The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sched_ule.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice unmodified, this list of conditions, and the following
   12  *    disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 /*
   30  * This file implements the ULE scheduler.  ULE supports independent CPU
   31  * run queues and fine grain locking.  It has superior interactive
   32  * performance under load even on uni-processor systems.
   33  *
   34  * etymology:
   35  *   ULE is the last three letters in schedule.  It owes its name to a
   36  * generic user created for a scheduling system by Paul Mikesell at
   37  * Isilon Systems and a general lack of creativity on the part of the author.
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD$");
   42 
   43 #include "opt_hwpmc_hooks.h"
   44 #include "opt_sched.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/kdb.h>
   49 #include <sys/kernel.h>
   50 #include <sys/ktr.h>
   51 #include <sys/limits.h>
   52 #include <sys/lock.h>
   53 #include <sys/mutex.h>
   54 #include <sys/proc.h>
   55 #include <sys/resource.h>
   56 #include <sys/resourcevar.h>
   57 #include <sys/sched.h>
   58 #include <sys/sdt.h>
   59 #include <sys/smp.h>
   60 #include <sys/sx.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/sysproto.h>
   63 #include <sys/turnstile.h>
   64 #include <sys/umtx.h>
   65 #include <sys/vmmeter.h>
   66 #include <sys/cpuset.h>
   67 #include <sys/sbuf.h>
   68 
   69 #ifdef HWPMC_HOOKS
   70 #include <sys/pmckern.h>
   71 #endif
   72 
   73 #ifdef KDTRACE_HOOKS
   74 #include <sys/dtrace_bsd.h>
   75 int __read_mostly               dtrace_vtime_active;
   76 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
   77 #endif
   78 
   79 #include <machine/cpu.h>
   80 #include <machine/smp.h>
   81 
   82 #define KTR_ULE 0
   83 
   84 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
   85 #define TDQ_NAME_LEN    (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
   86 #define TDQ_LOADNAME_LEN        (sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
   87 
   88 /*
   89  * Thread scheduler specific section.  All fields are protected
   90  * by the thread lock.
   91  */
   92 struct td_sched {       
   93         struct runq     *ts_runq;       /* Run-queue we're queued on. */
   94         short           ts_flags;       /* TSF_* flags. */
   95         int             ts_cpu;         /* CPU that we have affinity for. */
   96         int             ts_rltick;      /* Real last tick, for affinity. */
   97         int             ts_slice;       /* Ticks of slice remaining. */
   98         u_int           ts_slptime;     /* Number of ticks we vol. slept */
   99         u_int           ts_runtime;     /* Number of ticks we were running */
  100         int             ts_ltick;       /* Last tick that we were running on */
  101         int             ts_ftick;       /* First tick that we were running on */
  102         int             ts_ticks;       /* Tick count */
  103 #ifdef KTR
  104         char            ts_name[TS_NAME_LEN];
  105 #endif
  106 };
  107 /* flags kept in ts_flags */
  108 #define TSF_BOUND       0x0001          /* Thread can not migrate. */
  109 #define TSF_XFERABLE    0x0002          /* Thread was added as transferable. */
  110 
  111 #define THREAD_CAN_MIGRATE(td)  ((td)->td_pinned == 0)
  112 #define THREAD_CAN_SCHED(td, cpu)       \
  113     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
  114 
  115 _Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
  116     sizeof(struct thread0_storage),
  117     "increase struct thread0_storage.t0st_sched size");
  118 
  119 /*
  120  * Priority ranges used for interactive and non-interactive timeshare
  121  * threads.  The timeshare priorities are split up into four ranges.
  122  * The first range handles interactive threads.  The last three ranges
  123  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
  124  * ranges supporting nice values.
  125  */
  126 #define PRI_TIMESHARE_RANGE     (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
  127 #define PRI_INTERACT_RANGE      ((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
  128 #define PRI_BATCH_RANGE         (PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
  129 
  130 #define PRI_MIN_INTERACT        PRI_MIN_TIMESHARE
  131 #define PRI_MAX_INTERACT        (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
  132 #define PRI_MIN_BATCH           (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
  133 #define PRI_MAX_BATCH           PRI_MAX_TIMESHARE
  134 
  135 /*
  136  * Cpu percentage computation macros and defines.
  137  *
  138  * SCHED_TICK_SECS:     Number of seconds to average the cpu usage across.
  139  * SCHED_TICK_TARG:     Number of hz ticks to average the cpu usage across.
  140  * SCHED_TICK_MAX:      Maximum number of ticks before scaling back.
  141  * SCHED_TICK_SHIFT:    Shift factor to avoid rounding away results.
  142  * SCHED_TICK_HZ:       Compute the number of hz ticks for a given ticks count.
  143  * SCHED_TICK_TOTAL:    Gives the amount of time we've been recording ticks.
  144  */
  145 #define SCHED_TICK_SECS         10
  146 #define SCHED_TICK_TARG         (hz * SCHED_TICK_SECS)
  147 #define SCHED_TICK_MAX          (SCHED_TICK_TARG + hz)
  148 #define SCHED_TICK_SHIFT        10
  149 #define SCHED_TICK_HZ(ts)       ((ts)->ts_ticks >> SCHED_TICK_SHIFT)
  150 #define SCHED_TICK_TOTAL(ts)    (max((ts)->ts_ltick - (ts)->ts_ftick, hz))
  151 
  152 /*
  153  * These macros determine priorities for non-interactive threads.  They are
  154  * assigned a priority based on their recent cpu utilization as expressed
  155  * by the ratio of ticks to the tick total.  NHALF priorities at the start
  156  * and end of the MIN to MAX timeshare range are only reachable with negative
  157  * or positive nice respectively.
  158  *
  159  * PRI_RANGE:   Priority range for utilization dependent priorities.
  160  * PRI_NRESV:   Number of nice values.
  161  * PRI_TICKS:   Compute a priority in PRI_RANGE from the ticks count and total.
  162  * PRI_NICE:    Determines the part of the priority inherited from nice.
  163  */
  164 #define SCHED_PRI_NRESV         (PRIO_MAX - PRIO_MIN)
  165 #define SCHED_PRI_NHALF         (SCHED_PRI_NRESV / 2)
  166 #define SCHED_PRI_MIN           (PRI_MIN_BATCH + SCHED_PRI_NHALF)
  167 #define SCHED_PRI_MAX           (PRI_MAX_BATCH - SCHED_PRI_NHALF)
  168 #define SCHED_PRI_RANGE         (SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
  169 #define SCHED_PRI_TICKS(ts)                                             \
  170     (SCHED_TICK_HZ((ts)) /                                              \
  171     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
  172 #define SCHED_PRI_NICE(nice)    (nice)
  173 
  174 /*
  175  * These determine the interactivity of a process.  Interactivity differs from
  176  * cpu utilization in that it expresses the voluntary time slept vs time ran
  177  * while cpu utilization includes all time not running.  This more accurately
  178  * models the intent of the thread.
  179  *
  180  * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
  181  *              before throttling back.
  182  * SLP_RUN_FORK:        Maximum slp+run time to inherit at fork time.
  183  * INTERACT_MAX:        Maximum interactivity value.  Smaller is better.
  184  * INTERACT_THRESH:     Threshold for placement on the current runq.
  185  */
  186 #define SCHED_SLP_RUN_MAX       ((hz * 5) << SCHED_TICK_SHIFT)
  187 #define SCHED_SLP_RUN_FORK      ((hz / 2) << SCHED_TICK_SHIFT)
  188 #define SCHED_INTERACT_MAX      (100)
  189 #define SCHED_INTERACT_HALF     (SCHED_INTERACT_MAX / 2)
  190 #define SCHED_INTERACT_THRESH   (30)
  191 
  192 /*
  193  * These parameters determine the slice behavior for batch work.
  194  */
  195 #define SCHED_SLICE_DEFAULT_DIVISOR     10      /* ~94 ms, 12 stathz ticks. */
  196 #define SCHED_SLICE_MIN_DIVISOR         6       /* DEFAULT/MIN = ~16 ms. */
  197 
  198 /* Flags kept in td_flags. */
  199 #define TDF_SLICEEND    TDF_SCHED2      /* Thread time slice is over. */
  200 
  201 /*
  202  * tickincr:            Converts a stathz tick into a hz domain scaled by
  203  *                      the shift factor.  Without the shift the error rate
  204  *                      due to rounding would be unacceptably high.
  205  * realstathz:          stathz is sometimes 0 and run off of hz.
  206  * sched_slice:         Runtime of each thread before rescheduling.
  207  * preempt_thresh:      Priority threshold for preemption and remote IPIs.
  208  */
  209 static int __read_mostly sched_interact = SCHED_INTERACT_THRESH;
  210 static int __read_mostly tickincr = 8 << SCHED_TICK_SHIFT;
  211 static int __read_mostly realstathz = 127;      /* reset during boot. */
  212 static int __read_mostly sched_slice = 10;      /* reset during boot. */
  213 static int __read_mostly sched_slice_min = 1;   /* reset during boot. */
  214 #ifdef PREEMPTION
  215 #ifdef FULL_PREEMPTION
  216 static int __read_mostly preempt_thresh = PRI_MAX_IDLE;
  217 #else
  218 static int __read_mostly preempt_thresh = PRI_MIN_KERN;
  219 #endif
  220 #else 
  221 static int __read_mostly preempt_thresh = 0;
  222 #endif
  223 static int __read_mostly static_boost = PRI_MIN_BATCH;
  224 static int __read_mostly sched_idlespins = 10000;
  225 static int __read_mostly sched_idlespinthresh = -1;
  226 
  227 /*
  228  * tdq - per processor runqs and statistics.  All fields are protected by the
  229  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
  230  * locking in sched_pickcpu();
  231  */
  232 struct tdq {
  233         /* 
  234          * Ordered to improve efficiency of cpu_search() and switch().
  235          * tdq_lock is padded to avoid false sharing with tdq_load and
  236          * tdq_cpu_idle.
  237          */
  238         struct mtx_padalign tdq_lock;           /* run queue lock. */
  239         struct cpu_group *tdq_cg;               /* Pointer to cpu topology. */
  240         volatile int    tdq_load;               /* Aggregate load. */
  241         volatile int    tdq_cpu_idle;           /* cpu_idle() is active. */
  242         int             tdq_sysload;            /* For loadavg, !ITHD load. */
  243         volatile int    tdq_transferable;       /* Transferable thread count. */
  244         volatile short  tdq_switchcnt;          /* Switches this tick. */
  245         volatile short  tdq_oldswitchcnt;       /* Switches last tick. */
  246         u_char          tdq_lowpri;             /* Lowest priority thread. */
  247         u_char          tdq_owepreempt;         /* Remote preemption pending. */
  248         u_char          tdq_idx;                /* Current insert index. */
  249         u_char          tdq_ridx;               /* Current removal index. */
  250         int             tdq_id;                 /* cpuid. */
  251         struct runq     tdq_realtime;           /* real-time run queue. */
  252         struct runq     tdq_timeshare;          /* timeshare run queue. */
  253         struct runq     tdq_idle;               /* Queue of IDLE threads. */
  254         char            tdq_name[TDQ_NAME_LEN];
  255 #ifdef KTR
  256         char            tdq_loadname[TDQ_LOADNAME_LEN];
  257 #endif
  258 } __aligned(64);
  259 
  260 /* Idle thread states and config. */
  261 #define TDQ_RUNNING     1
  262 #define TDQ_IDLE        2
  263 
  264 #ifdef SMP
  265 struct cpu_group __read_mostly *cpu_top;                /* CPU topology */
  266 
  267 #define SCHED_AFFINITY_DEFAULT  (max(1, hz / 1000))
  268 #define SCHED_AFFINITY(ts, t)   ((ts)->ts_rltick > ticks - ((t) * affinity))
  269 
  270 /*
  271  * Run-time tunables.
  272  */
  273 static int rebalance = 1;
  274 static int balance_interval = 128;      /* Default set in sched_initticks(). */
  275 static int __read_mostly affinity;
  276 static int __read_mostly steal_idle = 1;
  277 static int __read_mostly steal_thresh = 2;
  278 static int __read_mostly always_steal = 0;
  279 static int __read_mostly trysteal_limit = 2;
  280 
  281 /*
  282  * One thread queue per processor.
  283  */
  284 static struct tdq __read_mostly *balance_tdq;
  285 static int balance_ticks;
  286 DPCPU_DEFINE_STATIC(struct tdq, tdq);
  287 DPCPU_DEFINE_STATIC(uint32_t, randomval);
  288 
  289 #define TDQ_SELF()      ((struct tdq *)PCPU_GET(sched))
  290 #define TDQ_CPU(x)      (DPCPU_ID_PTR((x), tdq))
  291 #define TDQ_ID(x)       ((x)->tdq_id)
  292 #else   /* !SMP */
  293 static struct tdq       tdq_cpu;
  294 
  295 #define TDQ_ID(x)       (0)
  296 #define TDQ_SELF()      (&tdq_cpu)
  297 #define TDQ_CPU(x)      (&tdq_cpu)
  298 #endif
  299 
  300 #define TDQ_LOCK_ASSERT(t, type)        mtx_assert(TDQ_LOCKPTR((t)), (type))
  301 #define TDQ_LOCK(t)             mtx_lock_spin(TDQ_LOCKPTR((t)))
  302 #define TDQ_LOCK_FLAGS(t, f)    mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
  303 #define TDQ_UNLOCK(t)           mtx_unlock_spin(TDQ_LOCKPTR((t)))
  304 #define TDQ_LOCKPTR(t)          ((struct mtx *)(&(t)->tdq_lock))
  305 
  306 static void sched_priority(struct thread *);
  307 static void sched_thread_priority(struct thread *, u_char);
  308 static int sched_interact_score(struct thread *);
  309 static void sched_interact_update(struct thread *);
  310 static void sched_interact_fork(struct thread *);
  311 static void sched_pctcpu_update(struct td_sched *, int);
  312 
  313 /* Operations on per processor queues */
  314 static struct thread *tdq_choose(struct tdq *);
  315 static void tdq_setup(struct tdq *, int i);
  316 static void tdq_load_add(struct tdq *, struct thread *);
  317 static void tdq_load_rem(struct tdq *, struct thread *);
  318 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
  319 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
  320 static inline int sched_shouldpreempt(int, int, int);
  321 void tdq_print(int cpu);
  322 static void runq_print(struct runq *rq);
  323 static void tdq_add(struct tdq *, struct thread *, int);
  324 #ifdef SMP
  325 static struct thread *tdq_move(struct tdq *, struct tdq *);
  326 static int tdq_idled(struct tdq *);
  327 static void tdq_notify(struct tdq *, struct thread *);
  328 static struct thread *tdq_steal(struct tdq *, int);
  329 static struct thread *runq_steal(struct runq *, int);
  330 static int sched_pickcpu(struct thread *, int);
  331 static void sched_balance(void);
  332 static int sched_balance_pair(struct tdq *, struct tdq *);
  333 static inline struct tdq *sched_setcpu(struct thread *, int, int);
  334 static inline void thread_unblock_switch(struct thread *, struct mtx *);
  335 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
  336 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 
  337     struct cpu_group *cg, int indent);
  338 #endif
  339 
  340 static void sched_setup(void *dummy);
  341 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
  342 
  343 static void sched_initticks(void *dummy);
  344 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
  345     NULL);
  346 
  347 SDT_PROVIDER_DEFINE(sched);
  348 
  349 SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *", 
  350     "struct proc *", "uint8_t");
  351 SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *", 
  352     "struct proc *", "void *");
  353 SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *", 
  354     "struct proc *", "void *", "int");
  355 SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *", 
  356     "struct proc *", "uint8_t", "struct thread *");
  357 SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
  358 SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *", 
  359     "struct proc *");
  360 SDT_PROBE_DEFINE(sched, , , on__cpu);
  361 SDT_PROBE_DEFINE(sched, , , remain__cpu);
  362 SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *", 
  363     "struct proc *");
  364 
  365 /*
  366  * Print the threads waiting on a run-queue.
  367  */
  368 static void
  369 runq_print(struct runq *rq)
  370 {
  371         struct rqhead *rqh;
  372         struct thread *td;
  373         int pri;
  374         int j;
  375         int i;
  376 
  377         for (i = 0; i < RQB_LEN; i++) {
  378                 printf("\t\trunq bits %d 0x%zx\n",
  379                     i, rq->rq_status.rqb_bits[i]);
  380                 for (j = 0; j < RQB_BPW; j++)
  381                         if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
  382                                 pri = j + (i << RQB_L2BPW);
  383                                 rqh = &rq->rq_queues[pri];
  384                                 TAILQ_FOREACH(td, rqh, td_runq) {
  385                                         printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
  386                                             td, td->td_name, td->td_priority,
  387                                             td->td_rqindex, pri);
  388                                 }
  389                         }
  390         }
  391 }
  392 
  393 /*
  394  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
  395  */
  396 void
  397 tdq_print(int cpu)
  398 {
  399         struct tdq *tdq;
  400 
  401         tdq = TDQ_CPU(cpu);
  402 
  403         printf("tdq %d:\n", TDQ_ID(tdq));
  404         printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
  405         printf("\tLock name:      %s\n", tdq->tdq_name);
  406         printf("\tload:           %d\n", tdq->tdq_load);
  407         printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
  408         printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
  409         printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
  410         printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
  411         printf("\tload transferable: %d\n", tdq->tdq_transferable);
  412         printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
  413         printf("\trealtime runq:\n");
  414         runq_print(&tdq->tdq_realtime);
  415         printf("\ttimeshare runq:\n");
  416         runq_print(&tdq->tdq_timeshare);
  417         printf("\tidle runq:\n");
  418         runq_print(&tdq->tdq_idle);
  419 }
  420 
  421 static inline int
  422 sched_shouldpreempt(int pri, int cpri, int remote)
  423 {
  424         /*
  425          * If the new priority is not better than the current priority there is
  426          * nothing to do.
  427          */
  428         if (pri >= cpri)
  429                 return (0);
  430         /*
  431          * Always preempt idle.
  432          */
  433         if (cpri >= PRI_MIN_IDLE)
  434                 return (1);
  435         /*
  436          * If preemption is disabled don't preempt others.
  437          */
  438         if (preempt_thresh == 0)
  439                 return (0);
  440         /*
  441          * Preempt if we exceed the threshold.
  442          */
  443         if (pri <= preempt_thresh)
  444                 return (1);
  445         /*
  446          * If we're interactive or better and there is non-interactive
  447          * or worse running preempt only remote processors.
  448          */
  449         if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
  450                 return (1);
  451         return (0);
  452 }
  453 
  454 /*
  455  * Add a thread to the actual run-queue.  Keeps transferable counts up to
  456  * date with what is actually on the run-queue.  Selects the correct
  457  * queue position for timeshare threads.
  458  */
  459 static __inline void
  460 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
  461 {
  462         struct td_sched *ts;
  463         u_char pri;
  464 
  465         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  466         THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
  467 
  468         pri = td->td_priority;
  469         ts = td_get_sched(td);
  470         TD_SET_RUNQ(td);
  471         if (THREAD_CAN_MIGRATE(td)) {
  472                 tdq->tdq_transferable++;
  473                 ts->ts_flags |= TSF_XFERABLE;
  474         }
  475         if (pri < PRI_MIN_BATCH) {
  476                 ts->ts_runq = &tdq->tdq_realtime;
  477         } else if (pri <= PRI_MAX_BATCH) {
  478                 ts->ts_runq = &tdq->tdq_timeshare;
  479                 KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
  480                         ("Invalid priority %d on timeshare runq", pri));
  481                 /*
  482                  * This queue contains only priorities between MIN and MAX
  483                  * realtime.  Use the whole queue to represent these values.
  484                  */
  485                 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
  486                         pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
  487                         pri = (pri + tdq->tdq_idx) % RQ_NQS;
  488                         /*
  489                          * This effectively shortens the queue by one so we
  490                          * can have a one slot difference between idx and
  491                          * ridx while we wait for threads to drain.
  492                          */
  493                         if (tdq->tdq_ridx != tdq->tdq_idx &&
  494                             pri == tdq->tdq_ridx)
  495                                 pri = (unsigned char)(pri - 1) % RQ_NQS;
  496                 } else
  497                         pri = tdq->tdq_ridx;
  498                 runq_add_pri(ts->ts_runq, td, pri, flags);
  499                 return;
  500         } else
  501                 ts->ts_runq = &tdq->tdq_idle;
  502         runq_add(ts->ts_runq, td, flags);
  503 }
  504 
  505 /* 
  506  * Remove a thread from a run-queue.  This typically happens when a thread
  507  * is selected to run.  Running threads are not on the queue and the
  508  * transferable count does not reflect them.
  509  */
  510 static __inline void
  511 tdq_runq_rem(struct tdq *tdq, struct thread *td)
  512 {
  513         struct td_sched *ts;
  514 
  515         ts = td_get_sched(td);
  516         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  517         THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
  518         KASSERT(ts->ts_runq != NULL,
  519             ("tdq_runq_remove: thread %p null ts_runq", td));
  520         if (ts->ts_flags & TSF_XFERABLE) {
  521                 tdq->tdq_transferable--;
  522                 ts->ts_flags &= ~TSF_XFERABLE;
  523         }
  524         if (ts->ts_runq == &tdq->tdq_timeshare) {
  525                 if (tdq->tdq_idx != tdq->tdq_ridx)
  526                         runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
  527                 else
  528                         runq_remove_idx(ts->ts_runq, td, NULL);
  529         } else
  530                 runq_remove(ts->ts_runq, td);
  531 }
  532 
  533 /*
  534  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
  535  * for this thread to the referenced thread queue.
  536  */
  537 static void
  538 tdq_load_add(struct tdq *tdq, struct thread *td)
  539 {
  540 
  541         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  542         THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
  543 
  544         tdq->tdq_load++;
  545         if ((td->td_flags & TDF_NOLOAD) == 0)
  546                 tdq->tdq_sysload++;
  547         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  548         SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
  549 }
  550 
  551 /*
  552  * Remove the load from a thread that is transitioning to a sleep state or
  553  * exiting.
  554  */
  555 static void
  556 tdq_load_rem(struct tdq *tdq, struct thread *td)
  557 {
  558 
  559         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  560         THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
  561         KASSERT(tdq->tdq_load != 0,
  562             ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
  563 
  564         tdq->tdq_load--;
  565         if ((td->td_flags & TDF_NOLOAD) == 0)
  566                 tdq->tdq_sysload--;
  567         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  568         SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
  569 }
  570 
  571 /*
  572  * Bound timeshare latency by decreasing slice size as load increases.  We
  573  * consider the maximum latency as the sum of the threads waiting to run
  574  * aside from curthread and target no more than sched_slice latency but
  575  * no less than sched_slice_min runtime.
  576  */
  577 static inline int
  578 tdq_slice(struct tdq *tdq)
  579 {
  580         int load;
  581 
  582         /*
  583          * It is safe to use sys_load here because this is called from
  584          * contexts where timeshare threads are running and so there
  585          * cannot be higher priority load in the system.
  586          */
  587         load = tdq->tdq_sysload - 1;
  588         if (load >= SCHED_SLICE_MIN_DIVISOR)
  589                 return (sched_slice_min);
  590         if (load <= 1)
  591                 return (sched_slice);
  592         return (sched_slice / load);
  593 }
  594 
  595 /*
  596  * Set lowpri to its exact value by searching the run-queue and
  597  * evaluating curthread.  curthread may be passed as an optimization.
  598  */
  599 static void
  600 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
  601 {
  602         struct thread *td;
  603 
  604         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  605         if (ctd == NULL)
  606                 ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
  607         td = tdq_choose(tdq);
  608         if (td == NULL || td->td_priority > ctd->td_priority)
  609                 tdq->tdq_lowpri = ctd->td_priority;
  610         else
  611                 tdq->tdq_lowpri = td->td_priority;
  612 }
  613 
  614 #ifdef SMP
  615 /*
  616  * We need some randomness. Implement a classic Linear Congruential
  617  * Generator X_{n+1}=(aX_n+c) mod m. These values are optimized for
  618  * m = 2^32, a = 69069 and c = 5. We only return the upper 16 bits
  619  * of the random state (in the low bits of our answer) to keep
  620  * the maximum randomness.
  621  */
  622 static uint32_t
  623 sched_random(void)
  624 {
  625         uint32_t *rndptr;
  626 
  627         rndptr = DPCPU_PTR(randomval);
  628         *rndptr = *rndptr * 69069 + 5;
  629 
  630         return (*rndptr >> 16);
  631 }
  632 
  633 struct cpu_search {
  634         cpuset_t cs_mask;
  635         u_int   cs_prefer;
  636         int     cs_pri;         /* Min priority for low. */
  637         int     cs_limit;       /* Max load for low, min load for high. */
  638         int     cs_cpu;
  639         int     cs_load;
  640 };
  641 
  642 #define CPU_SEARCH_LOWEST       0x1
  643 #define CPU_SEARCH_HIGHEST      0x2
  644 #define CPU_SEARCH_BOTH         (CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
  645 
  646 static __always_inline int cpu_search(const struct cpu_group *cg,
  647     struct cpu_search *low, struct cpu_search *high, const int match);
  648 int __noinline cpu_search_lowest(const struct cpu_group *cg,
  649     struct cpu_search *low);
  650 int __noinline cpu_search_highest(const struct cpu_group *cg,
  651     struct cpu_search *high);
  652 int __noinline cpu_search_both(const struct cpu_group *cg,
  653     struct cpu_search *low, struct cpu_search *high);
  654 
  655 /*
  656  * Search the tree of cpu_groups for the lowest or highest loaded cpu
  657  * according to the match argument.  This routine actually compares the
  658  * load on all paths through the tree and finds the least loaded cpu on
  659  * the least loaded path, which may differ from the least loaded cpu in
  660  * the system.  This balances work among caches and buses.
  661  *
  662  * This inline is instantiated in three forms below using constants for the
  663  * match argument.  It is reduced to the minimum set for each case.  It is
  664  * also recursive to the depth of the tree.
  665  */
  666 static __always_inline int
  667 cpu_search(const struct cpu_group *cg, struct cpu_search *low,
  668     struct cpu_search *high, const int match)
  669 {
  670         struct cpu_search lgroup;
  671         struct cpu_search hgroup;
  672         cpuset_t cpumask;
  673         struct cpu_group *child;
  674         struct tdq *tdq;
  675         int cpu, i, hload, lload, load, total, rnd;
  676 
  677         total = 0;
  678         cpumask = cg->cg_mask;
  679         if (match & CPU_SEARCH_LOWEST) {
  680                 lload = INT_MAX;
  681                 lgroup = *low;
  682         }
  683         if (match & CPU_SEARCH_HIGHEST) {
  684                 hload = INT_MIN;
  685                 hgroup = *high;
  686         }
  687 
  688         /* Iterate through the child CPU groups and then remaining CPUs. */
  689         for (i = cg->cg_children, cpu = mp_maxid; ; ) {
  690                 if (i == 0) {
  691 #ifdef HAVE_INLINE_FFSL
  692                         cpu = CPU_FFS(&cpumask) - 1;
  693 #else
  694                         while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
  695                                 cpu--;
  696 #endif
  697                         if (cpu < 0)
  698                                 break;
  699                         child = NULL;
  700                 } else
  701                         child = &cg->cg_child[i - 1];
  702 
  703                 if (match & CPU_SEARCH_LOWEST)
  704                         lgroup.cs_cpu = -1;
  705                 if (match & CPU_SEARCH_HIGHEST)
  706                         hgroup.cs_cpu = -1;
  707                 if (child) {                    /* Handle child CPU group. */
  708                         CPU_ANDNOT(&cpumask, &child->cg_mask);
  709                         switch (match) {
  710                         case CPU_SEARCH_LOWEST:
  711                                 load = cpu_search_lowest(child, &lgroup);
  712                                 break;
  713                         case CPU_SEARCH_HIGHEST:
  714                                 load = cpu_search_highest(child, &hgroup);
  715                                 break;
  716                         case CPU_SEARCH_BOTH:
  717                                 load = cpu_search_both(child, &lgroup, &hgroup);
  718                                 break;
  719                         }
  720                 } else {                        /* Handle child CPU. */
  721                         CPU_CLR(cpu, &cpumask);
  722                         tdq = TDQ_CPU(cpu);
  723                         load = tdq->tdq_load * 256;
  724                         rnd = sched_random() % 32;
  725                         if (match & CPU_SEARCH_LOWEST) {
  726                                 if (cpu == low->cs_prefer)
  727                                         load -= 64;
  728                                 /* If that CPU is allowed and get data. */
  729                                 if (tdq->tdq_lowpri > lgroup.cs_pri &&
  730                                     tdq->tdq_load <= lgroup.cs_limit &&
  731                                     CPU_ISSET(cpu, &lgroup.cs_mask)) {
  732                                         lgroup.cs_cpu = cpu;
  733                                         lgroup.cs_load = load - rnd;
  734                                 }
  735                         }
  736                         if (match & CPU_SEARCH_HIGHEST)
  737                                 if (tdq->tdq_load >= hgroup.cs_limit &&
  738                                     tdq->tdq_transferable &&
  739                                     CPU_ISSET(cpu, &hgroup.cs_mask)) {
  740                                         hgroup.cs_cpu = cpu;
  741                                         hgroup.cs_load = load - rnd;
  742                                 }
  743                 }
  744                 total += load;
  745 
  746                 /* We have info about child item. Compare it. */
  747                 if (match & CPU_SEARCH_LOWEST) {
  748                         if (lgroup.cs_cpu >= 0 &&
  749                             (load < lload ||
  750                              (load == lload && lgroup.cs_load < low->cs_load))) {
  751                                 lload = load;
  752                                 low->cs_cpu = lgroup.cs_cpu;
  753                                 low->cs_load = lgroup.cs_load;
  754                         }
  755                 }
  756                 if (match & CPU_SEARCH_HIGHEST)
  757                         if (hgroup.cs_cpu >= 0 &&
  758                             (load > hload ||
  759                              (load == hload && hgroup.cs_load > high->cs_load))) {
  760                                 hload = load;
  761                                 high->cs_cpu = hgroup.cs_cpu;
  762                                 high->cs_load = hgroup.cs_load;
  763                         }
  764                 if (child) {
  765                         i--;
  766                         if (i == 0 && CPU_EMPTY(&cpumask))
  767                                 break;
  768                 }
  769 #ifndef HAVE_INLINE_FFSL
  770                 else
  771                         cpu--;
  772 #endif
  773         }
  774         return (total);
  775 }
  776 
  777 /*
  778  * cpu_search instantiations must pass constants to maintain the inline
  779  * optimization.
  780  */
  781 int
  782 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
  783 {
  784         return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
  785 }
  786 
  787 int
  788 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
  789 {
  790         return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
  791 }
  792 
  793 int
  794 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
  795     struct cpu_search *high)
  796 {
  797         return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
  798 }
  799 
  800 /*
  801  * Find the cpu with the least load via the least loaded path that has a
  802  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
  803  * acceptable.
  804  */
  805 static inline int
  806 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
  807     int prefer)
  808 {
  809         struct cpu_search low;
  810 
  811         low.cs_cpu = -1;
  812         low.cs_prefer = prefer;
  813         low.cs_mask = mask;
  814         low.cs_pri = pri;
  815         low.cs_limit = maxload;
  816         cpu_search_lowest(cg, &low);
  817         return low.cs_cpu;
  818 }
  819 
  820 /*
  821  * Find the cpu with the highest load via the highest loaded path.
  822  */
  823 static inline int
  824 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
  825 {
  826         struct cpu_search high;
  827 
  828         high.cs_cpu = -1;
  829         high.cs_mask = mask;
  830         high.cs_limit = minload;
  831         cpu_search_highest(cg, &high);
  832         return high.cs_cpu;
  833 }
  834 
  835 static void
  836 sched_balance_group(struct cpu_group *cg)
  837 {
  838         struct tdq *tdq;
  839         cpuset_t hmask, lmask;
  840         int high, low, anylow;
  841 
  842         CPU_FILL(&hmask);
  843         for (;;) {
  844                 high = sched_highest(cg, hmask, 2);
  845                 /* Stop if there is no more CPU with transferrable threads. */
  846                 if (high == -1)
  847                         break;
  848                 CPU_CLR(high, &hmask);
  849                 CPU_COPY(&hmask, &lmask);
  850                 /* Stop if there is no more CPU left for low. */
  851                 if (CPU_EMPTY(&lmask))
  852                         break;
  853                 anylow = 1;
  854                 tdq = TDQ_CPU(high);
  855 nextlow:
  856                 low = sched_lowest(cg, lmask, -1, tdq->tdq_load - 1, high);
  857                 /* Stop if we looked well and found no less loaded CPU. */
  858                 if (anylow && low == -1)
  859                         break;
  860                 /* Go to next high if we found no less loaded CPU. */
  861                 if (low == -1)
  862                         continue;
  863                 /* Transfer thread from high to low. */
  864                 if (sched_balance_pair(tdq, TDQ_CPU(low))) {
  865                         /* CPU that got thread can no longer be a donor. */
  866                         CPU_CLR(low, &hmask);
  867                 } else {
  868                         /*
  869                          * If failed, then there is no threads on high
  870                          * that can run on this low. Drop low from low
  871                          * mask and look for different one.
  872                          */
  873                         CPU_CLR(low, &lmask);
  874                         anylow = 0;
  875                         goto nextlow;
  876                 }
  877         }
  878 }
  879 
  880 static void
  881 sched_balance(void)
  882 {
  883         struct tdq *tdq;
  884 
  885         balance_ticks = max(balance_interval / 2, 1) +
  886             (sched_random() % balance_interval);
  887         tdq = TDQ_SELF();
  888         TDQ_UNLOCK(tdq);
  889         sched_balance_group(cpu_top);
  890         TDQ_LOCK(tdq);
  891 }
  892 
  893 /*
  894  * Lock two thread queues using their address to maintain lock order.
  895  */
  896 static void
  897 tdq_lock_pair(struct tdq *one, struct tdq *two)
  898 {
  899         if (one < two) {
  900                 TDQ_LOCK(one);
  901                 TDQ_LOCK_FLAGS(two, MTX_DUPOK);
  902         } else {
  903                 TDQ_LOCK(two);
  904                 TDQ_LOCK_FLAGS(one, MTX_DUPOK);
  905         }
  906 }
  907 
  908 /*
  909  * Unlock two thread queues.  Order is not important here.
  910  */
  911 static void
  912 tdq_unlock_pair(struct tdq *one, struct tdq *two)
  913 {
  914         TDQ_UNLOCK(one);
  915         TDQ_UNLOCK(two);
  916 }
  917 
  918 /*
  919  * Transfer load between two imbalanced thread queues.
  920  */
  921 static int
  922 sched_balance_pair(struct tdq *high, struct tdq *low)
  923 {
  924         struct thread *td;
  925         int cpu;
  926 
  927         tdq_lock_pair(high, low);
  928         td = NULL;
  929         /*
  930          * Transfer a thread from high to low.
  931          */
  932         if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
  933             (td = tdq_move(high, low)) != NULL) {
  934                 /*
  935                  * In case the target isn't the current cpu notify it of the
  936                  * new load, possibly sending an IPI to force it to reschedule.
  937                  */
  938                 cpu = TDQ_ID(low);
  939                 if (cpu != PCPU_GET(cpuid))
  940                         tdq_notify(low, td);
  941         }
  942         tdq_unlock_pair(high, low);
  943         return (td != NULL);
  944 }
  945 
  946 /*
  947  * Move a thread from one thread queue to another.
  948  */
  949 static struct thread *
  950 tdq_move(struct tdq *from, struct tdq *to)
  951 {
  952         struct thread *td;
  953         struct tdq *tdq;
  954         int cpu;
  955 
  956         TDQ_LOCK_ASSERT(from, MA_OWNED);
  957         TDQ_LOCK_ASSERT(to, MA_OWNED);
  958 
  959         tdq = from;
  960         cpu = TDQ_ID(to);
  961         td = tdq_steal(tdq, cpu);
  962         if (td == NULL)
  963                 return (NULL);
  964 
  965         /*
  966          * Although the run queue is locked the thread may be
  967          * blocked.  We can not set the lock until it is unblocked.
  968          */
  969         thread_lock_block_wait(td);
  970         sched_rem(td);
  971         THREAD_LOCKPTR_ASSERT(td, TDQ_LOCKPTR(from));
  972         td->td_lock = TDQ_LOCKPTR(to);
  973         td_get_sched(td)->ts_cpu = cpu;
  974         tdq_add(to, td, SRQ_YIELDING);
  975 
  976         return (td);
  977 }
  978 
  979 /*
  980  * This tdq has idled.  Try to steal a thread from another cpu and switch
  981  * to it.
  982  */
  983 static int
  984 tdq_idled(struct tdq *tdq)
  985 {
  986         struct cpu_group *cg;
  987         struct tdq *steal;
  988         cpuset_t mask;
  989         int cpu, switchcnt;
  990 
  991         if (smp_started == 0 || steal_idle == 0 || tdq->tdq_cg == NULL)
  992                 return (1);
  993         CPU_FILL(&mask);
  994         CPU_CLR(PCPU_GET(cpuid), &mask);
  995     restart:
  996         switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
  997         for (cg = tdq->tdq_cg; ; ) {
  998                 cpu = sched_highest(cg, mask, steal_thresh);
  999                 /*
 1000                  * We were assigned a thread but not preempted.  Returning
 1001                  * 0 here will cause our caller to switch to it.
 1002                  */
 1003                 if (tdq->tdq_load)
 1004                         return (0);
 1005                 if (cpu == -1) {
 1006                         cg = cg->cg_parent;
 1007                         if (cg == NULL)
 1008                                 return (1);
 1009                         continue;
 1010                 }
 1011                 steal = TDQ_CPU(cpu);
 1012                 /*
 1013                  * The data returned by sched_highest() is stale and
 1014                  * the chosen CPU no longer has an eligible thread.
 1015                  *
 1016                  * Testing this ahead of tdq_lock_pair() only catches
 1017                  * this situation about 20% of the time on an 8 core
 1018                  * 16 thread Ryzen 7, but it still helps performance.
 1019                  */
 1020                 if (steal->tdq_load < steal_thresh ||
 1021                     steal->tdq_transferable == 0)
 1022                         goto restart;
 1023                 tdq_lock_pair(tdq, steal);
 1024                 /*
 1025                  * We were assigned a thread while waiting for the locks.
 1026                  * Switch to it now instead of stealing a thread.
 1027                  */
 1028                 if (tdq->tdq_load)
 1029                         break;
 1030                 /*
 1031                  * The data returned by sched_highest() is stale and
 1032                  * the chosen CPU no longer has an eligible thread, or
 1033                  * we were preempted and the CPU loading info may be out
 1034                  * of date.  The latter is rare.  In either case restart
 1035                  * the search.
 1036                  */
 1037                 if (steal->tdq_load < steal_thresh ||
 1038                     steal->tdq_transferable == 0 ||
 1039                     switchcnt != tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt) {
 1040                         tdq_unlock_pair(tdq, steal);
 1041                         goto restart;
 1042                 }
 1043                 /*
 1044                  * Steal the thread and switch to it.
 1045                  */
 1046                 if (tdq_move(steal, tdq) != NULL)
 1047                         break;
 1048                 /*
 1049                  * We failed to acquire a thread even though it looked
 1050                  * like one was available.  This could be due to affinity
 1051                  * restrictions or for other reasons.  Loop again after
 1052                  * removing this CPU from the set.  The restart logic
 1053                  * above does not restore this CPU to the set due to the
 1054                  * likelyhood of failing here again.
 1055                  */
 1056                 CPU_CLR(cpu, &mask);
 1057                 tdq_unlock_pair(tdq, steal);
 1058         }
 1059         TDQ_UNLOCK(steal);
 1060         mi_switch(SW_VOL | SWT_IDLE);
 1061         return (0);
 1062 }
 1063 
 1064 /*
 1065  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
 1066  */
 1067 static void
 1068 tdq_notify(struct tdq *tdq, struct thread *td)
 1069 {
 1070         struct thread *ctd;
 1071         int pri;
 1072         int cpu;
 1073 
 1074         if (tdq->tdq_owepreempt)
 1075                 return;
 1076         cpu = td_get_sched(td)->ts_cpu;
 1077         pri = td->td_priority;
 1078         ctd = pcpu_find(cpu)->pc_curthread;
 1079         if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
 1080                 return;
 1081 
 1082         /*
 1083          * Make sure that our caller's earlier update to tdq_load is
 1084          * globally visible before we read tdq_cpu_idle.  Idle thread
 1085          * accesses both of them without locks, and the order is important.
 1086          */
 1087         atomic_thread_fence_seq_cst();
 1088 
 1089         if (TD_IS_IDLETHREAD(ctd)) {
 1090                 /*
 1091                  * If the MD code has an idle wakeup routine try that before
 1092                  * falling back to IPI.
 1093                  */
 1094                 if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
 1095                         return;
 1096         }
 1097 
 1098         /*
 1099          * The run queues have been updated, so any switch on the remote CPU
 1100          * will satisfy the preemption request.
 1101          */
 1102         tdq->tdq_owepreempt = 1;
 1103         ipi_cpu(cpu, IPI_PREEMPT);
 1104 }
 1105 
 1106 /*
 1107  * Steals load from a timeshare queue.  Honors the rotating queue head
 1108  * index.
 1109  */
 1110 static struct thread *
 1111 runq_steal_from(struct runq *rq, int cpu, u_char start)
 1112 {
 1113         struct rqbits *rqb;
 1114         struct rqhead *rqh;
 1115         struct thread *td, *first;
 1116         int bit;
 1117         int i;
 1118 
 1119         rqb = &rq->rq_status;
 1120         bit = start & (RQB_BPW -1);
 1121         first = NULL;
 1122 again:
 1123         for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
 1124                 if (rqb->rqb_bits[i] == 0)
 1125                         continue;
 1126                 if (bit == 0)
 1127                         bit = RQB_FFS(rqb->rqb_bits[i]);
 1128                 for (; bit < RQB_BPW; bit++) {
 1129                         if ((rqb->rqb_bits[i] & (1ul << bit)) == 0)
 1130                                 continue;
 1131                         rqh = &rq->rq_queues[bit + (i << RQB_L2BPW)];
 1132                         TAILQ_FOREACH(td, rqh, td_runq) {
 1133                                 if (first && THREAD_CAN_MIGRATE(td) &&
 1134                                     THREAD_CAN_SCHED(td, cpu))
 1135                                         return (td);
 1136                                 first = td;
 1137                         }
 1138                 }
 1139         }
 1140         if (start != 0) {
 1141                 start = 0;
 1142                 goto again;
 1143         }
 1144 
 1145         if (first && THREAD_CAN_MIGRATE(first) &&
 1146             THREAD_CAN_SCHED(first, cpu))
 1147                 return (first);
 1148         return (NULL);
 1149 }
 1150 
 1151 /*
 1152  * Steals load from a standard linear queue.
 1153  */
 1154 static struct thread *
 1155 runq_steal(struct runq *rq, int cpu)
 1156 {
 1157         struct rqhead *rqh;
 1158         struct rqbits *rqb;
 1159         struct thread *td;
 1160         int word;
 1161         int bit;
 1162 
 1163         rqb = &rq->rq_status;
 1164         for (word = 0; word < RQB_LEN; word++) {
 1165                 if (rqb->rqb_bits[word] == 0)
 1166                         continue;
 1167                 for (bit = 0; bit < RQB_BPW; bit++) {
 1168                         if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
 1169                                 continue;
 1170                         rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
 1171                         TAILQ_FOREACH(td, rqh, td_runq)
 1172                                 if (THREAD_CAN_MIGRATE(td) &&
 1173                                     THREAD_CAN_SCHED(td, cpu))
 1174                                         return (td);
 1175                 }
 1176         }
 1177         return (NULL);
 1178 }
 1179 
 1180 /*
 1181  * Attempt to steal a thread in priority order from a thread queue.
 1182  */
 1183 static struct thread *
 1184 tdq_steal(struct tdq *tdq, int cpu)
 1185 {
 1186         struct thread *td;
 1187 
 1188         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1189         if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
 1190                 return (td);
 1191         if ((td = runq_steal_from(&tdq->tdq_timeshare,
 1192             cpu, tdq->tdq_ridx)) != NULL)
 1193                 return (td);
 1194         return (runq_steal(&tdq->tdq_idle, cpu));
 1195 }
 1196 
 1197 /*
 1198  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
 1199  * current lock and returns with the assigned queue locked.
 1200  */
 1201 static inline struct tdq *
 1202 sched_setcpu(struct thread *td, int cpu, int flags)
 1203 {
 1204 
 1205         struct tdq *tdq;
 1206         struct mtx *mtx;
 1207 
 1208         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1209         tdq = TDQ_CPU(cpu);
 1210         td_get_sched(td)->ts_cpu = cpu;
 1211         /*
 1212          * If the lock matches just return the queue.
 1213          */
 1214         if (td->td_lock == TDQ_LOCKPTR(tdq)) {
 1215                 KASSERT((flags & SRQ_HOLD) == 0,
 1216                     ("sched_setcpu: Invalid lock for SRQ_HOLD"));
 1217                 return (tdq);
 1218         }
 1219 
 1220         /*
 1221          * The hard case, migration, we need to block the thread first to
 1222          * prevent order reversals with other cpus locks.
 1223          */
 1224         spinlock_enter();
 1225         mtx = thread_lock_block(td);
 1226         if ((flags & SRQ_HOLD) == 0)
 1227                 mtx_unlock_spin(mtx);
 1228         TDQ_LOCK(tdq);
 1229         thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
 1230         spinlock_exit();
 1231         return (tdq);
 1232 }
 1233 
 1234 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
 1235 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
 1236 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
 1237 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
 1238 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
 1239 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
 1240 
 1241 static int
 1242 sched_pickcpu(struct thread *td, int flags)
 1243 {
 1244         struct cpu_group *cg, *ccg;
 1245         struct td_sched *ts;
 1246         struct tdq *tdq;
 1247         cpuset_t mask;
 1248         int cpu, pri, self, intr;
 1249 
 1250         self = PCPU_GET(cpuid);
 1251         ts = td_get_sched(td);
 1252         KASSERT(!CPU_ABSENT(ts->ts_cpu), ("sched_pickcpu: Start scheduler on "
 1253             "absent CPU %d for thread %s.", ts->ts_cpu, td->td_name));
 1254         if (smp_started == 0)
 1255                 return (self);
 1256         /*
 1257          * Don't migrate a running thread from sched_switch().
 1258          */
 1259         if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
 1260                 return (ts->ts_cpu);
 1261         /*
 1262          * Prefer to run interrupt threads on the processors that generate
 1263          * the interrupt.
 1264          */
 1265         if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
 1266             curthread->td_intr_nesting_level) {
 1267                 tdq = TDQ_SELF();
 1268                 if (tdq->tdq_lowpri >= PRI_MIN_IDLE) {
 1269                         SCHED_STAT_INC(pickcpu_idle_affinity);
 1270                         return (self);
 1271                 }
 1272                 ts->ts_cpu = self;
 1273                 intr = 1;
 1274                 cg = tdq->tdq_cg;
 1275                 goto llc;
 1276         } else {
 1277                 intr = 0;
 1278                 tdq = TDQ_CPU(ts->ts_cpu);
 1279                 cg = tdq->tdq_cg;
 1280         }
 1281         /*
 1282          * If the thread can run on the last cpu and the affinity has not
 1283          * expired and it is idle, run it there.
 1284          */
 1285         if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
 1286             tdq->tdq_lowpri >= PRI_MIN_IDLE &&
 1287             SCHED_AFFINITY(ts, CG_SHARE_L2)) {
 1288                 if (cg->cg_flags & CG_FLAG_THREAD) {
 1289                         /* Check all SMT threads for being idle. */
 1290                         for (cpu = CPU_FFS(&cg->cg_mask) - 1; ; cpu++) {
 1291                                 if (CPU_ISSET(cpu, &cg->cg_mask) &&
 1292                                     TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
 1293                                         break;
 1294                                 if (cpu >= mp_maxid) {
 1295                                         SCHED_STAT_INC(pickcpu_idle_affinity);
 1296                                         return (ts->ts_cpu);
 1297                                 }
 1298                         }
 1299                 } else {
 1300                         SCHED_STAT_INC(pickcpu_idle_affinity);
 1301                         return (ts->ts_cpu);
 1302                 }
 1303         }
 1304 llc:
 1305         /*
 1306          * Search for the last level cache CPU group in the tree.
 1307          * Skip SMT, identical groups and caches with expired affinity.
 1308          * Interrupt threads affinity is explicit and never expires.
 1309          */
 1310         for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
 1311                 if (cg->cg_flags & CG_FLAG_THREAD)
 1312                         continue;
 1313                 if (cg->cg_children == 1 || cg->cg_count == 1)
 1314                         continue;
 1315                 if (cg->cg_level == CG_SHARE_NONE ||
 1316                     (!intr && !SCHED_AFFINITY(ts, cg->cg_level)))
 1317                         continue;
 1318                 ccg = cg;
 1319         }
 1320         /* Found LLC shared by all CPUs, so do a global search. */
 1321         if (ccg == cpu_top)
 1322                 ccg = NULL;
 1323         cpu = -1;
 1324         mask = td->td_cpuset->cs_mask;
 1325         pri = td->td_priority;
 1326         /*
 1327          * Try hard to keep interrupts within found LLC.  Search the LLC for
 1328          * the least loaded CPU we can run now.  For NUMA systems it should
 1329          * be within target domain, and it also reduces scheduling overhead.
 1330          */
 1331         if (ccg != NULL && intr) {
 1332                 cpu = sched_lowest(ccg, mask, pri, INT_MAX, ts->ts_cpu);
 1333                 if (cpu >= 0)
 1334                         SCHED_STAT_INC(pickcpu_intrbind);
 1335         } else
 1336         /* Search the LLC for the least loaded idle CPU we can run now. */
 1337         if (ccg != NULL) {
 1338                 cpu = sched_lowest(ccg, mask, max(pri, PRI_MAX_TIMESHARE),
 1339                     INT_MAX, ts->ts_cpu);
 1340                 if (cpu >= 0)
 1341                         SCHED_STAT_INC(pickcpu_affinity);
 1342         }
 1343         /* Search globally for the least loaded CPU we can run now. */
 1344         if (cpu < 0) {
 1345                 cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
 1346                 if (cpu >= 0)
 1347                         SCHED_STAT_INC(pickcpu_lowest);
 1348         }
 1349         /* Search globally for the least loaded CPU. */
 1350         if (cpu < 0) {
 1351                 cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
 1352                 if (cpu >= 0)
 1353                         SCHED_STAT_INC(pickcpu_lowest);
 1354         }
 1355         KASSERT(cpu >= 0, ("sched_pickcpu: Failed to find a cpu."));
 1356         KASSERT(!CPU_ABSENT(cpu), ("sched_pickcpu: Picked absent CPU %d.", cpu));
 1357         /*
 1358          * Compare the lowest loaded cpu to current cpu.
 1359          */
 1360         tdq = TDQ_CPU(cpu);
 1361         if (THREAD_CAN_SCHED(td, self) && TDQ_SELF()->tdq_lowpri > pri &&
 1362             tdq->tdq_lowpri < PRI_MIN_IDLE &&
 1363             TDQ_SELF()->tdq_load <= tdq->tdq_load + 1) {
 1364                 SCHED_STAT_INC(pickcpu_local);
 1365                 cpu = self;
 1366         }
 1367         if (cpu != ts->ts_cpu)
 1368                 SCHED_STAT_INC(pickcpu_migration);
 1369         return (cpu);
 1370 }
 1371 #endif
 1372 
 1373 /*
 1374  * Pick the highest priority task we have and return it.
 1375  */
 1376 static struct thread *
 1377 tdq_choose(struct tdq *tdq)
 1378 {
 1379         struct thread *td;
 1380 
 1381         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1382         td = runq_choose(&tdq->tdq_realtime);
 1383         if (td != NULL)
 1384                 return (td);
 1385         td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
 1386         if (td != NULL) {
 1387                 KASSERT(td->td_priority >= PRI_MIN_BATCH,
 1388                     ("tdq_choose: Invalid priority on timeshare queue %d",
 1389                     td->td_priority));
 1390                 return (td);
 1391         }
 1392         td = runq_choose(&tdq->tdq_idle);
 1393         if (td != NULL) {
 1394                 KASSERT(td->td_priority >= PRI_MIN_IDLE,
 1395                     ("tdq_choose: Invalid priority on idle queue %d",
 1396                     td->td_priority));
 1397                 return (td);
 1398         }
 1399 
 1400         return (NULL);
 1401 }
 1402 
 1403 /*
 1404  * Initialize a thread queue.
 1405  */
 1406 static void
 1407 tdq_setup(struct tdq *tdq, int id)
 1408 {
 1409 
 1410         if (bootverbose)
 1411                 printf("ULE: setup cpu %d\n", id);
 1412         runq_init(&tdq->tdq_realtime);
 1413         runq_init(&tdq->tdq_timeshare);
 1414         runq_init(&tdq->tdq_idle);
 1415         tdq->tdq_id = id;
 1416         snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
 1417             "sched lock %d", (int)TDQ_ID(tdq));
 1418         mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock", MTX_SPIN);
 1419 #ifdef KTR
 1420         snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
 1421             "CPU %d load", (int)TDQ_ID(tdq));
 1422 #endif
 1423 }
 1424 
 1425 #ifdef SMP
 1426 static void
 1427 sched_setup_smp(void)
 1428 {
 1429         struct tdq *tdq;
 1430         int i;
 1431 
 1432         cpu_top = smp_topo();
 1433         CPU_FOREACH(i) {
 1434                 tdq = DPCPU_ID_PTR(i, tdq);
 1435                 tdq_setup(tdq, i);
 1436                 tdq->tdq_cg = smp_topo_find(cpu_top, i);
 1437                 if (tdq->tdq_cg == NULL)
 1438                         panic("Can't find cpu group for %d\n", i);
 1439         }
 1440         PCPU_SET(sched, DPCPU_PTR(tdq));
 1441         balance_tdq = TDQ_SELF();
 1442 }
 1443 #endif
 1444 
 1445 /*
 1446  * Setup the thread queues and initialize the topology based on MD
 1447  * information.
 1448  */
 1449 static void
 1450 sched_setup(void *dummy)
 1451 {
 1452         struct tdq *tdq;
 1453 
 1454 #ifdef SMP
 1455         sched_setup_smp();
 1456 #else
 1457         tdq_setup(TDQ_SELF(), 0);
 1458 #endif
 1459         tdq = TDQ_SELF();
 1460 
 1461         /* Add thread0's load since it's running. */
 1462         TDQ_LOCK(tdq);
 1463         thread0.td_lock = TDQ_LOCKPTR(tdq);
 1464         tdq_load_add(tdq, &thread0);
 1465         tdq->tdq_lowpri = thread0.td_priority;
 1466         TDQ_UNLOCK(tdq);
 1467 }
 1468 
 1469 /*
 1470  * This routine determines time constants after stathz and hz are setup.
 1471  */
 1472 /* ARGSUSED */
 1473 static void
 1474 sched_initticks(void *dummy)
 1475 {
 1476         int incr;
 1477 
 1478         realstathz = stathz ? stathz : hz;
 1479         sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
 1480         sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
 1481         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 1482             realstathz);
 1483 
 1484         /*
 1485          * tickincr is shifted out by 10 to avoid rounding errors due to
 1486          * hz not being evenly divisible by stathz on all platforms.
 1487          */
 1488         incr = (hz << SCHED_TICK_SHIFT) / realstathz;
 1489         /*
 1490          * This does not work for values of stathz that are more than
 1491          * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
 1492          */
 1493         if (incr == 0)
 1494                 incr = 1;
 1495         tickincr = incr;
 1496 #ifdef SMP
 1497         /*
 1498          * Set the default balance interval now that we know
 1499          * what realstathz is.
 1500          */
 1501         balance_interval = realstathz;
 1502         balance_ticks = balance_interval;
 1503         affinity = SCHED_AFFINITY_DEFAULT;
 1504 #endif
 1505         if (sched_idlespinthresh < 0)
 1506                 sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
 1507 }
 1508 
 1509 /*
 1510  * This is the core of the interactivity algorithm.  Determines a score based
 1511  * on past behavior.  It is the ratio of sleep time to run time scaled to
 1512  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
 1513  * differs from the cpu usage because it does not account for time spent
 1514  * waiting on a run-queue.  Would be prettier if we had floating point.
 1515  *
 1516  * When a thread's sleep time is greater than its run time the
 1517  * calculation is:
 1518  *
 1519  *                           scaling factor 
 1520  * interactivity score =  ---------------------
 1521  *                        sleep time / run time
 1522  *
 1523  *
 1524  * When a thread's run time is greater than its sleep time the
 1525  * calculation is:
 1526  *
 1527  *                           scaling factor 
 1528  * interactivity score =  ---------------------    + scaling factor
 1529  *                        run time / sleep time
 1530  */
 1531 static int
 1532 sched_interact_score(struct thread *td)
 1533 {
 1534         struct td_sched *ts;
 1535         int div;
 1536 
 1537         ts = td_get_sched(td);
 1538         /*
 1539          * The score is only needed if this is likely to be an interactive
 1540          * task.  Don't go through the expense of computing it if there's
 1541          * no chance.
 1542          */
 1543         if (sched_interact <= SCHED_INTERACT_HALF &&
 1544                 ts->ts_runtime >= ts->ts_slptime)
 1545                         return (SCHED_INTERACT_HALF);
 1546 
 1547         if (ts->ts_runtime > ts->ts_slptime) {
 1548                 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
 1549                 return (SCHED_INTERACT_HALF +
 1550                     (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
 1551         }
 1552         if (ts->ts_slptime > ts->ts_runtime) {
 1553                 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
 1554                 return (ts->ts_runtime / div);
 1555         }
 1556         /* runtime == slptime */
 1557         if (ts->ts_runtime)
 1558                 return (SCHED_INTERACT_HALF);
 1559 
 1560         /*
 1561          * This can happen if slptime and runtime are 0.
 1562          */
 1563         return (0);
 1564 
 1565 }
 1566 
 1567 /*
 1568  * Scale the scheduling priority according to the "interactivity" of this
 1569  * process.
 1570  */
 1571 static void
 1572 sched_priority(struct thread *td)
 1573 {
 1574         int score;
 1575         int pri;
 1576 
 1577         if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 1578                 return;
 1579         /*
 1580          * If the score is interactive we place the thread in the realtime
 1581          * queue with a priority that is less than kernel and interrupt
 1582          * priorities.  These threads are not subject to nice restrictions.
 1583          *
 1584          * Scores greater than this are placed on the normal timeshare queue
 1585          * where the priority is partially decided by the most recent cpu
 1586          * utilization and the rest is decided by nice value.
 1587          *
 1588          * The nice value of the process has a linear effect on the calculated
 1589          * score.  Negative nice values make it easier for a thread to be
 1590          * considered interactive.
 1591          */
 1592         score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
 1593         if (score < sched_interact) {
 1594                 pri = PRI_MIN_INTERACT;
 1595                 pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
 1596                     sched_interact) * score;
 1597                 KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
 1598                     ("sched_priority: invalid interactive priority %d score %d",
 1599                     pri, score));
 1600         } else {
 1601                 pri = SCHED_PRI_MIN;
 1602                 if (td_get_sched(td)->ts_ticks)
 1603                         pri += min(SCHED_PRI_TICKS(td_get_sched(td)),
 1604                             SCHED_PRI_RANGE - 1);
 1605                 pri += SCHED_PRI_NICE(td->td_proc->p_nice);
 1606                 KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
 1607                     ("sched_priority: invalid priority %d: nice %d, " 
 1608                     "ticks %d ftick %d ltick %d tick pri %d",
 1609                     pri, td->td_proc->p_nice, td_get_sched(td)->ts_ticks,
 1610                     td_get_sched(td)->ts_ftick, td_get_sched(td)->ts_ltick,
 1611                     SCHED_PRI_TICKS(td_get_sched(td))));
 1612         }
 1613         sched_user_prio(td, pri);
 1614 
 1615         return;
 1616 }
 1617 
 1618 /*
 1619  * This routine enforces a maximum limit on the amount of scheduling history
 1620  * kept.  It is called after either the slptime or runtime is adjusted.  This
 1621  * function is ugly due to integer math.
 1622  */
 1623 static void
 1624 sched_interact_update(struct thread *td)
 1625 {
 1626         struct td_sched *ts;
 1627         u_int sum;
 1628 
 1629         ts = td_get_sched(td);
 1630         sum = ts->ts_runtime + ts->ts_slptime;
 1631         if (sum < SCHED_SLP_RUN_MAX)
 1632                 return;
 1633         /*
 1634          * This only happens from two places:
 1635          * 1) We have added an unusual amount of run time from fork_exit.
 1636          * 2) We have added an unusual amount of sleep time from sched_sleep().
 1637          */
 1638         if (sum > SCHED_SLP_RUN_MAX * 2) {
 1639                 if (ts->ts_runtime > ts->ts_slptime) {
 1640                         ts->ts_runtime = SCHED_SLP_RUN_MAX;
 1641                         ts->ts_slptime = 1;
 1642                 } else {
 1643                         ts->ts_slptime = SCHED_SLP_RUN_MAX;
 1644                         ts->ts_runtime = 1;
 1645                 }
 1646                 return;
 1647         }
 1648         /*
 1649          * If we have exceeded by more than 1/5th then the algorithm below
 1650          * will not bring us back into range.  Dividing by two here forces
 1651          * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
 1652          */
 1653         if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
 1654                 ts->ts_runtime /= 2;
 1655                 ts->ts_slptime /= 2;
 1656                 return;
 1657         }
 1658         ts->ts_runtime = (ts->ts_runtime / 5) * 4;
 1659         ts->ts_slptime = (ts->ts_slptime / 5) * 4;
 1660 }
 1661 
 1662 /*
 1663  * Scale back the interactivity history when a child thread is created.  The
 1664  * history is inherited from the parent but the thread may behave totally
 1665  * differently.  For example, a shell spawning a compiler process.  We want
 1666  * to learn that the compiler is behaving badly very quickly.
 1667  */
 1668 static void
 1669 sched_interact_fork(struct thread *td)
 1670 {
 1671         struct td_sched *ts;
 1672         int ratio;
 1673         int sum;
 1674 
 1675         ts = td_get_sched(td);
 1676         sum = ts->ts_runtime + ts->ts_slptime;
 1677         if (sum > SCHED_SLP_RUN_FORK) {
 1678                 ratio = sum / SCHED_SLP_RUN_FORK;
 1679                 ts->ts_runtime /= ratio;
 1680                 ts->ts_slptime /= ratio;
 1681         }
 1682 }
 1683 
 1684 /*
 1685  * Called from proc0_init() to setup the scheduler fields.
 1686  */
 1687 void
 1688 schedinit(void)
 1689 {
 1690         struct td_sched *ts0;
 1691 
 1692         /*
 1693          * Set up the scheduler specific parts of thread0.
 1694          */
 1695         ts0 = td_get_sched(&thread0);
 1696         ts0->ts_ltick = ticks;
 1697         ts0->ts_ftick = ticks;
 1698         ts0->ts_slice = 0;
 1699         ts0->ts_cpu = curcpu;   /* set valid CPU number */
 1700 }
 1701 
 1702 /*
 1703  * This is only somewhat accurate since given many processes of the same
 1704  * priority they will switch when their slices run out, which will be
 1705  * at most sched_slice stathz ticks.
 1706  */
 1707 int
 1708 sched_rr_interval(void)
 1709 {
 1710 
 1711         /* Convert sched_slice from stathz to hz. */
 1712         return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
 1713 }
 1714 
 1715 /*
 1716  * Update the percent cpu tracking information when it is requested or
 1717  * the total history exceeds the maximum.  We keep a sliding history of
 1718  * tick counts that slowly decays.  This is less precise than the 4BSD
 1719  * mechanism since it happens with less regular and frequent events.
 1720  */
 1721 static void
 1722 sched_pctcpu_update(struct td_sched *ts, int run)
 1723 {
 1724         int t = ticks;
 1725 
 1726         /*
 1727          * The signed difference may be negative if the thread hasn't run for
 1728          * over half of the ticks rollover period.
 1729          */
 1730         if ((u_int)(t - ts->ts_ltick) >= SCHED_TICK_TARG) {
 1731                 ts->ts_ticks = 0;
 1732                 ts->ts_ftick = t - SCHED_TICK_TARG;
 1733         } else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
 1734                 ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
 1735                     (ts->ts_ltick - (t - SCHED_TICK_TARG));
 1736                 ts->ts_ftick = t - SCHED_TICK_TARG;
 1737         }
 1738         if (run)
 1739                 ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
 1740         ts->ts_ltick = t;
 1741 }
 1742 
 1743 /*
 1744  * Adjust the priority of a thread.  Move it to the appropriate run-queue
 1745  * if necessary.  This is the back-end for several priority related
 1746  * functions.
 1747  */
 1748 static void
 1749 sched_thread_priority(struct thread *td, u_char prio)
 1750 {
 1751         struct td_sched *ts;
 1752         struct tdq *tdq;
 1753         int oldpri;
 1754 
 1755         KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
 1756             "prio:%d", td->td_priority, "new prio:%d", prio,
 1757             KTR_ATTR_LINKED, sched_tdname(curthread));
 1758         SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
 1759         if (td != curthread && prio < td->td_priority) {
 1760                 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
 1761                     "lend prio", "prio:%d", td->td_priority, "new prio:%d",
 1762                     prio, KTR_ATTR_LINKED, sched_tdname(td));
 1763                 SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio, 
 1764                     curthread);
 1765         } 
 1766         ts = td_get_sched(td);
 1767         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1768         if (td->td_priority == prio)
 1769                 return;
 1770         /*
 1771          * If the priority has been elevated due to priority
 1772          * propagation, we may have to move ourselves to a new
 1773          * queue.  This could be optimized to not re-add in some
 1774          * cases.
 1775          */
 1776         if (TD_ON_RUNQ(td) && prio < td->td_priority) {
 1777                 sched_rem(td);
 1778                 td->td_priority = prio;
 1779                 sched_add(td, SRQ_BORROWING | SRQ_HOLDTD);
 1780                 return;
 1781         }
 1782         /*
 1783          * If the thread is currently running we may have to adjust the lowpri
 1784          * information so other cpus are aware of our current priority.
 1785          */
 1786         if (TD_IS_RUNNING(td)) {
 1787                 tdq = TDQ_CPU(ts->ts_cpu);
 1788                 oldpri = td->td_priority;
 1789                 td->td_priority = prio;
 1790                 if (prio < tdq->tdq_lowpri)
 1791                         tdq->tdq_lowpri = prio;
 1792                 else if (tdq->tdq_lowpri == oldpri)
 1793                         tdq_setlowpri(tdq, td);
 1794                 return;
 1795         }
 1796         td->td_priority = prio;
 1797 }
 1798 
 1799 /*
 1800  * Update a thread's priority when it is lent another thread's
 1801  * priority.
 1802  */
 1803 void
 1804 sched_lend_prio(struct thread *td, u_char prio)
 1805 {
 1806 
 1807         td->td_flags |= TDF_BORROWING;
 1808         sched_thread_priority(td, prio);
 1809 }
 1810 
 1811 /*
 1812  * Restore a thread's priority when priority propagation is
 1813  * over.  The prio argument is the minimum priority the thread
 1814  * needs to have to satisfy other possible priority lending
 1815  * requests.  If the thread's regular priority is less
 1816  * important than prio, the thread will keep a priority boost
 1817  * of prio.
 1818  */
 1819 void
 1820 sched_unlend_prio(struct thread *td, u_char prio)
 1821 {
 1822         u_char base_pri;
 1823 
 1824         if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
 1825             td->td_base_pri <= PRI_MAX_TIMESHARE)
 1826                 base_pri = td->td_user_pri;
 1827         else
 1828                 base_pri = td->td_base_pri;
 1829         if (prio >= base_pri) {
 1830                 td->td_flags &= ~TDF_BORROWING;
 1831                 sched_thread_priority(td, base_pri);
 1832         } else
 1833                 sched_lend_prio(td, prio);
 1834 }
 1835 
 1836 /*
 1837  * Standard entry for setting the priority to an absolute value.
 1838  */
 1839 void
 1840 sched_prio(struct thread *td, u_char prio)
 1841 {
 1842         u_char oldprio;
 1843 
 1844         /* First, update the base priority. */
 1845         td->td_base_pri = prio;
 1846 
 1847         /*
 1848          * If the thread is borrowing another thread's priority, don't
 1849          * ever lower the priority.
 1850          */
 1851         if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
 1852                 return;
 1853 
 1854         /* Change the real priority. */
 1855         oldprio = td->td_priority;
 1856         sched_thread_priority(td, prio);
 1857 
 1858         /*
 1859          * If the thread is on a turnstile, then let the turnstile update
 1860          * its state.
 1861          */
 1862         if (TD_ON_LOCK(td) && oldprio != prio)
 1863                 turnstile_adjust(td, oldprio);
 1864 }
 1865 
 1866 /*
 1867  * Set the base user priority, does not effect current running priority.
 1868  */
 1869 void
 1870 sched_user_prio(struct thread *td, u_char prio)
 1871 {
 1872 
 1873         td->td_base_user_pri = prio;
 1874         if (td->td_lend_user_pri <= prio)
 1875                 return;
 1876         td->td_user_pri = prio;
 1877 }
 1878 
 1879 void
 1880 sched_lend_user_prio(struct thread *td, u_char prio)
 1881 {
 1882 
 1883         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1884         td->td_lend_user_pri = prio;
 1885         td->td_user_pri = min(prio, td->td_base_user_pri);
 1886         if (td->td_priority > td->td_user_pri)
 1887                 sched_prio(td, td->td_user_pri);
 1888         else if (td->td_priority != td->td_user_pri)
 1889                 td->td_flags |= TDF_NEEDRESCHED;
 1890 }
 1891 
 1892 /*
 1893  * Like the above but first check if there is anything to do.
 1894  */
 1895 void
 1896 sched_lend_user_prio_cond(struct thread *td, u_char prio)
 1897 {
 1898 
 1899         if (td->td_lend_user_pri != prio)
 1900                 goto lend;
 1901         if (td->td_user_pri != min(prio, td->td_base_user_pri))
 1902                 goto lend;
 1903         if (td->td_priority != td->td_user_pri)
 1904                 goto lend;
 1905         return;
 1906 
 1907 lend:
 1908         thread_lock(td);
 1909         sched_lend_user_prio(td, prio);
 1910         thread_unlock(td);
 1911 }
 1912 
 1913 #ifdef SMP
 1914 /*
 1915  * This tdq is about to idle.  Try to steal a thread from another CPU before
 1916  * choosing the idle thread.
 1917  */
 1918 static void
 1919 tdq_trysteal(struct tdq *tdq)
 1920 {
 1921         struct cpu_group *cg;
 1922         struct tdq *steal;
 1923         cpuset_t mask;
 1924         int cpu, i;
 1925 
 1926         if (smp_started == 0 || trysteal_limit == 0 || tdq->tdq_cg == NULL)
 1927                 return;
 1928         CPU_FILL(&mask);
 1929         CPU_CLR(PCPU_GET(cpuid), &mask);
 1930         /* We don't want to be preempted while we're iterating. */
 1931         spinlock_enter();
 1932         TDQ_UNLOCK(tdq);
 1933         for (i = 1, cg = tdq->tdq_cg; ; ) {
 1934                 cpu = sched_highest(cg, mask, steal_thresh);
 1935                 /*
 1936                  * If a thread was added while interrupts were disabled don't
 1937                  * steal one here.
 1938                  */
 1939                 if (tdq->tdq_load > 0) {
 1940                         TDQ_LOCK(tdq);
 1941                         break;
 1942                 }
 1943                 if (cpu == -1) {
 1944                         i++;
 1945                         cg = cg->cg_parent;
 1946                         if (cg == NULL || i > trysteal_limit) {
 1947                                 TDQ_LOCK(tdq);
 1948                                 break;
 1949                         }
 1950                         continue;
 1951                 }
 1952                 steal = TDQ_CPU(cpu);
 1953                 /*
 1954                  * The data returned by sched_highest() is stale and
 1955                  * the chosen CPU no longer has an eligible thread.
 1956                  */
 1957                 if (steal->tdq_load < steal_thresh ||
 1958                     steal->tdq_transferable == 0)
 1959                         continue;
 1960                 tdq_lock_pair(tdq, steal);
 1961                 /*
 1962                  * If we get to this point, unconditonally exit the loop
 1963                  * to bound the time spent in the critcal section.
 1964                  *
 1965                  * If a thread was added while interrupts were disabled don't
 1966                  * steal one here.
 1967                  */
 1968                 if (tdq->tdq_load > 0) {
 1969                         TDQ_UNLOCK(steal);
 1970                         break;
 1971                 }
 1972                 /*
 1973                  * The data returned by sched_highest() is stale and
 1974                  * the chosen CPU no longer has an eligible thread.
 1975                  */
 1976                 if (steal->tdq_load < steal_thresh ||
 1977                     steal->tdq_transferable == 0) {
 1978                         TDQ_UNLOCK(steal);
 1979                         break;
 1980                 }
 1981                 /*
 1982                  * If we fail to acquire one due to affinity restrictions,
 1983                  * bail out and let the idle thread to a more complete search
 1984                  * outside of a critical section.
 1985                  */
 1986                 if (tdq_move(steal, tdq) == NULL) {
 1987                         TDQ_UNLOCK(steal);
 1988                         break;
 1989                 }
 1990                 TDQ_UNLOCK(steal);
 1991                 break;
 1992         }
 1993         spinlock_exit();
 1994 }
 1995 #endif
 1996 
 1997 /*
 1998  * Handle migration from sched_switch().  This happens only for
 1999  * cpu binding.
 2000  */
 2001 static struct mtx *
 2002 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
 2003 {
 2004         struct tdq *tdn;
 2005 
 2006         KASSERT(THREAD_CAN_MIGRATE(td) ||
 2007             (td_get_sched(td)->ts_flags & TSF_BOUND) != 0,
 2008             ("Thread %p shouldn't migrate", td));
 2009         KASSERT(!CPU_ABSENT(td_get_sched(td)->ts_cpu), ("sched_switch_migrate: "
 2010             "thread %s queued on absent CPU %d.", td->td_name,
 2011             td_get_sched(td)->ts_cpu));
 2012         tdn = TDQ_CPU(td_get_sched(td)->ts_cpu);
 2013 #ifdef SMP
 2014         tdq_load_rem(tdq, td);
 2015         /*
 2016          * Do the lock dance required to avoid LOR.  We have an 
 2017          * extra spinlock nesting from sched_switch() which will
 2018          * prevent preemption while we're holding neither run-queue lock.
 2019          */
 2020         TDQ_UNLOCK(tdq);
 2021         TDQ_LOCK(tdn);
 2022         tdq_add(tdn, td, flags);
 2023         tdq_notify(tdn, td);
 2024         TDQ_UNLOCK(tdn);
 2025         TDQ_LOCK(tdq);
 2026 #endif
 2027         return (TDQ_LOCKPTR(tdn));
 2028 }
 2029 
 2030 /*
 2031  * thread_lock_unblock() that does not assume td_lock is blocked.
 2032  */
 2033 static inline void
 2034 thread_unblock_switch(struct thread *td, struct mtx *mtx)
 2035 {
 2036         atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
 2037             (uintptr_t)mtx);
 2038 }
 2039 
 2040 /*
 2041  * Switch threads.  This function has to handle threads coming in while
 2042  * blocked for some reason, running, or idle.  It also must deal with
 2043  * migrating a thread from one queue to another as running threads may
 2044  * be assigned elsewhere via binding.
 2045  */
 2046 void
 2047 sched_switch(struct thread *td, int flags)
 2048 {
 2049         struct thread *newtd;
 2050         struct tdq *tdq;
 2051         struct td_sched *ts;
 2052         struct mtx *mtx;
 2053         int srqflag;
 2054         int cpuid, preempted;
 2055 
 2056         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2057 
 2058         cpuid = PCPU_GET(cpuid);
 2059         tdq = TDQ_SELF();
 2060         ts = td_get_sched(td);
 2061         sched_pctcpu_update(ts, 1);
 2062         ts->ts_rltick = ticks;
 2063         td->td_lastcpu = td->td_oncpu;
 2064         preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
 2065             (flags & SW_PREEMPT) != 0;
 2066         td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
 2067         td->td_owepreempt = 0;
 2068         tdq->tdq_owepreempt = 0;
 2069         if (!TD_IS_IDLETHREAD(td))
 2070                 tdq->tdq_switchcnt++;
 2071 
 2072         /*
 2073          * Always block the thread lock so we can drop the tdq lock early.
 2074          */
 2075         mtx = thread_lock_block(td);
 2076         spinlock_enter();
 2077         if (TD_IS_IDLETHREAD(td)) {
 2078                 MPASS(mtx == TDQ_LOCKPTR(tdq));
 2079                 TD_SET_CAN_RUN(td);
 2080         } else if (TD_IS_RUNNING(td)) {
 2081                 MPASS(mtx == TDQ_LOCKPTR(tdq));
 2082                 srqflag = preempted ?
 2083                     SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
 2084                     SRQ_OURSELF|SRQ_YIELDING;
 2085 #ifdef SMP
 2086                 if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
 2087                         ts->ts_cpu = sched_pickcpu(td, 0);
 2088 #endif
 2089                 if (ts->ts_cpu == cpuid)
 2090                         tdq_runq_add(tdq, td, srqflag);
 2091                 else
 2092                         mtx = sched_switch_migrate(tdq, td, srqflag);
 2093         } else {
 2094                 /* This thread must be going to sleep. */
 2095                 if (mtx != TDQ_LOCKPTR(tdq)) {
 2096                         mtx_unlock_spin(mtx);
 2097                         TDQ_LOCK(tdq);
 2098                 }
 2099                 tdq_load_rem(tdq, td);
 2100 #ifdef SMP
 2101                 if (tdq->tdq_load == 0)
 2102                         tdq_trysteal(tdq);
 2103 #endif
 2104         }
 2105 
 2106 #if (KTR_COMPILE & KTR_SCHED) != 0
 2107         if (TD_IS_IDLETHREAD(td))
 2108                 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
 2109                     "prio:%d", td->td_priority);
 2110         else
 2111                 KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
 2112                     "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
 2113                     "lockname:\"%s\"", td->td_lockname);
 2114 #endif
 2115 
 2116         /*
 2117          * We enter here with the thread blocked and assigned to the
 2118          * appropriate cpu run-queue or sleep-queue and with the current
 2119          * thread-queue locked.
 2120          */
 2121         TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 2122         newtd = choosethread();
 2123         sched_pctcpu_update(td_get_sched(newtd), 0);
 2124         TDQ_UNLOCK(tdq);
 2125 
 2126         /*
 2127          * Call the MD code to switch contexts if necessary.
 2128          */
 2129         if (td != newtd) {
 2130 #ifdef  HWPMC_HOOKS
 2131                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 2132                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
 2133 #endif
 2134                 SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
 2135 
 2136 #ifdef KDTRACE_HOOKS
 2137                 /*
 2138                  * If DTrace has set the active vtime enum to anything
 2139                  * other than INACTIVE (0), then it should have set the
 2140                  * function to call.
 2141                  */
 2142                 if (dtrace_vtime_active)
 2143                         (*dtrace_vtime_switch_func)(newtd);
 2144 #endif
 2145                 td->td_oncpu = NOCPU;
 2146                 cpu_switch(td, newtd, mtx);
 2147                 cpuid = td->td_oncpu = PCPU_GET(cpuid);
 2148 
 2149                 SDT_PROBE0(sched, , , on__cpu);
 2150 #ifdef  HWPMC_HOOKS
 2151                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 2152                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
 2153 #endif
 2154         } else {
 2155                 thread_unblock_switch(td, mtx);
 2156                 SDT_PROBE0(sched, , , remain__cpu);
 2157         }
 2158         KASSERT(curthread->td_md.md_spinlock_count == 1,
 2159             ("invalid count %d", curthread->td_md.md_spinlock_count));
 2160 
 2161         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 2162             "prio:%d", td->td_priority);
 2163 }
 2164 
 2165 /*
 2166  * Adjust thread priorities as a result of a nice request.
 2167  */
 2168 void
 2169 sched_nice(struct proc *p, int nice)
 2170 {
 2171         struct thread *td;
 2172 
 2173         PROC_LOCK_ASSERT(p, MA_OWNED);
 2174 
 2175         p->p_nice = nice;
 2176         FOREACH_THREAD_IN_PROC(p, td) {
 2177                 thread_lock(td);
 2178                 sched_priority(td);
 2179                 sched_prio(td, td->td_base_user_pri);
 2180                 thread_unlock(td);
 2181         }
 2182 }
 2183 
 2184 /*
 2185  * Record the sleep time for the interactivity scorer.
 2186  */
 2187 void
 2188 sched_sleep(struct thread *td, int prio)
 2189 {
 2190 
 2191         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2192 
 2193         td->td_slptick = ticks;
 2194         if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
 2195                 td->td_flags |= TDF_CANSWAP;
 2196         if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 2197                 return;
 2198         if (static_boost == 1 && prio)
 2199                 sched_prio(td, prio);
 2200         else if (static_boost && td->td_priority > static_boost)
 2201                 sched_prio(td, static_boost);
 2202 }
 2203 
 2204 /*
 2205  * Schedule a thread to resume execution and record how long it voluntarily
 2206  * slept.  We also update the pctcpu, interactivity, and priority.
 2207  *
 2208  * Requires the thread lock on entry, drops on exit.
 2209  */
 2210 void
 2211 sched_wakeup(struct thread *td, int srqflags)
 2212 {
 2213         struct td_sched *ts;
 2214         int slptick;
 2215 
 2216         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2217         ts = td_get_sched(td);
 2218         td->td_flags &= ~TDF_CANSWAP;
 2219 
 2220         /*
 2221          * If we slept for more than a tick update our interactivity and
 2222          * priority.
 2223          */
 2224         slptick = td->td_slptick;
 2225         td->td_slptick = 0;
 2226         if (slptick && slptick != ticks) {
 2227                 ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
 2228                 sched_interact_update(td);
 2229                 sched_pctcpu_update(ts, 0);
 2230         }
 2231         /*
 2232          * Reset the slice value since we slept and advanced the round-robin.
 2233          */
 2234         ts->ts_slice = 0;
 2235         sched_add(td, SRQ_BORING | srqflags);
 2236 }
 2237 
 2238 /*
 2239  * Penalize the parent for creating a new child and initialize the child's
 2240  * priority.
 2241  */
 2242 void
 2243 sched_fork(struct thread *td, struct thread *child)
 2244 {
 2245         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2246         sched_pctcpu_update(td_get_sched(td), 1);
 2247         sched_fork_thread(td, child);
 2248         /*
 2249          * Penalize the parent and child for forking.
 2250          */
 2251         sched_interact_fork(child);
 2252         sched_priority(child);
 2253         td_get_sched(td)->ts_runtime += tickincr;
 2254         sched_interact_update(td);
 2255         sched_priority(td);
 2256 }
 2257 
 2258 /*
 2259  * Fork a new thread, may be within the same process.
 2260  */
 2261 void
 2262 sched_fork_thread(struct thread *td, struct thread *child)
 2263 {
 2264         struct td_sched *ts;
 2265         struct td_sched *ts2;
 2266         struct tdq *tdq;
 2267 
 2268         tdq = TDQ_SELF();
 2269         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2270         /*
 2271          * Initialize child.
 2272          */
 2273         ts = td_get_sched(td);
 2274         ts2 = td_get_sched(child);
 2275         child->td_oncpu = NOCPU;
 2276         child->td_lastcpu = NOCPU;
 2277         child->td_lock = TDQ_LOCKPTR(tdq);
 2278         child->td_cpuset = cpuset_ref(td->td_cpuset);
 2279         child->td_domain.dr_policy = td->td_cpuset->cs_domain;
 2280         ts2->ts_cpu = ts->ts_cpu;
 2281         ts2->ts_flags = 0;
 2282         /*
 2283          * Grab our parents cpu estimation information.
 2284          */
 2285         ts2->ts_ticks = ts->ts_ticks;
 2286         ts2->ts_ltick = ts->ts_ltick;
 2287         ts2->ts_ftick = ts->ts_ftick;
 2288         /*
 2289          * Do not inherit any borrowed priority from the parent.
 2290          */
 2291         child->td_priority = child->td_base_pri;
 2292         /*
 2293          * And update interactivity score.
 2294          */
 2295         ts2->ts_slptime = ts->ts_slptime;
 2296         ts2->ts_runtime = ts->ts_runtime;
 2297         /* Attempt to quickly learn interactivity. */
 2298         ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
 2299 #ifdef KTR
 2300         bzero(ts2->ts_name, sizeof(ts2->ts_name));
 2301 #endif
 2302 }
 2303 
 2304 /*
 2305  * Adjust the priority class of a thread.
 2306  */
 2307 void
 2308 sched_class(struct thread *td, int class)
 2309 {
 2310 
 2311         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2312         if (td->td_pri_class == class)
 2313                 return;
 2314         td->td_pri_class = class;
 2315 }
 2316 
 2317 /*
 2318  * Return some of the child's priority and interactivity to the parent.
 2319  */
 2320 void
 2321 sched_exit(struct proc *p, struct thread *child)
 2322 {
 2323         struct thread *td;
 2324 
 2325         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
 2326             "prio:%d", child->td_priority);
 2327         PROC_LOCK_ASSERT(p, MA_OWNED);
 2328         td = FIRST_THREAD_IN_PROC(p);
 2329         sched_exit_thread(td, child);
 2330 }
 2331 
 2332 /*
 2333  * Penalize another thread for the time spent on this one.  This helps to
 2334  * worsen the priority and interactivity of processes which schedule batch
 2335  * jobs such as make.  This has little effect on the make process itself but
 2336  * causes new processes spawned by it to receive worse scores immediately.
 2337  */
 2338 void
 2339 sched_exit_thread(struct thread *td, struct thread *child)
 2340 {
 2341 
 2342         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
 2343             "prio:%d", child->td_priority);
 2344         /*
 2345          * Give the child's runtime to the parent without returning the
 2346          * sleep time as a penalty to the parent.  This causes shells that
 2347          * launch expensive things to mark their children as expensive.
 2348          */
 2349         thread_lock(td);
 2350         td_get_sched(td)->ts_runtime += td_get_sched(child)->ts_runtime;
 2351         sched_interact_update(td);
 2352         sched_priority(td);
 2353         thread_unlock(td);
 2354 }
 2355 
 2356 void
 2357 sched_preempt(struct thread *td)
 2358 {
 2359         struct tdq *tdq;
 2360         int flags;
 2361 
 2362         SDT_PROBE2(sched, , , surrender, td, td->td_proc);
 2363 
 2364         thread_lock(td);
 2365         tdq = TDQ_SELF();
 2366         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2367         if (td->td_priority > tdq->tdq_lowpri) {
 2368                 if (td->td_critnest == 1) {
 2369                         flags = SW_INVOL | SW_PREEMPT;
 2370                         flags |= TD_IS_IDLETHREAD(td) ? SWT_REMOTEWAKEIDLE :
 2371                             SWT_REMOTEPREEMPT;
 2372                         mi_switch(flags);
 2373                         /* Switch dropped thread lock. */
 2374                         return;
 2375                 }
 2376                 td->td_owepreempt = 1;
 2377         } else {
 2378                 tdq->tdq_owepreempt = 0;
 2379         }
 2380         thread_unlock(td);
 2381 }
 2382 
 2383 /*
 2384  * Fix priorities on return to user-space.  Priorities may be elevated due
 2385  * to static priorities in msleep() or similar.
 2386  */
 2387 void
 2388 sched_userret_slowpath(struct thread *td)
 2389 {
 2390 
 2391         thread_lock(td);
 2392         td->td_priority = td->td_user_pri;
 2393         td->td_base_pri = td->td_user_pri;
 2394         tdq_setlowpri(TDQ_SELF(), td);
 2395         thread_unlock(td);
 2396 }
 2397 
 2398 /*
 2399  * Handle a stathz tick.  This is really only relevant for timeshare
 2400  * threads.
 2401  */
 2402 void
 2403 sched_clock(struct thread *td, int cnt)
 2404 {
 2405         struct tdq *tdq;
 2406         struct td_sched *ts;
 2407 
 2408         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2409         tdq = TDQ_SELF();
 2410 #ifdef SMP
 2411         /*
 2412          * We run the long term load balancer infrequently on the first cpu.
 2413          */
 2414         if (balance_tdq == tdq && smp_started != 0 && rebalance != 0 &&
 2415             balance_ticks != 0) {
 2416                 balance_ticks -= cnt;
 2417                 if (balance_ticks <= 0)
 2418                         sched_balance();
 2419         }
 2420 #endif
 2421         /*
 2422          * Save the old switch count so we have a record of the last ticks
 2423          * activity.   Initialize the new switch count based on our load.
 2424          * If there is some activity seed it to reflect that.
 2425          */
 2426         tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
 2427         tdq->tdq_switchcnt = tdq->tdq_load;
 2428         /*
 2429          * Advance the insert index once for each tick to ensure that all
 2430          * threads get a chance to run.
 2431          */
 2432         if (tdq->tdq_idx == tdq->tdq_ridx) {
 2433                 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
 2434                 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
 2435                         tdq->tdq_ridx = tdq->tdq_idx;
 2436         }
 2437         ts = td_get_sched(td);
 2438         sched_pctcpu_update(ts, 1);
 2439         if ((td->td_pri_class & PRI_FIFO_BIT) || TD_IS_IDLETHREAD(td))
 2440                 return;
 2441 
 2442         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
 2443                 /*
 2444                  * We used a tick; charge it to the thread so
 2445                  * that we can compute our interactivity.
 2446                  */
 2447                 td_get_sched(td)->ts_runtime += tickincr * cnt;
 2448                 sched_interact_update(td);
 2449                 sched_priority(td);
 2450         }
 2451 
 2452         /*
 2453          * Force a context switch if the current thread has used up a full
 2454          * time slice (default is 100ms).
 2455          */
 2456         ts->ts_slice += cnt;
 2457         if (ts->ts_slice >= tdq_slice(tdq)) {
 2458                 ts->ts_slice = 0;
 2459                 td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
 2460         }
 2461 }
 2462 
 2463 u_int
 2464 sched_estcpu(struct thread *td __unused)
 2465 {
 2466 
 2467         return (0);
 2468 }
 2469 
 2470 /*
 2471  * Return whether the current CPU has runnable tasks.  Used for in-kernel
 2472  * cooperative idle threads.
 2473  */
 2474 int
 2475 sched_runnable(void)
 2476 {
 2477         struct tdq *tdq;
 2478         int load;
 2479 
 2480         load = 1;
 2481 
 2482         tdq = TDQ_SELF();
 2483         if ((curthread->td_flags & TDF_IDLETD) != 0) {
 2484                 if (tdq->tdq_load > 0)
 2485                         goto out;
 2486         } else
 2487                 if (tdq->tdq_load - 1 > 0)
 2488                         goto out;
 2489         load = 0;
 2490 out:
 2491         return (load);
 2492 }
 2493 
 2494 /*
 2495  * Choose the highest priority thread to run.  The thread is removed from
 2496  * the run-queue while running however the load remains.  For SMP we set
 2497  * the tdq in the global idle bitmask if it idles here.
 2498  */
 2499 struct thread *
 2500 sched_choose(void)
 2501 {
 2502         struct thread *td;
 2503         struct tdq *tdq;
 2504 
 2505         tdq = TDQ_SELF();
 2506         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2507         td = tdq_choose(tdq);
 2508         if (td) {
 2509                 tdq_runq_rem(tdq, td);
 2510                 tdq->tdq_lowpri = td->td_priority;
 2511                 return (td);
 2512         }
 2513         tdq->tdq_lowpri = PRI_MAX_IDLE;
 2514         return (PCPU_GET(idlethread));
 2515 }
 2516 
 2517 /*
 2518  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
 2519  * we always request it once we exit a critical section.
 2520  */
 2521 static inline void
 2522 sched_setpreempt(struct thread *td)
 2523 {
 2524         struct thread *ctd;
 2525         int cpri;
 2526         int pri;
 2527 
 2528         THREAD_LOCK_ASSERT(curthread, MA_OWNED);
 2529 
 2530         ctd = curthread;
 2531         pri = td->td_priority;
 2532         cpri = ctd->td_priority;
 2533         if (pri < cpri)
 2534                 ctd->td_flags |= TDF_NEEDRESCHED;
 2535         if (KERNEL_PANICKED() || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
 2536                 return;
 2537         if (!sched_shouldpreempt(pri, cpri, 0))
 2538                 return;
 2539         ctd->td_owepreempt = 1;
 2540 }
 2541 
 2542 /*
 2543  * Add a thread to a thread queue.  Select the appropriate runq and add the
 2544  * thread to it.  This is the internal function called when the tdq is
 2545  * predetermined.
 2546  */
 2547 void
 2548 tdq_add(struct tdq *tdq, struct thread *td, int flags)
 2549 {
 2550 
 2551         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2552         THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
 2553         KASSERT((td->td_inhibitors == 0),
 2554             ("sched_add: trying to run inhibited thread"));
 2555         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 2556             ("sched_add: bad thread state"));
 2557         KASSERT(td->td_flags & TDF_INMEM,
 2558             ("sched_add: thread swapped out"));
 2559 
 2560         if (td->td_priority < tdq->tdq_lowpri)
 2561                 tdq->tdq_lowpri = td->td_priority;
 2562         tdq_runq_add(tdq, td, flags);
 2563         tdq_load_add(tdq, td);
 2564 }
 2565 
 2566 /*
 2567  * Select the target thread queue and add a thread to it.  Request
 2568  * preemption or IPI a remote processor if required.
 2569  *
 2570  * Requires the thread lock on entry, drops on exit.
 2571  */
 2572 void
 2573 sched_add(struct thread *td, int flags)
 2574 {
 2575         struct tdq *tdq;
 2576 #ifdef SMP
 2577         int cpu;
 2578 #endif
 2579 
 2580         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 2581             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 2582             sched_tdname(curthread));
 2583         KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 2584             KTR_ATTR_LINKED, sched_tdname(td));
 2585         SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
 2586             flags & SRQ_PREEMPTED);
 2587         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2588         /*
 2589          * Recalculate the priority before we select the target cpu or
 2590          * run-queue.
 2591          */
 2592         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
 2593                 sched_priority(td);
 2594 #ifdef SMP
 2595         /*
 2596          * Pick the destination cpu and if it isn't ours transfer to the
 2597          * target cpu.
 2598          */
 2599         cpu = sched_pickcpu(td, flags);
 2600         tdq = sched_setcpu(td, cpu, flags);
 2601         tdq_add(tdq, td, flags);
 2602         if (cpu != PCPU_GET(cpuid))
 2603                 tdq_notify(tdq, td);
 2604         else if (!(flags & SRQ_YIELDING))
 2605                 sched_setpreempt(td);
 2606 #else
 2607         tdq = TDQ_SELF();
 2608         /*
 2609          * Now that the thread is moving to the run-queue, set the lock
 2610          * to the scheduler's lock.
 2611          */
 2612         if (td->td_lock != TDQ_LOCKPTR(tdq)) {
 2613                 TDQ_LOCK(tdq);
 2614                 if ((flags & SRQ_HOLD) != 0)
 2615                         td->td_lock = TDQ_LOCKPTR(tdq);
 2616                 else
 2617                         thread_lock_set(td, TDQ_LOCKPTR(tdq));
 2618         }
 2619         tdq_add(tdq, td, flags);
 2620         if (!(flags & SRQ_YIELDING))
 2621                 sched_setpreempt(td);
 2622 #endif
 2623         if (!(flags & SRQ_HOLDTD))
 2624                 thread_unlock(td);
 2625 }
 2626 
 2627 /*
 2628  * Remove a thread from a run-queue without running it.  This is used
 2629  * when we're stealing a thread from a remote queue.  Otherwise all threads
 2630  * exit by calling sched_exit_thread() and sched_throw() themselves.
 2631  */
 2632 void
 2633 sched_rem(struct thread *td)
 2634 {
 2635         struct tdq *tdq;
 2636 
 2637         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
 2638             "prio:%d", td->td_priority);
 2639         SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
 2640         tdq = TDQ_CPU(td_get_sched(td)->ts_cpu);
 2641         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2642         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2643         KASSERT(TD_ON_RUNQ(td),
 2644             ("sched_rem: thread not on run queue"));
 2645         tdq_runq_rem(tdq, td);
 2646         tdq_load_rem(tdq, td);
 2647         TD_SET_CAN_RUN(td);
 2648         if (td->td_priority == tdq->tdq_lowpri)
 2649                 tdq_setlowpri(tdq, NULL);
 2650 }
 2651 
 2652 /*
 2653  * Fetch cpu utilization information.  Updates on demand.
 2654  */
 2655 fixpt_t
 2656 sched_pctcpu(struct thread *td)
 2657 {
 2658         fixpt_t pctcpu;
 2659         struct td_sched *ts;
 2660 
 2661         pctcpu = 0;
 2662         ts = td_get_sched(td);
 2663 
 2664         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2665         sched_pctcpu_update(ts, TD_IS_RUNNING(td));
 2666         if (ts->ts_ticks) {
 2667                 int rtick;
 2668 
 2669                 /* How many rtick per second ? */
 2670                 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
 2671                 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
 2672         }
 2673 
 2674         return (pctcpu);
 2675 }
 2676 
 2677 /*
 2678  * Enforce affinity settings for a thread.  Called after adjustments to
 2679  * cpumask.
 2680  */
 2681 void
 2682 sched_affinity(struct thread *td)
 2683 {
 2684 #ifdef SMP
 2685         struct td_sched *ts;
 2686 
 2687         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2688         ts = td_get_sched(td);
 2689         if (THREAD_CAN_SCHED(td, ts->ts_cpu))
 2690                 return;
 2691         if (TD_ON_RUNQ(td)) {
 2692                 sched_rem(td);
 2693                 sched_add(td, SRQ_BORING | SRQ_HOLDTD);
 2694                 return;
 2695         }
 2696         if (!TD_IS_RUNNING(td))
 2697                 return;
 2698         /*
 2699          * Force a switch before returning to userspace.  If the
 2700          * target thread is not running locally send an ipi to force
 2701          * the issue.
 2702          */
 2703         td->td_flags |= TDF_NEEDRESCHED;
 2704         if (td != curthread)
 2705                 ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
 2706 #endif
 2707 }
 2708 
 2709 /*
 2710  * Bind a thread to a target cpu.
 2711  */
 2712 void
 2713 sched_bind(struct thread *td, int cpu)
 2714 {
 2715         struct td_sched *ts;
 2716 
 2717         THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
 2718         KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
 2719         ts = td_get_sched(td);
 2720         if (ts->ts_flags & TSF_BOUND)
 2721                 sched_unbind(td);
 2722         KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
 2723         ts->ts_flags |= TSF_BOUND;
 2724         sched_pin();
 2725         if (PCPU_GET(cpuid) == cpu)
 2726                 return;
 2727         ts->ts_cpu = cpu;
 2728         /* When we return from mi_switch we'll be on the correct cpu. */
 2729         mi_switch(SW_VOL);
 2730         thread_lock(td);
 2731 }
 2732 
 2733 /*
 2734  * Release a bound thread.
 2735  */
 2736 void
 2737 sched_unbind(struct thread *td)
 2738 {
 2739         struct td_sched *ts;
 2740 
 2741         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2742         KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
 2743         ts = td_get_sched(td);
 2744         if ((ts->ts_flags & TSF_BOUND) == 0)
 2745                 return;
 2746         ts->ts_flags &= ~TSF_BOUND;
 2747         sched_unpin();
 2748 }
 2749 
 2750 int
 2751 sched_is_bound(struct thread *td)
 2752 {
 2753         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2754         return (td_get_sched(td)->ts_flags & TSF_BOUND);
 2755 }
 2756 
 2757 /*
 2758  * Basic yield call.
 2759  */
 2760 void
 2761 sched_relinquish(struct thread *td)
 2762 {
 2763         thread_lock(td);
 2764         mi_switch(SW_VOL | SWT_RELINQUISH);
 2765 }
 2766 
 2767 /*
 2768  * Return the total system load.
 2769  */
 2770 int
 2771 sched_load(void)
 2772 {
 2773 #ifdef SMP
 2774         int total;
 2775         int i;
 2776 
 2777         total = 0;
 2778         CPU_FOREACH(i)
 2779                 total += TDQ_CPU(i)->tdq_sysload;
 2780         return (total);
 2781 #else
 2782         return (TDQ_SELF()->tdq_sysload);
 2783 #endif
 2784 }
 2785 
 2786 int
 2787 sched_sizeof_proc(void)
 2788 {
 2789         return (sizeof(struct proc));
 2790 }
 2791 
 2792 int
 2793 sched_sizeof_thread(void)
 2794 {
 2795         return (sizeof(struct thread) + sizeof(struct td_sched));
 2796 }
 2797 
 2798 #ifdef SMP
 2799 #define TDQ_IDLESPIN(tdq)                                               \
 2800     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
 2801 #else
 2802 #define TDQ_IDLESPIN(tdq)       1
 2803 #endif
 2804 
 2805 /*
 2806  * The actual idle process.
 2807  */
 2808 void
 2809 sched_idletd(void *dummy)
 2810 {
 2811         struct thread *td;
 2812         struct tdq *tdq;
 2813         int oldswitchcnt, switchcnt;
 2814         int i;
 2815 
 2816         mtx_assert(&Giant, MA_NOTOWNED);
 2817         td = curthread;
 2818         tdq = TDQ_SELF();
 2819         THREAD_NO_SLEEPING();
 2820         oldswitchcnt = -1;
 2821         for (;;) {
 2822                 if (tdq->tdq_load) {
 2823                         thread_lock(td);
 2824                         mi_switch(SW_VOL | SWT_IDLE);
 2825                 }
 2826                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2827 #ifdef SMP
 2828                 if (always_steal || switchcnt != oldswitchcnt) {
 2829                         oldswitchcnt = switchcnt;
 2830                         if (tdq_idled(tdq) == 0)
 2831                                 continue;
 2832                 }
 2833                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2834 #else
 2835                 oldswitchcnt = switchcnt;
 2836 #endif
 2837                 /*
 2838                  * If we're switching very frequently, spin while checking
 2839                  * for load rather than entering a low power state that 
 2840                  * may require an IPI.  However, don't do any busy
 2841                  * loops while on SMT machines as this simply steals
 2842                  * cycles from cores doing useful work.
 2843                  */
 2844                 if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
 2845                         for (i = 0; i < sched_idlespins; i++) {
 2846                                 if (tdq->tdq_load)
 2847                                         break;
 2848                                 cpu_spinwait();
 2849                         }
 2850                 }
 2851 
 2852                 /* If there was context switch during spin, restart it. */
 2853                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2854                 if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt)
 2855                         continue;
 2856 
 2857                 /* Run main MD idle handler. */
 2858                 tdq->tdq_cpu_idle = 1;
 2859                 /*
 2860                  * Make sure that tdq_cpu_idle update is globally visible
 2861                  * before cpu_idle() read tdq_load.  The order is important
 2862                  * to avoid race with tdq_notify.
 2863                  */
 2864                 atomic_thread_fence_seq_cst();
 2865                 /*
 2866                  * Checking for again after the fence picks up assigned
 2867                  * threads often enough to make it worthwhile to do so in
 2868                  * order to avoid calling cpu_idle().
 2869                  */
 2870                 if (tdq->tdq_load != 0) {
 2871                         tdq->tdq_cpu_idle = 0;
 2872                         continue;
 2873                 }
 2874                 cpu_idle(switchcnt * 4 > sched_idlespinthresh);
 2875                 tdq->tdq_cpu_idle = 0;
 2876 
 2877                 /*
 2878                  * Account thread-less hardware interrupts and
 2879                  * other wakeup reasons equal to context switches.
 2880                  */
 2881                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2882                 if (switchcnt != oldswitchcnt)
 2883                         continue;
 2884                 tdq->tdq_switchcnt++;
 2885                 oldswitchcnt++;
 2886         }
 2887 }
 2888 
 2889 /*
 2890  * A CPU is entering for the first time or a thread is exiting.
 2891  */
 2892 void
 2893 sched_throw(struct thread *td)
 2894 {
 2895         struct thread *newtd;
 2896         struct tdq *tdq;
 2897 
 2898         if (__predict_false(td == NULL)) {
 2899 #ifdef SMP
 2900                 PCPU_SET(sched, DPCPU_PTR(tdq));
 2901 #endif
 2902                 /* Correct spinlock nesting and acquire the correct lock. */
 2903                 tdq = TDQ_SELF();
 2904                 TDQ_LOCK(tdq);
 2905                 spinlock_exit();
 2906                 PCPU_SET(switchtime, cpu_ticks());
 2907                 PCPU_SET(switchticks, ticks);
 2908                 PCPU_GET(idlethread)->td_lock = TDQ_LOCKPTR(tdq);
 2909         } else {
 2910                 tdq = TDQ_SELF();
 2911                 THREAD_LOCK_ASSERT(td, MA_OWNED);
 2912                 THREAD_LOCKPTR_ASSERT(td, TDQ_LOCKPTR(tdq));
 2913                 tdq_load_rem(tdq, td);
 2914                 td->td_lastcpu = td->td_oncpu;
 2915                 td->td_oncpu = NOCPU;
 2916                 thread_lock_block(td);
 2917         }
 2918         newtd = choosethread();
 2919         spinlock_enter();
 2920         TDQ_UNLOCK(tdq);
 2921         KASSERT(curthread->td_md.md_spinlock_count == 1,
 2922             ("invalid count %d", curthread->td_md.md_spinlock_count));
 2923         /* doesn't return */
 2924         if (__predict_false(td == NULL))
 2925                 cpu_throw(td, newtd);           /* doesn't return */
 2926         else
 2927                 cpu_switch(td, newtd, TDQ_LOCKPTR(tdq));
 2928 }
 2929 
 2930 /*
 2931  * This is called from fork_exit().  Just acquire the correct locks and
 2932  * let fork do the rest of the work.
 2933  */
 2934 void
 2935 sched_fork_exit(struct thread *td)
 2936 {
 2937         struct tdq *tdq;
 2938         int cpuid;
 2939 
 2940         /*
 2941          * Finish setting up thread glue so that it begins execution in a
 2942          * non-nested critical section with the scheduler lock held.
 2943          */
 2944         KASSERT(curthread->td_md.md_spinlock_count == 1,
 2945             ("invalid count %d", curthread->td_md.md_spinlock_count));
 2946         cpuid = PCPU_GET(cpuid);
 2947         tdq = TDQ_SELF();
 2948         TDQ_LOCK(tdq);
 2949         spinlock_exit();
 2950         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2951         td->td_oncpu = cpuid;
 2952         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 2953             "prio:%d", td->td_priority);
 2954         SDT_PROBE0(sched, , , on__cpu);
 2955 }
 2956 
 2957 /*
 2958  * Create on first use to catch odd startup conditons.
 2959  */
 2960 char *
 2961 sched_tdname(struct thread *td)
 2962 {
 2963 #ifdef KTR
 2964         struct td_sched *ts;
 2965 
 2966         ts = td_get_sched(td);
 2967         if (ts->ts_name[0] == '\0')
 2968                 snprintf(ts->ts_name, sizeof(ts->ts_name),
 2969                     "%s tid %d", td->td_name, td->td_tid);
 2970         return (ts->ts_name);
 2971 #else
 2972         return (td->td_name);
 2973 #endif
 2974 }
 2975 
 2976 #ifdef KTR
 2977 void
 2978 sched_clear_tdname(struct thread *td)
 2979 {
 2980         struct td_sched *ts;
 2981 
 2982         ts = td_get_sched(td);
 2983         ts->ts_name[0] = '\0';
 2984 }
 2985 #endif
 2986 
 2987 #ifdef SMP
 2988 
 2989 /*
 2990  * Build the CPU topology dump string. Is recursively called to collect
 2991  * the topology tree.
 2992  */
 2993 static int
 2994 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
 2995     int indent)
 2996 {
 2997         char cpusetbuf[CPUSETBUFSIZ];
 2998         int i, first;
 2999 
 3000         sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
 3001             "", 1 + indent / 2, cg->cg_level);
 3002         sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
 3003             cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
 3004         first = TRUE;
 3005         for (i = 0; i < MAXCPU; i++) {
 3006                 if (CPU_ISSET(i, &cg->cg_mask)) {
 3007                         if (!first)
 3008                                 sbuf_printf(sb, ", ");
 3009                         else
 3010                                 first = FALSE;
 3011                         sbuf_printf(sb, "%d", i);
 3012                 }
 3013         }
 3014         sbuf_printf(sb, "</cpu>\n");
 3015 
 3016         if (cg->cg_flags != 0) {
 3017                 sbuf_printf(sb, "%*s <flags>", indent, "");
 3018                 if ((cg->cg_flags & CG_FLAG_HTT) != 0)
 3019                         sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
 3020                 if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
 3021                         sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
 3022                 if ((cg->cg_flags & CG_FLAG_SMT) != 0)
 3023                         sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
 3024                 sbuf_printf(sb, "</flags>\n");
 3025         }
 3026 
 3027         if (cg->cg_children > 0) {
 3028                 sbuf_printf(sb, "%*s <children>\n", indent, "");
 3029                 for (i = 0; i < cg->cg_children; i++)
 3030                         sysctl_kern_sched_topology_spec_internal(sb, 
 3031                             &cg->cg_child[i], indent+2);
 3032                 sbuf_printf(sb, "%*s </children>\n", indent, "");
 3033         }
 3034         sbuf_printf(sb, "%*s</group>\n", indent, "");
 3035         return (0);
 3036 }
 3037 
 3038 /*
 3039  * Sysctl handler for retrieving topology dump. It's a wrapper for
 3040  * the recursive sysctl_kern_smp_topology_spec_internal().
 3041  */
 3042 static int
 3043 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
 3044 {
 3045         struct sbuf *topo;
 3046         int err;
 3047 
 3048         KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
 3049 
 3050         topo = sbuf_new_for_sysctl(NULL, NULL, 512, req);
 3051         if (topo == NULL)
 3052                 return (ENOMEM);
 3053 
 3054         sbuf_printf(topo, "<groups>\n");
 3055         err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
 3056         sbuf_printf(topo, "</groups>\n");
 3057 
 3058         if (err == 0) {
 3059                 err = sbuf_finish(topo);
 3060         }
 3061         sbuf_delete(topo);
 3062         return (err);
 3063 }
 3064 
 3065 #endif
 3066 
 3067 static int
 3068 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
 3069 {
 3070         int error, new_val, period;
 3071 
 3072         period = 1000000 / realstathz;
 3073         new_val = period * sched_slice;
 3074         error = sysctl_handle_int(oidp, &new_val, 0, req);
 3075         if (error != 0 || req->newptr == NULL)
 3076                 return (error);
 3077         if (new_val <= 0)
 3078                 return (EINVAL);
 3079         sched_slice = imax(1, (new_val + period / 2) / period);
 3080         sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
 3081         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 3082             realstathz);
 3083         return (0);
 3084 }
 3085 
 3086 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
 3087     "Scheduler");
 3088 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
 3089     "Scheduler name");
 3090 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum,
 3091     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
 3092     sysctl_kern_quantum, "I",
 3093     "Quantum for timeshare threads in microseconds");
 3094 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
 3095     "Quantum for timeshare threads in stathz ticks");
 3096 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
 3097     "Interactivity score threshold");
 3098 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
 3099     &preempt_thresh, 0,
 3100     "Maximal (lowest) priority for preemption");
 3101 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
 3102     "Assign static kernel priorities to sleeping threads");
 3103 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
 3104     "Number of times idle thread will spin waiting for new work");
 3105 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
 3106     &sched_idlespinthresh, 0,
 3107     "Threshold before we will permit idle thread spinning");
 3108 #ifdef SMP
 3109 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
 3110     "Number of hz ticks to keep thread affinity for");
 3111 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
 3112     "Enables the long-term load balancer");
 3113 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
 3114     &balance_interval, 0,
 3115     "Average period in stathz ticks to run the long-term balancer");
 3116 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
 3117     "Attempts to steal work from other cores before idling");
 3118 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
 3119     "Minimum load on remote CPU before we'll steal");
 3120 SYSCTL_INT(_kern_sched, OID_AUTO, trysteal_limit, CTLFLAG_RW, &trysteal_limit,
 3121     0, "Topological distance limit for stealing threads in sched_switch()");
 3122 SYSCTL_INT(_kern_sched, OID_AUTO, always_steal, CTLFLAG_RW, &always_steal, 0,
 3123     "Always run the stealer from the idle thread");
 3124 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
 3125     CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
 3126     "XML dump of detected CPU topology");
 3127 #endif
 3128 
 3129 /* ps compat.  All cpu percentages from ULE are weighted. */
 3130 static int ccpu = 0;
 3131 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0,
 3132     "Decay factor used for updating %CPU in 4BSD scheduler");

Cache object: 0a42b61fb0fea3c39398f5a7fd7e536d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.