The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sched_ule.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  */
   26 
   27 /*
   28  * This file implements the ULE scheduler.  ULE supports independent CPU
   29  * run queues and fine grain locking.  It has superior interactive
   30  * performance under load even on uni-processor systems.
   31  *
   32  * etymology:
   33  *   ULE is the last three letters in schedule.  It owes its name to a
   34  * generic user created for a scheduling system by Paul Mikesell at
   35  * Isilon Systems and a general lack of creativity on the part of the author.
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD: releng/11.1/sys/kern/sched_ule.c 316840 2017-04-14 14:44:00Z avg $");
   40 
   41 #include "opt_hwpmc_hooks.h"
   42 #include "opt_sched.h"
   43 
   44 #include <sys/param.h>
   45 #include <sys/systm.h>
   46 #include <sys/kdb.h>
   47 #include <sys/kernel.h>
   48 #include <sys/ktr.h>
   49 #include <sys/limits.h>
   50 #include <sys/lock.h>
   51 #include <sys/mutex.h>
   52 #include <sys/proc.h>
   53 #include <sys/resource.h>
   54 #include <sys/resourcevar.h>
   55 #include <sys/sched.h>
   56 #include <sys/sdt.h>
   57 #include <sys/smp.h>
   58 #include <sys/sx.h>
   59 #include <sys/sysctl.h>
   60 #include <sys/sysproto.h>
   61 #include <sys/turnstile.h>
   62 #include <sys/umtx.h>
   63 #include <sys/vmmeter.h>
   64 #include <sys/cpuset.h>
   65 #include <sys/sbuf.h>
   66 
   67 #ifdef HWPMC_HOOKS
   68 #include <sys/pmckern.h>
   69 #endif
   70 
   71 #ifdef KDTRACE_HOOKS
   72 #include <sys/dtrace_bsd.h>
   73 int                             dtrace_vtime_active;
   74 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
   75 #endif
   76 
   77 #include <machine/cpu.h>
   78 #include <machine/smp.h>
   79 
   80 #define KTR_ULE 0
   81 
   82 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
   83 #define TDQ_NAME_LEN    (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
   84 #define TDQ_LOADNAME_LEN        (sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
   85 
   86 /*
   87  * Thread scheduler specific section.  All fields are protected
   88  * by the thread lock.
   89  */
   90 struct td_sched {       
   91         struct runq     *ts_runq;       /* Run-queue we're queued on. */
   92         short           ts_flags;       /* TSF_* flags. */
   93         int             ts_cpu;         /* CPU that we have affinity for. */
   94         int             ts_rltick;      /* Real last tick, for affinity. */
   95         int             ts_slice;       /* Ticks of slice remaining. */
   96         u_int           ts_slptime;     /* Number of ticks we vol. slept */
   97         u_int           ts_runtime;     /* Number of ticks we were running */
   98         int             ts_ltick;       /* Last tick that we were running on */
   99         int             ts_ftick;       /* First tick that we were running on */
  100         int             ts_ticks;       /* Tick count */
  101 #ifdef KTR
  102         char            ts_name[TS_NAME_LEN];
  103 #endif
  104 };
  105 /* flags kept in ts_flags */
  106 #define TSF_BOUND       0x0001          /* Thread can not migrate. */
  107 #define TSF_XFERABLE    0x0002          /* Thread was added as transferable. */
  108 
  109 #define THREAD_CAN_MIGRATE(td)  ((td)->td_pinned == 0)
  110 #define THREAD_CAN_SCHED(td, cpu)       \
  111     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
  112 
  113 _Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
  114     sizeof(struct thread0_storage),
  115     "increase struct thread0_storage.t0st_sched size");
  116 
  117 /*
  118  * Priority ranges used for interactive and non-interactive timeshare
  119  * threads.  The timeshare priorities are split up into four ranges.
  120  * The first range handles interactive threads.  The last three ranges
  121  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
  122  * ranges supporting nice values.
  123  */
  124 #define PRI_TIMESHARE_RANGE     (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
  125 #define PRI_INTERACT_RANGE      ((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
  126 #define PRI_BATCH_RANGE         (PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
  127 
  128 #define PRI_MIN_INTERACT        PRI_MIN_TIMESHARE
  129 #define PRI_MAX_INTERACT        (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
  130 #define PRI_MIN_BATCH           (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
  131 #define PRI_MAX_BATCH           PRI_MAX_TIMESHARE
  132 
  133 /*
  134  * Cpu percentage computation macros and defines.
  135  *
  136  * SCHED_TICK_SECS:     Number of seconds to average the cpu usage across.
  137  * SCHED_TICK_TARG:     Number of hz ticks to average the cpu usage across.
  138  * SCHED_TICK_MAX:      Maximum number of ticks before scaling back.
  139  * SCHED_TICK_SHIFT:    Shift factor to avoid rounding away results.
  140  * SCHED_TICK_HZ:       Compute the number of hz ticks for a given ticks count.
  141  * SCHED_TICK_TOTAL:    Gives the amount of time we've been recording ticks.
  142  */
  143 #define SCHED_TICK_SECS         10
  144 #define SCHED_TICK_TARG         (hz * SCHED_TICK_SECS)
  145 #define SCHED_TICK_MAX          (SCHED_TICK_TARG + hz)
  146 #define SCHED_TICK_SHIFT        10
  147 #define SCHED_TICK_HZ(ts)       ((ts)->ts_ticks >> SCHED_TICK_SHIFT)
  148 #define SCHED_TICK_TOTAL(ts)    (max((ts)->ts_ltick - (ts)->ts_ftick, hz))
  149 
  150 /*
  151  * These macros determine priorities for non-interactive threads.  They are
  152  * assigned a priority based on their recent cpu utilization as expressed
  153  * by the ratio of ticks to the tick total.  NHALF priorities at the start
  154  * and end of the MIN to MAX timeshare range are only reachable with negative
  155  * or positive nice respectively.
  156  *
  157  * PRI_RANGE:   Priority range for utilization dependent priorities.
  158  * PRI_NRESV:   Number of nice values.
  159  * PRI_TICKS:   Compute a priority in PRI_RANGE from the ticks count and total.
  160  * PRI_NICE:    Determines the part of the priority inherited from nice.
  161  */
  162 #define SCHED_PRI_NRESV         (PRIO_MAX - PRIO_MIN)
  163 #define SCHED_PRI_NHALF         (SCHED_PRI_NRESV / 2)
  164 #define SCHED_PRI_MIN           (PRI_MIN_BATCH + SCHED_PRI_NHALF)
  165 #define SCHED_PRI_MAX           (PRI_MAX_BATCH - SCHED_PRI_NHALF)
  166 #define SCHED_PRI_RANGE         (SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
  167 #define SCHED_PRI_TICKS(ts)                                             \
  168     (SCHED_TICK_HZ((ts)) /                                              \
  169     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
  170 #define SCHED_PRI_NICE(nice)    (nice)
  171 
  172 /*
  173  * These determine the interactivity of a process.  Interactivity differs from
  174  * cpu utilization in that it expresses the voluntary time slept vs time ran
  175  * while cpu utilization includes all time not running.  This more accurately
  176  * models the intent of the thread.
  177  *
  178  * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
  179  *              before throttling back.
  180  * SLP_RUN_FORK:        Maximum slp+run time to inherit at fork time.
  181  * INTERACT_MAX:        Maximum interactivity value.  Smaller is better.
  182  * INTERACT_THRESH:     Threshold for placement on the current runq.
  183  */
  184 #define SCHED_SLP_RUN_MAX       ((hz * 5) << SCHED_TICK_SHIFT)
  185 #define SCHED_SLP_RUN_FORK      ((hz / 2) << SCHED_TICK_SHIFT)
  186 #define SCHED_INTERACT_MAX      (100)
  187 #define SCHED_INTERACT_HALF     (SCHED_INTERACT_MAX / 2)
  188 #define SCHED_INTERACT_THRESH   (30)
  189 
  190 /*
  191  * These parameters determine the slice behavior for batch work.
  192  */
  193 #define SCHED_SLICE_DEFAULT_DIVISOR     10      /* ~94 ms, 12 stathz ticks. */
  194 #define SCHED_SLICE_MIN_DIVISOR         6       /* DEFAULT/MIN = ~16 ms. */
  195 
  196 /* Flags kept in td_flags. */
  197 #define TDF_SLICEEND    TDF_SCHED2      /* Thread time slice is over. */
  198 
  199 /*
  200  * tickincr:            Converts a stathz tick into a hz domain scaled by
  201  *                      the shift factor.  Without the shift the error rate
  202  *                      due to rounding would be unacceptably high.
  203  * realstathz:          stathz is sometimes 0 and run off of hz.
  204  * sched_slice:         Runtime of each thread before rescheduling.
  205  * preempt_thresh:      Priority threshold for preemption and remote IPIs.
  206  */
  207 static int sched_interact = SCHED_INTERACT_THRESH;
  208 static int tickincr = 8 << SCHED_TICK_SHIFT;
  209 static int realstathz = 127;    /* reset during boot. */
  210 static int sched_slice = 10;    /* reset during boot. */
  211 static int sched_slice_min = 1; /* reset during boot. */
  212 #ifdef PREEMPTION
  213 #ifdef FULL_PREEMPTION
  214 static int preempt_thresh = PRI_MAX_IDLE;
  215 #else
  216 static int preempt_thresh = PRI_MIN_KERN;
  217 #endif
  218 #else 
  219 static int preempt_thresh = 0;
  220 #endif
  221 static int static_boost = PRI_MIN_BATCH;
  222 static int sched_idlespins = 10000;
  223 static int sched_idlespinthresh = -1;
  224 
  225 /*
  226  * tdq - per processor runqs and statistics.  All fields are protected by the
  227  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
  228  * locking in sched_pickcpu();
  229  */
  230 struct tdq {
  231         /* 
  232          * Ordered to improve efficiency of cpu_search() and switch().
  233          * tdq_lock is padded to avoid false sharing with tdq_load and
  234          * tdq_cpu_idle.
  235          */
  236         struct mtx_padalign tdq_lock;           /* run queue lock. */
  237         struct cpu_group *tdq_cg;               /* Pointer to cpu topology. */
  238         volatile int    tdq_load;               /* Aggregate load. */
  239         volatile int    tdq_cpu_idle;           /* cpu_idle() is active. */
  240         int             tdq_sysload;            /* For loadavg, !ITHD load. */
  241         int             tdq_transferable;       /* Transferable thread count. */
  242         short           tdq_switchcnt;          /* Switches this tick. */
  243         short           tdq_oldswitchcnt;       /* Switches last tick. */
  244         u_char          tdq_lowpri;             /* Lowest priority thread. */
  245         u_char          tdq_ipipending;         /* IPI pending. */
  246         u_char          tdq_idx;                /* Current insert index. */
  247         u_char          tdq_ridx;               /* Current removal index. */
  248         struct runq     tdq_realtime;           /* real-time run queue. */
  249         struct runq     tdq_timeshare;          /* timeshare run queue. */
  250         struct runq     tdq_idle;               /* Queue of IDLE threads. */
  251         char            tdq_name[TDQ_NAME_LEN];
  252 #ifdef KTR
  253         char            tdq_loadname[TDQ_LOADNAME_LEN];
  254 #endif
  255 } __aligned(64);
  256 
  257 /* Idle thread states and config. */
  258 #define TDQ_RUNNING     1
  259 #define TDQ_IDLE        2
  260 
  261 #ifdef SMP
  262 struct cpu_group *cpu_top;              /* CPU topology */
  263 
  264 #define SCHED_AFFINITY_DEFAULT  (max(1, hz / 1000))
  265 #define SCHED_AFFINITY(ts, t)   ((ts)->ts_rltick > ticks - ((t) * affinity))
  266 
  267 /*
  268  * Run-time tunables.
  269  */
  270 static int rebalance = 1;
  271 static int balance_interval = 128;      /* Default set in sched_initticks(). */
  272 static int affinity;
  273 static int steal_idle = 1;
  274 static int steal_thresh = 2;
  275 
  276 /*
  277  * One thread queue per processor.
  278  */
  279 static struct tdq       tdq_cpu[MAXCPU];
  280 static struct tdq       *balance_tdq;
  281 static int balance_ticks;
  282 static DPCPU_DEFINE(uint32_t, randomval);
  283 
  284 #define TDQ_SELF()      (&tdq_cpu[PCPU_GET(cpuid)])
  285 #define TDQ_CPU(x)      (&tdq_cpu[(x)])
  286 #define TDQ_ID(x)       ((int)((x) - tdq_cpu))
  287 #else   /* !SMP */
  288 static struct tdq       tdq_cpu;
  289 
  290 #define TDQ_ID(x)       (0)
  291 #define TDQ_SELF()      (&tdq_cpu)
  292 #define TDQ_CPU(x)      (&tdq_cpu)
  293 #endif
  294 
  295 #define TDQ_LOCK_ASSERT(t, type)        mtx_assert(TDQ_LOCKPTR((t)), (type))
  296 #define TDQ_LOCK(t)             mtx_lock_spin(TDQ_LOCKPTR((t)))
  297 #define TDQ_LOCK_FLAGS(t, f)    mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
  298 #define TDQ_UNLOCK(t)           mtx_unlock_spin(TDQ_LOCKPTR((t)))
  299 #define TDQ_LOCKPTR(t)          ((struct mtx *)(&(t)->tdq_lock))
  300 
  301 static void sched_priority(struct thread *);
  302 static void sched_thread_priority(struct thread *, u_char);
  303 static int sched_interact_score(struct thread *);
  304 static void sched_interact_update(struct thread *);
  305 static void sched_interact_fork(struct thread *);
  306 static void sched_pctcpu_update(struct td_sched *, int);
  307 
  308 /* Operations on per processor queues */
  309 static struct thread *tdq_choose(struct tdq *);
  310 static void tdq_setup(struct tdq *);
  311 static void tdq_load_add(struct tdq *, struct thread *);
  312 static void tdq_load_rem(struct tdq *, struct thread *);
  313 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
  314 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
  315 static inline int sched_shouldpreempt(int, int, int);
  316 void tdq_print(int cpu);
  317 static void runq_print(struct runq *rq);
  318 static void tdq_add(struct tdq *, struct thread *, int);
  319 #ifdef SMP
  320 static int tdq_move(struct tdq *, struct tdq *);
  321 static int tdq_idled(struct tdq *);
  322 static void tdq_notify(struct tdq *, struct thread *);
  323 static struct thread *tdq_steal(struct tdq *, int);
  324 static struct thread *runq_steal(struct runq *, int);
  325 static int sched_pickcpu(struct thread *, int);
  326 static void sched_balance(void);
  327 static int sched_balance_pair(struct tdq *, struct tdq *);
  328 static inline struct tdq *sched_setcpu(struct thread *, int, int);
  329 static inline void thread_unblock_switch(struct thread *, struct mtx *);
  330 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
  331 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
  332 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 
  333     struct cpu_group *cg, int indent);
  334 #endif
  335 
  336 static void sched_setup(void *dummy);
  337 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
  338 
  339 static void sched_initticks(void *dummy);
  340 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
  341     NULL);
  342 
  343 SDT_PROVIDER_DEFINE(sched);
  344 
  345 SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *", 
  346     "struct proc *", "uint8_t");
  347 SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *", 
  348     "struct proc *", "void *");
  349 SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *", 
  350     "struct proc *", "void *", "int");
  351 SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *", 
  352     "struct proc *", "uint8_t", "struct thread *");
  353 SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
  354 SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *", 
  355     "struct proc *");
  356 SDT_PROBE_DEFINE(sched, , , on__cpu);
  357 SDT_PROBE_DEFINE(sched, , , remain__cpu);
  358 SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *", 
  359     "struct proc *");
  360 
  361 /*
  362  * Print the threads waiting on a run-queue.
  363  */
  364 static void
  365 runq_print(struct runq *rq)
  366 {
  367         struct rqhead *rqh;
  368         struct thread *td;
  369         int pri;
  370         int j;
  371         int i;
  372 
  373         for (i = 0; i < RQB_LEN; i++) {
  374                 printf("\t\trunq bits %d 0x%zx\n",
  375                     i, rq->rq_status.rqb_bits[i]);
  376                 for (j = 0; j < RQB_BPW; j++)
  377                         if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
  378                                 pri = j + (i << RQB_L2BPW);
  379                                 rqh = &rq->rq_queues[pri];
  380                                 TAILQ_FOREACH(td, rqh, td_runq) {
  381                                         printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
  382                                             td, td->td_name, td->td_priority,
  383                                             td->td_rqindex, pri);
  384                                 }
  385                         }
  386         }
  387 }
  388 
  389 /*
  390  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
  391  */
  392 void
  393 tdq_print(int cpu)
  394 {
  395         struct tdq *tdq;
  396 
  397         tdq = TDQ_CPU(cpu);
  398 
  399         printf("tdq %d:\n", TDQ_ID(tdq));
  400         printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
  401         printf("\tLock name:      %s\n", tdq->tdq_name);
  402         printf("\tload:           %d\n", tdq->tdq_load);
  403         printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
  404         printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
  405         printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
  406         printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
  407         printf("\tload transferable: %d\n", tdq->tdq_transferable);
  408         printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
  409         printf("\trealtime runq:\n");
  410         runq_print(&tdq->tdq_realtime);
  411         printf("\ttimeshare runq:\n");
  412         runq_print(&tdq->tdq_timeshare);
  413         printf("\tidle runq:\n");
  414         runq_print(&tdq->tdq_idle);
  415 }
  416 
  417 static inline int
  418 sched_shouldpreempt(int pri, int cpri, int remote)
  419 {
  420         /*
  421          * If the new priority is not better than the current priority there is
  422          * nothing to do.
  423          */
  424         if (pri >= cpri)
  425                 return (0);
  426         /*
  427          * Always preempt idle.
  428          */
  429         if (cpri >= PRI_MIN_IDLE)
  430                 return (1);
  431         /*
  432          * If preemption is disabled don't preempt others.
  433          */
  434         if (preempt_thresh == 0)
  435                 return (0);
  436         /*
  437          * Preempt if we exceed the threshold.
  438          */
  439         if (pri <= preempt_thresh)
  440                 return (1);
  441         /*
  442          * If we're interactive or better and there is non-interactive
  443          * or worse running preempt only remote processors.
  444          */
  445         if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
  446                 return (1);
  447         return (0);
  448 }
  449 
  450 /*
  451  * Add a thread to the actual run-queue.  Keeps transferable counts up to
  452  * date with what is actually on the run-queue.  Selects the correct
  453  * queue position for timeshare threads.
  454  */
  455 static __inline void
  456 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
  457 {
  458         struct td_sched *ts;
  459         u_char pri;
  460 
  461         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  462         THREAD_LOCK_ASSERT(td, MA_OWNED);
  463 
  464         pri = td->td_priority;
  465         ts = td_get_sched(td);
  466         TD_SET_RUNQ(td);
  467         if (THREAD_CAN_MIGRATE(td)) {
  468                 tdq->tdq_transferable++;
  469                 ts->ts_flags |= TSF_XFERABLE;
  470         }
  471         if (pri < PRI_MIN_BATCH) {
  472                 ts->ts_runq = &tdq->tdq_realtime;
  473         } else if (pri <= PRI_MAX_BATCH) {
  474                 ts->ts_runq = &tdq->tdq_timeshare;
  475                 KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
  476                         ("Invalid priority %d on timeshare runq", pri));
  477                 /*
  478                  * This queue contains only priorities between MIN and MAX
  479                  * realtime.  Use the whole queue to represent these values.
  480                  */
  481                 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
  482                         pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
  483                         pri = (pri + tdq->tdq_idx) % RQ_NQS;
  484                         /*
  485                          * This effectively shortens the queue by one so we
  486                          * can have a one slot difference between idx and
  487                          * ridx while we wait for threads to drain.
  488                          */
  489                         if (tdq->tdq_ridx != tdq->tdq_idx &&
  490                             pri == tdq->tdq_ridx)
  491                                 pri = (unsigned char)(pri - 1) % RQ_NQS;
  492                 } else
  493                         pri = tdq->tdq_ridx;
  494                 runq_add_pri(ts->ts_runq, td, pri, flags);
  495                 return;
  496         } else
  497                 ts->ts_runq = &tdq->tdq_idle;
  498         runq_add(ts->ts_runq, td, flags);
  499 }
  500 
  501 /* 
  502  * Remove a thread from a run-queue.  This typically happens when a thread
  503  * is selected to run.  Running threads are not on the queue and the
  504  * transferable count does not reflect them.
  505  */
  506 static __inline void
  507 tdq_runq_rem(struct tdq *tdq, struct thread *td)
  508 {
  509         struct td_sched *ts;
  510 
  511         ts = td_get_sched(td);
  512         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  513         KASSERT(ts->ts_runq != NULL,
  514             ("tdq_runq_remove: thread %p null ts_runq", td));
  515         if (ts->ts_flags & TSF_XFERABLE) {
  516                 tdq->tdq_transferable--;
  517                 ts->ts_flags &= ~TSF_XFERABLE;
  518         }
  519         if (ts->ts_runq == &tdq->tdq_timeshare) {
  520                 if (tdq->tdq_idx != tdq->tdq_ridx)
  521                         runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
  522                 else
  523                         runq_remove_idx(ts->ts_runq, td, NULL);
  524         } else
  525                 runq_remove(ts->ts_runq, td);
  526 }
  527 
  528 /*
  529  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
  530  * for this thread to the referenced thread queue.
  531  */
  532 static void
  533 tdq_load_add(struct tdq *tdq, struct thread *td)
  534 {
  535 
  536         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  537         THREAD_LOCK_ASSERT(td, MA_OWNED);
  538 
  539         tdq->tdq_load++;
  540         if ((td->td_flags & TDF_NOLOAD) == 0)
  541                 tdq->tdq_sysload++;
  542         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  543         SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
  544 }
  545 
  546 /*
  547  * Remove the load from a thread that is transitioning to a sleep state or
  548  * exiting.
  549  */
  550 static void
  551 tdq_load_rem(struct tdq *tdq, struct thread *td)
  552 {
  553 
  554         THREAD_LOCK_ASSERT(td, MA_OWNED);
  555         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  556         KASSERT(tdq->tdq_load != 0,
  557             ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
  558 
  559         tdq->tdq_load--;
  560         if ((td->td_flags & TDF_NOLOAD) == 0)
  561                 tdq->tdq_sysload--;
  562         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  563         SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
  564 }
  565 
  566 /*
  567  * Bound timeshare latency by decreasing slice size as load increases.  We
  568  * consider the maximum latency as the sum of the threads waiting to run
  569  * aside from curthread and target no more than sched_slice latency but
  570  * no less than sched_slice_min runtime.
  571  */
  572 static inline int
  573 tdq_slice(struct tdq *tdq)
  574 {
  575         int load;
  576 
  577         /*
  578          * It is safe to use sys_load here because this is called from
  579          * contexts where timeshare threads are running and so there
  580          * cannot be higher priority load in the system.
  581          */
  582         load = tdq->tdq_sysload - 1;
  583         if (load >= SCHED_SLICE_MIN_DIVISOR)
  584                 return (sched_slice_min);
  585         if (load <= 1)
  586                 return (sched_slice);
  587         return (sched_slice / load);
  588 }
  589 
  590 /*
  591  * Set lowpri to its exact value by searching the run-queue and
  592  * evaluating curthread.  curthread may be passed as an optimization.
  593  */
  594 static void
  595 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
  596 {
  597         struct thread *td;
  598 
  599         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  600         if (ctd == NULL)
  601                 ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
  602         td = tdq_choose(tdq);
  603         if (td == NULL || td->td_priority > ctd->td_priority)
  604                 tdq->tdq_lowpri = ctd->td_priority;
  605         else
  606                 tdq->tdq_lowpri = td->td_priority;
  607 }
  608 
  609 #ifdef SMP
  610 /*
  611  * We need some randomness. Implement a classic Linear Congruential
  612  * Generator X_{n+1}=(aX_n+c) mod m. These values are optimized for
  613  * m = 2^32, a = 69069 and c = 5. We only return the upper 16 bits
  614  * of the random state (in the low bits of our answer) to keep
  615  * the maximum randomness.
  616  */
  617 static uint32_t
  618 sched_random(void)
  619 {
  620         uint32_t *rndptr;
  621 
  622         rndptr = DPCPU_PTR(randomval);
  623         *rndptr = *rndptr * 69069 + 5;
  624 
  625         return (*rndptr >> 16);
  626 }
  627 
  628 struct cpu_search {
  629         cpuset_t cs_mask;
  630         u_int   cs_prefer;
  631         int     cs_pri;         /* Min priority for low. */
  632         int     cs_limit;       /* Max load for low, min load for high. */
  633         int     cs_cpu;
  634         int     cs_load;
  635 };
  636 
  637 #define CPU_SEARCH_LOWEST       0x1
  638 #define CPU_SEARCH_HIGHEST      0x2
  639 #define CPU_SEARCH_BOTH         (CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
  640 
  641 #define CPUSET_FOREACH(cpu, mask)                               \
  642         for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)             \
  643                 if (CPU_ISSET(cpu, &mask))
  644 
  645 static __always_inline int cpu_search(const struct cpu_group *cg,
  646     struct cpu_search *low, struct cpu_search *high, const int match);
  647 int __noinline cpu_search_lowest(const struct cpu_group *cg,
  648     struct cpu_search *low);
  649 int __noinline cpu_search_highest(const struct cpu_group *cg,
  650     struct cpu_search *high);
  651 int __noinline cpu_search_both(const struct cpu_group *cg,
  652     struct cpu_search *low, struct cpu_search *high);
  653 
  654 /*
  655  * Search the tree of cpu_groups for the lowest or highest loaded cpu
  656  * according to the match argument.  This routine actually compares the
  657  * load on all paths through the tree and finds the least loaded cpu on
  658  * the least loaded path, which may differ from the least loaded cpu in
  659  * the system.  This balances work among caches and busses.
  660  *
  661  * This inline is instantiated in three forms below using constants for the
  662  * match argument.  It is reduced to the minimum set for each case.  It is
  663  * also recursive to the depth of the tree.
  664  */
  665 static __always_inline int
  666 cpu_search(const struct cpu_group *cg, struct cpu_search *low,
  667     struct cpu_search *high, const int match)
  668 {
  669         struct cpu_search lgroup;
  670         struct cpu_search hgroup;
  671         cpuset_t cpumask;
  672         struct cpu_group *child;
  673         struct tdq *tdq;
  674         int cpu, i, hload, lload, load, total, rnd;
  675 
  676         total = 0;
  677         cpumask = cg->cg_mask;
  678         if (match & CPU_SEARCH_LOWEST) {
  679                 lload = INT_MAX;
  680                 lgroup = *low;
  681         }
  682         if (match & CPU_SEARCH_HIGHEST) {
  683                 hload = INT_MIN;
  684                 hgroup = *high;
  685         }
  686 
  687         /* Iterate through the child CPU groups and then remaining CPUs. */
  688         for (i = cg->cg_children, cpu = mp_maxid; ; ) {
  689                 if (i == 0) {
  690 #ifdef HAVE_INLINE_FFSL
  691                         cpu = CPU_FFS(&cpumask) - 1;
  692 #else
  693                         while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
  694                                 cpu--;
  695 #endif
  696                         if (cpu < 0)
  697                                 break;
  698                         child = NULL;
  699                 } else
  700                         child = &cg->cg_child[i - 1];
  701 
  702                 if (match & CPU_SEARCH_LOWEST)
  703                         lgroup.cs_cpu = -1;
  704                 if (match & CPU_SEARCH_HIGHEST)
  705                         hgroup.cs_cpu = -1;
  706                 if (child) {                    /* Handle child CPU group. */
  707                         CPU_NAND(&cpumask, &child->cg_mask);
  708                         switch (match) {
  709                         case CPU_SEARCH_LOWEST:
  710                                 load = cpu_search_lowest(child, &lgroup);
  711                                 break;
  712                         case CPU_SEARCH_HIGHEST:
  713                                 load = cpu_search_highest(child, &hgroup);
  714                                 break;
  715                         case CPU_SEARCH_BOTH:
  716                                 load = cpu_search_both(child, &lgroup, &hgroup);
  717                                 break;
  718                         }
  719                 } else {                        /* Handle child CPU. */
  720                         CPU_CLR(cpu, &cpumask);
  721                         tdq = TDQ_CPU(cpu);
  722                         load = tdq->tdq_load * 256;
  723                         rnd = sched_random() % 32;
  724                         if (match & CPU_SEARCH_LOWEST) {
  725                                 if (cpu == low->cs_prefer)
  726                                         load -= 64;
  727                                 /* If that CPU is allowed and get data. */
  728                                 if (tdq->tdq_lowpri > lgroup.cs_pri &&
  729                                     tdq->tdq_load <= lgroup.cs_limit &&
  730                                     CPU_ISSET(cpu, &lgroup.cs_mask)) {
  731                                         lgroup.cs_cpu = cpu;
  732                                         lgroup.cs_load = load - rnd;
  733                                 }
  734                         }
  735                         if (match & CPU_SEARCH_HIGHEST)
  736                                 if (tdq->tdq_load >= hgroup.cs_limit &&
  737                                     tdq->tdq_transferable &&
  738                                     CPU_ISSET(cpu, &hgroup.cs_mask)) {
  739                                         hgroup.cs_cpu = cpu;
  740                                         hgroup.cs_load = load - rnd;
  741                                 }
  742                 }
  743                 total += load;
  744 
  745                 /* We have info about child item. Compare it. */
  746                 if (match & CPU_SEARCH_LOWEST) {
  747                         if (lgroup.cs_cpu >= 0 &&
  748                             (load < lload ||
  749                              (load == lload && lgroup.cs_load < low->cs_load))) {
  750                                 lload = load;
  751                                 low->cs_cpu = lgroup.cs_cpu;
  752                                 low->cs_load = lgroup.cs_load;
  753                         }
  754                 }
  755                 if (match & CPU_SEARCH_HIGHEST)
  756                         if (hgroup.cs_cpu >= 0 &&
  757                             (load > hload ||
  758                              (load == hload && hgroup.cs_load > high->cs_load))) {
  759                                 hload = load;
  760                                 high->cs_cpu = hgroup.cs_cpu;
  761                                 high->cs_load = hgroup.cs_load;
  762                         }
  763                 if (child) {
  764                         i--;
  765                         if (i == 0 && CPU_EMPTY(&cpumask))
  766                                 break;
  767                 }
  768 #ifndef HAVE_INLINE_FFSL
  769                 else
  770                         cpu--;
  771 #endif
  772         }
  773         return (total);
  774 }
  775 
  776 /*
  777  * cpu_search instantiations must pass constants to maintain the inline
  778  * optimization.
  779  */
  780 int
  781 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
  782 {
  783         return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
  784 }
  785 
  786 int
  787 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
  788 {
  789         return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
  790 }
  791 
  792 int
  793 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
  794     struct cpu_search *high)
  795 {
  796         return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
  797 }
  798 
  799 /*
  800  * Find the cpu with the least load via the least loaded path that has a
  801  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
  802  * acceptable.
  803  */
  804 static inline int
  805 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
  806     int prefer)
  807 {
  808         struct cpu_search low;
  809 
  810         low.cs_cpu = -1;
  811         low.cs_prefer = prefer;
  812         low.cs_mask = mask;
  813         low.cs_pri = pri;
  814         low.cs_limit = maxload;
  815         cpu_search_lowest(cg, &low);
  816         return low.cs_cpu;
  817 }
  818 
  819 /*
  820  * Find the cpu with the highest load via the highest loaded path.
  821  */
  822 static inline int
  823 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
  824 {
  825         struct cpu_search high;
  826 
  827         high.cs_cpu = -1;
  828         high.cs_mask = mask;
  829         high.cs_limit = minload;
  830         cpu_search_highest(cg, &high);
  831         return high.cs_cpu;
  832 }
  833 
  834 static void
  835 sched_balance_group(struct cpu_group *cg)
  836 {
  837         cpuset_t hmask, lmask;
  838         int high, low, anylow;
  839 
  840         CPU_FILL(&hmask);
  841         for (;;) {
  842                 high = sched_highest(cg, hmask, 1);
  843                 /* Stop if there is no more CPU with transferrable threads. */
  844                 if (high == -1)
  845                         break;
  846                 CPU_CLR(high, &hmask);
  847                 CPU_COPY(&hmask, &lmask);
  848                 /* Stop if there is no more CPU left for low. */
  849                 if (CPU_EMPTY(&lmask))
  850                         break;
  851                 anylow = 1;
  852 nextlow:
  853                 low = sched_lowest(cg, lmask, -1,
  854                     TDQ_CPU(high)->tdq_load - 1, high);
  855                 /* Stop if we looked well and found no less loaded CPU. */
  856                 if (anylow && low == -1)
  857                         break;
  858                 /* Go to next high if we found no less loaded CPU. */
  859                 if (low == -1)
  860                         continue;
  861                 /* Transfer thread from high to low. */
  862                 if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
  863                         /* CPU that got thread can no longer be a donor. */
  864                         CPU_CLR(low, &hmask);
  865                 } else {
  866                         /*
  867                          * If failed, then there is no threads on high
  868                          * that can run on this low. Drop low from low
  869                          * mask and look for different one.
  870                          */
  871                         CPU_CLR(low, &lmask);
  872                         anylow = 0;
  873                         goto nextlow;
  874                 }
  875         }
  876 }
  877 
  878 static void
  879 sched_balance(void)
  880 {
  881         struct tdq *tdq;
  882 
  883         if (smp_started == 0 || rebalance == 0)
  884                 return;
  885 
  886         balance_ticks = max(balance_interval / 2, 1) +
  887             (sched_random() % balance_interval);
  888         tdq = TDQ_SELF();
  889         TDQ_UNLOCK(tdq);
  890         sched_balance_group(cpu_top);
  891         TDQ_LOCK(tdq);
  892 }
  893 
  894 /*
  895  * Lock two thread queues using their address to maintain lock order.
  896  */
  897 static void
  898 tdq_lock_pair(struct tdq *one, struct tdq *two)
  899 {
  900         if (one < two) {
  901                 TDQ_LOCK(one);
  902                 TDQ_LOCK_FLAGS(two, MTX_DUPOK);
  903         } else {
  904                 TDQ_LOCK(two);
  905                 TDQ_LOCK_FLAGS(one, MTX_DUPOK);
  906         }
  907 }
  908 
  909 /*
  910  * Unlock two thread queues.  Order is not important here.
  911  */
  912 static void
  913 tdq_unlock_pair(struct tdq *one, struct tdq *two)
  914 {
  915         TDQ_UNLOCK(one);
  916         TDQ_UNLOCK(two);
  917 }
  918 
  919 /*
  920  * Transfer load between two imbalanced thread queues.
  921  */
  922 static int
  923 sched_balance_pair(struct tdq *high, struct tdq *low)
  924 {
  925         int moved;
  926         int cpu;
  927 
  928         tdq_lock_pair(high, low);
  929         moved = 0;
  930         /*
  931          * Determine what the imbalance is and then adjust that to how many
  932          * threads we actually have to give up (transferable).
  933          */
  934         if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
  935             (moved = tdq_move(high, low)) > 0) {
  936                 /*
  937                  * In case the target isn't the current cpu IPI it to force a
  938                  * reschedule with the new workload.
  939                  */
  940                 cpu = TDQ_ID(low);
  941                 if (cpu != PCPU_GET(cpuid))
  942                         ipi_cpu(cpu, IPI_PREEMPT);
  943         }
  944         tdq_unlock_pair(high, low);
  945         return (moved);
  946 }
  947 
  948 /*
  949  * Move a thread from one thread queue to another.
  950  */
  951 static int
  952 tdq_move(struct tdq *from, struct tdq *to)
  953 {
  954         struct td_sched *ts;
  955         struct thread *td;
  956         struct tdq *tdq;
  957         int cpu;
  958 
  959         TDQ_LOCK_ASSERT(from, MA_OWNED);
  960         TDQ_LOCK_ASSERT(to, MA_OWNED);
  961 
  962         tdq = from;
  963         cpu = TDQ_ID(to);
  964         td = tdq_steal(tdq, cpu);
  965         if (td == NULL)
  966                 return (0);
  967         ts = td_get_sched(td);
  968         /*
  969          * Although the run queue is locked the thread may be blocked.  Lock
  970          * it to clear this and acquire the run-queue lock.
  971          */
  972         thread_lock(td);
  973         /* Drop recursive lock on from acquired via thread_lock(). */
  974         TDQ_UNLOCK(from);
  975         sched_rem(td);
  976         ts->ts_cpu = cpu;
  977         td->td_lock = TDQ_LOCKPTR(to);
  978         tdq_add(to, td, SRQ_YIELDING);
  979         return (1);
  980 }
  981 
  982 /*
  983  * This tdq has idled.  Try to steal a thread from another cpu and switch
  984  * to it.
  985  */
  986 static int
  987 tdq_idled(struct tdq *tdq)
  988 {
  989         struct cpu_group *cg;
  990         struct tdq *steal;
  991         cpuset_t mask;
  992         int thresh;
  993         int cpu;
  994 
  995         if (smp_started == 0 || steal_idle == 0)
  996                 return (1);
  997         CPU_FILL(&mask);
  998         CPU_CLR(PCPU_GET(cpuid), &mask);
  999         /* We don't want to be preempted while we're iterating. */
 1000         spinlock_enter();
 1001         for (cg = tdq->tdq_cg; cg != NULL; ) {
 1002                 if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
 1003                         thresh = steal_thresh;
 1004                 else
 1005                         thresh = 1;
 1006                 cpu = sched_highest(cg, mask, thresh);
 1007                 if (cpu == -1) {
 1008                         cg = cg->cg_parent;
 1009                         continue;
 1010                 }
 1011                 steal = TDQ_CPU(cpu);
 1012                 CPU_CLR(cpu, &mask);
 1013                 tdq_lock_pair(tdq, steal);
 1014                 if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
 1015                         tdq_unlock_pair(tdq, steal);
 1016                         continue;
 1017                 }
 1018                 /*
 1019                  * If a thread was added while interrupts were disabled don't
 1020                  * steal one here.  If we fail to acquire one due to affinity
 1021                  * restrictions loop again with this cpu removed from the
 1022                  * set.
 1023                  */
 1024                 if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
 1025                         tdq_unlock_pair(tdq, steal);
 1026                         continue;
 1027                 }
 1028                 spinlock_exit();
 1029                 TDQ_UNLOCK(steal);
 1030                 mi_switch(SW_VOL | SWT_IDLE, NULL);
 1031                 thread_unlock(curthread);
 1032 
 1033                 return (0);
 1034         }
 1035         spinlock_exit();
 1036         return (1);
 1037 }
 1038 
 1039 /*
 1040  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
 1041  */
 1042 static void
 1043 tdq_notify(struct tdq *tdq, struct thread *td)
 1044 {
 1045         struct thread *ctd;
 1046         int pri;
 1047         int cpu;
 1048 
 1049         if (tdq->tdq_ipipending)
 1050                 return;
 1051         cpu = td_get_sched(td)->ts_cpu;
 1052         pri = td->td_priority;
 1053         ctd = pcpu_find(cpu)->pc_curthread;
 1054         if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
 1055                 return;
 1056 
 1057         /*
 1058          * Make sure that our caller's earlier update to tdq_load is
 1059          * globally visible before we read tdq_cpu_idle.  Idle thread
 1060          * accesses both of them without locks, and the order is important.
 1061          */
 1062         atomic_thread_fence_seq_cst();
 1063 
 1064         if (TD_IS_IDLETHREAD(ctd)) {
 1065                 /*
 1066                  * If the MD code has an idle wakeup routine try that before
 1067                  * falling back to IPI.
 1068                  */
 1069                 if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
 1070                         return;
 1071         }
 1072         tdq->tdq_ipipending = 1;
 1073         ipi_cpu(cpu, IPI_PREEMPT);
 1074 }
 1075 
 1076 /*
 1077  * Steals load from a timeshare queue.  Honors the rotating queue head
 1078  * index.
 1079  */
 1080 static struct thread *
 1081 runq_steal_from(struct runq *rq, int cpu, u_char start)
 1082 {
 1083         struct rqbits *rqb;
 1084         struct rqhead *rqh;
 1085         struct thread *td, *first;
 1086         int bit;
 1087         int i;
 1088 
 1089         rqb = &rq->rq_status;
 1090         bit = start & (RQB_BPW -1);
 1091         first = NULL;
 1092 again:
 1093         for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
 1094                 if (rqb->rqb_bits[i] == 0)
 1095                         continue;
 1096                 if (bit == 0)
 1097                         bit = RQB_FFS(rqb->rqb_bits[i]);
 1098                 for (; bit < RQB_BPW; bit++) {
 1099                         if ((rqb->rqb_bits[i] & (1ul << bit)) == 0)
 1100                                 continue;
 1101                         rqh = &rq->rq_queues[bit + (i << RQB_L2BPW)];
 1102                         TAILQ_FOREACH(td, rqh, td_runq) {
 1103                                 if (first && THREAD_CAN_MIGRATE(td) &&
 1104                                     THREAD_CAN_SCHED(td, cpu))
 1105                                         return (td);
 1106                                 first = td;
 1107                         }
 1108                 }
 1109         }
 1110         if (start != 0) {
 1111                 start = 0;
 1112                 goto again;
 1113         }
 1114 
 1115         if (first && THREAD_CAN_MIGRATE(first) &&
 1116             THREAD_CAN_SCHED(first, cpu))
 1117                 return (first);
 1118         return (NULL);
 1119 }
 1120 
 1121 /*
 1122  * Steals load from a standard linear queue.
 1123  */
 1124 static struct thread *
 1125 runq_steal(struct runq *rq, int cpu)
 1126 {
 1127         struct rqhead *rqh;
 1128         struct rqbits *rqb;
 1129         struct thread *td;
 1130         int word;
 1131         int bit;
 1132 
 1133         rqb = &rq->rq_status;
 1134         for (word = 0; word < RQB_LEN; word++) {
 1135                 if (rqb->rqb_bits[word] == 0)
 1136                         continue;
 1137                 for (bit = 0; bit < RQB_BPW; bit++) {
 1138                         if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
 1139                                 continue;
 1140                         rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
 1141                         TAILQ_FOREACH(td, rqh, td_runq)
 1142                                 if (THREAD_CAN_MIGRATE(td) &&
 1143                                     THREAD_CAN_SCHED(td, cpu))
 1144                                         return (td);
 1145                 }
 1146         }
 1147         return (NULL);
 1148 }
 1149 
 1150 /*
 1151  * Attempt to steal a thread in priority order from a thread queue.
 1152  */
 1153 static struct thread *
 1154 tdq_steal(struct tdq *tdq, int cpu)
 1155 {
 1156         struct thread *td;
 1157 
 1158         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1159         if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
 1160                 return (td);
 1161         if ((td = runq_steal_from(&tdq->tdq_timeshare,
 1162             cpu, tdq->tdq_ridx)) != NULL)
 1163                 return (td);
 1164         return (runq_steal(&tdq->tdq_idle, cpu));
 1165 }
 1166 
 1167 /*
 1168  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
 1169  * current lock and returns with the assigned queue locked.
 1170  */
 1171 static inline struct tdq *
 1172 sched_setcpu(struct thread *td, int cpu, int flags)
 1173 {
 1174 
 1175         struct tdq *tdq;
 1176 
 1177         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1178         tdq = TDQ_CPU(cpu);
 1179         td_get_sched(td)->ts_cpu = cpu;
 1180         /*
 1181          * If the lock matches just return the queue.
 1182          */
 1183         if (td->td_lock == TDQ_LOCKPTR(tdq))
 1184                 return (tdq);
 1185 #ifdef notyet
 1186         /*
 1187          * If the thread isn't running its lockptr is a
 1188          * turnstile or a sleepqueue.  We can just lock_set without
 1189          * blocking.
 1190          */
 1191         if (TD_CAN_RUN(td)) {
 1192                 TDQ_LOCK(tdq);
 1193                 thread_lock_set(td, TDQ_LOCKPTR(tdq));
 1194                 return (tdq);
 1195         }
 1196 #endif
 1197         /*
 1198          * The hard case, migration, we need to block the thread first to
 1199          * prevent order reversals with other cpus locks.
 1200          */
 1201         spinlock_enter();
 1202         thread_lock_block(td);
 1203         TDQ_LOCK(tdq);
 1204         thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
 1205         spinlock_exit();
 1206         return (tdq);
 1207 }
 1208 
 1209 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
 1210 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
 1211 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
 1212 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
 1213 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
 1214 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
 1215 
 1216 static int
 1217 sched_pickcpu(struct thread *td, int flags)
 1218 {
 1219         struct cpu_group *cg, *ccg;
 1220         struct td_sched *ts;
 1221         struct tdq *tdq;
 1222         cpuset_t mask;
 1223         int cpu, pri, self;
 1224 
 1225         self = PCPU_GET(cpuid);
 1226         ts = td_get_sched(td);
 1227         if (smp_started == 0)
 1228                 return (self);
 1229         /*
 1230          * Don't migrate a running thread from sched_switch().
 1231          */
 1232         if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
 1233                 return (ts->ts_cpu);
 1234         /*
 1235          * Prefer to run interrupt threads on the processors that generate
 1236          * the interrupt.
 1237          */
 1238         pri = td->td_priority;
 1239         if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
 1240             curthread->td_intr_nesting_level && ts->ts_cpu != self) {
 1241                 SCHED_STAT_INC(pickcpu_intrbind);
 1242                 ts->ts_cpu = self;
 1243                 if (TDQ_CPU(self)->tdq_lowpri > pri) {
 1244                         SCHED_STAT_INC(pickcpu_affinity);
 1245                         return (ts->ts_cpu);
 1246                 }
 1247         }
 1248         /*
 1249          * If the thread can run on the last cpu and the affinity has not
 1250          * expired or it is idle run it there.
 1251          */
 1252         tdq = TDQ_CPU(ts->ts_cpu);
 1253         cg = tdq->tdq_cg;
 1254         if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
 1255             tdq->tdq_lowpri >= PRI_MIN_IDLE &&
 1256             SCHED_AFFINITY(ts, CG_SHARE_L2)) {
 1257                 if (cg->cg_flags & CG_FLAG_THREAD) {
 1258                         CPUSET_FOREACH(cpu, cg->cg_mask) {
 1259                                 if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
 1260                                         break;
 1261                         }
 1262                 } else
 1263                         cpu = INT_MAX;
 1264                 if (cpu > mp_maxid) {
 1265                         SCHED_STAT_INC(pickcpu_idle_affinity);
 1266                         return (ts->ts_cpu);
 1267                 }
 1268         }
 1269         /*
 1270          * Search for the last level cache CPU group in the tree.
 1271          * Skip caches with expired affinity time and SMT groups.
 1272          * Affinity to higher level caches will be handled less aggressively.
 1273          */
 1274         for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
 1275                 if (cg->cg_flags & CG_FLAG_THREAD)
 1276                         continue;
 1277                 if (!SCHED_AFFINITY(ts, cg->cg_level))
 1278                         continue;
 1279                 ccg = cg;
 1280         }
 1281         if (ccg != NULL)
 1282                 cg = ccg;
 1283         cpu = -1;
 1284         /* Search the group for the less loaded idle CPU we can run now. */
 1285         mask = td->td_cpuset->cs_mask;
 1286         if (cg != NULL && cg != cpu_top &&
 1287             CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
 1288                 cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
 1289                     INT_MAX, ts->ts_cpu);
 1290         /* Search globally for the less loaded CPU we can run now. */
 1291         if (cpu == -1)
 1292                 cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
 1293         /* Search globally for the less loaded CPU. */
 1294         if (cpu == -1)
 1295                 cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
 1296         KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
 1297         /*
 1298          * Compare the lowest loaded cpu to current cpu.
 1299          */
 1300         if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
 1301             TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
 1302             TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
 1303                 SCHED_STAT_INC(pickcpu_local);
 1304                 cpu = self;
 1305         } else
 1306                 SCHED_STAT_INC(pickcpu_lowest);
 1307         if (cpu != ts->ts_cpu)
 1308                 SCHED_STAT_INC(pickcpu_migration);
 1309         return (cpu);
 1310 }
 1311 #endif
 1312 
 1313 /*
 1314  * Pick the highest priority task we have and return it.
 1315  */
 1316 static struct thread *
 1317 tdq_choose(struct tdq *tdq)
 1318 {
 1319         struct thread *td;
 1320 
 1321         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1322         td = runq_choose(&tdq->tdq_realtime);
 1323         if (td != NULL)
 1324                 return (td);
 1325         td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
 1326         if (td != NULL) {
 1327                 KASSERT(td->td_priority >= PRI_MIN_BATCH,
 1328                     ("tdq_choose: Invalid priority on timeshare queue %d",
 1329                     td->td_priority));
 1330                 return (td);
 1331         }
 1332         td = runq_choose(&tdq->tdq_idle);
 1333         if (td != NULL) {
 1334                 KASSERT(td->td_priority >= PRI_MIN_IDLE,
 1335                     ("tdq_choose: Invalid priority on idle queue %d",
 1336                     td->td_priority));
 1337                 return (td);
 1338         }
 1339 
 1340         return (NULL);
 1341 }
 1342 
 1343 /*
 1344  * Initialize a thread queue.
 1345  */
 1346 static void
 1347 tdq_setup(struct tdq *tdq)
 1348 {
 1349 
 1350         if (bootverbose)
 1351                 printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
 1352         runq_init(&tdq->tdq_realtime);
 1353         runq_init(&tdq->tdq_timeshare);
 1354         runq_init(&tdq->tdq_idle);
 1355         snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
 1356             "sched lock %d", (int)TDQ_ID(tdq));
 1357         mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
 1358             MTX_SPIN | MTX_RECURSE);
 1359 #ifdef KTR
 1360         snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
 1361             "CPU %d load", (int)TDQ_ID(tdq));
 1362 #endif
 1363 }
 1364 
 1365 #ifdef SMP
 1366 static void
 1367 sched_setup_smp(void)
 1368 {
 1369         struct tdq *tdq;
 1370         int i;
 1371 
 1372         cpu_top = smp_topo();
 1373         CPU_FOREACH(i) {
 1374                 tdq = TDQ_CPU(i);
 1375                 tdq_setup(tdq);
 1376                 tdq->tdq_cg = smp_topo_find(cpu_top, i);
 1377                 if (tdq->tdq_cg == NULL)
 1378                         panic("Can't find cpu group for %d\n", i);
 1379         }
 1380         balance_tdq = TDQ_SELF();
 1381         sched_balance();
 1382 }
 1383 #endif
 1384 
 1385 /*
 1386  * Setup the thread queues and initialize the topology based on MD
 1387  * information.
 1388  */
 1389 static void
 1390 sched_setup(void *dummy)
 1391 {
 1392         struct tdq *tdq;
 1393 
 1394         tdq = TDQ_SELF();
 1395 #ifdef SMP
 1396         sched_setup_smp();
 1397 #else
 1398         tdq_setup(tdq);
 1399 #endif
 1400 
 1401         /* Add thread0's load since it's running. */
 1402         TDQ_LOCK(tdq);
 1403         thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
 1404         tdq_load_add(tdq, &thread0);
 1405         tdq->tdq_lowpri = thread0.td_priority;
 1406         TDQ_UNLOCK(tdq);
 1407 }
 1408 
 1409 /*
 1410  * This routine determines time constants after stathz and hz are setup.
 1411  */
 1412 /* ARGSUSED */
 1413 static void
 1414 sched_initticks(void *dummy)
 1415 {
 1416         int incr;
 1417 
 1418         realstathz = stathz ? stathz : hz;
 1419         sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
 1420         sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
 1421         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 1422             realstathz);
 1423 
 1424         /*
 1425          * tickincr is shifted out by 10 to avoid rounding errors due to
 1426          * hz not being evenly divisible by stathz on all platforms.
 1427          */
 1428         incr = (hz << SCHED_TICK_SHIFT) / realstathz;
 1429         /*
 1430          * This does not work for values of stathz that are more than
 1431          * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
 1432          */
 1433         if (incr == 0)
 1434                 incr = 1;
 1435         tickincr = incr;
 1436 #ifdef SMP
 1437         /*
 1438          * Set the default balance interval now that we know
 1439          * what realstathz is.
 1440          */
 1441         balance_interval = realstathz;
 1442         affinity = SCHED_AFFINITY_DEFAULT;
 1443 #endif
 1444         if (sched_idlespinthresh < 0)
 1445                 sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
 1446 }
 1447 
 1448 
 1449 /*
 1450  * This is the core of the interactivity algorithm.  Determines a score based
 1451  * on past behavior.  It is the ratio of sleep time to run time scaled to
 1452  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
 1453  * differs from the cpu usage because it does not account for time spent
 1454  * waiting on a run-queue.  Would be prettier if we had floating point.
 1455  *
 1456  * When a thread's sleep time is greater than its run time the
 1457  * calculation is:
 1458  *
 1459  *                           scaling factor 
 1460  * interactivity score =  ---------------------
 1461  *                        sleep time / run time
 1462  *
 1463  *
 1464  * When a thread's run time is greater than its sleep time the
 1465  * calculation is:
 1466  *
 1467  *                           scaling factor 
 1468  * interactivity score =  ---------------------    + scaling factor
 1469  *                        run time / sleep time
 1470  */
 1471 static int
 1472 sched_interact_score(struct thread *td)
 1473 {
 1474         struct td_sched *ts;
 1475         int div;
 1476 
 1477         ts = td_get_sched(td);
 1478         /*
 1479          * The score is only needed if this is likely to be an interactive
 1480          * task.  Don't go through the expense of computing it if there's
 1481          * no chance.
 1482          */
 1483         if (sched_interact <= SCHED_INTERACT_HALF &&
 1484                 ts->ts_runtime >= ts->ts_slptime)
 1485                         return (SCHED_INTERACT_HALF);
 1486 
 1487         if (ts->ts_runtime > ts->ts_slptime) {
 1488                 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
 1489                 return (SCHED_INTERACT_HALF +
 1490                     (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
 1491         }
 1492         if (ts->ts_slptime > ts->ts_runtime) {
 1493                 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
 1494                 return (ts->ts_runtime / div);
 1495         }
 1496         /* runtime == slptime */
 1497         if (ts->ts_runtime)
 1498                 return (SCHED_INTERACT_HALF);
 1499 
 1500         /*
 1501          * This can happen if slptime and runtime are 0.
 1502          */
 1503         return (0);
 1504 
 1505 }
 1506 
 1507 /*
 1508  * Scale the scheduling priority according to the "interactivity" of this
 1509  * process.
 1510  */
 1511 static void
 1512 sched_priority(struct thread *td)
 1513 {
 1514         int score;
 1515         int pri;
 1516 
 1517         if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 1518                 return;
 1519         /*
 1520          * If the score is interactive we place the thread in the realtime
 1521          * queue with a priority that is less than kernel and interrupt
 1522          * priorities.  These threads are not subject to nice restrictions.
 1523          *
 1524          * Scores greater than this are placed on the normal timeshare queue
 1525          * where the priority is partially decided by the most recent cpu
 1526          * utilization and the rest is decided by nice value.
 1527          *
 1528          * The nice value of the process has a linear effect on the calculated
 1529          * score.  Negative nice values make it easier for a thread to be
 1530          * considered interactive.
 1531          */
 1532         score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
 1533         if (score < sched_interact) {
 1534                 pri = PRI_MIN_INTERACT;
 1535                 pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
 1536                     sched_interact) * score;
 1537                 KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
 1538                     ("sched_priority: invalid interactive priority %d score %d",
 1539                     pri, score));
 1540         } else {
 1541                 pri = SCHED_PRI_MIN;
 1542                 if (td_get_sched(td)->ts_ticks)
 1543                         pri += min(SCHED_PRI_TICKS(td_get_sched(td)),
 1544                             SCHED_PRI_RANGE - 1);
 1545                 pri += SCHED_PRI_NICE(td->td_proc->p_nice);
 1546                 KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
 1547                     ("sched_priority: invalid priority %d: nice %d, " 
 1548                     "ticks %d ftick %d ltick %d tick pri %d",
 1549                     pri, td->td_proc->p_nice, td_get_sched(td)->ts_ticks,
 1550                     td_get_sched(td)->ts_ftick, td_get_sched(td)->ts_ltick,
 1551                     SCHED_PRI_TICKS(td_get_sched(td))));
 1552         }
 1553         sched_user_prio(td, pri);
 1554 
 1555         return;
 1556 }
 1557 
 1558 /*
 1559  * This routine enforces a maximum limit on the amount of scheduling history
 1560  * kept.  It is called after either the slptime or runtime is adjusted.  This
 1561  * function is ugly due to integer math.
 1562  */
 1563 static void
 1564 sched_interact_update(struct thread *td)
 1565 {
 1566         struct td_sched *ts;
 1567         u_int sum;
 1568 
 1569         ts = td_get_sched(td);
 1570         sum = ts->ts_runtime + ts->ts_slptime;
 1571         if (sum < SCHED_SLP_RUN_MAX)
 1572                 return;
 1573         /*
 1574          * This only happens from two places:
 1575          * 1) We have added an unusual amount of run time from fork_exit.
 1576          * 2) We have added an unusual amount of sleep time from sched_sleep().
 1577          */
 1578         if (sum > SCHED_SLP_RUN_MAX * 2) {
 1579                 if (ts->ts_runtime > ts->ts_slptime) {
 1580                         ts->ts_runtime = SCHED_SLP_RUN_MAX;
 1581                         ts->ts_slptime = 1;
 1582                 } else {
 1583                         ts->ts_slptime = SCHED_SLP_RUN_MAX;
 1584                         ts->ts_runtime = 1;
 1585                 }
 1586                 return;
 1587         }
 1588         /*
 1589          * If we have exceeded by more than 1/5th then the algorithm below
 1590          * will not bring us back into range.  Dividing by two here forces
 1591          * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
 1592          */
 1593         if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
 1594                 ts->ts_runtime /= 2;
 1595                 ts->ts_slptime /= 2;
 1596                 return;
 1597         }
 1598         ts->ts_runtime = (ts->ts_runtime / 5) * 4;
 1599         ts->ts_slptime = (ts->ts_slptime / 5) * 4;
 1600 }
 1601 
 1602 /*
 1603  * Scale back the interactivity history when a child thread is created.  The
 1604  * history is inherited from the parent but the thread may behave totally
 1605  * differently.  For example, a shell spawning a compiler process.  We want
 1606  * to learn that the compiler is behaving badly very quickly.
 1607  */
 1608 static void
 1609 sched_interact_fork(struct thread *td)
 1610 {
 1611         struct td_sched *ts;
 1612         int ratio;
 1613         int sum;
 1614 
 1615         ts = td_get_sched(td);
 1616         sum = ts->ts_runtime + ts->ts_slptime;
 1617         if (sum > SCHED_SLP_RUN_FORK) {
 1618                 ratio = sum / SCHED_SLP_RUN_FORK;
 1619                 ts->ts_runtime /= ratio;
 1620                 ts->ts_slptime /= ratio;
 1621         }
 1622 }
 1623 
 1624 /*
 1625  * Called from proc0_init() to setup the scheduler fields.
 1626  */
 1627 void
 1628 schedinit(void)
 1629 {
 1630         struct td_sched *ts0;
 1631 
 1632         /*
 1633          * Set up the scheduler specific parts of thread0.
 1634          */
 1635         ts0 = td_get_sched(&thread0);
 1636         ts0->ts_ltick = ticks;
 1637         ts0->ts_ftick = ticks;
 1638         ts0->ts_slice = 0;
 1639 }
 1640 
 1641 /*
 1642  * This is only somewhat accurate since given many processes of the same
 1643  * priority they will switch when their slices run out, which will be
 1644  * at most sched_slice stathz ticks.
 1645  */
 1646 int
 1647 sched_rr_interval(void)
 1648 {
 1649 
 1650         /* Convert sched_slice from stathz to hz. */
 1651         return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
 1652 }
 1653 
 1654 /*
 1655  * Update the percent cpu tracking information when it is requested or
 1656  * the total history exceeds the maximum.  We keep a sliding history of
 1657  * tick counts that slowly decays.  This is less precise than the 4BSD
 1658  * mechanism since it happens with less regular and frequent events.
 1659  */
 1660 static void
 1661 sched_pctcpu_update(struct td_sched *ts, int run)
 1662 {
 1663         int t = ticks;
 1664 
 1665         /*
 1666          * The signed difference may be negative if the thread hasn't run for
 1667          * over half of the ticks rollover period.
 1668          */
 1669         if ((u_int)(t - ts->ts_ltick) >= SCHED_TICK_TARG) {
 1670                 ts->ts_ticks = 0;
 1671                 ts->ts_ftick = t - SCHED_TICK_TARG;
 1672         } else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
 1673                 ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
 1674                     (ts->ts_ltick - (t - SCHED_TICK_TARG));
 1675                 ts->ts_ftick = t - SCHED_TICK_TARG;
 1676         }
 1677         if (run)
 1678                 ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
 1679         ts->ts_ltick = t;
 1680 }
 1681 
 1682 /*
 1683  * Adjust the priority of a thread.  Move it to the appropriate run-queue
 1684  * if necessary.  This is the back-end for several priority related
 1685  * functions.
 1686  */
 1687 static void
 1688 sched_thread_priority(struct thread *td, u_char prio)
 1689 {
 1690         struct td_sched *ts;
 1691         struct tdq *tdq;
 1692         int oldpri;
 1693 
 1694         KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
 1695             "prio:%d", td->td_priority, "new prio:%d", prio,
 1696             KTR_ATTR_LINKED, sched_tdname(curthread));
 1697         SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
 1698         if (td != curthread && prio < td->td_priority) {
 1699                 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
 1700                     "lend prio", "prio:%d", td->td_priority, "new prio:%d",
 1701                     prio, KTR_ATTR_LINKED, sched_tdname(td));
 1702                 SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio, 
 1703                     curthread);
 1704         } 
 1705         ts = td_get_sched(td);
 1706         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1707         if (td->td_priority == prio)
 1708                 return;
 1709         /*
 1710          * If the priority has been elevated due to priority
 1711          * propagation, we may have to move ourselves to a new
 1712          * queue.  This could be optimized to not re-add in some
 1713          * cases.
 1714          */
 1715         if (TD_ON_RUNQ(td) && prio < td->td_priority) {
 1716                 sched_rem(td);
 1717                 td->td_priority = prio;
 1718                 sched_add(td, SRQ_BORROWING);
 1719                 return;
 1720         }
 1721         /*
 1722          * If the thread is currently running we may have to adjust the lowpri
 1723          * information so other cpus are aware of our current priority.
 1724          */
 1725         if (TD_IS_RUNNING(td)) {
 1726                 tdq = TDQ_CPU(ts->ts_cpu);
 1727                 oldpri = td->td_priority;
 1728                 td->td_priority = prio;
 1729                 if (prio < tdq->tdq_lowpri)
 1730                         tdq->tdq_lowpri = prio;
 1731                 else if (tdq->tdq_lowpri == oldpri)
 1732                         tdq_setlowpri(tdq, td);
 1733                 return;
 1734         }
 1735         td->td_priority = prio;
 1736 }
 1737 
 1738 /*
 1739  * Update a thread's priority when it is lent another thread's
 1740  * priority.
 1741  */
 1742 void
 1743 sched_lend_prio(struct thread *td, u_char prio)
 1744 {
 1745 
 1746         td->td_flags |= TDF_BORROWING;
 1747         sched_thread_priority(td, prio);
 1748 }
 1749 
 1750 /*
 1751  * Restore a thread's priority when priority propagation is
 1752  * over.  The prio argument is the minimum priority the thread
 1753  * needs to have to satisfy other possible priority lending
 1754  * requests.  If the thread's regular priority is less
 1755  * important than prio, the thread will keep a priority boost
 1756  * of prio.
 1757  */
 1758 void
 1759 sched_unlend_prio(struct thread *td, u_char prio)
 1760 {
 1761         u_char base_pri;
 1762 
 1763         if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
 1764             td->td_base_pri <= PRI_MAX_TIMESHARE)
 1765                 base_pri = td->td_user_pri;
 1766         else
 1767                 base_pri = td->td_base_pri;
 1768         if (prio >= base_pri) {
 1769                 td->td_flags &= ~TDF_BORROWING;
 1770                 sched_thread_priority(td, base_pri);
 1771         } else
 1772                 sched_lend_prio(td, prio);
 1773 }
 1774 
 1775 /*
 1776  * Standard entry for setting the priority to an absolute value.
 1777  */
 1778 void
 1779 sched_prio(struct thread *td, u_char prio)
 1780 {
 1781         u_char oldprio;
 1782 
 1783         /* First, update the base priority. */
 1784         td->td_base_pri = prio;
 1785 
 1786         /*
 1787          * If the thread is borrowing another thread's priority, don't
 1788          * ever lower the priority.
 1789          */
 1790         if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
 1791                 return;
 1792 
 1793         /* Change the real priority. */
 1794         oldprio = td->td_priority;
 1795         sched_thread_priority(td, prio);
 1796 
 1797         /*
 1798          * If the thread is on a turnstile, then let the turnstile update
 1799          * its state.
 1800          */
 1801         if (TD_ON_LOCK(td) && oldprio != prio)
 1802                 turnstile_adjust(td, oldprio);
 1803 }
 1804 
 1805 /*
 1806  * Set the base user priority, does not effect current running priority.
 1807  */
 1808 void
 1809 sched_user_prio(struct thread *td, u_char prio)
 1810 {
 1811 
 1812         td->td_base_user_pri = prio;
 1813         if (td->td_lend_user_pri <= prio)
 1814                 return;
 1815         td->td_user_pri = prio;
 1816 }
 1817 
 1818 void
 1819 sched_lend_user_prio(struct thread *td, u_char prio)
 1820 {
 1821 
 1822         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1823         td->td_lend_user_pri = prio;
 1824         td->td_user_pri = min(prio, td->td_base_user_pri);
 1825         if (td->td_priority > td->td_user_pri)
 1826                 sched_prio(td, td->td_user_pri);
 1827         else if (td->td_priority != td->td_user_pri)
 1828                 td->td_flags |= TDF_NEEDRESCHED;
 1829 }
 1830 
 1831 /*
 1832  * Handle migration from sched_switch().  This happens only for
 1833  * cpu binding.
 1834  */
 1835 static struct mtx *
 1836 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
 1837 {
 1838         struct tdq *tdn;
 1839 
 1840         tdn = TDQ_CPU(td_get_sched(td)->ts_cpu);
 1841 #ifdef SMP
 1842         tdq_load_rem(tdq, td);
 1843         /*
 1844          * Do the lock dance required to avoid LOR.  We grab an extra
 1845          * spinlock nesting to prevent preemption while we're
 1846          * not holding either run-queue lock.
 1847          */
 1848         spinlock_enter();
 1849         thread_lock_block(td);  /* This releases the lock on tdq. */
 1850 
 1851         /*
 1852          * Acquire both run-queue locks before placing the thread on the new
 1853          * run-queue to avoid deadlocks created by placing a thread with a
 1854          * blocked lock on the run-queue of a remote processor.  The deadlock
 1855          * occurs when a third processor attempts to lock the two queues in
 1856          * question while the target processor is spinning with its own
 1857          * run-queue lock held while waiting for the blocked lock to clear.
 1858          */
 1859         tdq_lock_pair(tdn, tdq);
 1860         tdq_add(tdn, td, flags);
 1861         tdq_notify(tdn, td);
 1862         TDQ_UNLOCK(tdn);
 1863         spinlock_exit();
 1864 #endif
 1865         return (TDQ_LOCKPTR(tdn));
 1866 }
 1867 
 1868 /*
 1869  * Variadic version of thread_lock_unblock() that does not assume td_lock
 1870  * is blocked.
 1871  */
 1872 static inline void
 1873 thread_unblock_switch(struct thread *td, struct mtx *mtx)
 1874 {
 1875         atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
 1876             (uintptr_t)mtx);
 1877 }
 1878 
 1879 /*
 1880  * Switch threads.  This function has to handle threads coming in while
 1881  * blocked for some reason, running, or idle.  It also must deal with
 1882  * migrating a thread from one queue to another as running threads may
 1883  * be assigned elsewhere via binding.
 1884  */
 1885 void
 1886 sched_switch(struct thread *td, struct thread *newtd, int flags)
 1887 {
 1888         struct tdq *tdq;
 1889         struct td_sched *ts;
 1890         struct mtx *mtx;
 1891         int srqflag;
 1892         int cpuid, preempted;
 1893 
 1894         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1895         KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
 1896 
 1897         cpuid = PCPU_GET(cpuid);
 1898         tdq = TDQ_CPU(cpuid);
 1899         ts = td_get_sched(td);
 1900         mtx = td->td_lock;
 1901         sched_pctcpu_update(ts, 1);
 1902         ts->ts_rltick = ticks;
 1903         td->td_lastcpu = td->td_oncpu;
 1904         td->td_oncpu = NOCPU;
 1905         preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
 1906             (flags & SW_PREEMPT) != 0;
 1907         td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
 1908         td->td_owepreempt = 0;
 1909         if (!TD_IS_IDLETHREAD(td))
 1910                 tdq->tdq_switchcnt++;
 1911         /*
 1912          * The lock pointer in an idle thread should never change.  Reset it
 1913          * to CAN_RUN as well.
 1914          */
 1915         if (TD_IS_IDLETHREAD(td)) {
 1916                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1917                 TD_SET_CAN_RUN(td);
 1918         } else if (TD_IS_RUNNING(td)) {
 1919                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1920                 srqflag = preempted ?
 1921                     SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
 1922                     SRQ_OURSELF|SRQ_YIELDING;
 1923 #ifdef SMP
 1924                 if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
 1925                         ts->ts_cpu = sched_pickcpu(td, 0);
 1926 #endif
 1927                 if (ts->ts_cpu == cpuid)
 1928                         tdq_runq_add(tdq, td, srqflag);
 1929                 else {
 1930                         KASSERT(THREAD_CAN_MIGRATE(td) ||
 1931                             (ts->ts_flags & TSF_BOUND) != 0,
 1932                             ("Thread %p shouldn't migrate", td));
 1933                         mtx = sched_switch_migrate(tdq, td, srqflag);
 1934                 }
 1935         } else {
 1936                 /* This thread must be going to sleep. */
 1937                 TDQ_LOCK(tdq);
 1938                 mtx = thread_lock_block(td);
 1939                 tdq_load_rem(tdq, td);
 1940         }
 1941 
 1942 #if (KTR_COMPILE & KTR_SCHED) != 0
 1943         if (TD_IS_IDLETHREAD(td))
 1944                 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
 1945                     "prio:%d", td->td_priority);
 1946         else
 1947                 KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
 1948                     "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
 1949                     "lockname:\"%s\"", td->td_lockname);
 1950 #endif
 1951 
 1952         /*
 1953          * We enter here with the thread blocked and assigned to the
 1954          * appropriate cpu run-queue or sleep-queue and with the current
 1955          * thread-queue locked.
 1956          */
 1957         TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 1958         newtd = choosethread();
 1959         /*
 1960          * Call the MD code to switch contexts if necessary.
 1961          */
 1962         if (td != newtd) {
 1963 #ifdef  HWPMC_HOOKS
 1964                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1965                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
 1966 #endif
 1967                 SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
 1968                 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
 1969                 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
 1970                 sched_pctcpu_update(td_get_sched(newtd), 0);
 1971 
 1972 #ifdef KDTRACE_HOOKS
 1973                 /*
 1974                  * If DTrace has set the active vtime enum to anything
 1975                  * other than INACTIVE (0), then it should have set the
 1976                  * function to call.
 1977                  */
 1978                 if (dtrace_vtime_active)
 1979                         (*dtrace_vtime_switch_func)(newtd);
 1980 #endif
 1981 
 1982                 cpu_switch(td, newtd, mtx);
 1983                 /*
 1984                  * We may return from cpu_switch on a different cpu.  However,
 1985                  * we always return with td_lock pointing to the current cpu's
 1986                  * run queue lock.
 1987                  */
 1988                 cpuid = PCPU_GET(cpuid);
 1989                 tdq = TDQ_CPU(cpuid);
 1990                 lock_profile_obtain_lock_success(
 1991                     &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
 1992 
 1993                 SDT_PROBE0(sched, , , on__cpu);
 1994 #ifdef  HWPMC_HOOKS
 1995                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1996                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
 1997 #endif
 1998         } else {
 1999                 thread_unblock_switch(td, mtx);
 2000                 SDT_PROBE0(sched, , , remain__cpu);
 2001         }
 2002 
 2003         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 2004             "prio:%d", td->td_priority);
 2005 
 2006         /*
 2007          * Assert that all went well and return.
 2008          */
 2009         TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
 2010         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2011         td->td_oncpu = cpuid;
 2012 }
 2013 
 2014 /*
 2015  * Adjust thread priorities as a result of a nice request.
 2016  */
 2017 void
 2018 sched_nice(struct proc *p, int nice)
 2019 {
 2020         struct thread *td;
 2021 
 2022         PROC_LOCK_ASSERT(p, MA_OWNED);
 2023 
 2024         p->p_nice = nice;
 2025         FOREACH_THREAD_IN_PROC(p, td) {
 2026                 thread_lock(td);
 2027                 sched_priority(td);
 2028                 sched_prio(td, td->td_base_user_pri);
 2029                 thread_unlock(td);
 2030         }
 2031 }
 2032 
 2033 /*
 2034  * Record the sleep time for the interactivity scorer.
 2035  */
 2036 void
 2037 sched_sleep(struct thread *td, int prio)
 2038 {
 2039 
 2040         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2041 
 2042         td->td_slptick = ticks;
 2043         if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
 2044                 td->td_flags |= TDF_CANSWAP;
 2045         if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 2046                 return;
 2047         if (static_boost == 1 && prio)
 2048                 sched_prio(td, prio);
 2049         else if (static_boost && td->td_priority > static_boost)
 2050                 sched_prio(td, static_boost);
 2051 }
 2052 
 2053 /*
 2054  * Schedule a thread to resume execution and record how long it voluntarily
 2055  * slept.  We also update the pctcpu, interactivity, and priority.
 2056  */
 2057 void
 2058 sched_wakeup(struct thread *td)
 2059 {
 2060         struct td_sched *ts;
 2061         int slptick;
 2062 
 2063         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2064         ts = td_get_sched(td);
 2065         td->td_flags &= ~TDF_CANSWAP;
 2066         /*
 2067          * If we slept for more than a tick update our interactivity and
 2068          * priority.
 2069          */
 2070         slptick = td->td_slptick;
 2071         td->td_slptick = 0;
 2072         if (slptick && slptick != ticks) {
 2073                 ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
 2074                 sched_interact_update(td);
 2075                 sched_pctcpu_update(ts, 0);
 2076         }
 2077         /*
 2078          * Reset the slice value since we slept and advanced the round-robin.
 2079          */
 2080         ts->ts_slice = 0;
 2081         sched_add(td, SRQ_BORING);
 2082 }
 2083 
 2084 /*
 2085  * Penalize the parent for creating a new child and initialize the child's
 2086  * priority.
 2087  */
 2088 void
 2089 sched_fork(struct thread *td, struct thread *child)
 2090 {
 2091         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2092         sched_pctcpu_update(td_get_sched(td), 1);
 2093         sched_fork_thread(td, child);
 2094         /*
 2095          * Penalize the parent and child for forking.
 2096          */
 2097         sched_interact_fork(child);
 2098         sched_priority(child);
 2099         td_get_sched(td)->ts_runtime += tickincr;
 2100         sched_interact_update(td);
 2101         sched_priority(td);
 2102 }
 2103 
 2104 /*
 2105  * Fork a new thread, may be within the same process.
 2106  */
 2107 void
 2108 sched_fork_thread(struct thread *td, struct thread *child)
 2109 {
 2110         struct td_sched *ts;
 2111         struct td_sched *ts2;
 2112         struct tdq *tdq;
 2113 
 2114         tdq = TDQ_SELF();
 2115         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2116         /*
 2117          * Initialize child.
 2118          */
 2119         ts = td_get_sched(td);
 2120         ts2 = td_get_sched(child);
 2121         child->td_oncpu = NOCPU;
 2122         child->td_lastcpu = NOCPU;
 2123         child->td_lock = TDQ_LOCKPTR(tdq);
 2124         child->td_cpuset = cpuset_ref(td->td_cpuset);
 2125         ts2->ts_cpu = ts->ts_cpu;
 2126         ts2->ts_flags = 0;
 2127         /*
 2128          * Grab our parents cpu estimation information.
 2129          */
 2130         ts2->ts_ticks = ts->ts_ticks;
 2131         ts2->ts_ltick = ts->ts_ltick;
 2132         ts2->ts_ftick = ts->ts_ftick;
 2133         /*
 2134          * Do not inherit any borrowed priority from the parent.
 2135          */
 2136         child->td_priority = child->td_base_pri;
 2137         /*
 2138          * And update interactivity score.
 2139          */
 2140         ts2->ts_slptime = ts->ts_slptime;
 2141         ts2->ts_runtime = ts->ts_runtime;
 2142         /* Attempt to quickly learn interactivity. */
 2143         ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
 2144 #ifdef KTR
 2145         bzero(ts2->ts_name, sizeof(ts2->ts_name));
 2146 #endif
 2147 }
 2148 
 2149 /*
 2150  * Adjust the priority class of a thread.
 2151  */
 2152 void
 2153 sched_class(struct thread *td, int class)
 2154 {
 2155 
 2156         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2157         if (td->td_pri_class == class)
 2158                 return;
 2159         td->td_pri_class = class;
 2160 }
 2161 
 2162 /*
 2163  * Return some of the child's priority and interactivity to the parent.
 2164  */
 2165 void
 2166 sched_exit(struct proc *p, struct thread *child)
 2167 {
 2168         struct thread *td;
 2169 
 2170         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
 2171             "prio:%d", child->td_priority);
 2172         PROC_LOCK_ASSERT(p, MA_OWNED);
 2173         td = FIRST_THREAD_IN_PROC(p);
 2174         sched_exit_thread(td, child);
 2175 }
 2176 
 2177 /*
 2178  * Penalize another thread for the time spent on this one.  This helps to
 2179  * worsen the priority and interactivity of processes which schedule batch
 2180  * jobs such as make.  This has little effect on the make process itself but
 2181  * causes new processes spawned by it to receive worse scores immediately.
 2182  */
 2183 void
 2184 sched_exit_thread(struct thread *td, struct thread *child)
 2185 {
 2186 
 2187         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
 2188             "prio:%d", child->td_priority);
 2189         /*
 2190          * Give the child's runtime to the parent without returning the
 2191          * sleep time as a penalty to the parent.  This causes shells that
 2192          * launch expensive things to mark their children as expensive.
 2193          */
 2194         thread_lock(td);
 2195         td_get_sched(td)->ts_runtime += td_get_sched(child)->ts_runtime;
 2196         sched_interact_update(td);
 2197         sched_priority(td);
 2198         thread_unlock(td);
 2199 }
 2200 
 2201 void
 2202 sched_preempt(struct thread *td)
 2203 {
 2204         struct tdq *tdq;
 2205 
 2206         SDT_PROBE2(sched, , , surrender, td, td->td_proc);
 2207 
 2208         thread_lock(td);
 2209         tdq = TDQ_SELF();
 2210         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2211         tdq->tdq_ipipending = 0;
 2212         if (td->td_priority > tdq->tdq_lowpri) {
 2213                 int flags;
 2214 
 2215                 flags = SW_INVOL | SW_PREEMPT;
 2216                 if (td->td_critnest > 1)
 2217                         td->td_owepreempt = 1;
 2218                 else if (TD_IS_IDLETHREAD(td))
 2219                         mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
 2220                 else
 2221                         mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
 2222         }
 2223         thread_unlock(td);
 2224 }
 2225 
 2226 /*
 2227  * Fix priorities on return to user-space.  Priorities may be elevated due
 2228  * to static priorities in msleep() or similar.
 2229  */
 2230 void
 2231 sched_userret(struct thread *td)
 2232 {
 2233         /*
 2234          * XXX we cheat slightly on the locking here to avoid locking in  
 2235          * the usual case.  Setting td_priority here is essentially an
 2236          * incomplete workaround for not setting it properly elsewhere.
 2237          * Now that some interrupt handlers are threads, not setting it
 2238          * properly elsewhere can clobber it in the window between setting
 2239          * it here and returning to user mode, so don't waste time setting
 2240          * it perfectly here.
 2241          */
 2242         KASSERT((td->td_flags & TDF_BORROWING) == 0,
 2243             ("thread with borrowed priority returning to userland"));
 2244         if (td->td_priority != td->td_user_pri) {
 2245                 thread_lock(td);
 2246                 td->td_priority = td->td_user_pri;
 2247                 td->td_base_pri = td->td_user_pri;
 2248                 tdq_setlowpri(TDQ_SELF(), td);
 2249                 thread_unlock(td);
 2250         }
 2251 }
 2252 
 2253 /*
 2254  * Handle a stathz tick.  This is really only relevant for timeshare
 2255  * threads.
 2256  */
 2257 void
 2258 sched_clock(struct thread *td)
 2259 {
 2260         struct tdq *tdq;
 2261         struct td_sched *ts;
 2262 
 2263         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2264         tdq = TDQ_SELF();
 2265 #ifdef SMP
 2266         /*
 2267          * We run the long term load balancer infrequently on the first cpu.
 2268          */
 2269         if (balance_tdq == tdq) {
 2270                 if (balance_ticks && --balance_ticks == 0)
 2271                         sched_balance();
 2272         }
 2273 #endif
 2274         /*
 2275          * Save the old switch count so we have a record of the last ticks
 2276          * activity.   Initialize the new switch count based on our load.
 2277          * If there is some activity seed it to reflect that.
 2278          */
 2279         tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
 2280         tdq->tdq_switchcnt = tdq->tdq_load;
 2281         /*
 2282          * Advance the insert index once for each tick to ensure that all
 2283          * threads get a chance to run.
 2284          */
 2285         if (tdq->tdq_idx == tdq->tdq_ridx) {
 2286                 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
 2287                 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
 2288                         tdq->tdq_ridx = tdq->tdq_idx;
 2289         }
 2290         ts = td_get_sched(td);
 2291         sched_pctcpu_update(ts, 1);
 2292         if (td->td_pri_class & PRI_FIFO_BIT)
 2293                 return;
 2294         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
 2295                 /*
 2296                  * We used a tick; charge it to the thread so
 2297                  * that we can compute our interactivity.
 2298                  */
 2299                 td_get_sched(td)->ts_runtime += tickincr;
 2300                 sched_interact_update(td);
 2301                 sched_priority(td);
 2302         }
 2303 
 2304         /*
 2305          * Force a context switch if the current thread has used up a full
 2306          * time slice (default is 100ms).
 2307          */
 2308         if (!TD_IS_IDLETHREAD(td) && ++ts->ts_slice >= tdq_slice(tdq)) {
 2309                 ts->ts_slice = 0;
 2310                 td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
 2311         }
 2312 }
 2313 
 2314 u_int
 2315 sched_estcpu(struct thread *td __unused)
 2316 {
 2317 
 2318         return (0);
 2319 }
 2320 
 2321 /*
 2322  * Return whether the current CPU has runnable tasks.  Used for in-kernel
 2323  * cooperative idle threads.
 2324  */
 2325 int
 2326 sched_runnable(void)
 2327 {
 2328         struct tdq *tdq;
 2329         int load;
 2330 
 2331         load = 1;
 2332 
 2333         tdq = TDQ_SELF();
 2334         if ((curthread->td_flags & TDF_IDLETD) != 0) {
 2335                 if (tdq->tdq_load > 0)
 2336                         goto out;
 2337         } else
 2338                 if (tdq->tdq_load - 1 > 0)
 2339                         goto out;
 2340         load = 0;
 2341 out:
 2342         return (load);
 2343 }
 2344 
 2345 /*
 2346  * Choose the highest priority thread to run.  The thread is removed from
 2347  * the run-queue while running however the load remains.  For SMP we set
 2348  * the tdq in the global idle bitmask if it idles here.
 2349  */
 2350 struct thread *
 2351 sched_choose(void)
 2352 {
 2353         struct thread *td;
 2354         struct tdq *tdq;
 2355 
 2356         tdq = TDQ_SELF();
 2357         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2358         td = tdq_choose(tdq);
 2359         if (td) {
 2360                 tdq_runq_rem(tdq, td);
 2361                 tdq->tdq_lowpri = td->td_priority;
 2362                 return (td);
 2363         }
 2364         tdq->tdq_lowpri = PRI_MAX_IDLE;
 2365         return (PCPU_GET(idlethread));
 2366 }
 2367 
 2368 /*
 2369  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
 2370  * we always request it once we exit a critical section.
 2371  */
 2372 static inline void
 2373 sched_setpreempt(struct thread *td)
 2374 {
 2375         struct thread *ctd;
 2376         int cpri;
 2377         int pri;
 2378 
 2379         THREAD_LOCK_ASSERT(curthread, MA_OWNED);
 2380 
 2381         ctd = curthread;
 2382         pri = td->td_priority;
 2383         cpri = ctd->td_priority;
 2384         if (pri < cpri)
 2385                 ctd->td_flags |= TDF_NEEDRESCHED;
 2386         if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
 2387                 return;
 2388         if (!sched_shouldpreempt(pri, cpri, 0))
 2389                 return;
 2390         ctd->td_owepreempt = 1;
 2391 }
 2392 
 2393 /*
 2394  * Add a thread to a thread queue.  Select the appropriate runq and add the
 2395  * thread to it.  This is the internal function called when the tdq is
 2396  * predetermined.
 2397  */
 2398 void
 2399 tdq_add(struct tdq *tdq, struct thread *td, int flags)
 2400 {
 2401 
 2402         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2403         KASSERT((td->td_inhibitors == 0),
 2404             ("sched_add: trying to run inhibited thread"));
 2405         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 2406             ("sched_add: bad thread state"));
 2407         KASSERT(td->td_flags & TDF_INMEM,
 2408             ("sched_add: thread swapped out"));
 2409 
 2410         if (td->td_priority < tdq->tdq_lowpri)
 2411                 tdq->tdq_lowpri = td->td_priority;
 2412         tdq_runq_add(tdq, td, flags);
 2413         tdq_load_add(tdq, td);
 2414 }
 2415 
 2416 /*
 2417  * Select the target thread queue and add a thread to it.  Request
 2418  * preemption or IPI a remote processor if required.
 2419  */
 2420 void
 2421 sched_add(struct thread *td, int flags)
 2422 {
 2423         struct tdq *tdq;
 2424 #ifdef SMP
 2425         int cpu;
 2426 #endif
 2427 
 2428         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 2429             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 2430             sched_tdname(curthread));
 2431         KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 2432             KTR_ATTR_LINKED, sched_tdname(td));
 2433         SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
 2434             flags & SRQ_PREEMPTED);
 2435         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2436         /*
 2437          * Recalculate the priority before we select the target cpu or
 2438          * run-queue.
 2439          */
 2440         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
 2441                 sched_priority(td);
 2442 #ifdef SMP
 2443         /*
 2444          * Pick the destination cpu and if it isn't ours transfer to the
 2445          * target cpu.
 2446          */
 2447         cpu = sched_pickcpu(td, flags);
 2448         tdq = sched_setcpu(td, cpu, flags);
 2449         tdq_add(tdq, td, flags);
 2450         if (cpu != PCPU_GET(cpuid)) {
 2451                 tdq_notify(tdq, td);
 2452                 return;
 2453         }
 2454 #else
 2455         tdq = TDQ_SELF();
 2456         TDQ_LOCK(tdq);
 2457         /*
 2458          * Now that the thread is moving to the run-queue, set the lock
 2459          * to the scheduler's lock.
 2460          */
 2461         thread_lock_set(td, TDQ_LOCKPTR(tdq));
 2462         tdq_add(tdq, td, flags);
 2463 #endif
 2464         if (!(flags & SRQ_YIELDING))
 2465                 sched_setpreempt(td);
 2466 }
 2467 
 2468 /*
 2469  * Remove a thread from a run-queue without running it.  This is used
 2470  * when we're stealing a thread from a remote queue.  Otherwise all threads
 2471  * exit by calling sched_exit_thread() and sched_throw() themselves.
 2472  */
 2473 void
 2474 sched_rem(struct thread *td)
 2475 {
 2476         struct tdq *tdq;
 2477 
 2478         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
 2479             "prio:%d", td->td_priority);
 2480         SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
 2481         tdq = TDQ_CPU(td_get_sched(td)->ts_cpu);
 2482         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2483         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2484         KASSERT(TD_ON_RUNQ(td),
 2485             ("sched_rem: thread not on run queue"));
 2486         tdq_runq_rem(tdq, td);
 2487         tdq_load_rem(tdq, td);
 2488         TD_SET_CAN_RUN(td);
 2489         if (td->td_priority == tdq->tdq_lowpri)
 2490                 tdq_setlowpri(tdq, NULL);
 2491 }
 2492 
 2493 /*
 2494  * Fetch cpu utilization information.  Updates on demand.
 2495  */
 2496 fixpt_t
 2497 sched_pctcpu(struct thread *td)
 2498 {
 2499         fixpt_t pctcpu;
 2500         struct td_sched *ts;
 2501 
 2502         pctcpu = 0;
 2503         ts = td_get_sched(td);
 2504 
 2505         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2506         sched_pctcpu_update(ts, TD_IS_RUNNING(td));
 2507         if (ts->ts_ticks) {
 2508                 int rtick;
 2509 
 2510                 /* How many rtick per second ? */
 2511                 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
 2512                 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
 2513         }
 2514 
 2515         return (pctcpu);
 2516 }
 2517 
 2518 /*
 2519  * Enforce affinity settings for a thread.  Called after adjustments to
 2520  * cpumask.
 2521  */
 2522 void
 2523 sched_affinity(struct thread *td)
 2524 {
 2525 #ifdef SMP
 2526         struct td_sched *ts;
 2527 
 2528         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2529         ts = td_get_sched(td);
 2530         if (THREAD_CAN_SCHED(td, ts->ts_cpu))
 2531                 return;
 2532         if (TD_ON_RUNQ(td)) {
 2533                 sched_rem(td);
 2534                 sched_add(td, SRQ_BORING);
 2535                 return;
 2536         }
 2537         if (!TD_IS_RUNNING(td))
 2538                 return;
 2539         /*
 2540          * Force a switch before returning to userspace.  If the
 2541          * target thread is not running locally send an ipi to force
 2542          * the issue.
 2543          */
 2544         td->td_flags |= TDF_NEEDRESCHED;
 2545         if (td != curthread)
 2546                 ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
 2547 #endif
 2548 }
 2549 
 2550 /*
 2551  * Bind a thread to a target cpu.
 2552  */
 2553 void
 2554 sched_bind(struct thread *td, int cpu)
 2555 {
 2556         struct td_sched *ts;
 2557 
 2558         THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
 2559         KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
 2560         ts = td_get_sched(td);
 2561         if (ts->ts_flags & TSF_BOUND)
 2562                 sched_unbind(td);
 2563         KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
 2564         ts->ts_flags |= TSF_BOUND;
 2565         sched_pin();
 2566         if (PCPU_GET(cpuid) == cpu)
 2567                 return;
 2568         ts->ts_cpu = cpu;
 2569         /* When we return from mi_switch we'll be on the correct cpu. */
 2570         mi_switch(SW_VOL, NULL);
 2571 }
 2572 
 2573 /*
 2574  * Release a bound thread.
 2575  */
 2576 void
 2577 sched_unbind(struct thread *td)
 2578 {
 2579         struct td_sched *ts;
 2580 
 2581         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2582         KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
 2583         ts = td_get_sched(td);
 2584         if ((ts->ts_flags & TSF_BOUND) == 0)
 2585                 return;
 2586         ts->ts_flags &= ~TSF_BOUND;
 2587         sched_unpin();
 2588 }
 2589 
 2590 int
 2591 sched_is_bound(struct thread *td)
 2592 {
 2593         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2594         return (td_get_sched(td)->ts_flags & TSF_BOUND);
 2595 }
 2596 
 2597 /*
 2598  * Basic yield call.
 2599  */
 2600 void
 2601 sched_relinquish(struct thread *td)
 2602 {
 2603         thread_lock(td);
 2604         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
 2605         thread_unlock(td);
 2606 }
 2607 
 2608 /*
 2609  * Return the total system load.
 2610  */
 2611 int
 2612 sched_load(void)
 2613 {
 2614 #ifdef SMP
 2615         int total;
 2616         int i;
 2617 
 2618         total = 0;
 2619         CPU_FOREACH(i)
 2620                 total += TDQ_CPU(i)->tdq_sysload;
 2621         return (total);
 2622 #else
 2623         return (TDQ_SELF()->tdq_sysload);
 2624 #endif
 2625 }
 2626 
 2627 int
 2628 sched_sizeof_proc(void)
 2629 {
 2630         return (sizeof(struct proc));
 2631 }
 2632 
 2633 int
 2634 sched_sizeof_thread(void)
 2635 {
 2636         return (sizeof(struct thread) + sizeof(struct td_sched));
 2637 }
 2638 
 2639 #ifdef SMP
 2640 #define TDQ_IDLESPIN(tdq)                                               \
 2641     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
 2642 #else
 2643 #define TDQ_IDLESPIN(tdq)       1
 2644 #endif
 2645 
 2646 /*
 2647  * The actual idle process.
 2648  */
 2649 void
 2650 sched_idletd(void *dummy)
 2651 {
 2652         struct thread *td;
 2653         struct tdq *tdq;
 2654         int oldswitchcnt, switchcnt;
 2655         int i;
 2656 
 2657         mtx_assert(&Giant, MA_NOTOWNED);
 2658         td = curthread;
 2659         tdq = TDQ_SELF();
 2660         THREAD_NO_SLEEPING();
 2661         oldswitchcnt = -1;
 2662         for (;;) {
 2663                 if (tdq->tdq_load) {
 2664                         thread_lock(td);
 2665                         mi_switch(SW_VOL | SWT_IDLE, NULL);
 2666                         thread_unlock(td);
 2667                 }
 2668                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2669 #ifdef SMP
 2670                 if (switchcnt != oldswitchcnt) {
 2671                         oldswitchcnt = switchcnt;
 2672                         if (tdq_idled(tdq) == 0)
 2673                                 continue;
 2674                 }
 2675                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2676 #else
 2677                 oldswitchcnt = switchcnt;
 2678 #endif
 2679                 /*
 2680                  * If we're switching very frequently, spin while checking
 2681                  * for load rather than entering a low power state that 
 2682                  * may require an IPI.  However, don't do any busy
 2683                  * loops while on SMT machines as this simply steals
 2684                  * cycles from cores doing useful work.
 2685                  */
 2686                 if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
 2687                         for (i = 0; i < sched_idlespins; i++) {
 2688                                 if (tdq->tdq_load)
 2689                                         break;
 2690                                 cpu_spinwait();
 2691                         }
 2692                 }
 2693 
 2694                 /* If there was context switch during spin, restart it. */
 2695                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2696                 if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt)
 2697                         continue;
 2698 
 2699                 /* Run main MD idle handler. */
 2700                 tdq->tdq_cpu_idle = 1;
 2701                 /*
 2702                  * Make sure that tdq_cpu_idle update is globally visible
 2703                  * before cpu_idle() read tdq_load.  The order is important
 2704                  * to avoid race with tdq_notify.
 2705                  */
 2706                 atomic_thread_fence_seq_cst();
 2707                 cpu_idle(switchcnt * 4 > sched_idlespinthresh);
 2708                 tdq->tdq_cpu_idle = 0;
 2709 
 2710                 /*
 2711                  * Account thread-less hardware interrupts and
 2712                  * other wakeup reasons equal to context switches.
 2713                  */
 2714                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2715                 if (switchcnt != oldswitchcnt)
 2716                         continue;
 2717                 tdq->tdq_switchcnt++;
 2718                 oldswitchcnt++;
 2719         }
 2720 }
 2721 
 2722 /*
 2723  * A CPU is entering for the first time or a thread is exiting.
 2724  */
 2725 void
 2726 sched_throw(struct thread *td)
 2727 {
 2728         struct thread *newtd;
 2729         struct tdq *tdq;
 2730 
 2731         tdq = TDQ_SELF();
 2732         if (td == NULL) {
 2733                 /* Correct spinlock nesting and acquire the correct lock. */
 2734                 TDQ_LOCK(tdq);
 2735                 spinlock_exit();
 2736                 PCPU_SET(switchtime, cpu_ticks());
 2737                 PCPU_SET(switchticks, ticks);
 2738         } else {
 2739                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2740                 tdq_load_rem(tdq, td);
 2741                 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
 2742                 td->td_lastcpu = td->td_oncpu;
 2743                 td->td_oncpu = NOCPU;
 2744         }
 2745         KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
 2746         newtd = choosethread();
 2747         TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
 2748         cpu_throw(td, newtd);           /* doesn't return */
 2749 }
 2750 
 2751 /*
 2752  * This is called from fork_exit().  Just acquire the correct locks and
 2753  * let fork do the rest of the work.
 2754  */
 2755 void
 2756 sched_fork_exit(struct thread *td)
 2757 {
 2758         struct tdq *tdq;
 2759         int cpuid;
 2760 
 2761         /*
 2762          * Finish setting up thread glue so that it begins execution in a
 2763          * non-nested critical section with the scheduler lock held.
 2764          */
 2765         cpuid = PCPU_GET(cpuid);
 2766         tdq = TDQ_CPU(cpuid);
 2767         if (TD_IS_IDLETHREAD(td))
 2768                 td->td_lock = TDQ_LOCKPTR(tdq);
 2769         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2770         td->td_oncpu = cpuid;
 2771         TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 2772         lock_profile_obtain_lock_success(
 2773             &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
 2774 
 2775         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 2776             "prio:%d", td->td_priority);
 2777         SDT_PROBE0(sched, , , on__cpu);
 2778 }
 2779 
 2780 /*
 2781  * Create on first use to catch odd startup conditons.
 2782  */
 2783 char *
 2784 sched_tdname(struct thread *td)
 2785 {
 2786 #ifdef KTR
 2787         struct td_sched *ts;
 2788 
 2789         ts = td_get_sched(td);
 2790         if (ts->ts_name[0] == '\0')
 2791                 snprintf(ts->ts_name, sizeof(ts->ts_name),
 2792                     "%s tid %d", td->td_name, td->td_tid);
 2793         return (ts->ts_name);
 2794 #else
 2795         return (td->td_name);
 2796 #endif
 2797 }
 2798 
 2799 #ifdef KTR
 2800 void
 2801 sched_clear_tdname(struct thread *td)
 2802 {
 2803         struct td_sched *ts;
 2804 
 2805         ts = td_get_sched(td);
 2806         ts->ts_name[0] = '\0';
 2807 }
 2808 #endif
 2809 
 2810 #ifdef SMP
 2811 
 2812 /*
 2813  * Build the CPU topology dump string. Is recursively called to collect
 2814  * the topology tree.
 2815  */
 2816 static int
 2817 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
 2818     int indent)
 2819 {
 2820         char cpusetbuf[CPUSETBUFSIZ];
 2821         int i, first;
 2822 
 2823         sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
 2824             "", 1 + indent / 2, cg->cg_level);
 2825         sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
 2826             cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
 2827         first = TRUE;
 2828         for (i = 0; i < MAXCPU; i++) {
 2829                 if (CPU_ISSET(i, &cg->cg_mask)) {
 2830                         if (!first)
 2831                                 sbuf_printf(sb, ", ");
 2832                         else
 2833                                 first = FALSE;
 2834                         sbuf_printf(sb, "%d", i);
 2835                 }
 2836         }
 2837         sbuf_printf(sb, "</cpu>\n");
 2838 
 2839         if (cg->cg_flags != 0) {
 2840                 sbuf_printf(sb, "%*s <flags>", indent, "");
 2841                 if ((cg->cg_flags & CG_FLAG_HTT) != 0)
 2842                         sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
 2843                 if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
 2844                         sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
 2845                 if ((cg->cg_flags & CG_FLAG_SMT) != 0)
 2846                         sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
 2847                 sbuf_printf(sb, "</flags>\n");
 2848         }
 2849 
 2850         if (cg->cg_children > 0) {
 2851                 sbuf_printf(sb, "%*s <children>\n", indent, "");
 2852                 for (i = 0; i < cg->cg_children; i++)
 2853                         sysctl_kern_sched_topology_spec_internal(sb, 
 2854                             &cg->cg_child[i], indent+2);
 2855                 sbuf_printf(sb, "%*s </children>\n", indent, "");
 2856         }
 2857         sbuf_printf(sb, "%*s</group>\n", indent, "");
 2858         return (0);
 2859 }
 2860 
 2861 /*
 2862  * Sysctl handler for retrieving topology dump. It's a wrapper for
 2863  * the recursive sysctl_kern_smp_topology_spec_internal().
 2864  */
 2865 static int
 2866 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
 2867 {
 2868         struct sbuf *topo;
 2869         int err;
 2870 
 2871         KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
 2872 
 2873         topo = sbuf_new_for_sysctl(NULL, NULL, 512, req);
 2874         if (topo == NULL)
 2875                 return (ENOMEM);
 2876 
 2877         sbuf_printf(topo, "<groups>\n");
 2878         err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
 2879         sbuf_printf(topo, "</groups>\n");
 2880 
 2881         if (err == 0) {
 2882                 err = sbuf_finish(topo);
 2883         }
 2884         sbuf_delete(topo);
 2885         return (err);
 2886 }
 2887 
 2888 #endif
 2889 
 2890 static int
 2891 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
 2892 {
 2893         int error, new_val, period;
 2894 
 2895         period = 1000000 / realstathz;
 2896         new_val = period * sched_slice;
 2897         error = sysctl_handle_int(oidp, &new_val, 0, req);
 2898         if (error != 0 || req->newptr == NULL)
 2899                 return (error);
 2900         if (new_val <= 0)
 2901                 return (EINVAL);
 2902         sched_slice = imax(1, (new_val + period / 2) / period);
 2903         sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
 2904         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 2905             realstathz);
 2906         return (0);
 2907 }
 2908 
 2909 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
 2910 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
 2911     "Scheduler name");
 2912 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
 2913     NULL, 0, sysctl_kern_quantum, "I",
 2914     "Quantum for timeshare threads in microseconds");
 2915 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
 2916     "Quantum for timeshare threads in stathz ticks");
 2917 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
 2918     "Interactivity score threshold");
 2919 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
 2920     &preempt_thresh, 0,
 2921     "Maximal (lowest) priority for preemption");
 2922 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
 2923     "Assign static kernel priorities to sleeping threads");
 2924 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
 2925     "Number of times idle thread will spin waiting for new work");
 2926 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
 2927     &sched_idlespinthresh, 0,
 2928     "Threshold before we will permit idle thread spinning");
 2929 #ifdef SMP
 2930 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
 2931     "Number of hz ticks to keep thread affinity for");
 2932 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
 2933     "Enables the long-term load balancer");
 2934 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
 2935     &balance_interval, 0,
 2936     "Average period in stathz ticks to run the long-term balancer");
 2937 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
 2938     "Attempts to steal work from other cores before idling");
 2939 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
 2940     "Minimum load on remote CPU before we'll steal");
 2941 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
 2942     CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
 2943     "XML dump of detected CPU topology");
 2944 #endif
 2945 
 2946 /* ps compat.  All cpu percentages from ULE are weighted. */
 2947 static int ccpu = 0;
 2948 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");

Cache object: 964777a287e528c5a321cfe3b772644a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.