The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sched_4bsd.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. All advertising materials mentioning features or use of this software
   19  *    must display the following acknowledgement:
   20  *      This product includes software developed by the University of
   21  *      California, Berkeley and its contributors.
   22  * 4. Neither the name of the University nor the names of its contributors
   23  *    may be used to endorse or promote products derived from this software
   24  *    without specific prior written permission.
   25  *
   26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   36  * SUCH DAMAGE.
   37  *
   38  * $FreeBSD: releng/5.0/sys/kern/sched_4bsd.c 107137 2002-11-21 09:30:55Z jeff $
   39  */
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/kernel.h>
   44 #include <sys/ktr.h>
   45 #include <sys/lock.h>
   46 #include <sys/mutex.h>
   47 #include <sys/proc.h>
   48 #include <sys/resourcevar.h>
   49 #include <sys/sched.h>
   50 #include <sys/smp.h>
   51 #include <sys/sysctl.h>
   52 #include <sys/sx.h>
   53 
   54 /*
   55  * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
   56  * the range 100-256 Hz (approximately).
   57  */
   58 #define ESTCPULIM(e) \
   59     min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
   60     RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
   61 #define INVERSE_ESTCPU_WEIGHT   8       /* 1 / (priorities per estcpu level). */
   62 #define NICE_WEIGHT             1       /* Priorities per nice level. */
   63 
   64 struct ke_sched *kse0_sched = NULL;
   65 struct kg_sched *ksegrp0_sched = NULL;
   66 struct p_sched *proc0_sched = NULL;
   67 struct td_sched *thread0_sched = NULL;
   68 
   69 static int      sched_quantum;  /* Roundrobin scheduling quantum in ticks. */
   70 #define SCHED_QUANTUM   (hz / 10);      /* Default sched quantum */
   71 
   72 static struct callout schedcpu_callout;
   73 static struct callout roundrobin_callout;
   74 
   75 static void     roundrobin(void *arg);
   76 static void     schedcpu(void *arg);
   77 static void     sched_setup(void *dummy);
   78 static void     maybe_resched(struct thread *td);
   79 static void     updatepri(struct ksegrp *kg);
   80 static void     resetpriority(struct ksegrp *kg);
   81 
   82 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
   83 
   84 /*
   85  * Global run queue.
   86  */
   87 static struct runq runq;
   88 SYSINIT(runq, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, runq_init, &runq)
   89 
   90 static int
   91 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
   92 {
   93         int error, new_val;
   94 
   95         new_val = sched_quantum * tick;
   96         error = sysctl_handle_int(oidp, &new_val, 0, req);
   97         if (error != 0 || req->newptr == NULL)
   98                 return (error);
   99         if (new_val < tick)
  100                 return (EINVAL);
  101         sched_quantum = new_val / tick;
  102         hogticks = 2 * sched_quantum;
  103         return (0);
  104 }
  105 
  106 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
  107         0, sizeof sched_quantum, sysctl_kern_quantum, "I",
  108         "Roundrobin scheduling quantum in microseconds");
  109 
  110 /*
  111  * Arrange to reschedule if necessary, taking the priorities and
  112  * schedulers into account.
  113  */
  114 static void
  115 maybe_resched(struct thread *td)
  116 {
  117 
  118         mtx_assert(&sched_lock, MA_OWNED);
  119         if (td->td_priority < curthread->td_priority)
  120                 curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
  121 }
  122 
  123 /*
  124  * Force switch among equal priority processes every 100ms.
  125  * We don't actually need to force a context switch of the current process.
  126  * The act of firing the event triggers a context switch to softclock() and
  127  * then switching back out again which is equivalent to a preemption, thus
  128  * no further work is needed on the local CPU.
  129  */
  130 /* ARGSUSED */
  131 static void
  132 roundrobin(void *arg)
  133 {
  134 
  135 #ifdef SMP
  136         mtx_lock_spin(&sched_lock);
  137         forward_roundrobin();
  138         mtx_unlock_spin(&sched_lock);
  139 #endif
  140 
  141         callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
  142 }
  143 
  144 /*
  145  * Constants for digital decay and forget:
  146  *      90% of (p_estcpu) usage in 5 * loadav time
  147  *      95% of (p_pctcpu) usage in 60 seconds (load insensitive)
  148  *          Note that, as ps(1) mentions, this can let percentages
  149  *          total over 100% (I've seen 137.9% for 3 processes).
  150  *
  151  * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
  152  *
  153  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
  154  * That is, the system wants to compute a value of decay such
  155  * that the following for loop:
  156  *      for (i = 0; i < (5 * loadavg); i++)
  157  *              p_estcpu *= decay;
  158  * will compute
  159  *      p_estcpu *= 0.1;
  160  * for all values of loadavg:
  161  *
  162  * Mathematically this loop can be expressed by saying:
  163  *      decay ** (5 * loadavg) ~= .1
  164  *
  165  * The system computes decay as:
  166  *      decay = (2 * loadavg) / (2 * loadavg + 1)
  167  *
  168  * We wish to prove that the system's computation of decay
  169  * will always fulfill the equation:
  170  *      decay ** (5 * loadavg) ~= .1
  171  *
  172  * If we compute b as:
  173  *      b = 2 * loadavg
  174  * then
  175  *      decay = b / (b + 1)
  176  *
  177  * We now need to prove two things:
  178  *      1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
  179  *      2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
  180  *
  181  * Facts:
  182  *         For x close to zero, exp(x) =~ 1 + x, since
  183  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
  184  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
  185  *         For x close to zero, ln(1+x) =~ x, since
  186  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
  187  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
  188  *         ln(.1) =~ -2.30
  189  *
  190  * Proof of (1):
  191  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
  192  *      solving for factor,
  193  *      ln(factor) =~ (-2.30/5*loadav), or
  194  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
  195  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
  196  *
  197  * Proof of (2):
  198  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
  199  *      solving for power,
  200  *      power*ln(b/(b+1)) =~ -2.30, or
  201  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
  202  *
  203  * Actual power values for the implemented algorithm are as follows:
  204  *      loadav: 1       2       3       4
  205  *      power:  5.68    10.32   14.94   19.55
  206  */
  207 
  208 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
  209 #define loadfactor(loadav)      (2 * (loadav))
  210 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
  211 
  212 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
  213 static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
  214 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
  215 
  216 /*
  217  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
  218  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
  219  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
  220  *
  221  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
  222  *      1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
  223  *
  224  * If you don't want to bother with the faster/more-accurate formula, you
  225  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
  226  * (more general) method of calculating the %age of CPU used by a process.
  227  */
  228 #define CCPU_SHIFT      11
  229 
  230 /*
  231  * Recompute process priorities, every hz ticks.
  232  * MP-safe, called without the Giant mutex.
  233  */
  234 /* ARGSUSED */
  235 static void
  236 schedcpu(void *arg)
  237 {
  238         register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
  239         struct thread *td;
  240         struct proc *p;
  241         struct kse *ke;
  242         struct ksegrp *kg;
  243         int realstathz;
  244         int awake;
  245 
  246         realstathz = stathz ? stathz : hz;
  247         sx_slock(&allproc_lock);
  248         FOREACH_PROC_IN_SYSTEM(p) {
  249                 mtx_lock_spin(&sched_lock);
  250                 p->p_swtime++;
  251                 FOREACH_KSEGRP_IN_PROC(p, kg) { 
  252                         awake = 0;
  253                         FOREACH_KSE_IN_GROUP(kg, ke) {
  254                                 /*
  255                                  * Increment time in/out of memory and sleep
  256                                  * time (if sleeping).  We ignore overflow;
  257                                  * with 16-bit int's (remember them?)
  258                                  * overflow takes 45 days.
  259                                  */
  260                                 /*
  261                                  * The kse slptimes are not touched in wakeup
  262                                  * because the thread may not HAVE a KSE.
  263                                  */
  264                                 if (ke->ke_state == KES_ONRUNQ) {
  265                                         awake = 1;
  266                                         ke->ke_flags &= ~KEF_DIDRUN;
  267                                 } else if ((ke->ke_state == KES_THREAD) &&
  268                                     (TD_IS_RUNNING(ke->ke_thread))) {
  269                                         awake = 1;
  270                                         /* Do not clear KEF_DIDRUN */
  271                                 } else if (ke->ke_flags & KEF_DIDRUN) {
  272                                         awake = 1;
  273                                         ke->ke_flags &= ~KEF_DIDRUN;
  274                                 }
  275 
  276                                 /*
  277                                  * pctcpu is only for ps?
  278                                  * Do it per kse.. and add them up at the end?
  279                                  * XXXKSE
  280                                  */
  281                                 ke->ke_pctcpu
  282                                     = (ke->ke_pctcpu * ccpu) >> FSHIFT;
  283                                 /*
  284                                  * If the kse has been idle the entire second,
  285                                  * stop recalculating its priority until
  286                                  * it wakes up.
  287                                  */
  288                                 if (ke->ke_cpticks == 0)
  289                                         continue;
  290 #if     (FSHIFT >= CCPU_SHIFT)
  291                                 ke->ke_pctcpu += (realstathz == 100) ?
  292                                     ((fixpt_t) ke->ke_cpticks) <<
  293                                     (FSHIFT - CCPU_SHIFT) :
  294                                     100 * (((fixpt_t) ke->ke_cpticks) <<
  295                                     (FSHIFT - CCPU_SHIFT)) / realstathz;
  296 #else
  297                                 ke->ke_pctcpu += ((FSCALE - ccpu) *
  298                                     (ke->ke_cpticks * FSCALE / realstathz)) >>
  299                                     FSHIFT;
  300 #endif
  301                                 ke->ke_cpticks = 0;
  302                         } /* end of kse loop */
  303                         /* 
  304                          * If there are ANY running threads in this KSEGRP,
  305                          * then don't count it as sleeping.
  306                          */
  307                         if (awake) {
  308                                 if (kg->kg_slptime > 1) {
  309                                         /*
  310                                          * In an ideal world, this should not
  311                                          * happen, because whoever woke us
  312                                          * up from the long sleep should have
  313                                          * unwound the slptime and reset our
  314                                          * priority before we run at the stale
  315                                          * priority.  Should KASSERT at some
  316                                          * point when all the cases are fixed.
  317                                          */
  318                                         updatepri(kg);
  319                                 }
  320                                 kg->kg_slptime = 0;
  321                         } else {
  322                                 kg->kg_slptime++;
  323                         }
  324                         if (kg->kg_slptime > 1)
  325                                 continue;
  326                         kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
  327                         resetpriority(kg);
  328                         FOREACH_THREAD_IN_GROUP(kg, td) {
  329                                 if (td->td_priority >= PUSER) {
  330                                         sched_prio(td, kg->kg_user_pri);
  331                                 }
  332                         }
  333                 } /* end of ksegrp loop */
  334                 mtx_unlock_spin(&sched_lock);
  335         } /* end of process loop */
  336         sx_sunlock(&allproc_lock);
  337         callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
  338 }
  339 
  340 /*
  341  * Recalculate the priority of a process after it has slept for a while.
  342  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
  343  * least six times the loadfactor will decay p_estcpu to zero.
  344  */
  345 static void
  346 updatepri(struct ksegrp *kg)
  347 {
  348         register unsigned int newcpu;
  349         register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
  350 
  351         newcpu = kg->kg_estcpu;
  352         if (kg->kg_slptime > 5 * loadfac)
  353                 kg->kg_estcpu = 0;
  354         else {
  355                 kg->kg_slptime--;       /* the first time was done in schedcpu */
  356                 while (newcpu && --kg->kg_slptime)
  357                         newcpu = decay_cpu(loadfac, newcpu);
  358                 kg->kg_estcpu = newcpu;
  359         }
  360         resetpriority(kg);
  361 }
  362 
  363 /*
  364  * Compute the priority of a process when running in user mode.
  365  * Arrange to reschedule if the resulting priority is better
  366  * than that of the current process.
  367  */
  368 static void
  369 resetpriority(struct ksegrp *kg)
  370 {
  371         register unsigned int newpriority;
  372         struct thread *td;
  373 
  374         mtx_lock_spin(&sched_lock);
  375         if (kg->kg_pri_class == PRI_TIMESHARE) {
  376                 newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
  377                     NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
  378                 newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
  379                     PRI_MAX_TIMESHARE);
  380                 kg->kg_user_pri = newpriority;
  381         }
  382         FOREACH_THREAD_IN_GROUP(kg, td) {
  383                 maybe_resched(td);                      /* XXXKSE silly */
  384         }
  385         mtx_unlock_spin(&sched_lock);
  386 }
  387 
  388 /* ARGSUSED */
  389 static void
  390 sched_setup(void *dummy)
  391 {
  392         if (sched_quantum == 0)
  393                 sched_quantum = SCHED_QUANTUM;
  394         hogticks = 2 * sched_quantum;
  395 
  396         callout_init(&schedcpu_callout, 1);
  397         callout_init(&roundrobin_callout, 0);
  398 
  399         /* Kick off timeout driven events by calling first time. */
  400         roundrobin(NULL);
  401         schedcpu(NULL);
  402 }
  403 
  404 /* External interfaces start here */
  405 int
  406 sched_runnable(void)
  407 {
  408         return runq_check(&runq);
  409 }
  410 
  411 int 
  412 sched_rr_interval(void)
  413 {
  414         if (sched_quantum == 0)
  415                 sched_quantum = SCHED_QUANTUM;
  416         return (sched_quantum);
  417 }
  418 
  419 /*
  420  * We adjust the priority of the current process.  The priority of
  421  * a process gets worse as it accumulates CPU time.  The cpu usage
  422  * estimator (p_estcpu) is increased here.  resetpriority() will
  423  * compute a different priority each time p_estcpu increases by
  424  * INVERSE_ESTCPU_WEIGHT
  425  * (until MAXPRI is reached).  The cpu usage estimator ramps up
  426  * quite quickly when the process is running (linearly), and decays
  427  * away exponentially, at a rate which is proportionally slower when
  428  * the system is busy.  The basic principle is that the system will
  429  * 90% forget that the process used a lot of CPU time in 5 * loadav
  430  * seconds.  This causes the system to favor processes which haven't
  431  * run much recently, and to round-robin among other processes.
  432  */
  433 void
  434 sched_clock(struct thread *td)
  435 {
  436         struct kse *ke;
  437         struct ksegrp *kg;
  438 
  439         KASSERT((td != NULL), ("schedclock: null thread pointer"));
  440         ke = td->td_kse;
  441         kg = td->td_ksegrp;
  442         ke->ke_cpticks++;
  443         kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
  444         if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
  445                 resetpriority(kg);
  446                 if (td->td_priority >= PUSER)
  447                         td->td_priority = kg->kg_user_pri;
  448         }
  449 }
  450 /*
  451  * charge childs scheduling cpu usage to parent.
  452  *
  453  * XXXKSE assume only one thread & kse & ksegrp keep estcpu in each ksegrp.
  454  * Charge it to the ksegrp that did the wait since process estcpu is sum of
  455  * all ksegrps, this is strictly as expected.  Assume that the child process
  456  * aggregated all the estcpu into the 'built-in' ksegrp.
  457  */
  458 void
  459 sched_exit(struct ksegrp *kg, struct ksegrp *child)
  460 {
  461         kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + child->kg_estcpu);
  462 }
  463 
  464 void
  465 sched_fork(struct ksegrp *kg, struct ksegrp *child)
  466 {
  467         /*
  468          * set priority of child to be that of parent.
  469          * XXXKSE this needs redefining..
  470          */     
  471         child->kg_estcpu = kg->kg_estcpu;
  472 }
  473 
  474 void
  475 sched_nice(struct ksegrp *kg, int nice)
  476 {
  477         kg->kg_nice = nice;
  478         resetpriority(kg);
  479 }
  480 
  481 /*
  482  * Adjust the priority of a thread.
  483  * This may include moving the thread within the KSEGRP,
  484  * changing the assignment of a kse to the thread,
  485  * and moving a KSE in the system run queue.
  486  */
  487 void
  488 sched_prio(struct thread *td, u_char prio)
  489 {
  490 
  491         if (TD_ON_RUNQ(td)) {
  492                 adjustrunqueue(td, prio);
  493         } else {
  494                 td->td_priority = prio;
  495         }
  496 }
  497 
  498 void
  499 sched_sleep(struct thread *td, u_char prio)
  500 {
  501         td->td_ksegrp->kg_slptime = 0;
  502         td->td_priority = prio;
  503 }
  504 
  505 void
  506 sched_switchin(struct thread *td)
  507 {
  508         td->td_kse->ke_oncpu = PCPU_GET(cpuid);
  509 }
  510 
  511 void
  512 sched_switchout(struct thread *td)
  513 {
  514         struct kse *ke;
  515         struct proc *p;
  516 
  517         ke = td->td_kse;
  518         p = td->td_proc;
  519 
  520         KASSERT((ke->ke_state == KES_THREAD), ("mi_switch: kse state?"));
  521 
  522         td->td_lastcpu = ke->ke_oncpu;
  523         td->td_last_kse = ke;
  524         ke->ke_oncpu = NOCPU;
  525         ke->ke_flags &= ~KEF_NEEDRESCHED;
  526         /*
  527          * At the last moment, if this thread is still marked RUNNING,
  528          * then put it back on the run queue as it has not been suspended
  529          * or stopped or any thing else similar.
  530          */
  531         if (TD_IS_RUNNING(td)) {
  532                 /* Put us back on the run queue (kse and all). */
  533                 setrunqueue(td);
  534         } else if (p->p_flag & P_KSES) {
  535                 /*
  536                  * We will not be on the run queue. So we must be
  537                  * sleeping or similar. As it's available,
  538                  * someone else can use the KSE if they need it.
  539                  * (If bound LOANING can still occur).
  540                  */
  541                 kse_reassign(ke);
  542         }
  543 }
  544 
  545 void
  546 sched_wakeup(struct thread *td)
  547 {
  548         struct ksegrp *kg;
  549 
  550         kg = td->td_ksegrp;
  551         if (kg->kg_slptime > 1)
  552                 updatepri(kg);
  553         kg->kg_slptime = 0;
  554         setrunqueue(td);
  555         maybe_resched(td);
  556 }
  557 
  558 void
  559 sched_add(struct kse *ke)
  560 {
  561         mtx_assert(&sched_lock, MA_OWNED);
  562         KASSERT((ke->ke_thread != NULL), ("runq_add: No thread on KSE"));
  563         KASSERT((ke->ke_thread->td_kse != NULL),
  564             ("runq_add: No KSE on thread"));
  565         KASSERT(ke->ke_state != KES_ONRUNQ,
  566             ("runq_add: kse %p (%s) already in run queue", ke,
  567             ke->ke_proc->p_comm));
  568         KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
  569             ("runq_add: process swapped out"));
  570         ke->ke_ksegrp->kg_runq_kses++;
  571         ke->ke_state = KES_ONRUNQ;
  572 
  573         runq_add(&runq, ke);
  574 }
  575 
  576 void
  577 sched_rem(struct kse *ke)
  578 {
  579         KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
  580             ("runq_remove: process swapped out"));
  581         KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
  582         mtx_assert(&sched_lock, MA_OWNED);
  583 
  584         runq_remove(&runq, ke);
  585         ke->ke_state = KES_THREAD;
  586         ke->ke_ksegrp->kg_runq_kses--;
  587 }
  588 
  589 struct kse *
  590 sched_choose(void)
  591 {
  592         struct kse *ke;
  593 
  594         ke = runq_choose(&runq);
  595 
  596         if (ke != NULL) {
  597                 runq_remove(&runq, ke);
  598                 ke->ke_state = KES_THREAD;
  599 
  600                 KASSERT((ke->ke_thread != NULL),
  601                     ("runq_choose: No thread on KSE"));
  602                 KASSERT((ke->ke_thread->td_kse != NULL),
  603                     ("runq_choose: No KSE on thread"));
  604                 KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
  605                     ("runq_choose: process swapped out"));
  606         }
  607         return (ke);
  608 }
  609 
  610 void
  611 sched_userret(struct thread *td)
  612 {
  613         struct ksegrp *kg;
  614         /*
  615          * XXX we cheat slightly on the locking here to avoid locking in
  616          * the usual case.  Setting td_priority here is essentially an
  617          * incomplete workaround for not setting it properly elsewhere.
  618          * Now that some interrupt handlers are threads, not setting it
  619          * properly elsewhere can clobber it in the window between setting
  620          * it here and returning to user mode, so don't waste time setting
  621          * it perfectly here.
  622          */
  623         kg = td->td_ksegrp;
  624         if (td->td_priority != kg->kg_user_pri) {
  625                 mtx_lock_spin(&sched_lock);
  626                 td->td_priority = kg->kg_user_pri;
  627                 mtx_unlock_spin(&sched_lock);
  628         }
  629 }
  630 
  631 int
  632 sched_sizeof_kse(void)
  633 {
  634         return (sizeof(struct kse));
  635 }
  636 int
  637 sched_sizeof_ksegrp(void)
  638 {
  639         return (sizeof(struct ksegrp));
  640 }
  641 int
  642 sched_sizeof_proc(void)
  643 {
  644         return (sizeof(struct proc));
  645 }
  646 int
  647 sched_sizeof_thread(void)
  648 {
  649         return (sizeof(struct thread));
  650 }
  651 
  652 fixpt_t
  653 sched_pctcpu(struct kse *ke)
  654 {
  655         return (ke->ke_pctcpu);
  656 }

Cache object: 8afa9b318be7dc76cf45b9e1bd738ab6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.