The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sched_ule.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice unmodified, this list of conditions, and the following
   12  *    disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 /*
   30  * This file implements the ULE scheduler.  ULE supports independent CPU
   31  * run queues and fine grain locking.  It has superior interactive
   32  * performance under load even on uni-processor systems.
   33  *
   34  * etymology:
   35  *   ULE is the last three letters in schedule.  It owes its name to a
   36  * generic user created for a scheduling system by Paul Mikesell at
   37  * Isilon Systems and a general lack of creativity on the part of the author.
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD$");
   42 
   43 #include "opt_hwpmc_hooks.h"
   44 #include "opt_sched.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/kdb.h>
   49 #include <sys/kernel.h>
   50 #include <sys/ktr.h>
   51 #include <sys/limits.h>
   52 #include <sys/lock.h>
   53 #include <sys/mutex.h>
   54 #include <sys/proc.h>
   55 #include <sys/resource.h>
   56 #include <sys/resourcevar.h>
   57 #include <sys/sched.h>
   58 #include <sys/sdt.h>
   59 #include <sys/smp.h>
   60 #include <sys/sx.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/sysproto.h>
   63 #include <sys/turnstile.h>
   64 #include <sys/umtx.h>
   65 #include <sys/vmmeter.h>
   66 #include <sys/cpuset.h>
   67 #include <sys/sbuf.h>
   68 
   69 #ifdef HWPMC_HOOKS
   70 #include <sys/pmckern.h>
   71 #endif
   72 
   73 #ifdef KDTRACE_HOOKS
   74 #include <sys/dtrace_bsd.h>
   75 int __read_mostly               dtrace_vtime_active;
   76 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
   77 #endif
   78 
   79 #include <machine/cpu.h>
   80 #include <machine/smp.h>
   81 
   82 #define KTR_ULE 0
   83 
   84 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
   85 #define TDQ_NAME_LEN    (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
   86 #define TDQ_LOADNAME_LEN        (sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
   87 
   88 /*
   89  * Thread scheduler specific section.  All fields are protected
   90  * by the thread lock.
   91  */
   92 struct td_sched {       
   93         struct runq     *ts_runq;       /* Run-queue we're queued on. */
   94         short           ts_flags;       /* TSF_* flags. */
   95         int             ts_cpu;         /* CPU that we have affinity for. */
   96         int             ts_rltick;      /* Real last tick, for affinity. */
   97         int             ts_slice;       /* Ticks of slice remaining. */
   98         u_int           ts_slptime;     /* Number of ticks we vol. slept */
   99         u_int           ts_runtime;     /* Number of ticks we were running */
  100         int             ts_ltick;       /* Last tick that we were running on */
  101         int             ts_ftick;       /* First tick that we were running on */
  102         int             ts_ticks;       /* Tick count */
  103 #ifdef KTR
  104         char            ts_name[TS_NAME_LEN];
  105 #endif
  106 };
  107 /* flags kept in ts_flags */
  108 #define TSF_BOUND       0x0001          /* Thread can not migrate. */
  109 #define TSF_XFERABLE    0x0002          /* Thread was added as transferable. */
  110 
  111 #define THREAD_CAN_MIGRATE(td)  ((td)->td_pinned == 0)
  112 #define THREAD_CAN_SCHED(td, cpu)       \
  113     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
  114 
  115 _Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
  116     sizeof(struct thread0_storage),
  117     "increase struct thread0_storage.t0st_sched size");
  118 
  119 /*
  120  * Priority ranges used for interactive and non-interactive timeshare
  121  * threads.  The timeshare priorities are split up into four ranges.
  122  * The first range handles interactive threads.  The last three ranges
  123  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
  124  * ranges supporting nice values.
  125  */
  126 #define PRI_TIMESHARE_RANGE     (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
  127 #define PRI_INTERACT_RANGE      ((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
  128 #define PRI_BATCH_RANGE         (PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
  129 
  130 #define PRI_MIN_INTERACT        PRI_MIN_TIMESHARE
  131 #define PRI_MAX_INTERACT        (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
  132 #define PRI_MIN_BATCH           (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
  133 #define PRI_MAX_BATCH           PRI_MAX_TIMESHARE
  134 
  135 /*
  136  * Cpu percentage computation macros and defines.
  137  *
  138  * SCHED_TICK_SECS:     Number of seconds to average the cpu usage across.
  139  * SCHED_TICK_TARG:     Number of hz ticks to average the cpu usage across.
  140  * SCHED_TICK_MAX:      Maximum number of ticks before scaling back.
  141  * SCHED_TICK_SHIFT:    Shift factor to avoid rounding away results.
  142  * SCHED_TICK_HZ:       Compute the number of hz ticks for a given ticks count.
  143  * SCHED_TICK_TOTAL:    Gives the amount of time we've been recording ticks.
  144  */
  145 #define SCHED_TICK_SECS         10
  146 #define SCHED_TICK_TARG         (hz * SCHED_TICK_SECS)
  147 #define SCHED_TICK_MAX          (SCHED_TICK_TARG + hz)
  148 #define SCHED_TICK_SHIFT        10
  149 #define SCHED_TICK_HZ(ts)       ((ts)->ts_ticks >> SCHED_TICK_SHIFT)
  150 #define SCHED_TICK_TOTAL(ts)    (max((ts)->ts_ltick - (ts)->ts_ftick, hz))
  151 
  152 /*
  153  * These macros determine priorities for non-interactive threads.  They are
  154  * assigned a priority based on their recent cpu utilization as expressed
  155  * by the ratio of ticks to the tick total.  NHALF priorities at the start
  156  * and end of the MIN to MAX timeshare range are only reachable with negative
  157  * or positive nice respectively.
  158  *
  159  * PRI_RANGE:   Priority range for utilization dependent priorities.
  160  * PRI_NRESV:   Number of nice values.
  161  * PRI_TICKS:   Compute a priority in PRI_RANGE from the ticks count and total.
  162  * PRI_NICE:    Determines the part of the priority inherited from nice.
  163  */
  164 #define SCHED_PRI_NRESV         (PRIO_MAX - PRIO_MIN)
  165 #define SCHED_PRI_NHALF         (SCHED_PRI_NRESV / 2)
  166 #define SCHED_PRI_MIN           (PRI_MIN_BATCH + SCHED_PRI_NHALF)
  167 #define SCHED_PRI_MAX           (PRI_MAX_BATCH - SCHED_PRI_NHALF)
  168 #define SCHED_PRI_RANGE         (SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
  169 #define SCHED_PRI_TICKS(ts)                                             \
  170     (SCHED_TICK_HZ((ts)) /                                              \
  171     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
  172 #define SCHED_PRI_NICE(nice)    (nice)
  173 
  174 /*
  175  * These determine the interactivity of a process.  Interactivity differs from
  176  * cpu utilization in that it expresses the voluntary time slept vs time ran
  177  * while cpu utilization includes all time not running.  This more accurately
  178  * models the intent of the thread.
  179  *
  180  * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
  181  *              before throttling back.
  182  * SLP_RUN_FORK:        Maximum slp+run time to inherit at fork time.
  183  * INTERACT_MAX:        Maximum interactivity value.  Smaller is better.
  184  * INTERACT_THRESH:     Threshold for placement on the current runq.
  185  */
  186 #define SCHED_SLP_RUN_MAX       ((hz * 5) << SCHED_TICK_SHIFT)
  187 #define SCHED_SLP_RUN_FORK      ((hz / 2) << SCHED_TICK_SHIFT)
  188 #define SCHED_INTERACT_MAX      (100)
  189 #define SCHED_INTERACT_HALF     (SCHED_INTERACT_MAX / 2)
  190 #define SCHED_INTERACT_THRESH   (30)
  191 
  192 /*
  193  * These parameters determine the slice behavior for batch work.
  194  */
  195 #define SCHED_SLICE_DEFAULT_DIVISOR     10      /* ~94 ms, 12 stathz ticks. */
  196 #define SCHED_SLICE_MIN_DIVISOR         6       /* DEFAULT/MIN = ~16 ms. */
  197 
  198 /* Flags kept in td_flags. */
  199 #define TDF_SLICEEND    TDF_SCHED2      /* Thread time slice is over. */
  200 
  201 /*
  202  * tickincr:            Converts a stathz tick into a hz domain scaled by
  203  *                      the shift factor.  Without the shift the error rate
  204  *                      due to rounding would be unacceptably high.
  205  * realstathz:          stathz is sometimes 0 and run off of hz.
  206  * sched_slice:         Runtime of each thread before rescheduling.
  207  * preempt_thresh:      Priority threshold for preemption and remote IPIs.
  208  */
  209 static u_int __read_mostly sched_interact = SCHED_INTERACT_THRESH;
  210 static int __read_mostly tickincr = 8 << SCHED_TICK_SHIFT;
  211 static int __read_mostly realstathz = 127;      /* reset during boot. */
  212 static int __read_mostly sched_slice = 10;      /* reset during boot. */
  213 static int __read_mostly sched_slice_min = 1;   /* reset during boot. */
  214 #ifdef PREEMPTION
  215 #ifdef FULL_PREEMPTION
  216 static int __read_mostly preempt_thresh = PRI_MAX_IDLE;
  217 #else
  218 static int __read_mostly preempt_thresh = PRI_MIN_KERN;
  219 #endif
  220 #else 
  221 static int __read_mostly preempt_thresh = 0;
  222 #endif
  223 static int __read_mostly static_boost = PRI_MIN_BATCH;
  224 static int __read_mostly sched_idlespins = 10000;
  225 static int __read_mostly sched_idlespinthresh = -1;
  226 
  227 /*
  228  * tdq - per processor runqs and statistics.  All fields are protected by the
  229  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
  230  * locking in sched_pickcpu();
  231  */
  232 struct tdq {
  233         /* 
  234          * Ordered to improve efficiency of cpu_search() and switch().
  235          * tdq_lock is padded to avoid false sharing with tdq_load and
  236          * tdq_cpu_idle.
  237          */
  238         struct mtx_padalign tdq_lock;           /* run queue lock. */
  239         struct cpu_group *tdq_cg;               /* Pointer to cpu topology. */
  240         volatile int    tdq_load;               /* Aggregate load. */
  241         volatile int    tdq_cpu_idle;           /* cpu_idle() is active. */
  242         int             tdq_sysload;            /* For loadavg, !ITHD load. */
  243         volatile int    tdq_transferable;       /* Transferable thread count. */
  244         volatile short  tdq_switchcnt;          /* Switches this tick. */
  245         volatile short  tdq_oldswitchcnt;       /* Switches last tick. */
  246         u_char          tdq_lowpri;             /* Lowest priority thread. */
  247         u_char          tdq_ipipending;         /* IPI pending. */
  248         u_char          tdq_idx;                /* Current insert index. */
  249         u_char          tdq_ridx;               /* Current removal index. */
  250         int             tdq_id;                 /* cpuid. */
  251         struct runq     tdq_realtime;           /* real-time run queue. */
  252         struct runq     tdq_timeshare;          /* timeshare run queue. */
  253         struct runq     tdq_idle;               /* Queue of IDLE threads. */
  254         char            tdq_name[TDQ_NAME_LEN];
  255 #ifdef KTR
  256         char            tdq_loadname[TDQ_LOADNAME_LEN];
  257 #endif
  258 } __aligned(64);
  259 
  260 /* Idle thread states and config. */
  261 #define TDQ_RUNNING     1
  262 #define TDQ_IDLE        2
  263 
  264 #ifdef SMP
  265 struct cpu_group __read_mostly *cpu_top;                /* CPU topology */
  266 
  267 #define SCHED_AFFINITY_DEFAULT  (max(1, hz / 1000))
  268 #define SCHED_AFFINITY(ts, t)   ((ts)->ts_rltick > ticks - ((t) * affinity))
  269 
  270 /*
  271  * Run-time tunables.
  272  */
  273 static int rebalance = 1;
  274 static int balance_interval = 128;      /* Default set in sched_initticks(). */
  275 static int __read_mostly affinity;
  276 static int __read_mostly steal_idle = 1;
  277 static int __read_mostly steal_thresh = 2;
  278 static int __read_mostly always_steal = 0;
  279 static int __read_mostly trysteal_limit = 2;
  280 
  281 /*
  282  * One thread queue per processor.
  283  */
  284 static struct tdq __read_mostly *balance_tdq;
  285 static int balance_ticks;
  286 DPCPU_DEFINE_STATIC(struct tdq, tdq);
  287 DPCPU_DEFINE_STATIC(uint32_t, randomval);
  288 
  289 #define TDQ_SELF()      (DPCPU_PTR(tdq))
  290 #define TDQ_CPU(x)      (DPCPU_ID_PTR((x), tdq))
  291 #define TDQ_ID(x)       ((x)->tdq_id)
  292 #else   /* !SMP */
  293 static struct tdq       tdq_cpu;
  294 
  295 #define TDQ_ID(x)       (0)
  296 #define TDQ_SELF()      (&tdq_cpu)
  297 #define TDQ_CPU(x)      (&tdq_cpu)
  298 #endif
  299 
  300 #define TDQ_LOCK_ASSERT(t, type)        mtx_assert(TDQ_LOCKPTR((t)), (type))
  301 #define TDQ_LOCK(t)             mtx_lock_spin(TDQ_LOCKPTR((t)))
  302 #define TDQ_LOCK_FLAGS(t, f)    mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
  303 #define TDQ_UNLOCK(t)           mtx_unlock_spin(TDQ_LOCKPTR((t)))
  304 #define TDQ_LOCKPTR(t)          ((struct mtx *)(&(t)->tdq_lock))
  305 
  306 static void sched_priority(struct thread *);
  307 static void sched_thread_priority(struct thread *, u_char);
  308 static int sched_interact_score(struct thread *);
  309 static void sched_interact_update(struct thread *);
  310 static void sched_interact_fork(struct thread *);
  311 static void sched_pctcpu_update(struct td_sched *, int);
  312 
  313 /* Operations on per processor queues */
  314 static struct thread *tdq_choose(struct tdq *);
  315 static void tdq_setup(struct tdq *, int i);
  316 static void tdq_load_add(struct tdq *, struct thread *);
  317 static void tdq_load_rem(struct tdq *, struct thread *);
  318 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
  319 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
  320 static inline int sched_shouldpreempt(int, int, int);
  321 void tdq_print(int cpu);
  322 static void runq_print(struct runq *rq);
  323 static void tdq_add(struct tdq *, struct thread *, int);
  324 #ifdef SMP
  325 static struct thread *tdq_move(struct tdq *, struct tdq *);
  326 static int tdq_idled(struct tdq *);
  327 static void tdq_notify(struct tdq *, struct thread *);
  328 static struct thread *tdq_steal(struct tdq *, int);
  329 static struct thread *runq_steal(struct runq *, int);
  330 static int sched_pickcpu(struct thread *, int);
  331 static void sched_balance(void);
  332 static int sched_balance_pair(struct tdq *, struct tdq *);
  333 static inline struct tdq *sched_setcpu(struct thread *, int, int);
  334 static inline void thread_unblock_switch(struct thread *, struct mtx *);
  335 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
  336 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
  337 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 
  338     struct cpu_group *cg, int indent);
  339 #endif
  340 
  341 static void sched_setup(void *dummy);
  342 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
  343 
  344 static void sched_initticks(void *dummy);
  345 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
  346     NULL);
  347 
  348 SDT_PROVIDER_DEFINE(sched);
  349 
  350 SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *", 
  351     "struct proc *", "uint8_t");
  352 SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *", 
  353     "struct proc *", "void *");
  354 SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *", 
  355     "struct proc *", "void *", "int");
  356 SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *", 
  357     "struct proc *", "uint8_t", "struct thread *");
  358 SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
  359 SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *", 
  360     "struct proc *");
  361 SDT_PROBE_DEFINE(sched, , , on__cpu);
  362 SDT_PROBE_DEFINE(sched, , , remain__cpu);
  363 SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *", 
  364     "struct proc *");
  365 
  366 /*
  367  * Print the threads waiting on a run-queue.
  368  */
  369 static void
  370 runq_print(struct runq *rq)
  371 {
  372         struct rqhead *rqh;
  373         struct thread *td;
  374         int pri;
  375         int j;
  376         int i;
  377 
  378         for (i = 0; i < RQB_LEN; i++) {
  379                 printf("\t\trunq bits %d 0x%zx\n",
  380                     i, rq->rq_status.rqb_bits[i]);
  381                 for (j = 0; j < RQB_BPW; j++)
  382                         if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
  383                                 pri = j + (i << RQB_L2BPW);
  384                                 rqh = &rq->rq_queues[pri];
  385                                 TAILQ_FOREACH(td, rqh, td_runq) {
  386                                         printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
  387                                             td, td->td_name, td->td_priority,
  388                                             td->td_rqindex, pri);
  389                                 }
  390                         }
  391         }
  392 }
  393 
  394 /*
  395  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
  396  */
  397 void
  398 tdq_print(int cpu)
  399 {
  400         struct tdq *tdq;
  401 
  402         tdq = TDQ_CPU(cpu);
  403 
  404         printf("tdq %d:\n", TDQ_ID(tdq));
  405         printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
  406         printf("\tLock name:      %s\n", tdq->tdq_name);
  407         printf("\tload:           %d\n", tdq->tdq_load);
  408         printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
  409         printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
  410         printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
  411         printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
  412         printf("\tload transferable: %d\n", tdq->tdq_transferable);
  413         printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
  414         printf("\trealtime runq:\n");
  415         runq_print(&tdq->tdq_realtime);
  416         printf("\ttimeshare runq:\n");
  417         runq_print(&tdq->tdq_timeshare);
  418         printf("\tidle runq:\n");
  419         runq_print(&tdq->tdq_idle);
  420 }
  421 
  422 static inline int
  423 sched_shouldpreempt(int pri, int cpri, int remote)
  424 {
  425         /*
  426          * If the new priority is not better than the current priority there is
  427          * nothing to do.
  428          */
  429         if (pri >= cpri)
  430                 return (0);
  431         /*
  432          * Always preempt idle.
  433          */
  434         if (cpri >= PRI_MIN_IDLE)
  435                 return (1);
  436         /*
  437          * If preemption is disabled don't preempt others.
  438          */
  439         if (preempt_thresh == 0)
  440                 return (0);
  441         /*
  442          * Preempt if we exceed the threshold.
  443          */
  444         if (pri <= preempt_thresh)
  445                 return (1);
  446         /*
  447          * If we're interactive or better and there is non-interactive
  448          * or worse running preempt only remote processors.
  449          */
  450         if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
  451                 return (1);
  452         return (0);
  453 }
  454 
  455 /*
  456  * Add a thread to the actual run-queue.  Keeps transferable counts up to
  457  * date with what is actually on the run-queue.  Selects the correct
  458  * queue position for timeshare threads.
  459  */
  460 static __inline void
  461 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
  462 {
  463         struct td_sched *ts;
  464         u_char pri;
  465 
  466         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  467         THREAD_LOCK_ASSERT(td, MA_OWNED);
  468 
  469         pri = td->td_priority;
  470         ts = td_get_sched(td);
  471         TD_SET_RUNQ(td);
  472         if (THREAD_CAN_MIGRATE(td)) {
  473                 tdq->tdq_transferable++;
  474                 ts->ts_flags |= TSF_XFERABLE;
  475         }
  476         if (pri < PRI_MIN_BATCH) {
  477                 ts->ts_runq = &tdq->tdq_realtime;
  478         } else if (pri <= PRI_MAX_BATCH) {
  479                 ts->ts_runq = &tdq->tdq_timeshare;
  480                 KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
  481                         ("Invalid priority %d on timeshare runq", pri));
  482                 /*
  483                  * This queue contains only priorities between MIN and MAX
  484                  * realtime.  Use the whole queue to represent these values.
  485                  */
  486                 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
  487                         pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
  488                         pri = (pri + tdq->tdq_idx) % RQ_NQS;
  489                         /*
  490                          * This effectively shortens the queue by one so we
  491                          * can have a one slot difference between idx and
  492                          * ridx while we wait for threads to drain.
  493                          */
  494                         if (tdq->tdq_ridx != tdq->tdq_idx &&
  495                             pri == tdq->tdq_ridx)
  496                                 pri = (unsigned char)(pri - 1) % RQ_NQS;
  497                 } else
  498                         pri = tdq->tdq_ridx;
  499                 runq_add_pri(ts->ts_runq, td, pri, flags);
  500                 return;
  501         } else
  502                 ts->ts_runq = &tdq->tdq_idle;
  503         runq_add(ts->ts_runq, td, flags);
  504 }
  505 
  506 /* 
  507  * Remove a thread from a run-queue.  This typically happens when a thread
  508  * is selected to run.  Running threads are not on the queue and the
  509  * transferable count does not reflect them.
  510  */
  511 static __inline void
  512 tdq_runq_rem(struct tdq *tdq, struct thread *td)
  513 {
  514         struct td_sched *ts;
  515 
  516         ts = td_get_sched(td);
  517         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  518         KASSERT(ts->ts_runq != NULL,
  519             ("tdq_runq_remove: thread %p null ts_runq", td));
  520         if (ts->ts_flags & TSF_XFERABLE) {
  521                 tdq->tdq_transferable--;
  522                 ts->ts_flags &= ~TSF_XFERABLE;
  523         }
  524         if (ts->ts_runq == &tdq->tdq_timeshare) {
  525                 if (tdq->tdq_idx != tdq->tdq_ridx)
  526                         runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
  527                 else
  528                         runq_remove_idx(ts->ts_runq, td, NULL);
  529         } else
  530                 runq_remove(ts->ts_runq, td);
  531 }
  532 
  533 /*
  534  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
  535  * for this thread to the referenced thread queue.
  536  */
  537 static void
  538 tdq_load_add(struct tdq *tdq, struct thread *td)
  539 {
  540 
  541         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  542         THREAD_LOCK_ASSERT(td, MA_OWNED);
  543 
  544         tdq->tdq_load++;
  545         if ((td->td_flags & TDF_NOLOAD) == 0)
  546                 tdq->tdq_sysload++;
  547         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  548         SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
  549 }
  550 
  551 /*
  552  * Remove the load from a thread that is transitioning to a sleep state or
  553  * exiting.
  554  */
  555 static void
  556 tdq_load_rem(struct tdq *tdq, struct thread *td)
  557 {
  558 
  559         THREAD_LOCK_ASSERT(td, MA_OWNED);
  560         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  561         KASSERT(tdq->tdq_load != 0,
  562             ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
  563 
  564         tdq->tdq_load--;
  565         if ((td->td_flags & TDF_NOLOAD) == 0)
  566                 tdq->tdq_sysload--;
  567         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  568         SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
  569 }
  570 
  571 /*
  572  * Bound timeshare latency by decreasing slice size as load increases.  We
  573  * consider the maximum latency as the sum of the threads waiting to run
  574  * aside from curthread and target no more than sched_slice latency but
  575  * no less than sched_slice_min runtime.
  576  */
  577 static inline int
  578 tdq_slice(struct tdq *tdq)
  579 {
  580         int load;
  581 
  582         /*
  583          * It is safe to use sys_load here because this is called from
  584          * contexts where timeshare threads are running and so there
  585          * cannot be higher priority load in the system.
  586          */
  587         load = tdq->tdq_sysload - 1;
  588         if (load >= SCHED_SLICE_MIN_DIVISOR)
  589                 return (sched_slice_min);
  590         if (load <= 1)
  591                 return (sched_slice);
  592         return (sched_slice / load);
  593 }
  594 
  595 /*
  596  * Set lowpri to its exact value by searching the run-queue and
  597  * evaluating curthread.  curthread may be passed as an optimization.
  598  */
  599 static void
  600 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
  601 {
  602         struct thread *td;
  603 
  604         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  605         if (ctd == NULL)
  606                 ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
  607         td = tdq_choose(tdq);
  608         if (td == NULL || td->td_priority > ctd->td_priority)
  609                 tdq->tdq_lowpri = ctd->td_priority;
  610         else
  611                 tdq->tdq_lowpri = td->td_priority;
  612 }
  613 
  614 #ifdef SMP
  615 /*
  616  * We need some randomness. Implement a classic Linear Congruential
  617  * Generator X_{n+1}=(aX_n+c) mod m. These values are optimized for
  618  * m = 2^32, a = 69069 and c = 5. We only return the upper 16 bits
  619  * of the random state (in the low bits of our answer) to keep
  620  * the maximum randomness.
  621  */
  622 static uint32_t
  623 sched_random(void)
  624 {
  625         uint32_t *rndptr;
  626 
  627         rndptr = DPCPU_PTR(randomval);
  628         *rndptr = *rndptr * 69069 + 5;
  629 
  630         return (*rndptr >> 16);
  631 }
  632 
  633 struct cpu_search {
  634         cpuset_t cs_mask;
  635         u_int   cs_prefer;
  636         int     cs_pri;         /* Min priority for low. */
  637         int     cs_limit;       /* Max load for low, min load for high. */
  638         int     cs_cpu;
  639         int     cs_load;
  640 };
  641 
  642 #define CPU_SEARCH_LOWEST       0x1
  643 #define CPU_SEARCH_HIGHEST      0x2
  644 #define CPU_SEARCH_BOTH         (CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
  645 
  646 static __always_inline int cpu_search(const struct cpu_group *cg,
  647     struct cpu_search *low, struct cpu_search *high, const int match);
  648 int __noinline cpu_search_lowest(const struct cpu_group *cg,
  649     struct cpu_search *low);
  650 int __noinline cpu_search_highest(const struct cpu_group *cg,
  651     struct cpu_search *high);
  652 int __noinline cpu_search_both(const struct cpu_group *cg,
  653     struct cpu_search *low, struct cpu_search *high);
  654 
  655 /*
  656  * Search the tree of cpu_groups for the lowest or highest loaded cpu
  657  * according to the match argument.  This routine actually compares the
  658  * load on all paths through the tree and finds the least loaded cpu on
  659  * the least loaded path, which may differ from the least loaded cpu in
  660  * the system.  This balances work among caches and buses.
  661  *
  662  * This inline is instantiated in three forms below using constants for the
  663  * match argument.  It is reduced to the minimum set for each case.  It is
  664  * also recursive to the depth of the tree.
  665  */
  666 static __always_inline int
  667 cpu_search(const struct cpu_group *cg, struct cpu_search *low,
  668     struct cpu_search *high, const int match)
  669 {
  670         struct cpu_search lgroup;
  671         struct cpu_search hgroup;
  672         cpuset_t cpumask;
  673         struct cpu_group *child;
  674         struct tdq *tdq;
  675         int cpu, i, hload, lload, load, total, rnd;
  676 
  677         total = 0;
  678         cpumask = cg->cg_mask;
  679         if (match & CPU_SEARCH_LOWEST) {
  680                 lload = INT_MAX;
  681                 lgroup = *low;
  682         }
  683         if (match & CPU_SEARCH_HIGHEST) {
  684                 hload = INT_MIN;
  685                 hgroup = *high;
  686         }
  687 
  688         /* Iterate through the child CPU groups and then remaining CPUs. */
  689         for (i = cg->cg_children, cpu = mp_maxid; ; ) {
  690                 if (i == 0) {
  691 #ifdef HAVE_INLINE_FFSL
  692                         cpu = CPU_FFS(&cpumask) - 1;
  693 #else
  694                         while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
  695                                 cpu--;
  696 #endif
  697                         if (cpu < 0)
  698                                 break;
  699                         child = NULL;
  700                 } else
  701                         child = &cg->cg_child[i - 1];
  702 
  703                 if (match & CPU_SEARCH_LOWEST)
  704                         lgroup.cs_cpu = -1;
  705                 if (match & CPU_SEARCH_HIGHEST)
  706                         hgroup.cs_cpu = -1;
  707                 if (child) {                    /* Handle child CPU group. */
  708                         CPU_NAND(&cpumask, &child->cg_mask);
  709                         switch (match) {
  710                         case CPU_SEARCH_LOWEST:
  711                                 load = cpu_search_lowest(child, &lgroup);
  712                                 break;
  713                         case CPU_SEARCH_HIGHEST:
  714                                 load = cpu_search_highest(child, &hgroup);
  715                                 break;
  716                         case CPU_SEARCH_BOTH:
  717                                 load = cpu_search_both(child, &lgroup, &hgroup);
  718                                 break;
  719                         }
  720                 } else {                        /* Handle child CPU. */
  721                         CPU_CLR(cpu, &cpumask);
  722                         tdq = TDQ_CPU(cpu);
  723                         load = tdq->tdq_load * 256;
  724                         rnd = sched_random() % 32;
  725                         if (match & CPU_SEARCH_LOWEST) {
  726                                 if (cpu == low->cs_prefer)
  727                                         load -= 64;
  728                                 /* If that CPU is allowed and get data. */
  729                                 if (tdq->tdq_lowpri > lgroup.cs_pri &&
  730                                     tdq->tdq_load <= lgroup.cs_limit &&
  731                                     CPU_ISSET(cpu, &lgroup.cs_mask)) {
  732                                         lgroup.cs_cpu = cpu;
  733                                         lgroup.cs_load = load - rnd;
  734                                 }
  735                         }
  736                         if (match & CPU_SEARCH_HIGHEST)
  737                                 if (tdq->tdq_load >= hgroup.cs_limit &&
  738                                     tdq->tdq_transferable &&
  739                                     CPU_ISSET(cpu, &hgroup.cs_mask)) {
  740                                         hgroup.cs_cpu = cpu;
  741                                         hgroup.cs_load = load - rnd;
  742                                 }
  743                 }
  744                 total += load;
  745 
  746                 /* We have info about child item. Compare it. */
  747                 if (match & CPU_SEARCH_LOWEST) {
  748                         if (lgroup.cs_cpu >= 0 &&
  749                             (load < lload ||
  750                              (load == lload && lgroup.cs_load < low->cs_load))) {
  751                                 lload = load;
  752                                 low->cs_cpu = lgroup.cs_cpu;
  753                                 low->cs_load = lgroup.cs_load;
  754                         }
  755                 }
  756                 if (match & CPU_SEARCH_HIGHEST)
  757                         if (hgroup.cs_cpu >= 0 &&
  758                             (load > hload ||
  759                              (load == hload && hgroup.cs_load > high->cs_load))) {
  760                                 hload = load;
  761                                 high->cs_cpu = hgroup.cs_cpu;
  762                                 high->cs_load = hgroup.cs_load;
  763                         }
  764                 if (child) {
  765                         i--;
  766                         if (i == 0 && CPU_EMPTY(&cpumask))
  767                                 break;
  768                 }
  769 #ifndef HAVE_INLINE_FFSL
  770                 else
  771                         cpu--;
  772 #endif
  773         }
  774         return (total);
  775 }
  776 
  777 /*
  778  * cpu_search instantiations must pass constants to maintain the inline
  779  * optimization.
  780  */
  781 int
  782 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
  783 {
  784         return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
  785 }
  786 
  787 int
  788 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
  789 {
  790         return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
  791 }
  792 
  793 int
  794 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
  795     struct cpu_search *high)
  796 {
  797         return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
  798 }
  799 
  800 /*
  801  * Find the cpu with the least load via the least loaded path that has a
  802  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
  803  * acceptable.
  804  */
  805 static inline int
  806 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
  807     int prefer)
  808 {
  809         struct cpu_search low;
  810 
  811         low.cs_cpu = -1;
  812         low.cs_prefer = prefer;
  813         low.cs_mask = mask;
  814         low.cs_pri = pri;
  815         low.cs_limit = maxload;
  816         cpu_search_lowest(cg, &low);
  817         return low.cs_cpu;
  818 }
  819 
  820 /*
  821  * Find the cpu with the highest load via the highest loaded path.
  822  */
  823 static inline int
  824 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
  825 {
  826         struct cpu_search high;
  827 
  828         high.cs_cpu = -1;
  829         high.cs_mask = mask;
  830         high.cs_limit = minload;
  831         cpu_search_highest(cg, &high);
  832         return high.cs_cpu;
  833 }
  834 
  835 static void
  836 sched_balance_group(struct cpu_group *cg)
  837 {
  838         struct tdq *tdq;
  839         cpuset_t hmask, lmask;
  840         int high, low, anylow;
  841 
  842         CPU_FILL(&hmask);
  843         for (;;) {
  844                 high = sched_highest(cg, hmask, 2);
  845                 /* Stop if there is no more CPU with transferrable threads. */
  846                 if (high == -1)
  847                         break;
  848                 CPU_CLR(high, &hmask);
  849                 CPU_COPY(&hmask, &lmask);
  850                 /* Stop if there is no more CPU left for low. */
  851                 if (CPU_EMPTY(&lmask))
  852                         break;
  853                 anylow = 1;
  854                 tdq = TDQ_CPU(high);
  855 nextlow:
  856                 low = sched_lowest(cg, lmask, -1, tdq->tdq_load - 1, high);
  857                 /* Stop if we looked well and found no less loaded CPU. */
  858                 if (anylow && low == -1)
  859                         break;
  860                 /* Go to next high if we found no less loaded CPU. */
  861                 if (low == -1)
  862                         continue;
  863                 /* Transfer thread from high to low. */
  864                 if (sched_balance_pair(tdq, TDQ_CPU(low))) {
  865                         /* CPU that got thread can no longer be a donor. */
  866                         CPU_CLR(low, &hmask);
  867                 } else {
  868                         /*
  869                          * If failed, then there is no threads on high
  870                          * that can run on this low. Drop low from low
  871                          * mask and look for different one.
  872                          */
  873                         CPU_CLR(low, &lmask);
  874                         anylow = 0;
  875                         goto nextlow;
  876                 }
  877         }
  878 }
  879 
  880 static void
  881 sched_balance(void)
  882 {
  883         struct tdq *tdq;
  884 
  885         balance_ticks = max(balance_interval / 2, 1) +
  886             (sched_random() % balance_interval);
  887         tdq = TDQ_SELF();
  888         TDQ_UNLOCK(tdq);
  889         sched_balance_group(cpu_top);
  890         TDQ_LOCK(tdq);
  891 }
  892 
  893 /*
  894  * Lock two thread queues using their address to maintain lock order.
  895  */
  896 static void
  897 tdq_lock_pair(struct tdq *one, struct tdq *two)
  898 {
  899         if (one < two) {
  900                 TDQ_LOCK(one);
  901                 TDQ_LOCK_FLAGS(two, MTX_DUPOK);
  902         } else {
  903                 TDQ_LOCK(two);
  904                 TDQ_LOCK_FLAGS(one, MTX_DUPOK);
  905         }
  906 }
  907 
  908 /*
  909  * Unlock two thread queues.  Order is not important here.
  910  */
  911 static void
  912 tdq_unlock_pair(struct tdq *one, struct tdq *two)
  913 {
  914         TDQ_UNLOCK(one);
  915         TDQ_UNLOCK(two);
  916 }
  917 
  918 /*
  919  * Transfer load between two imbalanced thread queues.
  920  */
  921 static int
  922 sched_balance_pair(struct tdq *high, struct tdq *low)
  923 {
  924         struct thread *td;
  925         int cpu;
  926 
  927         tdq_lock_pair(high, low);
  928         td = NULL;
  929         /*
  930          * Transfer a thread from high to low.
  931          */
  932         if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
  933             (td = tdq_move(high, low)) != NULL) {
  934                 /*
  935                  * In case the target isn't the current cpu notify it of the
  936                  * new load, possibly sending an IPI to force it to reschedule.
  937                  */
  938                 cpu = TDQ_ID(low);
  939                 if (cpu != PCPU_GET(cpuid))
  940                         tdq_notify(low, td);
  941         }
  942         tdq_unlock_pair(high, low);
  943         return (td != NULL);
  944 }
  945 
  946 /*
  947  * Move a thread from one thread queue to another.
  948  */
  949 static struct thread *
  950 tdq_move(struct tdq *from, struct tdq *to)
  951 {
  952         struct td_sched *ts;
  953         struct thread *td;
  954         struct tdq *tdq;
  955         int cpu;
  956 
  957         TDQ_LOCK_ASSERT(from, MA_OWNED);
  958         TDQ_LOCK_ASSERT(to, MA_OWNED);
  959 
  960         tdq = from;
  961         cpu = TDQ_ID(to);
  962         td = tdq_steal(tdq, cpu);
  963         if (td == NULL)
  964                 return (NULL);
  965         ts = td_get_sched(td);
  966         /*
  967          * Although the run queue is locked the thread may be blocked.  Lock
  968          * it to clear this and acquire the run-queue lock.
  969          */
  970         thread_lock(td);
  971         /* Drop recursive lock on from acquired via thread_lock(). */
  972         TDQ_UNLOCK(from);
  973         sched_rem(td);
  974         ts->ts_cpu = cpu;
  975         td->td_lock = TDQ_LOCKPTR(to);
  976         tdq_add(to, td, SRQ_YIELDING);
  977         return (td);
  978 }
  979 
  980 /*
  981  * This tdq has idled.  Try to steal a thread from another cpu and switch
  982  * to it.
  983  */
  984 static int
  985 tdq_idled(struct tdq *tdq)
  986 {
  987         struct cpu_group *cg;
  988         struct tdq *steal;
  989         cpuset_t mask;
  990         int cpu, switchcnt;
  991 
  992         if (smp_started == 0 || steal_idle == 0 || tdq->tdq_cg == NULL)
  993                 return (1);
  994         CPU_FILL(&mask);
  995         CPU_CLR(PCPU_GET(cpuid), &mask);
  996     restart:
  997         switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
  998         for (cg = tdq->tdq_cg; ; ) {
  999                 cpu = sched_highest(cg, mask, steal_thresh);
 1000                 /*
 1001                  * We were assigned a thread but not preempted.  Returning
 1002                  * 0 here will cause our caller to switch to it.
 1003                  */
 1004                 if (tdq->tdq_load)
 1005                         return (0);
 1006                 if (cpu == -1) {
 1007                         cg = cg->cg_parent;
 1008                         if (cg == NULL)
 1009                                 return (1);
 1010                         continue;
 1011                 }
 1012                 steal = TDQ_CPU(cpu);
 1013                 /*
 1014                  * The data returned by sched_highest() is stale and
 1015                  * the chosen CPU no longer has an eligible thread.
 1016                  *
 1017                  * Testing this ahead of tdq_lock_pair() only catches
 1018                  * this situation about 20% of the time on an 8 core
 1019                  * 16 thread Ryzen 7, but it still helps performance.
 1020                  */
 1021                 if (steal->tdq_load < steal_thresh ||
 1022                     steal->tdq_transferable == 0)
 1023                         goto restart;
 1024                 tdq_lock_pair(tdq, steal);
 1025                 /*
 1026                  * We were assigned a thread while waiting for the locks.
 1027                  * Switch to it now instead of stealing a thread.
 1028                  */
 1029                 if (tdq->tdq_load)
 1030                         break;
 1031                 /*
 1032                  * The data returned by sched_highest() is stale and
 1033                  * the chosen CPU no longer has an eligible thread, or
 1034                  * we were preempted and the CPU loading info may be out
 1035                  * of date.  The latter is rare.  In either case restart
 1036                  * the search.
 1037                  */
 1038                 if (steal->tdq_load < steal_thresh ||
 1039                     steal->tdq_transferable == 0 ||
 1040                     switchcnt != tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt) {
 1041                         tdq_unlock_pair(tdq, steal);
 1042                         goto restart;
 1043                 }
 1044                 /*
 1045                  * Steal the thread and switch to it.
 1046                  */
 1047                 if (tdq_move(steal, tdq) != NULL)
 1048                         break;
 1049                 /*
 1050                  * We failed to acquire a thread even though it looked
 1051                  * like one was available.  This could be due to affinity
 1052                  * restrictions or for other reasons.  Loop again after
 1053                  * removing this CPU from the set.  The restart logic
 1054                  * above does not restore this CPU to the set due to the
 1055                  * likelyhood of failing here again.
 1056                  */
 1057                 CPU_CLR(cpu, &mask);
 1058                 tdq_unlock_pair(tdq, steal);
 1059         }
 1060         TDQ_UNLOCK(steal);
 1061         mi_switch(SW_VOL | SWT_IDLE, NULL);
 1062         thread_unlock(curthread);
 1063         return (0);
 1064 }
 1065 
 1066 /*
 1067  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
 1068  */
 1069 static void
 1070 tdq_notify(struct tdq *tdq, struct thread *td)
 1071 {
 1072         struct thread *ctd;
 1073         int pri;
 1074         int cpu;
 1075 
 1076         if (tdq->tdq_ipipending)
 1077                 return;
 1078         cpu = td_get_sched(td)->ts_cpu;
 1079         pri = td->td_priority;
 1080         ctd = pcpu_find(cpu)->pc_curthread;
 1081         if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
 1082                 return;
 1083 
 1084         /*
 1085          * Make sure that our caller's earlier update to tdq_load is
 1086          * globally visible before we read tdq_cpu_idle.  Idle thread
 1087          * accesses both of them without locks, and the order is important.
 1088          */
 1089         atomic_thread_fence_seq_cst();
 1090 
 1091         if (TD_IS_IDLETHREAD(ctd)) {
 1092                 /*
 1093                  * If the MD code has an idle wakeup routine try that before
 1094                  * falling back to IPI.
 1095                  */
 1096                 if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
 1097                         return;
 1098         }
 1099         tdq->tdq_ipipending = 1;
 1100         ipi_cpu(cpu, IPI_PREEMPT);
 1101 }
 1102 
 1103 /*
 1104  * Steals load from a timeshare queue.  Honors the rotating queue head
 1105  * index.
 1106  */
 1107 static struct thread *
 1108 runq_steal_from(struct runq *rq, int cpu, u_char start)
 1109 {
 1110         struct rqbits *rqb;
 1111         struct rqhead *rqh;
 1112         struct thread *td, *first;
 1113         int bit;
 1114         int i;
 1115 
 1116         rqb = &rq->rq_status;
 1117         bit = start & (RQB_BPW -1);
 1118         first = NULL;
 1119 again:
 1120         for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
 1121                 if (rqb->rqb_bits[i] == 0)
 1122                         continue;
 1123                 if (bit == 0)
 1124                         bit = RQB_FFS(rqb->rqb_bits[i]);
 1125                 for (; bit < RQB_BPW; bit++) {
 1126                         if ((rqb->rqb_bits[i] & (1ul << bit)) == 0)
 1127                                 continue;
 1128                         rqh = &rq->rq_queues[bit + (i << RQB_L2BPW)];
 1129                         TAILQ_FOREACH(td, rqh, td_runq) {
 1130                                 if (first) {
 1131                                         if (THREAD_CAN_MIGRATE(td) &&
 1132                                             THREAD_CAN_SCHED(td, cpu))
 1133                                                 return (td);
 1134                                 } else
 1135                                         first = td;
 1136                         }
 1137                 }
 1138         }
 1139         if (start != 0) {
 1140                 start = 0;
 1141                 goto again;
 1142         }
 1143 
 1144         if (first && THREAD_CAN_MIGRATE(first) &&
 1145             THREAD_CAN_SCHED(first, cpu))
 1146                 return (first);
 1147         return (NULL);
 1148 }
 1149 
 1150 /*
 1151  * Steals load from a standard linear queue.
 1152  */
 1153 static struct thread *
 1154 runq_steal(struct runq *rq, int cpu)
 1155 {
 1156         struct rqhead *rqh;
 1157         struct rqbits *rqb;
 1158         struct thread *td;
 1159         int word;
 1160         int bit;
 1161 
 1162         rqb = &rq->rq_status;
 1163         for (word = 0; word < RQB_LEN; word++) {
 1164                 if (rqb->rqb_bits[word] == 0)
 1165                         continue;
 1166                 for (bit = 0; bit < RQB_BPW; bit++) {
 1167                         if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
 1168                                 continue;
 1169                         rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
 1170                         TAILQ_FOREACH(td, rqh, td_runq)
 1171                                 if (THREAD_CAN_MIGRATE(td) &&
 1172                                     THREAD_CAN_SCHED(td, cpu))
 1173                                         return (td);
 1174                 }
 1175         }
 1176         return (NULL);
 1177 }
 1178 
 1179 /*
 1180  * Attempt to steal a thread in priority order from a thread queue.
 1181  */
 1182 static struct thread *
 1183 tdq_steal(struct tdq *tdq, int cpu)
 1184 {
 1185         struct thread *td;
 1186 
 1187         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1188         if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
 1189                 return (td);
 1190         if ((td = runq_steal_from(&tdq->tdq_timeshare,
 1191             cpu, tdq->tdq_ridx)) != NULL)
 1192                 return (td);
 1193         return (runq_steal(&tdq->tdq_idle, cpu));
 1194 }
 1195 
 1196 /*
 1197  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
 1198  * current lock and returns with the assigned queue locked.
 1199  */
 1200 static inline struct tdq *
 1201 sched_setcpu(struct thread *td, int cpu, int flags)
 1202 {
 1203 
 1204         struct tdq *tdq;
 1205 
 1206         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1207         tdq = TDQ_CPU(cpu);
 1208         td_get_sched(td)->ts_cpu = cpu;
 1209         /*
 1210          * If the lock matches just return the queue.
 1211          */
 1212         if (td->td_lock == TDQ_LOCKPTR(tdq))
 1213                 return (tdq);
 1214 #ifdef notyet
 1215         /*
 1216          * If the thread isn't running its lockptr is a
 1217          * turnstile or a sleepqueue.  We can just lock_set without
 1218          * blocking.
 1219          */
 1220         if (TD_CAN_RUN(td)) {
 1221                 TDQ_LOCK(tdq);
 1222                 thread_lock_set(td, TDQ_LOCKPTR(tdq));
 1223                 return (tdq);
 1224         }
 1225 #endif
 1226         /*
 1227          * The hard case, migration, we need to block the thread first to
 1228          * prevent order reversals with other cpus locks.
 1229          */
 1230         spinlock_enter();
 1231         thread_lock_block(td);
 1232         TDQ_LOCK(tdq);
 1233         thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
 1234         spinlock_exit();
 1235         return (tdq);
 1236 }
 1237 
 1238 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
 1239 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
 1240 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
 1241 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
 1242 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
 1243 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
 1244 
 1245 static int
 1246 sched_pickcpu(struct thread *td, int flags)
 1247 {
 1248         struct cpu_group *cg, *ccg;
 1249         struct td_sched *ts;
 1250         struct tdq *tdq;
 1251         cpuset_t mask;
 1252         int cpu, pri, self, intr;
 1253 
 1254         self = PCPU_GET(cpuid);
 1255         ts = td_get_sched(td);
 1256         KASSERT(!CPU_ABSENT(ts->ts_cpu), ("sched_pickcpu: Start scheduler on "
 1257             "absent CPU %d for thread %s.", ts->ts_cpu, td->td_name));
 1258         if (smp_started == 0)
 1259                 return (self);
 1260         /*
 1261          * Don't migrate a running thread from sched_switch().
 1262          */
 1263         if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
 1264                 return (ts->ts_cpu);
 1265         /*
 1266          * Prefer to run interrupt threads on the processors that generate
 1267          * the interrupt.
 1268          */
 1269         if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
 1270             curthread->td_intr_nesting_level) {
 1271                 tdq = TDQ_SELF();
 1272                 if (tdq->tdq_lowpri >= PRI_MIN_IDLE) {
 1273                         SCHED_STAT_INC(pickcpu_idle_affinity);
 1274                         return (self);
 1275                 }
 1276                 ts->ts_cpu = self;
 1277                 intr = 1;
 1278                 cg = tdq->tdq_cg;
 1279                 goto llc;
 1280         } else {
 1281                 intr = 0;
 1282                 tdq = TDQ_CPU(ts->ts_cpu);
 1283                 cg = tdq->tdq_cg;
 1284         }
 1285         /*
 1286          * If the thread can run on the last cpu and the affinity has not
 1287          * expired and it is idle, run it there.
 1288          */
 1289         if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
 1290             tdq->tdq_lowpri >= PRI_MIN_IDLE &&
 1291             SCHED_AFFINITY(ts, CG_SHARE_L2)) {
 1292                 if (cg->cg_flags & CG_FLAG_THREAD) {
 1293                         /* Check all SMT threads for being idle. */
 1294                         for (cpu = CPU_FFS(&cg->cg_mask) - 1; ; cpu++) {
 1295                                 if (CPU_ISSET(cpu, &cg->cg_mask) &&
 1296                                     TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
 1297                                         break;
 1298                                 if (cpu >= mp_maxid) {
 1299                                         SCHED_STAT_INC(pickcpu_idle_affinity);
 1300                                         return (ts->ts_cpu);
 1301                                 }
 1302                         }
 1303                 } else {
 1304                         SCHED_STAT_INC(pickcpu_idle_affinity);
 1305                         return (ts->ts_cpu);
 1306                 }
 1307         }
 1308 llc:
 1309         /*
 1310          * Search for the last level cache CPU group in the tree.
 1311          * Skip SMT, identical groups and caches with expired affinity.
 1312          * Interrupt threads affinity is explicit and never expires.
 1313          */
 1314         for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
 1315                 if (cg->cg_flags & CG_FLAG_THREAD)
 1316                         continue;
 1317                 if (cg->cg_children == 1 || cg->cg_count == 1)
 1318                         continue;
 1319                 if (cg->cg_level == CG_SHARE_NONE ||
 1320                     (!intr && !SCHED_AFFINITY(ts, cg->cg_level)))
 1321                         continue;
 1322                 ccg = cg;
 1323         }
 1324         /* Found LLC shared by all CPUs, so do a global search. */
 1325         if (ccg == cpu_top)
 1326                 ccg = NULL;
 1327         cpu = -1;
 1328         mask = td->td_cpuset->cs_mask;
 1329         pri = td->td_priority;
 1330         /*
 1331          * Try hard to keep interrupts within found LLC.  Search the LLC for
 1332          * the least loaded CPU we can run now.  For NUMA systems it should
 1333          * be within target domain, and it also reduces scheduling overhead.
 1334          */
 1335         if (ccg != NULL && intr) {
 1336                 cpu = sched_lowest(ccg, mask, pri, INT_MAX, ts->ts_cpu);
 1337                 if (cpu >= 0)
 1338                         SCHED_STAT_INC(pickcpu_intrbind);
 1339         } else
 1340         /* Search the LLC for the least loaded idle CPU we can run now. */
 1341         if (ccg != NULL) {
 1342                 cpu = sched_lowest(ccg, mask, max(pri, PRI_MAX_TIMESHARE),
 1343                     INT_MAX, ts->ts_cpu);
 1344                 if (cpu >= 0)
 1345                         SCHED_STAT_INC(pickcpu_affinity);
 1346         }
 1347         /* Search globally for the least loaded CPU we can run now. */
 1348         if (cpu < 0) {
 1349                 cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
 1350                 if (cpu >= 0)
 1351                         SCHED_STAT_INC(pickcpu_lowest);
 1352         }
 1353         /* Search globally for the least loaded CPU. */
 1354         if (cpu < 0) {
 1355                 cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
 1356                 if (cpu >= 0)
 1357                         SCHED_STAT_INC(pickcpu_lowest);
 1358         }
 1359         KASSERT(cpu >= 0, ("sched_pickcpu: Failed to find a cpu."));
 1360         KASSERT(!CPU_ABSENT(cpu), ("sched_pickcpu: Picked absent CPU %d.", cpu));
 1361         /*
 1362          * Compare the lowest loaded cpu to current cpu.
 1363          */
 1364         tdq = TDQ_CPU(cpu);
 1365         if (THREAD_CAN_SCHED(td, self) && TDQ_SELF()->tdq_lowpri > pri &&
 1366             tdq->tdq_lowpri < PRI_MIN_IDLE &&
 1367             TDQ_SELF()->tdq_load <= tdq->tdq_load + 1) {
 1368                 SCHED_STAT_INC(pickcpu_local);
 1369                 cpu = self;
 1370         }
 1371         if (cpu != ts->ts_cpu)
 1372                 SCHED_STAT_INC(pickcpu_migration);
 1373         return (cpu);
 1374 }
 1375 #endif
 1376 
 1377 /*
 1378  * Pick the highest priority task we have and return it.
 1379  */
 1380 static struct thread *
 1381 tdq_choose(struct tdq *tdq)
 1382 {
 1383         struct thread *td;
 1384 
 1385         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1386         td = runq_choose(&tdq->tdq_realtime);
 1387         if (td != NULL)
 1388                 return (td);
 1389         td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
 1390         if (td != NULL) {
 1391                 KASSERT(td->td_priority >= PRI_MIN_BATCH,
 1392                     ("tdq_choose: Invalid priority on timeshare queue %d",
 1393                     td->td_priority));
 1394                 return (td);
 1395         }
 1396         td = runq_choose(&tdq->tdq_idle);
 1397         if (td != NULL) {
 1398                 KASSERT(td->td_priority >= PRI_MIN_IDLE,
 1399                     ("tdq_choose: Invalid priority on idle queue %d",
 1400                     td->td_priority));
 1401                 return (td);
 1402         }
 1403 
 1404         return (NULL);
 1405 }
 1406 
 1407 /*
 1408  * Initialize a thread queue.
 1409  */
 1410 static void
 1411 tdq_setup(struct tdq *tdq, int id)
 1412 {
 1413 
 1414         if (bootverbose)
 1415                 printf("ULE: setup cpu %d\n", id);
 1416         runq_init(&tdq->tdq_realtime);
 1417         runq_init(&tdq->tdq_timeshare);
 1418         runq_init(&tdq->tdq_idle);
 1419         tdq->tdq_id = id;
 1420         snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
 1421             "sched lock %d", (int)TDQ_ID(tdq));
 1422         mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
 1423             MTX_SPIN | MTX_RECURSE);
 1424 #ifdef KTR
 1425         snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
 1426             "CPU %d load", (int)TDQ_ID(tdq));
 1427 #endif
 1428 }
 1429 
 1430 #ifdef SMP
 1431 static void
 1432 sched_setup_smp(void)
 1433 {
 1434         struct tdq *tdq;
 1435         int i;
 1436 
 1437         cpu_top = smp_topo();
 1438         CPU_FOREACH(i) {
 1439                 tdq = DPCPU_ID_PTR(i, tdq);
 1440                 tdq_setup(tdq, i);
 1441                 tdq->tdq_cg = smp_topo_find(cpu_top, i);
 1442                 if (tdq->tdq_cg == NULL)
 1443                         panic("Can't find cpu group for %d\n", i);
 1444         }
 1445         balance_tdq = TDQ_SELF();
 1446 }
 1447 #endif
 1448 
 1449 /*
 1450  * Setup the thread queues and initialize the topology based on MD
 1451  * information.
 1452  */
 1453 static void
 1454 sched_setup(void *dummy)
 1455 {
 1456         struct tdq *tdq;
 1457 
 1458 #ifdef SMP
 1459         sched_setup_smp();
 1460 #else
 1461         tdq_setup(TDQ_SELF(), 0);
 1462 #endif
 1463         tdq = TDQ_SELF();
 1464 
 1465         /* Add thread0's load since it's running. */
 1466         TDQ_LOCK(tdq);
 1467         thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
 1468         tdq_load_add(tdq, &thread0);
 1469         tdq->tdq_lowpri = thread0.td_priority;
 1470         TDQ_UNLOCK(tdq);
 1471 }
 1472 
 1473 /*
 1474  * This routine determines time constants after stathz and hz are setup.
 1475  */
 1476 /* ARGSUSED */
 1477 static void
 1478 sched_initticks(void *dummy)
 1479 {
 1480         int incr;
 1481 
 1482         realstathz = stathz ? stathz : hz;
 1483         sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
 1484         sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
 1485         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 1486             realstathz);
 1487 
 1488         /*
 1489          * tickincr is shifted out by 10 to avoid rounding errors due to
 1490          * hz not being evenly divisible by stathz on all platforms.
 1491          */
 1492         incr = (hz << SCHED_TICK_SHIFT) / realstathz;
 1493         /*
 1494          * This does not work for values of stathz that are more than
 1495          * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
 1496          */
 1497         if (incr == 0)
 1498                 incr = 1;
 1499         tickincr = incr;
 1500 #ifdef SMP
 1501         /*
 1502          * Set the default balance interval now that we know
 1503          * what realstathz is.
 1504          */
 1505         balance_interval = realstathz;
 1506         balance_ticks = balance_interval;
 1507         affinity = SCHED_AFFINITY_DEFAULT;
 1508 #endif
 1509         if (sched_idlespinthresh < 0)
 1510                 sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
 1511 }
 1512 
 1513 
 1514 /*
 1515  * This is the core of the interactivity algorithm.  Determines a score based
 1516  * on past behavior.  It is the ratio of sleep time to run time scaled to
 1517  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
 1518  * differs from the cpu usage because it does not account for time spent
 1519  * waiting on a run-queue.  Would be prettier if we had floating point.
 1520  *
 1521  * When a thread's sleep time is greater than its run time the
 1522  * calculation is:
 1523  *
 1524  *                           scaling factor 
 1525  * interactivity score =  ---------------------
 1526  *                        sleep time / run time
 1527  *
 1528  *
 1529  * When a thread's run time is greater than its sleep time the
 1530  * calculation is:
 1531  *
 1532  *                           scaling factor 
 1533  * interactivity score =  ---------------------    + scaling factor
 1534  *                        run time / sleep time
 1535  */
 1536 static int
 1537 sched_interact_score(struct thread *td)
 1538 {
 1539         struct td_sched *ts;
 1540         int div;
 1541 
 1542         ts = td_get_sched(td);
 1543         /*
 1544          * The score is only needed if this is likely to be an interactive
 1545          * task.  Don't go through the expense of computing it if there's
 1546          * no chance.
 1547          */
 1548         if (sched_interact <= SCHED_INTERACT_HALF &&
 1549                 ts->ts_runtime >= ts->ts_slptime)
 1550                         return (SCHED_INTERACT_HALF);
 1551 
 1552         if (ts->ts_runtime > ts->ts_slptime) {
 1553                 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
 1554                 return (SCHED_INTERACT_HALF +
 1555                     (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
 1556         }
 1557         if (ts->ts_slptime > ts->ts_runtime) {
 1558                 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
 1559                 return (ts->ts_runtime / div);
 1560         }
 1561         /* runtime == slptime */
 1562         if (ts->ts_runtime)
 1563                 return (SCHED_INTERACT_HALF);
 1564 
 1565         /*
 1566          * This can happen if slptime and runtime are 0.
 1567          */
 1568         return (0);
 1569 
 1570 }
 1571 
 1572 /*
 1573  * Scale the scheduling priority according to the "interactivity" of this
 1574  * process.
 1575  */
 1576 static void
 1577 sched_priority(struct thread *td)
 1578 {
 1579         u_int pri, score;
 1580 
 1581         if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 1582                 return;
 1583         /*
 1584          * If the score is interactive we place the thread in the realtime
 1585          * queue with a priority that is less than kernel and interrupt
 1586          * priorities.  These threads are not subject to nice restrictions.
 1587          *
 1588          * Scores greater than this are placed on the normal timeshare queue
 1589          * where the priority is partially decided by the most recent cpu
 1590          * utilization and the rest is decided by nice value.
 1591          *
 1592          * The nice value of the process has a linear effect on the calculated
 1593          * score.  Negative nice values make it easier for a thread to be
 1594          * considered interactive.
 1595          */
 1596         score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
 1597         if (score < sched_interact) {
 1598                 pri = PRI_MIN_INTERACT;
 1599                 pri += (PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) * score /
 1600                     sched_interact;
 1601                 KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
 1602                     ("sched_priority: invalid interactive priority %u score %u",
 1603                     pri, score));
 1604         } else {
 1605                 pri = SCHED_PRI_MIN;
 1606                 if (td_get_sched(td)->ts_ticks)
 1607                         pri += min(SCHED_PRI_TICKS(td_get_sched(td)),
 1608                             SCHED_PRI_RANGE - 1);
 1609                 pri += SCHED_PRI_NICE(td->td_proc->p_nice);
 1610                 KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
 1611                     ("sched_priority: invalid priority %u: nice %d, "
 1612                     "ticks %d ftick %d ltick %d tick pri %d",
 1613                     pri, td->td_proc->p_nice, td_get_sched(td)->ts_ticks,
 1614                     td_get_sched(td)->ts_ftick, td_get_sched(td)->ts_ltick,
 1615                     SCHED_PRI_TICKS(td_get_sched(td))));
 1616         }
 1617         sched_user_prio(td, pri);
 1618 
 1619         return;
 1620 }
 1621 
 1622 /*
 1623  * This routine enforces a maximum limit on the amount of scheduling history
 1624  * kept.  It is called after either the slptime or runtime is adjusted.  This
 1625  * function is ugly due to integer math.
 1626  */
 1627 static void
 1628 sched_interact_update(struct thread *td)
 1629 {
 1630         struct td_sched *ts;
 1631         u_int sum;
 1632 
 1633         ts = td_get_sched(td);
 1634         sum = ts->ts_runtime + ts->ts_slptime;
 1635         if (sum < SCHED_SLP_RUN_MAX)
 1636                 return;
 1637         /*
 1638          * This only happens from two places:
 1639          * 1) We have added an unusual amount of run time from fork_exit.
 1640          * 2) We have added an unusual amount of sleep time from sched_sleep().
 1641          */
 1642         if (sum > SCHED_SLP_RUN_MAX * 2) {
 1643                 if (ts->ts_runtime > ts->ts_slptime) {
 1644                         ts->ts_runtime = SCHED_SLP_RUN_MAX;
 1645                         ts->ts_slptime = 1;
 1646                 } else {
 1647                         ts->ts_slptime = SCHED_SLP_RUN_MAX;
 1648                         ts->ts_runtime = 1;
 1649                 }
 1650                 return;
 1651         }
 1652         /*
 1653          * If we have exceeded by more than 1/5th then the algorithm below
 1654          * will not bring us back into range.  Dividing by two here forces
 1655          * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
 1656          */
 1657         if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
 1658                 ts->ts_runtime /= 2;
 1659                 ts->ts_slptime /= 2;
 1660                 return;
 1661         }
 1662         ts->ts_runtime = (ts->ts_runtime / 5) * 4;
 1663         ts->ts_slptime = (ts->ts_slptime / 5) * 4;
 1664 }
 1665 
 1666 /*
 1667  * Scale back the interactivity history when a child thread is created.  The
 1668  * history is inherited from the parent but the thread may behave totally
 1669  * differently.  For example, a shell spawning a compiler process.  We want
 1670  * to learn that the compiler is behaving badly very quickly.
 1671  */
 1672 static void
 1673 sched_interact_fork(struct thread *td)
 1674 {
 1675         struct td_sched *ts;
 1676         int ratio;
 1677         int sum;
 1678 
 1679         ts = td_get_sched(td);
 1680         sum = ts->ts_runtime + ts->ts_slptime;
 1681         if (sum > SCHED_SLP_RUN_FORK) {
 1682                 ratio = sum / SCHED_SLP_RUN_FORK;
 1683                 ts->ts_runtime /= ratio;
 1684                 ts->ts_slptime /= ratio;
 1685         }
 1686 }
 1687 
 1688 /*
 1689  * Called from proc0_init() to setup the scheduler fields.
 1690  */
 1691 void
 1692 schedinit(void)
 1693 {
 1694         struct td_sched *ts0;
 1695 
 1696         /*
 1697          * Set up the scheduler specific parts of thread0.
 1698          */
 1699         ts0 = td_get_sched(&thread0);
 1700         ts0->ts_ltick = ticks;
 1701         ts0->ts_ftick = ticks;
 1702         ts0->ts_slice = 0;
 1703         ts0->ts_cpu = curcpu;   /* set valid CPU number */
 1704 }
 1705 
 1706 /*
 1707  * This is only somewhat accurate since given many processes of the same
 1708  * priority they will switch when their slices run out, which will be
 1709  * at most sched_slice stathz ticks.
 1710  */
 1711 int
 1712 sched_rr_interval(void)
 1713 {
 1714 
 1715         /* Convert sched_slice from stathz to hz. */
 1716         return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
 1717 }
 1718 
 1719 /*
 1720  * Update the percent cpu tracking information when it is requested or
 1721  * the total history exceeds the maximum.  We keep a sliding history of
 1722  * tick counts that slowly decays.  This is less precise than the 4BSD
 1723  * mechanism since it happens with less regular and frequent events.
 1724  */
 1725 static void
 1726 sched_pctcpu_update(struct td_sched *ts, int run)
 1727 {
 1728         int t = ticks;
 1729 
 1730         /*
 1731          * The signed difference may be negative if the thread hasn't run for
 1732          * over half of the ticks rollover period.
 1733          */
 1734         if ((u_int)(t - ts->ts_ltick) >= SCHED_TICK_TARG) {
 1735                 ts->ts_ticks = 0;
 1736                 ts->ts_ftick = t - SCHED_TICK_TARG;
 1737         } else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
 1738                 ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
 1739                     (ts->ts_ltick - (t - SCHED_TICK_TARG));
 1740                 ts->ts_ftick = t - SCHED_TICK_TARG;
 1741         }
 1742         if (run)
 1743                 ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
 1744         ts->ts_ltick = t;
 1745 }
 1746 
 1747 /*
 1748  * Adjust the priority of a thread.  Move it to the appropriate run-queue
 1749  * if necessary.  This is the back-end for several priority related
 1750  * functions.
 1751  */
 1752 static void
 1753 sched_thread_priority(struct thread *td, u_char prio)
 1754 {
 1755         struct td_sched *ts;
 1756         struct tdq *tdq;
 1757         int oldpri;
 1758 
 1759         KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
 1760             "prio:%d", td->td_priority, "new prio:%d", prio,
 1761             KTR_ATTR_LINKED, sched_tdname(curthread));
 1762         SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
 1763         if (td != curthread && prio < td->td_priority) {
 1764                 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
 1765                     "lend prio", "prio:%d", td->td_priority, "new prio:%d",
 1766                     prio, KTR_ATTR_LINKED, sched_tdname(td));
 1767                 SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio, 
 1768                     curthread);
 1769         } 
 1770         ts = td_get_sched(td);
 1771         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1772         if (td->td_priority == prio)
 1773                 return;
 1774         /*
 1775          * If the priority has been elevated due to priority
 1776          * propagation, we may have to move ourselves to a new
 1777          * queue.  This could be optimized to not re-add in some
 1778          * cases.
 1779          */
 1780         if (TD_ON_RUNQ(td) && prio < td->td_priority) {
 1781                 sched_rem(td);
 1782                 td->td_priority = prio;
 1783                 sched_add(td, SRQ_BORROWING);
 1784                 return;
 1785         }
 1786         /*
 1787          * If the thread is currently running we may have to adjust the lowpri
 1788          * information so other cpus are aware of our current priority.
 1789          */
 1790         if (TD_IS_RUNNING(td)) {
 1791                 tdq = TDQ_CPU(ts->ts_cpu);
 1792                 oldpri = td->td_priority;
 1793                 td->td_priority = prio;
 1794                 if (prio < tdq->tdq_lowpri)
 1795                         tdq->tdq_lowpri = prio;
 1796                 else if (tdq->tdq_lowpri == oldpri)
 1797                         tdq_setlowpri(tdq, td);
 1798                 return;
 1799         }
 1800         td->td_priority = prio;
 1801 }
 1802 
 1803 /*
 1804  * Update a thread's priority when it is lent another thread's
 1805  * priority.
 1806  */
 1807 void
 1808 sched_lend_prio(struct thread *td, u_char prio)
 1809 {
 1810 
 1811         td->td_flags |= TDF_BORROWING;
 1812         sched_thread_priority(td, prio);
 1813 }
 1814 
 1815 /*
 1816  * Restore a thread's priority when priority propagation is
 1817  * over.  The prio argument is the minimum priority the thread
 1818  * needs to have to satisfy other possible priority lending
 1819  * requests.  If the thread's regular priority is less
 1820  * important than prio, the thread will keep a priority boost
 1821  * of prio.
 1822  */
 1823 void
 1824 sched_unlend_prio(struct thread *td, u_char prio)
 1825 {
 1826         u_char base_pri;
 1827 
 1828         if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
 1829             td->td_base_pri <= PRI_MAX_TIMESHARE)
 1830                 base_pri = td->td_user_pri;
 1831         else
 1832                 base_pri = td->td_base_pri;
 1833         if (prio >= base_pri) {
 1834                 td->td_flags &= ~TDF_BORROWING;
 1835                 sched_thread_priority(td, base_pri);
 1836         } else
 1837                 sched_lend_prio(td, prio);
 1838 }
 1839 
 1840 /*
 1841  * Standard entry for setting the priority to an absolute value.
 1842  */
 1843 void
 1844 sched_prio(struct thread *td, u_char prio)
 1845 {
 1846         u_char oldprio;
 1847 
 1848         /* First, update the base priority. */
 1849         td->td_base_pri = prio;
 1850 
 1851         /*
 1852          * If the thread is borrowing another thread's priority, don't
 1853          * ever lower the priority.
 1854          */
 1855         if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
 1856                 return;
 1857 
 1858         /* Change the real priority. */
 1859         oldprio = td->td_priority;
 1860         sched_thread_priority(td, prio);
 1861 
 1862         /*
 1863          * If the thread is on a turnstile, then let the turnstile update
 1864          * its state.
 1865          */
 1866         if (TD_ON_LOCK(td) && oldprio != prio)
 1867                 turnstile_adjust(td, oldprio);
 1868 }
 1869 
 1870 /*
 1871  * Set the base user priority, does not effect current running priority.
 1872  */
 1873 void
 1874 sched_user_prio(struct thread *td, u_char prio)
 1875 {
 1876 
 1877         td->td_base_user_pri = prio;
 1878         if (td->td_lend_user_pri <= prio)
 1879                 return;
 1880         td->td_user_pri = prio;
 1881 }
 1882 
 1883 void
 1884 sched_lend_user_prio(struct thread *td, u_char prio)
 1885 {
 1886 
 1887         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1888         td->td_lend_user_pri = prio;
 1889         td->td_user_pri = min(prio, td->td_base_user_pri);
 1890         if (td->td_priority > td->td_user_pri)
 1891                 sched_prio(td, td->td_user_pri);
 1892         else if (td->td_priority != td->td_user_pri)
 1893                 td->td_flags |= TDF_NEEDRESCHED;
 1894 }
 1895 
 1896 #ifdef SMP
 1897 /*
 1898  * This tdq is about to idle.  Try to steal a thread from another CPU before
 1899  * choosing the idle thread.
 1900  */
 1901 static void
 1902 tdq_trysteal(struct tdq *tdq)
 1903 {
 1904         struct cpu_group *cg;
 1905         struct tdq *steal;
 1906         cpuset_t mask;
 1907         int cpu, i;
 1908 
 1909         if (smp_started == 0 || trysteal_limit == 0 || tdq->tdq_cg == NULL)
 1910                 return;
 1911         CPU_FILL(&mask);
 1912         CPU_CLR(PCPU_GET(cpuid), &mask);
 1913         /* We don't want to be preempted while we're iterating. */
 1914         spinlock_enter();
 1915         TDQ_UNLOCK(tdq);
 1916         for (i = 1, cg = tdq->tdq_cg; ; ) {
 1917                 cpu = sched_highest(cg, mask, steal_thresh);
 1918                 /*
 1919                  * If a thread was added while interrupts were disabled don't
 1920                  * steal one here.
 1921                  */
 1922                 if (tdq->tdq_load > 0) {
 1923                         TDQ_LOCK(tdq);
 1924                         break;
 1925                 }
 1926                 if (cpu == -1) {
 1927                         i++;
 1928                         cg = cg->cg_parent;
 1929                         if (cg == NULL || i > trysteal_limit) {
 1930                                 TDQ_LOCK(tdq);
 1931                                 break;
 1932                         }
 1933                         continue;
 1934                 }
 1935                 steal = TDQ_CPU(cpu);
 1936                 /*
 1937                  * The data returned by sched_highest() is stale and
 1938                  * the chosen CPU no longer has an eligible thread.
 1939                  */
 1940                 if (steal->tdq_load < steal_thresh ||
 1941                     steal->tdq_transferable == 0)
 1942                         continue;
 1943                 tdq_lock_pair(tdq, steal);
 1944                 /*
 1945                  * If we get to this point, unconditonally exit the loop
 1946                  * to bound the time spent in the critcal section.
 1947                  *
 1948                  * If a thread was added while interrupts were disabled don't
 1949                  * steal one here.
 1950                  */
 1951                 if (tdq->tdq_load > 0) {
 1952                         TDQ_UNLOCK(steal);
 1953                         break;
 1954                 }
 1955                 /*
 1956                  * The data returned by sched_highest() is stale and
 1957                  * the chosen CPU no longer has an eligible thread.
 1958                  */
 1959                 if (steal->tdq_load < steal_thresh ||
 1960                     steal->tdq_transferable == 0) {
 1961                         TDQ_UNLOCK(steal);
 1962                         break;
 1963                 }
 1964                 /*
 1965                  * If we fail to acquire one due to affinity restrictions,
 1966                  * bail out and let the idle thread to a more complete search
 1967                  * outside of a critical section.
 1968                  */
 1969                 if (tdq_move(steal, tdq) == NULL) {
 1970                         TDQ_UNLOCK(steal);
 1971                         break;
 1972                 }
 1973                 TDQ_UNLOCK(steal);
 1974                 break;
 1975         }
 1976         spinlock_exit();
 1977 }
 1978 #endif
 1979 
 1980 /*
 1981  * Handle migration from sched_switch().  This happens only for
 1982  * cpu binding.
 1983  */
 1984 static struct mtx *
 1985 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
 1986 {
 1987         struct tdq *tdn;
 1988 
 1989         KASSERT(!CPU_ABSENT(td_get_sched(td)->ts_cpu), ("sched_switch_migrate: "
 1990             "thread %s queued on absent CPU %d.", td->td_name,
 1991             td_get_sched(td)->ts_cpu));
 1992         tdn = TDQ_CPU(td_get_sched(td)->ts_cpu);
 1993 #ifdef SMP
 1994         tdq_load_rem(tdq, td);
 1995         /*
 1996          * Do the lock dance required to avoid LOR.  We grab an extra
 1997          * spinlock nesting to prevent preemption while we're
 1998          * not holding either run-queue lock.
 1999          */
 2000         spinlock_enter();
 2001         thread_lock_block(td);  /* This releases the lock on tdq. */
 2002 
 2003         /*
 2004          * Acquire both run-queue locks before placing the thread on the new
 2005          * run-queue to avoid deadlocks created by placing a thread with a
 2006          * blocked lock on the run-queue of a remote processor.  The deadlock
 2007          * occurs when a third processor attempts to lock the two queues in
 2008          * question while the target processor is spinning with its own
 2009          * run-queue lock held while waiting for the blocked lock to clear.
 2010          */
 2011         tdq_lock_pair(tdn, tdq);
 2012         tdq_add(tdn, td, flags);
 2013         tdq_notify(tdn, td);
 2014         TDQ_UNLOCK(tdn);
 2015         spinlock_exit();
 2016 #endif
 2017         return (TDQ_LOCKPTR(tdn));
 2018 }
 2019 
 2020 /*
 2021  * Variadic version of thread_lock_unblock() that does not assume td_lock
 2022  * is blocked.
 2023  */
 2024 static inline void
 2025 thread_unblock_switch(struct thread *td, struct mtx *mtx)
 2026 {
 2027         atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
 2028             (uintptr_t)mtx);
 2029 }
 2030 
 2031 /*
 2032  * Switch threads.  This function has to handle threads coming in while
 2033  * blocked for some reason, running, or idle.  It also must deal with
 2034  * migrating a thread from one queue to another as running threads may
 2035  * be assigned elsewhere via binding.
 2036  */
 2037 void
 2038 sched_switch(struct thread *td, struct thread *newtd, int flags)
 2039 {
 2040         struct tdq *tdq;
 2041         struct td_sched *ts;
 2042         struct mtx *mtx;
 2043         int srqflag;
 2044         int cpuid, preempted;
 2045 
 2046         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2047         KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
 2048 
 2049         cpuid = PCPU_GET(cpuid);
 2050         tdq = TDQ_SELF();
 2051         ts = td_get_sched(td);
 2052         mtx = td->td_lock;
 2053         sched_pctcpu_update(ts, 1);
 2054         ts->ts_rltick = ticks;
 2055         td->td_lastcpu = td->td_oncpu;
 2056         td->td_oncpu = NOCPU;
 2057         preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
 2058             (flags & SW_PREEMPT) != 0;
 2059         td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
 2060         td->td_owepreempt = 0;
 2061         if (!TD_IS_IDLETHREAD(td))
 2062                 tdq->tdq_switchcnt++;
 2063         /*
 2064          * The lock pointer in an idle thread should never change.  Reset it
 2065          * to CAN_RUN as well.
 2066          */
 2067         if (TD_IS_IDLETHREAD(td)) {
 2068                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2069                 TD_SET_CAN_RUN(td);
 2070         } else if (TD_IS_RUNNING(td)) {
 2071                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2072                 srqflag = preempted ?
 2073                     SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
 2074                     SRQ_OURSELF|SRQ_YIELDING;
 2075 #ifdef SMP
 2076                 if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
 2077                         ts->ts_cpu = sched_pickcpu(td, 0);
 2078 #endif
 2079                 if (ts->ts_cpu == cpuid)
 2080                         tdq_runq_add(tdq, td, srqflag);
 2081                 else {
 2082                         KASSERT(THREAD_CAN_MIGRATE(td) ||
 2083                             (ts->ts_flags & TSF_BOUND) != 0,
 2084                             ("Thread %p shouldn't migrate", td));
 2085                         mtx = sched_switch_migrate(tdq, td, srqflag);
 2086                 }
 2087         } else {
 2088                 /* This thread must be going to sleep. */
 2089                 TDQ_LOCK(tdq);
 2090                 mtx = thread_lock_block(td);
 2091                 tdq_load_rem(tdq, td);
 2092 #ifdef SMP
 2093                 if (tdq->tdq_load == 0)
 2094                         tdq_trysteal(tdq);
 2095 #endif
 2096         }
 2097 
 2098 #if (KTR_COMPILE & KTR_SCHED) != 0
 2099         if (TD_IS_IDLETHREAD(td))
 2100                 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
 2101                     "prio:%d", td->td_priority);
 2102         else
 2103                 KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
 2104                     "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
 2105                     "lockname:\"%s\"", td->td_lockname);
 2106 #endif
 2107 
 2108         /*
 2109          * We enter here with the thread blocked and assigned to the
 2110          * appropriate cpu run-queue or sleep-queue and with the current
 2111          * thread-queue locked.
 2112          */
 2113         TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 2114         newtd = choosethread();
 2115         /*
 2116          * Call the MD code to switch contexts if necessary.
 2117          */
 2118         if (td != newtd) {
 2119 #ifdef  HWPMC_HOOKS
 2120                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 2121                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
 2122 #endif
 2123                 SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
 2124                 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
 2125                 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
 2126                 sched_pctcpu_update(td_get_sched(newtd), 0);
 2127 
 2128 #ifdef KDTRACE_HOOKS
 2129                 /*
 2130                  * If DTrace has set the active vtime enum to anything
 2131                  * other than INACTIVE (0), then it should have set the
 2132                  * function to call.
 2133                  */
 2134                 if (dtrace_vtime_active)
 2135                         (*dtrace_vtime_switch_func)(newtd);
 2136 #endif
 2137 
 2138                 cpu_switch(td, newtd, mtx);
 2139                 /*
 2140                  * We may return from cpu_switch on a different cpu.  However,
 2141                  * we always return with td_lock pointing to the current cpu's
 2142                  * run queue lock.
 2143                  */
 2144                 cpuid = PCPU_GET(cpuid);
 2145                 tdq = TDQ_SELF();
 2146                 lock_profile_obtain_lock_success(
 2147                     &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
 2148 
 2149                 SDT_PROBE0(sched, , , on__cpu);
 2150 #ifdef  HWPMC_HOOKS
 2151                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 2152                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
 2153 #endif
 2154         } else {
 2155                 thread_unblock_switch(td, mtx);
 2156                 SDT_PROBE0(sched, , , remain__cpu);
 2157         }
 2158 
 2159         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 2160             "prio:%d", td->td_priority);
 2161 
 2162         /*
 2163          * Assert that all went well and return.
 2164          */
 2165         TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
 2166         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2167         td->td_oncpu = cpuid;
 2168 }
 2169 
 2170 /*
 2171  * Adjust thread priorities as a result of a nice request.
 2172  */
 2173 void
 2174 sched_nice(struct proc *p, int nice)
 2175 {
 2176         struct thread *td;
 2177 
 2178         PROC_LOCK_ASSERT(p, MA_OWNED);
 2179 
 2180         p->p_nice = nice;
 2181         FOREACH_THREAD_IN_PROC(p, td) {
 2182                 thread_lock(td);
 2183                 sched_priority(td);
 2184                 sched_prio(td, td->td_base_user_pri);
 2185                 thread_unlock(td);
 2186         }
 2187 }
 2188 
 2189 /*
 2190  * Record the sleep time for the interactivity scorer.
 2191  */
 2192 void
 2193 sched_sleep(struct thread *td, int prio)
 2194 {
 2195 
 2196         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2197 
 2198         td->td_slptick = ticks;
 2199         if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
 2200                 td->td_flags |= TDF_CANSWAP;
 2201         if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 2202                 return;
 2203         if (static_boost == 1 && prio)
 2204                 sched_prio(td, prio);
 2205         else if (static_boost && td->td_priority > static_boost)
 2206                 sched_prio(td, static_boost);
 2207 }
 2208 
 2209 /*
 2210  * Schedule a thread to resume execution and record how long it voluntarily
 2211  * slept.  We also update the pctcpu, interactivity, and priority.
 2212  */
 2213 void
 2214 sched_wakeup(struct thread *td)
 2215 {
 2216         struct td_sched *ts;
 2217         int slptick;
 2218 
 2219         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2220         ts = td_get_sched(td);
 2221         td->td_flags &= ~TDF_CANSWAP;
 2222         /*
 2223          * If we slept for more than a tick update our interactivity and
 2224          * priority.
 2225          */
 2226         slptick = td->td_slptick;
 2227         td->td_slptick = 0;
 2228         if (slptick && slptick != ticks) {
 2229                 ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
 2230                 sched_interact_update(td);
 2231                 sched_pctcpu_update(ts, 0);
 2232         }
 2233         /*
 2234          * Reset the slice value since we slept and advanced the round-robin.
 2235          */
 2236         ts->ts_slice = 0;
 2237         sched_add(td, SRQ_BORING);
 2238 }
 2239 
 2240 /*
 2241  * Penalize the parent for creating a new child and initialize the child's
 2242  * priority.
 2243  */
 2244 void
 2245 sched_fork(struct thread *td, struct thread *child)
 2246 {
 2247         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2248         sched_pctcpu_update(td_get_sched(td), 1);
 2249         sched_fork_thread(td, child);
 2250         /*
 2251          * Penalize the parent and child for forking.
 2252          */
 2253         sched_interact_fork(child);
 2254         sched_priority(child);
 2255         td_get_sched(td)->ts_runtime += tickincr;
 2256         sched_interact_update(td);
 2257         sched_priority(td);
 2258 }
 2259 
 2260 /*
 2261  * Fork a new thread, may be within the same process.
 2262  */
 2263 void
 2264 sched_fork_thread(struct thread *td, struct thread *child)
 2265 {
 2266         struct td_sched *ts;
 2267         struct td_sched *ts2;
 2268         struct tdq *tdq;
 2269 
 2270         tdq = TDQ_SELF();
 2271         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2272         /*
 2273          * Initialize child.
 2274          */
 2275         ts = td_get_sched(td);
 2276         ts2 = td_get_sched(child);
 2277         child->td_oncpu = NOCPU;
 2278         child->td_lastcpu = NOCPU;
 2279         child->td_lock = TDQ_LOCKPTR(tdq);
 2280         child->td_cpuset = cpuset_ref(td->td_cpuset);
 2281         child->td_domain.dr_policy = td->td_cpuset->cs_domain;
 2282         ts2->ts_cpu = ts->ts_cpu;
 2283         ts2->ts_flags = 0;
 2284         /*
 2285          * Grab our parents cpu estimation information.
 2286          */
 2287         ts2->ts_ticks = ts->ts_ticks;
 2288         ts2->ts_ltick = ts->ts_ltick;
 2289         ts2->ts_ftick = ts->ts_ftick;
 2290         /*
 2291          * Do not inherit any borrowed priority from the parent.
 2292          */
 2293         child->td_priority = child->td_base_pri;
 2294         /*
 2295          * And update interactivity score.
 2296          */
 2297         ts2->ts_slptime = ts->ts_slptime;
 2298         ts2->ts_runtime = ts->ts_runtime;
 2299         /* Attempt to quickly learn interactivity. */
 2300         ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
 2301 #ifdef KTR
 2302         bzero(ts2->ts_name, sizeof(ts2->ts_name));
 2303 #endif
 2304 }
 2305 
 2306 /*
 2307  * Adjust the priority class of a thread.
 2308  */
 2309 void
 2310 sched_class(struct thread *td, int class)
 2311 {
 2312 
 2313         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2314         if (td->td_pri_class == class)
 2315                 return;
 2316         td->td_pri_class = class;
 2317 }
 2318 
 2319 /*
 2320  * Return some of the child's priority and interactivity to the parent.
 2321  */
 2322 void
 2323 sched_exit(struct proc *p, struct thread *child)
 2324 {
 2325         struct thread *td;
 2326 
 2327         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
 2328             "prio:%d", child->td_priority);
 2329         PROC_LOCK_ASSERT(p, MA_OWNED);
 2330         td = FIRST_THREAD_IN_PROC(p);
 2331         sched_exit_thread(td, child);
 2332 }
 2333 
 2334 /*
 2335  * Penalize another thread for the time spent on this one.  This helps to
 2336  * worsen the priority and interactivity of processes which schedule batch
 2337  * jobs such as make.  This has little effect on the make process itself but
 2338  * causes new processes spawned by it to receive worse scores immediately.
 2339  */
 2340 void
 2341 sched_exit_thread(struct thread *td, struct thread *child)
 2342 {
 2343 
 2344         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
 2345             "prio:%d", child->td_priority);
 2346         /*
 2347          * Give the child's runtime to the parent without returning the
 2348          * sleep time as a penalty to the parent.  This causes shells that
 2349          * launch expensive things to mark their children as expensive.
 2350          */
 2351         thread_lock(td);
 2352         td_get_sched(td)->ts_runtime += td_get_sched(child)->ts_runtime;
 2353         sched_interact_update(td);
 2354         sched_priority(td);
 2355         thread_unlock(td);
 2356 }
 2357 
 2358 void
 2359 sched_preempt(struct thread *td)
 2360 {
 2361         struct tdq *tdq;
 2362 
 2363         SDT_PROBE2(sched, , , surrender, td, td->td_proc);
 2364 
 2365         thread_lock(td);
 2366         tdq = TDQ_SELF();
 2367         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2368         tdq->tdq_ipipending = 0;
 2369         if (td->td_priority > tdq->tdq_lowpri) {
 2370                 int flags;
 2371 
 2372                 flags = SW_INVOL | SW_PREEMPT;
 2373                 if (td->td_critnest > 1)
 2374                         td->td_owepreempt = 1;
 2375                 else if (TD_IS_IDLETHREAD(td))
 2376                         mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
 2377                 else
 2378                         mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
 2379         }
 2380         thread_unlock(td);
 2381 }
 2382 
 2383 /*
 2384  * Fix priorities on return to user-space.  Priorities may be elevated due
 2385  * to static priorities in msleep() or similar.
 2386  */
 2387 void
 2388 sched_userret_slowpath(struct thread *td)
 2389 {
 2390 
 2391         thread_lock(td);
 2392         td->td_priority = td->td_user_pri;
 2393         td->td_base_pri = td->td_user_pri;
 2394         tdq_setlowpri(TDQ_SELF(), td);
 2395         thread_unlock(td);
 2396 }
 2397 
 2398 /*
 2399  * Handle a stathz tick.  This is really only relevant for timeshare
 2400  * threads.
 2401  */
 2402 void
 2403 sched_clock(struct thread *td)
 2404 {
 2405         struct tdq *tdq;
 2406         struct td_sched *ts;
 2407 
 2408         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2409         tdq = TDQ_SELF();
 2410 #ifdef SMP
 2411         /*
 2412          * We run the long term load balancer infrequently on the first cpu.
 2413          */
 2414         if (balance_tdq == tdq && smp_started != 0 && rebalance != 0) {
 2415                 if (balance_ticks && --balance_ticks == 0)
 2416                         sched_balance();
 2417         }
 2418 #endif
 2419         /*
 2420          * Save the old switch count so we have a record of the last ticks
 2421          * activity.   Initialize the new switch count based on our load.
 2422          * If there is some activity seed it to reflect that.
 2423          */
 2424         tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
 2425         tdq->tdq_switchcnt = tdq->tdq_load;
 2426         /*
 2427          * Advance the insert index once for each tick to ensure that all
 2428          * threads get a chance to run.
 2429          */
 2430         if (tdq->tdq_idx == tdq->tdq_ridx) {
 2431                 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
 2432                 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
 2433                         tdq->tdq_ridx = tdq->tdq_idx;
 2434         }
 2435         ts = td_get_sched(td);
 2436         sched_pctcpu_update(ts, 1);
 2437         if (td->td_pri_class & PRI_FIFO_BIT)
 2438                 return;
 2439         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
 2440                 /*
 2441                  * We used a tick; charge it to the thread so
 2442                  * that we can compute our interactivity.
 2443                  */
 2444                 td_get_sched(td)->ts_runtime += tickincr;
 2445                 sched_interact_update(td);
 2446                 sched_priority(td);
 2447         }
 2448 
 2449         /*
 2450          * Force a context switch if the current thread has used up a full
 2451          * time slice (default is 100ms).
 2452          */
 2453         if (!TD_IS_IDLETHREAD(td) && ++ts->ts_slice >= tdq_slice(tdq)) {
 2454                 ts->ts_slice = 0;
 2455                 td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
 2456         }
 2457 }
 2458 
 2459 u_int
 2460 sched_estcpu(struct thread *td __unused)
 2461 {
 2462 
 2463         return (0);
 2464 }
 2465 
 2466 /*
 2467  * Return whether the current CPU has runnable tasks.  Used for in-kernel
 2468  * cooperative idle threads.
 2469  */
 2470 int
 2471 sched_runnable(void)
 2472 {
 2473         struct tdq *tdq;
 2474         int load;
 2475 
 2476         load = 1;
 2477 
 2478         tdq = TDQ_SELF();
 2479         if ((curthread->td_flags & TDF_IDLETD) != 0) {
 2480                 if (tdq->tdq_load > 0)
 2481                         goto out;
 2482         } else
 2483                 if (tdq->tdq_load - 1 > 0)
 2484                         goto out;
 2485         load = 0;
 2486 out:
 2487         return (load);
 2488 }
 2489 
 2490 /*
 2491  * Choose the highest priority thread to run.  The thread is removed from
 2492  * the run-queue while running however the load remains.  For SMP we set
 2493  * the tdq in the global idle bitmask if it idles here.
 2494  */
 2495 struct thread *
 2496 sched_choose(void)
 2497 {
 2498         struct thread *td;
 2499         struct tdq *tdq;
 2500 
 2501         tdq = TDQ_SELF();
 2502         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2503         td = tdq_choose(tdq);
 2504         if (td) {
 2505                 tdq_runq_rem(tdq, td);
 2506                 tdq->tdq_lowpri = td->td_priority;
 2507                 return (td);
 2508         }
 2509         tdq->tdq_lowpri = PRI_MAX_IDLE;
 2510         return (PCPU_GET(idlethread));
 2511 }
 2512 
 2513 /*
 2514  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
 2515  * we always request it once we exit a critical section.
 2516  */
 2517 static inline void
 2518 sched_setpreempt(struct thread *td)
 2519 {
 2520         struct thread *ctd;
 2521         int cpri;
 2522         int pri;
 2523 
 2524         THREAD_LOCK_ASSERT(curthread, MA_OWNED);
 2525 
 2526         ctd = curthread;
 2527         pri = td->td_priority;
 2528         cpri = ctd->td_priority;
 2529         if (pri < cpri)
 2530                 ctd->td_flags |= TDF_NEEDRESCHED;
 2531         if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
 2532                 return;
 2533         if (!sched_shouldpreempt(pri, cpri, 0))
 2534                 return;
 2535         ctd->td_owepreempt = 1;
 2536 }
 2537 
 2538 /*
 2539  * Add a thread to a thread queue.  Select the appropriate runq and add the
 2540  * thread to it.  This is the internal function called when the tdq is
 2541  * predetermined.
 2542  */
 2543 void
 2544 tdq_add(struct tdq *tdq, struct thread *td, int flags)
 2545 {
 2546 
 2547         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2548         KASSERT((td->td_inhibitors == 0),
 2549             ("sched_add: trying to run inhibited thread"));
 2550         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 2551             ("sched_add: bad thread state"));
 2552         KASSERT(td->td_flags & TDF_INMEM,
 2553             ("sched_add: thread swapped out"));
 2554 
 2555         if (td->td_priority < tdq->tdq_lowpri)
 2556                 tdq->tdq_lowpri = td->td_priority;
 2557         tdq_runq_add(tdq, td, flags);
 2558         tdq_load_add(tdq, td);
 2559 }
 2560 
 2561 /*
 2562  * Select the target thread queue and add a thread to it.  Request
 2563  * preemption or IPI a remote processor if required.
 2564  */
 2565 void
 2566 sched_add(struct thread *td, int flags)
 2567 {
 2568         struct tdq *tdq;
 2569 #ifdef SMP
 2570         int cpu;
 2571 #endif
 2572 
 2573         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 2574             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 2575             sched_tdname(curthread));
 2576         KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 2577             KTR_ATTR_LINKED, sched_tdname(td));
 2578         SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
 2579             flags & SRQ_PREEMPTED);
 2580         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2581         /*
 2582          * Recalculate the priority before we select the target cpu or
 2583          * run-queue.
 2584          */
 2585         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
 2586                 sched_priority(td);
 2587 #ifdef SMP
 2588         /*
 2589          * Pick the destination cpu and if it isn't ours transfer to the
 2590          * target cpu.
 2591          */
 2592         cpu = sched_pickcpu(td, flags);
 2593         tdq = sched_setcpu(td, cpu, flags);
 2594         tdq_add(tdq, td, flags);
 2595         if (cpu != PCPU_GET(cpuid)) {
 2596                 tdq_notify(tdq, td);
 2597                 return;
 2598         }
 2599 #else
 2600         tdq = TDQ_SELF();
 2601         TDQ_LOCK(tdq);
 2602         /*
 2603          * Now that the thread is moving to the run-queue, set the lock
 2604          * to the scheduler's lock.
 2605          */
 2606         thread_lock_set(td, TDQ_LOCKPTR(tdq));
 2607         tdq_add(tdq, td, flags);
 2608 #endif
 2609         if (!(flags & SRQ_YIELDING))
 2610                 sched_setpreempt(td);
 2611 }
 2612 
 2613 /*
 2614  * Remove a thread from a run-queue without running it.  This is used
 2615  * when we're stealing a thread from a remote queue.  Otherwise all threads
 2616  * exit by calling sched_exit_thread() and sched_throw() themselves.
 2617  */
 2618 void
 2619 sched_rem(struct thread *td)
 2620 {
 2621         struct tdq *tdq;
 2622 
 2623         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
 2624             "prio:%d", td->td_priority);
 2625         SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
 2626         tdq = TDQ_CPU(td_get_sched(td)->ts_cpu);
 2627         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2628         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2629         KASSERT(TD_ON_RUNQ(td),
 2630             ("sched_rem: thread not on run queue"));
 2631         tdq_runq_rem(tdq, td);
 2632         tdq_load_rem(tdq, td);
 2633         TD_SET_CAN_RUN(td);
 2634         if (td->td_priority == tdq->tdq_lowpri)
 2635                 tdq_setlowpri(tdq, NULL);
 2636 }
 2637 
 2638 /*
 2639  * Fetch cpu utilization information.  Updates on demand.
 2640  */
 2641 fixpt_t
 2642 sched_pctcpu(struct thread *td)
 2643 {
 2644         fixpt_t pctcpu;
 2645         struct td_sched *ts;
 2646 
 2647         pctcpu = 0;
 2648         ts = td_get_sched(td);
 2649 
 2650         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2651         sched_pctcpu_update(ts, TD_IS_RUNNING(td));
 2652         if (ts->ts_ticks) {
 2653                 int rtick;
 2654 
 2655                 /* How many rtick per second ? */
 2656                 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
 2657                 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
 2658         }
 2659 
 2660         return (pctcpu);
 2661 }
 2662 
 2663 /*
 2664  * Enforce affinity settings for a thread.  Called after adjustments to
 2665  * cpumask.
 2666  */
 2667 void
 2668 sched_affinity(struct thread *td)
 2669 {
 2670 #ifdef SMP
 2671         struct td_sched *ts;
 2672 
 2673         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2674         ts = td_get_sched(td);
 2675         if (THREAD_CAN_SCHED(td, ts->ts_cpu))
 2676                 return;
 2677         if (TD_ON_RUNQ(td)) {
 2678                 sched_rem(td);
 2679                 sched_add(td, SRQ_BORING);
 2680                 return;
 2681         }
 2682         if (!TD_IS_RUNNING(td))
 2683                 return;
 2684         /*
 2685          * Force a switch before returning to userspace.  If the
 2686          * target thread is not running locally send an ipi to force
 2687          * the issue.
 2688          */
 2689         td->td_flags |= TDF_NEEDRESCHED;
 2690         if (td != curthread)
 2691                 ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
 2692 #endif
 2693 }
 2694 
 2695 /*
 2696  * Bind a thread to a target cpu.
 2697  */
 2698 void
 2699 sched_bind(struct thread *td, int cpu)
 2700 {
 2701         struct td_sched *ts;
 2702 
 2703         THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
 2704         KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
 2705         ts = td_get_sched(td);
 2706         if (ts->ts_flags & TSF_BOUND)
 2707                 sched_unbind(td);
 2708         KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
 2709         ts->ts_flags |= TSF_BOUND;
 2710         sched_pin();
 2711         if (PCPU_GET(cpuid) == cpu)
 2712                 return;
 2713         ts->ts_cpu = cpu;
 2714         /* When we return from mi_switch we'll be on the correct cpu. */
 2715         mi_switch(SW_VOL, NULL);
 2716 }
 2717 
 2718 /*
 2719  * Release a bound thread.
 2720  */
 2721 void
 2722 sched_unbind(struct thread *td)
 2723 {
 2724         struct td_sched *ts;
 2725 
 2726         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2727         KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
 2728         ts = td_get_sched(td);
 2729         if ((ts->ts_flags & TSF_BOUND) == 0)
 2730                 return;
 2731         ts->ts_flags &= ~TSF_BOUND;
 2732         sched_unpin();
 2733 }
 2734 
 2735 int
 2736 sched_is_bound(struct thread *td)
 2737 {
 2738         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2739         return (td_get_sched(td)->ts_flags & TSF_BOUND);
 2740 }
 2741 
 2742 /*
 2743  * Basic yield call.
 2744  */
 2745 void
 2746 sched_relinquish(struct thread *td)
 2747 {
 2748         thread_lock(td);
 2749         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
 2750         thread_unlock(td);
 2751 }
 2752 
 2753 /*
 2754  * Return the total system load.
 2755  */
 2756 int
 2757 sched_load(void)
 2758 {
 2759 #ifdef SMP
 2760         int total;
 2761         int i;
 2762 
 2763         total = 0;
 2764         CPU_FOREACH(i)
 2765                 total += TDQ_CPU(i)->tdq_sysload;
 2766         return (total);
 2767 #else
 2768         return (TDQ_SELF()->tdq_sysload);
 2769 #endif
 2770 }
 2771 
 2772 int
 2773 sched_sizeof_proc(void)
 2774 {
 2775         return (sizeof(struct proc));
 2776 }
 2777 
 2778 int
 2779 sched_sizeof_thread(void)
 2780 {
 2781         return (sizeof(struct thread) + sizeof(struct td_sched));
 2782 }
 2783 
 2784 #ifdef SMP
 2785 #define TDQ_IDLESPIN(tdq)                                               \
 2786     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
 2787 #else
 2788 #define TDQ_IDLESPIN(tdq)       1
 2789 #endif
 2790 
 2791 /*
 2792  * The actual idle process.
 2793  */
 2794 void
 2795 sched_idletd(void *dummy)
 2796 {
 2797         struct thread *td;
 2798         struct tdq *tdq;
 2799         int oldswitchcnt, switchcnt;
 2800         int i;
 2801 
 2802         mtx_assert(&Giant, MA_NOTOWNED);
 2803         td = curthread;
 2804         tdq = TDQ_SELF();
 2805         THREAD_NO_SLEEPING();
 2806         oldswitchcnt = -1;
 2807         for (;;) {
 2808                 if (tdq->tdq_load) {
 2809                         thread_lock(td);
 2810                         mi_switch(SW_VOL | SWT_IDLE, NULL);
 2811                         thread_unlock(td);
 2812                 }
 2813                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2814 #ifdef SMP
 2815                 if (always_steal || switchcnt != oldswitchcnt) {
 2816                         oldswitchcnt = switchcnt;
 2817                         if (tdq_idled(tdq) == 0)
 2818                                 continue;
 2819                 }
 2820                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2821 #else
 2822                 oldswitchcnt = switchcnt;
 2823 #endif
 2824                 /*
 2825                  * If we're switching very frequently, spin while checking
 2826                  * for load rather than entering a low power state that 
 2827                  * may require an IPI.  However, don't do any busy
 2828                  * loops while on SMT machines as this simply steals
 2829                  * cycles from cores doing useful work.
 2830                  */
 2831                 if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
 2832                         for (i = 0; i < sched_idlespins; i++) {
 2833                                 if (tdq->tdq_load)
 2834                                         break;
 2835                                 cpu_spinwait();
 2836                         }
 2837                 }
 2838 
 2839                 /* If there was context switch during spin, restart it. */
 2840                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2841                 if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt)
 2842                         continue;
 2843 
 2844                 /* Run main MD idle handler. */
 2845                 tdq->tdq_cpu_idle = 1;
 2846                 /*
 2847                  * Make sure that tdq_cpu_idle update is globally visible
 2848                  * before cpu_idle() read tdq_load.  The order is important
 2849                  * to avoid race with tdq_notify.
 2850                  */
 2851                 atomic_thread_fence_seq_cst();
 2852                 /*
 2853                  * Checking for again after the fence picks up assigned
 2854                  * threads often enough to make it worthwhile to do so in
 2855                  * order to avoid calling cpu_idle().
 2856                  */
 2857                 if (tdq->tdq_load != 0) {
 2858                         tdq->tdq_cpu_idle = 0;
 2859                         continue;
 2860                 }
 2861                 cpu_idle(switchcnt * 4 > sched_idlespinthresh);
 2862                 tdq->tdq_cpu_idle = 0;
 2863 
 2864                 /*
 2865                  * Account thread-less hardware interrupts and
 2866                  * other wakeup reasons equal to context switches.
 2867                  */
 2868                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2869                 if (switchcnt != oldswitchcnt)
 2870                         continue;
 2871                 tdq->tdq_switchcnt++;
 2872                 oldswitchcnt++;
 2873         }
 2874 }
 2875 
 2876 /*
 2877  * A CPU is entering for the first time or a thread is exiting.
 2878  */
 2879 void
 2880 sched_throw(struct thread *td)
 2881 {
 2882         struct thread *newtd;
 2883         struct tdq *tdq;
 2884 
 2885         if (td == NULL) {
 2886                 /* Correct spinlock nesting and acquire the correct lock. */
 2887                 tdq = TDQ_SELF();
 2888                 TDQ_LOCK(tdq);
 2889                 spinlock_exit();
 2890                 PCPU_SET(switchtime, cpu_ticks());
 2891                 PCPU_SET(switchticks, ticks);
 2892         } else {
 2893                 tdq = TDQ_SELF();
 2894                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2895                 tdq_load_rem(tdq, td);
 2896                 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
 2897                 td->td_lastcpu = td->td_oncpu;
 2898                 td->td_oncpu = NOCPU;
 2899         }
 2900         KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
 2901         newtd = choosethread();
 2902         TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
 2903         cpu_throw(td, newtd);           /* doesn't return */
 2904 }
 2905 
 2906 /*
 2907  * This is called from fork_exit().  Just acquire the correct locks and
 2908  * let fork do the rest of the work.
 2909  */
 2910 void
 2911 sched_fork_exit(struct thread *td)
 2912 {
 2913         struct tdq *tdq;
 2914         int cpuid;
 2915 
 2916         /*
 2917          * Finish setting up thread glue so that it begins execution in a
 2918          * non-nested critical section with the scheduler lock held.
 2919          */
 2920         cpuid = PCPU_GET(cpuid);
 2921         tdq = TDQ_SELF();
 2922         if (TD_IS_IDLETHREAD(td))
 2923                 td->td_lock = TDQ_LOCKPTR(tdq);
 2924         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2925         td->td_oncpu = cpuid;
 2926         TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 2927         lock_profile_obtain_lock_success(
 2928             &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
 2929 
 2930         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 2931             "prio:%d", td->td_priority);
 2932         SDT_PROBE0(sched, , , on__cpu);
 2933 }
 2934 
 2935 /*
 2936  * Create on first use to catch odd startup conditons.
 2937  */
 2938 char *
 2939 sched_tdname(struct thread *td)
 2940 {
 2941 #ifdef KTR
 2942         struct td_sched *ts;
 2943 
 2944         ts = td_get_sched(td);
 2945         if (ts->ts_name[0] == '\0')
 2946                 snprintf(ts->ts_name, sizeof(ts->ts_name),
 2947                     "%s tid %d", td->td_name, td->td_tid);
 2948         return (ts->ts_name);
 2949 #else
 2950         return (td->td_name);
 2951 #endif
 2952 }
 2953 
 2954 #ifdef KTR
 2955 void
 2956 sched_clear_tdname(struct thread *td)
 2957 {
 2958         struct td_sched *ts;
 2959 
 2960         ts = td_get_sched(td);
 2961         ts->ts_name[0] = '\0';
 2962 }
 2963 #endif
 2964 
 2965 #ifdef SMP
 2966 
 2967 /*
 2968  * Build the CPU topology dump string. Is recursively called to collect
 2969  * the topology tree.
 2970  */
 2971 static int
 2972 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
 2973     int indent)
 2974 {
 2975         char cpusetbuf[CPUSETBUFSIZ];
 2976         int i, first;
 2977 
 2978         sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
 2979             "", 1 + indent / 2, cg->cg_level);
 2980         sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
 2981             cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
 2982         first = TRUE;
 2983         for (i = 0; i < MAXCPU; i++) {
 2984                 if (CPU_ISSET(i, &cg->cg_mask)) {
 2985                         if (!first)
 2986                                 sbuf_printf(sb, ", ");
 2987                         else
 2988                                 first = FALSE;
 2989                         sbuf_printf(sb, "%d", i);
 2990                 }
 2991         }
 2992         sbuf_printf(sb, "</cpu>\n");
 2993 
 2994         if (cg->cg_flags != 0) {
 2995                 sbuf_printf(sb, "%*s <flags>", indent, "");
 2996                 if ((cg->cg_flags & CG_FLAG_HTT) != 0)
 2997                         sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
 2998                 if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
 2999                         sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
 3000                 if ((cg->cg_flags & CG_FLAG_SMT) != 0)
 3001                         sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
 3002                 sbuf_printf(sb, "</flags>\n");
 3003         }
 3004 
 3005         if (cg->cg_children > 0) {
 3006                 sbuf_printf(sb, "%*s <children>\n", indent, "");
 3007                 for (i = 0; i < cg->cg_children; i++)
 3008                         sysctl_kern_sched_topology_spec_internal(sb, 
 3009                             &cg->cg_child[i], indent+2);
 3010                 sbuf_printf(sb, "%*s </children>\n", indent, "");
 3011         }
 3012         sbuf_printf(sb, "%*s</group>\n", indent, "");
 3013         return (0);
 3014 }
 3015 
 3016 /*
 3017  * Sysctl handler for retrieving topology dump. It's a wrapper for
 3018  * the recursive sysctl_kern_smp_topology_spec_internal().
 3019  */
 3020 static int
 3021 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
 3022 {
 3023         struct sbuf *topo;
 3024         int err;
 3025 
 3026         KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
 3027 
 3028         topo = sbuf_new_for_sysctl(NULL, NULL, 512, req);
 3029         if (topo == NULL)
 3030                 return (ENOMEM);
 3031 
 3032         sbuf_printf(topo, "<groups>\n");
 3033         err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
 3034         sbuf_printf(topo, "</groups>\n");
 3035 
 3036         if (err == 0) {
 3037                 err = sbuf_finish(topo);
 3038         }
 3039         sbuf_delete(topo);
 3040         return (err);
 3041 }
 3042 
 3043 #endif
 3044 
 3045 static int
 3046 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
 3047 {
 3048         int error, new_val, period;
 3049 
 3050         period = 1000000 / realstathz;
 3051         new_val = period * sched_slice;
 3052         error = sysctl_handle_int(oidp, &new_val, 0, req);
 3053         if (error != 0 || req->newptr == NULL)
 3054                 return (error);
 3055         if (new_val <= 0)
 3056                 return (EINVAL);
 3057         sched_slice = imax(1, (new_val + period / 2) / period);
 3058         sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
 3059         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 3060             realstathz);
 3061         return (0);
 3062 }
 3063 
 3064 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
 3065 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
 3066     "Scheduler name");
 3067 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
 3068     NULL, 0, sysctl_kern_quantum, "I",
 3069     "Quantum for timeshare threads in microseconds");
 3070 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
 3071     "Quantum for timeshare threads in stathz ticks");
 3072 SYSCTL_UINT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
 3073     "Interactivity score threshold");
 3074 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
 3075     &preempt_thresh, 0,
 3076     "Maximal (lowest) priority for preemption");
 3077 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
 3078     "Assign static kernel priorities to sleeping threads");
 3079 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
 3080     "Number of times idle thread will spin waiting for new work");
 3081 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
 3082     &sched_idlespinthresh, 0,
 3083     "Threshold before we will permit idle thread spinning");
 3084 #ifdef SMP
 3085 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
 3086     "Number of hz ticks to keep thread affinity for");
 3087 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
 3088     "Enables the long-term load balancer");
 3089 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
 3090     &balance_interval, 0,
 3091     "Average period in stathz ticks to run the long-term balancer");
 3092 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
 3093     "Attempts to steal work from other cores before idling");
 3094 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
 3095     "Minimum load on remote CPU before we'll steal");
 3096 SYSCTL_INT(_kern_sched, OID_AUTO, trysteal_limit, CTLFLAG_RW, &trysteal_limit,
 3097     0, "Topological distance limit for stealing threads in sched_switch()");
 3098 SYSCTL_INT(_kern_sched, OID_AUTO, always_steal, CTLFLAG_RW, &always_steal, 0,
 3099     "Always run the stealer from the idle thread");
 3100 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
 3101     CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
 3102     "XML dump of detected CPU topology");
 3103 #endif
 3104 
 3105 /* ps compat.  All cpu percentages from ULE are weighted. */
 3106 static int ccpu = 0;
 3107 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");

Cache object: ac7238e8ed9bbab9c72509c903dcfe2b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.