the current thread.  If so,
  317  * it sets td_owepreempt to request a preemption.
  318  */
  319 int
  320 maybe_preempt(struct thread *td)
  321 {
  322 #ifdef PREEMPTION
  323         struct thread *ctd;
  324         int cpri, pri;
  325 
  326         /*
  327          * The new thread should not preempt the current thread if any of the
  328          * following conditions are true:
  329          *
  330          *  - The kernel is in the throes of crashing (panicstr).
  331          *  - The current thread has a higher (numerically lower) or
  332          *    equivalent priority.  Note that this prevents curthread from
  333          *    trying to preempt to itself.
  334          *  - The current thread has an inhibitor set or is in the process of
  335          *    exiting.  In this case, the current thread is about to switch
  336          *    out anyways, so there's no point in preempting.  If we did,
  337          *    the current thread would not be properly resumed as well, so
  338          *    just avoid that whole landmine.
  339          *  - If the new thread's priority is not a realtime priority and
  340          *    the current thread's priority is not an idle priority and
  341          *    FULL_PREEMPTION is disabled.
  342          *
  343          * If all of these conditions are false, but the current thread is in
  344          * a nested critical section, then we have to defer the preemption
  345          * until we exit the critical section.  Otherwise, switch immediately
  346          * to the new thread.
  347          */
  348         ctd = curthread;
  349         THREAD_LOCK_ASSERT(td, MA_OWNED);
  350         KASSERT((td->td_inhibitors == 0),
  351                         ("maybe_preempt: trying to run inhibited thread"));
  352         pri = td->td_priority;
  353         cpri = ctd->td_priority;
  354         if (KERNEL_PANICKED() || pri >= cpri /* || dumping */ ||
  355             TD_IS_INHIBITED(ctd))
  356                 return (0);
  357 #ifndef FULL_PREEMPTION
  358         if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
  359                 return (0);
  360 #endif
  361 
  362         CTR0(KTR_PROC, "maybe_preempt: scheduling preemption");
  363         ctd->td_owepreempt = 1;
  364         return (1);
  365 #else
  366         return (0);
  367 #endif
  368 }
  369 
  370 /*
  371  * Constants for digital decay and forget:
  372  *      90% of (ts_estcpu) usage in 5 * loadav time
  373  *      95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
  374  *          Note that, as ps(1) mentions, this can let percentages
  375  *          total over 100% (I've seen 137.9% for 3 processes).
  376  *
  377  * Note that schedclock() updates ts_estcpu and p_cpticks asynchronously.
  378  *
  379  * We wish to decay away 90% of ts_estcpu in (5 * loadavg) seconds.
  380  * That is, the system wants to compute a value of decay such
  381  * that the following for loop:
  382  *      for (i = 0; i < (5 * loadavg); i++)
  383  *              ts_estcpu *= decay;
  384  * will compute
  385  *      ts_estcpu *= 0.1;
  386  * for all values of loadavg:
  387  *
  388  * Mathematically this loop can be expressed by saying:
  389  *      decay ** (5 * loadavg) ~= .1
  390  *
  391  * The system computes decay as:
  392  *      decay = (2 * loadavg) / (2 * loadavg + 1)
  393  *
  394  * We wish to prove that the system's computation of decay
  395  * will always fulfill the equation:
  396  *      decay ** (5 * loadavg) ~= .1
  397  *
  398  * If we compute b as:
  399  *      b = 2 * loadavg
  400  * then
  401  *      decay = b / (b + 1)
  402  *
  403  * We now need to prove two things:
  404  *      1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
  405  *      2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
  406  *
  407  * Facts:
  408  *         For x close to zero, exp(x) =~ 1 + x, since
  409  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
  410  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
  411  *         For x close to zero, ln(1+x) =~ x, since
  412  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
  413  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
  414  *         ln(.1) =~ -2.30
  415  *
  416  * Proof of (1):
  417  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
  418  *      solving for factor,
  419  *      ln(factor) =~ (-2.30/5*loadav), or
  420  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
  421  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
  422  *
  423  * Proof of (2):
  424  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
  425  *      solving for power,
  426  *      power*ln(b/(b+1)) =~ -2.30, or
  427  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
  428  *
  429  * Actual power values for the implemented algorithm are as follows:
  430  *      loadav: 1       2       3       4
  431  *      power:  5.68    10.32   14.94   19.55
  432  */
  433 
  434 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
  435 #define loadfactor(loadav)      (2 * (loadav))
  436 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
  437 
  438 /* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
  439 static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
  440 SYSCTL_UINT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0,
  441     "Decay factor used for updating %CPU");
  442 
  443 /*
  444  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
  445  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
  446  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
  447  *
  448  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
  449  *      1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
  450  *
  451  * If you don't want to bother with the faster/more-accurate formula, you
  452  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
  453  * (more general) method of calculating the %age of CPU used by a process.
  454  */
  455 #define CCPU_SHIFT      11
  456 
  457 /*
  458  * Recompute process priorities, every hz ticks.
  459  * MP-safe, called without the Giant mutex.
  460  */
  461 /* ARGSUSED */
  462 static void
  463 schedcpu(void)
  464 {
  465         fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
  466         struct thread *td;
  467         struct proc *p;
  468         struct td_sched *ts;
  469         int awake;
  470 
  471         sx_slock(&allproc_lock);
  472         FOREACH_PROC_IN_SYSTEM(p) {
  473                 PROC_LOCK(p);
  474                 if (p->p_state == PRS_NEW) {
  475                         PROC_UNLOCK(p);
  476                         continue;
  477                 }
  478                 FOREACH_THREAD_IN_PROC(p, td) {
  479                         awake = 0;
  480                         ts = td_get_sched(td);
  481                         thread_lock(td);
  482                         /*
  483                          * Increment sleep time (if sleeping).  We
  484                          * ignore overflow, as above.
  485                          */
  486                         /*
  487                          * The td_sched slptimes are not touched in wakeup
  488                          * because the thread may not HAVE everything in
  489                          * memory? XXX I think this is out of date.
  490                          */
  491                         if (TD_ON_RUNQ(td)) {
  492                                 awake = 1;
  493                                 td->td_flags &= ~TDF_DIDRUN;
  494                         } else if (TD_IS_RUNNING(td)) {
  495                                 awake = 1;
  496                                 /* Do not clear TDF_DIDRUN */
  497                         } else if (td->td_flags & TDF_DIDRUN) {
  498                                 awake = 1;
  499                                 td->td_flags &= ~TDF_DIDRUN;
  500                         }
  501 
  502                         /*
  503                          * ts_pctcpu is only for ps and ttyinfo().
  504                          */
  505                         ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
  506                         /*
  507                          * If the td_sched has been idle the entire second,
  508                          * stop recalculating its priority until
  509                          * it wakes up.
  510                          */
  511                         if (ts->ts_cpticks != 0) {
  512 #if     (FSHIFT >= CCPU_SHIFT)
  513                                 ts->ts_pctcpu += (realstathz == 100)
  514                                     ? ((fixpt_t) ts->ts_cpticks) <<
  515                                     (FSHIFT - CCPU_SHIFT) :
  516                                     100 * (((fixpt_t) ts->ts_cpticks)
  517                                     << (FSHIFT - CCPU_SHIFT)) / realstathz;
  518 #else
  519                                 ts->ts_pctcpu += ((FSCALE - ccpu) *
  520                                     (ts->ts_cpticks *
  521                                     FSCALE / realstathz)) >> FSHIFT;
  522 #endif
  523                                 ts->ts_cpticks = 0;
  524                         }
  525                         /*
  526                          * If there are ANY running threads in this process,
  527                          * then don't count it as sleeping.
  528                          * XXX: this is broken.
  529                          */
  530                         if (awake) {
  531                                 if (ts->ts_slptime > 1) {
  532                                         /*
  533                                          * In an ideal world, this should not
  534                                          * happen, because whoever woke us
  535                                          * up from the long sleep should have
  536                                          * unwound the slptime and reset our
  537                                          * priority before we run at the stale
  538                                          * priority.  Should KASSERT at some
  539                                          * point when all the cases are fixed.
  540                                          */
  541                                         updatepri(td);
  542                                 }
  543                                 ts->ts_slptime = 0;
  544                         } else
  545                                 ts->ts_slptime++;
  546                         if (ts->ts_slptime > 1) {
  547                                 thread_unlock(td);
  548                                 continue;
  549                         }
  550                         ts->ts_estcpu = decay_cpu(loadfac, ts->ts_estcpu);
  551                         resetpriority(td);
  552                         resetpriority_thread(td);
  553                         thread_unlock(td);
  554                 }
  555                 PROC_UNLOCK(p);
  556         }
  557         sx_sunlock(&allproc_lock);
  558 }
  559 
  560 /*
  561  * Main loop for a kthread that executes schedcpu once a second.
  562  */
  563 static void
  564 schedcpu_thread(void)
  565 {
  566 
  567         for (;;) {
  568                 schedcpu();
  569                 pause("-", hz);
  570         }
  571 }
  572 
  573 /*
  574  * Recalculate the priority of a process after it has slept for a while.
  575  * For all load averages >= 1 and max ts_estcpu of 255, sleeping for at
  576  * least six times the loadfactor will decay ts_estcpu to zero.
  577  */
  578 static void
  579 updatepri(struct thread *td)
  580 {
  581         struct td_sched *ts;
  582         fixpt_t loadfac;
  583         unsigned int newcpu;
  584 
  585         ts = td_get_sched(td);
  586         loadfac = loadfactor(averunnable.ldavg[0]);
  587         if (ts->ts_slptime > 5 * loadfac)
  588                 ts->ts_estcpu = 0;
  589         else {
  590                 newcpu = ts->ts_estcpu;
  591                 ts->ts_slptime--;       /* was incremented in schedcpu() */
  592                 while (newcpu && --ts->ts_slptime)
  593                         newcpu = decay_cpu(loadfac, newcpu);
  594                 ts->ts_estcpu = newcpu;
  595         }
  596 }
  597 
  598 /*
  599  * Compute the priority of a process when running in user mode.
  600  * Arrange to reschedule if the resulting priority is better
  601  * than that of the current process.
  602  */
  603 static void
  604 resetpriority(struct thread *td)
  605 {
  606         u_int newpriority;
  607 
  608         if (td->td_pri_class != PRI_TIMESHARE)
  609                 return;
  610         newpriority = PUSER +
  611             td_get_sched(td)->ts_estcpu / INVERSE_ESTCPU_WEIGHT +
  612             NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
  613         newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
  614             PRI_MAX_TIMESHARE);
  615         sched_user_prio(td, newpriority);
  616 }
  617 
  618 /*
  619  * Update the thread's priority when the associated process's user
  620  * priority changes.
  621  */
  622 static void
  623 resetpriority_thread(struct thread *td)
  624 {
  625 
  626         /* Only change threads with a time sharing user priority. */
  627         if (td->td_priority < PRI_MIN_TIMESHARE ||
  628             td->td_priority > PRI_MAX_TIMESHARE)
  629                 return;
  630 
  631         /* XXX the whole needresched thing is broken, but not silly. */
  632         maybe_resched(td);
  633 
  634         sched_prio(td, td->td_user_pri);
  635 }
  636 
  637 /* ARGSUSED */
  638 static void
  639 sched_setup(void *dummy)
  640 {
  641 
  642         setup_runqs();
  643 
  644         /* Account for thread0. */
  645         sched_load_add();
  646 }
  647 
  648 /*
  649  * This routine determines time constants after stathz and hz are setup.
  650  */
  651 static void
  652 sched_initticks(void *dummy)
  653 {
  654 
  655         realstathz = stathz ? stathz : hz;
  656         sched_slice = realstathz / 10;  /* ~100ms */
  657         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
  658             realstathz);
  659 }
  660 
  661 /* External interfaces start here */
  662 
  663 /*
  664  * Very early in the boot some setup of scheduler-specific
  665  * parts of proc0 and of some scheduler resources needs to be done.
  666  * Called from:
  667  *  proc0_init()
  668  */
  669 void
  670 schedinit(void)
  671 {
  672 
  673         /*
  674          * Set up the scheduler specific parts of thread0.
  675          */
  676         thread0.td_lock = &sched_lock;
  677         td_get_sched(&thread0)->ts_slice = sched_slice;
  678         mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN);
  679 }
  680 
  681 void
  682 schedinit_ap(void)
  683 {
  684 
  685         /* Nothing needed. */
  686 }
  687 
  688 int
  689 sched_runnable(void)
  690 {
  691 #ifdef SMP
  692         return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
  693 #else
  694         return runq_check(&runq);
  695 #endif
  696 }
  697 
  698 int
  699 sched_rr_interval(void)
  700 {
  701 
  702         /* Convert sched_slice from stathz to hz. */
  703         return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
  704 }
  705 
  706 /*
  707  * We adjust the priority of the current process.  The priority of a
  708  * process gets worse as it accumulates CPU time.  The cpu usage
  709  * estimator (ts_estcpu) is increased here.  resetpriority() will
  710  * compute a different priority each time ts_estcpu increases by
  711  * INVERSE_ESTCPU_WEIGHT (until PRI_MAX_TIMESHARE is reached).  The
  712  * cpu usage estimator ramps up quite quickly when the process is
  713  * running (linearly), and decays away exponentially, at a rate which
  714  * is proportionally slower when the system is busy.  The basic
  715  * principle is that the system will 90% forget that the process used
  716  * a lot of CPU time in 5 * loadav seconds.  This causes the system to
  717  * favor processes which haven't run much recently, and to round-robin
  718  * among other processes.
  719  */
  720 static void
  721 sched_clock_tick(struct thread *td)
  722 {
  723         struct pcpuidlestat *stat;
  724         struct td_sched *ts;
  725 
  726         THREAD_LOCK_ASSERT(td, MA_OWNED);
  727         ts = td_get_sched(td);
  728 
  729         ts->ts_cpticks++;
  730         ts->ts_estcpu = ESTCPULIM(ts->ts_estcpu + 1);
  731         if ((ts->ts_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
  732                 resetpriority(td);
  733                 resetpriority_thread(td);
  734         }
  735 
  736         /*
  737          * Force a context switch if the current thread has used up a full
  738          * time slice (default is 100ms).
  739          */
  740         if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
  741                 ts->ts_slice = sched_slice;
  742                 td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
  743         }
  744 
  745         stat = DPCPU_PTR(idlestat);
  746         stat->oldidlecalls = stat->idlecalls;
  747         stat->idlecalls = 0;
  748 }
  749 
  750 void
  751 sched_clock(struct thread *td, int cnt)
  752 {
  753 
  754         for ( ; cnt > 0; cnt--)
  755                 sched_clock_tick(td);
  756 }
  757 
  758 /*
  759  * Charge child's scheduling CPU usage to parent.
  760  */
  761 void
  762 sched_exit(struct proc *p, struct thread *td)
  763 {
  764 
  765         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "proc exit",
  766             "prio:%d", td->td_priority);
  767 
  768         PROC_LOCK_ASSERT(p, MA_OWNED);
  769         sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
  770 }
  771 
  772 void
  773 sched_exit_thread(struct thread *td, struct thread *child)
  774 {
  775 
  776         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "exit",
  777             "prio:%d", child->td_priority);
  778         thread_lock(td);
  779         td_get_sched(td)->ts_estcpu = ESTCPULIM(td_get_sched(td)->ts_estcpu +
  780             td_get_sched(child)->ts_estcpu);
  781         thread_unlock(td);
  782         thread_lock(child);
  783         if ((child->td_flags & TDF_NOLOAD) == 0)
  784                 sched_load_rem();
  785         thread_unlock(child);
  786 }
  787 
  788 void
  789 sched_fork(struct thread *td, struct thread *childtd)
  790 {
  791         sched_fork_thread(td, childtd);
  792 }
  793 
  794 void
  795 sched_fork_thread(struct thread *td, struct thread *childtd)
  796 {
  797         struct td_sched *ts, *tsc;
  798 
  799         childtd->td_oncpu = NOCPU;
  800         childtd->td_lastcpu = NOCPU;
  801         childtd->td_lock = &sched_lock;
  802         childtd->td_cpuset = cpuset_ref(td->td_cpuset);
  803         childtd->td_domain.dr_policy = td->td_cpuset->cs_domain;
  804         childtd->td_priority = childtd->td_base_pri;
  805         ts = td_get_sched(childtd);
  806         bzero(ts, sizeof(*ts));
  807         tsc = td_get_sched(td);
  808         ts->ts_estcpu = tsc->ts_estcpu;
  809         ts->ts_flags |= (tsc->ts_flags & TSF_AFFINITY);
  810         ts->ts_slice = 1;
  811 }
  812 
  813 void
  814 sched_nice(struct proc *p, int nice)
  815 {
  816         struct thread *td;
  817 
  818         PROC_LOCK_ASSERT(p, MA_OWNED);
  819         p->p_nice = nice;
  820         FOREACH_THREAD_IN_PROC(p, td) {
  821                 thread_lock(td);
  822                 resetpriority(td);
  823                 resetpriority_thread(td);
  824                 thread_unlock(td);
  825         }
  826 }
  827 
  828 void
  829 sched_class(struct thread *td, int class)
  830 {
  831         THREAD_LOCK_ASSERT(td, MA_OWNED);
  832         td->td_pri_class = class;
  833 }
  834 
  835 /*
  836  * Adjust the priority of a thread.
  837  */
  838 static void
  839 sched_priority(struct thread *td, u_char prio)
  840 {
  841 
  842         KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "priority change",
  843             "prio:%d", td->td_priority, "new prio:%d", prio, KTR_ATTR_LINKED,
  844             sched_tdname(curthread));
  845         SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
  846         if (td != curthread && prio > td->td_priority) {
  847                 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
  848                     "lend prio", "prio:%d", td->td_priority, "new prio:%d",
  849                     prio, KTR_ATTR_LINKED, sched_tdname(td));
  850                 SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio, 
  851                     curthread);
  852         }
  853         THREAD_LOCK_ASSERT(td, MA_OWNED);
  854         if (td->td_priority == prio)
  855                 return;
  856         td->td_priority = prio;
  857         if (TD_ON_RUNQ(td) && td->td_rqindex != (prio / RQ_PPQ)) {
  858                 sched_rem(td);
  859                 sched_add(td, SRQ_BORING | SRQ_HOLDTD);
  860         }
  861 }
  862 
  863 /*
  864  * Update a thread's priority when it is lent another thread's
  865  * priority.
  866  */
  867 void
  868 sched_lend_prio(struct thread *td, u_char prio)
  869 {
  870 
  871         td->td_flags |= TDF_BORROWING;
  872         sched_priority(td, prio);
  873 }
  874 
  875 /*
  876  * Restore a thread's priority when priority propagation is
  877  * over.  The prio argument is the minimum priority the thread
  878  * needs to have to satisfy other possible priority lending
  879  * requests.  If the thread's regulary priority is less
  880  * important than prio the thread will keep a priority boost
  881  * of prio.
  882  */
  883 void
  884 sched_unlend_prio(struct thread *td, u_char prio)
  885 {
  886         u_char base_pri;
  887 
  888         if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
  889             td->td_base_pri <= PRI_MAX_TIMESHARE)
  890                 base_pri = td->td_user_pri;
  891         else
  892                 base_pri = td->td_base_pri;
  893         if (prio >= base_pri) {
  894                 td->td_flags &= ~TDF_BORROWING;
  895                 sched_prio(td, base_pri);
  896         } else
  897                 sched_lend_prio(td, prio);
  898 }
  899 
  900 void
  901 sched_prio(struct thread *td, u_char prio)
  902 {
  903         u_char oldprio;
  904 
  905         /* First, update the base priority. */
  906         td->td_base_pri = prio;
  907 
  908         /*
  909          * If the thread is borrowing another thread's priority, don't ever
  910          * lower the priority.
  911          */
  912         if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
  913                 return;
  914 
  915         /* Change the real priority. */
  916         oldprio = td->td_priority;
  917         sched_priority(td, prio);
  918 
  919         /*
  920          * If the thread is on a turnstile, then let the turnstile update
  921          * its state.
  922          */
  923         if (TD_ON_LOCK(td) && oldprio != prio)
  924                 turnstile_adjust(td, oldprio);
  925 }
  926 
  927 void
  928 sched_user_prio(struct thread *td, u_char prio)
  929 {
  930 
  931         THREAD_LOCK_ASSERT(td, MA_OWNED);
  932         td->td_base_user_pri = prio;
  933         if (td->td_lend_user_pri <= prio)
  934                 return;
  935         td->td_user_pri = prio;
  936 }
  937 
  938 void
  939 sched_lend_user_prio(struct thread *td, u_char prio)
  940 {
  941 
  942         THREAD_LOCK_ASSERT(td, MA_OWNED);
  943         td->td_lend_user_pri = prio;
  944         td->td_user_pri = min(prio, td->td_base_user_pri);
  945         if (td->td_priority > td->td_user_pri)
  946                 sched_prio(td, td->td_user_pri);
  947         else if (td->td_priority != td->td_user_pri)
  948                 td->td_flags |= TDF_NEEDRESCHED;
  949 }
  950 
  951 /*
  952  * Like the above but first check if there is anything to do.
  953  */
  954 void
  955 sched_lend_user_prio_cond(struct thread *td, u_char prio)
  956 {
  957 
  958         if (td->td_lend_user_pri != prio)
  959                 goto lend;
  960         if (td->td_user_pri != min(prio, td->td_base_user_pri))
  961                 goto lend;
  962         if (td->td_priority != td->td_user_pri)
  963                 goto lend;
  964         return;
  965 
  966 lend:
  967         thread_lock(td);
  968         sched_lend_user_prio(td, prio);
  969         thread_unlock(td);
  970 }
  971 
  972 void
  973 sched_sleep(struct thread *td, int pri)
  974 {
  975 
  976         THREAD_LOCK_ASSERT(td, MA_OWNED);
  977         td->td_slptick = ticks;
  978         td_get_sched(td)->ts_slptime = 0;
  979         if (pri != 0 && PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
  980                 sched_prio(td, pri);
  981         if (TD_IS_SUSPENDED(td) || pri >= PSOCK)
  982                 td->td_flags |= TDF_CANSWAP;
  983 }
  984 
  985 void
  986 sched_switch(struct thread *td, int flags)
  987 {
  988         struct thread *newtd;
  989         struct mtx *tmtx;
  990         struct td_sched *ts;
  991         struct proc *p;
  992         int preempted;
  993 
  994         tmtx = &sched_lock;
  995         ts = td_get_sched(td);
  996         p = td->td_proc;
  997 
  998         THREAD_LOCK_ASSERT(td, MA_OWNED);
  999 
 1000         td->td_lastcpu = td->td_oncpu;
 1001         preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
 1002             (flags & SW_PREEMPT) != 0;
 1003         td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
 1004         td->td_owepreempt = 0;
 1005         td->td_oncpu = NOCPU;
 1006 
 1007         /*
 1008          * At the last moment, if this thread is still marked RUNNING,
 1009          * then put it back on the run queue as it has not been suspended
 1010          * or stopped or any thing else similar.  We never put the idle
 1011          * threads on the run queue, however.
 1012          */
 1013         if (td->td_flags & TDF_IDLETD) {
 1014                 TD_SET_CAN_RUN(td);
 1015 #ifdef SMP
 1016                 CPU_CLR(PCPU_GET(cpuid), &idle_cpus_mask);
 1017 #endif
 1018         } else {
 1019                 if (TD_IS_RUNNING(td)) {
 1020                         /* Put us back on the run queue. */
 1021                         sched_add(td, preempted ?
 1022                             SRQ_HOLDTD|SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
 1023                             SRQ_HOLDTD|SRQ_OURSELF|SRQ_YIELDING);
 1024                 }
 1025         }
 1026 
 1027         /* 
 1028          * Switch to the sched lock to fix things up and pick
 1029          * a new thread.  Block the td_lock in order to avoid
 1030          * breaking the critical path.
 1031          */
 1032         if (td->td_lock != &sched_lock) {
 1033                 mtx_lock_spin(&sched_lock);
 1034                 tmtx = thread_lock_block(td);
 1035                 mtx_unlock_spin(tmtx);
 1036         }
 1037 
 1038         if ((td->td_flags & TDF_NOLOAD) == 0)
 1039                 sched_load_rem();
 1040 
 1041         newtd = choosethread();
 1042         MPASS(newtd->td_lock == &sched_lock);
 1043 
 1044 #if (KTR_COMPILE & KTR_SCHED) != 0
 1045         if (TD_IS_IDLETHREAD(td))
 1046                 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
 1047                     "prio:%d", td->td_priority);
 1048         else
 1049                 KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
 1050                     "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
 1051                     "lockname:\"%s\"", td->td_lockname);
 1052 #endif
 1053 
 1054         if (td != newtd) {
 1055 #ifdef  HWPMC_HOOKS
 1056                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1057                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
 1058 #endif
 1059 
 1060                 SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
 1061 
 1062                 /* I feel sleepy */
 1063                 lock_profile_release_lock(&sched_lock.lock_object, true);
 1064 #ifdef KDTRACE_HOOKS
 1065                 /*
 1066                  * If DTrace has set the active vtime enum to anything
 1067                  * other than INACTIVE (0), then it should have set the
 1068                  * function to call.
 1069                  */
 1070                 if (dtrace_vtime_active)
 1071                         (*dtrace_vtime_switch_func)(newtd);
 1072 #endif
 1073 
 1074                 cpu_switch(td, newtd, tmtx);
 1075                 lock_profile_obtain_lock_success(&sched_lock.lock_object, true,
 1076                     0, 0, __FILE__, __LINE__);
 1077                 /*
 1078                  * Where am I?  What year is it?
 1079                  * We are in the same thread that went to sleep above,
 1080                  * but any amount of time may have passed. All our context
 1081                  * will still be available as will local variables.
 1082                  * PCPU values however may have changed as we may have
 1083                  * changed CPU so don't trust cached values of them.
 1084                  * New threads will go to fork_exit() instead of here
 1085                  * so if you change things here you may need to change
 1086                  * things there too.
 1087                  *
 1088                  * If the thread above was exiting it will never wake
 1089                  * up again here, so either it has saved everything it
 1090                  * needed to, or the thread_wait() or wait() will
 1091                  * need to reap it.
 1092                  */
 1093 
 1094                 SDT_PROBE0(sched, , , on__cpu);
 1095 #ifdef  HWPMC_HOOKS
 1096                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1097                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
 1098 #endif
 1099         } else {
 1100                 td->td_lock = &sched_lock;
 1101                 SDT_PROBE0(sched, , , remain__cpu);
 1102         }
 1103 
 1104         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 1105             "prio:%d", td->td_priority);
 1106 
 1107 #ifdef SMP
 1108         if (td->td_flags & TDF_IDLETD)
 1109                 CPU_SET(PCPU_GET(cpuid), &idle_cpus_mask);
 1110 #endif
 1111         sched_lock.mtx_lock = (uintptr_t)td;
 1112         td->td_oncpu = PCPU_GET(cpuid);
 1113         spinlock_enter();
 1114         mtx_unlock_spin(&sched_lock);
 1115 }
 1116 
 1117 void
 1118 sched_wakeup(struct thread *td, int srqflags)
 1119 {
 1120         struct td_sched *ts;
 1121 
 1122         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1123         ts = td_get_sched(td);
 1124         td->td_flags &= ~TDF_CANSWAP;
 1125         if (ts->ts_slptime > 1) {
 1126                 updatepri(td);
 1127                 resetpriority(td);
 1128         }
 1129         td->td_slptick = 0;
 1130         ts->ts_slptime = 0;
 1131         ts->ts_slice = sched_slice;
 1132         sched_add(td, srqflags);
 1133 }
 1134 
 1135 #ifdef SMP
 1136 static int
 1137 forward_wakeup(int cpunum)
 1138 {
 1139         struct pcpu *pc;
 1140         cpuset_t dontuse, map, map2;
 1141         u_int id, me;
 1142         int iscpuset;
 1143 
 1144         mtx_assert(&sched_lock, MA_OWNED);
 1145 
 1146         CTR0(KTR_RUNQ, "forward_wakeup()");
 1147 
 1148         if ((!forward_wakeup_enabled) ||
 1149              (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
 1150                 return (0);
 1151         if (!smp_started || KERNEL_PANICKED())
 1152                 return (0);
 1153 
 1154         forward_wakeups_requested++;
 1155 
 1156         /*
 1157          * Check the idle mask we received against what we calculated
 1158          * before in the old version.
 1159          */
 1160         me = PCPU_GET(cpuid);
 1161 
 1162         /* Don't bother if we should be doing it ourself. */
 1163         if (CPU_ISSET(me, &idle_cpus_mask) &&
 1164             (cpunum == NOCPU || me == cpunum))
 1165                 return (0);
 1166 
 1167         CPU_SETOF(me, &dontuse);
 1168         CPU_OR(&dontuse, &dontuse, &stopped_cpus);
 1169         CPU_OR(&dontuse, &dontuse, &hlt_cpus_mask);
 1170         CPU_ZERO(&map2);
 1171         if (forward_wakeup_use_loop) {
 1172                 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
 1173                         id = pc->pc_cpuid;
 1174                         if (!CPU_ISSET(id, &dontuse) &&
 1175                             pc->pc_curthread == pc->pc_idlethread) {
 1176                                 CPU_SET(id, &map2);
 1177                         }
 1178                 }
 1179         }
 1180 
 1181         if (forward_wakeup_use_mask) {
 1182                 map = idle_cpus_mask;
 1183                 CPU_ANDNOT(&map, &map, &dontuse);
 1184 
 1185                 /* If they are both on, compare and use loop if different. */
 1186                 if (forward_wakeup_use_loop) {
 1187                         if (CPU_CMP(&map, &map2)) {
 1188                                 printf("map != map2, loop method preferred\n");
 1189                                 map = map2;
 1190                         }
 1191                 }
 1192         } else {
 1193                 map = map2;
 1194         }
 1195 
 1196         /* If we only allow a specific CPU, then mask off all the others. */
 1197         if (cpunum != NOCPU) {
 1198                 KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
 1199                 iscpuset = CPU_ISSET(cpunum, &map);
 1200                 if (iscpuset == 0)
 1201                         CPU_ZERO(&map);
 1202                 else
 1203                         CPU_SETOF(cpunum, &map);
 1204         }
 1205         if (!CPU_EMPTY(&map)) {
 1206                 forward_wakeups_delivered++;
 1207                 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
 1208                         id = pc->pc_cpuid;
 1209                         if (!CPU_ISSET(id, &map))
 1210                                 continue;
 1211                         if (cpu_idle_wakeup(pc->pc_cpuid))
 1212                                 CPU_CLR(id, &map);
 1213                 }
 1214                 if (!CPU_EMPTY(&map))
 1215                         ipi_selected(map, IPI_AST);
 1216                 return (1);
 1217         }
 1218         if (cpunum == NOCPU)
 1219                 printf("forward_wakeup: Idle processor not found\n");
 1220         return (0);
 1221 }
 1222 
 1223 static void
 1224 kick_other_cpu(int pri, int cpuid)
 1225 {
 1226         struct pcpu *pcpu;
 1227         int cpri;
 1228 
 1229         pcpu = pcpu_find(cpuid);
 1230         if (CPU_ISSET(cpuid, &idle_cpus_mask)) {
 1231                 forward_wakeups_delivered++;
 1232                 if (!cpu_idle_wakeup(cpuid))
 1233                         ipi_cpu(cpuid, IPI_AST);
 1234                 return;
 1235         }
 1236 
 1237         cpri = pcpu->pc_curthread->td_priority;
 1238         if (pri >= cpri)
 1239                 return;
 1240 
 1241 #if defined(IPI_PREEMPTION) && defined(PREEMPTION)
 1242 #if !defined(FULL_PREEMPTION)
 1243         if (pri <= PRI_MAX_ITHD)
 1244 #endif /* ! FULL_PREEMPTION */
 1245         {
 1246                 ipi_cpu(cpuid, IPI_PREEMPT);
 1247                 return;
 1248         }
 1249 #endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
 1250 
 1251         if (pcpu->pc_curthread->td_lock == &sched_lock) {
 1252                 pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
 1253                 ipi_cpu(cpuid, IPI_AST);
 1254         }
 1255 }
 1256 #endif /* SMP */
 1257 
 1258 #ifdef SMP
 1259 static int
 1260 sched_pickcpu(struct thread *td)
 1261 {
 1262         int best, cpu;
 1263 
 1264         mtx_assert(&sched_lock, MA_OWNED);
 1265 
 1266         if (td->td_lastcpu != NOCPU && THREAD_CAN_SCHED(td, td->td_lastcpu))
 1267                 best = td->td_lastcpu;
 1268         else
 1269                 best = NOCPU;
 1270         CPU_FOREACH(cpu) {
 1271                 if (!THREAD_CAN_SCHED(td, cpu))
 1272                         continue;
 1273 
 1274                 if (best == NOCPU)
 1275                         best = cpu;
 1276                 else if (runq_length[cpu] < runq_length[best])
 1277                         best = cpu;
 1278         }
 1279         KASSERT(best != NOCPU, ("no valid CPUs"));
 1280 
 1281         return (best);
 1282 }
 1283 #endif
 1284 
 1285 void
 1286 sched_add(struct thread *td, int flags)
 1287 #ifdef SMP
 1288 {
 1289         cpuset_t tidlemsk;
 1290         struct td_sched *ts;
 1291         u_int cpu, cpuid;
 1292         int forwarded = 0;
 1293         int single_cpu = 0;
 1294 
 1295         ts = td_get_sched(td);
 1296         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1297         KASSERT((td->td_inhibitors == 0),
 1298             ("sched_add: trying to run inhibited thread"));
 1299         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 1300             ("sched_add: bad thread state"));
 1301         KASSERT(td->td_flags & TDF_INMEM,
 1302             ("sched_add: thread swapped out"));
 1303 
 1304         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 1305             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 1306             sched_tdname(curthread));
 1307         KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 1308             KTR_ATTR_LINKED, sched_tdname(td));
 1309         SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
 1310             flags & SRQ_PREEMPTED);
 1311 
 1312         /*
 1313          * Now that the thread is moving to the run-queue, set the lock
 1314          * to the scheduler's lock.
 1315          */
 1316         if (td->td_lock != &sched_lock) {
 1317                 mtx_lock_spin(&sched_lock);
 1318                 if ((flags & SRQ_HOLD) != 0)
 1319                         td->td_lock = &sched_lock;
 1320                 else
 1321                         thread_lock_set(td, &sched_lock);
 1322         }
 1323         TD_SET_RUNQ(td);
 1324 
 1325         /*
 1326          * If SMP is started and the thread is pinned or otherwise limited to
 1327          * a specific set of CPUs, queue the thread to a per-CPU run queue.
 1328          * Otherwise, queue the thread to the global run queue.
 1329          *
 1330          * If SMP has not yet been started we must use the global run queue
 1331          * as per-CPU state may not be initialized yet and we may crash if we
 1332          * try to access the per-CPU run queues.
 1333          */
 1334         if (smp_started && (td->td_pinned != 0 || td->td_flags & TDF_BOUND ||
 1335             ts->ts_flags & TSF_AFFINITY)) {
 1336                 if (td->td_pinned != 0)
 1337                         cpu = td->td_lastcpu;
 1338                 else if (td->td_flags & TDF_BOUND) {
 1339                         /* Find CPU from bound runq. */
 1340                         KASSERT(SKE_RUNQ_PCPU(ts),
 1341                             ("sched_add: bound td_sched not on cpu runq"));
 1342                         cpu = ts->ts_runq - &runq_pcpu[0];
 1343                 } else
 1344                         /* Find a valid CPU for our cpuset */
 1345                         cpu = sched_pickcpu(td);
 1346                 ts->ts_runq = &runq_pcpu[cpu];
 1347                 single_cpu = 1;
 1348                 CTR3(KTR_RUNQ,
 1349                     "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
 1350                     cpu);
 1351         } else {
 1352                 CTR2(KTR_RUNQ,
 1353                     "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts,
 1354                     td);
 1355                 cpu = NOCPU;
 1356                 ts->ts_runq = &runq;
 1357         }
 1358 
 1359         if ((td->td_flags & TDF_NOLOAD) == 0)
 1360                 sched_load_add();
 1361         runq_add(ts->ts_runq, td, flags);
 1362         if (cpu != NOCPU)
 1363                 runq_length[cpu]++;
 1364 
 1365         cpuid = PCPU_GET(cpuid);
 1366         if (single_cpu && cpu != cpuid) {
 1367                 kick_other_cpu(td->td_priority, cpu);
 1368         } else {
 1369                 if (!single_cpu) {
 1370                         tidlemsk = idle_cpus_mask;
 1371                         CPU_ANDNOT(&tidlemsk, &tidlemsk, &hlt_cpus_mask);
 1372                         CPU_CLR(cpuid, &tidlemsk);
 1373 
 1374                         if (!CPU_ISSET(cpuid, &idle_cpus_mask) &&
 1375                             ((flags & SRQ_INTR) == 0) &&
 1376                             !CPU_EMPTY(&tidlemsk))
 1377                                 forwarded = forward_wakeup(cpu);
 1378                 }
 1379 
 1380                 if (!forwarded) {
 1381                         if (!maybe_preempt(td))
 1382                                 maybe_resched(td);
 1383                 }
 1384         }
 1385         if ((flags & SRQ_HOLDTD) == 0)
 1386                 thread_unlock(td);
 1387 }
 1388 #else /* SMP */
 1389 {
 1390         struct td_sched *ts;
 1391 
 1392         ts = td_get_sched(td);
 1393         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1394         KASSERT((td->td_inhibitors == 0),
 1395             ("sched_add: trying to run inhibited thread"));
 1396         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 1397             ("sched_add: bad thread state"));
 1398         KASSERT(td->td_flags & TDF_INMEM,
 1399             ("sched_add: thread swapped out"));
 1400         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 1401             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 1402             sched_tdname(curthread));
 1403         KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 1404             KTR_ATTR_LINKED, sched_tdname(td));
 1405         SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
 1406             flags & SRQ_PREEMPTED);
 1407 
 1408         /*
 1409          * Now that the thread is moving to the run-queue, set the lock
 1410          * to the scheduler's lock.
 1411          */
 1412         if (td->td_lock != &sched_lock) {
 1413                 mtx_lock_spin(&sched_lock);
 1414                 if ((flags & SRQ_HOLD) != 0)
 1415                         td->td_lock = &sched_lock;
 1416                 else
 1417                         thread_lock_set(td, &sched_lock);
 1418         }
 1419         TD_SET_RUNQ(td);
 1420         CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
 1421         ts->ts_runq = &runq;
 1422 
 1423         if ((td->td_flags & TDF_NOLOAD) == 0)
 1424                 sched_load_add();
 1425         runq_add(ts->ts_runq, td, flags);
 1426         if (!maybe_preempt(td))
 1427                 maybe_resched(td);
 1428         if ((flags & SRQ_HOLDTD) == 0)
 1429                 thread_unlock(td);
 1430 }
 1431 #endif /* SMP */
 1432 
 1433 void
 1434 sched_rem(struct thread *td)
 1435 {
 1436         struct td_sched *ts;
 1437 
 1438         ts = td_get_sched(td);
 1439         KASSERT(td->td_flags & TDF_INMEM,
 1440             ("sched_rem: thread swapped out"));
 1441         KASSERT(TD_ON_RUNQ(td),
 1442             ("sched_rem: thread not on run queue"));
 1443         mtx_assert(&sched_lock, MA_OWNED);
 1444         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
 1445             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 1446             sched_tdname(curthread));
 1447         SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
 1448 
 1449         if ((td->td_flags & TDF_NOLOAD) == 0)
 1450                 sched_load_rem();
 1451 #ifdef SMP
 1452         if (ts->ts_runq != &runq)
 1453                 runq_length[ts->ts_runq - runq_pcpu]--;
 1454 #endif
 1455         runq_remove(ts->ts_runq, td);
 1456         TD_SET_CAN_RUN(td);
 1457 }
 1458 
 1459 /*
 1460  * Select threads to run.  Note that running threads still consume a
 1461  * slot.
 1462  */
 1463 struct thread *
 1464 sched_choose(void)
 1465 {
 1466         struct thread *td;
 1467         struct runq *rq;
 1468 
 1469         mtx_assert(&sched_lock,  MA_OWNED);
 1470 #ifdef SMP
 1471         struct thread *tdcpu;
 1472 
 1473         rq = &runq;
 1474         td = runq_choose_fuzz(&runq, runq_fuzz);
 1475         tdcpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
 1476 
 1477         if (td == NULL ||
 1478             (tdcpu != NULL &&
 1479              tdcpu->td_priority < td->td_priority)) {
 1480                 CTR2(KTR_RUNQ, "choosing td %p from pcpu runq %d", tdcpu,
 1481                      PCPU_GET(cpuid));
 1482                 td = tdcpu;
 1483                 rq = &runq_pcpu[PCPU_GET(cpuid)];
 1484         } else {
 1485                 CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", td);
 1486         }
 1487 
 1488 #else
 1489         rq = &runq;
 1490         td = runq_choose(&runq);
 1491 #endif
 1492 
 1493         if (td) {
 1494 #ifdef SMP
 1495                 if (td == tdcpu)
 1496                         runq_length[PCPU_GET(cpuid)]--;
 1497 #endif
 1498                 runq_remove(rq, td);
 1499                 td->td_flags |= TDF_DIDRUN;
 1500 
 1501                 KASSERT(td->td_flags & TDF_INMEM,
 1502                     ("sched_choose: thread swapped out"));
 1503                 return (td);
 1504         }
 1505         return (PCPU_GET(idlethread));
 1506 }
 1507 
 1508 void
 1509 sched_preempt(struct thread *td)
 1510 {
 1511 
 1512         SDT_PROBE2(sched, , , surrender, td, td->td_proc);
 1513         if (td->td_critnest > 1) {
 1514                 td->td_owepreempt = 1;
 1515         } else {
 1516                 thread_lock(td);
 1517                 mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT);
 1518         }
 1519 }
 1520 
 1521 void
 1522 sched_userret_slowpath(struct thread *td)
 1523 {
 1524 
 1525         thread_lock(td);
 1526         td->td_priority = td->td_user_pri;
 1527         td->td_base_pri = td->td_user_pri;
 1528         thread_unlock(td);
 1529 }
 1530 
 1531 void
 1532 sched_bind(struct thread *td, int cpu)
 1533 {
 1534         struct td_sched *ts;
 1535 
 1536         THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
 1537         KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
 1538 
 1539         ts = td_get_sched(td);
 1540 
 1541         td->td_flags |= TDF_BOUND;
 1542 #ifdef SMP
 1543         ts->ts_runq = &runq_pcpu[cpu];
 1544         if (PCPU_GET(cpuid) == cpu)
 1545                 return;
 1546 
 1547         mi_switch(SW_VOL);
 1548         thread_lock(td);
 1549 #endif
 1550 }
 1551 
 1552 void
 1553 sched_unbind(struct thread* td)
 1554 {
 1555         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1556         KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
 1557         td->td_flags &= ~TDF_BOUND;
 1558 }
 1559 
 1560 int
 1561 sched_is_bound(struct thread *td)
 1562 {
 1563         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1564         return (td->td_flags & TDF_BOUND);
 1565 }
 1566 
 1567 void
 1568 sched_relinquish(struct thread *td)
 1569 {
 1570         thread_lock(td);
 1571         mi_switch(SW_VOL | SWT_RELINQUISH);
 1572 }
 1573 
 1574 int
 1575 sched_load(void)
 1576 {
 1577         return (sched_tdcnt);
 1578 }
 1579 
 1580 int
 1581 sched_sizeof_proc(void)
 1582 {
 1583         return (sizeof(struct proc));
 1584 }
 1585 
 1586 int
 1587 sched_sizeof_thread(void)
 1588 {
 1589         return (sizeof(struct thread) + sizeof(struct td_sched));
 1590 }
 1591 
 1592 fixpt_t
 1593 sched_pctcpu(struct thread *td)
 1594 {
 1595         struct td_sched *ts;
 1596 
 1597         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1598         ts = td_get_sched(td);
 1599         return (ts->ts_pctcpu);
 1600 }
 1601 
 1602 #ifdef RACCT
 1603 /*
 1604  * Calculates the contribution to the thread cpu usage for the latest
 1605  * (unfinished) second.
 1606  */
 1607 fixpt_t
 1608 sched_pctcpu_delta(struct thread *td)
 1609 {
 1610         struct td_sched *ts;
 1611         fixpt_t delta;
 1612         int realstathz;
 1613 
 1614         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1615         ts = td_get_sched(td);
 1616         delta = 0;
 1617         realstathz = stathz ? stathz : hz;
 1618         if (ts->ts_cpticks != 0) {
 1619 #if     (FSHIFT >= CCPU_SHIFT)
 1620                 delta = (realstathz == 100)
 1621                     ? ((fixpt_t) ts->ts_cpticks) <<
 1622                     (FSHIFT - CCPU_SHIFT) :
 1623                     100 * (((fixpt_t) ts->ts_cpticks)
 1624                     << (FSHIFT - CCPU_SHIFT)) / realstathz;
 1625 #else
 1626                 delta = ((FSCALE - ccpu) *
 1627                     (ts->ts_cpticks *
 1628                     FSCALE / realstathz)) >> FSHIFT;
 1629 #endif
 1630         }
 1631 
 1632         return (delta);
 1633 }
 1634 #endif
 1635 
 1636 u_int
 1637 sched_estcpu(struct thread *td)
 1638 {
 1639 
 1640         return (td_get_sched(td)->ts_estcpu);
 1641 }
 1642 
 1643 /*
 1644  * The actual idle process.
 1645  */
 1646 void
 1647 sched_idletd(void *dummy)
 1648 {
 1649         struct pcpuidlestat *stat;
 1650 
 1651         THREAD_NO_SLEEPING();
 1652         stat = DPCPU_PTR(idlestat);
 1653         for (;;) {
 1654                 mtx_assert(&Giant, MA_NOTOWNED);
 1655 
 1656                 while (sched_runnable() == 0) {
 1657                         cpu_idle(stat->idlecalls + stat->oldidlecalls > 64);
 1658                         stat->idlecalls++;
 1659                 }
 1660 
 1661                 mtx_lock_spin(&sched_lock);
 1662                 mi_switch(SW_VOL | SWT_IDLE);
 1663         }
 1664 }
 1665 
 1666 /*
 1667  * A CPU is entering for the first time or a thread is exiting.
 1668  */
 1669 void
 1670 sched_throw(struct thread *td)
 1671 {
 1672         /*
 1673          * Correct spinlock nesting.  The idle thread context that we are
 1674          * borrowing was created so that it would start out with a single
 1675          * spin lock (sched_lock) held in fork_trampoline().  Since we've
 1676          * explicitly acquired locks in this function, the nesting count
 1677          * is now 2 rather than 1.  Since we are nested, calling
 1678          * spinlock_exit() will simply adjust the counts without allowing
 1679          * spin lock using code to interrupt us.
 1680          */
 1681         if (td == NULL) {
 1682                 mtx_lock_spin(&sched_lock);
 1683                 spinlock_exit();
 1684                 PCPU_SET(switchtime, cpu_ticks());
 1685                 PCPU_SET(switchticks, ticks);
 1686         } else {
 1687                 lock_profile_release_lock(&sched_lock.lock_object, true);
 1688                 MPASS(td->td_lock == &sched_lock);
 1689                 td->td_lastcpu = td->td_oncpu;
 1690                 td->td_oncpu = NOCPU;
 1691         }
 1692         mtx_assert(&sched_lock, MA_OWNED);
 1693         KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
 1694         cpu_throw(td, choosethread());  /* doesn't return */
 1695 }
 1696 
 1697 void
 1698 sched_fork_exit(struct thread *td)
 1699 {
 1700 
 1701         /*
 1702          * Finish setting up thread glue so that it begins execution in a
 1703          * non-nested critical section with sched_lock held but not recursed.
 1704          */
 1705         td->td_oncpu = PCPU_GET(cpuid);
 1706         sched_lock.mtx_lock = (uintptr_t)td;
 1707         lock_profile_obtain_lock_success(&sched_lock.lock_object, true,
 1708             0, 0, __FILE__, __LINE__);
 1709         THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
 1710 
 1711         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 1712             "prio:%d", td->td_priority);
 1713         SDT_PROBE0(sched, , , on__cpu);
 1714 }
 1715 
 1716 char *
 1717 sched_tdname(struct thread *td)
 1718 {
 1719 #ifdef KTR
 1720         struct td_sched *ts;
 1721 
 1722         ts = td_get_sched(td);
 1723         if (ts->ts_name[0] == '\0')
 1724                 snprintf(ts->ts_name, sizeof(ts->ts_name),
 1725                     "%s tid %d", td->td_name, td->td_tid);
 1726         return (ts->ts_name);
 1727 #else   
 1728         return (td->td_name);
 1729 #endif
 1730 }
 1731 
 1732 #ifdef KTR
 1733 void
 1734 sched_clear_tdname(struct thread *td)
 1735 {
 1736         struct td_sched *ts;
 1737 
 1738         ts = td_get_sched(td);
 1739         ts->ts_name[0] = '\0';
 1740 }
 1741 #endif
 1742 
 1743 void
 1744 sched_affinity(struct thread *td)
 1745 {
 1746 #ifdef SMP
 1747         struct td_sched *ts;
 1748         int cpu;
 1749 
 1750         THREAD_LOCK_ASSERT(td, MA_OWNED);       
 1751 
 1752         /*
 1753          * Set the TSF_AFFINITY flag if there is at least one CPU this
 1754          * thread can't run on.
 1755          */
 1756         ts = td_get_sched(td);
 1757         ts->ts_flags &= ~TSF_AFFINITY;
 1758         CPU_FOREACH(cpu) {
 1759                 if (!THREAD_CAN_SCHED(td, cpu)) {
 1760                         ts->ts_flags |= TSF_AFFINITY;
 1761                         break;
 1762                 }
 1763         }
 1764 
 1765         /*
 1766          * If this thread can run on all CPUs, nothing else to do.
 1767          */
 1768         if (!(ts->ts_flags & TSF_AFFINITY))
 1769                 return;
 1770 
 1771         /* Pinned threads and bound threads should be left alone. */
 1772         if (td->td_pinned != 0 || td->td_flags & TDF_BOUND)
 1773                 return;
 1774 
 1775         switch (td->td_state) {
 1776         case TDS_RUNQ:
 1777                 /*
 1778                  * If we are on a per-CPU runqueue that is in the set,
 1779                  * then nothing needs to be done.
 1780                  */
 1781                 if (ts->ts_runq != &runq &&
 1782                     THREAD_CAN_SCHED(td, ts->ts_runq - runq_pcpu))
 1783                         return;
 1784 
 1785                 /* Put this thread on a valid per-CPU runqueue. */
 1786                 sched_rem(td);
 1787                 sched_add(td, SRQ_HOLDTD | SRQ_BORING);
 1788                 break;
 1789         case TDS_RUNNING:
 1790                 /*
 1791                  * See if our current CPU is in the set.  If not, force a
 1792                  * context switch.
 1793                  */
 1794                 if (THREAD_CAN_SCHED(td, td->td_oncpu))
 1795                         return;
 1796 
 1797                 td->td_flags |= TDF_NEEDRESCHED;
 1798                 if (td != curthread)
 1799                         ipi_cpu(cpu, IPI_AST);
 1800                 break;
 1801         default:
 1802                 break;
 1803         }
 1804 #endif
 1805 }

Cache object: 02cbf7f4fafc3da122b7bbfbf5404452


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.