The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sched_4bsd.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: sched_4bsd.c,v 1.46 2022/10/26 23:24:09 riastradh Exp $        */
    2 
    3 /*
    4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2019, 2020
    5  *     The NetBSD Foundation, Inc.
    6  * All rights reserved.
    7  *
    8  * This code is derived from software contributed to The NetBSD Foundation
    9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
   10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
   11  * Daniel Sieger.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   32  * POSSIBILITY OF SUCH DAMAGE.
   33  */
   34 
   35 /*
   36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
   37  *      The Regents of the University of California.  All rights reserved.
   38  * (c) UNIX System Laboratories, Inc.
   39  * All or some portions of this file are derived from material licensed
   40  * to the University of California by American Telephone and Telegraph
   41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   42  * the permission of UNIX System Laboratories, Inc.
   43  *
   44  * Redistribution and use in source and binary forms, with or without
   45  * modification, are permitted provided that the following conditions
   46  * are met:
   47  * 1. Redistributions of source code must retain the above copyright
   48  *    notice, this list of conditions and the following disclaimer.
   49  * 2. Redistributions in binary form must reproduce the above copyright
   50  *    notice, this list of conditions and the following disclaimer in the
   51  *    documentation and/or other materials provided with the distribution.
   52  * 3. Neither the name of the University nor the names of its contributors
   53  *    may be used to endorse or promote products derived from this software
   54  *    without specific prior written permission.
   55  *
   56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   66  * SUCH DAMAGE.
   67  *
   68  *      @(#)kern_synch.c        8.9 (Berkeley) 5/19/95
   69  */
   70 
   71 #include <sys/cdefs.h>
   72 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.46 2022/10/26 23:24:09 riastradh Exp $");
   73 
   74 #include "opt_ddb.h"
   75 #include "opt_lockdebug.h"
   76 
   77 #include <sys/param.h>
   78 #include <sys/systm.h>
   79 #include <sys/callout.h>
   80 #include <sys/cpu.h>
   81 #include <sys/proc.h>
   82 #include <sys/kernel.h>
   83 #include <sys/resourcevar.h>
   84 #include <sys/sched.h>
   85 #include <sys/sysctl.h>
   86 #include <sys/lockdebug.h>
   87 #include <sys/intr.h>
   88 #include <sys/atomic.h>
   89 
   90 static void updatepri(struct lwp *);
   91 static void resetpriority(struct lwp *);
   92 
   93 /* Number of hardclock ticks per sched_tick() */
   94 u_int sched_rrticks __read_mostly;
   95 
   96 /*
   97  * Force switch among equal priority processes every 100ms.
   98  * Called from hardclock every hz/10 == sched_rrticks hardclock ticks.
   99  */
  100 /* ARGSUSED */
  101 void
  102 sched_tick(struct cpu_info *ci)
  103 {
  104         struct schedstate_percpu *spc = &ci->ci_schedstate;
  105         pri_t pri = PRI_NONE;
  106         lwp_t *l;
  107 
  108         spc->spc_ticks = sched_rrticks;
  109 
  110         if (CURCPU_IDLE_P()) {
  111                 spc_lock(ci);
  112                 sched_resched_cpu(ci, MAXPRI_KTHREAD, true);
  113                 /* spc now unlocked */
  114                 return;
  115         }
  116         l = ci->ci_onproc;
  117         if (l == NULL) {
  118                 return;
  119         }
  120         /*
  121          * Can only be spc_lwplock or a turnstile lock at this point
  122          * (if we interrupted priority inheritance trylock dance).
  123          */
  124         KASSERT(l->l_mutex != spc->spc_mutex);
  125         switch (l->l_class) {
  126         case SCHED_FIFO:
  127                 /* No timeslicing for FIFO jobs. */
  128                 break;
  129         case SCHED_RR:
  130                 /* Force it into mi_switch() to look for other jobs to run. */
  131                 pri = MAXPRI_KERNEL_RT;
  132                 break;
  133         default:
  134                 if (spc->spc_flags & SPCF_SHOULDYIELD) {
  135                         /*
  136                          * Process is stuck in kernel somewhere, probably
  137                          * due to buggy or inefficient code.  Force a
  138                          * kernel preemption.
  139                          */
  140                         pri = MAXPRI_KERNEL_RT;
  141                 } else if (spc->spc_flags & SPCF_SEENRR) {
  142                         /*
  143                          * The process has already been through a roundrobin
  144                          * without switching and may be hogging the CPU.
  145                          * Indicate that the process should yield.
  146                          */
  147                         pri = MAXPRI_KTHREAD;
  148                         spc->spc_flags |= SPCF_SHOULDYIELD;
  149                 } else if ((spc->spc_flags & SPCF_1STCLASS) == 0) {
  150                         /*
  151                          * For SMT or asymmetric systems push a little
  152                          * harder: if this is not a 1st class CPU, try to
  153                          * find a better one to run this LWP.
  154                          */
  155                         pri = MAXPRI_KTHREAD;
  156                         spc->spc_flags |= SPCF_SHOULDYIELD;
  157                 } else {
  158                         spc->spc_flags |= SPCF_SEENRR;
  159                 }
  160                 break;
  161         }
  162 
  163         if (pri != PRI_NONE) {
  164                 spc_lock(ci);
  165                 sched_resched_cpu(ci, pri, true);
  166                 /* spc now unlocked */
  167         }
  168 }
  169 
  170 /*
  171  * Why PRIO_MAX - 2? From setpriority(2):
  172  *
  173  *      prio is a value in the range -20 to 20.  The default priority is
  174  *      0; lower priorities cause more favorable scheduling.  A value of
  175  *      19 or 20 will schedule a process only when nothing at priority <=
  176  *      0 is runnable.
  177  *
  178  * This gives estcpu influence over 18 priority levels, and leaves nice
  179  * with 40 levels.  One way to think about it is that nice has 20 levels
  180  * either side of estcpu's 18.
  181  */
  182 #define ESTCPU_SHIFT    11
  183 #define ESTCPU_MAX      ((PRIO_MAX - 2) << ESTCPU_SHIFT)
  184 #define ESTCPU_ACCUM    (1 << (ESTCPU_SHIFT - 1))
  185 #define ESTCPULIM(e)    uimin((e), ESTCPU_MAX)
  186 
  187 /*
  188  * The main parameter used by this algorithm is 'l_estcpu'. It is an estimate
  189  * of the recent CPU utilization of the thread.
  190  *
  191  * l_estcpu is:
  192  *  - increased each time the hardclock ticks and the thread is found to
  193  *    be executing, in sched_schedclock() called from hardclock()
  194  *  - decreased (filtered) on each sched tick, in sched_pstats_hook()
  195  * If the lwp is sleeping for more than a second, we don't touch l_estcpu: it
  196  * will be updated in sched_setrunnable() when the lwp wakes up, in burst mode
  197  * (ie, we decrease it n times).
  198  *
  199  * Note that hardclock updates l_estcpu and l_cpticks independently.
  200  *
  201  * -----------------------------------------------------------------------------
  202  *
  203  * Here we describe how l_estcpu is decreased.
  204  *
  205  * Constants for digital decay (filter):
  206  *     90% of l_estcpu usage in (5 * loadavg) seconds
  207  *
  208  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds. That is, we
  209  * want to compute a value of decay such that the following loop:
  210  *     for (i = 0; i < (5 * loadavg); i++)
  211  *         l_estcpu *= decay;
  212  * will result in
  213  *     l_estcpu *= 0.1;
  214  * for all values of loadavg.
  215  *
  216  * Mathematically this loop can be expressed by saying:
  217  *     decay ** (5 * loadavg) ~= .1
  218  *
  219  * And finally, the corresponding value of decay we're using is:
  220  *     decay = (2 * loadavg) / (2 * loadavg + 1)
  221  *
  222  * -----------------------------------------------------------------------------
  223  *
  224  * Now, let's prove that the value of decay stated above will always fulfill
  225  * the equation:
  226  *     decay ** (5 * loadavg) ~= .1
  227  *
  228  * If we compute b as:
  229  *     b = 2 * loadavg
  230  * then
  231  *     decay = b / (b + 1)
  232  *
  233  * We now need to prove two things:
  234  *     1) Given [factor ** (5 * loadavg) =~ .1], prove [factor == b/(b+1)].
  235  *     2) Given [b/(b+1) ** power =~ .1], prove [power == (5 * loadavg)].
  236  *
  237  * Facts:
  238  *   * For x real: exp(x) = 0! + x**1/1! + x**2/2! + ...
  239  *     Therefore, for x close to zero, exp(x) =~ 1 + x.
  240  *     In turn, for b large enough, exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
  241  *
  242  *   * For b large enough, (b-1)/b =~ b/(b+1).
  243  *
  244  *   * For x belonging to [-1;1[, ln(1-x) = - x - x**2/2 - x**3/3 - ...
  245  *     Therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
  246  *
  247  *   * ln(0.1) =~ -2.30
  248  *
  249  * Proof of (1):
  250  *     factor ** (5 * loadavg) =~ 0.1
  251  *  => ln(factor) =~ -2.30 / (5 * loadavg)
  252  *  => factor =~ exp(-1 / ((5 / 2.30) * loadavg))
  253  *            =~ exp(-1 / (2 * loadavg))
  254  *            =~ exp(-1 / b)
  255  *            =~ (b - 1) / b
  256  *            =~ b / (b + 1)
  257  *            =~ (2 * loadavg) / ((2 * loadavg) + 1)
  258  *
  259  * Proof of (2):
  260  *     (b / (b + 1)) ** power =~ .1
  261  *  => power * ln(b / (b + 1)) =~ -2.30
  262  *  => power * (-1 / (b + 1)) =~ -2.30
  263  *  => power =~ 2.30 * (b + 1)
  264  *  => power =~ 4.60 * loadavg + 2.30
  265  *  => power =~ 5 * loadavg
  266  *
  267  * Conclusion: decay = (2 * loadavg) / (2 * loadavg + 1)
  268  */
  269 
  270 /* See calculations above */
  271 #define loadfactor(loadavg)  (2 * (loadavg))
  272 
  273 static fixpt_t
  274 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
  275 {
  276 
  277         if (estcpu == 0) {
  278                 return 0;
  279         }
  280 
  281 #if !defined(_LP64)
  282         /* avoid 64bit arithmetics. */
  283 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
  284         if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
  285                 return estcpu * loadfac / (loadfac + FSCALE);
  286         }
  287 #endif
  288 
  289         return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
  290 }
  291 
  292 static fixpt_t
  293 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
  294 {
  295 
  296         /*
  297          * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
  298          * if we slept for at least seven times the loadfactor, we will decay
  299          * l_estcpu to less than (1 << ESTCPU_SHIFT), and therefore we can
  300          * return zero directly.
  301          *
  302          * Note that our ESTCPU_MAX is actually much smaller than
  303          * (255 << ESTCPU_SHIFT).
  304          */
  305         if ((n << FSHIFT) >= 7 * loadfac) {
  306                 return 0;
  307         }
  308 
  309         while (estcpu != 0 && n > 1) {
  310                 estcpu = decay_cpu(loadfac, estcpu);
  311                 n--;
  312         }
  313 
  314         return estcpu;
  315 }
  316 
  317 /*
  318  * sched_pstats_hook:
  319  *
  320  * Periodically called from sched_pstats(); used to recalculate priorities.
  321  */
  322 void
  323 sched_pstats_hook(struct lwp *l, int batch)
  324 {
  325         fixpt_t loadfac;
  326 
  327         /*
  328          * If the LWP has slept an entire second, stop recalculating
  329          * its priority until it wakes up.
  330          */
  331         KASSERT(lwp_locked(l, NULL));
  332         if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
  333             l->l_stat == LSSUSPENDED) {
  334                 if (l->l_slptime > 1) {
  335                         return;
  336                 }
  337         }
  338 
  339         loadfac = loadfactor(averunnable.ldavg[0]);
  340         l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
  341         resetpriority(l);
  342 }
  343 
  344 /*
  345  * Recalculate the priority of an LWP after it has slept for a while.
  346  */
  347 static void
  348 updatepri(struct lwp *l)
  349 {
  350         fixpt_t loadfac;
  351 
  352         KASSERT(lwp_locked(l, NULL));
  353         KASSERT(l->l_slptime > 1);
  354 
  355         loadfac = loadfactor(averunnable.ldavg[0]);
  356 
  357         l->l_slptime--; /* the first time was done in sched_pstats */
  358         l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
  359         resetpriority(l);
  360 }
  361 
  362 void
  363 sched_rqinit(void)
  364 {
  365 
  366 }
  367 
  368 void
  369 sched_setrunnable(struct lwp *l)
  370 {
  371 
  372         if (l->l_slptime > 1)
  373                 updatepri(l);
  374 }
  375 
  376 void
  377 sched_nice(struct proc *p, int n)
  378 {
  379         struct lwp *l;
  380 
  381         KASSERT(mutex_owned(p->p_lock));
  382 
  383         p->p_nice = n;
  384         LIST_FOREACH(l, &p->p_lwps, l_sibling) {
  385                 lwp_lock(l);
  386                 resetpriority(l);
  387                 lwp_unlock(l);
  388         }
  389 }
  390 
  391 /*
  392  * Recompute the priority of an LWP.  Arrange to reschedule if
  393  * the resulting priority is better than that of the current LWP.
  394  */
  395 static void
  396 resetpriority(struct lwp *l)
  397 {
  398         pri_t pri;
  399         struct proc *p = l->l_proc;
  400 
  401         KASSERT(lwp_locked(l, NULL));
  402 
  403         if (l->l_class != SCHED_OTHER)
  404                 return;
  405 
  406         /* See comments above ESTCPU_SHIFT definition. */
  407         pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
  408         pri = imax(pri, 0);
  409         if (pri != l->l_priority)
  410                 lwp_changepri(l, pri);
  411 }
  412 
  413 /*
  414  * We adjust the priority of the current LWP.  The priority of a LWP
  415  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
  416  * is increased here.  The formula for computing priorities will compute a
  417  * different value each time l_estcpu increases. This can cause a switch,
  418  * but unless the priority crosses a PPQ boundary the actual queue will not
  419  * change.  The CPU usage estimator ramps up quite quickly when the process
  420  * is running (linearly), and decays away exponentially, at a rate which is
  421  * proportionally slower when the system is busy.  The basic principle is
  422  * that the system will 90% forget that the process used a lot of CPU time
  423  * in (5 * loadavg) seconds.  This causes the system to favor processes which
  424  * haven't run much recently, and to round-robin among other processes.
  425  */
  426 void
  427 sched_schedclock(struct lwp *l)
  428 {
  429 
  430         if (l->l_class != SCHED_OTHER)
  431                 return;
  432 
  433         KASSERT(!CURCPU_IDLE_P());
  434         l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
  435         lwp_lock(l);
  436         resetpriority(l);
  437         lwp_unlock(l);
  438 }
  439 
  440 /*
  441  * sched_proc_fork:
  442  *
  443  *      Inherit the parent's scheduler history.
  444  */
  445 void
  446 sched_proc_fork(struct proc *parent, struct proc *child)
  447 {
  448         lwp_t *pl;
  449 
  450         KASSERT(mutex_owned(parent->p_lock));
  451 
  452         pl = LIST_FIRST(&parent->p_lwps);
  453         child->p_estcpu_inherited = pl->l_estcpu;
  454         child->p_forktime = sched_pstats_ticks;
  455 }
  456 
  457 /*
  458  * sched_proc_exit:
  459  *
  460  *      Chargeback parents for the sins of their children.
  461  */
  462 void
  463 sched_proc_exit(struct proc *parent, struct proc *child)
  464 {
  465         fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
  466         fixpt_t estcpu;
  467         lwp_t *pl, *cl;
  468 
  469         /* XXX Only if parent != init?? */
  470 
  471         mutex_enter(parent->p_lock);
  472         pl = LIST_FIRST(&parent->p_lwps);
  473         cl = LIST_FIRST(&child->p_lwps);
  474         estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
  475             sched_pstats_ticks - child->p_forktime);
  476         if (cl->l_estcpu > estcpu) {
  477                 lwp_lock(pl);
  478                 pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
  479                 lwp_unlock(pl);
  480         }
  481         mutex_exit(parent->p_lock);
  482 }
  483 
  484 void
  485 sched_wakeup(struct lwp *l)
  486 {
  487 
  488 }
  489 
  490 void
  491 sched_slept(struct lwp *l)
  492 {
  493 
  494 }
  495 
  496 void
  497 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
  498 {
  499 
  500         l2->l_estcpu = l1->l_estcpu;
  501 }
  502 
  503 void
  504 sched_lwp_collect(struct lwp *t)
  505 {
  506         lwp_t *l;
  507 
  508         /* Absorb estcpu value of collected LWP. */
  509         l = curlwp;
  510         lwp_lock(l);
  511         l->l_estcpu += t->l_estcpu;
  512         lwp_unlock(l);
  513 }
  514 
  515 void
  516 sched_oncpu(lwp_t *l)
  517 {
  518 
  519 }
  520 
  521 void
  522 sched_newts(lwp_t *l)
  523 {
  524 
  525 }
  526 
  527 /*
  528  * Sysctl nodes and initialization.
  529  */
  530 
  531 static int
  532 sysctl_sched_rtts(SYSCTLFN_ARGS)
  533 {
  534         struct sysctlnode node;
  535         int rttsms = hztoms(sched_rrticks);
  536 
  537         node = *rnode;
  538         node.sysctl_data = &rttsms;
  539         return sysctl_lookup(SYSCTLFN_CALL(&node));
  540 }
  541 
  542 SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
  543 {
  544         const struct sysctlnode *node = NULL;
  545 
  546         sysctl_createv(clog, 0, NULL, &node,
  547                 CTLFLAG_PERMANENT,
  548                 CTLTYPE_NODE, "sched",
  549                 SYSCTL_DESCR("Scheduler options"),
  550                 NULL, 0, NULL, 0,
  551                 CTL_KERN, CTL_CREATE, CTL_EOL);
  552 
  553         if (node == NULL)
  554                 return;
  555 
  556         sched_rrticks = hz / 10;
  557 
  558         sysctl_createv(NULL, 0, &node, NULL,
  559                 CTLFLAG_PERMANENT,
  560                 CTLTYPE_STRING, "name", NULL,
  561                 NULL, 0, __UNCONST("4.4BSD"), 0,
  562                 CTL_CREATE, CTL_EOL);
  563         sysctl_createv(NULL, 0, &node, NULL,
  564                 CTLFLAG_PERMANENT,
  565                 CTLTYPE_INT, "rtts",
  566                 SYSCTL_DESCR("Round-robin time quantum (in milliseconds)"),
  567                 sysctl_sched_rtts, 0, NULL, 0,
  568                 CTL_CREATE, CTL_EOL);
  569 }

Cache object: 131af305f5ca3bd539fe8da73df6bf79


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.