The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System, Second Edition

[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sched_ule.c

Version: -  FREEBSD  -  FREEBSD10  -  FREEBSD9  -  FREEBSD92  -  FREEBSD91  -  FREEBSD90  -  FREEBSD8  -  FREEBSD82  -  FREEBSD81  -  FREEBSD80  -  FREEBSD7  -  FREEBSD74  -  FREEBSD73  -  FREEBSD72  -  FREEBSD71  -  FREEBSD70  -  FREEBSD6  -  FREEBSD64  -  FREEBSD63  -  FREEBSD62  -  FREEBSD61  -  FREEBSD60  -  FREEBSD5  -  FREEBSD55  -  FREEBSD54  -  FREEBSD53  -  FREEBSD52  -  FREEBSD51  -  FREEBSD50  -  FREEBSD4  -  FREEBSD3  -  FREEBSD22  -  cheribsd  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1  -  FREEBSD-LIBC  -  FREEBSD8-LIBC  -  FREEBSD7-LIBC  -  FREEBSD6-LIBC  -  GLIBC27 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  */
   26 
   27 /*
   28  * This file implements the ULE scheduler.  ULE supports independent CPU
   29  * run queues and fine grain locking.  It has superior interactive
   30  * performance under load even on uni-processor systems.
   31  *
   32  * etymology:
   33  *   ULE is the last three letters in schedule.  It owes its name to a
   34  * generic user created for a scheduling system by Paul Mikesell at
   35  * Isilon Systems and a general lack of creativity on the part of the author.
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 273266 2014-10-18 19:36:11Z adrian $");
   40 
   41 #include "opt_hwpmc_hooks.h"
   42 #include "opt_sched.h"
   43 
   44 #include <sys/param.h>
   45 #include <sys/systm.h>
   46 #include <sys/kdb.h>
   47 #include <sys/kernel.h>
   48 #include <sys/ktr.h>
   49 #include <sys/limits.h>
   50 #include <sys/lock.h>
   51 #include <sys/mutex.h>
   52 #include <sys/proc.h>
   53 #include <sys/resource.h>
   54 #include <sys/resourcevar.h>
   55 #include <sys/sched.h>
   56 #include <sys/sdt.h>
   57 #include <sys/smp.h>
   58 #include <sys/sx.h>
   59 #include <sys/sysctl.h>
   60 #include <sys/sysproto.h>
   61 #include <sys/turnstile.h>
   62 #include <sys/umtx.h>
   63 #include <sys/vmmeter.h>
   64 #include <sys/cpuset.h>
   65 #include <sys/sbuf.h>
   66 
   67 #ifdef HWPMC_HOOKS
   68 #include <sys/pmckern.h>
   69 #endif
   70 
   71 #ifdef KDTRACE_HOOKS
   72 #include <sys/dtrace_bsd.h>
   73 int                             dtrace_vtime_active;
   74 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
   75 #endif
   76 
   77 #include <machine/cpu.h>
   78 #include <machine/smp.h>
   79 
   80 #define KTR_ULE 0
   81 
   82 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
   83 #define TDQ_NAME_LEN    (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
   84 #define TDQ_LOADNAME_LEN        (sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
   85 
   86 /*
   87  * Thread scheduler specific section.  All fields are protected
   88  * by the thread lock.
   89  */
   90 struct td_sched {       
   91         struct runq     *ts_runq;       /* Run-queue we're queued on. */
   92         short           ts_flags;       /* TSF_* flags. */
   93         int             ts_cpu;         /* CPU that we have affinity for. */
   94         int             ts_rltick;      /* Real last tick, for affinity. */
   95         int             ts_slice;       /* Ticks of slice remaining. */
   96         u_int           ts_slptime;     /* Number of ticks we vol. slept */
   97         u_int           ts_runtime;     /* Number of ticks we were running */
   98         int             ts_ltick;       /* Last tick that we were running on */
   99         int             ts_ftick;       /* First tick that we were running on */
  100         int             ts_ticks;       /* Tick count */
  101 #ifdef KTR
  102         char            ts_name[TS_NAME_LEN];
  103 #endif
  104 };
  105 /* flags kept in ts_flags */
  106 #define TSF_BOUND       0x0001          /* Thread can not migrate. */
  107 #define TSF_XFERABLE    0x0002          /* Thread was added as transferable. */
  108 
  109 static struct td_sched td_sched0;
  110 
  111 #define THREAD_CAN_MIGRATE(td)  ((td)->td_pinned == 0)
  112 #define THREAD_CAN_SCHED(td, cpu)       \
  113     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
  114 
  115 /*
  116  * Priority ranges used for interactive and non-interactive timeshare
  117  * threads.  The timeshare priorities are split up into four ranges.
  118  * The first range handles interactive threads.  The last three ranges
  119  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
  120  * ranges supporting nice values.
  121  */
  122 #define PRI_TIMESHARE_RANGE     (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
  123 #define PRI_INTERACT_RANGE      ((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
  124 #define PRI_BATCH_RANGE         (PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
  125 
  126 #define PRI_MIN_INTERACT        PRI_MIN_TIMESHARE
  127 #define PRI_MAX_INTERACT        (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
  128 #define PRI_MIN_BATCH           (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
  129 #define PRI_MAX_BATCH           PRI_MAX_TIMESHARE
  130 
  131 /*
  132  * Cpu percentage computation macros and defines.
  133  *
  134  * SCHED_TICK_SECS:     Number of seconds to average the cpu usage across.
  135  * SCHED_TICK_TARG:     Number of hz ticks to average the cpu usage across.
  136  * SCHED_TICK_MAX:      Maximum number of ticks before scaling back.
  137  * SCHED_TICK_SHIFT:    Shift factor to avoid rounding away results.
  138  * SCHED_TICK_HZ:       Compute the number of hz ticks for a given ticks count.
  139  * SCHED_TICK_TOTAL:    Gives the amount of time we've been recording ticks.
  140  */
  141 #define SCHED_TICK_SECS         10
  142 #define SCHED_TICK_TARG         (hz * SCHED_TICK_SECS)
  143 #define SCHED_TICK_MAX          (SCHED_TICK_TARG + hz)
  144 #define SCHED_TICK_SHIFT        10
  145 #define SCHED_TICK_HZ(ts)       ((ts)->ts_ticks >> SCHED_TICK_SHIFT)
  146 #define SCHED_TICK_TOTAL(ts)    (max((ts)->ts_ltick - (ts)->ts_ftick, hz))
  147 
  148 /*
  149  * These macros determine priorities for non-interactive threads.  They are
  150  * assigned a priority based on their recent cpu utilization as expressed
  151  * by the ratio of ticks to the tick total.  NHALF priorities at the start
  152  * and end of the MIN to MAX timeshare range are only reachable with negative
  153  * or positive nice respectively.
  154  *
  155  * PRI_RANGE:   Priority range for utilization dependent priorities.
  156  * PRI_NRESV:   Number of nice values.
  157  * PRI_TICKS:   Compute a priority in PRI_RANGE from the ticks count and total.
  158  * PRI_NICE:    Determines the part of the priority inherited from nice.
  159  */
  160 #define SCHED_PRI_NRESV         (PRIO_MAX - PRIO_MIN)
  161 #define SCHED_PRI_NHALF         (SCHED_PRI_NRESV / 2)
  162 #define SCHED_PRI_MIN           (PRI_MIN_BATCH + SCHED_PRI_NHALF)
  163 #define SCHED_PRI_MAX           (PRI_MAX_BATCH - SCHED_PRI_NHALF)
  164 #define SCHED_PRI_RANGE         (SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
  165 #define SCHED_PRI_TICKS(ts)                                             \
  166     (SCHED_TICK_HZ((ts)) /                                              \
  167     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
  168 #define SCHED_PRI_NICE(nice)    (nice)
  169 
  170 /*
  171  * These determine the interactivity of a process.  Interactivity differs from
  172  * cpu utilization in that it expresses the voluntary time slept vs time ran
  173  * while cpu utilization includes all time not running.  This more accurately
  174  * models the intent of the thread.
  175  *
  176  * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
  177  *              before throttling back.
  178  * SLP_RUN_FORK:        Maximum slp+run time to inherit at fork time.
  179  * INTERACT_MAX:        Maximum interactivity value.  Smaller is better.
  180  * INTERACT_THRESH:     Threshold for placement on the current runq.
  181  */
  182 #define SCHED_SLP_RUN_MAX       ((hz * 5) << SCHED_TICK_SHIFT)
  183 #define SCHED_SLP_RUN_FORK      ((hz / 2) << SCHED_TICK_SHIFT)
  184 #define SCHED_INTERACT_MAX      (100)
  185 #define SCHED_INTERACT_HALF     (SCHED_INTERACT_MAX / 2)
  186 #define SCHED_INTERACT_THRESH   (30)
  187 
  188 /*
  189  * These parameters determine the slice behavior for batch work.
  190  */
  191 #define SCHED_SLICE_DEFAULT_DIVISOR     10      /* ~94 ms, 12 stathz ticks. */
  192 #define SCHED_SLICE_MIN_DIVISOR         6       /* DEFAULT/MIN = ~16 ms. */
  193 
  194 /* Flags kept in td_flags. */
  195 #define TDF_SLICEEND    TDF_SCHED2      /* Thread time slice is over. */
  196 
  197 /*
  198  * tickincr:            Converts a stathz tick into a hz domain scaled by
  199  *                      the shift factor.  Without the shift the error rate
  200  *                      due to rounding would be unacceptably high.
  201  * realstathz:          stathz is sometimes 0 and run off of hz.
  202  * sched_slice:         Runtime of each thread before rescheduling.
  203  * preempt_thresh:      Priority threshold for preemption and remote IPIs.
  204  */
  205 static int sched_interact = SCHED_INTERACT_THRESH;
  206 static int tickincr = 8 << SCHED_TICK_SHIFT;
  207 static int realstathz = 127;    /* reset during boot. */
  208 static int sched_slice = 10;    /* reset during boot. */
  209 static int sched_slice_min = 1; /* reset during boot. */
  210 #ifdef PREEMPTION
  211 #ifdef FULL_PREEMPTION
  212 static int preempt_thresh = PRI_MAX_IDLE;
  213 #else
  214 static int preempt_thresh = PRI_MIN_KERN;
  215 #endif
  216 #else 
  217 static int preempt_thresh = 0;
  218 #endif
  219 static int static_boost = PRI_MIN_BATCH;
  220 static int sched_idlespins = 10000;
  221 static int sched_idlespinthresh = -1;
  222 
  223 /*
  224  * tdq - per processor runqs and statistics.  All fields are protected by the
  225  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
  226  * locking in sched_pickcpu();
  227  */
  228 struct tdq {
  229         /* 
  230          * Ordered to improve efficiency of cpu_search() and switch().
  231          * tdq_lock is padded to avoid false sharing with tdq_load and
  232          * tdq_cpu_idle.
  233          */
  234         struct mtx_padalign tdq_lock;           /* run queue lock. */
  235         struct cpu_group *tdq_cg;               /* Pointer to cpu topology. */
  236         volatile int    tdq_load;               /* Aggregate load. */
  237         volatile int    tdq_cpu_idle;           /* cpu_idle() is active. */
  238         int             tdq_sysload;            /* For loadavg, !ITHD load. */
  239         int             tdq_transferable;       /* Transferable thread count. */
  240         short           tdq_switchcnt;          /* Switches this tick. */
  241         short           tdq_oldswitchcnt;       /* Switches last tick. */
  242         u_char          tdq_lowpri;             /* Lowest priority thread. */
  243         u_char          tdq_ipipending;         /* IPI pending. */
  244         u_char          tdq_idx;                /* Current insert index. */
  245         u_char          tdq_ridx;               /* Current removal index. */
  246         struct runq     tdq_realtime;           /* real-time run queue. */
  247         struct runq     tdq_timeshare;          /* timeshare run queue. */
  248         struct runq     tdq_idle;               /* Queue of IDLE threads. */
  249         char            tdq_name[TDQ_NAME_LEN];
  250 #ifdef KTR
  251         char            tdq_loadname[TDQ_LOADNAME_LEN];
  252 #endif
  253 } __aligned(64);
  254 
  255 /* Idle thread states and config. */
  256 #define TDQ_RUNNING     1
  257 #define TDQ_IDLE        2
  258 
  259 #ifdef SMP
  260 struct cpu_group *cpu_top;              /* CPU topology */
  261 
  262 #define SCHED_AFFINITY_DEFAULT  (max(1, hz / 1000))
  263 #define SCHED_AFFINITY(ts, t)   ((ts)->ts_rltick > ticks - ((t) * affinity))
  264 
  265 /*
  266  * Run-time tunables.
  267  */
  268 static int rebalance = 1;
  269 static int balance_interval = 128;      /* Default set in sched_initticks(). */
  270 static int affinity;
  271 static int steal_idle = 1;
  272 static int steal_thresh = 2;
  273 
  274 /*
  275  * One thread queue per processor.
  276  */
  277 static struct tdq       tdq_cpu[MAXCPU];
  278 static struct tdq       *balance_tdq;
  279 static int balance_ticks;
  280 static DPCPU_DEFINE(uint32_t, randomval);
  281 
  282 #define TDQ_SELF()      (&tdq_cpu[PCPU_GET(cpuid)])
  283 #define TDQ_CPU(x)      (&tdq_cpu[(x)])
  284 #define TDQ_ID(x)       ((int)((x) - tdq_cpu))
  285 #else   /* !SMP */
  286 static struct tdq       tdq_cpu;
  287 
  288 #define TDQ_ID(x)       (0)
  289 #define TDQ_SELF()      (&tdq_cpu)
  290 #define TDQ_CPU(x)      (&tdq_cpu)
  291 #endif
  292 
  293 #define TDQ_LOCK_ASSERT(t, type)        mtx_assert(TDQ_LOCKPTR((t)), (type))
  294 #define TDQ_LOCK(t)             mtx_lock_spin(TDQ_LOCKPTR((t)))
  295 #define TDQ_LOCK_FLAGS(t, f)    mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
  296 #define TDQ_UNLOCK(t)           mtx_unlock_spin(TDQ_LOCKPTR((t)))
  297 #define TDQ_LOCKPTR(t)          ((struct mtx *)(&(t)->tdq_lock))
  298 
  299 static void sched_priority(struct thread *);
  300 static void sched_thread_priority(struct thread *, u_char);
  301 static int sched_interact_score(struct thread *);
  302 static void sched_interact_update(struct thread *);
  303 static void sched_interact_fork(struct thread *);
  304 static void sched_pctcpu_update(struct td_sched *, int);
  305 
  306 /* Operations on per processor queues */
  307 static struct thread *tdq_choose(struct tdq *);
  308 static void tdq_setup(struct tdq *);
  309 static void tdq_load_add(struct tdq *, struct thread *);
  310 static void tdq_load_rem(struct tdq *, struct thread *);
  311 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
  312 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
  313 static inline int sched_shouldpreempt(int, int, int);
  314 void tdq_print(int cpu);
  315 static void runq_print(struct runq *rq);
  316 static void tdq_add(struct tdq *, struct thread *, int);
  317 #ifdef SMP
  318 static int tdq_move(struct tdq *, struct tdq *);
  319 static int tdq_idled(struct tdq *);
  320 static void tdq_notify(struct tdq *, struct thread *);
  321 static struct thread *tdq_steal(struct tdq *, int);
  322 static struct thread *runq_steal(struct runq *, int);
  323 static int sched_pickcpu(struct thread *, int);
  324 static void sched_balance(void);
  325 static int sched_balance_pair(struct tdq *, struct tdq *);
  326 static inline struct tdq *sched_setcpu(struct thread *, int, int);
  327 static inline void thread_unblock_switch(struct thread *, struct mtx *);
  328 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
  329 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
  330 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 
  331     struct cpu_group *cg, int indent);
  332 #endif
  333 
  334 static void sched_setup(void *dummy);
  335 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
  336 
  337 static void sched_initticks(void *dummy);
  338 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
  339     NULL);
  340 
  341 SDT_PROVIDER_DEFINE(sched);
  342 
  343 SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *", 
  344     "struct proc *", "uint8_t");
  345 SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *", 
  346     "struct proc *", "void *");
  347 SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *", 
  348     "struct proc *", "void *", "int");
  349 SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *", 
  350     "struct proc *", "uint8_t", "struct thread *");
  351 SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
  352 SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *", 
  353     "struct proc *");
  354 SDT_PROBE_DEFINE(sched, , , on__cpu);
  355 SDT_PROBE_DEFINE(sched, , , remain__cpu);
  356 SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *", 
  357     "struct proc *");
  358 
  359 /*
  360  * Print the threads waiting on a run-queue.
  361  */
  362 static void
  363 runq_print(struct runq *rq)
  364 {
  365         struct rqhead *rqh;
  366         struct thread *td;
  367         int pri;
  368         int j;
  369         int i;
  370 
  371         for (i = 0; i < RQB_LEN; i++) {
  372                 printf("\t\trunq bits %d 0x%zx\n",
  373                     i, rq->rq_status.rqb_bits[i]);
  374                 for (j = 0; j < RQB_BPW; j++)
  375                         if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
  376                                 pri = j + (i << RQB_L2BPW);
  377                                 rqh = &rq->rq_queues[pri];
  378                                 TAILQ_FOREACH(td, rqh, td_runq) {
  379                                         printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
  380                                             td, td->td_name, td->td_priority,
  381                                             td->td_rqindex, pri);
  382                                 }
  383                         }
  384         }
  385 }
  386 
  387 /*
  388  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
  389  */
  390 void
  391 tdq_print(int cpu)
  392 {
  393         struct tdq *tdq;
  394 
  395         tdq = TDQ_CPU(cpu);
  396 
  397         printf("tdq %d:\n", TDQ_ID(tdq));
  398         printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
  399         printf("\tLock name:      %s\n", tdq->tdq_name);
  400         printf("\tload:           %d\n", tdq->tdq_load);
  401         printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
  402         printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
  403         printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
  404         printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
  405         printf("\tload transferable: %d\n", tdq->tdq_transferable);
  406         printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
  407         printf("\trealtime runq:\n");
  408         runq_print(&tdq->tdq_realtime);
  409         printf("\ttimeshare runq:\n");
  410         runq_print(&tdq->tdq_timeshare);
  411         printf("\tidle runq:\n");
  412         runq_print(&tdq->tdq_idle);
  413 }
  414 
  415 static inline int
  416 sched_shouldpreempt(int pri, int cpri, int remote)
  417 {
  418         /*
  419          * If the new priority is not better than the current priority there is
  420          * nothing to do.
  421          */
  422         if (pri >= cpri)
  423                 return (0);
  424         /*
  425          * Always preempt idle.
  426          */
  427         if (cpri >= PRI_MIN_IDLE)
  428                 return (1);
  429         /*
  430          * If preemption is disabled don't preempt others.
  431          */
  432         if (preempt_thresh == 0)
  433                 return (0);
  434         /*
  435          * Preempt if we exceed the threshold.
  436          */
  437         if (pri <= preempt_thresh)
  438                 return (1);
  439         /*
  440          * If we're interactive or better and there is non-interactive
  441          * or worse running preempt only remote processors.
  442          */
  443         if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
  444                 return (1);
  445         return (0);
  446 }
  447 
  448 /*
  449  * Add a thread to the actual run-queue.  Keeps transferable counts up to
  450  * date with what is actually on the run-queue.  Selects the correct
  451  * queue position for timeshare threads.
  452  */
  453 static __inline void
  454 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
  455 {
  456         struct td_sched *ts;
  457         u_char pri;
  458 
  459         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  460         THREAD_LOCK_ASSERT(td, MA_OWNED);
  461 
  462         pri = td->td_priority;
  463         ts = td->td_sched;
  464         TD_SET_RUNQ(td);
  465         if (THREAD_CAN_MIGRATE(td)) {
  466                 tdq->tdq_transferable++;
  467                 ts->ts_flags |= TSF_XFERABLE;
  468         }
  469         if (pri < PRI_MIN_BATCH) {
  470                 ts->ts_runq = &tdq->tdq_realtime;
  471         } else if (pri <= PRI_MAX_BATCH) {
  472                 ts->ts_runq = &tdq->tdq_timeshare;
  473                 KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
  474                         ("Invalid priority %d on timeshare runq", pri));
  475                 /*
  476                  * This queue contains only priorities between MIN and MAX
  477                  * realtime.  Use the whole queue to represent these values.
  478                  */
  479                 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
  480                         pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
  481                         pri = (pri + tdq->tdq_idx) % RQ_NQS;
  482                         /*
  483                          * This effectively shortens the queue by one so we
  484                          * can have a one slot difference between idx and
  485                          * ridx while we wait for threads to drain.
  486                          */
  487                         if (tdq->tdq_ridx != tdq->tdq_idx &&
  488                             pri == tdq->tdq_ridx)
  489                                 pri = (unsigned char)(pri - 1) % RQ_NQS;
  490                 } else
  491                         pri = tdq->tdq_ridx;
  492                 runq_add_pri(ts->ts_runq, td, pri, flags);
  493                 return;
  494         } else
  495                 ts->ts_runq = &tdq->tdq_idle;
  496         runq_add(ts->ts_runq, td, flags);
  497 }
  498 
  499 /* 
  500  * Remove a thread from a run-queue.  This typically happens when a thread
  501  * is selected to run.  Running threads are not on the queue and the
  502  * transferable count does not reflect them.
  503  */
  504 static __inline void
  505 tdq_runq_rem(struct tdq *tdq, struct thread *td)
  506 {
  507         struct td_sched *ts;
  508 
  509         ts = td->td_sched;
  510         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  511         KASSERT(ts->ts_runq != NULL,
  512             ("tdq_runq_remove: thread %p null ts_runq", td));
  513         if (ts->ts_flags & TSF_XFERABLE) {
  514                 tdq->tdq_transferable--;
  515                 ts->ts_flags &= ~TSF_XFERABLE;
  516         }
  517         if (ts->ts_runq == &tdq->tdq_timeshare) {
  518                 if (tdq->tdq_idx != tdq->tdq_ridx)
  519                         runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
  520                 else
  521                         runq_remove_idx(ts->ts_runq, td, NULL);
  522         } else
  523                 runq_remove(ts->ts_runq, td);
  524 }
  525 
  526 /*
  527  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
  528  * for this thread to the referenced thread queue.
  529  */
  530 static void
  531 tdq_load_add(struct tdq *tdq, struct thread *td)
  532 {
  533 
  534         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  535         THREAD_LOCK_ASSERT(td, MA_OWNED);
  536 
  537         tdq->tdq_load++;
  538         if ((td->td_flags & TDF_NOLOAD) == 0)
  539                 tdq->tdq_sysload++;
  540         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  541         SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
  542 }
  543 
  544 /*
  545  * Remove the load from a thread that is transitioning to a sleep state or
  546  * exiting.
  547  */
  548 static void
  549 tdq_load_rem(struct tdq *tdq, struct thread *td)
  550 {
  551 
  552         THREAD_LOCK_ASSERT(td, MA_OWNED);
  553         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  554         KASSERT(tdq->tdq_load != 0,
  555             ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
  556 
  557         tdq->tdq_load--;
  558         if ((td->td_flags & TDF_NOLOAD) == 0)
  559                 tdq->tdq_sysload--;
  560         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  561         SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
  562 }
  563 
  564 /*
  565  * Bound timeshare latency by decreasing slice size as load increases.  We
  566  * consider the maximum latency as the sum of the threads waiting to run
  567  * aside from curthread and target no more than sched_slice latency but
  568  * no less than sched_slice_min runtime.
  569  */
  570 static inline int
  571 tdq_slice(struct tdq *tdq)
  572 {
  573         int load;
  574 
  575         /*
  576          * It is safe to use sys_load here because this is called from
  577          * contexts where timeshare threads are running and so there
  578          * cannot be higher priority load in the system.
  579          */
  580         load = tdq->tdq_sysload - 1;
  581         if (load >= SCHED_SLICE_MIN_DIVISOR)
  582                 return (sched_slice_min);
  583         if (load <= 1)
  584                 return (sched_slice);
  585         return (sched_slice / load);
  586 }
  587 
  588 /*
  589  * Set lowpri to its exact value by searching the run-queue and
  590  * evaluating curthread.  curthread may be passed as an optimization.
  591  */
  592 static void
  593 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
  594 {
  595         struct thread *td;
  596 
  597         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  598         if (ctd == NULL)
  599                 ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
  600         td = tdq_choose(tdq);
  601         if (td == NULL || td->td_priority > ctd->td_priority)
  602                 tdq->tdq_lowpri = ctd->td_priority;
  603         else
  604                 tdq->tdq_lowpri = td->td_priority;
  605 }
  606 
  607 #ifdef SMP
  608 struct cpu_search {
  609         cpuset_t cs_mask;
  610         u_int   cs_prefer;
  611         int     cs_pri;         /* Min priority for low. */
  612         int     cs_limit;       /* Max load for low, min load for high. */
  613         int     cs_cpu;
  614         int     cs_load;
  615 };
  616 
  617 #define CPU_SEARCH_LOWEST       0x1
  618 #define CPU_SEARCH_HIGHEST      0x2
  619 #define CPU_SEARCH_BOTH         (CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
  620 
  621 #define CPUSET_FOREACH(cpu, mask)                               \
  622         for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)             \
  623                 if (CPU_ISSET(cpu, &mask))
  624 
  625 static __always_inline int cpu_search(const struct cpu_group *cg,
  626     struct cpu_search *low, struct cpu_search *high, const int match);
  627 int __noinline cpu_search_lowest(const struct cpu_group *cg,
  628     struct cpu_search *low);
  629 int __noinline cpu_search_highest(const struct cpu_group *cg,
  630     struct cpu_search *high);
  631 int __noinline cpu_search_both(const struct cpu_group *cg,
  632     struct cpu_search *low, struct cpu_search *high);
  633 
  634 /*
  635  * Search the tree of cpu_groups for the lowest or highest loaded cpu
  636  * according to the match argument.  This routine actually compares the
  637  * load on all paths through the tree and finds the least loaded cpu on
  638  * the least loaded path, which may differ from the least loaded cpu in
  639  * the system.  This balances work among caches and busses.
  640  *
  641  * This inline is instantiated in three forms below using constants for the
  642  * match argument.  It is reduced to the minimum set for each case.  It is
  643  * also recursive to the depth of the tree.
  644  */
  645 static __always_inline int
  646 cpu_search(const struct cpu_group *cg, struct cpu_search *low,
  647     struct cpu_search *high, const int match)
  648 {
  649         struct cpu_search lgroup;
  650         struct cpu_search hgroup;
  651         cpuset_t cpumask;
  652         struct cpu_group *child;
  653         struct tdq *tdq;
  654         int cpu, i, hload, lload, load, total, rnd, *rndptr;
  655 
  656         total = 0;
  657         cpumask = cg->cg_mask;
  658         if (match & CPU_SEARCH_LOWEST) {
  659                 lload = INT_MAX;
  660                 lgroup = *low;
  661         }
  662         if (match & CPU_SEARCH_HIGHEST) {
  663                 hload = INT_MIN;
  664                 hgroup = *high;
  665         }
  666 
  667         /* Iterate through the child CPU groups and then remaining CPUs. */
  668         for (i = cg->cg_children, cpu = mp_maxid; ; ) {
  669                 if (i == 0) {
  670 #ifdef HAVE_INLINE_FFSL
  671                         cpu = CPU_FFS(&cpumask) - 1;
  672 #else
  673                         while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
  674                                 cpu--;
  675 #endif
  676                         if (cpu < 0)
  677                                 break;
  678                         child = NULL;
  679                 } else
  680                         child = &cg->cg_child[i - 1];
  681 
  682                 if (match & CPU_SEARCH_LOWEST)
  683                         lgroup.cs_cpu = -1;
  684                 if (match & CPU_SEARCH_HIGHEST)
  685                         hgroup.cs_cpu = -1;
  686                 if (child) {                    /* Handle child CPU group. */
  687                         CPU_NAND(&cpumask, &child->cg_mask);
  688                         switch (match) {
  689                         case CPU_SEARCH_LOWEST:
  690                                 load = cpu_search_lowest(child, &lgroup);
  691                                 break;
  692                         case CPU_SEARCH_HIGHEST:
  693                                 load = cpu_search_highest(child, &hgroup);
  694                                 break;
  695                         case CPU_SEARCH_BOTH:
  696                                 load = cpu_search_both(child, &lgroup, &hgroup);
  697                                 break;
  698                         }
  699                 } else {                        /* Handle child CPU. */
  700                         CPU_CLR(cpu, &cpumask);
  701                         tdq = TDQ_CPU(cpu);
  702                         load = tdq->tdq_load * 256;
  703                         rndptr = DPCPU_PTR(randomval);
  704                         rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
  705                         if (match & CPU_SEARCH_LOWEST) {
  706                                 if (cpu == low->cs_prefer)
  707                                         load -= 64;
  708                                 /* If that CPU is allowed and get data. */
  709                                 if (tdq->tdq_lowpri > lgroup.cs_pri &&
  710                                     tdq->tdq_load <= lgroup.cs_limit &&
  711                                     CPU_ISSET(cpu, &lgroup.cs_mask)) {
  712                                         lgroup.cs_cpu = cpu;
  713                                         lgroup.cs_load = load - rnd;
  714                                 }
  715                         }
  716                         if (match & CPU_SEARCH_HIGHEST)
  717                                 if (tdq->tdq_load >= hgroup.cs_limit &&
  718                                     tdq->tdq_transferable &&
  719                                     CPU_ISSET(cpu, &hgroup.cs_mask)) {
  720                                         hgroup.cs_cpu = cpu;
  721                                         hgroup.cs_load = load - rnd;
  722                                 }
  723                 }
  724                 total += load;
  725 
  726                 /* We have info about child item. Compare it. */
  727                 if (match & CPU_SEARCH_LOWEST) {
  728                         if (lgroup.cs_cpu >= 0 &&
  729                             (load < lload ||
  730                              (load == lload && lgroup.cs_load < low->cs_load))) {
  731                                 lload = load;
  732                                 low->cs_cpu = lgroup.cs_cpu;
  733                                 low->cs_load = lgroup.cs_load;
  734                         }
  735                 }
  736                 if (match & CPU_SEARCH_HIGHEST)
  737                         if (hgroup.cs_cpu >= 0 &&
  738                             (load > hload ||
  739                              (load == hload && hgroup.cs_load > high->cs_load))) {
  740                                 hload = load;
  741                                 high->cs_cpu = hgroup.cs_cpu;
  742                                 high->cs_load = hgroup.cs_load;
  743                         }
  744                 if (child) {
  745                         i--;
  746                         if (i == 0 && CPU_EMPTY(&cpumask))
  747                                 break;
  748                 }
  749 #ifndef HAVE_INLINE_FFSL
  750                 else
  751                         cpu--;
  752 #endif
  753         }
  754         return (total);
  755 }
  756 
  757 /*
  758  * cpu_search instantiations must pass constants to maintain the inline
  759  * optimization.
  760  */
  761 int
  762 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
  763 {
  764         return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
  765 }
  766 
  767 int
  768 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
  769 {
  770         return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
  771 }
  772 
  773 int
  774 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
  775     struct cpu_search *high)
  776 {
  777         return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
  778 }
  779 
  780 /*
  781  * Find the cpu with the least load via the least loaded path that has a
  782  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
  783  * acceptable.
  784  */
  785 static inline int
  786 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
  787     int prefer)
  788 {
  789         struct cpu_search low;
  790 
  791         low.cs_cpu = -1;
  792         low.cs_prefer = prefer;
  793         low.cs_mask = mask;
  794         low.cs_pri = pri;
  795         low.cs_limit = maxload;
  796         cpu_search_lowest(cg, &low);
  797         return low.cs_cpu;
  798 }
  799 
  800 /*
  801  * Find the cpu with the highest load via the highest loaded path.
  802  */
  803 static inline int
  804 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
  805 {
  806         struct cpu_search high;
  807 
  808         high.cs_cpu = -1;
  809         high.cs_mask = mask;
  810         high.cs_limit = minload;
  811         cpu_search_highest(cg, &high);
  812         return high.cs_cpu;
  813 }
  814 
  815 static void
  816 sched_balance_group(struct cpu_group *cg)
  817 {
  818         cpuset_t hmask, lmask;
  819         int high, low, anylow;
  820 
  821         CPU_FILL(&hmask);
  822         for (;;) {
  823                 high = sched_highest(cg, hmask, 1);
  824                 /* Stop if there is no more CPU with transferrable threads. */
  825                 if (high == -1)
  826                         break;
  827                 CPU_CLR(high, &hmask);
  828                 CPU_COPY(&hmask, &lmask);
  829                 /* Stop if there is no more CPU left for low. */
  830                 if (CPU_EMPTY(&lmask))
  831                         break;
  832                 anylow = 1;
  833 nextlow:
  834                 low = sched_lowest(cg, lmask, -1,
  835                     TDQ_CPU(high)->tdq_load - 1, high);
  836                 /* Stop if we looked well and found no less loaded CPU. */
  837                 if (anylow && low == -1)
  838                         break;
  839                 /* Go to next high if we found no less loaded CPU. */
  840                 if (low == -1)
  841                         continue;
  842                 /* Transfer thread from high to low. */
  843                 if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
  844                         /* CPU that got thread can no longer be a donor. */
  845                         CPU_CLR(low, &hmask);
  846                 } else {
  847                         /*
  848                          * If failed, then there is no threads on high
  849                          * that can run on this low. Drop low from low
  850                          * mask and look for different one.
  851                          */
  852                         CPU_CLR(low, &lmask);
  853                         anylow = 0;
  854                         goto nextlow;
  855                 }
  856         }
  857 }
  858 
  859 static void
  860 sched_balance(void)
  861 {
  862         struct tdq *tdq;
  863 
  864         /*
  865          * Select a random time between .5 * balance_interval and
  866          * 1.5 * balance_interval.
  867          */
  868         balance_ticks = max(balance_interval / 2, 1);
  869         balance_ticks += random() % balance_interval;
  870         if (smp_started == 0 || rebalance == 0)
  871                 return;
  872         tdq = TDQ_SELF();
  873         TDQ_UNLOCK(tdq);
  874         sched_balance_group(cpu_top);
  875         TDQ_LOCK(tdq);
  876 }
  877 
  878 /*
  879  * Lock two thread queues using their address to maintain lock order.
  880  */
  881 static void
  882 tdq_lock_pair(struct tdq *one, struct tdq *two)
  883 {
  884         if (one < two) {
  885                 TDQ_LOCK(one);
  886                 TDQ_LOCK_FLAGS(two, MTX_DUPOK);
  887         } else {
  888                 TDQ_LOCK(two);
  889                 TDQ_LOCK_FLAGS(one, MTX_DUPOK);
  890         }
  891 }
  892 
  893 /*
  894  * Unlock two thread queues.  Order is not important here.
  895  */
  896 static void
  897 tdq_unlock_pair(struct tdq *one, struct tdq *two)
  898 {
  899         TDQ_UNLOCK(one);
  900         TDQ_UNLOCK(two);
  901 }
  902 
  903 /*
  904  * Transfer load between two imbalanced thread queues.
  905  */
  906 static int
  907 sched_balance_pair(struct tdq *high, struct tdq *low)
  908 {
  909         int moved;
  910         int cpu;
  911 
  912         tdq_lock_pair(high, low);
  913         moved = 0;
  914         /*
  915          * Determine what the imbalance is and then adjust that to how many
  916          * threads we actually have to give up (transferable).
  917          */
  918         if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
  919             (moved = tdq_move(high, low)) > 0) {
  920                 /*
  921                  * In case the target isn't the current cpu IPI it to force a
  922                  * reschedule with the new workload.
  923                  */
  924                 cpu = TDQ_ID(low);
  925                 if (cpu != PCPU_GET(cpuid))
  926                         ipi_cpu(cpu, IPI_PREEMPT);
  927         }
  928         tdq_unlock_pair(high, low);
  929         return (moved);
  930 }
  931 
  932 /*
  933  * Move a thread from one thread queue to another.
  934  */
  935 static int
  936 tdq_move(struct tdq *from, struct tdq *to)
  937 {
  938         struct td_sched *ts;
  939         struct thread *td;
  940         struct tdq *tdq;
  941         int cpu;
  942 
  943         TDQ_LOCK_ASSERT(from, MA_OWNED);
  944         TDQ_LOCK_ASSERT(to, MA_OWNED);
  945 
  946         tdq = from;
  947         cpu = TDQ_ID(to);
  948         td = tdq_steal(tdq, cpu);
  949         if (td == NULL)
  950                 return (0);
  951         ts = td->td_sched;
  952         /*
  953          * Although the run queue is locked the thread may be blocked.  Lock
  954          * it to clear this and acquire the run-queue lock.
  955          */
  956         thread_lock(td);
  957         /* Drop recursive lock on from acquired via thread_lock(). */
  958         TDQ_UNLOCK(from);
  959         sched_rem(td);
  960         ts->ts_cpu = cpu;
  961         td->td_lock = TDQ_LOCKPTR(to);
  962         tdq_add(to, td, SRQ_YIELDING);
  963         return (1);
  964 }
  965 
  966 /*
  967  * This tdq has idled.  Try to steal a thread from another cpu and switch
  968  * to it.
  969  */
  970 static int
  971 tdq_idled(struct tdq *tdq)
  972 {
  973         struct cpu_group *cg;
  974         struct tdq *steal;
  975         cpuset_t mask;
  976         int thresh;
  977         int cpu;
  978 
  979         if (smp_started == 0 || steal_idle == 0)
  980                 return (1);
  981         CPU_FILL(&mask);
  982         CPU_CLR(PCPU_GET(cpuid), &mask);
  983         /* We don't want to be preempted while we're iterating. */
  984         spinlock_enter();
  985         for (cg = tdq->tdq_cg; cg != NULL; ) {
  986                 if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
  987                         thresh = steal_thresh;
  988                 else
  989                         thresh = 1;
  990                 cpu = sched_highest(cg, mask, thresh);
  991                 if (cpu == -1) {
  992                         cg = cg->cg_parent;
  993                         continue;
  994                 }
  995                 steal = TDQ_CPU(cpu);
  996                 CPU_CLR(cpu, &mask);
  997                 tdq_lock_pair(tdq, steal);
  998                 if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
  999                         tdq_unlock_pair(tdq, steal);
 1000                         continue;
 1001                 }
 1002                 /*
 1003                  * If a thread was added while interrupts were disabled don't
 1004                  * steal one here.  If we fail to acquire one due to affinity
 1005                  * restrictions loop again with this cpu removed from the
 1006                  * set.
 1007                  */
 1008                 if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
 1009                         tdq_unlock_pair(tdq, steal);
 1010                         continue;
 1011                 }
 1012                 spinlock_exit();
 1013                 TDQ_UNLOCK(steal);
 1014                 mi_switch(SW_VOL | SWT_IDLE, NULL);
 1015                 thread_unlock(curthread);
 1016 
 1017                 return (0);
 1018         }
 1019         spinlock_exit();
 1020         return (1);
 1021 }
 1022 
 1023 /*
 1024  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
 1025  */
 1026 static void
 1027 tdq_notify(struct tdq *tdq, struct thread *td)
 1028 {
 1029         struct thread *ctd;
 1030         int pri;
 1031         int cpu;
 1032 
 1033         if (tdq->tdq_ipipending)
 1034                 return;
 1035         cpu = td->td_sched->ts_cpu;
 1036         pri = td->td_priority;
 1037         ctd = pcpu_find(cpu)->pc_curthread;
 1038         if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
 1039                 return;
 1040 
 1041         /*
 1042          * Make sure that our caller's earlier update to tdq_load is
 1043          * globally visible before we read tdq_cpu_idle.  Idle thread
 1044          * accesses both of them without locks, and the order is important.
 1045          */
 1046         mb();
 1047 
 1048         if (TD_IS_IDLETHREAD(ctd)) {
 1049                 /*
 1050                  * If the MD code has an idle wakeup routine try that before
 1051                  * falling back to IPI.
 1052                  */
 1053                 if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
 1054                         return;
 1055         }
 1056         tdq->tdq_ipipending = 1;
 1057         ipi_cpu(cpu, IPI_PREEMPT);
 1058 }
 1059 
 1060 /*
 1061  * Steals load from a timeshare queue.  Honors the rotating queue head
 1062  * index.
 1063  */
 1064 static struct thread *
 1065 runq_steal_from(struct runq *rq, int cpu, u_char start)
 1066 {
 1067         struct rqbits *rqb;
 1068         struct rqhead *rqh;
 1069         struct thread *td, *first;
 1070         int bit;
 1071         int i;
 1072 
 1073         rqb = &rq->rq_status;
 1074         bit = start & (RQB_BPW -1);
 1075         first = NULL;
 1076 again:
 1077         for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
 1078                 if (rqb->rqb_bits[i] == 0)
 1079                         continue;
 1080                 if (bit == 0)
 1081                         bit = RQB_FFS(rqb->rqb_bits[i]);
 1082                 for (; bit < RQB_BPW; bit++) {
 1083                         if ((rqb->rqb_bits[i] & (1ul << bit)) == 0)
 1084                                 continue;
 1085                         rqh = &rq->rq_queues[bit + (i << RQB_L2BPW)];
 1086                         TAILQ_FOREACH(td, rqh, td_runq) {
 1087                                 if (first && THREAD_CAN_MIGRATE(td) &&
 1088                                     THREAD_CAN_SCHED(td, cpu))
 1089                                         return (td);
 1090                                 first = td;
 1091                         }
 1092                 }
 1093         }
 1094         if (start != 0) {
 1095                 start = 0;
 1096                 goto again;
 1097         }
 1098 
 1099         if (first && THREAD_CAN_MIGRATE(first) &&
 1100             THREAD_CAN_SCHED(first, cpu))
 1101                 return (first);
 1102         return (NULL);
 1103 }
 1104 
 1105 /*
 1106  * Steals load from a standard linear queue.
 1107  */
 1108 static struct thread *
 1109 runq_steal(struct runq *rq, int cpu)
 1110 {
 1111         struct rqhead *rqh;
 1112         struct rqbits *rqb;
 1113         struct thread *td;
 1114         int word;
 1115         int bit;
 1116 
 1117         rqb = &rq->rq_status;
 1118         for (word = 0; word < RQB_LEN; word++) {
 1119                 if (rqb->rqb_bits[word] == 0)
 1120                         continue;
 1121                 for (bit = 0; bit < RQB_BPW; bit++) {
 1122                         if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
 1123                                 continue;
 1124                         rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
 1125                         TAILQ_FOREACH(td, rqh, td_runq)
 1126                                 if (THREAD_CAN_MIGRATE(td) &&
 1127                                     THREAD_CAN_SCHED(td, cpu))
 1128                                         return (td);
 1129                 }
 1130         }
 1131         return (NULL);
 1132 }
 1133 
 1134 /*
 1135  * Attempt to steal a thread in priority order from a thread queue.
 1136  */
 1137 static struct thread *
 1138 tdq_steal(struct tdq *tdq, int cpu)
 1139 {
 1140         struct thread *td;
 1141 
 1142         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1143         if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
 1144                 return (td);
 1145         if ((td = runq_steal_from(&tdq->tdq_timeshare,
 1146             cpu, tdq->tdq_ridx)) != NULL)
 1147                 return (td);
 1148         return (runq_steal(&tdq->tdq_idle, cpu));
 1149 }
 1150 
 1151 /*
 1152  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
 1153  * current lock and returns with the assigned queue locked.
 1154  */
 1155 static inline struct tdq *
 1156 sched_setcpu(struct thread *td, int cpu, int flags)
 1157 {
 1158 
 1159         struct tdq *tdq;
 1160 
 1161         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1162         tdq = TDQ_CPU(cpu);
 1163         td->td_sched->ts_cpu = cpu;
 1164         /*
 1165          * If the lock matches just return the queue.
 1166          */
 1167         if (td->td_lock == TDQ_LOCKPTR(tdq))
 1168                 return (tdq);
 1169 #ifdef notyet
 1170         /*
 1171          * If the thread isn't running its lockptr is a
 1172          * turnstile or a sleepqueue.  We can just lock_set without
 1173          * blocking.
 1174          */
 1175         if (TD_CAN_RUN(td)) {
 1176                 TDQ_LOCK(tdq);
 1177                 thread_lock_set(td, TDQ_LOCKPTR(tdq));
 1178                 return (tdq);
 1179         }
 1180 #endif
 1181         /*
 1182          * The hard case, migration, we need to block the thread first to
 1183          * prevent order reversals with other cpus locks.
 1184          */
 1185         spinlock_enter();
 1186         thread_lock_block(td);
 1187         TDQ_LOCK(tdq);
 1188         thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
 1189         spinlock_exit();
 1190         return (tdq);
 1191 }
 1192 
 1193 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
 1194 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
 1195 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
 1196 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
 1197 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
 1198 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
 1199 
 1200 static int
 1201 sched_pickcpu(struct thread *td, int flags)
 1202 {
 1203         struct cpu_group *cg, *ccg;
 1204         struct td_sched *ts;
 1205         struct tdq *tdq;
 1206         cpuset_t mask;
 1207         int cpu, pri, self;
 1208 
 1209         self = PCPU_GET(cpuid);
 1210         ts = td->td_sched;
 1211         if (smp_started == 0)
 1212                 return (self);
 1213         /*
 1214          * Don't migrate a running thread from sched_switch().
 1215          */
 1216         if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
 1217                 return (ts->ts_cpu);
 1218         /*
 1219          * Prefer to run interrupt threads on the processors that generate
 1220          * the interrupt.
 1221          */
 1222         pri = td->td_priority;
 1223         if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
 1224             curthread->td_intr_nesting_level && ts->ts_cpu != self) {
 1225                 SCHED_STAT_INC(pickcpu_intrbind);
 1226                 ts->ts_cpu = self;
 1227                 if (TDQ_CPU(self)->tdq_lowpri > pri) {
 1228                         SCHED_STAT_INC(pickcpu_affinity);
 1229                         return (ts->ts_cpu);
 1230                 }
 1231         }
 1232         /*
 1233          * If the thread can run on the last cpu and the affinity has not
 1234          * expired or it is idle run it there.
 1235          */
 1236         tdq = TDQ_CPU(ts->ts_cpu);
 1237         cg = tdq->tdq_cg;
 1238         if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
 1239             tdq->tdq_lowpri >= PRI_MIN_IDLE &&
 1240             SCHED_AFFINITY(ts, CG_SHARE_L2)) {
 1241                 if (cg->cg_flags & CG_FLAG_THREAD) {
 1242                         CPUSET_FOREACH(cpu, cg->cg_mask) {
 1243                                 if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
 1244                                         break;
 1245                         }
 1246                 } else
 1247                         cpu = INT_MAX;
 1248                 if (cpu > mp_maxid) {
 1249                         SCHED_STAT_INC(pickcpu_idle_affinity);
 1250                         return (ts->ts_cpu);
 1251                 }
 1252         }
 1253         /*
 1254          * Search for the last level cache CPU group in the tree.
 1255          * Skip caches with expired affinity time and SMT groups.
 1256          * Affinity to higher level caches will be handled less aggressively.
 1257          */
 1258         for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
 1259                 if (cg->cg_flags & CG_FLAG_THREAD)
 1260                         continue;
 1261                 if (!SCHED_AFFINITY(ts, cg->cg_level))
 1262                         continue;
 1263                 ccg = cg;
 1264         }
 1265         if (ccg != NULL)
 1266                 cg = ccg;
 1267         cpu = -1;
 1268         /* Search the group for the less loaded idle CPU we can run now. */
 1269         mask = td->td_cpuset->cs_mask;
 1270         if (cg != NULL && cg != cpu_top &&
 1271             CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
 1272                 cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
 1273                     INT_MAX, ts->ts_cpu);
 1274         /* Search globally for the less loaded CPU we can run now. */
 1275         if (cpu == -1)
 1276                 cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
 1277         /* Search globally for the less loaded CPU. */
 1278         if (cpu == -1)
 1279                 cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
 1280         KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
 1281         /*
 1282          * Compare the lowest loaded cpu to current cpu.
 1283          */
 1284         if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
 1285             TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
 1286             TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
 1287                 SCHED_STAT_INC(pickcpu_local);
 1288                 cpu = self;
 1289         } else
 1290                 SCHED_STAT_INC(pickcpu_lowest);
 1291         if (cpu != ts->ts_cpu)
 1292                 SCHED_STAT_INC(pickcpu_migration);
 1293         return (cpu);
 1294 }
 1295 #endif
 1296 
 1297 /*
 1298  * Pick the highest priority task we have and return it.
 1299  */
 1300 static struct thread *
 1301 tdq_choose(struct tdq *tdq)
 1302 {
 1303         struct thread *td;
 1304 
 1305         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1306         td = runq_choose(&tdq->tdq_realtime);
 1307         if (td != NULL)
 1308                 return (td);
 1309         td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
 1310         if (td != NULL) {
 1311                 KASSERT(td->td_priority >= PRI_MIN_BATCH,
 1312                     ("tdq_choose: Invalid priority on timeshare queue %d",
 1313                     td->td_priority));
 1314                 return (td);
 1315         }
 1316         td = runq_choose(&tdq->tdq_idle);
 1317         if (td != NULL) {
 1318                 KASSERT(td->td_priority >= PRI_MIN_IDLE,
 1319                     ("tdq_choose: Invalid priority on idle queue %d",
 1320                     td->td_priority));
 1321                 return (td);
 1322         }
 1323 
 1324         return (NULL);
 1325 }
 1326 
 1327 /*
 1328  * Initialize a thread queue.
 1329  */
 1330 static void
 1331 tdq_setup(struct tdq *tdq)
 1332 {
 1333 
 1334         if (bootverbose)
 1335                 printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
 1336         runq_init(&tdq->tdq_realtime);
 1337         runq_init(&tdq->tdq_timeshare);
 1338         runq_init(&tdq->tdq_idle);
 1339         snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
 1340             "sched lock %d", (int)TDQ_ID(tdq));
 1341         mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
 1342             MTX_SPIN | MTX_RECURSE);
 1343 #ifdef KTR
 1344         snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
 1345             "CPU %d load", (int)TDQ_ID(tdq));
 1346 #endif
 1347 }
 1348 
 1349 #ifdef SMP
 1350 static void
 1351 sched_setup_smp(void)
 1352 {
 1353         struct tdq *tdq;
 1354         int i;
 1355 
 1356         cpu_top = smp_topo();
 1357         CPU_FOREACH(i) {
 1358                 tdq = TDQ_CPU(i);
 1359                 tdq_setup(tdq);
 1360                 tdq->tdq_cg = smp_topo_find(cpu_top, i);
 1361                 if (tdq->tdq_cg == NULL)
 1362                         panic("Can't find cpu group for %d\n", i);
 1363         }
 1364         balance_tdq = TDQ_SELF();
 1365         sched_balance();
 1366 }
 1367 #endif
 1368 
 1369 /*
 1370  * Setup the thread queues and initialize the topology based on MD
 1371  * information.
 1372  */
 1373 static void
 1374 sched_setup(void *dummy)
 1375 {
 1376         struct tdq *tdq;
 1377 
 1378         tdq = TDQ_SELF();
 1379 #ifdef SMP
 1380         sched_setup_smp();
 1381 #else
 1382         tdq_setup(tdq);
 1383 #endif
 1384 
 1385         /* Add thread0's load since it's running. */
 1386         TDQ_LOCK(tdq);
 1387         thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
 1388         tdq_load_add(tdq, &thread0);
 1389         tdq->tdq_lowpri = thread0.td_priority;
 1390         TDQ_UNLOCK(tdq);
 1391 }
 1392 
 1393 /*
 1394  * This routine determines time constants after stathz and hz are setup.
 1395  */
 1396 /* ARGSUSED */
 1397 static void
 1398 sched_initticks(void *dummy)
 1399 {
 1400         int incr;
 1401 
 1402         realstathz = stathz ? stathz : hz;
 1403         sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
 1404         sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
 1405         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 1406             realstathz);
 1407 
 1408         /*
 1409          * tickincr is shifted out by 10 to avoid rounding errors due to
 1410          * hz not being evenly divisible by stathz on all platforms.
 1411          */
 1412         incr = (hz << SCHED_TICK_SHIFT) / realstathz;
 1413         /*
 1414          * This does not work for values of stathz that are more than
 1415          * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
 1416          */
 1417         if (incr == 0)
 1418                 incr = 1;
 1419         tickincr = incr;
 1420 #ifdef SMP
 1421         /*
 1422          * Set the default balance interval now that we know
 1423          * what realstathz is.
 1424          */
 1425         balance_interval = realstathz;
 1426         affinity = SCHED_AFFINITY_DEFAULT;
 1427 #endif
 1428         if (sched_idlespinthresh < 0)
 1429                 sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
 1430 }
 1431 
 1432 
 1433 /*
 1434  * This is the core of the interactivity algorithm.  Determines a score based
 1435  * on past behavior.  It is the ratio of sleep time to run time scaled to
 1436  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
 1437  * differs from the cpu usage because it does not account for time spent
 1438  * waiting on a run-queue.  Would be prettier if we had floating point.
 1439  */
 1440 static int
 1441 sched_interact_score(struct thread *td)
 1442 {
 1443         struct td_sched *ts;
 1444         int div;
 1445 
 1446         ts = td->td_sched;
 1447         /*
 1448          * The score is only needed if this is likely to be an interactive
 1449          * task.  Don't go through the expense of computing it if there's
 1450          * no chance.
 1451          */
 1452         if (sched_interact <= SCHED_INTERACT_HALF &&
 1453                 ts->ts_runtime >= ts->ts_slptime)
 1454                         return (SCHED_INTERACT_HALF);
 1455 
 1456         if (ts->ts_runtime > ts->ts_slptime) {
 1457                 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
 1458                 return (SCHED_INTERACT_HALF +
 1459                     (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
 1460         }
 1461         if (ts->ts_slptime > ts->ts_runtime) {
 1462                 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
 1463                 return (ts->ts_runtime / div);
 1464         }
 1465         /* runtime == slptime */
 1466         if (ts->ts_runtime)
 1467                 return (SCHED_INTERACT_HALF);
 1468 
 1469         /*
 1470          * This can happen if slptime and runtime are 0.
 1471          */
 1472         return (0);
 1473 
 1474 }
 1475 
 1476 /*
 1477  * Scale the scheduling priority according to the "interactivity" of this
 1478  * process.
 1479  */
 1480 static void
 1481 sched_priority(struct thread *td)
 1482 {
 1483         int score;
 1484         int pri;
 1485 
 1486         if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 1487                 return;
 1488         /*
 1489          * If the score is interactive we place the thread in the realtime
 1490          * queue with a priority that is less than kernel and interrupt
 1491          * priorities.  These threads are not subject to nice restrictions.
 1492          *
 1493          * Scores greater than this are placed on the normal timeshare queue
 1494          * where the priority is partially decided by the most recent cpu
 1495          * utilization and the rest is decided by nice value.
 1496          *
 1497          * The nice value of the process has a linear effect on the calculated
 1498          * score.  Negative nice values make it easier for a thread to be
 1499          * considered interactive.
 1500          */
 1501         score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
 1502         if (score < sched_interact) {
 1503                 pri = PRI_MIN_INTERACT;
 1504                 pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
 1505                     sched_interact) * score;
 1506                 KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
 1507                     ("sched_priority: invalid interactive priority %d score %d",
 1508                     pri, score));
 1509         } else {
 1510                 pri = SCHED_PRI_MIN;
 1511                 if (td->td_sched->ts_ticks)
 1512                         pri += min(SCHED_PRI_TICKS(td->td_sched),
 1513                             SCHED_PRI_RANGE - 1);
 1514                 pri += SCHED_PRI_NICE(td->td_proc->p_nice);
 1515                 KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
 1516                     ("sched_priority: invalid priority %d: nice %d, " 
 1517                     "ticks %d ftick %d ltick %d tick pri %d",
 1518                     pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
 1519                     td->td_sched->ts_ftick, td->td_sched->ts_ltick,
 1520                     SCHED_PRI_TICKS(td->td_sched)));
 1521         }
 1522         sched_user_prio(td, pri);
 1523 
 1524         return;
 1525 }
 1526 
 1527 /*
 1528  * This routine enforces a maximum limit on the amount of scheduling history
 1529  * kept.  It is called after either the slptime or runtime is adjusted.  This
 1530  * function is ugly due to integer math.
 1531  */
 1532 static void
 1533 sched_interact_update(struct thread *td)
 1534 {
 1535         struct td_sched *ts;
 1536         u_int sum;
 1537 
 1538         ts = td->td_sched;
 1539         sum = ts->ts_runtime + ts->ts_slptime;
 1540         if (sum < SCHED_SLP_RUN_MAX)
 1541                 return;
 1542         /*
 1543          * This only happens from two places:
 1544          * 1) We have added an unusual amount of run time from fork_exit.
 1545          * 2) We have added an unusual amount of sleep time from sched_sleep().
 1546          */
 1547         if (sum > SCHED_SLP_RUN_MAX * 2) {
 1548                 if (ts->ts_runtime > ts->ts_slptime) {
 1549                         ts->ts_runtime = SCHED_SLP_RUN_MAX;
 1550                         ts->ts_slptime = 1;
 1551                 } else {
 1552                         ts->ts_slptime = SCHED_SLP_RUN_MAX;
 1553                         ts->ts_runtime = 1;
 1554                 }
 1555                 return;
 1556         }
 1557         /*
 1558          * If we have exceeded by more than 1/5th then the algorithm below
 1559          * will not bring us back into range.  Dividing by two here forces
 1560          * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
 1561          */
 1562         if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
 1563                 ts->ts_runtime /= 2;
 1564                 ts->ts_slptime /= 2;
 1565                 return;
 1566         }
 1567         ts->ts_runtime = (ts->ts_runtime / 5) * 4;
 1568         ts->ts_slptime = (ts->ts_slptime / 5) * 4;
 1569 }
 1570 
 1571 /*
 1572  * Scale back the interactivity history when a child thread is created.  The
 1573  * history is inherited from the parent but the thread may behave totally
 1574  * differently.  For example, a shell spawning a compiler process.  We want
 1575  * to learn that the compiler is behaving badly very quickly.
 1576  */
 1577 static void
 1578 sched_interact_fork(struct thread *td)
 1579 {
 1580         int ratio;
 1581         int sum;
 1582 
 1583         sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
 1584         if (sum > SCHED_SLP_RUN_FORK) {
 1585                 ratio = sum / SCHED_SLP_RUN_FORK;
 1586                 td->td_sched->ts_runtime /= ratio;
 1587                 td->td_sched->ts_slptime /= ratio;
 1588         }
 1589 }
 1590 
 1591 /*
 1592  * Called from proc0_init() to setup the scheduler fields.
 1593  */
 1594 void
 1595 schedinit(void)
 1596 {
 1597 
 1598         /*
 1599          * Set up the scheduler specific parts of proc0.
 1600          */
 1601         proc0.p_sched = NULL; /* XXX */
 1602         thread0.td_sched = &td_sched0;
 1603         td_sched0.ts_ltick = ticks;
 1604         td_sched0.ts_ftick = ticks;
 1605         td_sched0.ts_slice = 0;
 1606 }
 1607 
 1608 /*
 1609  * This is only somewhat accurate since given many processes of the same
 1610  * priority they will switch when their slices run out, which will be
 1611  * at most sched_slice stathz ticks.
 1612  */
 1613 int
 1614 sched_rr_interval(void)
 1615 {
 1616 
 1617         /* Convert sched_slice from stathz to hz. */
 1618         return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
 1619 }
 1620 
 1621 /*
 1622  * Update the percent cpu tracking information when it is requested or
 1623  * the total history exceeds the maximum.  We keep a sliding history of
 1624  * tick counts that slowly decays.  This is less precise than the 4BSD
 1625  * mechanism since it happens with less regular and frequent events.
 1626  */
 1627 static void
 1628 sched_pctcpu_update(struct td_sched *ts, int run)
 1629 {
 1630         int t = ticks;
 1631 
 1632         if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
 1633                 ts->ts_ticks = 0;
 1634                 ts->ts_ftick = t - SCHED_TICK_TARG;
 1635         } else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
 1636                 ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
 1637                     (ts->ts_ltick - (t - SCHED_TICK_TARG));
 1638                 ts->ts_ftick = t - SCHED_TICK_TARG;
 1639         }
 1640         if (run)
 1641                 ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
 1642         ts->ts_ltick = t;
 1643 }
 1644 
 1645 /*
 1646  * Adjust the priority of a thread.  Move it to the appropriate run-queue
 1647  * if necessary.  This is the back-end for several priority related
 1648  * functions.
 1649  */
 1650 static void
 1651 sched_thread_priority(struct thread *td, u_char prio)
 1652 {
 1653         struct td_sched *ts;
 1654         struct tdq *tdq;
 1655         int oldpri;
 1656 
 1657         KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
 1658             "prio:%d", td->td_priority, "new prio:%d", prio,
 1659             KTR_ATTR_LINKED, sched_tdname(curthread));
 1660         SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
 1661         if (td != curthread && prio < td->td_priority) {
 1662                 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
 1663                     "lend prio", "prio:%d", td->td_priority, "new prio:%d",
 1664                     prio, KTR_ATTR_LINKED, sched_tdname(td));
 1665                 SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio, 
 1666                     curthread);
 1667         } 
 1668         ts = td->td_sched;
 1669         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1670         if (td->td_priority == prio)
 1671                 return;
 1672         /*
 1673          * If the priority has been elevated due to priority
 1674          * propagation, we may have to move ourselves to a new
 1675          * queue.  This could be optimized to not re-add in some
 1676          * cases.
 1677          */
 1678         if (TD_ON_RUNQ(td) && prio < td->td_priority) {
 1679                 sched_rem(td);
 1680                 td->td_priority = prio;
 1681                 sched_add(td, SRQ_BORROWING);
 1682                 return;
 1683         }
 1684         /*
 1685          * If the thread is currently running we may have to adjust the lowpri
 1686          * information so other cpus are aware of our current priority.
 1687          */
 1688         if (TD_IS_RUNNING(td)) {
 1689                 tdq = TDQ_CPU(ts->ts_cpu);
 1690                 oldpri = td->td_priority;
 1691                 td->td_priority = prio;
 1692                 if (prio < tdq->tdq_lowpri)
 1693                         tdq->tdq_lowpri = prio;
 1694                 else if (tdq->tdq_lowpri == oldpri)
 1695                         tdq_setlowpri(tdq, td);
 1696                 return;
 1697         }
 1698         td->td_priority = prio;
 1699 }
 1700 
 1701 /*
 1702  * Update a thread's priority when it is lent another thread's
 1703  * priority.
 1704  */
 1705 void
 1706 sched_lend_prio(struct thread *td, u_char prio)
 1707 {
 1708 
 1709         td->td_flags |= TDF_BORROWING;
 1710         sched_thread_priority(td, prio);
 1711 }
 1712 
 1713 /*
 1714  * Restore a thread's priority when priority propagation is
 1715  * over.  The prio argument is the minimum priority the thread
 1716  * needs to have to satisfy other possible priority lending
 1717  * requests.  If the thread's regular priority is less
 1718  * important than prio, the thread will keep a priority boost
 1719  * of prio.
 1720  */
 1721 void
 1722 sched_unlend_prio(struct thread *td, u_char prio)
 1723 {
 1724         u_char base_pri;
 1725 
 1726         if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
 1727             td->td_base_pri <= PRI_MAX_TIMESHARE)
 1728                 base_pri = td->td_user_pri;
 1729         else
 1730                 base_pri = td->td_base_pri;
 1731         if (prio >= base_pri) {
 1732                 td->td_flags &= ~TDF_BORROWING;
 1733                 sched_thread_priority(td, base_pri);
 1734         } else
 1735                 sched_lend_prio(td, prio);
 1736 }
 1737 
 1738 /*
 1739  * Standard entry for setting the priority to an absolute value.
 1740  */
 1741 void
 1742 sched_prio(struct thread *td, u_char prio)
 1743 {
 1744         u_char oldprio;
 1745 
 1746         /* First, update the base priority. */
 1747         td->td_base_pri = prio;
 1748 
 1749         /*
 1750          * If the thread is borrowing another thread's priority, don't
 1751          * ever lower the priority.
 1752          */
 1753         if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
 1754                 return;
 1755 
 1756         /* Change the real priority. */
 1757         oldprio = td->td_priority;
 1758         sched_thread_priority(td, prio);
 1759 
 1760         /*
 1761          * If the thread is on a turnstile, then let the turnstile update
 1762          * its state.
 1763          */
 1764         if (TD_ON_LOCK(td) && oldprio != prio)
 1765                 turnstile_adjust(td, oldprio);
 1766 }
 1767 
 1768 /*
 1769  * Set the base user priority, does not effect current running priority.
 1770  */
 1771 void
 1772 sched_user_prio(struct thread *td, u_char prio)
 1773 {
 1774 
 1775         td->td_base_user_pri = prio;
 1776         if (td->td_lend_user_pri <= prio)
 1777                 return;
 1778         td->td_user_pri = prio;
 1779 }
 1780 
 1781 void
 1782 sched_lend_user_prio(struct thread *td, u_char prio)
 1783 {
 1784 
 1785         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1786         td->td_lend_user_pri = prio;
 1787         td->td_user_pri = min(prio, td->td_base_user_pri);
 1788         if (td->td_priority > td->td_user_pri)
 1789                 sched_prio(td, td->td_user_pri);
 1790         else if (td->td_priority != td->td_user_pri)
 1791                 td->td_flags |= TDF_NEEDRESCHED;
 1792 }
 1793 
 1794 /*
 1795  * Handle migration from sched_switch().  This happens only for
 1796  * cpu binding.
 1797  */
 1798 static struct mtx *
 1799 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
 1800 {
 1801         struct tdq *tdn;
 1802 
 1803         tdn = TDQ_CPU(td->td_sched->ts_cpu);
 1804 #ifdef SMP
 1805         tdq_load_rem(tdq, td);
 1806         /*
 1807          * Do the lock dance required to avoid LOR.  We grab an extra
 1808          * spinlock nesting to prevent preemption while we're
 1809          * not holding either run-queue lock.
 1810          */
 1811         spinlock_enter();
 1812         thread_lock_block(td);  /* This releases the lock on tdq. */
 1813 
 1814         /*
 1815          * Acquire both run-queue locks before placing the thread on the new
 1816          * run-queue to avoid deadlocks created by placing a thread with a
 1817          * blocked lock on the run-queue of a remote processor.  The deadlock
 1818          * occurs when a third processor attempts to lock the two queues in
 1819          * question while the target processor is spinning with its own
 1820          * run-queue lock held while waiting for the blocked lock to clear.
 1821          */
 1822         tdq_lock_pair(tdn, tdq);
 1823         tdq_add(tdn, td, flags);
 1824         tdq_notify(tdn, td);
 1825         TDQ_UNLOCK(tdn);
 1826         spinlock_exit();
 1827 #endif
 1828         return (TDQ_LOCKPTR(tdn));
 1829 }
 1830 
 1831 /*
 1832  * Variadic version of thread_lock_unblock() that does not assume td_lock
 1833  * is blocked.
 1834  */
 1835 static inline void
 1836 thread_unblock_switch(struct thread *td, struct mtx *mtx)
 1837 {
 1838         atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
 1839             (uintptr_t)mtx);
 1840 }
 1841 
 1842 /*
 1843  * Switch threads.  This function has to handle threads coming in while
 1844  * blocked for some reason, running, or idle.  It also must deal with
 1845  * migrating a thread from one queue to another as running threads may
 1846  * be assigned elsewhere via binding.
 1847  */
 1848 void
 1849 sched_switch(struct thread *td, struct thread *newtd, int flags)
 1850 {
 1851         struct tdq *tdq;
 1852         struct td_sched *ts;
 1853         struct mtx *mtx;
 1854         int srqflag;
 1855         int cpuid, preempted;
 1856 
 1857         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1858         KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
 1859 
 1860         cpuid = PCPU_GET(cpuid);
 1861         tdq = TDQ_CPU(cpuid);
 1862         ts = td->td_sched;
 1863         mtx = td->td_lock;
 1864         sched_pctcpu_update(ts, 1);
 1865         ts->ts_rltick = ticks;
 1866         td->td_lastcpu = td->td_oncpu;
 1867         td->td_oncpu = NOCPU;
 1868         preempted = !((td->td_flags & TDF_SLICEEND) ||
 1869             (flags & SWT_RELINQUISH));
 1870         td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
 1871         td->td_owepreempt = 0;
 1872         if (!TD_IS_IDLETHREAD(td))
 1873                 tdq->tdq_switchcnt++;
 1874         /*
 1875          * The lock pointer in an idle thread should never change.  Reset it
 1876          * to CAN_RUN as well.
 1877          */
 1878         if (TD_IS_IDLETHREAD(td)) {
 1879                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1880                 TD_SET_CAN_RUN(td);
 1881         } else if (TD_IS_RUNNING(td)) {
 1882                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1883                 srqflag = preempted ?
 1884                     SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
 1885                     SRQ_OURSELF|SRQ_YIELDING;
 1886 #ifdef SMP
 1887                 if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
 1888                         ts->ts_cpu = sched_pickcpu(td, 0);
 1889 #endif
 1890                 if (ts->ts_cpu == cpuid)
 1891                         tdq_runq_add(tdq, td, srqflag);
 1892                 else {
 1893                         KASSERT(THREAD_CAN_MIGRATE(td) ||
 1894                             (ts->ts_flags & TSF_BOUND) != 0,
 1895                             ("Thread %p shouldn't migrate", td));
 1896                         mtx = sched_switch_migrate(tdq, td, srqflag);
 1897                 }
 1898         } else {
 1899                 /* This thread must be going to sleep. */
 1900                 TDQ_LOCK(tdq);
 1901                 mtx = thread_lock_block(td);
 1902                 tdq_load_rem(tdq, td);
 1903         }
 1904         /*
 1905          * We enter here with the thread blocked and assigned to the
 1906          * appropriate cpu run-queue or sleep-queue and with the current
 1907          * thread-queue locked.
 1908          */
 1909         TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 1910         newtd = choosethread();
 1911         /*
 1912          * Call the MD code to switch contexts if necessary.
 1913          */
 1914         if (td != newtd) {
 1915 #ifdef  HWPMC_HOOKS
 1916                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1917                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
 1918 #endif
 1919                 SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
 1920                 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
 1921                 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
 1922                 sched_pctcpu_update(newtd->td_sched, 0);
 1923 
 1924 #ifdef KDTRACE_HOOKS
 1925                 /*
 1926                  * If DTrace has set the active vtime enum to anything
 1927                  * other than INACTIVE (0), then it should have set the
 1928                  * function to call.
 1929                  */
 1930                 if (dtrace_vtime_active)
 1931                         (*dtrace_vtime_switch_func)(newtd);
 1932 #endif
 1933 
 1934                 cpu_switch(td, newtd, mtx);
 1935                 /*
 1936                  * We may return from cpu_switch on a different cpu.  However,
 1937                  * we always return with td_lock pointing to the current cpu's
 1938                  * run queue lock.
 1939                  */
 1940                 cpuid = PCPU_GET(cpuid);
 1941                 tdq = TDQ_CPU(cpuid);
 1942                 lock_profile_obtain_lock_success(
 1943                     &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
 1944 
 1945                 SDT_PROBE0(sched, , , on__cpu);
 1946 #ifdef  HWPMC_HOOKS
 1947                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1948                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
 1949 #endif
 1950         } else {
 1951                 thread_unblock_switch(td, mtx);
 1952                 SDT_PROBE0(sched, , , remain__cpu);
 1953         }
 1954         /*
 1955          * Assert that all went well and return.
 1956          */
 1957         TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
 1958         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1959         td->td_oncpu = cpuid;
 1960 }
 1961 
 1962 /*
 1963  * Adjust thread priorities as a result of a nice request.
 1964  */
 1965 void
 1966 sched_nice(struct proc *p, int nice)
 1967 {
 1968         struct thread *td;
 1969 
 1970         PROC_LOCK_ASSERT(p, MA_OWNED);
 1971 
 1972         p->p_nice = nice;
 1973         FOREACH_THREAD_IN_PROC(p, td) {
 1974                 thread_lock(td);
 1975                 sched_priority(td);
 1976                 sched_prio(td, td->td_base_user_pri);
 1977                 thread_unlock(td);
 1978         }
 1979 }
 1980 
 1981 /*
 1982  * Record the sleep time for the interactivity scorer.
 1983  */
 1984 void
 1985 sched_sleep(struct thread *td, int prio)
 1986 {
 1987 
 1988         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1989 
 1990         td->td_slptick = ticks;
 1991         if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
 1992                 td->td_flags |= TDF_CANSWAP;
 1993         if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 1994                 return;
 1995         if (static_boost == 1 && prio)
 1996                 sched_prio(td, prio);
 1997         else if (static_boost && td->td_priority > static_boost)
 1998                 sched_prio(td, static_boost);
 1999 }
 2000 
 2001 /*
 2002  * Schedule a thread to resume execution and record how long it voluntarily
 2003  * slept.  We also update the pctcpu, interactivity, and priority.
 2004  */
 2005 void
 2006 sched_wakeup(struct thread *td)
 2007 {
 2008         struct td_sched *ts;
 2009         int slptick;
 2010 
 2011         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2012         ts = td->td_sched;
 2013         td->td_flags &= ~TDF_CANSWAP;
 2014         /*
 2015          * If we slept for more than a tick update our interactivity and
 2016          * priority.
 2017          */
 2018         slptick = td->td_slptick;
 2019         td->td_slptick = 0;
 2020         if (slptick && slptick != ticks) {
 2021                 ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
 2022                 sched_interact_update(td);
 2023                 sched_pctcpu_update(ts, 0);
 2024         }
 2025         /*
 2026          * Reset the slice value since we slept and advanced the round-robin.
 2027          */
 2028         ts->ts_slice = 0;
 2029         sched_add(td, SRQ_BORING);
 2030 }
 2031 
 2032 /*
 2033  * Penalize the parent for creating a new child and initialize the child's
 2034  * priority.
 2035  */
 2036 void
 2037 sched_fork(struct thread *td, struct thread *child)
 2038 {
 2039         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2040         sched_pctcpu_update(td->td_sched, 1);
 2041         sched_fork_thread(td, child);
 2042         /*
 2043          * Penalize the parent and child for forking.
 2044          */
 2045         sched_interact_fork(child);
 2046         sched_priority(child);
 2047         td->td_sched->ts_runtime += tickincr;
 2048         sched_interact_update(td);
 2049         sched_priority(td);
 2050 }
 2051 
 2052 /*
 2053  * Fork a new thread, may be within the same process.
 2054  */
 2055 void
 2056 sched_fork_thread(struct thread *td, struct thread *child)
 2057 {
 2058         struct td_sched *ts;
 2059         struct td_sched *ts2;
 2060         struct tdq *tdq;
 2061 
 2062         tdq = TDQ_SELF();
 2063         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2064         /*
 2065          * Initialize child.
 2066          */
 2067         ts = td->td_sched;
 2068         ts2 = child->td_sched;
 2069         child->td_lock = TDQ_LOCKPTR(tdq);
 2070         child->td_cpuset = cpuset_ref(td->td_cpuset);
 2071         ts2->ts_cpu = ts->ts_cpu;
 2072         ts2->ts_flags = 0;
 2073         /*
 2074          * Grab our parents cpu estimation information.
 2075          */
 2076         ts2->ts_ticks = ts->ts_ticks;
 2077         ts2->ts_ltick = ts->ts_ltick;
 2078         ts2->ts_ftick = ts->ts_ftick;
 2079         /*
 2080          * Do not inherit any borrowed priority from the parent.
 2081          */
 2082         child->td_priority = child->td_base_pri;
 2083         /*
 2084          * And update interactivity score.
 2085          */
 2086         ts2->ts_slptime = ts->ts_slptime;
 2087         ts2->ts_runtime = ts->ts_runtime;
 2088         /* Attempt to quickly learn interactivity. */
 2089         ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
 2090 #ifdef KTR
 2091         bzero(ts2->ts_name, sizeof(ts2->ts_name));
 2092 #endif
 2093 }
 2094 
 2095 /*
 2096  * Adjust the priority class of a thread.
 2097  */
 2098 void
 2099 sched_class(struct thread *td, int class)
 2100 {
 2101 
 2102         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2103         if (td->td_pri_class == class)
 2104                 return;
 2105         td->td_pri_class = class;
 2106 }
 2107 
 2108 /*
 2109  * Return some of the child's priority and interactivity to the parent.
 2110  */
 2111 void
 2112 sched_exit(struct proc *p, struct thread *child)
 2113 {
 2114         struct thread *td;
 2115 
 2116         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
 2117             "prio:%d", child->td_priority);
 2118         PROC_LOCK_ASSERT(p, MA_OWNED);
 2119         td = FIRST_THREAD_IN_PROC(p);
 2120         sched_exit_thread(td, child);
 2121 }
 2122 
 2123 /*
 2124  * Penalize another thread for the time spent on this one.  This helps to
 2125  * worsen the priority and interactivity of processes which schedule batch
 2126  * jobs such as make.  This has little effect on the make process itself but
 2127  * causes new processes spawned by it to receive worse scores immediately.
 2128  */
 2129 void
 2130 sched_exit_thread(struct thread *td, struct thread *child)
 2131 {
 2132 
 2133         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
 2134             "prio:%d", child->td_priority);
 2135         /*
 2136          * Give the child's runtime to the parent without returning the
 2137          * sleep time as a penalty to the parent.  This causes shells that
 2138          * launch expensive things to mark their children as expensive.
 2139          */
 2140         thread_lock(td);
 2141         td->td_sched->ts_runtime += child->td_sched->ts_runtime;
 2142         sched_interact_update(td);
 2143         sched_priority(td);
 2144         thread_unlock(td);
 2145 }
 2146 
 2147 void
 2148 sched_preempt(struct thread *td)
 2149 {
 2150         struct tdq *tdq;
 2151 
 2152         SDT_PROBE2(sched, , , surrender, td, td->td_proc);
 2153 
 2154         thread_lock(td);
 2155         tdq = TDQ_SELF();
 2156         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2157         tdq->tdq_ipipending = 0;
 2158         if (td->td_priority > tdq->tdq_lowpri) {
 2159                 int flags;
 2160 
 2161                 flags = SW_INVOL | SW_PREEMPT;
 2162                 if (td->td_critnest > 1)
 2163                         td->td_owepreempt = 1;
 2164                 else if (TD_IS_IDLETHREAD(td))
 2165                         mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
 2166                 else
 2167                         mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
 2168         }
 2169         thread_unlock(td);
 2170 }
 2171 
 2172 /*
 2173  * Fix priorities on return to user-space.  Priorities may be elevated due
 2174  * to static priorities in msleep() or similar.
 2175  */
 2176 void
 2177 sched_userret(struct thread *td)
 2178 {
 2179         /*
 2180          * XXX we cheat slightly on the locking here to avoid locking in  
 2181          * the usual case.  Setting td_priority here is essentially an
 2182          * incomplete workaround for not setting it properly elsewhere.
 2183          * Now that some interrupt handlers are threads, not setting it
 2184          * properly elsewhere can clobber it in the window between setting
 2185          * it here and returning to user mode, so don't waste time setting
 2186          * it perfectly here.
 2187          */
 2188         KASSERT((td->td_flags & TDF_BORROWING) == 0,
 2189             ("thread with borrowed priority returning to userland"));
 2190         if (td->td_priority != td->td_user_pri) {
 2191                 thread_lock(td);
 2192                 td->td_priority = td->td_user_pri;
 2193                 td->td_base_pri = td->td_user_pri;
 2194                 tdq_setlowpri(TDQ_SELF(), td);
 2195                 thread_unlock(td);
 2196         }
 2197 }
 2198 
 2199 /*
 2200  * Handle a stathz tick.  This is really only relevant for timeshare
 2201  * threads.
 2202  */
 2203 void
 2204 sched_clock(struct thread *td)
 2205 {
 2206         struct tdq *tdq;
 2207         struct td_sched *ts;
 2208 
 2209         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2210         tdq = TDQ_SELF();
 2211 #ifdef SMP
 2212         /*
 2213          * We run the long term load balancer infrequently on the first cpu.
 2214          */
 2215         if (balance_tdq == tdq) {
 2216                 if (balance_ticks && --balance_ticks == 0)
 2217                         sched_balance();
 2218         }
 2219 #endif
 2220         /*
 2221          * Save the old switch count so we have a record of the last ticks
 2222          * activity.   Initialize the new switch count based on our load.
 2223          * If there is some activity seed it to reflect that.
 2224          */
 2225         tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
 2226         tdq->tdq_switchcnt = tdq->tdq_load;
 2227         /*
 2228          * Advance the insert index once for each tick to ensure that all
 2229          * threads get a chance to run.
 2230          */
 2231         if (tdq->tdq_idx == tdq->tdq_ridx) {
 2232                 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
 2233                 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
 2234                         tdq->tdq_ridx = tdq->tdq_idx;
 2235         }
 2236         ts = td->td_sched;
 2237         sched_pctcpu_update(ts, 1);
 2238         if (td->td_pri_class & PRI_FIFO_BIT)
 2239                 return;
 2240         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
 2241                 /*
 2242                  * We used a tick; charge it to the thread so
 2243                  * that we can compute our interactivity.
 2244                  */
 2245                 td->td_sched->ts_runtime += tickincr;
 2246                 sched_interact_update(td);
 2247                 sched_priority(td);
 2248         }
 2249 
 2250         /*
 2251          * Force a context switch if the current thread has used up a full
 2252          * time slice (default is 100ms).
 2253          */
 2254         if (!TD_IS_IDLETHREAD(td) && ++ts->ts_slice >= tdq_slice(tdq)) {
 2255                 ts->ts_slice = 0;
 2256                 td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
 2257         }
 2258 }
 2259 
 2260 /*
 2261  * Called once per hz tick.
 2262  */
 2263 void
 2264 sched_tick(int cnt)
 2265 {
 2266 
 2267 }
 2268 
 2269 /*
 2270  * Return whether the current CPU has runnable tasks.  Used for in-kernel
 2271  * cooperative idle threads.
 2272  */
 2273 int
 2274 sched_runnable(void)
 2275 {
 2276         struct tdq *tdq;
 2277         int load;
 2278 
 2279         load = 1;
 2280 
 2281         tdq = TDQ_SELF();
 2282         if ((curthread->td_flags & TDF_IDLETD) != 0) {
 2283                 if (tdq->tdq_load > 0)
 2284                         goto out;
 2285         } else
 2286                 if (tdq->tdq_load - 1 > 0)
 2287                         goto out;
 2288         load = 0;
 2289 out:
 2290         return (load);
 2291 }
 2292 
 2293 /*
 2294  * Choose the highest priority thread to run.  The thread is removed from
 2295  * the run-queue while running however the load remains.  For SMP we set
 2296  * the tdq in the global idle bitmask if it idles here.
 2297  */
 2298 struct thread *
 2299 sched_choose(void)
 2300 {
 2301         struct thread *td;
 2302         struct tdq *tdq;
 2303 
 2304         tdq = TDQ_SELF();
 2305         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2306         td = tdq_choose(tdq);
 2307         if (td) {
 2308                 tdq_runq_rem(tdq, td);
 2309                 tdq->tdq_lowpri = td->td_priority;
 2310                 return (td);
 2311         }
 2312         tdq->tdq_lowpri = PRI_MAX_IDLE;
 2313         return (PCPU_GET(idlethread));
 2314 }
 2315 
 2316 /*
 2317  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
 2318  * we always request it once we exit a critical section.
 2319  */
 2320 static inline void
 2321 sched_setpreempt(struct thread *td)
 2322 {
 2323         struct thread *ctd;
 2324         int cpri;
 2325         int pri;
 2326 
 2327         THREAD_LOCK_ASSERT(curthread, MA_OWNED);
 2328 
 2329         ctd = curthread;
 2330         pri = td->td_priority;
 2331         cpri = ctd->td_priority;
 2332         if (pri < cpri)
 2333                 ctd->td_flags |= TDF_NEEDRESCHED;
 2334         if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
 2335                 return;
 2336         if (!sched_shouldpreempt(pri, cpri, 0))
 2337                 return;
 2338         ctd->td_owepreempt = 1;
 2339 }
 2340 
 2341 /*
 2342  * Add a thread to a thread queue.  Select the appropriate runq and add the
 2343  * thread to it.  This is the internal function called when the tdq is
 2344  * predetermined.
 2345  */
 2346 void
 2347 tdq_add(struct tdq *tdq, struct thread *td, int flags)
 2348 {
 2349 
 2350         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2351         KASSERT((td->td_inhibitors == 0),
 2352             ("sched_add: trying to run inhibited thread"));
 2353         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 2354             ("sched_add: bad thread state"));
 2355         KASSERT(td->td_flags & TDF_INMEM,
 2356             ("sched_add: thread swapped out"));
 2357 
 2358         if (td->td_priority < tdq->tdq_lowpri)
 2359                 tdq->tdq_lowpri = td->td_priority;
 2360         tdq_runq_add(tdq, td, flags);
 2361         tdq_load_add(tdq, td);
 2362 }
 2363 
 2364 /*
 2365  * Select the target thread queue and add a thread to it.  Request
 2366  * preemption or IPI a remote processor if required.
 2367  */
 2368 void
 2369 sched_add(struct thread *td, int flags)
 2370 {
 2371         struct tdq *tdq;
 2372 #ifdef SMP
 2373         int cpu;
 2374 #endif
 2375 
 2376         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 2377             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 2378             sched_tdname(curthread));
 2379         KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 2380             KTR_ATTR_LINKED, sched_tdname(td));
 2381         SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
 2382             flags & SRQ_PREEMPTED);
 2383         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2384         /*
 2385          * Recalculate the priority before we select the target cpu or
 2386          * run-queue.
 2387          */
 2388         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
 2389                 sched_priority(td);
 2390 #ifdef SMP
 2391         /*
 2392          * Pick the destination cpu and if it isn't ours transfer to the
 2393          * target cpu.
 2394          */
 2395         cpu = sched_pickcpu(td, flags);
 2396         tdq = sched_setcpu(td, cpu, flags);
 2397         tdq_add(tdq, td, flags);
 2398         if (cpu != PCPU_GET(cpuid)) {
 2399                 tdq_notify(tdq, td);
 2400                 return;
 2401         }
 2402 #else
 2403         tdq = TDQ_SELF();
 2404         TDQ_LOCK(tdq);
 2405         /*
 2406          * Now that the thread is moving to the run-queue, set the lock
 2407          * to the scheduler's lock.
 2408          */
 2409         thread_lock_set(td, TDQ_LOCKPTR(tdq));
 2410         tdq_add(tdq, td, flags);
 2411 #endif
 2412         if (!(flags & SRQ_YIELDING))
 2413                 sched_setpreempt(td);
 2414 }
 2415 
 2416 /*
 2417  * Remove a thread from a run-queue without running it.  This is used
 2418  * when we're stealing a thread from a remote queue.  Otherwise all threads
 2419  * exit by calling sched_exit_thread() and sched_throw() themselves.
 2420  */
 2421 void
 2422 sched_rem(struct thread *td)
 2423 {
 2424         struct tdq *tdq;
 2425 
 2426         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
 2427             "prio:%d", td->td_priority);
 2428         SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
 2429         tdq = TDQ_CPU(td->td_sched->ts_cpu);
 2430         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2431         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2432         KASSERT(TD_ON_RUNQ(td),
 2433             ("sched_rem: thread not on run queue"));
 2434         tdq_runq_rem(tdq, td);
 2435         tdq_load_rem(tdq, td);
 2436         TD_SET_CAN_RUN(td);
 2437         if (td->td_priority == tdq->tdq_lowpri)
 2438                 tdq_setlowpri(tdq, NULL);
 2439 }
 2440 
 2441 /*
 2442  * Fetch cpu utilization information.  Updates on demand.
 2443  */
 2444 fixpt_t
 2445 sched_pctcpu(struct thread *td)
 2446 {
 2447         fixpt_t pctcpu;
 2448         struct td_sched *ts;
 2449 
 2450         pctcpu = 0;
 2451         ts = td->td_sched;
 2452         if (ts == NULL)
 2453                 return (0);
 2454 
 2455         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2456         sched_pctcpu_update(ts, TD_IS_RUNNING(td));
 2457         if (ts->ts_ticks) {
 2458                 int rtick;
 2459 
 2460                 /* How many rtick per second ? */
 2461                 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
 2462                 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
 2463         }
 2464 
 2465         return (pctcpu);
 2466 }
 2467 
 2468 /*
 2469  * Enforce affinity settings for a thread.  Called after adjustments to
 2470  * cpumask.
 2471  */
 2472 void
 2473 sched_affinity(struct thread *td)
 2474 {
 2475 #ifdef SMP
 2476         struct td_sched *ts;
 2477 
 2478         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2479         ts = td->td_sched;
 2480         if (THREAD_CAN_SCHED(td, ts->ts_cpu))
 2481                 return;
 2482         if (TD_ON_RUNQ(td)) {
 2483                 sched_rem(td);
 2484                 sched_add(td, SRQ_BORING);
 2485                 return;
 2486         }
 2487         if (!TD_IS_RUNNING(td))
 2488                 return;
 2489         /*
 2490          * Force a switch before returning to userspace.  If the
 2491          * target thread is not running locally send an ipi to force
 2492          * the issue.
 2493          */
 2494         td->td_flags |= TDF_NEEDRESCHED;
 2495         if (td != curthread)
 2496                 ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
 2497 #endif
 2498 }
 2499 
 2500 /*
 2501  * Bind a thread to a target cpu.
 2502  */
 2503 void
 2504 sched_bind(struct thread *td, int cpu)
 2505 {
 2506         struct td_sched *ts;
 2507 
 2508         THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
 2509         KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
 2510         ts = td->td_sched;
 2511         if (ts->ts_flags & TSF_BOUND)
 2512                 sched_unbind(td);
 2513         KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
 2514         ts->ts_flags |= TSF_BOUND;
 2515         sched_pin();
 2516         if (PCPU_GET(cpuid) == cpu)
 2517                 return;
 2518         ts->ts_cpu = cpu;
 2519         /* When we return from mi_switch we'll be on the correct cpu. */
 2520         mi_switch(SW_VOL, NULL);
 2521 }
 2522 
 2523 /*
 2524  * Release a bound thread.
 2525  */
 2526 void
 2527 sched_unbind(struct thread *td)
 2528 {
 2529         struct td_sched *ts;
 2530 
 2531         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2532         KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
 2533         ts = td->td_sched;
 2534         if ((ts->ts_flags & TSF_BOUND) == 0)
 2535                 return;
 2536         ts->ts_flags &= ~TSF_BOUND;
 2537         sched_unpin();
 2538 }
 2539 
 2540 int
 2541 sched_is_bound(struct thread *td)
 2542 {
 2543         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2544         return (td->td_sched->ts_flags & TSF_BOUND);
 2545 }
 2546 
 2547 /*
 2548  * Basic yield call.
 2549  */
 2550 void
 2551 sched_relinquish(struct thread *td)
 2552 {
 2553         thread_lock(td);
 2554         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
 2555         thread_unlock(td);
 2556 }
 2557 
 2558 /*
 2559  * Return the total system load.
 2560  */
 2561 int
 2562 sched_load(void)
 2563 {
 2564 #ifdef SMP
 2565         int total;
 2566         int i;
 2567 
 2568         total = 0;
 2569         CPU_FOREACH(i)
 2570                 total += TDQ_CPU(i)->tdq_sysload;
 2571         return (total);
 2572 #else
 2573         return (TDQ_SELF()->tdq_sysload);
 2574 #endif
 2575 }
 2576 
 2577 int
 2578 sched_sizeof_proc(void)
 2579 {
 2580         return (sizeof(struct proc));
 2581 }
 2582 
 2583 int
 2584 sched_sizeof_thread(void)
 2585 {
 2586         return (sizeof(struct thread) + sizeof(struct td_sched));
 2587 }
 2588 
 2589 #ifdef SMP
 2590 #define TDQ_IDLESPIN(tdq)                                               \
 2591     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
 2592 #else
 2593 #define TDQ_IDLESPIN(tdq)       1
 2594 #endif
 2595 
 2596 /*
 2597  * The actual idle process.
 2598  */
 2599 void
 2600 sched_idletd(void *dummy)
 2601 {
 2602         struct thread *td;
 2603         struct tdq *tdq;
 2604         int oldswitchcnt, switchcnt;
 2605         int i;
 2606 
 2607         mtx_assert(&Giant, MA_NOTOWNED);
 2608         td = curthread;
 2609         tdq = TDQ_SELF();
 2610         THREAD_NO_SLEEPING();
 2611         oldswitchcnt = -1;
 2612         for (;;) {
 2613                 if (tdq->tdq_load) {
 2614                         thread_lock(td);
 2615                         mi_switch(SW_VOL | SWT_IDLE, NULL);
 2616                         thread_unlock(td);
 2617                 }
 2618                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2619 #ifdef SMP
 2620                 if (switchcnt != oldswitchcnt) {
 2621                         oldswitchcnt = switchcnt;
 2622                         if (tdq_idled(tdq) == 0)
 2623                                 continue;
 2624                 }
 2625                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2626 #else
 2627                 oldswitchcnt = switchcnt;
 2628 #endif
 2629                 /*
 2630                  * If we're switching very frequently, spin while checking
 2631                  * for load rather than entering a low power state that 
 2632                  * may require an IPI.  However, don't do any busy
 2633                  * loops while on SMT machines as this simply steals
 2634                  * cycles from cores doing useful work.
 2635                  */
 2636                 if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
 2637                         for (i = 0; i < sched_idlespins; i++) {
 2638                                 if (tdq->tdq_load)
 2639                                         break;
 2640                                 cpu_spinwait();
 2641                         }
 2642                 }
 2643 
 2644                 /* If there was context switch during spin, restart it. */
 2645                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2646                 if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt)
 2647                         continue;
 2648 
 2649                 /* Run main MD idle handler. */
 2650                 tdq->tdq_cpu_idle = 1;
 2651                 /*
 2652                  * Make sure that tdq_cpu_idle update is globally visible
 2653                  * before cpu_idle() read tdq_load.  The order is important
 2654                  * to avoid race with tdq_notify.
 2655                  */
 2656                 mb();
 2657                 cpu_idle(switchcnt * 4 > sched_idlespinthresh);
 2658                 tdq->tdq_cpu_idle = 0;
 2659 
 2660                 /*
 2661                  * Account thread-less hardware interrupts and
 2662                  * other wakeup reasons equal to context switches.
 2663                  */
 2664                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2665                 if (switchcnt != oldswitchcnt)
 2666                         continue;
 2667                 tdq->tdq_switchcnt++;
 2668                 oldswitchcnt++;
 2669         }
 2670 }
 2671 
 2672 /*
 2673  * A CPU is entering for the first time or a thread is exiting.
 2674  */
 2675 void
 2676 sched_throw(struct thread *td)
 2677 {
 2678         struct thread *newtd;
 2679         struct tdq *tdq;
 2680 
 2681         tdq = TDQ_SELF();
 2682         if (td == NULL) {
 2683                 /* Correct spinlock nesting and acquire the correct lock. */
 2684                 TDQ_LOCK(tdq);
 2685                 spinlock_exit();
 2686                 PCPU_SET(switchtime, cpu_ticks());
 2687                 PCPU_SET(switchticks, ticks);
 2688         } else {
 2689                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2690                 tdq_load_rem(tdq, td);
 2691                 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
 2692         }
 2693         KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
 2694         newtd = choosethread();
 2695         TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
 2696         cpu_throw(td, newtd);           /* doesn't return */
 2697 }
 2698 
 2699 /*
 2700  * This is called from fork_exit().  Just acquire the correct locks and
 2701  * let fork do the rest of the work.
 2702  */
 2703 void
 2704 sched_fork_exit(struct thread *td)
 2705 {
 2706         struct tdq *tdq;
 2707         int cpuid;
 2708 
 2709         /*
 2710          * Finish setting up thread glue so that it begins execution in a
 2711          * non-nested critical section with the scheduler lock held.
 2712          */
 2713         cpuid = PCPU_GET(cpuid);
 2714         tdq = TDQ_CPU(cpuid);
 2715         if (TD_IS_IDLETHREAD(td))
 2716                 td->td_lock = TDQ_LOCKPTR(tdq);
 2717         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2718         td->td_oncpu = cpuid;
 2719         TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 2720         lock_profile_obtain_lock_success(
 2721             &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
 2722 }
 2723 
 2724 /*
 2725  * Create on first use to catch odd startup conditons.
 2726  */
 2727 char *
 2728 sched_tdname(struct thread *td)
 2729 {
 2730 #ifdef KTR
 2731         struct td_sched *ts;
 2732 
 2733         ts = td->td_sched;
 2734         if (ts->ts_name[0] == '\0')
 2735                 snprintf(ts->ts_name, sizeof(ts->ts_name),
 2736                     "%s tid %d", td->td_name, td->td_tid);
 2737         return (ts->ts_name);
 2738 #else
 2739         return (td->td_name);
 2740 #endif
 2741 }
 2742 
 2743 #ifdef KTR
 2744 void
 2745 sched_clear_tdname(struct thread *td)
 2746 {
 2747         struct td_sched *ts;
 2748 
 2749         ts = td->td_sched;
 2750         ts->ts_name[0] = '\0';
 2751 }
 2752 #endif
 2753 
 2754 #ifdef SMP
 2755 
 2756 /*
 2757  * Build the CPU topology dump string. Is recursively called to collect
 2758  * the topology tree.
 2759  */
 2760 static int
 2761 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
 2762     int indent)
 2763 {
 2764         char cpusetbuf[CPUSETBUFSIZ];
 2765         int i, first;
 2766 
 2767         sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
 2768             "", 1 + indent / 2, cg->cg_level);
 2769         sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
 2770             cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
 2771         first = TRUE;
 2772         for (i = 0; i < MAXCPU; i++) {
 2773                 if (CPU_ISSET(i, &cg->cg_mask)) {
 2774                         if (!first)
 2775                                 sbuf_printf(sb, ", ");
 2776                         else
 2777                                 first = FALSE;
 2778                         sbuf_printf(sb, "%d", i);
 2779                 }
 2780         }
 2781         sbuf_printf(sb, "</cpu>\n");
 2782 
 2783         if (cg->cg_flags != 0) {
 2784                 sbuf_printf(sb, "%*s <flags>", indent, "");
 2785                 if ((cg->cg_flags & CG_FLAG_HTT) != 0)
 2786                         sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
 2787                 if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
 2788                         sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
 2789                 if ((cg->cg_flags & CG_FLAG_SMT) != 0)
 2790                         sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
 2791                 sbuf_printf(sb, "</flags>\n");
 2792         }
 2793 
 2794         if (cg->cg_children > 0) {
 2795                 sbuf_printf(sb, "%*s <children>\n", indent, "");
 2796                 for (i = 0; i < cg->cg_children; i++)
 2797                         sysctl_kern_sched_topology_spec_internal(sb, 
 2798                             &cg->cg_child[i], indent+2);
 2799                 sbuf_printf(sb, "%*s </children>\n", indent, "");
 2800         }
 2801         sbuf_printf(sb, "%*s</group>\n", indent, "");
 2802         return (0);
 2803 }
 2804 
 2805 /*
 2806  * Sysctl handler for retrieving topology dump. It's a wrapper for
 2807  * the recursive sysctl_kern_smp_topology_spec_internal().
 2808  */
 2809 static int
 2810 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
 2811 {
 2812         struct sbuf *topo;
 2813         int err;
 2814 
 2815         KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
 2816 
 2817         topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
 2818         if (topo == NULL)
 2819                 return (ENOMEM);
 2820 
 2821         sbuf_printf(topo, "<groups>\n");
 2822         err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
 2823         sbuf_printf(topo, "</groups>\n");
 2824 
 2825         if (err == 0) {
 2826                 sbuf_finish(topo);
 2827                 err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
 2828         }
 2829         sbuf_delete(topo);
 2830         return (err);
 2831 }
 2832 
 2833 #endif
 2834 
 2835 static int
 2836 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
 2837 {
 2838         int error, new_val, period;
 2839 
 2840         period = 1000000 / realstathz;
 2841         new_val = period * sched_slice;
 2842         error = sysctl_handle_int(oidp, &new_val, 0, req);
 2843         if (error != 0 || req->newptr == NULL)
 2844                 return (error);
 2845         if (new_val <= 0)
 2846                 return (EINVAL);
 2847         sched_slice = imax(1, (new_val + period / 2) / period);
 2848         sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
 2849         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 2850             realstathz);
 2851         return (0);
 2852 }
 2853 
 2854 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
 2855 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
 2856     "Scheduler name");
 2857 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
 2858     NULL, 0, sysctl_kern_quantum, "I",
 2859     "Quantum for timeshare threads in microseconds");
 2860 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
 2861     "Quantum for timeshare threads in stathz ticks");
 2862 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
 2863     "Interactivity score threshold");
 2864 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
 2865     &preempt_thresh, 0,
 2866     "Maximal (lowest) priority for preemption");
 2867 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
 2868     "Assign static kernel priorities to sleeping threads");
 2869 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
 2870     "Number of times idle thread will spin waiting for new work");
 2871 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
 2872     &sched_idlespinthresh, 0,
 2873     "Threshold before we will permit idle thread spinning");
 2874 #ifdef SMP
 2875 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
 2876     "Number of hz ticks to keep thread affinity for");
 2877 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
 2878     "Enables the long-term load balancer");
 2879 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
 2880     &balance_interval, 0,
 2881     "Average period in stathz ticks to run the long-term balancer");
 2882 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
 2883     "Attempts to steal work from other cores before idling");
 2884 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
 2885     "Minimum load on remote CPU before we'll steal");
 2886 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
 2887     CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
 2888     "XML dump of detected CPU topology");
 2889 #endif
 2890 
 2891 /* ps compat.  All cpu percentages from ULE are weighted. */
 2892 static int ccpu = 0;
 2893 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");

Cache object: 233dfe1e5ecd2290de58821446d37fff


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.