The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sched_4bsd.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD: releng/9.1/sys/kern/sched_4bsd.c 236344 2012-05-30 23:22:52Z rstone $");
   37 
   38 #include "opt_hwpmc_hooks.h"
   39 #include "opt_sched.h"
   40 #include "opt_kdtrace.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/cpuset.h>
   45 #include <sys/kernel.h>
   46 #include <sys/ktr.h>
   47 #include <sys/lock.h>
   48 #include <sys/kthread.h>
   49 #include <sys/mutex.h>
   50 #include <sys/proc.h>
   51 #include <sys/resourcevar.h>
   52 #include <sys/sched.h>
   53 #include <sys/sdt.h>
   54 #include <sys/smp.h>
   55 #include <sys/sysctl.h>
   56 #include <sys/sx.h>
   57 #include <sys/turnstile.h>
   58 #include <sys/umtx.h>
   59 #include <machine/pcb.h>
   60 #include <machine/smp.h>
   61 
   62 #ifdef HWPMC_HOOKS
   63 #include <sys/pmckern.h>
   64 #endif
   65 
   66 #ifdef KDTRACE_HOOKS
   67 #include <sys/dtrace_bsd.h>
   68 int                             dtrace_vtime_active;
   69 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
   70 #endif
   71 
   72 /*
   73  * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
   74  * the range 100-256 Hz (approximately).
   75  */
   76 #define ESTCPULIM(e) \
   77     min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
   78     RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
   79 #ifdef SMP
   80 #define INVERSE_ESTCPU_WEIGHT   (8 * smp_cpus)
   81 #else
   82 #define INVERSE_ESTCPU_WEIGHT   8       /* 1 / (priorities per estcpu level). */
   83 #endif
   84 #define NICE_WEIGHT             1       /* Priorities per nice level. */
   85 
   86 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
   87 
   88 /*
   89  * The schedulable entity that runs a context.
   90  * This is  an extension to the thread structure and is tailored to
   91  * the requirements of this scheduler
   92  */
   93 struct td_sched {
   94         fixpt_t         ts_pctcpu;      /* (j) %cpu during p_swtime. */
   95         int             ts_cpticks;     /* (j) Ticks of cpu time. */
   96         int             ts_slptime;     /* (j) Seconds !RUNNING. */
   97         int             ts_flags;
   98         struct runq     *ts_runq;       /* runq the thread is currently on */
   99 #ifdef KTR
  100         char            ts_name[TS_NAME_LEN];
  101 #endif
  102 };
  103 
  104 /* flags kept in td_flags */
  105 #define TDF_DIDRUN      TDF_SCHED0      /* thread actually ran. */
  106 #define TDF_BOUND       TDF_SCHED1      /* Bound to one CPU. */
  107 
  108 /* flags kept in ts_flags */
  109 #define TSF_AFFINITY    0x0001          /* Has a non-"full" CPU set. */
  110 
  111 #define SKE_RUNQ_PCPU(ts)                                               \
  112     ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
  113 
  114 #define THREAD_CAN_SCHED(td, cpu)       \
  115     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
  116 
  117 static struct td_sched td_sched0;
  118 struct mtx sched_lock;
  119 
  120 static int      sched_tdcnt;    /* Total runnable threads in the system. */
  121 static int      sched_quantum;  /* Roundrobin scheduling quantum in ticks. */
  122 #define SCHED_QUANTUM   (hz / 10)       /* Default sched quantum */
  123 
  124 static void     setup_runqs(void);
  125 static void     schedcpu(void);
  126 static void     schedcpu_thread(void);
  127 static void     sched_priority(struct thread *td, u_char prio);
  128 static void     sched_setup(void *dummy);
  129 static void     maybe_resched(struct thread *td);
  130 static void     updatepri(struct thread *td);
  131 static void     resetpriority(struct thread *td);
  132 static void     resetpriority_thread(struct thread *td);
  133 #ifdef SMP
  134 static int      sched_pickcpu(struct thread *td);
  135 static int      forward_wakeup(int cpunum);
  136 static void     kick_other_cpu(int pri, int cpuid);
  137 #endif
  138 
  139 static struct kproc_desc sched_kp = {
  140         "schedcpu",
  141         schedcpu_thread,
  142         NULL
  143 };
  144 SYSINIT(schedcpu, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, kproc_start,
  145     &sched_kp);
  146 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
  147 
  148 /*
  149  * Global run queue.
  150  */
  151 static struct runq runq;
  152 
  153 #ifdef SMP
  154 /*
  155  * Per-CPU run queues
  156  */
  157 static struct runq runq_pcpu[MAXCPU];
  158 long runq_length[MAXCPU];
  159 
  160 static cpuset_t idle_cpus_mask;
  161 #endif
  162 
  163 struct pcpuidlestat {
  164         u_int idlecalls;
  165         u_int oldidlecalls;
  166 };
  167 static DPCPU_DEFINE(struct pcpuidlestat, idlestat);
  168 
  169 static void
  170 setup_runqs(void)
  171 {
  172 #ifdef SMP
  173         int i;
  174 
  175         for (i = 0; i < MAXCPU; ++i)
  176                 runq_init(&runq_pcpu[i]);
  177 #endif
  178 
  179         runq_init(&runq);
  180 }
  181 
  182 static int
  183 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
  184 {
  185         int error, new_val;
  186 
  187         new_val = sched_quantum * tick;
  188         error = sysctl_handle_int(oidp, &new_val, 0, req);
  189         if (error != 0 || req->newptr == NULL)
  190                 return (error);
  191         if (new_val < tick)
  192                 return (EINVAL);
  193         sched_quantum = new_val / tick;
  194         hogticks = 2 * sched_quantum;
  195         return (0);
  196 }
  197 
  198 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD, 0, "Scheduler");
  199 
  200 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
  201     "Scheduler name");
  202 
  203 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
  204     0, sizeof sched_quantum, sysctl_kern_quantum, "I",
  205     "Roundrobin scheduling quantum in microseconds");
  206 
  207 #ifdef SMP
  208 /* Enable forwarding of wakeups to all other cpus */
  209 SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup, CTLFLAG_RD, NULL, "Kernel SMP");
  210 
  211 static int runq_fuzz = 1;
  212 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
  213 
  214 static int forward_wakeup_enabled = 1;
  215 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
  216            &forward_wakeup_enabled, 0,
  217            "Forwarding of wakeup to idle CPUs");
  218 
  219 static int forward_wakeups_requested = 0;
  220 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
  221            &forward_wakeups_requested, 0,
  222            "Requests for Forwarding of wakeup to idle CPUs");
  223 
  224 static int forward_wakeups_delivered = 0;
  225 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
  226            &forward_wakeups_delivered, 0,
  227            "Completed Forwarding of wakeup to idle CPUs");
  228 
  229 static int forward_wakeup_use_mask = 1;
  230 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
  231            &forward_wakeup_use_mask, 0,
  232            "Use the mask of idle cpus");
  233 
  234 static int forward_wakeup_use_loop = 0;
  235 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
  236            &forward_wakeup_use_loop, 0,
  237            "Use a loop to find idle cpus");
  238 
  239 #endif
  240 #if 0
  241 static int sched_followon = 0;
  242 SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
  243            &sched_followon, 0,
  244            "allow threads to share a quantum");
  245 #endif
  246 
  247 SDT_PROVIDER_DEFINE(sched);
  248 
  249 SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *", 
  250     "struct proc *", "uint8_t");
  251 SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *", 
  252     "struct proc *", "void *");
  253 SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *", 
  254     "struct proc *", "void *", "int");
  255 SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *", 
  256     "struct proc *", "uint8_t", "struct thread *");
  257 SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int");
  258 SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *",
  259     "struct proc *");
  260 SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu);
  261 SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu);
  262 SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *",
  263     "struct proc *");
  264 
  265 static __inline void
  266 sched_load_add(void)
  267 {
  268 
  269         sched_tdcnt++;
  270         KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
  271         SDT_PROBE2(sched, , , load_change, NOCPU, sched_tdcnt);
  272 }
  273 
  274 static __inline void
  275 sched_load_rem(void)
  276 {
  277 
  278         sched_tdcnt--;
  279         KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
  280         SDT_PROBE2(sched, , , load_change, NOCPU, sched_tdcnt);
  281 }
  282 /*
  283  * Arrange to reschedule if necessary, taking the priorities and
  284  * schedulers into account.
  285  */
  286 static void
  287 maybe_resched(struct thread *td)
  288 {
  289 
  290         THREAD_LOCK_ASSERT(td, MA_OWNED);
  291         if (td->td_priority < curthread->td_priority)
  292                 curthread->td_flags |= TDF_NEEDRESCHED;
  293 }
  294 
  295 /*
  296  * This function is called when a thread is about to be put on run queue
  297  * because it has been made runnable or its priority has been adjusted.  It
  298  * determines if the new thread should be immediately preempted to.  If so,
  299  * it switches to it and eventually returns true.  If not, it returns false
  300  * so that the caller may place the thread on an appropriate run queue.
  301  */
  302 int
  303 maybe_preempt(struct thread *td)
  304 {
  305 #ifdef PREEMPTION
  306         struct thread *ctd;
  307         int cpri, pri;
  308 
  309         /*
  310          * The new thread should not preempt the current thread if any of the
  311          * following conditions are true:
  312          *
  313          *  - The kernel is in the throes of crashing (panicstr).
  314          *  - The current thread has a higher (numerically lower) or
  315          *    equivalent priority.  Note that this prevents curthread from
  316          *    trying to preempt to itself.
  317          *  - It is too early in the boot for context switches (cold is set).
  318          *  - The current thread has an inhibitor set or is in the process of
  319          *    exiting.  In this case, the current thread is about to switch
  320          *    out anyways, so there's no point in preempting.  If we did,
  321          *    the current thread would not be properly resumed as well, so
  322          *    just avoid that whole landmine.
  323          *  - If the new thread's priority is not a realtime priority and
  324          *    the current thread's priority is not an idle priority and
  325          *    FULL_PREEMPTION is disabled.
  326          *
  327          * If all of these conditions are false, but the current thread is in
  328          * a nested critical section, then we have to defer the preemption
  329          * until we exit the critical section.  Otherwise, switch immediately
  330          * to the new thread.
  331          */
  332         ctd = curthread;
  333         THREAD_LOCK_ASSERT(td, MA_OWNED);
  334         KASSERT((td->td_inhibitors == 0),
  335                         ("maybe_preempt: trying to run inhibited thread"));
  336         pri = td->td_priority;
  337         cpri = ctd->td_priority;
  338         if (panicstr != NULL || pri >= cpri || cold /* || dumping */ ||
  339             TD_IS_INHIBITED(ctd))
  340                 return (0);
  341 #ifndef FULL_PREEMPTION
  342         if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
  343                 return (0);
  344 #endif
  345 
  346         if (ctd->td_critnest > 1) {
  347                 CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
  348                     ctd->td_critnest);
  349                 ctd->td_owepreempt = 1;
  350                 return (0);
  351         }
  352         /*
  353          * Thread is runnable but not yet put on system run queue.
  354          */
  355         MPASS(ctd->td_lock == td->td_lock);
  356         MPASS(TD_ON_RUNQ(td));
  357         TD_SET_RUNNING(td);
  358         CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
  359             td->td_proc->p_pid, td->td_name);
  360         mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT, td);
  361         /*
  362          * td's lock pointer may have changed.  We have to return with it
  363          * locked.
  364          */
  365         spinlock_enter();
  366         thread_unlock(ctd);
  367         thread_lock(td);
  368         spinlock_exit();
  369         return (1);
  370 #else
  371         return (0);
  372 #endif
  373 }
  374 
  375 /*
  376  * Constants for digital decay and forget:
  377  *      90% of (td_estcpu) usage in 5 * loadav time
  378  *      95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
  379  *          Note that, as ps(1) mentions, this can let percentages
  380  *          total over 100% (I've seen 137.9% for 3 processes).
  381  *
  382  * Note that schedclock() updates td_estcpu and p_cpticks asynchronously.
  383  *
  384  * We wish to decay away 90% of td_estcpu in (5 * loadavg) seconds.
  385  * That is, the system wants to compute a value of decay such
  386  * that the following for loop:
  387  *      for (i = 0; i < (5 * loadavg); i++)
  388  *              td_estcpu *= decay;
  389  * will compute
  390  *      td_estcpu *= 0.1;
  391  * for all values of loadavg:
  392  *
  393  * Mathematically this loop can be expressed by saying:
  394  *      decay ** (5 * loadavg) ~= .1
  395  *
  396  * The system computes decay as:
  397  *      decay = (2 * loadavg) / (2 * loadavg + 1)
  398  *
  399  * We wish to prove that the system's computation of decay
  400  * will always fulfill the equation:
  401  *      decay ** (5 * loadavg) ~= .1
  402  *
  403  * If we compute b as:
  404  *      b = 2 * loadavg
  405  * then
  406  *      decay = b / (b + 1)
  407  *
  408  * We now need to prove two things:
  409  *      1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
  410  *      2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
  411  *
  412  * Facts:
  413  *         For x close to zero, exp(x) =~ 1 + x, since
  414  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
  415  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
  416  *         For x close to zero, ln(1+x) =~ x, since
  417  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
  418  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
  419  *         ln(.1) =~ -2.30
  420  *
  421  * Proof of (1):
  422  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
  423  *      solving for factor,
  424  *      ln(factor) =~ (-2.30/5*loadav), or
  425  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
  426  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
  427  *
  428  * Proof of (2):
  429  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
  430  *      solving for power,
  431  *      power*ln(b/(b+1)) =~ -2.30, or
  432  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
  433  *
  434  * Actual power values for the implemented algorithm are as follows:
  435  *      loadav: 1       2       3       4
  436  *      power:  5.68    10.32   14.94   19.55
  437  */
  438 
  439 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
  440 #define loadfactor(loadav)      (2 * (loadav))
  441 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
  442 
  443 /* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
  444 static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
  445 SYSCTL_UINT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
  446 
  447 /*
  448  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
  449  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
  450  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
  451  *
  452  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
  453  *      1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
  454  *
  455  * If you don't want to bother with the faster/more-accurate formula, you
  456  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
  457  * (more general) method of calculating the %age of CPU used by a process.
  458  */
  459 #define CCPU_SHIFT      11
  460 
  461 /*
  462  * Recompute process priorities, every hz ticks.
  463  * MP-safe, called without the Giant mutex.
  464  */
  465 /* ARGSUSED */
  466 static void
  467 schedcpu(void)
  468 {
  469         register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
  470         struct thread *td;
  471         struct proc *p;
  472         struct td_sched *ts;
  473         int awake, realstathz;
  474 
  475         realstathz = stathz ? stathz : hz;
  476         sx_slock(&allproc_lock);
  477         FOREACH_PROC_IN_SYSTEM(p) {
  478                 PROC_LOCK(p);
  479                 if (p->p_state == PRS_NEW) {
  480                         PROC_UNLOCK(p);
  481                         continue;
  482                 }
  483                 FOREACH_THREAD_IN_PROC(p, td) {
  484                         awake = 0;
  485                         thread_lock(td);
  486                         ts = td->td_sched;
  487                         /*
  488                          * Increment sleep time (if sleeping).  We
  489                          * ignore overflow, as above.
  490                          */
  491                         /*
  492                          * The td_sched slptimes are not touched in wakeup
  493                          * because the thread may not HAVE everything in
  494                          * memory? XXX I think this is out of date.
  495                          */
  496                         if (TD_ON_RUNQ(td)) {
  497                                 awake = 1;
  498                                 td->td_flags &= ~TDF_DIDRUN;
  499                         } else if (TD_IS_RUNNING(td)) {
  500                                 awake = 1;
  501                                 /* Do not clear TDF_DIDRUN */
  502                         } else if (td->td_flags & TDF_DIDRUN) {
  503                                 awake = 1;
  504                                 td->td_flags &= ~TDF_DIDRUN;
  505                         }
  506 
  507                         /*
  508                          * ts_pctcpu is only for ps and ttyinfo().
  509                          */
  510                         ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
  511                         /*
  512                          * If the td_sched has been idle the entire second,
  513                          * stop recalculating its priority until
  514                          * it wakes up.
  515                          */
  516                         if (ts->ts_cpticks != 0) {
  517 #if     (FSHIFT >= CCPU_SHIFT)
  518                                 ts->ts_pctcpu += (realstathz == 100)
  519                                     ? ((fixpt_t) ts->ts_cpticks) <<
  520                                     (FSHIFT - CCPU_SHIFT) :
  521                                     100 * (((fixpt_t) ts->ts_cpticks)
  522                                     << (FSHIFT - CCPU_SHIFT)) / realstathz;
  523 #else
  524                                 ts->ts_pctcpu += ((FSCALE - ccpu) *
  525                                     (ts->ts_cpticks *
  526                                     FSCALE / realstathz)) >> FSHIFT;
  527 #endif
  528                                 ts->ts_cpticks = 0;
  529                         }
  530                         /*
  531                          * If there are ANY running threads in this process,
  532                          * then don't count it as sleeping.
  533                          * XXX: this is broken.
  534                          */
  535                         if (awake) {
  536                                 if (ts->ts_slptime > 1) {
  537                                         /*
  538                                          * In an ideal world, this should not
  539                                          * happen, because whoever woke us
  540                                          * up from the long sleep should have
  541                                          * unwound the slptime and reset our
  542                                          * priority before we run at the stale
  543                                          * priority.  Should KASSERT at some
  544                                          * point when all the cases are fixed.
  545                                          */
  546                                         updatepri(td);
  547                                 }
  548                                 ts->ts_slptime = 0;
  549                         } else
  550                                 ts->ts_slptime++;
  551                         if (ts->ts_slptime > 1) {
  552                                 thread_unlock(td);
  553                                 continue;
  554                         }
  555                         td->td_estcpu = decay_cpu(loadfac, td->td_estcpu);
  556                         resetpriority(td);
  557                         resetpriority_thread(td);
  558                         thread_unlock(td);
  559                 }
  560                 PROC_UNLOCK(p);
  561         }
  562         sx_sunlock(&allproc_lock);
  563 }
  564 
  565 /*
  566  * Main loop for a kthread that executes schedcpu once a second.
  567  */
  568 static void
  569 schedcpu_thread(void)
  570 {
  571 
  572         for (;;) {
  573                 schedcpu();
  574                 pause("-", hz);
  575         }
  576 }
  577 
  578 /*
  579  * Recalculate the priority of a process after it has slept for a while.
  580  * For all load averages >= 1 and max td_estcpu of 255, sleeping for at
  581  * least six times the loadfactor will decay td_estcpu to zero.
  582  */
  583 static void
  584 updatepri(struct thread *td)
  585 {
  586         struct td_sched *ts;
  587         fixpt_t loadfac;
  588         unsigned int newcpu;
  589 
  590         ts = td->td_sched;
  591         loadfac = loadfactor(averunnable.ldavg[0]);
  592         if (ts->ts_slptime > 5 * loadfac)
  593                 td->td_estcpu = 0;
  594         else {
  595                 newcpu = td->td_estcpu;
  596                 ts->ts_slptime--;       /* was incremented in schedcpu() */
  597                 while (newcpu && --ts->ts_slptime)
  598                         newcpu = decay_cpu(loadfac, newcpu);
  599                 td->td_estcpu = newcpu;
  600         }
  601 }
  602 
  603 /*
  604  * Compute the priority of a process when running in user mode.
  605  * Arrange to reschedule if the resulting priority is better
  606  * than that of the current process.
  607  */
  608 static void
  609 resetpriority(struct thread *td)
  610 {
  611         register unsigned int newpriority;
  612 
  613         if (td->td_pri_class == PRI_TIMESHARE) {
  614                 newpriority = PUSER + td->td_estcpu / INVERSE_ESTCPU_WEIGHT +
  615                     NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
  616                 newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
  617                     PRI_MAX_TIMESHARE);
  618                 sched_user_prio(td, newpriority);
  619         }
  620 }
  621 
  622 /*
  623  * Update the thread's priority when the associated process's user
  624  * priority changes.
  625  */
  626 static void
  627 resetpriority_thread(struct thread *td)
  628 {
  629 
  630         /* Only change threads with a time sharing user priority. */
  631         if (td->td_priority < PRI_MIN_TIMESHARE ||
  632             td->td_priority > PRI_MAX_TIMESHARE)
  633                 return;
  634 
  635         /* XXX the whole needresched thing is broken, but not silly. */
  636         maybe_resched(td);
  637 
  638         sched_prio(td, td->td_user_pri);
  639 }
  640 
  641 /* ARGSUSED */
  642 static void
  643 sched_setup(void *dummy)
  644 {
  645         setup_runqs();
  646 
  647         if (sched_quantum == 0)
  648                 sched_quantum = SCHED_QUANTUM;
  649         hogticks = 2 * sched_quantum;
  650 
  651         /* Account for thread0. */
  652         sched_load_add();
  653 }
  654 
  655 /* External interfaces start here */
  656 
  657 /*
  658  * Very early in the boot some setup of scheduler-specific
  659  * parts of proc0 and of some scheduler resources needs to be done.
  660  * Called from:
  661  *  proc0_init()
  662  */
  663 void
  664 schedinit(void)
  665 {
  666         /*
  667          * Set up the scheduler specific parts of proc0.
  668          */
  669         proc0.p_sched = NULL; /* XXX */
  670         thread0.td_sched = &td_sched0;
  671         thread0.td_lock = &sched_lock;
  672         mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
  673 }
  674 
  675 int
  676 sched_runnable(void)
  677 {
  678 #ifdef SMP
  679         return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
  680 #else
  681         return runq_check(&runq);
  682 #endif
  683 }
  684 
  685 int
  686 sched_rr_interval(void)
  687 {
  688         if (sched_quantum == 0)
  689                 sched_quantum = SCHED_QUANTUM;
  690         return (sched_quantum);
  691 }
  692 
  693 /*
  694  * We adjust the priority of the current process.  The priority of
  695  * a process gets worse as it accumulates CPU time.  The cpu usage
  696  * estimator (td_estcpu) is increased here.  resetpriority() will
  697  * compute a different priority each time td_estcpu increases by
  698  * INVERSE_ESTCPU_WEIGHT
  699  * (until MAXPRI is reached).  The cpu usage estimator ramps up
  700  * quite quickly when the process is running (linearly), and decays
  701  * away exponentially, at a rate which is proportionally slower when
  702  * the system is busy.  The basic principle is that the system will
  703  * 90% forget that the process used a lot of CPU time in 5 * loadav
  704  * seconds.  This causes the system to favor processes which haven't
  705  * run much recently, and to round-robin among other processes.
  706  */
  707 void
  708 sched_clock(struct thread *td)
  709 {
  710         struct pcpuidlestat *stat;
  711         struct td_sched *ts;
  712 
  713         THREAD_LOCK_ASSERT(td, MA_OWNED);
  714         ts = td->td_sched;
  715 
  716         ts->ts_cpticks++;
  717         td->td_estcpu = ESTCPULIM(td->td_estcpu + 1);
  718         if ((td->td_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
  719                 resetpriority(td);
  720                 resetpriority_thread(td);
  721         }
  722 
  723         /*
  724          * Force a context switch if the current thread has used up a full
  725          * quantum (default quantum is 100ms).
  726          */
  727         if (!TD_IS_IDLETHREAD(td) &&
  728             ticks - PCPU_GET(switchticks) >= sched_quantum)
  729                 td->td_flags |= TDF_NEEDRESCHED;
  730 
  731         stat = DPCPU_PTR(idlestat);
  732         stat->oldidlecalls = stat->idlecalls;
  733         stat->idlecalls = 0;
  734 }
  735 
  736 /*
  737  * Charge child's scheduling CPU usage to parent.
  738  */
  739 void
  740 sched_exit(struct proc *p, struct thread *td)
  741 {
  742 
  743         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "proc exit",
  744             "prio:%d", td->td_priority);
  745 
  746         PROC_LOCK_ASSERT(p, MA_OWNED);
  747         sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
  748 }
  749 
  750 void
  751 sched_exit_thread(struct thread *td, struct thread *child)
  752 {
  753 
  754         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "exit",
  755             "prio:%d", child->td_priority);
  756         thread_lock(td);
  757         td->td_estcpu = ESTCPULIM(td->td_estcpu + child->td_estcpu);
  758         thread_unlock(td);
  759         thread_lock(child);
  760         if ((child->td_flags & TDF_NOLOAD) == 0)
  761                 sched_load_rem();
  762         thread_unlock(child);
  763 }
  764 
  765 void
  766 sched_fork(struct thread *td, struct thread *childtd)
  767 {
  768         sched_fork_thread(td, childtd);
  769 }
  770 
  771 void
  772 sched_fork_thread(struct thread *td, struct thread *childtd)
  773 {
  774         struct td_sched *ts;
  775 
  776         childtd->td_estcpu = td->td_estcpu;
  777         childtd->td_lock = &sched_lock;
  778         childtd->td_cpuset = cpuset_ref(td->td_cpuset);
  779         childtd->td_priority = childtd->td_base_pri;
  780         ts = childtd->td_sched;
  781         bzero(ts, sizeof(*ts));
  782         ts->ts_flags |= (td->td_sched->ts_flags & TSF_AFFINITY);
  783 }
  784 
  785 void
  786 sched_nice(struct proc *p, int nice)
  787 {
  788         struct thread *td;
  789 
  790         PROC_LOCK_ASSERT(p, MA_OWNED);
  791         p->p_nice = nice;
  792         FOREACH_THREAD_IN_PROC(p, td) {
  793                 thread_lock(td);
  794                 resetpriority(td);
  795                 resetpriority_thread(td);
  796                 thread_unlock(td);
  797         }
  798 }
  799 
  800 void
  801 sched_class(struct thread *td, int class)
  802 {
  803         THREAD_LOCK_ASSERT(td, MA_OWNED);
  804         td->td_pri_class = class;
  805 }
  806 
  807 /*
  808  * Adjust the priority of a thread.
  809  */
  810 static void
  811 sched_priority(struct thread *td, u_char prio)
  812 {
  813 
  814 
  815         KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "priority change",
  816             "prio:%d", td->td_priority, "new prio:%d", prio, KTR_ATTR_LINKED,
  817             sched_tdname(curthread));
  818         SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio);
  819         if (td != curthread && prio > td->td_priority) {
  820                 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
  821                     "lend prio", "prio:%d", td->td_priority, "new prio:%d",
  822                     prio, KTR_ATTR_LINKED, sched_tdname(td));
  823                 SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio, 
  824                     curthread);
  825         }
  826         THREAD_LOCK_ASSERT(td, MA_OWNED);
  827         if (td->td_priority == prio)
  828                 return;
  829         td->td_priority = prio;
  830         if (TD_ON_RUNQ(td) && td->td_rqindex != (prio / RQ_PPQ)) {
  831                 sched_rem(td);
  832                 sched_add(td, SRQ_BORING);
  833         }
  834 }
  835 
  836 /*
  837  * Update a thread's priority when it is lent another thread's
  838  * priority.
  839  */
  840 void
  841 sched_lend_prio(struct thread *td, u_char prio)
  842 {
  843 
  844         td->td_flags |= TDF_BORROWING;
  845         sched_priority(td, prio);
  846 }
  847 
  848 /*
  849  * Restore a thread's priority when priority propagation is
  850  * over.  The prio argument is the minimum priority the thread
  851  * needs to have to satisfy other possible priority lending
  852  * requests.  If the thread's regulary priority is less
  853  * important than prio the thread will keep a priority boost
  854  * of prio.
  855  */
  856 void
  857 sched_unlend_prio(struct thread *td, u_char prio)
  858 {
  859         u_char base_pri;
  860 
  861         if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
  862             td->td_base_pri <= PRI_MAX_TIMESHARE)
  863                 base_pri = td->td_user_pri;
  864         else
  865                 base_pri = td->td_base_pri;
  866         if (prio >= base_pri) {
  867                 td->td_flags &= ~TDF_BORROWING;
  868                 sched_prio(td, base_pri);
  869         } else
  870                 sched_lend_prio(td, prio);
  871 }
  872 
  873 void
  874 sched_prio(struct thread *td, u_char prio)
  875 {
  876         u_char oldprio;
  877 
  878         /* First, update the base priority. */
  879         td->td_base_pri = prio;
  880 
  881         /*
  882          * If the thread is borrowing another thread's priority, don't ever
  883          * lower the priority.
  884          */
  885         if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
  886                 return;
  887 
  888         /* Change the real priority. */
  889         oldprio = td->td_priority;
  890         sched_priority(td, prio);
  891 
  892         /*
  893          * If the thread is on a turnstile, then let the turnstile update
  894          * its state.
  895          */
  896         if (TD_ON_LOCK(td) && oldprio != prio)
  897                 turnstile_adjust(td, oldprio);
  898 }
  899 
  900 void
  901 sched_user_prio(struct thread *td, u_char prio)
  902 {
  903 
  904         THREAD_LOCK_ASSERT(td, MA_OWNED);
  905         td->td_base_user_pri = prio;
  906         if (td->td_lend_user_pri <= prio)
  907                 return;
  908         td->td_user_pri = prio;
  909 }
  910 
  911 void
  912 sched_lend_user_prio(struct thread *td, u_char prio)
  913 {
  914 
  915         THREAD_LOCK_ASSERT(td, MA_OWNED);
  916         td->td_lend_user_pri = prio;
  917         td->td_user_pri = min(prio, td->td_base_user_pri);
  918         if (td->td_priority > td->td_user_pri)
  919                 sched_prio(td, td->td_user_pri);
  920         else if (td->td_priority != td->td_user_pri)
  921                 td->td_flags |= TDF_NEEDRESCHED;
  922 }
  923 
  924 void
  925 sched_sleep(struct thread *td, int pri)
  926 {
  927 
  928         THREAD_LOCK_ASSERT(td, MA_OWNED);
  929         td->td_slptick = ticks;
  930         td->td_sched->ts_slptime = 0;
  931         if (pri != 0 && PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
  932                 sched_prio(td, pri);
  933         if (TD_IS_SUSPENDED(td) || pri >= PSOCK)
  934                 td->td_flags |= TDF_CANSWAP;
  935 }
  936 
  937 void
  938 sched_switch(struct thread *td, struct thread *newtd, int flags)
  939 {
  940         struct mtx *tmtx;
  941         struct td_sched *ts;
  942         struct proc *p;
  943 
  944         tmtx = NULL;
  945         ts = td->td_sched;
  946         p = td->td_proc;
  947 
  948         THREAD_LOCK_ASSERT(td, MA_OWNED);
  949 
  950         /* 
  951          * Switch to the sched lock to fix things up and pick
  952          * a new thread.
  953          * Block the td_lock in order to avoid breaking the critical path.
  954          */
  955         if (td->td_lock != &sched_lock) {
  956                 mtx_lock_spin(&sched_lock);
  957                 tmtx = thread_lock_block(td);
  958         }
  959 
  960         if ((td->td_flags & TDF_NOLOAD) == 0)
  961                 sched_load_rem();
  962 
  963         td->td_lastcpu = td->td_oncpu;
  964         if (!(flags & SW_PREEMPT))
  965                 td->td_flags &= ~TDF_NEEDRESCHED;
  966         td->td_owepreempt = 0;
  967         td->td_oncpu = NOCPU;
  968 
  969         /*
  970          * At the last moment, if this thread is still marked RUNNING,
  971          * then put it back on the run queue as it has not been suspended
  972          * or stopped or any thing else similar.  We never put the idle
  973          * threads on the run queue, however.
  974          */
  975         if (td->td_flags & TDF_IDLETD) {
  976                 TD_SET_CAN_RUN(td);
  977 #ifdef SMP
  978                 CPU_CLR(PCPU_GET(cpuid), &idle_cpus_mask);
  979 #endif
  980         } else {
  981                 if (TD_IS_RUNNING(td)) {
  982                         /* Put us back on the run queue. */
  983                         sched_add(td, (flags & SW_PREEMPT) ?
  984                             SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
  985                             SRQ_OURSELF|SRQ_YIELDING);
  986                 }
  987         }
  988         if (newtd) {
  989                 /*
  990                  * The thread we are about to run needs to be counted
  991                  * as if it had been added to the run queue and selected.
  992                  * It came from:
  993                  * * A preemption
  994                  * * An upcall
  995                  * * A followon
  996                  */
  997                 KASSERT((newtd->td_inhibitors == 0),
  998                         ("trying to run inhibited thread"));
  999                 newtd->td_flags |= TDF_DIDRUN;
 1000                 TD_SET_RUNNING(newtd);
 1001                 if ((newtd->td_flags & TDF_NOLOAD) == 0)
 1002                         sched_load_add();
 1003         } else {
 1004                 newtd = choosethread();
 1005                 MPASS(newtd->td_lock == &sched_lock);
 1006         }
 1007 
 1008         if (td != newtd) {
 1009 #ifdef  HWPMC_HOOKS
 1010                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1011                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
 1012 #endif
 1013 
 1014                 SDT_PROBE2(sched, , , off_cpu, td, td->td_proc);
 1015 
 1016                 /* I feel sleepy */
 1017                 lock_profile_release_lock(&sched_lock.lock_object);
 1018 #ifdef KDTRACE_HOOKS
 1019                 /*
 1020                  * If DTrace has set the active vtime enum to anything
 1021                  * other than INACTIVE (0), then it should have set the
 1022                  * function to call.
 1023                  */
 1024                 if (dtrace_vtime_active)
 1025                         (*dtrace_vtime_switch_func)(newtd);
 1026 #endif
 1027 
 1028                 cpu_switch(td, newtd, tmtx != NULL ? tmtx : td->td_lock);
 1029                 lock_profile_obtain_lock_success(&sched_lock.lock_object,
 1030                     0, 0, __FILE__, __LINE__);
 1031                 /*
 1032                  * Where am I?  What year is it?
 1033                  * We are in the same thread that went to sleep above,
 1034                  * but any amount of time may have passed. All our context
 1035                  * will still be available as will local variables.
 1036                  * PCPU values however may have changed as we may have
 1037                  * changed CPU so don't trust cached values of them.
 1038                  * New threads will go to fork_exit() instead of here
 1039                  * so if you change things here you may need to change
 1040                  * things there too.
 1041                  *
 1042                  * If the thread above was exiting it will never wake
 1043                  * up again here, so either it has saved everything it
 1044                  * needed to, or the thread_wait() or wait() will
 1045                  * need to reap it.
 1046                  */
 1047 
 1048                 SDT_PROBE0(sched, , , on_cpu);
 1049 #ifdef  HWPMC_HOOKS
 1050                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1051                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
 1052 #endif
 1053         } else
 1054                 SDT_PROBE0(sched, , , remain_cpu);
 1055 
 1056 #ifdef SMP
 1057         if (td->td_flags & TDF_IDLETD)
 1058                 CPU_SET(PCPU_GET(cpuid), &idle_cpus_mask);
 1059 #endif
 1060         sched_lock.mtx_lock = (uintptr_t)td;
 1061         td->td_oncpu = PCPU_GET(cpuid);
 1062         MPASS(td->td_lock == &sched_lock);
 1063 }
 1064 
 1065 void
 1066 sched_wakeup(struct thread *td)
 1067 {
 1068         struct td_sched *ts;
 1069 
 1070         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1071         ts = td->td_sched;
 1072         td->td_flags &= ~TDF_CANSWAP;
 1073         if (ts->ts_slptime > 1) {
 1074                 updatepri(td);
 1075                 resetpriority(td);
 1076         }
 1077         td->td_slptick = 0;
 1078         ts->ts_slptime = 0;
 1079         sched_add(td, SRQ_BORING);
 1080 }
 1081 
 1082 #ifdef SMP
 1083 static int
 1084 forward_wakeup(int cpunum)
 1085 {
 1086         struct pcpu *pc;
 1087         cpuset_t dontuse, map, map2;
 1088         u_int id, me;
 1089         int iscpuset;
 1090 
 1091         mtx_assert(&sched_lock, MA_OWNED);
 1092 
 1093         CTR0(KTR_RUNQ, "forward_wakeup()");
 1094 
 1095         if ((!forward_wakeup_enabled) ||
 1096              (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
 1097                 return (0);
 1098         if (!smp_started || cold || panicstr)
 1099                 return (0);
 1100 
 1101         forward_wakeups_requested++;
 1102 
 1103         /*
 1104          * Check the idle mask we received against what we calculated
 1105          * before in the old version.
 1106          */
 1107         me = PCPU_GET(cpuid);
 1108 
 1109         /* Don't bother if we should be doing it ourself. */
 1110         if (CPU_ISSET(me, &idle_cpus_mask) &&
 1111             (cpunum == NOCPU || me == cpunum))
 1112                 return (0);
 1113 
 1114         CPU_SETOF(me, &dontuse);
 1115         CPU_OR(&dontuse, &stopped_cpus);
 1116         CPU_OR(&dontuse, &hlt_cpus_mask);
 1117         CPU_ZERO(&map2);
 1118         if (forward_wakeup_use_loop) {
 1119                 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
 1120                         id = pc->pc_cpuid;
 1121                         if (!CPU_ISSET(id, &dontuse) &&
 1122                             pc->pc_curthread == pc->pc_idlethread) {
 1123                                 CPU_SET(id, &map2);
 1124                         }
 1125                 }
 1126         }
 1127 
 1128         if (forward_wakeup_use_mask) {
 1129                 map = idle_cpus_mask;
 1130                 CPU_NAND(&map, &dontuse);
 1131 
 1132                 /* If they are both on, compare and use loop if different. */
 1133                 if (forward_wakeup_use_loop) {
 1134                         if (CPU_CMP(&map, &map2)) {
 1135                                 printf("map != map2, loop method preferred\n");
 1136                                 map = map2;
 1137                         }
 1138                 }
 1139         } else {
 1140                 map = map2;
 1141         }
 1142 
 1143         /* If we only allow a specific CPU, then mask off all the others. */
 1144         if (cpunum != NOCPU) {
 1145                 KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
 1146                 iscpuset = CPU_ISSET(cpunum, &map);
 1147                 if (iscpuset == 0)
 1148                         CPU_ZERO(&map);
 1149                 else
 1150                         CPU_SETOF(cpunum, &map);
 1151         }
 1152         if (!CPU_EMPTY(&map)) {
 1153                 forward_wakeups_delivered++;
 1154                 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
 1155                         id = pc->pc_cpuid;
 1156                         if (!CPU_ISSET(id, &map))
 1157                                 continue;
 1158                         if (cpu_idle_wakeup(pc->pc_cpuid))
 1159                                 CPU_CLR(id, &map);
 1160                 }
 1161                 if (!CPU_EMPTY(&map))
 1162                         ipi_selected(map, IPI_AST);
 1163                 return (1);
 1164         }
 1165         if (cpunum == NOCPU)
 1166                 printf("forward_wakeup: Idle processor not found\n");
 1167         return (0);
 1168 }
 1169 
 1170 static void
 1171 kick_other_cpu(int pri, int cpuid)
 1172 {
 1173         struct pcpu *pcpu;
 1174         int cpri;
 1175 
 1176         pcpu = pcpu_find(cpuid);
 1177         if (CPU_ISSET(cpuid, &idle_cpus_mask)) {
 1178                 forward_wakeups_delivered++;
 1179                 if (!cpu_idle_wakeup(cpuid))
 1180                         ipi_cpu(cpuid, IPI_AST);
 1181                 return;
 1182         }
 1183 
 1184         cpri = pcpu->pc_curthread->td_priority;
 1185         if (pri >= cpri)
 1186                 return;
 1187 
 1188 #if defined(IPI_PREEMPTION) && defined(PREEMPTION)
 1189 #if !defined(FULL_PREEMPTION)
 1190         if (pri <= PRI_MAX_ITHD)
 1191 #endif /* ! FULL_PREEMPTION */
 1192         {
 1193                 ipi_cpu(cpuid, IPI_PREEMPT);
 1194                 return;
 1195         }
 1196 #endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
 1197 
 1198         pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
 1199         ipi_cpu(cpuid, IPI_AST);
 1200         return;
 1201 }
 1202 #endif /* SMP */
 1203 
 1204 #ifdef SMP
 1205 static int
 1206 sched_pickcpu(struct thread *td)
 1207 {
 1208         int best, cpu;
 1209 
 1210         mtx_assert(&sched_lock, MA_OWNED);
 1211 
 1212         if (THREAD_CAN_SCHED(td, td->td_lastcpu))
 1213                 best = td->td_lastcpu;
 1214         else
 1215                 best = NOCPU;
 1216         CPU_FOREACH(cpu) {
 1217                 if (!THREAD_CAN_SCHED(td, cpu))
 1218                         continue;
 1219         
 1220                 if (best == NOCPU)
 1221                         best = cpu;
 1222                 else if (runq_length[cpu] < runq_length[best])
 1223                         best = cpu;
 1224         }
 1225         KASSERT(best != NOCPU, ("no valid CPUs"));
 1226 
 1227         return (best);
 1228 }
 1229 #endif
 1230 
 1231 void
 1232 sched_add(struct thread *td, int flags)
 1233 #ifdef SMP
 1234 {
 1235         cpuset_t tidlemsk;
 1236         struct td_sched *ts;
 1237         u_int cpu, cpuid;
 1238         int forwarded = 0;
 1239         int single_cpu = 0;
 1240 
 1241         ts = td->td_sched;
 1242         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1243         KASSERT((td->td_inhibitors == 0),
 1244             ("sched_add: trying to run inhibited thread"));
 1245         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 1246             ("sched_add: bad thread state"));
 1247         KASSERT(td->td_flags & TDF_INMEM,
 1248             ("sched_add: thread swapped out"));
 1249 
 1250         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 1251             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 1252             sched_tdname(curthread));
 1253         KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 1254             KTR_ATTR_LINKED, sched_tdname(td));
 1255         SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
 1256             flags & SRQ_PREEMPTED);
 1257 
 1258 
 1259         /*
 1260          * Now that the thread is moving to the run-queue, set the lock
 1261          * to the scheduler's lock.
 1262          */
 1263         if (td->td_lock != &sched_lock) {
 1264                 mtx_lock_spin(&sched_lock);
 1265                 thread_lock_set(td, &sched_lock);
 1266         }
 1267         TD_SET_RUNQ(td);
 1268 
 1269         /*
 1270          * If SMP is started and the thread is pinned or otherwise limited to
 1271          * a specific set of CPUs, queue the thread to a per-CPU run queue.
 1272          * Otherwise, queue the thread to the global run queue.
 1273          *
 1274          * If SMP has not yet been started we must use the global run queue
 1275          * as per-CPU state may not be initialized yet and we may crash if we
 1276          * try to access the per-CPU run queues.
 1277          */
 1278         if (smp_started && (td->td_pinned != 0 || td->td_flags & TDF_BOUND ||
 1279             ts->ts_flags & TSF_AFFINITY)) {
 1280                 if (td->td_pinned != 0)
 1281                         cpu = td->td_lastcpu;
 1282                 else if (td->td_flags & TDF_BOUND) {
 1283                         /* Find CPU from bound runq. */
 1284                         KASSERT(SKE_RUNQ_PCPU(ts),
 1285                             ("sched_add: bound td_sched not on cpu runq"));
 1286                         cpu = ts->ts_runq - &runq_pcpu[0];
 1287                 } else
 1288                         /* Find a valid CPU for our cpuset */
 1289                         cpu = sched_pickcpu(td);
 1290                 ts->ts_runq = &runq_pcpu[cpu];
 1291                 single_cpu = 1;
 1292                 CTR3(KTR_RUNQ,
 1293                     "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
 1294                     cpu);
 1295         } else {
 1296                 CTR2(KTR_RUNQ,
 1297                     "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts,
 1298                     td);
 1299                 cpu = NOCPU;
 1300                 ts->ts_runq = &runq;
 1301         }
 1302 
 1303         cpuid = PCPU_GET(cpuid);
 1304         if (single_cpu && cpu != cpuid) {
 1305                 kick_other_cpu(td->td_priority, cpu);
 1306         } else {
 1307                 if (!single_cpu) {
 1308                         tidlemsk = idle_cpus_mask;
 1309                         CPU_NAND(&tidlemsk, &hlt_cpus_mask);
 1310                         CPU_CLR(cpuid, &tidlemsk);
 1311 
 1312                         if (!CPU_ISSET(cpuid, &idle_cpus_mask) &&
 1313                             ((flags & SRQ_INTR) == 0) &&
 1314                             !CPU_EMPTY(&tidlemsk))
 1315                                 forwarded = forward_wakeup(cpu);
 1316                 }
 1317 
 1318                 if (!forwarded) {
 1319                         if ((flags & SRQ_YIELDING) == 0 && maybe_preempt(td))
 1320                                 return;
 1321                         else
 1322                                 maybe_resched(td);
 1323                 }
 1324         }
 1325 
 1326         if ((td->td_flags & TDF_NOLOAD) == 0)
 1327                 sched_load_add();
 1328         runq_add(ts->ts_runq, td, flags);
 1329         if (cpu != NOCPU)
 1330                 runq_length[cpu]++;
 1331 }
 1332 #else /* SMP */
 1333 {
 1334         struct td_sched *ts;
 1335 
 1336         ts = td->td_sched;
 1337         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1338         KASSERT((td->td_inhibitors == 0),
 1339             ("sched_add: trying to run inhibited thread"));
 1340         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 1341             ("sched_add: bad thread state"));
 1342         KASSERT(td->td_flags & TDF_INMEM,
 1343             ("sched_add: thread swapped out"));
 1344         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 1345             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 1346             sched_tdname(curthread));
 1347         KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 1348             KTR_ATTR_LINKED, sched_tdname(td));
 1349         SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
 1350             flags & SRQ_PREEMPTED);
 1351 
 1352         /*
 1353          * Now that the thread is moving to the run-queue, set the lock
 1354          * to the scheduler's lock.
 1355          */
 1356         if (td->td_lock != &sched_lock) {
 1357                 mtx_lock_spin(&sched_lock);
 1358                 thread_lock_set(td, &sched_lock);
 1359         }
 1360         TD_SET_RUNQ(td);
 1361         CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
 1362         ts->ts_runq = &runq;
 1363 
 1364         /*
 1365          * If we are yielding (on the way out anyhow) or the thread
 1366          * being saved is US, then don't try be smart about preemption
 1367          * or kicking off another CPU as it won't help and may hinder.
 1368          * In the YIEDLING case, we are about to run whoever is being
 1369          * put in the queue anyhow, and in the OURSELF case, we are
 1370          * puting ourself on the run queue which also only happens
 1371          * when we are about to yield.
 1372          */
 1373         if ((flags & SRQ_YIELDING) == 0) {
 1374                 if (maybe_preempt(td))
 1375                         return;
 1376         }
 1377         if ((td->td_flags & TDF_NOLOAD) == 0)
 1378                 sched_load_add();
 1379         runq_add(ts->ts_runq, td, flags);
 1380         maybe_resched(td);
 1381 }
 1382 #endif /* SMP */
 1383 
 1384 void
 1385 sched_rem(struct thread *td)
 1386 {
 1387         struct td_sched *ts;
 1388 
 1389         ts = td->td_sched;
 1390         KASSERT(td->td_flags & TDF_INMEM,
 1391             ("sched_rem: thread swapped out"));
 1392         KASSERT(TD_ON_RUNQ(td),
 1393             ("sched_rem: thread not on run queue"));
 1394         mtx_assert(&sched_lock, MA_OWNED);
 1395         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
 1396             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 1397             sched_tdname(curthread));
 1398         SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
 1399 
 1400         if ((td->td_flags & TDF_NOLOAD) == 0)
 1401                 sched_load_rem();
 1402 #ifdef SMP
 1403         if (ts->ts_runq != &runq)
 1404                 runq_length[ts->ts_runq - runq_pcpu]--;
 1405 #endif
 1406         runq_remove(ts->ts_runq, td);
 1407         TD_SET_CAN_RUN(td);
 1408 }
 1409 
 1410 /*
 1411  * Select threads to run.  Note that running threads still consume a
 1412  * slot.
 1413  */
 1414 struct thread *
 1415 sched_choose(void)
 1416 {
 1417         struct thread *td;
 1418         struct runq *rq;
 1419 
 1420         mtx_assert(&sched_lock,  MA_OWNED);
 1421 #ifdef SMP
 1422         struct thread *tdcpu;
 1423 
 1424         rq = &runq;
 1425         td = runq_choose_fuzz(&runq, runq_fuzz);
 1426         tdcpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
 1427 
 1428         if (td == NULL ||
 1429             (tdcpu != NULL &&
 1430              tdcpu->td_priority < td->td_priority)) {
 1431                 CTR2(KTR_RUNQ, "choosing td %p from pcpu runq %d", tdcpu,
 1432                      PCPU_GET(cpuid));
 1433                 td = tdcpu;
 1434                 rq = &runq_pcpu[PCPU_GET(cpuid)];
 1435         } else {
 1436                 CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", td);
 1437         }
 1438 
 1439 #else
 1440         rq = &runq;
 1441         td = runq_choose(&runq);
 1442 #endif
 1443 
 1444         if (td) {
 1445 #ifdef SMP
 1446                 if (td == tdcpu)
 1447                         runq_length[PCPU_GET(cpuid)]--;
 1448 #endif
 1449                 runq_remove(rq, td);
 1450                 td->td_flags |= TDF_DIDRUN;
 1451 
 1452                 KASSERT(td->td_flags & TDF_INMEM,
 1453                     ("sched_choose: thread swapped out"));
 1454                 return (td);
 1455         }
 1456         return (PCPU_GET(idlethread));
 1457 }
 1458 
 1459 void
 1460 sched_preempt(struct thread *td)
 1461 {
 1462 
 1463         SDT_PROBE2(sched, , , surrender, td, td->td_proc);
 1464         thread_lock(td);
 1465         if (td->td_critnest > 1)
 1466                 td->td_owepreempt = 1;
 1467         else
 1468                 mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT, NULL);
 1469         thread_unlock(td);
 1470 }
 1471 
 1472 void
 1473 sched_userret(struct thread *td)
 1474 {
 1475         /*
 1476          * XXX we cheat slightly on the locking here to avoid locking in
 1477          * the usual case.  Setting td_priority here is essentially an
 1478          * incomplete workaround for not setting it properly elsewhere.
 1479          * Now that some interrupt handlers are threads, not setting it
 1480          * properly elsewhere can clobber it in the window between setting
 1481          * it here and returning to user mode, so don't waste time setting
 1482          * it perfectly here.
 1483          */
 1484         KASSERT((td->td_flags & TDF_BORROWING) == 0,
 1485             ("thread with borrowed priority returning to userland"));
 1486         if (td->td_priority != td->td_user_pri) {
 1487                 thread_lock(td);
 1488                 td->td_priority = td->td_user_pri;
 1489                 td->td_base_pri = td->td_user_pri;
 1490                 thread_unlock(td);
 1491         }
 1492 }
 1493 
 1494 void
 1495 sched_bind(struct thread *td, int cpu)
 1496 {
 1497         struct td_sched *ts;
 1498 
 1499         THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
 1500         KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
 1501 
 1502         ts = td->td_sched;
 1503 
 1504         td->td_flags |= TDF_BOUND;
 1505 #ifdef SMP
 1506         ts->ts_runq = &runq_pcpu[cpu];
 1507         if (PCPU_GET(cpuid) == cpu)
 1508                 return;
 1509 
 1510         mi_switch(SW_VOL, NULL);
 1511 #endif
 1512 }
 1513 
 1514 void
 1515 sched_unbind(struct thread* td)
 1516 {
 1517         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1518         KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
 1519         td->td_flags &= ~TDF_BOUND;
 1520 }
 1521 
 1522 int
 1523 sched_is_bound(struct thread *td)
 1524 {
 1525         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1526         return (td->td_flags & TDF_BOUND);
 1527 }
 1528 
 1529 void
 1530 sched_relinquish(struct thread *td)
 1531 {
 1532         thread_lock(td);
 1533         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
 1534         thread_unlock(td);
 1535 }
 1536 
 1537 int
 1538 sched_load(void)
 1539 {
 1540         return (sched_tdcnt);
 1541 }
 1542 
 1543 int
 1544 sched_sizeof_proc(void)
 1545 {
 1546         return (sizeof(struct proc));
 1547 }
 1548 
 1549 int
 1550 sched_sizeof_thread(void)
 1551 {
 1552         return (sizeof(struct thread) + sizeof(struct td_sched));
 1553 }
 1554 
 1555 fixpt_t
 1556 sched_pctcpu(struct thread *td)
 1557 {
 1558         struct td_sched *ts;
 1559 
 1560         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1561         ts = td->td_sched;
 1562         return (ts->ts_pctcpu);
 1563 }
 1564 
 1565 void
 1566 sched_tick(int cnt)
 1567 {
 1568 }
 1569 
 1570 /*
 1571  * The actual idle process.
 1572  */
 1573 void
 1574 sched_idletd(void *dummy)
 1575 {
 1576         struct pcpuidlestat *stat;
 1577 
 1578         stat = DPCPU_PTR(idlestat);
 1579         for (;;) {
 1580                 mtx_assert(&Giant, MA_NOTOWNED);
 1581 
 1582                 while (sched_runnable() == 0) {
 1583                         cpu_idle(stat->idlecalls + stat->oldidlecalls > 64);
 1584                         stat->idlecalls++;
 1585                 }
 1586 
 1587                 mtx_lock_spin(&sched_lock);
 1588                 mi_switch(SW_VOL | SWT_IDLE, NULL);
 1589                 mtx_unlock_spin(&sched_lock);
 1590         }
 1591 }
 1592 
 1593 /*
 1594  * A CPU is entering for the first time or a thread is exiting.
 1595  */
 1596 void
 1597 sched_throw(struct thread *td)
 1598 {
 1599         /*
 1600          * Correct spinlock nesting.  The idle thread context that we are
 1601          * borrowing was created so that it would start out with a single
 1602          * spin lock (sched_lock) held in fork_trampoline().  Since we've
 1603          * explicitly acquired locks in this function, the nesting count
 1604          * is now 2 rather than 1.  Since we are nested, calling
 1605          * spinlock_exit() will simply adjust the counts without allowing
 1606          * spin lock using code to interrupt us.
 1607          */
 1608         if (td == NULL) {
 1609                 mtx_lock_spin(&sched_lock);
 1610                 spinlock_exit();
 1611                 PCPU_SET(switchtime, cpu_ticks());
 1612                 PCPU_SET(switchticks, ticks);
 1613         } else {
 1614                 lock_profile_release_lock(&sched_lock.lock_object);
 1615                 MPASS(td->td_lock == &sched_lock);
 1616         }
 1617         mtx_assert(&sched_lock, MA_OWNED);
 1618         KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
 1619         cpu_throw(td, choosethread());  /* doesn't return */
 1620 }
 1621 
 1622 void
 1623 sched_fork_exit(struct thread *td)
 1624 {
 1625 
 1626         /*
 1627          * Finish setting up thread glue so that it begins execution in a
 1628          * non-nested critical section with sched_lock held but not recursed.
 1629          */
 1630         td->td_oncpu = PCPU_GET(cpuid);
 1631         sched_lock.mtx_lock = (uintptr_t)td;
 1632         lock_profile_obtain_lock_success(&sched_lock.lock_object,
 1633             0, 0, __FILE__, __LINE__);
 1634         THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
 1635 }
 1636 
 1637 char *
 1638 sched_tdname(struct thread *td)
 1639 {
 1640 #ifdef KTR
 1641         struct td_sched *ts;
 1642 
 1643         ts = td->td_sched;
 1644         if (ts->ts_name[0] == '\0')
 1645                 snprintf(ts->ts_name, sizeof(ts->ts_name),
 1646                     "%s tid %d", td->td_name, td->td_tid);
 1647         return (ts->ts_name);
 1648 #else   
 1649         return (td->td_name);
 1650 #endif
 1651 }
 1652 
 1653 #ifdef KTR
 1654 void
 1655 sched_clear_tdname(struct thread *td)
 1656 {
 1657         struct td_sched *ts;
 1658 
 1659         ts = td->td_sched;
 1660         ts->ts_name[0] = '\0';
 1661 }
 1662 #endif
 1663 
 1664 void
 1665 sched_affinity(struct thread *td)
 1666 {
 1667 #ifdef SMP
 1668         struct td_sched *ts;
 1669         int cpu;
 1670 
 1671         THREAD_LOCK_ASSERT(td, MA_OWNED);       
 1672 
 1673         /*
 1674          * Set the TSF_AFFINITY flag if there is at least one CPU this
 1675          * thread can't run on.
 1676          */
 1677         ts = td->td_sched;
 1678         ts->ts_flags &= ~TSF_AFFINITY;
 1679         CPU_FOREACH(cpu) {
 1680                 if (!THREAD_CAN_SCHED(td, cpu)) {
 1681                         ts->ts_flags |= TSF_AFFINITY;
 1682                         break;
 1683                 }
 1684         }
 1685 
 1686         /*
 1687          * If this thread can run on all CPUs, nothing else to do.
 1688          */
 1689         if (!(ts->ts_flags & TSF_AFFINITY))
 1690                 return;
 1691 
 1692         /* Pinned threads and bound threads should be left alone. */
 1693         if (td->td_pinned != 0 || td->td_flags & TDF_BOUND)
 1694                 return;
 1695 
 1696         switch (td->td_state) {
 1697         case TDS_RUNQ:
 1698                 /*
 1699                  * If we are on a per-CPU runqueue that is in the set,
 1700                  * then nothing needs to be done.
 1701                  */
 1702                 if (ts->ts_runq != &runq &&
 1703                     THREAD_CAN_SCHED(td, ts->ts_runq - runq_pcpu))
 1704                         return;
 1705 
 1706                 /* Put this thread on a valid per-CPU runqueue. */
 1707                 sched_rem(td);
 1708                 sched_add(td, SRQ_BORING);
 1709                 break;
 1710         case TDS_RUNNING:
 1711                 /*
 1712                  * See if our current CPU is in the set.  If not, force a
 1713                  * context switch.
 1714                  */
 1715                 if (THREAD_CAN_SCHED(td, td->td_oncpu))
 1716                         return;
 1717 
 1718                 td->td_flags |= TDF_NEEDRESCHED;
 1719                 if (td != curthread)
 1720                         ipi_cpu(cpu, IPI_AST);
 1721                 break;
 1722         default:
 1723                 break;
 1724         }
 1725 #endif
 1726 }

Cache object: dbc03ad52ea1eb6e6ed690f4043547a8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.