The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sched_4bsd.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD$");
   37 
   38 #include "opt_hwpmc_hooks.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/kernel.h>
   43 #include <sys/ktr.h>
   44 #include <sys/lock.h>
   45 #include <sys/kthread.h>
   46 #include <sys/mutex.h>
   47 #include <sys/proc.h>
   48 #include <sys/resourcevar.h>
   49 #include <sys/sched.h>
   50 #include <sys/smp.h>
   51 #include <sys/sysctl.h>
   52 #include <sys/sx.h>
   53 #include <sys/turnstile.h>
   54 #include <sys/umtx.h>
   55 #include <machine/pcb.h>
   56 #include <machine/smp.h>
   57 
   58 #ifdef HWPMC_HOOKS
   59 #include <sys/pmckern.h>
   60 #endif
   61 
   62 /*
   63  * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
   64  * the range 100-256 Hz (approximately).
   65  */
   66 #define ESTCPULIM(e) \
   67     min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
   68     RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
   69 #ifdef SMP
   70 #define INVERSE_ESTCPU_WEIGHT   (8 * smp_cpus)
   71 #else
   72 #define INVERSE_ESTCPU_WEIGHT   8       /* 1 / (priorities per estcpu level). */
   73 #endif
   74 #define NICE_WEIGHT             1       /* Priorities per nice level. */
   75 
   76 /*
   77  * The schedulable entity that runs a context.
   78  * This is  an extension to the thread structure and is tailored to
   79  * the requirements of this scheduler
   80  */
   81 struct td_sched {
   82         TAILQ_ENTRY(td_sched) ts_procq; /* (j/z) Run queue. */
   83         struct thread   *ts_thread;     /* (*) Active associated thread. */
   84         fixpt_t         ts_pctcpu;      /* (j) %cpu during p_swtime. */
   85         u_char          ts_rqindex;     /* (j) Run queue index. */
   86         int             ts_cpticks;     /* (j) Ticks of cpu time. */
   87         int             ts_slptime;     /* (j) Seconds !RUNNING. */
   88         struct runq     *ts_runq;       /* runq the thread is currently on */
   89 };
   90 
   91 /* flags kept in td_flags */
   92 #define TDF_DIDRUN      TDF_SCHED0      /* thread actually ran. */
   93 #define TDF_EXIT        TDF_SCHED1      /* thread is being killed. */
   94 #define TDF_BOUND       TDF_SCHED2
   95 
   96 #define ts_flags        ts_thread->td_flags
   97 #define TSF_DIDRUN      TDF_DIDRUN /* thread actually ran. */
   98 #define TSF_EXIT        TDF_EXIT /* thread is being killed. */
   99 #define TSF_BOUND       TDF_BOUND /* stuck to one CPU */
  100 
  101 #define SKE_RUNQ_PCPU(ts)                                               \
  102     ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
  103 
  104 static struct td_sched td_sched0;
  105 struct mtx sched_lock;
  106 
  107 static int      sched_tdcnt;    /* Total runnable threads in the system. */
  108 static int      sched_quantum;  /* Roundrobin scheduling quantum in ticks. */
  109 #define SCHED_QUANTUM   (hz / 10)       /* Default sched quantum */
  110 
  111 static struct callout roundrobin_callout;
  112 
  113 static void     setup_runqs(void);
  114 static void     roundrobin(void *arg);
  115 static void     schedcpu(void);
  116 static void     schedcpu_thread(void);
  117 static void     sched_priority(struct thread *td, u_char prio);
  118 static void     sched_setup(void *dummy);
  119 static void     maybe_resched(struct thread *td);
  120 static void     updatepri(struct thread *td);
  121 static void     resetpriority(struct thread *td);
  122 static void     resetpriority_thread(struct thread *td);
  123 #ifdef SMP
  124 static int      forward_wakeup(int  cpunum);
  125 #endif
  126 
  127 static struct kproc_desc sched_kp = {
  128         "schedcpu",
  129         schedcpu_thread,
  130         NULL
  131 };
  132 SYSINIT(schedcpu, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, kproc_start, &sched_kp)
  133 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
  134 
  135 /*
  136  * Global run queue.
  137  */
  138 static struct runq runq;
  139 
  140 #ifdef SMP
  141 /*
  142  * Per-CPU run queues
  143  */
  144 static struct runq runq_pcpu[MAXCPU];
  145 #endif
  146 
  147 static void
  148 setup_runqs(void)
  149 {
  150 #ifdef SMP
  151         int i;
  152 
  153         for (i = 0; i < MAXCPU; ++i)
  154                 runq_init(&runq_pcpu[i]);
  155 #endif
  156 
  157         runq_init(&runq);
  158 }
  159 
  160 static int
  161 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
  162 {
  163         int error, new_val;
  164 
  165         new_val = sched_quantum * tick;
  166         error = sysctl_handle_int(oidp, &new_val, 0, req);
  167         if (error != 0 || req->newptr == NULL)
  168                 return (error);
  169         if (new_val < tick)
  170                 return (EINVAL);
  171         sched_quantum = new_val / tick;
  172         hogticks = 2 * sched_quantum;
  173         return (0);
  174 }
  175 
  176 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD, 0, "Scheduler");
  177 
  178 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
  179     "Scheduler name");
  180 
  181 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
  182     0, sizeof sched_quantum, sysctl_kern_quantum, "I",
  183     "Roundrobin scheduling quantum in microseconds");
  184 
  185 #ifdef SMP
  186 /* Enable forwarding of wakeups to all other cpus */
  187 SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup, CTLFLAG_RD, NULL, "Kernel SMP");
  188 
  189 static int forward_wakeup_enabled = 1;
  190 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
  191            &forward_wakeup_enabled, 0,
  192            "Forwarding of wakeup to idle CPUs");
  193 
  194 static int forward_wakeups_requested = 0;
  195 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
  196            &forward_wakeups_requested, 0,
  197            "Requests for Forwarding of wakeup to idle CPUs");
  198 
  199 static int forward_wakeups_delivered = 0;
  200 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
  201            &forward_wakeups_delivered, 0,
  202            "Completed Forwarding of wakeup to idle CPUs");
  203 
  204 static int forward_wakeup_use_mask = 1;
  205 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
  206            &forward_wakeup_use_mask, 0,
  207            "Use the mask of idle cpus");
  208 
  209 static int forward_wakeup_use_loop = 0;
  210 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
  211            &forward_wakeup_use_loop, 0,
  212            "Use a loop to find idle cpus");
  213 
  214 static int forward_wakeup_use_single = 0;
  215 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, onecpu, CTLFLAG_RW,
  216            &forward_wakeup_use_single, 0,
  217            "Only signal one idle cpu");
  218 
  219 static int forward_wakeup_use_htt = 0;
  220 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, htt2, CTLFLAG_RW,
  221            &forward_wakeup_use_htt, 0,
  222            "account for htt");
  223 
  224 #endif
  225 #if 0
  226 static int sched_followon = 0;
  227 SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
  228            &sched_followon, 0,
  229            "allow threads to share a quantum");
  230 #endif
  231 
  232 static __inline void
  233 sched_load_add(void)
  234 {
  235         sched_tdcnt++;
  236         CTR1(KTR_SCHED, "global load: %d", sched_tdcnt);
  237 }
  238 
  239 static __inline void
  240 sched_load_rem(void)
  241 {
  242         sched_tdcnt--;
  243         CTR1(KTR_SCHED, "global load: %d", sched_tdcnt);
  244 }
  245 /*
  246  * Arrange to reschedule if necessary, taking the priorities and
  247  * schedulers into account.
  248  */
  249 static void
  250 maybe_resched(struct thread *td)
  251 {
  252 
  253         THREAD_LOCK_ASSERT(td, MA_OWNED);
  254         if (td->td_priority < curthread->td_priority)
  255                 curthread->td_flags |= TDF_NEEDRESCHED;
  256 }
  257 
  258 /*
  259  * Force switch among equal priority processes every 100ms.
  260  * We don't actually need to force a context switch of the current process.
  261  * The act of firing the event triggers a context switch to softclock() and
  262  * then switching back out again which is equivalent to a preemption, thus
  263  * no further work is needed on the local CPU.
  264  */
  265 /* ARGSUSED */
  266 static void
  267 roundrobin(void *arg)
  268 {
  269 
  270 #ifdef SMP
  271         mtx_lock_spin(&sched_lock);
  272         forward_roundrobin();
  273         mtx_unlock_spin(&sched_lock);
  274 #endif
  275 
  276         callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
  277 }
  278 
  279 /*
  280  * Constants for digital decay and forget:
  281  *      90% of (td_estcpu) usage in 5 * loadav time
  282  *      95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
  283  *          Note that, as ps(1) mentions, this can let percentages
  284  *          total over 100% (I've seen 137.9% for 3 processes).
  285  *
  286  * Note that schedclock() updates td_estcpu and p_cpticks asynchronously.
  287  *
  288  * We wish to decay away 90% of td_estcpu in (5 * loadavg) seconds.
  289  * That is, the system wants to compute a value of decay such
  290  * that the following for loop:
  291  *      for (i = 0; i < (5 * loadavg); i++)
  292  *              td_estcpu *= decay;
  293  * will compute
  294  *      td_estcpu *= 0.1;
  295  * for all values of loadavg:
  296  *
  297  * Mathematically this loop can be expressed by saying:
  298  *      decay ** (5 * loadavg) ~= .1
  299  *
  300  * The system computes decay as:
  301  *      decay = (2 * loadavg) / (2 * loadavg + 1)
  302  *
  303  * We wish to prove that the system's computation of decay
  304  * will always fulfill the equation:
  305  *      decay ** (5 * loadavg) ~= .1
  306  *
  307  * If we compute b as:
  308  *      b = 2 * loadavg
  309  * then
  310  *      decay = b / (b + 1)
  311  *
  312  * We now need to prove two things:
  313  *      1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
  314  *      2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
  315  *
  316  * Facts:
  317  *         For x close to zero, exp(x) =~ 1 + x, since
  318  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
  319  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
  320  *         For x close to zero, ln(1+x) =~ x, since
  321  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
  322  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
  323  *         ln(.1) =~ -2.30
  324  *
  325  * Proof of (1):
  326  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
  327  *      solving for factor,
  328  *      ln(factor) =~ (-2.30/5*loadav), or
  329  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
  330  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
  331  *
  332  * Proof of (2):
  333  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
  334  *      solving for power,
  335  *      power*ln(b/(b+1)) =~ -2.30, or
  336  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
  337  *
  338  * Actual power values for the implemented algorithm are as follows:
  339  *      loadav: 1       2       3       4
  340  *      power:  5.68    10.32   14.94   19.55
  341  */
  342 
  343 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
  344 #define loadfactor(loadav)      (2 * (loadav))
  345 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
  346 
  347 /* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
  348 static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
  349 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
  350 
  351 /*
  352  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
  353  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
  354  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
  355  *
  356  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
  357  *      1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
  358  *
  359  * If you don't want to bother with the faster/more-accurate formula, you
  360  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
  361  * (more general) method of calculating the %age of CPU used by a process.
  362  */
  363 #define CCPU_SHIFT      11
  364 
  365 /*
  366  * Recompute process priorities, every hz ticks.
  367  * MP-safe, called without the Giant mutex.
  368  */
  369 /* ARGSUSED */
  370 static void
  371 schedcpu(void)
  372 {
  373         register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
  374         struct thread *td;
  375         struct proc *p;
  376         struct td_sched *ts;
  377         int awake, realstathz;
  378 
  379         realstathz = stathz ? stathz : hz;
  380         sx_slock(&allproc_lock);
  381         FOREACH_PROC_IN_SYSTEM(p) {
  382                 PROC_SLOCK(p);
  383                 FOREACH_THREAD_IN_PROC(p, td) { 
  384                         awake = 0;
  385                         thread_lock(td);
  386                         ts = td->td_sched;
  387                         /*
  388                          * Increment sleep time (if sleeping).  We
  389                          * ignore overflow, as above.
  390                          */
  391                         /*
  392                          * The td_sched slptimes are not touched in wakeup
  393                          * because the thread may not HAVE everything in
  394                          * memory? XXX I think this is out of date.
  395                          */
  396                         if (TD_ON_RUNQ(td)) {
  397                                 awake = 1;
  398                                 ts->ts_flags &= ~TSF_DIDRUN;
  399                         } else if (TD_IS_RUNNING(td)) {
  400                                 awake = 1;
  401                                 /* Do not clear TSF_DIDRUN */
  402                         } else if (ts->ts_flags & TSF_DIDRUN) {
  403                                 awake = 1;
  404                                 ts->ts_flags &= ~TSF_DIDRUN;
  405                         }
  406 
  407                         /*
  408                          * ts_pctcpu is only for ps and ttyinfo().
  409                          * Do it per td_sched, and add them up at the end?
  410                          * XXXKSE
  411                          */
  412                         ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
  413                         /*
  414                          * If the td_sched has been idle the entire second,
  415                          * stop recalculating its priority until
  416                          * it wakes up.
  417                          */
  418                         if (ts->ts_cpticks != 0) {
  419 #if     (FSHIFT >= CCPU_SHIFT)
  420                                 ts->ts_pctcpu += (realstathz == 100)
  421                                     ? ((fixpt_t) ts->ts_cpticks) <<
  422                                     (FSHIFT - CCPU_SHIFT) :
  423                                     100 * (((fixpt_t) ts->ts_cpticks)
  424                                     << (FSHIFT - CCPU_SHIFT)) / realstathz;
  425 #else
  426                                 ts->ts_pctcpu += ((FSCALE - ccpu) *
  427                                     (ts->ts_cpticks *
  428                                     FSCALE / realstathz)) >> FSHIFT;
  429 #endif
  430                                 ts->ts_cpticks = 0;
  431                         }
  432                         /* 
  433                          * If there are ANY running threads in this process,
  434                          * then don't count it as sleeping.
  435 XXX  this is broken
  436 
  437                          */
  438                         if (awake) {
  439                                 if (ts->ts_slptime > 1) {
  440                                         /*
  441                                          * In an ideal world, this should not
  442                                          * happen, because whoever woke us
  443                                          * up from the long sleep should have
  444                                          * unwound the slptime and reset our
  445                                          * priority before we run at the stale
  446                                          * priority.  Should KASSERT at some
  447                                          * point when all the cases are fixed.
  448                                          */
  449                                         updatepri(td);
  450                                 }
  451                                 ts->ts_slptime = 0;
  452                         } else
  453                                 ts->ts_slptime++;
  454                         if (ts->ts_slptime > 1) {
  455                                 thread_unlock(td);
  456                                 continue;
  457                         }
  458                         td->td_estcpu = decay_cpu(loadfac, td->td_estcpu);
  459                         resetpriority(td);
  460                         resetpriority_thread(td);
  461                         thread_unlock(td);
  462                 } /* end of thread loop */
  463                 PROC_SUNLOCK(p);
  464         } /* end of process loop */
  465         sx_sunlock(&allproc_lock);
  466 }
  467 
  468 /*
  469  * Main loop for a kthread that executes schedcpu once a second.
  470  */
  471 static void
  472 schedcpu_thread(void)
  473 {
  474 
  475         for (;;) {
  476                 schedcpu();
  477                 pause("-", hz);
  478         }
  479 }
  480 
  481 /*
  482  * Recalculate the priority of a process after it has slept for a while.
  483  * For all load averages >= 1 and max td_estcpu of 255, sleeping for at
  484  * least six times the loadfactor will decay td_estcpu to zero.
  485  */
  486 static void
  487 updatepri(struct thread *td)
  488 {
  489         struct td_sched *ts;
  490         fixpt_t loadfac;
  491         unsigned int newcpu;
  492 
  493         ts = td->td_sched;
  494         loadfac = loadfactor(averunnable.ldavg[0]);
  495         if (ts->ts_slptime > 5 * loadfac)
  496                 td->td_estcpu = 0;
  497         else {
  498                 newcpu = td->td_estcpu;
  499                 ts->ts_slptime--;       /* was incremented in schedcpu() */
  500                 while (newcpu && --ts->ts_slptime)
  501                         newcpu = decay_cpu(loadfac, newcpu);
  502                 td->td_estcpu = newcpu;
  503         }
  504 }
  505 
  506 /*
  507  * Compute the priority of a process when running in user mode.
  508  * Arrange to reschedule if the resulting priority is better
  509  * than that of the current process.
  510  */
  511 static void
  512 resetpriority(struct thread *td)
  513 {
  514         register unsigned int newpriority;
  515 
  516         if (td->td_pri_class == PRI_TIMESHARE) {
  517                 newpriority = PUSER + td->td_estcpu / INVERSE_ESTCPU_WEIGHT +
  518                     NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
  519                 newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
  520                     PRI_MAX_TIMESHARE);
  521                 sched_user_prio(td, newpriority);
  522         }
  523 }
  524 
  525 /*
  526  * Update the thread's priority when the associated process's user
  527  * priority changes.
  528  */
  529 static void
  530 resetpriority_thread(struct thread *td)
  531 {
  532 
  533         /* Only change threads with a time sharing user priority. */
  534         if (td->td_priority < PRI_MIN_TIMESHARE ||
  535             td->td_priority > PRI_MAX_TIMESHARE)
  536                 return;
  537 
  538         /* XXX the whole needresched thing is broken, but not silly. */
  539         maybe_resched(td);
  540 
  541         sched_prio(td, td->td_user_pri);
  542 }
  543 
  544 /* ARGSUSED */
  545 static void
  546 sched_setup(void *dummy)
  547 {
  548         setup_runqs();
  549 
  550         if (sched_quantum == 0)
  551                 sched_quantum = SCHED_QUANTUM;
  552         hogticks = 2 * sched_quantum;
  553 
  554         callout_init(&roundrobin_callout, CALLOUT_MPSAFE);
  555 
  556         /* Kick off timeout driven events by calling first time. */
  557         roundrobin(NULL);
  558 
  559         /* Account for thread0. */
  560         sched_load_add();
  561 }
  562 
  563 /* External interfaces start here */
  564 /*
  565  * Very early in the boot some setup of scheduler-specific
  566  * parts of proc0 and of some scheduler resources needs to be done.
  567  * Called from:
  568  *  proc0_init()
  569  */
  570 void
  571 schedinit(void)
  572 {
  573         /*
  574          * Set up the scheduler specific parts of proc0.
  575          */
  576         proc0.p_sched = NULL; /* XXX */
  577         thread0.td_sched = &td_sched0;
  578         thread0.td_lock = &sched_lock;
  579         td_sched0.ts_thread = &thread0;
  580         mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
  581 }
  582 
  583 int
  584 sched_runnable(void)
  585 {
  586 #ifdef SMP
  587         return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
  588 #else
  589         return runq_check(&runq);
  590 #endif
  591 }
  592 
  593 int 
  594 sched_rr_interval(void)
  595 {
  596         if (sched_quantum == 0)
  597                 sched_quantum = SCHED_QUANTUM;
  598         return (sched_quantum);
  599 }
  600 
  601 /*
  602  * We adjust the priority of the current process.  The priority of
  603  * a process gets worse as it accumulates CPU time.  The cpu usage
  604  * estimator (td_estcpu) is increased here.  resetpriority() will
  605  * compute a different priority each time td_estcpu increases by
  606  * INVERSE_ESTCPU_WEIGHT
  607  * (until MAXPRI is reached).  The cpu usage estimator ramps up
  608  * quite quickly when the process is running (linearly), and decays
  609  * away exponentially, at a rate which is proportionally slower when
  610  * the system is busy.  The basic principle is that the system will
  611  * 90% forget that the process used a lot of CPU time in 5 * loadav
  612  * seconds.  This causes the system to favor processes which haven't
  613  * run much recently, and to round-robin among other processes.
  614  */
  615 void
  616 sched_clock(struct thread *td)
  617 {
  618         struct td_sched *ts;
  619 
  620         THREAD_LOCK_ASSERT(td, MA_OWNED);
  621         ts = td->td_sched;
  622 
  623         ts->ts_cpticks++;
  624         td->td_estcpu = ESTCPULIM(td->td_estcpu + 1);
  625         if ((td->td_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
  626                 resetpriority(td);
  627                 resetpriority_thread(td);
  628         }
  629 }
  630 
  631 /*
  632  * charge childs scheduling cpu usage to parent.
  633  */
  634 void
  635 sched_exit(struct proc *p, struct thread *td)
  636 {
  637 
  638         CTR3(KTR_SCHED, "sched_exit: %p(%s) prio %d",
  639             td, td->td_proc->p_comm, td->td_priority);
  640         PROC_SLOCK_ASSERT(p, MA_OWNED);
  641         sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
  642 }
  643 
  644 void
  645 sched_exit_thread(struct thread *td, struct thread *child)
  646 {
  647 
  648         CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
  649             child, child->td_proc->p_comm, child->td_priority);
  650         thread_lock(td);
  651         td->td_estcpu = ESTCPULIM(td->td_estcpu + child->td_estcpu);
  652         thread_unlock(td);
  653         mtx_lock_spin(&sched_lock);
  654         if ((child->td_proc->p_flag & P_NOLOAD) == 0)
  655                 sched_load_rem();
  656         mtx_unlock_spin(&sched_lock);
  657 }
  658 
  659 void
  660 sched_fork(struct thread *td, struct thread *childtd)
  661 {
  662         sched_fork_thread(td, childtd);
  663 }
  664 
  665 void
  666 sched_fork_thread(struct thread *td, struct thread *childtd)
  667 {
  668         childtd->td_estcpu = td->td_estcpu;
  669         childtd->td_lock = &sched_lock;
  670         sched_newthread(childtd);
  671 }
  672 
  673 void
  674 sched_nice(struct proc *p, int nice)
  675 {
  676         struct thread *td;
  677 
  678         PROC_LOCK_ASSERT(p, MA_OWNED);
  679         PROC_SLOCK_ASSERT(p, MA_OWNED);
  680         p->p_nice = nice;
  681         FOREACH_THREAD_IN_PROC(p, td) {
  682                 thread_lock(td);
  683                 resetpriority(td);
  684                 resetpriority_thread(td);
  685                 thread_unlock(td);
  686         }
  687 }
  688 
  689 void
  690 sched_class(struct thread *td, int class)
  691 {
  692         THREAD_LOCK_ASSERT(td, MA_OWNED);
  693         td->td_pri_class = class;
  694 }
  695 
  696 /*
  697  * Adjust the priority of a thread.
  698  */
  699 static void
  700 sched_priority(struct thread *td, u_char prio)
  701 {
  702         CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
  703             td, td->td_proc->p_comm, td->td_priority, prio, curthread, 
  704             curthread->td_proc->p_comm);
  705 
  706         THREAD_LOCK_ASSERT(td, MA_OWNED);
  707         if (td->td_priority == prio)
  708                 return;
  709         td->td_priority = prio;
  710         if (TD_ON_RUNQ(td) && 
  711             td->td_sched->ts_rqindex != (prio / RQ_PPQ)) {
  712                 sched_rem(td);
  713                 sched_add(td, SRQ_BORING);
  714         }
  715 }
  716 
  717 /*
  718  * Update a thread's priority when it is lent another thread's
  719  * priority.
  720  */
  721 void
  722 sched_lend_prio(struct thread *td, u_char prio)
  723 {
  724 
  725         td->td_flags |= TDF_BORROWING;
  726         sched_priority(td, prio);
  727 }
  728 
  729 /*
  730  * Restore a thread's priority when priority propagation is
  731  * over.  The prio argument is the minimum priority the thread
  732  * needs to have to satisfy other possible priority lending
  733  * requests.  If the thread's regulary priority is less
  734  * important than prio the thread will keep a priority boost
  735  * of prio.
  736  */
  737 void
  738 sched_unlend_prio(struct thread *td, u_char prio)
  739 {
  740         u_char base_pri;
  741 
  742         if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
  743             td->td_base_pri <= PRI_MAX_TIMESHARE)
  744                 base_pri = td->td_user_pri;
  745         else
  746                 base_pri = td->td_base_pri;
  747         if (prio >= base_pri) {
  748                 td->td_flags &= ~TDF_BORROWING;
  749                 sched_prio(td, base_pri);
  750         } else
  751                 sched_lend_prio(td, prio);
  752 }
  753 
  754 void
  755 sched_prio(struct thread *td, u_char prio)
  756 {
  757         u_char oldprio;
  758 
  759         /* First, update the base priority. */
  760         td->td_base_pri = prio;
  761 
  762         /*
  763          * If the thread is borrowing another thread's priority, don't ever
  764          * lower the priority.
  765          */
  766         if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
  767                 return;
  768 
  769         /* Change the real priority. */
  770         oldprio = td->td_priority;
  771         sched_priority(td, prio);
  772 
  773         /*
  774          * If the thread is on a turnstile, then let the turnstile update
  775          * its state.
  776          */
  777         if (TD_ON_LOCK(td) && oldprio != prio)
  778                 turnstile_adjust(td, oldprio);
  779 }
  780 
  781 void
  782 sched_user_prio(struct thread *td, u_char prio)
  783 {
  784         u_char oldprio;
  785 
  786         THREAD_LOCK_ASSERT(td, MA_OWNED);
  787         td->td_base_user_pri = prio;
  788         if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
  789                 return;
  790         oldprio = td->td_user_pri;
  791         td->td_user_pri = prio;
  792 }
  793 
  794 void
  795 sched_lend_user_prio(struct thread *td, u_char prio)
  796 {
  797         u_char oldprio;
  798 
  799         THREAD_LOCK_ASSERT(td, MA_OWNED);
  800         td->td_flags |= TDF_UBORROWING;
  801 
  802         oldprio = td->td_user_pri;
  803         td->td_user_pri = prio;
  804 }
  805 
  806 void
  807 sched_unlend_user_prio(struct thread *td, u_char prio)
  808 {
  809         u_char base_pri;
  810 
  811         THREAD_LOCK_ASSERT(td, MA_OWNED);
  812         base_pri = td->td_base_user_pri;
  813         if (prio >= base_pri) {
  814                 td->td_flags &= ~TDF_UBORROWING;
  815                 sched_user_prio(td, base_pri);
  816         } else {
  817                 sched_lend_user_prio(td, prio);
  818         }
  819 }
  820 
  821 void
  822 sched_sleep(struct thread *td)
  823 {
  824 
  825         THREAD_LOCK_ASSERT(td, MA_OWNED);
  826         td->td_slptick = ticks;
  827         td->td_sched->ts_slptime = 0;
  828 }
  829 
  830 void
  831 sched_switch(struct thread *td, struct thread *newtd, int flags)
  832 {
  833         struct td_sched *ts;
  834         struct proc *p;
  835 
  836         ts = td->td_sched;
  837         p = td->td_proc;
  838 
  839         THREAD_LOCK_ASSERT(td, MA_OWNED);
  840         /*  
  841          * Switch to the sched lock to fix things up and pick
  842          * a new thread.
  843          */
  844         if (td->td_lock != &sched_lock) {
  845                 mtx_lock_spin(&sched_lock);
  846                 thread_unlock(td);
  847         }
  848 
  849         if ((p->p_flag & P_NOLOAD) == 0)
  850                 sched_load_rem();
  851 
  852         if (newtd) 
  853                 newtd->td_flags |= (td->td_flags & TDF_NEEDRESCHED);
  854 
  855         td->td_lastcpu = td->td_oncpu;
  856         td->td_flags &= ~TDF_NEEDRESCHED;
  857         td->td_owepreempt = 0;
  858         td->td_oncpu = NOCPU;
  859         /*
  860          * At the last moment, if this thread is still marked RUNNING,
  861          * then put it back on the run queue as it has not been suspended
  862          * or stopped or any thing else similar.  We never put the idle
  863          * threads on the run queue, however.
  864          */
  865         if (td->td_flags & TDF_IDLETD) {
  866                 TD_SET_CAN_RUN(td);
  867 #ifdef SMP
  868                 idle_cpus_mask &= ~PCPU_GET(cpumask);
  869 #endif
  870         } else {
  871                 if (TD_IS_RUNNING(td)) {
  872                         /* Put us back on the run queue. */
  873                         sched_add(td, (flags & SW_PREEMPT) ?
  874                             SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
  875                             SRQ_OURSELF|SRQ_YIELDING);
  876                 }
  877         }
  878         if (newtd) {
  879                 /* 
  880                  * The thread we are about to run needs to be counted
  881                  * as if it had been added to the run queue and selected.
  882                  * It came from:
  883                  * * A preemption
  884                  * * An upcall 
  885                  * * A followon
  886                  */
  887                 KASSERT((newtd->td_inhibitors == 0),
  888                         ("trying to run inhibited thread"));
  889                 newtd->td_sched->ts_flags |= TSF_DIDRUN;
  890                 TD_SET_RUNNING(newtd);
  891                 if ((newtd->td_proc->p_flag & P_NOLOAD) == 0)
  892                         sched_load_add();
  893         } else {
  894                 newtd = choosethread();
  895         }
  896         MPASS(newtd->td_lock == &sched_lock);
  897 
  898         if (td != newtd) {
  899 #ifdef  HWPMC_HOOKS
  900                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
  901                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
  902 #endif
  903 
  904                 /* I feel sleepy */
  905                 cpu_switch(td, newtd, td->td_lock);
  906                 /*
  907                  * Where am I?  What year is it?
  908                  * We are in the same thread that went to sleep above,
  909                  * but any amount of time may have passed. All out context
  910                  * will still be available as will local variables.
  911                  * PCPU values however may have changed as we may have
  912                  * changed CPU so don't trust cached values of them.
  913                  * New threads will go to fork_exit() instead of here
  914                  * so if you change things here you may need to change
  915                  * things there too.
  916                  * If the thread above was exiting it will never wake
  917                  * up again here, so either it has saved everything it
  918                  * needed to, or the thread_wait() or wait() will
  919                  * need to reap it.
  920                  */
  921 #ifdef  HWPMC_HOOKS
  922                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
  923                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
  924 #endif
  925         }
  926 
  927 #ifdef SMP
  928         if (td->td_flags & TDF_IDLETD)
  929                 idle_cpus_mask |= PCPU_GET(cpumask);
  930 #endif
  931         sched_lock.mtx_lock = (uintptr_t)td;
  932         td->td_oncpu = PCPU_GET(cpuid);
  933         MPASS(td->td_lock == &sched_lock);
  934 }
  935 
  936 void
  937 sched_wakeup(struct thread *td)
  938 {
  939         struct td_sched *ts;
  940 
  941         THREAD_LOCK_ASSERT(td, MA_OWNED);
  942         ts = td->td_sched;
  943         if (ts->ts_slptime > 1) {
  944                 updatepri(td);
  945                 resetpriority(td);
  946         }
  947         td->td_slptick = ticks;
  948         ts->ts_slptime = 0;
  949         sched_add(td, SRQ_BORING);
  950 }
  951 
  952 #ifdef SMP
  953 /* enable HTT_2 if you have a 2-way HTT cpu.*/
  954 static int
  955 forward_wakeup(int  cpunum)
  956 {
  957         cpumask_t map, me, dontuse;
  958         cpumask_t map2;
  959         struct pcpu *pc;
  960         cpumask_t id, map3;
  961 
  962         mtx_assert(&sched_lock, MA_OWNED);
  963 
  964         CTR0(KTR_RUNQ, "forward_wakeup()");
  965 
  966         if ((!forward_wakeup_enabled) ||
  967              (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
  968                 return (0);
  969         if (!smp_started || cold || panicstr)
  970                 return (0);
  971 
  972         forward_wakeups_requested++;
  973 
  974 /*
  975  * check the idle mask we received against what we calculated before
  976  * in the old version.
  977  */
  978         me = PCPU_GET(cpumask);
  979         /* 
  980          * don't bother if we should be doing it ourself..
  981          */
  982         if ((me & idle_cpus_mask) && (cpunum == NOCPU || me == (1 << cpunum)))
  983                 return (0);
  984 
  985         dontuse = me | stopped_cpus | hlt_cpus_mask;
  986         map3 = 0;
  987         if (forward_wakeup_use_loop) {
  988                 SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
  989                         id = pc->pc_cpumask;
  990                         if ( (id & dontuse) == 0 &&
  991                             pc->pc_curthread == pc->pc_idlethread) {
  992                                 map3 |= id;
  993                         }
  994                 }
  995         }
  996 
  997         if (forward_wakeup_use_mask) {
  998                 map = 0;
  999                 map = idle_cpus_mask & ~dontuse;
 1000 
 1001                 /* If they are both on, compare and use loop if different */
 1002                 if (forward_wakeup_use_loop) {
 1003                         if (map != map3) {
 1004                                 printf("map (%02X) != map3 (%02X)\n",
 1005                                                 map, map3);
 1006                                 map = map3;
 1007                         }
 1008                 }
 1009         } else {
 1010                 map = map3;
 1011         }
 1012         /* If we only allow a specific CPU, then mask off all the others */
 1013         if (cpunum != NOCPU) {
 1014                 KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
 1015                 map &= (1 << cpunum);
 1016         } else {
 1017                 /* Try choose an idle die. */
 1018                 if (forward_wakeup_use_htt) {
 1019                         map2 =  (map & (map >> 1)) & 0x5555;
 1020                         if (map2) {
 1021                                 map = map2;
 1022                         }
 1023                 }
 1024 
 1025                 /* set only one bit */ 
 1026                 if (forward_wakeup_use_single) {
 1027                         map = map & ((~map) + 1);
 1028                 }
 1029         }
 1030         if (map) {
 1031                 forward_wakeups_delivered++;
 1032                 ipi_selected(map, IPI_AST);
 1033                 return (1);
 1034         }
 1035         if (cpunum == NOCPU)
 1036                 printf("forward_wakeup: Idle processor not found\n");
 1037         return (0);
 1038 }
 1039 #endif
 1040 
 1041 #ifdef SMP
 1042 static void kick_other_cpu(int pri,int cpuid);
 1043 
 1044 static void
 1045 kick_other_cpu(int pri,int cpuid)
 1046 {       
 1047         struct pcpu * pcpu = pcpu_find(cpuid);
 1048         int cpri = pcpu->pc_curthread->td_priority;
 1049 
 1050         if (idle_cpus_mask & pcpu->pc_cpumask) {
 1051                 forward_wakeups_delivered++;
 1052                 ipi_selected(pcpu->pc_cpumask, IPI_AST);
 1053                 return;
 1054         }
 1055 
 1056         if (pri >= cpri)
 1057                 return;
 1058 
 1059 #if defined(IPI_PREEMPTION) && defined(PREEMPTION)
 1060 #if !defined(FULL_PREEMPTION)
 1061         if (pri <= PRI_MAX_ITHD)
 1062 #endif /* ! FULL_PREEMPTION */
 1063         {
 1064                 ipi_selected(pcpu->pc_cpumask, IPI_PREEMPT);
 1065                 return;
 1066         }
 1067 #endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
 1068 
 1069         pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
 1070         ipi_selected( pcpu->pc_cpumask , IPI_AST);
 1071         return;
 1072 }
 1073 #endif /* SMP */
 1074 
 1075 void
 1076 sched_add(struct thread *td, int flags)
 1077 #ifdef SMP
 1078 {
 1079         struct td_sched *ts;
 1080         int forwarded = 0;
 1081         int cpu;
 1082         int single_cpu = 0;
 1083 
 1084         ts = td->td_sched;
 1085         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1086         KASSERT((td->td_inhibitors == 0),
 1087             ("sched_add: trying to run inhibited thread"));
 1088         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 1089             ("sched_add: bad thread state"));
 1090         KASSERT(td->td_flags & TDF_INMEM,
 1091             ("sched_add: thread swapped out"));
 1092         CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
 1093             td, td->td_proc->p_comm, td->td_priority, curthread,
 1094             curthread->td_proc->p_comm);
 1095         /*
 1096          * Now that the thread is moving to the run-queue, set the lock
 1097          * to the scheduler's lock.
 1098          */
 1099         if (td->td_lock != &sched_lock) {
 1100                 mtx_lock_spin(&sched_lock);
 1101                 thread_lock_set(td, &sched_lock);
 1102         }
 1103         TD_SET_RUNQ(td);
 1104 
 1105         if (td->td_pinned != 0) {
 1106                 cpu = td->td_lastcpu;
 1107                 ts->ts_runq = &runq_pcpu[cpu];
 1108                 single_cpu = 1;
 1109                 CTR3(KTR_RUNQ,
 1110                     "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td, cpu);
 1111         } else if ((ts)->ts_flags & TSF_BOUND) {
 1112                 /* Find CPU from bound runq */
 1113                 KASSERT(SKE_RUNQ_PCPU(ts),("sched_add: bound td_sched not on cpu runq"));
 1114                 cpu = ts->ts_runq - &runq_pcpu[0];
 1115                 single_cpu = 1;
 1116                 CTR3(KTR_RUNQ,
 1117                     "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td, cpu);
 1118         } else {        
 1119                 CTR2(KTR_RUNQ,
 1120                     "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts, td);
 1121                 cpu = NOCPU;
 1122                 ts->ts_runq = &runq;
 1123         }
 1124         
 1125         if (single_cpu && (cpu != PCPU_GET(cpuid))) {
 1126                 kick_other_cpu(td->td_priority,cpu);
 1127         } else {
 1128                 
 1129                 if (!single_cpu) {
 1130                         cpumask_t me = PCPU_GET(cpumask);
 1131                         int idle = idle_cpus_mask & me; 
 1132 
 1133                         if (!idle && ((flags & SRQ_INTR) == 0) &&
 1134                             (idle_cpus_mask & ~(hlt_cpus_mask | me)))
 1135                                 forwarded = forward_wakeup(cpu);
 1136                 }
 1137 
 1138                 if (!forwarded) {
 1139                         if ((flags & SRQ_YIELDING) == 0 && maybe_preempt(td))
 1140                                 return;
 1141                         else
 1142                                 maybe_resched(td);
 1143                 }
 1144         }
 1145         
 1146         if ((td->td_proc->p_flag & P_NOLOAD) == 0)
 1147                 sched_load_add();
 1148         runq_add(ts->ts_runq, ts, flags);
 1149 }
 1150 #else /* SMP */
 1151 {
 1152         struct td_sched *ts;
 1153         ts = td->td_sched;
 1154         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1155         KASSERT((td->td_inhibitors == 0),
 1156             ("sched_add: trying to run inhibited thread"));
 1157         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 1158             ("sched_add: bad thread state"));
 1159         KASSERT(td->td_flags & TDF_INMEM,
 1160             ("sched_add: thread swapped out"));
 1161         CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
 1162             td, td->td_proc->p_comm, td->td_priority, curthread,
 1163             curthread->td_proc->p_comm);
 1164         /*
 1165          * Now that the thread is moving to the run-queue, set the lock
 1166          * to the scheduler's lock.
 1167          */
 1168         if (td->td_lock != &sched_lock) {
 1169                 mtx_lock_spin(&sched_lock);
 1170                 thread_lock_set(td, &sched_lock);
 1171         }
 1172         TD_SET_RUNQ(td);
 1173         CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
 1174         ts->ts_runq = &runq;
 1175 
 1176         /* 
 1177          * If we are yielding (on the way out anyhow) 
 1178          * or the thread being saved is US,
 1179          * then don't try be smart about preemption
 1180          * or kicking off another CPU
 1181          * as it won't help and may hinder.
 1182          * In the YIEDLING case, we are about to run whoever is 
 1183          * being put in the queue anyhow, and in the 
 1184          * OURSELF case, we are puting ourself on the run queue
 1185          * which also only happens when we are about to yield.
 1186          */
 1187         if((flags & SRQ_YIELDING) == 0) {
 1188                 if (maybe_preempt(td))
 1189                         return;
 1190         }       
 1191         if ((td->td_proc->p_flag & P_NOLOAD) == 0)
 1192                 sched_load_add();
 1193         runq_add(ts->ts_runq, ts, flags);
 1194         maybe_resched(td);
 1195 }
 1196 #endif /* SMP */
 1197 
 1198 void
 1199 sched_rem(struct thread *td)
 1200 {
 1201         struct td_sched *ts;
 1202 
 1203         ts = td->td_sched;
 1204         KASSERT(td->td_flags & TDF_INMEM,
 1205             ("sched_rem: thread swapped out"));
 1206         KASSERT(TD_ON_RUNQ(td),
 1207             ("sched_rem: thread not on run queue"));
 1208         mtx_assert(&sched_lock, MA_OWNED);
 1209         CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
 1210             td, td->td_proc->p_comm, td->td_priority, curthread,
 1211             curthread->td_proc->p_comm);
 1212 
 1213         if ((td->td_proc->p_flag & P_NOLOAD) == 0)
 1214                 sched_load_rem();
 1215         runq_remove(ts->ts_runq, ts);
 1216         TD_SET_CAN_RUN(td);
 1217 }
 1218 
 1219 /*
 1220  * Select threads to run.
 1221  * Notice that the running threads still consume a slot.
 1222  */
 1223 struct thread *
 1224 sched_choose(void)
 1225 {
 1226         struct td_sched *ts;
 1227         struct runq *rq;
 1228 
 1229         mtx_assert(&sched_lock,  MA_OWNED);
 1230 #ifdef SMP
 1231         struct td_sched *kecpu;
 1232 
 1233         rq = &runq;
 1234         ts = runq_choose(&runq);
 1235         kecpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
 1236 
 1237         if (ts == NULL || 
 1238             (kecpu != NULL && 
 1239              kecpu->ts_thread->td_priority < ts->ts_thread->td_priority)) {
 1240                 CTR2(KTR_RUNQ, "choosing td_sched %p from pcpu runq %d", kecpu,
 1241                      PCPU_GET(cpuid));
 1242                 ts = kecpu;
 1243                 rq = &runq_pcpu[PCPU_GET(cpuid)];
 1244         } else { 
 1245                 CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", ts);
 1246         }
 1247 
 1248 #else
 1249         rq = &runq;
 1250         ts = runq_choose(&runq);
 1251 #endif
 1252 
 1253         if (ts) {
 1254                 runq_remove(rq, ts);
 1255                 ts->ts_flags |= TSF_DIDRUN;
 1256 
 1257                 KASSERT(ts->ts_thread->td_flags & TDF_INMEM,
 1258                     ("sched_choose: thread swapped out"));
 1259                 return (ts->ts_thread);
 1260         } 
 1261         return (PCPU_GET(idlethread));
 1262 }
 1263 
 1264 void
 1265 sched_userret(struct thread *td)
 1266 {
 1267         /*
 1268          * XXX we cheat slightly on the locking here to avoid locking in
 1269          * the usual case.  Setting td_priority here is essentially an
 1270          * incomplete workaround for not setting it properly elsewhere.
 1271          * Now that some interrupt handlers are threads, not setting it
 1272          * properly elsewhere can clobber it in the window between setting
 1273          * it here and returning to user mode, so don't waste time setting
 1274          * it perfectly here.
 1275          */
 1276         KASSERT((td->td_flags & TDF_BORROWING) == 0,
 1277             ("thread with borrowed priority returning to userland"));
 1278         if (td->td_priority != td->td_user_pri) {
 1279                 thread_lock(td);
 1280                 td->td_priority = td->td_user_pri;
 1281                 td->td_base_pri = td->td_user_pri;
 1282                 thread_unlock(td);
 1283         }
 1284 }
 1285 
 1286 void
 1287 sched_bind(struct thread *td, int cpu)
 1288 {
 1289         struct td_sched *ts;
 1290 
 1291         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1292         KASSERT(TD_IS_RUNNING(td),
 1293             ("sched_bind: cannot bind non-running thread"));
 1294 
 1295         ts = td->td_sched;
 1296 
 1297         ts->ts_flags |= TSF_BOUND;
 1298 #ifdef SMP
 1299         ts->ts_runq = &runq_pcpu[cpu];
 1300         if (PCPU_GET(cpuid) == cpu)
 1301                 return;
 1302 
 1303         mi_switch(SW_VOL, NULL);
 1304 #endif
 1305 }
 1306 
 1307 void
 1308 sched_unbind(struct thread* td)
 1309 {
 1310         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1311         td->td_sched->ts_flags &= ~TSF_BOUND;
 1312 }
 1313 
 1314 int
 1315 sched_is_bound(struct thread *td)
 1316 {
 1317         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1318         return (td->td_sched->ts_flags & TSF_BOUND);
 1319 }
 1320 
 1321 void
 1322 sched_relinquish(struct thread *td)
 1323 {
 1324         thread_lock(td);
 1325         SCHED_STAT_INC(switch_relinquish);
 1326         mi_switch(SW_VOL, NULL);
 1327         thread_unlock(td);
 1328 }
 1329 
 1330 int
 1331 sched_load(void)
 1332 {
 1333         return (sched_tdcnt);
 1334 }
 1335 
 1336 int
 1337 sched_sizeof_proc(void)
 1338 {
 1339         return (sizeof(struct proc));
 1340 }
 1341 
 1342 int
 1343 sched_sizeof_thread(void)
 1344 {
 1345         return (sizeof(struct thread) + sizeof(struct td_sched));
 1346 }
 1347 
 1348 fixpt_t
 1349 sched_pctcpu(struct thread *td)
 1350 {
 1351         struct td_sched *ts;
 1352 
 1353         ts = td->td_sched;
 1354         return (ts->ts_pctcpu);
 1355 }
 1356 
 1357 void
 1358 sched_tick(void)
 1359 {
 1360 }
 1361 
 1362 /*
 1363  * The actual idle process.
 1364  */
 1365 void
 1366 sched_idletd(void *dummy)
 1367 {
 1368         struct proc *p;
 1369         struct thread *td;
 1370 
 1371         td = curthread;
 1372         p = td->td_proc;
 1373         for (;;) {
 1374                 mtx_assert(&Giant, MA_NOTOWNED);
 1375 
 1376                 while (sched_runnable() == 0)
 1377                         cpu_idle();
 1378 
 1379                 mtx_lock_spin(&sched_lock);
 1380                 mi_switch(SW_VOL, NULL);
 1381                 mtx_unlock_spin(&sched_lock);
 1382         }
 1383 }
 1384 
 1385 /*
 1386  * A CPU is entering for the first time or a thread is exiting.
 1387  */
 1388 void
 1389 sched_throw(struct thread *td)
 1390 {
 1391         /*
 1392          * Correct spinlock nesting.  The idle thread context that we are
 1393          * borrowing was created so that it would start out with a single
 1394          * spin lock (sched_lock) held in fork_trampoline().  Since we've
 1395          * explicitly acquired locks in this function, the nesting count
 1396          * is now 2 rather than 1.  Since we are nested, calling
 1397          * spinlock_exit() will simply adjust the counts without allowing
 1398          * spin lock using code to interrupt us.
 1399          */
 1400         if (td == NULL) {
 1401                 mtx_lock_spin(&sched_lock);
 1402                 spinlock_exit();
 1403         } else {
 1404                 MPASS(td->td_lock == &sched_lock);
 1405         }
 1406         mtx_assert(&sched_lock, MA_OWNED);
 1407         KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
 1408         PCPU_SET(switchtime, cpu_ticks());
 1409         PCPU_SET(switchticks, ticks);
 1410         cpu_throw(td, choosethread());  /* doesn't return */
 1411 }
 1412 
 1413 void
 1414 sched_fork_exit(struct thread *td)
 1415 {
 1416 
 1417         /*
 1418          * Finish setting up thread glue so that it begins execution in a
 1419          * non-nested critical section with sched_lock held but not recursed.
 1420          */
 1421         td->td_oncpu = PCPU_GET(cpuid);
 1422         sched_lock.mtx_lock = (uintptr_t)td;
 1423         THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
 1424 }
 1425 
 1426 #define KERN_SWITCH_INCLUDE 1
 1427 #include "kern/kern_switch.c"

Cache object: 5d39bda7cc213c592ed542ad1f329d4f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.