The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sched_ule.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice unmodified, this list of conditions, and the following
   12  *    disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 /*
   30  * This file implements the ULE scheduler.  ULE supports independent CPU
   31  * run queues and fine grain locking.  It has superior interactive
   32  * performance under load even on uni-processor systems.
   33  *
   34  * etymology:
   35  *   ULE is the last three letters in schedule.  It owes its name to a
   36  * generic user created for a scheduling system by Paul Mikesell at
   37  * Isilon Systems and a general lack of creativity on the part of the author.
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD$");
   42 
   43 #include "opt_hwpmc_hooks.h"
   44 #include "opt_sched.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/kdb.h>
   49 #include <sys/kernel.h>
   50 #include <sys/ktr.h>
   51 #include <sys/limits.h>
   52 #include <sys/lock.h>
   53 #include <sys/mutex.h>
   54 #include <sys/proc.h>
   55 #include <sys/resource.h>
   56 #include <sys/resourcevar.h>
   57 #include <sys/sched.h>
   58 #include <sys/sdt.h>
   59 #include <sys/smp.h>
   60 #include <sys/sx.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/sysproto.h>
   63 #include <sys/turnstile.h>
   64 #include <sys/umtxvar.h>
   65 #include <sys/vmmeter.h>
   66 #include <sys/cpuset.h>
   67 #include <sys/sbuf.h>
   68 
   69 #ifdef HWPMC_HOOKS
   70 #include <sys/pmckern.h>
   71 #endif
   72 
   73 #ifdef KDTRACE_HOOKS
   74 #include <sys/dtrace_bsd.h>
   75 int __read_mostly               dtrace_vtime_active;
   76 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
   77 #endif
   78 
   79 #include <machine/cpu.h>
   80 #include <machine/smp.h>
   81 
   82 #define KTR_ULE 0
   83 
   84 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
   85 #define TDQ_NAME_LEN    (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
   86 #define TDQ_LOADNAME_LEN        (sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
   87 
   88 /*
   89  * Thread scheduler specific section.  All fields are protected
   90  * by the thread lock.
   91  */
   92 struct td_sched {       
   93         struct runq     *ts_runq;       /* Run-queue we're queued on. */
   94         short           ts_flags;       /* TSF_* flags. */
   95         int             ts_cpu;         /* CPU that we have affinity for. */
   96         int             ts_rltick;      /* Real last tick, for affinity. */
   97         int             ts_slice;       /* Ticks of slice remaining. */
   98         u_int           ts_slptime;     /* Number of ticks we vol. slept */
   99         u_int           ts_runtime;     /* Number of ticks we were running */
  100         int             ts_ltick;       /* Last tick that we were running on */
  101         int             ts_ftick;       /* First tick that we were running on */
  102         int             ts_ticks;       /* Tick count */
  103 #ifdef KTR
  104         char            ts_name[TS_NAME_LEN];
  105 #endif
  106 };
  107 /* flags kept in ts_flags */
  108 #define TSF_BOUND       0x0001          /* Thread can not migrate. */
  109 #define TSF_XFERABLE    0x0002          /* Thread was added as transferable. */
  110 
  111 #define THREAD_CAN_MIGRATE(td)  ((td)->td_pinned == 0)
  112 #define THREAD_CAN_SCHED(td, cpu)       \
  113     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
  114 
  115 _Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
  116     sizeof(struct thread0_storage),
  117     "increase struct thread0_storage.t0st_sched size");
  118 
  119 /*
  120  * Priority ranges used for interactive and non-interactive timeshare
  121  * threads.  The timeshare priorities are split up into four ranges.
  122  * The first range handles interactive threads.  The last three ranges
  123  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
  124  * ranges supporting nice values.
  125  */
  126 #define PRI_TIMESHARE_RANGE     (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
  127 #define PRI_INTERACT_RANGE      ((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
  128 #define PRI_BATCH_RANGE         (PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
  129 
  130 #define PRI_MIN_INTERACT        PRI_MIN_TIMESHARE
  131 #define PRI_MAX_INTERACT        (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
  132 #define PRI_MIN_BATCH           (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
  133 #define PRI_MAX_BATCH           PRI_MAX_TIMESHARE
  134 
  135 /*
  136  * Cpu percentage computation macros and defines.
  137  *
  138  * SCHED_TICK_SECS:     Number of seconds to average the cpu usage across.
  139  * SCHED_TICK_TARG:     Number of hz ticks to average the cpu usage across.
  140  * SCHED_TICK_MAX:      Maximum number of ticks before scaling back.
  141  * SCHED_TICK_SHIFT:    Shift factor to avoid rounding away results.
  142  * SCHED_TICK_HZ:       Compute the number of hz ticks for a given ticks count.
  143  * SCHED_TICK_TOTAL:    Gives the amount of time we've been recording ticks.
  144  */
  145 #define SCHED_TICK_SECS         10
  146 #define SCHED_TICK_TARG         (hz * SCHED_TICK_SECS)
  147 #define SCHED_TICK_MAX          (SCHED_TICK_TARG + hz)
  148 #define SCHED_TICK_SHIFT        10
  149 #define SCHED_TICK_HZ(ts)       ((ts)->ts_ticks >> SCHED_TICK_SHIFT)
  150 #define SCHED_TICK_TOTAL(ts)    (max((ts)->ts_ltick - (ts)->ts_ftick, hz))
  151 
  152 /*
  153  * These macros determine priorities for non-interactive threads.  They are
  154  * assigned a priority based on their recent cpu utilization as expressed
  155  * by the ratio of ticks to the tick total.  NHALF priorities at the start
  156  * and end of the MIN to MAX timeshare range are only reachable with negative
  157  * or positive nice respectively.
  158  *
  159  * PRI_RANGE:   Priority range for utilization dependent priorities.
  160  * PRI_NRESV:   Number of nice values.
  161  * PRI_TICKS:   Compute a priority in PRI_RANGE from the ticks count and total.
  162  * PRI_NICE:    Determines the part of the priority inherited from nice.
  163  */
  164 #define SCHED_PRI_NRESV         (PRIO_MAX - PRIO_MIN)
  165 #define SCHED_PRI_NHALF         (SCHED_PRI_NRESV / 2)
  166 #define SCHED_PRI_MIN           (PRI_MIN_BATCH + SCHED_PRI_NHALF)
  167 #define SCHED_PRI_MAX           (PRI_MAX_BATCH - SCHED_PRI_NHALF)
  168 #define SCHED_PRI_RANGE         (SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
  169 #define SCHED_PRI_TICKS(ts)                                             \
  170     (SCHED_TICK_HZ((ts)) /                                              \
  171     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
  172 #define SCHED_PRI_NICE(nice)    (nice)
  173 
  174 /*
  175  * These determine the interactivity of a process.  Interactivity differs from
  176  * cpu utilization in that it expresses the voluntary time slept vs time ran
  177  * while cpu utilization includes all time not running.  This more accurately
  178  * models the intent of the thread.
  179  *
  180  * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
  181  *              before throttling back.
  182  * SLP_RUN_FORK:        Maximum slp+run time to inherit at fork time.
  183  * INTERACT_MAX:        Maximum interactivity value.  Smaller is better.
  184  * INTERACT_THRESH:     Threshold for placement on the current runq.
  185  */
  186 #define SCHED_SLP_RUN_MAX       ((hz * 5) << SCHED_TICK_SHIFT)
  187 #define SCHED_SLP_RUN_FORK      ((hz / 2) << SCHED_TICK_SHIFT)
  188 #define SCHED_INTERACT_MAX      (100)
  189 #define SCHED_INTERACT_HALF     (SCHED_INTERACT_MAX / 2)
  190 #define SCHED_INTERACT_THRESH   (30)
  191 
  192 /*
  193  * These parameters determine the slice behavior for batch work.
  194  */
  195 #define SCHED_SLICE_DEFAULT_DIVISOR     10      /* ~94 ms, 12 stathz ticks. */
  196 #define SCHED_SLICE_MIN_DIVISOR         6       /* DEFAULT/MIN = ~16 ms. */
  197 
  198 /* Flags kept in td_flags. */
  199 #define TDF_PICKCPU     TDF_SCHED0      /* Thread should pick new CPU. */
  200 #define TDF_SLICEEND    TDF_SCHED2      /* Thread time slice is over. */
  201 
  202 /*
  203  * tickincr:            Converts a stathz tick into a hz domain scaled by
  204  *                      the shift factor.  Without the shift the error rate
  205  *                      due to rounding would be unacceptably high.
  206  * realstathz:          stathz is sometimes 0 and run off of hz.
  207  * sched_slice:         Runtime of each thread before rescheduling.
  208  * preempt_thresh:      Priority threshold for preemption and remote IPIs.
  209  */
  210 static u_int __read_mostly sched_interact = SCHED_INTERACT_THRESH;
  211 static int __read_mostly tickincr = 8 << SCHED_TICK_SHIFT;
  212 static int __read_mostly realstathz = 127;      /* reset during boot. */
  213 static int __read_mostly sched_slice = 10;      /* reset during boot. */
  214 static int __read_mostly sched_slice_min = 1;   /* reset during boot. */
  215 #ifdef PREEMPTION
  216 #ifdef FULL_PREEMPTION
  217 static int __read_mostly preempt_thresh = PRI_MAX_IDLE;
  218 #else
  219 static int __read_mostly preempt_thresh = PRI_MIN_KERN;
  220 #endif
  221 #else 
  222 static int __read_mostly preempt_thresh = 0;
  223 #endif
  224 static int __read_mostly static_boost = PRI_MIN_BATCH;
  225 static int __read_mostly sched_idlespins = 10000;
  226 static int __read_mostly sched_idlespinthresh = -1;
  227 
  228 /*
  229  * tdq - per processor runqs and statistics.  A mutex synchronizes access to
  230  * most fields.  Some fields are loaded or modified without the mutex.
  231  *
  232  * Locking protocols:
  233  * (c)  constant after initialization
  234  * (f)  flag, set with the tdq lock held, cleared on local CPU
  235  * (l)  all accesses are CPU-local
  236  * (ls) stores are performed by the local CPU, loads may be lockless
  237  * (t)  all accesses are protected by the tdq mutex
  238  * (ts) stores are serialized by the tdq mutex, loads may be lockless
  239  */
  240 struct tdq {
  241         /* 
  242          * Ordered to improve efficiency of cpu_search() and switch().
  243          * tdq_lock is padded to avoid false sharing with tdq_load and
  244          * tdq_cpu_idle.
  245          */
  246         struct mtx_padalign tdq_lock;   /* run queue lock. */
  247         struct cpu_group *tdq_cg;       /* (c) Pointer to cpu topology. */
  248         struct thread   *tdq_curthread; /* (t) Current executing thread. */
  249         int             tdq_load;       /* (ts) Aggregate load. */
  250         int             tdq_sysload;    /* (ts) For loadavg, !ITHD load. */
  251         int             tdq_cpu_idle;   /* (ls) cpu_idle() is active. */
  252         int             tdq_transferable; /* (ts) Transferable thread count. */
  253         short           tdq_switchcnt;  /* (l) Switches this tick. */
  254         short           tdq_oldswitchcnt; /* (l) Switches last tick. */
  255         u_char          tdq_lowpri;     /* (ts) Lowest priority thread. */
  256         u_char          tdq_owepreempt; /* (f) Remote preemption pending. */
  257         u_char          tdq_idx;        /* (t) Current insert index. */
  258         u_char          tdq_ridx;       /* (t) Current removal index. */
  259         int             tdq_id;         /* (c) cpuid. */
  260         struct runq     tdq_realtime;   /* (t) real-time run queue. */
  261         struct runq     tdq_timeshare;  /* (t) timeshare run queue. */
  262         struct runq     tdq_idle;       /* (t) Queue of IDLE threads. */
  263         char            tdq_name[TDQ_NAME_LEN];
  264 #ifdef KTR
  265         char            tdq_loadname[TDQ_LOADNAME_LEN];
  266 #endif
  267 };
  268 
  269 /* Idle thread states and config. */
  270 #define TDQ_RUNNING     1
  271 #define TDQ_IDLE        2
  272 
  273 /* Lockless accessors. */
  274 #define TDQ_LOAD(tdq)           atomic_load_int(&(tdq)->tdq_load)
  275 #define TDQ_TRANSFERABLE(tdq)   atomic_load_int(&(tdq)->tdq_transferable)
  276 #define TDQ_SWITCHCNT(tdq)      (atomic_load_short(&(tdq)->tdq_switchcnt) + \
  277                                  atomic_load_short(&(tdq)->tdq_oldswitchcnt))
  278 #define TDQ_SWITCHCNT_INC(tdq)  (atomic_store_short(&(tdq)->tdq_switchcnt, \
  279                                  atomic_load_short(&(tdq)->tdq_switchcnt) + 1))
  280 
  281 #ifdef SMP
  282 struct cpu_group __read_mostly *cpu_top;                /* CPU topology */
  283 
  284 #define SCHED_AFFINITY_DEFAULT  (max(1, hz / 1000))
  285 #define SCHED_AFFINITY(ts, t)   ((ts)->ts_rltick > ticks - ((t) * affinity))
  286 
  287 /*
  288  * Run-time tunables.
  289  */
  290 static int rebalance = 1;
  291 static int balance_interval = 128;      /* Default set in sched_initticks(). */
  292 static int __read_mostly affinity;
  293 static int __read_mostly steal_idle = 1;
  294 static int __read_mostly steal_thresh = 2;
  295 static int __read_mostly always_steal = 0;
  296 static int __read_mostly trysteal_limit = 2;
  297 
  298 /*
  299  * One thread queue per processor.
  300  */
  301 static struct tdq __read_mostly *balance_tdq;
  302 static int balance_ticks;
  303 DPCPU_DEFINE_STATIC(struct tdq, tdq);
  304 DPCPU_DEFINE_STATIC(uint32_t, randomval);
  305 
  306 #define TDQ_SELF()      ((struct tdq *)PCPU_GET(sched))
  307 #define TDQ_CPU(x)      (DPCPU_ID_PTR((x), tdq))
  308 #define TDQ_ID(x)       ((x)->tdq_id)
  309 #else   /* !SMP */
  310 static struct tdq       tdq_cpu;
  311 
  312 #define TDQ_ID(x)       (0)
  313 #define TDQ_SELF()      (&tdq_cpu)
  314 #define TDQ_CPU(x)      (&tdq_cpu)
  315 #endif
  316 
  317 #define TDQ_LOCK_ASSERT(t, type)        mtx_assert(TDQ_LOCKPTR((t)), (type))
  318 #define TDQ_LOCK(t)             mtx_lock_spin(TDQ_LOCKPTR((t)))
  319 #define TDQ_LOCK_FLAGS(t, f)    mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
  320 #define TDQ_TRYLOCK(t)          mtx_trylock_spin(TDQ_LOCKPTR((t)))
  321 #define TDQ_TRYLOCK_FLAGS(t, f) mtx_trylock_spin_flags(TDQ_LOCKPTR((t)), (f))
  322 #define TDQ_UNLOCK(t)           mtx_unlock_spin(TDQ_LOCKPTR((t)))
  323 #define TDQ_LOCKPTR(t)          ((struct mtx *)(&(t)->tdq_lock))
  324 
  325 static void sched_setpreempt(int);
  326 static void sched_priority(struct thread *);
  327 static void sched_thread_priority(struct thread *, u_char);
  328 static int sched_interact_score(struct thread *);
  329 static void sched_interact_update(struct thread *);
  330 static void sched_interact_fork(struct thread *);
  331 static void sched_pctcpu_update(struct td_sched *, int);
  332 
  333 /* Operations on per processor queues */
  334 static struct thread *tdq_choose(struct tdq *);
  335 static void tdq_setup(struct tdq *, int i);
  336 static void tdq_load_add(struct tdq *, struct thread *);
  337 static void tdq_load_rem(struct tdq *, struct thread *);
  338 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
  339 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
  340 static inline int sched_shouldpreempt(int, int, int);
  341 static void tdq_print(int cpu);
  342 static void runq_print(struct runq *rq);
  343 static int tdq_add(struct tdq *, struct thread *, int);
  344 #ifdef SMP
  345 static int tdq_move(struct tdq *, struct tdq *);
  346 static int tdq_idled(struct tdq *);
  347 static void tdq_notify(struct tdq *, int lowpri);
  348 static struct thread *tdq_steal(struct tdq *, int);
  349 static struct thread *runq_steal(struct runq *, int);
  350 static int sched_pickcpu(struct thread *, int);
  351 static void sched_balance(void);
  352 static bool sched_balance_pair(struct tdq *, struct tdq *);
  353 static inline struct tdq *sched_setcpu(struct thread *, int, int);
  354 static inline void thread_unblock_switch(struct thread *, struct mtx *);
  355 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
  356 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 
  357     struct cpu_group *cg, int indent);
  358 #endif
  359 
  360 static void sched_setup(void *dummy);
  361 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
  362 
  363 static void sched_initticks(void *dummy);
  364 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
  365     NULL);
  366 
  367 SDT_PROVIDER_DEFINE(sched);
  368 
  369 SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *", 
  370     "struct proc *", "uint8_t");
  371 SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *", 
  372     "struct proc *", "void *");
  373 SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *", 
  374     "struct proc *", "void *", "int");
  375 SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *", 
  376     "struct proc *", "uint8_t", "struct thread *");
  377 SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
  378 SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *", 
  379     "struct proc *");
  380 SDT_PROBE_DEFINE(sched, , , on__cpu);
  381 SDT_PROBE_DEFINE(sched, , , remain__cpu);
  382 SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *", 
  383     "struct proc *");
  384 
  385 /*
  386  * Print the threads waiting on a run-queue.
  387  */
  388 static void
  389 runq_print(struct runq *rq)
  390 {
  391         struct rqhead *rqh;
  392         struct thread *td;
  393         int pri;
  394         int j;
  395         int i;
  396 
  397         for (i = 0; i < RQB_LEN; i++) {
  398                 printf("\t\trunq bits %d 0x%zx\n",
  399                     i, rq->rq_status.rqb_bits[i]);
  400                 for (j = 0; j < RQB_BPW; j++)
  401                         if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
  402                                 pri = j + (i << RQB_L2BPW);
  403                                 rqh = &rq->rq_queues[pri];
  404                                 TAILQ_FOREACH(td, rqh, td_runq) {
  405                                         printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
  406                                             td, td->td_name, td->td_priority,
  407                                             td->td_rqindex, pri);
  408                                 }
  409                         }
  410         }
  411 }
  412 
  413 /*
  414  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
  415  */
  416 static void __unused
  417 tdq_print(int cpu)
  418 {
  419         struct tdq *tdq;
  420 
  421         tdq = TDQ_CPU(cpu);
  422 
  423         printf("tdq %d:\n", TDQ_ID(tdq));
  424         printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
  425         printf("\tLock name:      %s\n", tdq->tdq_name);
  426         printf("\tload:           %d\n", tdq->tdq_load);
  427         printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
  428         printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
  429         printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
  430         printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
  431         printf("\tload transferable: %d\n", tdq->tdq_transferable);
  432         printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
  433         printf("\trealtime runq:\n");
  434         runq_print(&tdq->tdq_realtime);
  435         printf("\ttimeshare runq:\n");
  436         runq_print(&tdq->tdq_timeshare);
  437         printf("\tidle runq:\n");
  438         runq_print(&tdq->tdq_idle);
  439 }
  440 
  441 static inline int
  442 sched_shouldpreempt(int pri, int cpri, int remote)
  443 {
  444         /*
  445          * If the new priority is not better than the current priority there is
  446          * nothing to do.
  447          */
  448         if (pri >= cpri)
  449                 return (0);
  450         /*
  451          * Always preempt idle.
  452          */
  453         if (cpri >= PRI_MIN_IDLE)
  454                 return (1);
  455         /*
  456          * If preemption is disabled don't preempt others.
  457          */
  458         if (preempt_thresh == 0)
  459                 return (0);
  460         /*
  461          * Preempt if we exceed the threshold.
  462          */
  463         if (pri <= preempt_thresh)
  464                 return (1);
  465         /*
  466          * If we're interactive or better and there is non-interactive
  467          * or worse running preempt only remote processors.
  468          */
  469         if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
  470                 return (1);
  471         return (0);
  472 }
  473 
  474 /*
  475  * Add a thread to the actual run-queue.  Keeps transferable counts up to
  476  * date with what is actually on the run-queue.  Selects the correct
  477  * queue position for timeshare threads.
  478  */
  479 static __inline void
  480 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
  481 {
  482         struct td_sched *ts;
  483         u_char pri;
  484 
  485         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  486         THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
  487 
  488         pri = td->td_priority;
  489         ts = td_get_sched(td);
  490         TD_SET_RUNQ(td);
  491         if (THREAD_CAN_MIGRATE(td)) {
  492                 tdq->tdq_transferable++;
  493                 ts->ts_flags |= TSF_XFERABLE;
  494         }
  495         if (pri < PRI_MIN_BATCH) {
  496                 ts->ts_runq = &tdq->tdq_realtime;
  497         } else if (pri <= PRI_MAX_BATCH) {
  498                 ts->ts_runq = &tdq->tdq_timeshare;
  499                 KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
  500                         ("Invalid priority %d on timeshare runq", pri));
  501                 /*
  502                  * This queue contains only priorities between MIN and MAX
  503                  * batch.  Use the whole queue to represent these values.
  504                  */
  505                 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
  506                         pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
  507                         pri = (pri + tdq->tdq_idx) % RQ_NQS;
  508                         /*
  509                          * This effectively shortens the queue by one so we
  510                          * can have a one slot difference between idx and
  511                          * ridx while we wait for threads to drain.
  512                          */
  513                         if (tdq->tdq_ridx != tdq->tdq_idx &&
  514                             pri == tdq->tdq_ridx)
  515                                 pri = (unsigned char)(pri - 1) % RQ_NQS;
  516                 } else
  517                         pri = tdq->tdq_ridx;
  518                 runq_add_pri(ts->ts_runq, td, pri, flags);
  519                 return;
  520         } else
  521                 ts->ts_runq = &tdq->tdq_idle;
  522         runq_add(ts->ts_runq, td, flags);
  523 }
  524 
  525 /* 
  526  * Remove a thread from a run-queue.  This typically happens when a thread
  527  * is selected to run.  Running threads are not on the queue and the
  528  * transferable count does not reflect them.
  529  */
  530 static __inline void
  531 tdq_runq_rem(struct tdq *tdq, struct thread *td)
  532 {
  533         struct td_sched *ts;
  534 
  535         ts = td_get_sched(td);
  536         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  537         THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
  538         KASSERT(ts->ts_runq != NULL,
  539             ("tdq_runq_remove: thread %p null ts_runq", td));
  540         if (ts->ts_flags & TSF_XFERABLE) {
  541                 tdq->tdq_transferable--;
  542                 ts->ts_flags &= ~TSF_XFERABLE;
  543         }
  544         if (ts->ts_runq == &tdq->tdq_timeshare) {
  545                 if (tdq->tdq_idx != tdq->tdq_ridx)
  546                         runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
  547                 else
  548                         runq_remove_idx(ts->ts_runq, td, NULL);
  549         } else
  550                 runq_remove(ts->ts_runq, td);
  551 }
  552 
  553 /*
  554  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
  555  * for this thread to the referenced thread queue.
  556  */
  557 static void
  558 tdq_load_add(struct tdq *tdq, struct thread *td)
  559 {
  560 
  561         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  562         THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
  563 
  564         tdq->tdq_load++;
  565         if ((td->td_flags & TDF_NOLOAD) == 0)
  566                 tdq->tdq_sysload++;
  567         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  568         SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
  569 }
  570 
  571 /*
  572  * Remove the load from a thread that is transitioning to a sleep state or
  573  * exiting.
  574  */
  575 static void
  576 tdq_load_rem(struct tdq *tdq, struct thread *td)
  577 {
  578 
  579         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  580         THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
  581         KASSERT(tdq->tdq_load != 0,
  582             ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
  583 
  584         tdq->tdq_load--;
  585         if ((td->td_flags & TDF_NOLOAD) == 0)
  586                 tdq->tdq_sysload--;
  587         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  588         SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
  589 }
  590 
  591 /*
  592  * Bound timeshare latency by decreasing slice size as load increases.  We
  593  * consider the maximum latency as the sum of the threads waiting to run
  594  * aside from curthread and target no more than sched_slice latency but
  595  * no less than sched_slice_min runtime.
  596  */
  597 static inline int
  598 tdq_slice(struct tdq *tdq)
  599 {
  600         int load;
  601 
  602         /*
  603          * It is safe to use sys_load here because this is called from
  604          * contexts where timeshare threads are running and so there
  605          * cannot be higher priority load in the system.
  606          */
  607         load = tdq->tdq_sysload - 1;
  608         if (load >= SCHED_SLICE_MIN_DIVISOR)
  609                 return (sched_slice_min);
  610         if (load <= 1)
  611                 return (sched_slice);
  612         return (sched_slice / load);
  613 }
  614 
  615 /*
  616  * Set lowpri to its exact value by searching the run-queue and
  617  * evaluating curthread.  curthread may be passed as an optimization.
  618  */
  619 static void
  620 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
  621 {
  622         struct thread *td;
  623 
  624         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  625         if (ctd == NULL)
  626                 ctd = tdq->tdq_curthread;
  627         td = tdq_choose(tdq);
  628         if (td == NULL || td->td_priority > ctd->td_priority)
  629                 tdq->tdq_lowpri = ctd->td_priority;
  630         else
  631                 tdq->tdq_lowpri = td->td_priority;
  632 }
  633 
  634 #ifdef SMP
  635 /*
  636  * We need some randomness. Implement a classic Linear Congruential
  637  * Generator X_{n+1}=(aX_n+c) mod m. These values are optimized for
  638  * m = 2^32, a = 69069 and c = 5. We only return the upper 16 bits
  639  * of the random state (in the low bits of our answer) to keep
  640  * the maximum randomness.
  641  */
  642 static uint32_t
  643 sched_random(void)
  644 {
  645         uint32_t *rndptr;
  646 
  647         rndptr = DPCPU_PTR(randomval);
  648         *rndptr = *rndptr * 69069 + 5;
  649 
  650         return (*rndptr >> 16);
  651 }
  652 
  653 struct cpu_search {
  654         cpuset_t *cs_mask;      /* The mask of allowed CPUs to choose from. */
  655         int     cs_prefer;      /* Prefer this CPU and groups including it. */
  656         int     cs_running;     /* The thread is now running at cs_prefer. */
  657         int     cs_pri;         /* Min priority for low. */
  658         int     cs_load;        /* Max load for low, min load for high. */
  659         int     cs_trans;       /* Min transferable load for high. */
  660 };
  661 
  662 struct cpu_search_res {
  663         int     csr_cpu;        /* The best CPU found. */
  664         int     csr_load;       /* The load of cs_cpu. */
  665 };
  666 
  667 /*
  668  * Search the tree of cpu_groups for the lowest or highest loaded CPU.
  669  * These routines actually compare the load on all paths through the tree
  670  * and find the least loaded cpu on the least loaded path, which may differ
  671  * from the least loaded cpu in the system.  This balances work among caches
  672  * and buses.
  673  */
  674 static int
  675 cpu_search_lowest(const struct cpu_group *cg, const struct cpu_search *s,
  676     struct cpu_search_res *r)
  677 {
  678         struct cpu_search_res lr;
  679         struct tdq *tdq;
  680         int c, bload, l, load, p, total;
  681 
  682         total = 0;
  683         bload = INT_MAX;
  684         r->csr_cpu = -1;
  685 
  686         /* Loop through children CPU groups if there are any. */
  687         if (cg->cg_children > 0) {
  688                 for (c = cg->cg_children - 1; c >= 0; c--) {
  689                         load = cpu_search_lowest(&cg->cg_child[c], s, &lr);
  690                         total += load;
  691 
  692                         /*
  693                          * When balancing do not prefer SMT groups with load >1.
  694                          * It allows round-robin between SMT groups with equal
  695                          * load within parent group for more fair scheduling.
  696                          */
  697                         if (__predict_false(s->cs_running) &&
  698                             (cg->cg_child[c].cg_flags & CG_FLAG_THREAD) &&
  699                             load >= 128 && (load & 128) != 0)
  700                                 load += 128;
  701 
  702                         if (lr.csr_cpu >= 0 && (load < bload ||
  703                             (load == bload && lr.csr_load < r->csr_load))) {
  704                                 bload = load;
  705                                 r->csr_cpu = lr.csr_cpu;
  706                                 r->csr_load = lr.csr_load;
  707                         }
  708                 }
  709                 return (total);
  710         }
  711 
  712         /* Loop through children CPUs otherwise. */
  713         for (c = cg->cg_last; c >= cg->cg_first; c--) {
  714                 if (!CPU_ISSET(c, &cg->cg_mask))
  715                         continue;
  716                 tdq = TDQ_CPU(c);
  717                 l = TDQ_LOAD(tdq);
  718                 if (c == s->cs_prefer) {
  719                         if (__predict_false(s->cs_running))
  720                                 l--;
  721                         p = 128;
  722                 } else
  723                         p = 0;
  724                 load = l * 256;
  725                 total += load - p;
  726 
  727                 /*
  728                  * Check this CPU is acceptable.
  729                  * If the threads is already on the CPU, don't look on the TDQ
  730                  * priority, since it can be the priority of the thread itself.
  731                  */
  732                 if (l > s->cs_load ||
  733                     (atomic_load_char(&tdq->tdq_lowpri) <= s->cs_pri &&
  734                      (!s->cs_running || c != s->cs_prefer)) ||
  735                     !CPU_ISSET(c, s->cs_mask))
  736                         continue;
  737 
  738                 /*
  739                  * When balancing do not prefer CPUs with load > 1.
  740                  * It allows round-robin between CPUs with equal load
  741                  * within the CPU group for more fair scheduling.
  742                  */
  743                 if (__predict_false(s->cs_running) && l > 0)
  744                         p = 0;
  745 
  746                 load -= sched_random() % 128;
  747                 if (bload > load - p) {
  748                         bload = load - p;
  749                         r->csr_cpu = c;
  750                         r->csr_load = load;
  751                 }
  752         }
  753         return (total);
  754 }
  755 
  756 static int
  757 cpu_search_highest(const struct cpu_group *cg, const struct cpu_search *s,
  758     struct cpu_search_res *r)
  759 {
  760         struct cpu_search_res lr;
  761         struct tdq *tdq;
  762         int c, bload, l, load, total;
  763 
  764         total = 0;
  765         bload = INT_MIN;
  766         r->csr_cpu = -1;
  767 
  768         /* Loop through children CPU groups if there are any. */
  769         if (cg->cg_children > 0) {
  770                 for (c = cg->cg_children - 1; c >= 0; c--) {
  771                         load = cpu_search_highest(&cg->cg_child[c], s, &lr);
  772                         total += load;
  773                         if (lr.csr_cpu >= 0 && (load > bload ||
  774                             (load == bload && lr.csr_load > r->csr_load))) {
  775                                 bload = load;
  776                                 r->csr_cpu = lr.csr_cpu;
  777                                 r->csr_load = lr.csr_load;
  778                         }
  779                 }
  780                 return (total);
  781         }
  782 
  783         /* Loop through children CPUs otherwise. */
  784         for (c = cg->cg_last; c >= cg->cg_first; c--) {
  785                 if (!CPU_ISSET(c, &cg->cg_mask))
  786                         continue;
  787                 tdq = TDQ_CPU(c);
  788                 l = TDQ_LOAD(tdq);
  789                 load = l * 256;
  790                 total += load;
  791 
  792                 /*
  793                  * Check this CPU is acceptable.
  794                  */
  795                 if (l < s->cs_load || TDQ_TRANSFERABLE(tdq) < s->cs_trans ||
  796                     !CPU_ISSET(c, s->cs_mask))
  797                         continue;
  798 
  799                 load -= sched_random() % 256;
  800                 if (load > bload) {
  801                         bload = load;
  802                         r->csr_cpu = c;
  803                 }
  804         }
  805         r->csr_load = bload;
  806         return (total);
  807 }
  808 
  809 /*
  810  * Find the cpu with the least load via the least loaded path that has a
  811  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
  812  * acceptable.
  813  */
  814 static inline int
  815 sched_lowest(const struct cpu_group *cg, cpuset_t *mask, int pri, int maxload,
  816     int prefer, int running)
  817 {
  818         struct cpu_search s;
  819         struct cpu_search_res r;
  820 
  821         s.cs_prefer = prefer;
  822         s.cs_running = running;
  823         s.cs_mask = mask;
  824         s.cs_pri = pri;
  825         s.cs_load = maxload;
  826         cpu_search_lowest(cg, &s, &r);
  827         return (r.csr_cpu);
  828 }
  829 
  830 /*
  831  * Find the cpu with the highest load via the highest loaded path.
  832  */
  833 static inline int
  834 sched_highest(const struct cpu_group *cg, cpuset_t *mask, int minload,
  835     int mintrans)
  836 {
  837         struct cpu_search s;
  838         struct cpu_search_res r;
  839 
  840         s.cs_mask = mask;
  841         s.cs_load = minload;
  842         s.cs_trans = mintrans;
  843         cpu_search_highest(cg, &s, &r);
  844         return (r.csr_cpu);
  845 }
  846 
  847 static void
  848 sched_balance_group(struct cpu_group *cg)
  849 {
  850         struct tdq *tdq;
  851         struct thread *td;
  852         cpuset_t hmask, lmask;
  853         int high, low, anylow;
  854 
  855         CPU_FILL(&hmask);
  856         for (;;) {
  857                 high = sched_highest(cg, &hmask, 1, 0);
  858                 /* Stop if there is no more CPU with transferrable threads. */
  859                 if (high == -1)
  860                         break;
  861                 CPU_CLR(high, &hmask);
  862                 CPU_COPY(&hmask, &lmask);
  863                 /* Stop if there is no more CPU left for low. */
  864                 if (CPU_EMPTY(&lmask))
  865                         break;
  866                 tdq = TDQ_CPU(high);
  867                 if (TDQ_LOAD(tdq) == 1) {
  868                         /*
  869                          * There is only one running thread.  We can't move
  870                          * it from here, so tell it to pick new CPU by itself.
  871                          */
  872                         TDQ_LOCK(tdq);
  873                         td = tdq->tdq_curthread;
  874                         if (td->td_lock == TDQ_LOCKPTR(tdq) &&
  875                             (td->td_flags & TDF_IDLETD) == 0 &&
  876                             THREAD_CAN_MIGRATE(td)) {
  877                                 td->td_flags |= TDF_NEEDRESCHED | TDF_PICKCPU;
  878                                 if (high != curcpu)
  879                                         ipi_cpu(high, IPI_AST);
  880                         }
  881                         TDQ_UNLOCK(tdq);
  882                         break;
  883                 }
  884                 anylow = 1;
  885 nextlow:
  886                 if (TDQ_TRANSFERABLE(tdq) == 0)
  887                         continue;
  888                 low = sched_lowest(cg, &lmask, -1, TDQ_LOAD(tdq) - 1, high, 1);
  889                 /* Stop if we looked well and found no less loaded CPU. */
  890                 if (anylow && low == -1)
  891                         break;
  892                 /* Go to next high if we found no less loaded CPU. */
  893                 if (low == -1)
  894                         continue;
  895                 /* Transfer thread from high to low. */
  896                 if (sched_balance_pair(tdq, TDQ_CPU(low))) {
  897                         /* CPU that got thread can no longer be a donor. */
  898                         CPU_CLR(low, &hmask);
  899                 } else {
  900                         /*
  901                          * If failed, then there is no threads on high
  902                          * that can run on this low. Drop low from low
  903                          * mask and look for different one.
  904                          */
  905                         CPU_CLR(low, &lmask);
  906                         anylow = 0;
  907                         goto nextlow;
  908                 }
  909         }
  910 }
  911 
  912 static void
  913 sched_balance(void)
  914 {
  915         struct tdq *tdq;
  916 
  917         balance_ticks = max(balance_interval / 2, 1) +
  918             (sched_random() % balance_interval);
  919         tdq = TDQ_SELF();
  920         TDQ_UNLOCK(tdq);
  921         sched_balance_group(cpu_top);
  922         TDQ_LOCK(tdq);
  923 }
  924 
  925 /*
  926  * Lock two thread queues using their address to maintain lock order.
  927  */
  928 static void
  929 tdq_lock_pair(struct tdq *one, struct tdq *two)
  930 {
  931         if (one < two) {
  932                 TDQ_LOCK(one);
  933                 TDQ_LOCK_FLAGS(two, MTX_DUPOK);
  934         } else {
  935                 TDQ_LOCK(two);
  936                 TDQ_LOCK_FLAGS(one, MTX_DUPOK);
  937         }
  938 }
  939 
  940 /*
  941  * Unlock two thread queues.  Order is not important here.
  942  */
  943 static void
  944 tdq_unlock_pair(struct tdq *one, struct tdq *two)
  945 {
  946         TDQ_UNLOCK(one);
  947         TDQ_UNLOCK(two);
  948 }
  949 
  950 /*
  951  * Transfer load between two imbalanced thread queues.  Returns true if a thread
  952  * was moved between the queues, and false otherwise.
  953  */
  954 static bool
  955 sched_balance_pair(struct tdq *high, struct tdq *low)
  956 {
  957         int cpu, lowpri;
  958         bool ret;
  959 
  960         ret = false;
  961         tdq_lock_pair(high, low);
  962 
  963         /*
  964          * Transfer a thread from high to low.
  965          */
  966         if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load) {
  967                 lowpri = tdq_move(high, low);
  968                 if (lowpri != -1) {
  969                         /*
  970                          * In case the target isn't the current CPU notify it of
  971                          * the new load, possibly sending an IPI to force it to
  972                          * reschedule.  Otherwise maybe schedule a preemption.
  973                          */
  974                         cpu = TDQ_ID(low);
  975                         if (cpu != PCPU_GET(cpuid))
  976                                 tdq_notify(low, lowpri);
  977                         else
  978                                 sched_setpreempt(low->tdq_lowpri);
  979                         ret = true;
  980                 }
  981         }
  982         tdq_unlock_pair(high, low);
  983         return (ret);
  984 }
  985 
  986 /*
  987  * Move a thread from one thread queue to another.  Returns -1 if the source
  988  * queue was empty, else returns the maximum priority of all threads in
  989  * the destination queue prior to the addition of the new thread.  In the latter
  990  * case, this priority can be used to determine whether an IPI needs to be
  991  * delivered.
  992  */
  993 static int
  994 tdq_move(struct tdq *from, struct tdq *to)
  995 {
  996         struct thread *td;
  997         int cpu;
  998 
  999         TDQ_LOCK_ASSERT(from, MA_OWNED);
 1000         TDQ_LOCK_ASSERT(to, MA_OWNED);
 1001 
 1002         cpu = TDQ_ID(to);
 1003         td = tdq_steal(from, cpu);
 1004         if (td == NULL)
 1005                 return (-1);
 1006 
 1007         /*
 1008          * Although the run queue is locked the thread may be
 1009          * blocked.  We can not set the lock until it is unblocked.
 1010          */
 1011         thread_lock_block_wait(td);
 1012         sched_rem(td);
 1013         THREAD_LOCKPTR_ASSERT(td, TDQ_LOCKPTR(from));
 1014         td->td_lock = TDQ_LOCKPTR(to);
 1015         td_get_sched(td)->ts_cpu = cpu;
 1016         return (tdq_add(to, td, SRQ_YIELDING));
 1017 }
 1018 
 1019 /*
 1020  * This tdq has idled.  Try to steal a thread from another cpu and switch
 1021  * to it.
 1022  */
 1023 static int
 1024 tdq_idled(struct tdq *tdq)
 1025 {
 1026         struct cpu_group *cg, *parent;
 1027         struct tdq *steal;
 1028         cpuset_t mask;
 1029         int cpu, switchcnt, goup;
 1030 
 1031         if (smp_started == 0 || steal_idle == 0 || tdq->tdq_cg == NULL)
 1032                 return (1);
 1033         CPU_FILL(&mask);
 1034         CPU_CLR(PCPU_GET(cpuid), &mask);
 1035 restart:
 1036         switchcnt = TDQ_SWITCHCNT(tdq);
 1037         for (cg = tdq->tdq_cg, goup = 0; ; ) {
 1038                 cpu = sched_highest(cg, &mask, steal_thresh, 1);
 1039                 /*
 1040                  * We were assigned a thread but not preempted.  Returning
 1041                  * 0 here will cause our caller to switch to it.
 1042                  */
 1043                 if (TDQ_LOAD(tdq))
 1044                         return (0);
 1045 
 1046                 /*
 1047                  * We found no CPU to steal from in this group.  Escalate to
 1048                  * the parent and repeat.  But if parent has only two children
 1049                  * groups we can avoid searching this group again by searching
 1050                  * the other one specifically and then escalating two levels.
 1051                  */
 1052                 if (cpu == -1) {
 1053                         if (goup) {
 1054                                 cg = cg->cg_parent;
 1055                                 goup = 0;
 1056                         }
 1057                         parent = cg->cg_parent;
 1058                         if (parent == NULL)
 1059                                 return (1);
 1060                         if (parent->cg_children == 2) {
 1061                                 if (cg == &parent->cg_child[0])
 1062                                         cg = &parent->cg_child[1];
 1063                                 else
 1064                                         cg = &parent->cg_child[0];
 1065                                 goup = 1;
 1066                         } else
 1067                                 cg = parent;
 1068                         continue;
 1069                 }
 1070                 steal = TDQ_CPU(cpu);
 1071                 /*
 1072                  * The data returned by sched_highest() is stale and
 1073                  * the chosen CPU no longer has an eligible thread.
 1074                  *
 1075                  * Testing this ahead of tdq_lock_pair() only catches
 1076                  * this situation about 20% of the time on an 8 core
 1077                  * 16 thread Ryzen 7, but it still helps performance.
 1078                  */
 1079                 if (TDQ_LOAD(steal) < steal_thresh ||
 1080                     TDQ_TRANSFERABLE(steal) == 0)
 1081                         goto restart;
 1082                 /*
 1083                  * Try to lock both queues. If we are assigned a thread while
 1084                  * waited for the lock, switch to it now instead of stealing.
 1085                  * If we can't get the lock, then somebody likely got there
 1086                  * first so continue searching.
 1087                  */
 1088                 TDQ_LOCK(tdq);
 1089                 if (tdq->tdq_load > 0) {
 1090                         mi_switch(SW_VOL | SWT_IDLE);
 1091                         return (0);
 1092                 }
 1093                 if (TDQ_TRYLOCK_FLAGS(steal, MTX_DUPOK) == 0) {
 1094                         TDQ_UNLOCK(tdq);
 1095                         CPU_CLR(cpu, &mask);
 1096                         continue;
 1097                 }
 1098                 /*
 1099                  * The data returned by sched_highest() is stale and
 1100                  * the chosen CPU no longer has an eligible thread, or
 1101                  * we were preempted and the CPU loading info may be out
 1102                  * of date.  The latter is rare.  In either case restart
 1103                  * the search.
 1104                  */
 1105                 if (TDQ_LOAD(steal) < steal_thresh ||
 1106                     TDQ_TRANSFERABLE(steal) == 0 ||
 1107                     switchcnt != TDQ_SWITCHCNT(tdq)) {
 1108                         tdq_unlock_pair(tdq, steal);
 1109                         goto restart;
 1110                 }
 1111                 /*
 1112                  * Steal the thread and switch to it.
 1113                  */
 1114                 if (tdq_move(steal, tdq) != -1)
 1115                         break;
 1116                 /*
 1117                  * We failed to acquire a thread even though it looked
 1118                  * like one was available.  This could be due to affinity
 1119                  * restrictions or for other reasons.  Loop again after
 1120                  * removing this CPU from the set.  The restart logic
 1121                  * above does not restore this CPU to the set due to the
 1122                  * likelyhood of failing here again.
 1123                  */
 1124                 CPU_CLR(cpu, &mask);
 1125                 tdq_unlock_pair(tdq, steal);
 1126         }
 1127         TDQ_UNLOCK(steal);
 1128         mi_switch(SW_VOL | SWT_IDLE);
 1129         return (0);
 1130 }
 1131 
 1132 /*
 1133  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
 1134  *
 1135  * "lowpri" is the minimum scheduling priority among all threads on
 1136  * the queue prior to the addition of the new thread.
 1137  */
 1138 static void
 1139 tdq_notify(struct tdq *tdq, int lowpri)
 1140 {
 1141         int cpu;
 1142 
 1143         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1144         KASSERT(tdq->tdq_lowpri <= lowpri,
 1145             ("tdq_notify: lowpri %d > tdq_lowpri %d", lowpri, tdq->tdq_lowpri));
 1146 
 1147         if (tdq->tdq_owepreempt)
 1148                 return;
 1149 
 1150         /*
 1151          * Check to see if the newly added thread should preempt the one
 1152          * currently running.
 1153          */
 1154         if (!sched_shouldpreempt(tdq->tdq_lowpri, lowpri, 1))
 1155                 return;
 1156 
 1157         /*
 1158          * Make sure that our caller's earlier update to tdq_load is
 1159          * globally visible before we read tdq_cpu_idle.  Idle thread
 1160          * accesses both of them without locks, and the order is important.
 1161          */
 1162         atomic_thread_fence_seq_cst();
 1163 
 1164         /*
 1165          * Try to figure out if we can signal the idle thread instead of sending
 1166          * an IPI.  This check is racy; at worst, we will deliever an IPI
 1167          * unnecessarily.
 1168          */
 1169         cpu = TDQ_ID(tdq);
 1170         if (TD_IS_IDLETHREAD(tdq->tdq_curthread) &&
 1171             (atomic_load_int(&tdq->tdq_cpu_idle) == 0 || cpu_idle_wakeup(cpu)))
 1172                 return;
 1173 
 1174         /*
 1175          * The run queues have been updated, so any switch on the remote CPU
 1176          * will satisfy the preemption request.
 1177          */
 1178         tdq->tdq_owepreempt = 1;
 1179         ipi_cpu(cpu, IPI_PREEMPT);
 1180 }
 1181 
 1182 /*
 1183  * Steals load from a timeshare queue.  Honors the rotating queue head
 1184  * index.
 1185  */
 1186 static struct thread *
 1187 runq_steal_from(struct runq *rq, int cpu, u_char start)
 1188 {
 1189         struct rqbits *rqb;
 1190         struct rqhead *rqh;
 1191         struct thread *td, *first;
 1192         int bit;
 1193         int i;
 1194 
 1195         rqb = &rq->rq_status;
 1196         bit = start & (RQB_BPW -1);
 1197         first = NULL;
 1198 again:
 1199         for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
 1200                 if (rqb->rqb_bits[i] == 0)
 1201                         continue;
 1202                 if (bit == 0)
 1203                         bit = RQB_FFS(rqb->rqb_bits[i]);
 1204                 for (; bit < RQB_BPW; bit++) {
 1205                         if ((rqb->rqb_bits[i] & (1ul << bit)) == 0)
 1206                                 continue;
 1207                         rqh = &rq->rq_queues[bit + (i << RQB_L2BPW)];
 1208                         TAILQ_FOREACH(td, rqh, td_runq) {
 1209                                 if (first) {
 1210                                         if (THREAD_CAN_MIGRATE(td) &&
 1211                                             THREAD_CAN_SCHED(td, cpu))
 1212                                                 return (td);
 1213                                 } else
 1214                                         first = td;
 1215                         }
 1216                 }
 1217         }
 1218         if (start != 0) {
 1219                 start = 0;
 1220                 goto again;
 1221         }
 1222 
 1223         if (first && THREAD_CAN_MIGRATE(first) &&
 1224             THREAD_CAN_SCHED(first, cpu))
 1225                 return (first);
 1226         return (NULL);
 1227 }
 1228 
 1229 /*
 1230  * Steals load from a standard linear queue.
 1231  */
 1232 static struct thread *
 1233 runq_steal(struct runq *rq, int cpu)
 1234 {
 1235         struct rqhead *rqh;
 1236         struct rqbits *rqb;
 1237         struct thread *td;
 1238         int word;
 1239         int bit;
 1240 
 1241         rqb = &rq->rq_status;
 1242         for (word = 0; word < RQB_LEN; word++) {
 1243                 if (rqb->rqb_bits[word] == 0)
 1244                         continue;
 1245                 for (bit = 0; bit < RQB_BPW; bit++) {
 1246                         if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
 1247                                 continue;
 1248                         rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
 1249                         TAILQ_FOREACH(td, rqh, td_runq)
 1250                                 if (THREAD_CAN_MIGRATE(td) &&
 1251                                     THREAD_CAN_SCHED(td, cpu))
 1252                                         return (td);
 1253                 }
 1254         }
 1255         return (NULL);
 1256 }
 1257 
 1258 /*
 1259  * Attempt to steal a thread in priority order from a thread queue.
 1260  */
 1261 static struct thread *
 1262 tdq_steal(struct tdq *tdq, int cpu)
 1263 {
 1264         struct thread *td;
 1265 
 1266         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1267         if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
 1268                 return (td);
 1269         if ((td = runq_steal_from(&tdq->tdq_timeshare,
 1270             cpu, tdq->tdq_ridx)) != NULL)
 1271                 return (td);
 1272         return (runq_steal(&tdq->tdq_idle, cpu));
 1273 }
 1274 
 1275 /*
 1276  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
 1277  * current lock and returns with the assigned queue locked.
 1278  */
 1279 static inline struct tdq *
 1280 sched_setcpu(struct thread *td, int cpu, int flags)
 1281 {
 1282 
 1283         struct tdq *tdq;
 1284         struct mtx *mtx;
 1285 
 1286         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1287         tdq = TDQ_CPU(cpu);
 1288         td_get_sched(td)->ts_cpu = cpu;
 1289         /*
 1290          * If the lock matches just return the queue.
 1291          */
 1292         if (td->td_lock == TDQ_LOCKPTR(tdq)) {
 1293                 KASSERT((flags & SRQ_HOLD) == 0,
 1294                     ("sched_setcpu: Invalid lock for SRQ_HOLD"));
 1295                 return (tdq);
 1296         }
 1297 
 1298         /*
 1299          * The hard case, migration, we need to block the thread first to
 1300          * prevent order reversals with other cpus locks.
 1301          */
 1302         spinlock_enter();
 1303         mtx = thread_lock_block(td);
 1304         if ((flags & SRQ_HOLD) == 0)
 1305                 mtx_unlock_spin(mtx);
 1306         TDQ_LOCK(tdq);
 1307         thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
 1308         spinlock_exit();
 1309         return (tdq);
 1310 }
 1311 
 1312 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
 1313 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
 1314 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
 1315 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
 1316 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
 1317 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
 1318 
 1319 static int
 1320 sched_pickcpu(struct thread *td, int flags)
 1321 {
 1322         struct cpu_group *cg, *ccg;
 1323         struct td_sched *ts;
 1324         struct tdq *tdq;
 1325         cpuset_t *mask;
 1326         int cpu, pri, r, self, intr;
 1327 
 1328         self = PCPU_GET(cpuid);
 1329         ts = td_get_sched(td);
 1330         KASSERT(!CPU_ABSENT(ts->ts_cpu), ("sched_pickcpu: Start scheduler on "
 1331             "absent CPU %d for thread %s.", ts->ts_cpu, td->td_name));
 1332         if (smp_started == 0)
 1333                 return (self);
 1334         /*
 1335          * Don't migrate a running thread from sched_switch().
 1336          */
 1337         if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
 1338                 return (ts->ts_cpu);
 1339         /*
 1340          * Prefer to run interrupt threads on the processors that generate
 1341          * the interrupt.
 1342          */
 1343         if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
 1344             curthread->td_intr_nesting_level) {
 1345                 tdq = TDQ_SELF();
 1346                 if (tdq->tdq_lowpri >= PRI_MIN_IDLE) {
 1347                         SCHED_STAT_INC(pickcpu_idle_affinity);
 1348                         return (self);
 1349                 }
 1350                 ts->ts_cpu = self;
 1351                 intr = 1;
 1352                 cg = tdq->tdq_cg;
 1353                 goto llc;
 1354         } else {
 1355                 intr = 0;
 1356                 tdq = TDQ_CPU(ts->ts_cpu);
 1357                 cg = tdq->tdq_cg;
 1358         }
 1359         /*
 1360          * If the thread can run on the last cpu and the affinity has not
 1361          * expired and it is idle, run it there.
 1362          */
 1363         if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
 1364             atomic_load_char(&tdq->tdq_lowpri) >= PRI_MIN_IDLE &&
 1365             SCHED_AFFINITY(ts, CG_SHARE_L2)) {
 1366                 if (cg->cg_flags & CG_FLAG_THREAD) {
 1367                         /* Check all SMT threads for being idle. */
 1368                         for (cpu = cg->cg_first; cpu <= cg->cg_last; cpu++) {
 1369                                 pri =
 1370                                     atomic_load_char(&TDQ_CPU(cpu)->tdq_lowpri);
 1371                                 if (CPU_ISSET(cpu, &cg->cg_mask) &&
 1372                                     pri < PRI_MIN_IDLE)
 1373                                         break;
 1374                         }
 1375                         if (cpu > cg->cg_last) {
 1376                                 SCHED_STAT_INC(pickcpu_idle_affinity);
 1377                                 return (ts->ts_cpu);
 1378                         }
 1379                 } else {
 1380                         SCHED_STAT_INC(pickcpu_idle_affinity);
 1381                         return (ts->ts_cpu);
 1382                 }
 1383         }
 1384 llc:
 1385         /*
 1386          * Search for the last level cache CPU group in the tree.
 1387          * Skip SMT, identical groups and caches with expired affinity.
 1388          * Interrupt threads affinity is explicit and never expires.
 1389          */
 1390         for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
 1391                 if (cg->cg_flags & CG_FLAG_THREAD)
 1392                         continue;
 1393                 if (cg->cg_children == 1 || cg->cg_count == 1)
 1394                         continue;
 1395                 if (cg->cg_level == CG_SHARE_NONE ||
 1396                     (!intr && !SCHED_AFFINITY(ts, cg->cg_level)))
 1397                         continue;
 1398                 ccg = cg;
 1399         }
 1400         /* Found LLC shared by all CPUs, so do a global search. */
 1401         if (ccg == cpu_top)
 1402                 ccg = NULL;
 1403         cpu = -1;
 1404         mask = &td->td_cpuset->cs_mask;
 1405         pri = td->td_priority;
 1406         r = TD_IS_RUNNING(td);
 1407         /*
 1408          * Try hard to keep interrupts within found LLC.  Search the LLC for
 1409          * the least loaded CPU we can run now.  For NUMA systems it should
 1410          * be within target domain, and it also reduces scheduling overhead.
 1411          */
 1412         if (ccg != NULL && intr) {
 1413                 cpu = sched_lowest(ccg, mask, pri, INT_MAX, ts->ts_cpu, r);
 1414                 if (cpu >= 0)
 1415                         SCHED_STAT_INC(pickcpu_intrbind);
 1416         } else
 1417         /* Search the LLC for the least loaded idle CPU we can run now. */
 1418         if (ccg != NULL) {
 1419                 cpu = sched_lowest(ccg, mask, max(pri, PRI_MAX_TIMESHARE),
 1420                     INT_MAX, ts->ts_cpu, r);
 1421                 if (cpu >= 0)
 1422                         SCHED_STAT_INC(pickcpu_affinity);
 1423         }
 1424         /* Search globally for the least loaded CPU we can run now. */
 1425         if (cpu < 0) {
 1426                 cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu, r);
 1427                 if (cpu >= 0)
 1428                         SCHED_STAT_INC(pickcpu_lowest);
 1429         }
 1430         /* Search globally for the least loaded CPU. */
 1431         if (cpu < 0) {
 1432                 cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu, r);
 1433                 if (cpu >= 0)
 1434                         SCHED_STAT_INC(pickcpu_lowest);
 1435         }
 1436         KASSERT(cpu >= 0, ("sched_pickcpu: Failed to find a cpu."));
 1437         KASSERT(!CPU_ABSENT(cpu), ("sched_pickcpu: Picked absent CPU %d.", cpu));
 1438         /*
 1439          * Compare the lowest loaded cpu to current cpu.
 1440          */
 1441         tdq = TDQ_CPU(cpu);
 1442         if (THREAD_CAN_SCHED(td, self) && TDQ_SELF()->tdq_lowpri > pri &&
 1443             atomic_load_char(&tdq->tdq_lowpri) < PRI_MIN_IDLE &&
 1444             TDQ_LOAD(TDQ_SELF()) <= TDQ_LOAD(tdq) + 1) {
 1445                 SCHED_STAT_INC(pickcpu_local);
 1446                 cpu = self;
 1447         }
 1448         if (cpu != ts->ts_cpu)
 1449                 SCHED_STAT_INC(pickcpu_migration);
 1450         return (cpu);
 1451 }
 1452 #endif
 1453 
 1454 /*
 1455  * Pick the highest priority task we have and return it.
 1456  */
 1457 static struct thread *
 1458 tdq_choose(struct tdq *tdq)
 1459 {
 1460         struct thread *td;
 1461 
 1462         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1463         td = runq_choose(&tdq->tdq_realtime);
 1464         if (td != NULL)
 1465                 return (td);
 1466         td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
 1467         if (td != NULL) {
 1468                 KASSERT(td->td_priority >= PRI_MIN_BATCH,
 1469                     ("tdq_choose: Invalid priority on timeshare queue %d",
 1470                     td->td_priority));
 1471                 return (td);
 1472         }
 1473         td = runq_choose(&tdq->tdq_idle);
 1474         if (td != NULL) {
 1475                 KASSERT(td->td_priority >= PRI_MIN_IDLE,
 1476                     ("tdq_choose: Invalid priority on idle queue %d",
 1477                     td->td_priority));
 1478                 return (td);
 1479         }
 1480 
 1481         return (NULL);
 1482 }
 1483 
 1484 /*
 1485  * Initialize a thread queue.
 1486  */
 1487 static void
 1488 tdq_setup(struct tdq *tdq, int id)
 1489 {
 1490 
 1491         if (bootverbose)
 1492                 printf("ULE: setup cpu %d\n", id);
 1493         runq_init(&tdq->tdq_realtime);
 1494         runq_init(&tdq->tdq_timeshare);
 1495         runq_init(&tdq->tdq_idle);
 1496         tdq->tdq_id = id;
 1497         snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
 1498             "sched lock %d", (int)TDQ_ID(tdq));
 1499         mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock", MTX_SPIN);
 1500 #ifdef KTR
 1501         snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
 1502             "CPU %d load", (int)TDQ_ID(tdq));
 1503 #endif
 1504 }
 1505 
 1506 #ifdef SMP
 1507 static void
 1508 sched_setup_smp(void)
 1509 {
 1510         struct tdq *tdq;
 1511         int i;
 1512 
 1513         cpu_top = smp_topo();
 1514         CPU_FOREACH(i) {
 1515                 tdq = DPCPU_ID_PTR(i, tdq);
 1516                 tdq_setup(tdq, i);
 1517                 tdq->tdq_cg = smp_topo_find(cpu_top, i);
 1518                 if (tdq->tdq_cg == NULL)
 1519                         panic("Can't find cpu group for %d\n", i);
 1520                 DPCPU_ID_SET(i, randomval, i * 69069 + 5);
 1521         }
 1522         PCPU_SET(sched, DPCPU_PTR(tdq));
 1523         balance_tdq = TDQ_SELF();
 1524 }
 1525 #endif
 1526 
 1527 /*
 1528  * Setup the thread queues and initialize the topology based on MD
 1529  * information.
 1530  */
 1531 static void
 1532 sched_setup(void *dummy)
 1533 {
 1534         struct tdq *tdq;
 1535 
 1536 #ifdef SMP
 1537         sched_setup_smp();
 1538 #else
 1539         tdq_setup(TDQ_SELF(), 0);
 1540 #endif
 1541         tdq = TDQ_SELF();
 1542 
 1543         /* Add thread0's load since it's running. */
 1544         TDQ_LOCK(tdq);
 1545         thread0.td_lock = TDQ_LOCKPTR(tdq);
 1546         tdq_load_add(tdq, &thread0);
 1547         tdq->tdq_curthread = &thread0;
 1548         tdq->tdq_lowpri = thread0.td_priority;
 1549         TDQ_UNLOCK(tdq);
 1550 }
 1551 
 1552 /*
 1553  * This routine determines time constants after stathz and hz are setup.
 1554  */
 1555 /* ARGSUSED */
 1556 static void
 1557 sched_initticks(void *dummy)
 1558 {
 1559         int incr;
 1560 
 1561         realstathz = stathz ? stathz : hz;
 1562         sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
 1563         sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
 1564         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 1565             realstathz);
 1566 
 1567         /*
 1568          * tickincr is shifted out by 10 to avoid rounding errors due to
 1569          * hz not being evenly divisible by stathz on all platforms.
 1570          */
 1571         incr = (hz << SCHED_TICK_SHIFT) / realstathz;
 1572         /*
 1573          * This does not work for values of stathz that are more than
 1574          * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
 1575          */
 1576         if (incr == 0)
 1577                 incr = 1;
 1578         tickincr = incr;
 1579 #ifdef SMP
 1580         /*
 1581          * Set the default balance interval now that we know
 1582          * what realstathz is.
 1583          */
 1584         balance_interval = realstathz;
 1585         balance_ticks = balance_interval;
 1586         affinity = SCHED_AFFINITY_DEFAULT;
 1587 #endif
 1588         if (sched_idlespinthresh < 0)
 1589                 sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
 1590 }
 1591 
 1592 /*
 1593  * This is the core of the interactivity algorithm.  Determines a score based
 1594  * on past behavior.  It is the ratio of sleep time to run time scaled to
 1595  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
 1596  * differs from the cpu usage because it does not account for time spent
 1597  * waiting on a run-queue.  Would be prettier if we had floating point.
 1598  *
 1599  * When a thread's sleep time is greater than its run time the
 1600  * calculation is:
 1601  *
 1602  *                           scaling factor 
 1603  * interactivity score =  ---------------------
 1604  *                        sleep time / run time
 1605  *
 1606  *
 1607  * When a thread's run time is greater than its sleep time the
 1608  * calculation is:
 1609  *
 1610  *                           scaling factor 
 1611  * interactivity score =  ---------------------    + scaling factor
 1612  *                        run time / sleep time
 1613  */
 1614 static int
 1615 sched_interact_score(struct thread *td)
 1616 {
 1617         struct td_sched *ts;
 1618         int div;
 1619 
 1620         ts = td_get_sched(td);
 1621         /*
 1622          * The score is only needed if this is likely to be an interactive
 1623          * task.  Don't go through the expense of computing it if there's
 1624          * no chance.
 1625          */
 1626         if (sched_interact <= SCHED_INTERACT_HALF &&
 1627                 ts->ts_runtime >= ts->ts_slptime)
 1628                         return (SCHED_INTERACT_HALF);
 1629 
 1630         if (ts->ts_runtime > ts->ts_slptime) {
 1631                 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
 1632                 return (SCHED_INTERACT_HALF +
 1633                     (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
 1634         }
 1635         if (ts->ts_slptime > ts->ts_runtime) {
 1636                 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
 1637                 return (ts->ts_runtime / div);
 1638         }
 1639         /* runtime == slptime */
 1640         if (ts->ts_runtime)
 1641                 return (SCHED_INTERACT_HALF);
 1642 
 1643         /*
 1644          * This can happen if slptime and runtime are 0.
 1645          */
 1646         return (0);
 1647 
 1648 }
 1649 
 1650 /*
 1651  * Scale the scheduling priority according to the "interactivity" of this
 1652  * process.
 1653  */
 1654 static void
 1655 sched_priority(struct thread *td)
 1656 {
 1657         u_int pri, score;
 1658 
 1659         if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 1660                 return;
 1661         /*
 1662          * If the score is interactive we place the thread in the realtime
 1663          * queue with a priority that is less than kernel and interrupt
 1664          * priorities.  These threads are not subject to nice restrictions.
 1665          *
 1666          * Scores greater than this are placed on the normal timeshare queue
 1667          * where the priority is partially decided by the most recent cpu
 1668          * utilization and the rest is decided by nice value.
 1669          *
 1670          * The nice value of the process has a linear effect on the calculated
 1671          * score.  Negative nice values make it easier for a thread to be
 1672          * considered interactive.
 1673          */
 1674         score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
 1675         if (score < sched_interact) {
 1676                 pri = PRI_MIN_INTERACT;
 1677                 pri += (PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) * score /
 1678                     sched_interact;
 1679                 KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
 1680                     ("sched_priority: invalid interactive priority %u score %u",
 1681                     pri, score));
 1682         } else {
 1683                 pri = SCHED_PRI_MIN;
 1684                 if (td_get_sched(td)->ts_ticks)
 1685                         pri += min(SCHED_PRI_TICKS(td_get_sched(td)),
 1686                             SCHED_PRI_RANGE - 1);
 1687                 pri += SCHED_PRI_NICE(td->td_proc->p_nice);
 1688                 KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
 1689                     ("sched_priority: invalid priority %u: nice %d, "
 1690                     "ticks %d ftick %d ltick %d tick pri %d",
 1691                     pri, td->td_proc->p_nice, td_get_sched(td)->ts_ticks,
 1692                     td_get_sched(td)->ts_ftick, td_get_sched(td)->ts_ltick,
 1693                     SCHED_PRI_TICKS(td_get_sched(td))));
 1694         }
 1695         sched_user_prio(td, pri);
 1696 
 1697         return;
 1698 }
 1699 
 1700 /*
 1701  * This routine enforces a maximum limit on the amount of scheduling history
 1702  * kept.  It is called after either the slptime or runtime is adjusted.  This
 1703  * function is ugly due to integer math.
 1704  */
 1705 static void
 1706 sched_interact_update(struct thread *td)
 1707 {
 1708         struct td_sched *ts;
 1709         u_int sum;
 1710 
 1711         ts = td_get_sched(td);
 1712         sum = ts->ts_runtime + ts->ts_slptime;
 1713         if (sum < SCHED_SLP_RUN_MAX)
 1714                 return;
 1715         /*
 1716          * This only happens from two places:
 1717          * 1) We have added an unusual amount of run time from fork_exit.
 1718          * 2) We have added an unusual amount of sleep time from sched_sleep().
 1719          */
 1720         if (sum > SCHED_SLP_RUN_MAX * 2) {
 1721                 if (ts->ts_runtime > ts->ts_slptime) {
 1722                         ts->ts_runtime = SCHED_SLP_RUN_MAX;
 1723                         ts->ts_slptime = 1;
 1724                 } else {
 1725                         ts->ts_slptime = SCHED_SLP_RUN_MAX;
 1726                         ts->ts_runtime = 1;
 1727                 }
 1728                 return;
 1729         }
 1730         /*
 1731          * If we have exceeded by more than 1/5th then the algorithm below
 1732          * will not bring us back into range.  Dividing by two here forces
 1733          * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
 1734          */
 1735         if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
 1736                 ts->ts_runtime /= 2;
 1737                 ts->ts_slptime /= 2;
 1738                 return;
 1739         }
 1740         ts->ts_runtime = (ts->ts_runtime / 5) * 4;
 1741         ts->ts_slptime = (ts->ts_slptime / 5) * 4;
 1742 }
 1743 
 1744 /*
 1745  * Scale back the interactivity history when a child thread is created.  The
 1746  * history is inherited from the parent but the thread may behave totally
 1747  * differently.  For example, a shell spawning a compiler process.  We want
 1748  * to learn that the compiler is behaving badly very quickly.
 1749  */
 1750 static void
 1751 sched_interact_fork(struct thread *td)
 1752 {
 1753         struct td_sched *ts;
 1754         int ratio;
 1755         int sum;
 1756 
 1757         ts = td_get_sched(td);
 1758         sum = ts->ts_runtime + ts->ts_slptime;
 1759         if (sum > SCHED_SLP_RUN_FORK) {
 1760                 ratio = sum / SCHED_SLP_RUN_FORK;
 1761                 ts->ts_runtime /= ratio;
 1762                 ts->ts_slptime /= ratio;
 1763         }
 1764 }
 1765 
 1766 /*
 1767  * Called from proc0_init() to setup the scheduler fields.
 1768  */
 1769 void
 1770 schedinit(void)
 1771 {
 1772         struct td_sched *ts0;
 1773 
 1774         /*
 1775          * Set up the scheduler specific parts of thread0.
 1776          */
 1777         ts0 = td_get_sched(&thread0);
 1778         ts0->ts_ltick = ticks;
 1779         ts0->ts_ftick = ticks;
 1780         ts0->ts_slice = 0;
 1781         ts0->ts_cpu = curcpu;   /* set valid CPU number */
 1782 }
 1783 
 1784 /*
 1785  * schedinit_ap() is needed prior to calling sched_throw(NULL) to ensure that
 1786  * the pcpu requirements are met for any calls in the period between curthread
 1787  * initialization and sched_throw().  One can safely add threads to the queue
 1788  * before sched_throw(), for instance, as long as the thread lock is setup
 1789  * correctly.
 1790  *
 1791  * TDQ_SELF() relies on the below sched pcpu setting; it may be used only
 1792  * after schedinit_ap().
 1793  */
 1794 void
 1795 schedinit_ap(void)
 1796 {
 1797 
 1798 #ifdef SMP
 1799         PCPU_SET(sched, DPCPU_PTR(tdq));
 1800 #endif
 1801         PCPU_GET(idlethread)->td_lock = TDQ_LOCKPTR(TDQ_SELF());
 1802 }
 1803 
 1804 /*
 1805  * This is only somewhat accurate since given many processes of the same
 1806  * priority they will switch when their slices run out, which will be
 1807  * at most sched_slice stathz ticks.
 1808  */
 1809 int
 1810 sched_rr_interval(void)
 1811 {
 1812 
 1813         /* Convert sched_slice from stathz to hz. */
 1814         return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
 1815 }
 1816 
 1817 /*
 1818  * Update the percent cpu tracking information when it is requested or
 1819  * the total history exceeds the maximum.  We keep a sliding history of
 1820  * tick counts that slowly decays.  This is less precise than the 4BSD
 1821  * mechanism since it happens with less regular and frequent events.
 1822  */
 1823 static void
 1824 sched_pctcpu_update(struct td_sched *ts, int run)
 1825 {
 1826         int t = ticks;
 1827 
 1828         /*
 1829          * The signed difference may be negative if the thread hasn't run for
 1830          * over half of the ticks rollover period.
 1831          */
 1832         if ((u_int)(t - ts->ts_ltick) >= SCHED_TICK_TARG) {
 1833                 ts->ts_ticks = 0;
 1834                 ts->ts_ftick = t - SCHED_TICK_TARG;
 1835         } else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
 1836                 ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
 1837                     (ts->ts_ltick - (t - SCHED_TICK_TARG));
 1838                 ts->ts_ftick = t - SCHED_TICK_TARG;
 1839         }
 1840         if (run)
 1841                 ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
 1842         ts->ts_ltick = t;
 1843 }
 1844 
 1845 /*
 1846  * Adjust the priority of a thread.  Move it to the appropriate run-queue
 1847  * if necessary.  This is the back-end for several priority related
 1848  * functions.
 1849  */
 1850 static void
 1851 sched_thread_priority(struct thread *td, u_char prio)
 1852 {
 1853         struct td_sched *ts;
 1854         struct tdq *tdq;
 1855         int oldpri;
 1856 
 1857         KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
 1858             "prio:%d", td->td_priority, "new prio:%d", prio,
 1859             KTR_ATTR_LINKED, sched_tdname(curthread));
 1860         SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
 1861         if (td != curthread && prio < td->td_priority) {
 1862                 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
 1863                     "lend prio", "prio:%d", td->td_priority, "new prio:%d",
 1864                     prio, KTR_ATTR_LINKED, sched_tdname(td));
 1865                 SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio, 
 1866                     curthread);
 1867         } 
 1868         ts = td_get_sched(td);
 1869         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1870         if (td->td_priority == prio)
 1871                 return;
 1872         /*
 1873          * If the priority has been elevated due to priority
 1874          * propagation, we may have to move ourselves to a new
 1875          * queue.  This could be optimized to not re-add in some
 1876          * cases.
 1877          */
 1878         if (TD_ON_RUNQ(td) && prio < td->td_priority) {
 1879                 sched_rem(td);
 1880                 td->td_priority = prio;
 1881                 sched_add(td, SRQ_BORROWING | SRQ_HOLDTD);
 1882                 return;
 1883         }
 1884         /*
 1885          * If the thread is currently running we may have to adjust the lowpri
 1886          * information so other cpus are aware of our current priority.
 1887          */
 1888         if (TD_IS_RUNNING(td)) {
 1889                 tdq = TDQ_CPU(ts->ts_cpu);
 1890                 oldpri = td->td_priority;
 1891                 td->td_priority = prio;
 1892                 if (prio < tdq->tdq_lowpri)
 1893                         tdq->tdq_lowpri = prio;
 1894                 else if (tdq->tdq_lowpri == oldpri)
 1895                         tdq_setlowpri(tdq, td);
 1896                 return;
 1897         }
 1898         td->td_priority = prio;
 1899 }
 1900 
 1901 /*
 1902  * Update a thread's priority when it is lent another thread's
 1903  * priority.
 1904  */
 1905 void
 1906 sched_lend_prio(struct thread *td, u_char prio)
 1907 {
 1908 
 1909         td->td_flags |= TDF_BORROWING;
 1910         sched_thread_priority(td, prio);
 1911 }
 1912 
 1913 /*
 1914  * Restore a thread's priority when priority propagation is
 1915  * over.  The prio argument is the minimum priority the thread
 1916  * needs to have to satisfy other possible priority lending
 1917  * requests.  If the thread's regular priority is less
 1918  * important than prio, the thread will keep a priority boost
 1919  * of prio.
 1920  */
 1921 void
 1922 sched_unlend_prio(struct thread *td, u_char prio)
 1923 {
 1924         u_char base_pri;
 1925 
 1926         if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
 1927             td->td_base_pri <= PRI_MAX_TIMESHARE)
 1928                 base_pri = td->td_user_pri;
 1929         else
 1930                 base_pri = td->td_base_pri;
 1931         if (prio >= base_pri) {
 1932                 td->td_flags &= ~TDF_BORROWING;
 1933                 sched_thread_priority(td, base_pri);
 1934         } else
 1935                 sched_lend_prio(td, prio);
 1936 }
 1937 
 1938 /*
 1939  * Standard entry for setting the priority to an absolute value.
 1940  */
 1941 void
 1942 sched_prio(struct thread *td, u_char prio)
 1943 {
 1944         u_char oldprio;
 1945 
 1946         /* First, update the base priority. */
 1947         td->td_base_pri = prio;
 1948 
 1949         /*
 1950          * If the thread is borrowing another thread's priority, don't
 1951          * ever lower the priority.
 1952          */
 1953         if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
 1954                 return;
 1955 
 1956         /* Change the real priority. */
 1957         oldprio = td->td_priority;
 1958         sched_thread_priority(td, prio);
 1959 
 1960         /*
 1961          * If the thread is on a turnstile, then let the turnstile update
 1962          * its state.
 1963          */
 1964         if (TD_ON_LOCK(td) && oldprio != prio)
 1965                 turnstile_adjust(td, oldprio);
 1966 }
 1967 
 1968 /*
 1969  * Set the base user priority, does not effect current running priority.
 1970  */
 1971 void
 1972 sched_user_prio(struct thread *td, u_char prio)
 1973 {
 1974 
 1975         td->td_base_user_pri = prio;
 1976         if (td->td_lend_user_pri <= prio)
 1977                 return;
 1978         td->td_user_pri = prio;
 1979 }
 1980 
 1981 void
 1982 sched_lend_user_prio(struct thread *td, u_char prio)
 1983 {
 1984 
 1985         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1986         td->td_lend_user_pri = prio;
 1987         td->td_user_pri = min(prio, td->td_base_user_pri);
 1988         if (td->td_priority > td->td_user_pri)
 1989                 sched_prio(td, td->td_user_pri);
 1990         else if (td->td_priority != td->td_user_pri)
 1991                 td->td_flags |= TDF_NEEDRESCHED;
 1992 }
 1993 
 1994 /*
 1995  * Like the above but first check if there is anything to do.
 1996  */
 1997 void
 1998 sched_lend_user_prio_cond(struct thread *td, u_char prio)
 1999 {
 2000 
 2001         if (td->td_lend_user_pri != prio)
 2002                 goto lend;
 2003         if (td->td_user_pri != min(prio, td->td_base_user_pri))
 2004                 goto lend;
 2005         if (td->td_priority != td->td_user_pri)
 2006                 goto lend;
 2007         return;
 2008 
 2009 lend:
 2010         thread_lock(td);
 2011         sched_lend_user_prio(td, prio);
 2012         thread_unlock(td);
 2013 }
 2014 
 2015 #ifdef SMP
 2016 /*
 2017  * This tdq is about to idle.  Try to steal a thread from another CPU before
 2018  * choosing the idle thread.
 2019  */
 2020 static void
 2021 tdq_trysteal(struct tdq *tdq)
 2022 {
 2023         struct cpu_group *cg, *parent;
 2024         struct tdq *steal;
 2025         cpuset_t mask;
 2026         int cpu, i, goup;
 2027 
 2028         if (smp_started == 0 || steal_idle == 0 || trysteal_limit == 0 ||
 2029             tdq->tdq_cg == NULL)
 2030                 return;
 2031         CPU_FILL(&mask);
 2032         CPU_CLR(PCPU_GET(cpuid), &mask);
 2033         /* We don't want to be preempted while we're iterating. */
 2034         spinlock_enter();
 2035         TDQ_UNLOCK(tdq);
 2036         for (i = 1, cg = tdq->tdq_cg, goup = 0; ; ) {
 2037                 cpu = sched_highest(cg, &mask, steal_thresh, 1);
 2038                 /*
 2039                  * If a thread was added while interrupts were disabled don't
 2040                  * steal one here.
 2041                  */
 2042                 if (TDQ_LOAD(tdq) > 0) {
 2043                         TDQ_LOCK(tdq);
 2044                         break;
 2045                 }
 2046 
 2047                 /*
 2048                  * We found no CPU to steal from in this group.  Escalate to
 2049                  * the parent and repeat.  But if parent has only two children
 2050                  * groups we can avoid searching this group again by searching
 2051                  * the other one specifically and then escalating two levels.
 2052                  */
 2053                 if (cpu == -1) {
 2054                         if (goup) {
 2055                                 cg = cg->cg_parent;
 2056                                 goup = 0;
 2057                         }
 2058                         if (++i > trysteal_limit) {
 2059                                 TDQ_LOCK(tdq);
 2060                                 break;
 2061                         }
 2062                         parent = cg->cg_parent;
 2063                         if (parent == NULL) {
 2064                                 TDQ_LOCK(tdq);
 2065                                 break;
 2066                         }
 2067                         if (parent->cg_children == 2) {
 2068                                 if (cg == &parent->cg_child[0])
 2069                                         cg = &parent->cg_child[1];
 2070                                 else
 2071                                         cg = &parent->cg_child[0];
 2072                                 goup = 1;
 2073                         } else
 2074                                 cg = parent;
 2075                         continue;
 2076                 }
 2077                 steal = TDQ_CPU(cpu);
 2078                 /*
 2079                  * The data returned by sched_highest() is stale and
 2080                  * the chosen CPU no longer has an eligible thread.
 2081                  * At this point unconditionally exit the loop to bound
 2082                  * the time spent in the critcal section.
 2083                  */
 2084                 if (TDQ_LOAD(steal) < steal_thresh ||
 2085                     TDQ_TRANSFERABLE(steal) == 0)
 2086                         continue;
 2087                 /*
 2088                  * Try to lock both queues. If we are assigned a thread while
 2089                  * waited for the lock, switch to it now instead of stealing.
 2090                  * If we can't get the lock, then somebody likely got there
 2091                  * first.
 2092                  */
 2093                 TDQ_LOCK(tdq);
 2094                 if (tdq->tdq_load > 0)
 2095                         break;
 2096                 if (TDQ_TRYLOCK_FLAGS(steal, MTX_DUPOK) == 0)
 2097                         break;
 2098                 /*
 2099                  * The data returned by sched_highest() is stale and
 2100                  * the chosen CPU no longer has an eligible thread.
 2101                  */
 2102                 if (TDQ_LOAD(steal) < steal_thresh ||
 2103                     TDQ_TRANSFERABLE(steal) == 0) {
 2104                         TDQ_UNLOCK(steal);
 2105                         break;
 2106                 }
 2107                 /*
 2108                  * If we fail to acquire one due to affinity restrictions,
 2109                  * bail out and let the idle thread to a more complete search
 2110                  * outside of a critical section.
 2111                  */
 2112                 if (tdq_move(steal, tdq) == -1) {
 2113                         TDQ_UNLOCK(steal);
 2114                         break;
 2115                 }
 2116                 TDQ_UNLOCK(steal);
 2117                 break;
 2118         }
 2119         spinlock_exit();
 2120 }
 2121 #endif
 2122 
 2123 /*
 2124  * Handle migration from sched_switch().  This happens only for
 2125  * cpu binding.
 2126  */
 2127 static struct mtx *
 2128 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
 2129 {
 2130         struct tdq *tdn;
 2131 #ifdef SMP
 2132         int lowpri;
 2133 #endif
 2134 
 2135         KASSERT(THREAD_CAN_MIGRATE(td) ||
 2136             (td_get_sched(td)->ts_flags & TSF_BOUND) != 0,
 2137             ("Thread %p shouldn't migrate", td));
 2138         KASSERT(!CPU_ABSENT(td_get_sched(td)->ts_cpu), ("sched_switch_migrate: "
 2139             "thread %s queued on absent CPU %d.", td->td_name,
 2140             td_get_sched(td)->ts_cpu));
 2141         tdn = TDQ_CPU(td_get_sched(td)->ts_cpu);
 2142 #ifdef SMP
 2143         tdq_load_rem(tdq, td);
 2144         /*
 2145          * Do the lock dance required to avoid LOR.  We have an 
 2146          * extra spinlock nesting from sched_switch() which will
 2147          * prevent preemption while we're holding neither run-queue lock.
 2148          */
 2149         TDQ_UNLOCK(tdq);
 2150         TDQ_LOCK(tdn);
 2151         lowpri = tdq_add(tdn, td, flags);
 2152         tdq_notify(tdn, lowpri);
 2153         TDQ_UNLOCK(tdn);
 2154         TDQ_LOCK(tdq);
 2155 #endif
 2156         return (TDQ_LOCKPTR(tdn));
 2157 }
 2158 
 2159 /*
 2160  * thread_lock_unblock() that does not assume td_lock is blocked.
 2161  */
 2162 static inline void
 2163 thread_unblock_switch(struct thread *td, struct mtx *mtx)
 2164 {
 2165         atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
 2166             (uintptr_t)mtx);
 2167 }
 2168 
 2169 /*
 2170  * Switch threads.  This function has to handle threads coming in while
 2171  * blocked for some reason, running, or idle.  It also must deal with
 2172  * migrating a thread from one queue to another as running threads may
 2173  * be assigned elsewhere via binding.
 2174  */
 2175 void
 2176 sched_switch(struct thread *td, int flags)
 2177 {
 2178         struct thread *newtd;
 2179         struct tdq *tdq;
 2180         struct td_sched *ts;
 2181         struct mtx *mtx;
 2182         int srqflag;
 2183         int cpuid, preempted;
 2184 #ifdef SMP
 2185         int pickcpu;
 2186 #endif
 2187 
 2188         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2189 
 2190         cpuid = PCPU_GET(cpuid);
 2191         tdq = TDQ_SELF();
 2192         ts = td_get_sched(td);
 2193         sched_pctcpu_update(ts, 1);
 2194 #ifdef SMP
 2195         pickcpu = (td->td_flags & TDF_PICKCPU) != 0;
 2196         if (pickcpu)
 2197                 ts->ts_rltick = ticks - affinity * MAX_CACHE_LEVELS;
 2198         else
 2199                 ts->ts_rltick = ticks;
 2200 #endif
 2201         td->td_lastcpu = td->td_oncpu;
 2202         preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
 2203             (flags & SW_PREEMPT) != 0;
 2204         td->td_flags &= ~(TDF_NEEDRESCHED | TDF_PICKCPU | TDF_SLICEEND);
 2205         td->td_owepreempt = 0;
 2206         atomic_store_char(&tdq->tdq_owepreempt, 0);
 2207         if (!TD_IS_IDLETHREAD(td))
 2208                 TDQ_SWITCHCNT_INC(tdq);
 2209 
 2210         /*
 2211          * Always block the thread lock so we can drop the tdq lock early.
 2212          */
 2213         mtx = thread_lock_block(td);
 2214         spinlock_enter();
 2215         if (TD_IS_IDLETHREAD(td)) {
 2216                 MPASS(mtx == TDQ_LOCKPTR(tdq));
 2217                 TD_SET_CAN_RUN(td);
 2218         } else if (TD_IS_RUNNING(td)) {
 2219                 MPASS(mtx == TDQ_LOCKPTR(tdq));
 2220                 srqflag = preempted ?
 2221                     SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
 2222                     SRQ_OURSELF|SRQ_YIELDING;
 2223 #ifdef SMP
 2224                 if (THREAD_CAN_MIGRATE(td) && (!THREAD_CAN_SCHED(td, ts->ts_cpu)
 2225                     || pickcpu))
 2226                         ts->ts_cpu = sched_pickcpu(td, 0);
 2227 #endif
 2228                 if (ts->ts_cpu == cpuid)
 2229                         tdq_runq_add(tdq, td, srqflag);
 2230                 else
 2231                         mtx = sched_switch_migrate(tdq, td, srqflag);
 2232         } else {
 2233                 /* This thread must be going to sleep. */
 2234                 if (mtx != TDQ_LOCKPTR(tdq)) {
 2235                         mtx_unlock_spin(mtx);
 2236                         TDQ_LOCK(tdq);
 2237                 }
 2238                 tdq_load_rem(tdq, td);
 2239 #ifdef SMP
 2240                 if (tdq->tdq_load == 0)
 2241                         tdq_trysteal(tdq);
 2242 #endif
 2243         }
 2244 
 2245 #if (KTR_COMPILE & KTR_SCHED) != 0
 2246         if (TD_IS_IDLETHREAD(td))
 2247                 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
 2248                     "prio:%d", td->td_priority);
 2249         else
 2250                 KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
 2251                     "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
 2252                     "lockname:\"%s\"", td->td_lockname);
 2253 #endif
 2254 
 2255         /*
 2256          * We enter here with the thread blocked and assigned to the
 2257          * appropriate cpu run-queue or sleep-queue and with the current
 2258          * thread-queue locked.
 2259          */
 2260         TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 2261         MPASS(td == tdq->tdq_curthread);
 2262         newtd = choosethread();
 2263         sched_pctcpu_update(td_get_sched(newtd), 0);
 2264         TDQ_UNLOCK(tdq);
 2265 
 2266         /*
 2267          * Call the MD code to switch contexts if necessary.
 2268          */
 2269         if (td != newtd) {
 2270 #ifdef  HWPMC_HOOKS
 2271                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 2272                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
 2273 #endif
 2274                 SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
 2275 
 2276 #ifdef KDTRACE_HOOKS
 2277                 /*
 2278                  * If DTrace has set the active vtime enum to anything
 2279                  * other than INACTIVE (0), then it should have set the
 2280                  * function to call.
 2281                  */
 2282                 if (dtrace_vtime_active)
 2283                         (*dtrace_vtime_switch_func)(newtd);
 2284 #endif
 2285                 td->td_oncpu = NOCPU;
 2286                 cpu_switch(td, newtd, mtx);
 2287                 cpuid = td->td_oncpu = PCPU_GET(cpuid);
 2288 
 2289                 SDT_PROBE0(sched, , , on__cpu);
 2290 #ifdef  HWPMC_HOOKS
 2291                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 2292                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
 2293 #endif
 2294         } else {
 2295                 thread_unblock_switch(td, mtx);
 2296                 SDT_PROBE0(sched, , , remain__cpu);
 2297         }
 2298         KASSERT(curthread->td_md.md_spinlock_count == 1,
 2299             ("invalid count %d", curthread->td_md.md_spinlock_count));
 2300 
 2301         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 2302             "prio:%d", td->td_priority);
 2303 }
 2304 
 2305 /*
 2306  * Adjust thread priorities as a result of a nice request.
 2307  */
 2308 void
 2309 sched_nice(struct proc *p, int nice)
 2310 {
 2311         struct thread *td;
 2312 
 2313         PROC_LOCK_ASSERT(p, MA_OWNED);
 2314 
 2315         p->p_nice = nice;
 2316         FOREACH_THREAD_IN_PROC(p, td) {
 2317                 thread_lock(td);
 2318                 sched_priority(td);
 2319                 sched_prio(td, td->td_base_user_pri);
 2320                 thread_unlock(td);
 2321         }
 2322 }
 2323 
 2324 /*
 2325  * Record the sleep time for the interactivity scorer.
 2326  */
 2327 void
 2328 sched_sleep(struct thread *td, int prio)
 2329 {
 2330 
 2331         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2332 
 2333         td->td_slptick = ticks;
 2334         if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
 2335                 td->td_flags |= TDF_CANSWAP;
 2336         if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 2337                 return;
 2338         if (static_boost == 1 && prio)
 2339                 sched_prio(td, prio);
 2340         else if (static_boost && td->td_priority > static_boost)
 2341                 sched_prio(td, static_boost);
 2342 }
 2343 
 2344 /*
 2345  * Schedule a thread to resume execution and record how long it voluntarily
 2346  * slept.  We also update the pctcpu, interactivity, and priority.
 2347  *
 2348  * Requires the thread lock on entry, drops on exit.
 2349  */
 2350 void
 2351 sched_wakeup(struct thread *td, int srqflags)
 2352 {
 2353         struct td_sched *ts;
 2354         int slptick;
 2355 
 2356         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2357         ts = td_get_sched(td);
 2358         td->td_flags &= ~TDF_CANSWAP;
 2359 
 2360         /*
 2361          * If we slept for more than a tick update our interactivity and
 2362          * priority.
 2363          */
 2364         slptick = td->td_slptick;
 2365         td->td_slptick = 0;
 2366         if (slptick && slptick != ticks) {
 2367                 ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
 2368                 sched_interact_update(td);
 2369                 sched_pctcpu_update(ts, 0);
 2370         }
 2371         /*
 2372          * Reset the slice value since we slept and advanced the round-robin.
 2373          */
 2374         ts->ts_slice = 0;
 2375         sched_add(td, SRQ_BORING | srqflags);
 2376 }
 2377 
 2378 /*
 2379  * Penalize the parent for creating a new child and initialize the child's
 2380  * priority.
 2381  */
 2382 void
 2383 sched_fork(struct thread *td, struct thread *child)
 2384 {
 2385         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2386         sched_pctcpu_update(td_get_sched(td), 1);
 2387         sched_fork_thread(td, child);
 2388         /*
 2389          * Penalize the parent and child for forking.
 2390          */
 2391         sched_interact_fork(child);
 2392         sched_priority(child);
 2393         td_get_sched(td)->ts_runtime += tickincr;
 2394         sched_interact_update(td);
 2395         sched_priority(td);
 2396 }
 2397 
 2398 /*
 2399  * Fork a new thread, may be within the same process.
 2400  */
 2401 void
 2402 sched_fork_thread(struct thread *td, struct thread *child)
 2403 {
 2404         struct td_sched *ts;
 2405         struct td_sched *ts2;
 2406         struct tdq *tdq;
 2407 
 2408         tdq = TDQ_SELF();
 2409         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2410         /*
 2411          * Initialize child.
 2412          */
 2413         ts = td_get_sched(td);
 2414         ts2 = td_get_sched(child);
 2415         child->td_oncpu = NOCPU;
 2416         child->td_lastcpu = NOCPU;
 2417         child->td_lock = TDQ_LOCKPTR(tdq);
 2418         child->td_cpuset = cpuset_ref(td->td_cpuset);
 2419         child->td_domain.dr_policy = td->td_cpuset->cs_domain;
 2420         ts2->ts_cpu = ts->ts_cpu;
 2421         ts2->ts_flags = 0;
 2422         /*
 2423          * Grab our parents cpu estimation information.
 2424          */
 2425         ts2->ts_ticks = ts->ts_ticks;
 2426         ts2->ts_ltick = ts->ts_ltick;
 2427         ts2->ts_ftick = ts->ts_ftick;
 2428         /*
 2429          * Do not inherit any borrowed priority from the parent.
 2430          */
 2431         child->td_priority = child->td_base_pri;
 2432         /*
 2433          * And update interactivity score.
 2434          */
 2435         ts2->ts_slptime = ts->ts_slptime;
 2436         ts2->ts_runtime = ts->ts_runtime;
 2437         /* Attempt to quickly learn interactivity. */
 2438         ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
 2439 #ifdef KTR
 2440         bzero(ts2->ts_name, sizeof(ts2->ts_name));
 2441 #endif
 2442 }
 2443 
 2444 /*
 2445  * Adjust the priority class of a thread.
 2446  */
 2447 void
 2448 sched_class(struct thread *td, int class)
 2449 {
 2450 
 2451         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2452         if (td->td_pri_class == class)
 2453                 return;
 2454         td->td_pri_class = class;
 2455 }
 2456 
 2457 /*
 2458  * Return some of the child's priority and interactivity to the parent.
 2459  */
 2460 void
 2461 sched_exit(struct proc *p, struct thread *child)
 2462 {
 2463         struct thread *td;
 2464 
 2465         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
 2466             "prio:%d", child->td_priority);
 2467         PROC_LOCK_ASSERT(p, MA_OWNED);
 2468         td = FIRST_THREAD_IN_PROC(p);
 2469         sched_exit_thread(td, child);
 2470 }
 2471 
 2472 /*
 2473  * Penalize another thread for the time spent on this one.  This helps to
 2474  * worsen the priority and interactivity of processes which schedule batch
 2475  * jobs such as make.  This has little effect on the make process itself but
 2476  * causes new processes spawned by it to receive worse scores immediately.
 2477  */
 2478 void
 2479 sched_exit_thread(struct thread *td, struct thread *child)
 2480 {
 2481 
 2482         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
 2483             "prio:%d", child->td_priority);
 2484         /*
 2485          * Give the child's runtime to the parent without returning the
 2486          * sleep time as a penalty to the parent.  This causes shells that
 2487          * launch expensive things to mark their children as expensive.
 2488          */
 2489         thread_lock(td);
 2490         td_get_sched(td)->ts_runtime += td_get_sched(child)->ts_runtime;
 2491         sched_interact_update(td);
 2492         sched_priority(td);
 2493         thread_unlock(td);
 2494 }
 2495 
 2496 void
 2497 sched_preempt(struct thread *td)
 2498 {
 2499         struct tdq *tdq;
 2500         int flags;
 2501 
 2502         SDT_PROBE2(sched, , , surrender, td, td->td_proc);
 2503 
 2504         thread_lock(td);
 2505         tdq = TDQ_SELF();
 2506         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2507         if (td->td_priority > tdq->tdq_lowpri) {
 2508                 if (td->td_critnest == 1) {
 2509                         flags = SW_INVOL | SW_PREEMPT;
 2510                         flags |= TD_IS_IDLETHREAD(td) ? SWT_REMOTEWAKEIDLE :
 2511                             SWT_REMOTEPREEMPT;
 2512                         mi_switch(flags);
 2513                         /* Switch dropped thread lock. */
 2514                         return;
 2515                 }
 2516                 td->td_owepreempt = 1;
 2517         } else {
 2518                 tdq->tdq_owepreempt = 0;
 2519         }
 2520         thread_unlock(td);
 2521 }
 2522 
 2523 /*
 2524  * Fix priorities on return to user-space.  Priorities may be elevated due
 2525  * to static priorities in msleep() or similar.
 2526  */
 2527 void
 2528 sched_userret_slowpath(struct thread *td)
 2529 {
 2530 
 2531         thread_lock(td);
 2532         td->td_priority = td->td_user_pri;
 2533         td->td_base_pri = td->td_user_pri;
 2534         tdq_setlowpri(TDQ_SELF(), td);
 2535         thread_unlock(td);
 2536 }
 2537 
 2538 /*
 2539  * Handle a stathz tick.  This is really only relevant for timeshare
 2540  * threads.
 2541  */
 2542 void
 2543 sched_clock(struct thread *td, int cnt)
 2544 {
 2545         struct tdq *tdq;
 2546         struct td_sched *ts;
 2547 
 2548         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2549         tdq = TDQ_SELF();
 2550 #ifdef SMP
 2551         /*
 2552          * We run the long term load balancer infrequently on the first cpu.
 2553          */
 2554         if (balance_tdq == tdq && smp_started != 0 && rebalance != 0 &&
 2555             balance_ticks != 0) {
 2556                 balance_ticks -= cnt;
 2557                 if (balance_ticks <= 0)
 2558                         sched_balance();
 2559         }
 2560 #endif
 2561         /*
 2562          * Save the old switch count so we have a record of the last ticks
 2563          * activity.   Initialize the new switch count based on our load.
 2564          * If there is some activity seed it to reflect that.
 2565          */
 2566         tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
 2567         tdq->tdq_switchcnt = tdq->tdq_load;
 2568 
 2569         /*
 2570          * Advance the insert index once for each tick to ensure that all
 2571          * threads get a chance to run.
 2572          */
 2573         if (tdq->tdq_idx == tdq->tdq_ridx) {
 2574                 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
 2575                 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
 2576                         tdq->tdq_ridx = tdq->tdq_idx;
 2577         }
 2578         ts = td_get_sched(td);
 2579         sched_pctcpu_update(ts, 1);
 2580         if ((td->td_pri_class & PRI_FIFO_BIT) || TD_IS_IDLETHREAD(td))
 2581                 return;
 2582 
 2583         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
 2584                 /*
 2585                  * We used a tick; charge it to the thread so
 2586                  * that we can compute our interactivity.
 2587                  */
 2588                 td_get_sched(td)->ts_runtime += tickincr * cnt;
 2589                 sched_interact_update(td);
 2590                 sched_priority(td);
 2591         }
 2592 
 2593         /*
 2594          * Force a context switch if the current thread has used up a full
 2595          * time slice (default is 100ms).
 2596          */
 2597         ts->ts_slice += cnt;
 2598         if (ts->ts_slice >= tdq_slice(tdq)) {
 2599                 ts->ts_slice = 0;
 2600                 td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
 2601         }
 2602 }
 2603 
 2604 u_int
 2605 sched_estcpu(struct thread *td __unused)
 2606 {
 2607 
 2608         return (0);
 2609 }
 2610 
 2611 /*
 2612  * Return whether the current CPU has runnable tasks.  Used for in-kernel
 2613  * cooperative idle threads.
 2614  */
 2615 int
 2616 sched_runnable(void)
 2617 {
 2618         struct tdq *tdq;
 2619         int load;
 2620 
 2621         load = 1;
 2622 
 2623         tdq = TDQ_SELF();
 2624         if ((curthread->td_flags & TDF_IDLETD) != 0) {
 2625                 if (TDQ_LOAD(tdq) > 0)
 2626                         goto out;
 2627         } else
 2628                 if (TDQ_LOAD(tdq) - 1 > 0)
 2629                         goto out;
 2630         load = 0;
 2631 out:
 2632         return (load);
 2633 }
 2634 
 2635 /*
 2636  * Choose the highest priority thread to run.  The thread is removed from
 2637  * the run-queue while running however the load remains.
 2638  */
 2639 struct thread *
 2640 sched_choose(void)
 2641 {
 2642         struct thread *td;
 2643         struct tdq *tdq;
 2644 
 2645         tdq = TDQ_SELF();
 2646         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2647         td = tdq_choose(tdq);
 2648         if (td != NULL) {
 2649                 tdq_runq_rem(tdq, td);
 2650                 tdq->tdq_lowpri = td->td_priority;
 2651         } else { 
 2652                 tdq->tdq_lowpri = PRI_MAX_IDLE;
 2653                 td = PCPU_GET(idlethread);
 2654         }
 2655         tdq->tdq_curthread = td;
 2656         return (td);
 2657 }
 2658 
 2659 /*
 2660  * Set owepreempt if the currently running thread has lower priority than "pri".
 2661  * Preemption never happens directly in ULE, we always request it once we exit a
 2662  * critical section.
 2663  */
 2664 static void
 2665 sched_setpreempt(int pri)
 2666 {
 2667         struct thread *ctd;
 2668         int cpri;
 2669 
 2670         ctd = curthread;
 2671         THREAD_LOCK_ASSERT(ctd, MA_OWNED);
 2672 
 2673         cpri = ctd->td_priority;
 2674         if (pri < cpri)
 2675                 ctd->td_flags |= TDF_NEEDRESCHED;
 2676         if (KERNEL_PANICKED() || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
 2677                 return;
 2678         if (!sched_shouldpreempt(pri, cpri, 0))
 2679                 return;
 2680         ctd->td_owepreempt = 1;
 2681 }
 2682 
 2683 /*
 2684  * Add a thread to a thread queue.  Select the appropriate runq and add the
 2685  * thread to it.  This is the internal function called when the tdq is
 2686  * predetermined.
 2687  */
 2688 static int
 2689 tdq_add(struct tdq *tdq, struct thread *td, int flags)
 2690 {
 2691         int lowpri;
 2692 
 2693         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2694         THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
 2695         KASSERT((td->td_inhibitors == 0),
 2696             ("sched_add: trying to run inhibited thread"));
 2697         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 2698             ("sched_add: bad thread state"));
 2699         KASSERT(td->td_flags & TDF_INMEM,
 2700             ("sched_add: thread swapped out"));
 2701 
 2702         lowpri = tdq->tdq_lowpri;
 2703         if (td->td_priority < lowpri)
 2704                 tdq->tdq_lowpri = td->td_priority;
 2705         tdq_runq_add(tdq, td, flags);
 2706         tdq_load_add(tdq, td);
 2707         return (lowpri);
 2708 }
 2709 
 2710 /*
 2711  * Select the target thread queue and add a thread to it.  Request
 2712  * preemption or IPI a remote processor if required.
 2713  *
 2714  * Requires the thread lock on entry, drops on exit.
 2715  */
 2716 void
 2717 sched_add(struct thread *td, int flags)
 2718 {
 2719         struct tdq *tdq;
 2720 #ifdef SMP
 2721         int cpu, lowpri;
 2722 #endif
 2723 
 2724         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 2725             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 2726             sched_tdname(curthread));
 2727         KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 2728             KTR_ATTR_LINKED, sched_tdname(td));
 2729         SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
 2730             flags & SRQ_PREEMPTED);
 2731         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2732         /*
 2733          * Recalculate the priority before we select the target cpu or
 2734          * run-queue.
 2735          */
 2736         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
 2737                 sched_priority(td);
 2738 #ifdef SMP
 2739         /*
 2740          * Pick the destination cpu and if it isn't ours transfer to the
 2741          * target cpu.
 2742          */
 2743         cpu = sched_pickcpu(td, flags);
 2744         tdq = sched_setcpu(td, cpu, flags);
 2745         lowpri = tdq_add(tdq, td, flags);
 2746         if (cpu != PCPU_GET(cpuid))
 2747                 tdq_notify(tdq, lowpri);
 2748         else if (!(flags & SRQ_YIELDING))
 2749                 sched_setpreempt(td->td_priority);
 2750 #else
 2751         tdq = TDQ_SELF();
 2752         /*
 2753          * Now that the thread is moving to the run-queue, set the lock
 2754          * to the scheduler's lock.
 2755          */
 2756         if (td->td_lock != TDQ_LOCKPTR(tdq)) {
 2757                 TDQ_LOCK(tdq);
 2758                 if ((flags & SRQ_HOLD) != 0)
 2759                         td->td_lock = TDQ_LOCKPTR(tdq);
 2760                 else
 2761                         thread_lock_set(td, TDQ_LOCKPTR(tdq));
 2762         }
 2763         (void)tdq_add(tdq, td, flags);
 2764         if (!(flags & SRQ_YIELDING))
 2765                 sched_setpreempt(td->td_priority);
 2766 #endif
 2767         if (!(flags & SRQ_HOLDTD))
 2768                 thread_unlock(td);
 2769 }
 2770 
 2771 /*
 2772  * Remove a thread from a run-queue without running it.  This is used
 2773  * when we're stealing a thread from a remote queue.  Otherwise all threads
 2774  * exit by calling sched_exit_thread() and sched_throw() themselves.
 2775  */
 2776 void
 2777 sched_rem(struct thread *td)
 2778 {
 2779         struct tdq *tdq;
 2780 
 2781         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
 2782             "prio:%d", td->td_priority);
 2783         SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
 2784         tdq = TDQ_CPU(td_get_sched(td)->ts_cpu);
 2785         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2786         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2787         KASSERT(TD_ON_RUNQ(td),
 2788             ("sched_rem: thread not on run queue"));
 2789         tdq_runq_rem(tdq, td);
 2790         tdq_load_rem(tdq, td);
 2791         TD_SET_CAN_RUN(td);
 2792         if (td->td_priority == tdq->tdq_lowpri)
 2793                 tdq_setlowpri(tdq, NULL);
 2794 }
 2795 
 2796 /*
 2797  * Fetch cpu utilization information.  Updates on demand.
 2798  */
 2799 fixpt_t
 2800 sched_pctcpu(struct thread *td)
 2801 {
 2802         fixpt_t pctcpu;
 2803         struct td_sched *ts;
 2804 
 2805         pctcpu = 0;
 2806         ts = td_get_sched(td);
 2807 
 2808         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2809         sched_pctcpu_update(ts, TD_IS_RUNNING(td));
 2810         if (ts->ts_ticks) {
 2811                 int rtick;
 2812 
 2813                 /* How many rtick per second ? */
 2814                 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
 2815                 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
 2816         }
 2817 
 2818         return (pctcpu);
 2819 }
 2820 
 2821 /*
 2822  * Enforce affinity settings for a thread.  Called after adjustments to
 2823  * cpumask.
 2824  */
 2825 void
 2826 sched_affinity(struct thread *td)
 2827 {
 2828 #ifdef SMP
 2829         struct td_sched *ts;
 2830 
 2831         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2832         ts = td_get_sched(td);
 2833         if (THREAD_CAN_SCHED(td, ts->ts_cpu))
 2834                 return;
 2835         if (TD_ON_RUNQ(td)) {
 2836                 sched_rem(td);
 2837                 sched_add(td, SRQ_BORING | SRQ_HOLDTD);
 2838                 return;
 2839         }
 2840         if (!TD_IS_RUNNING(td))
 2841                 return;
 2842         /*
 2843          * Force a switch before returning to userspace.  If the
 2844          * target thread is not running locally send an ipi to force
 2845          * the issue.
 2846          */
 2847         td->td_flags |= TDF_NEEDRESCHED;
 2848         if (td != curthread)
 2849                 ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
 2850 #endif
 2851 }
 2852 
 2853 /*
 2854  * Bind a thread to a target cpu.
 2855  */
 2856 void
 2857 sched_bind(struct thread *td, int cpu)
 2858 {
 2859         struct td_sched *ts;
 2860 
 2861         THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
 2862         KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
 2863         ts = td_get_sched(td);
 2864         if (ts->ts_flags & TSF_BOUND)
 2865                 sched_unbind(td);
 2866         KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
 2867         ts->ts_flags |= TSF_BOUND;
 2868         sched_pin();
 2869         if (PCPU_GET(cpuid) == cpu)
 2870                 return;
 2871         ts->ts_cpu = cpu;
 2872         /* When we return from mi_switch we'll be on the correct cpu. */
 2873         mi_switch(SW_VOL);
 2874         thread_lock(td);
 2875 }
 2876 
 2877 /*
 2878  * Release a bound thread.
 2879  */
 2880 void
 2881 sched_unbind(struct thread *td)
 2882 {
 2883         struct td_sched *ts;
 2884 
 2885         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2886         KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
 2887         ts = td_get_sched(td);
 2888         if ((ts->ts_flags & TSF_BOUND) == 0)
 2889                 return;
 2890         ts->ts_flags &= ~TSF_BOUND;
 2891         sched_unpin();
 2892 }
 2893 
 2894 int
 2895 sched_is_bound(struct thread *td)
 2896 {
 2897         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2898         return (td_get_sched(td)->ts_flags & TSF_BOUND);
 2899 }
 2900 
 2901 /*
 2902  * Basic yield call.
 2903  */
 2904 void
 2905 sched_relinquish(struct thread *td)
 2906 {
 2907         thread_lock(td);
 2908         mi_switch(SW_VOL | SWT_RELINQUISH);
 2909 }
 2910 
 2911 /*
 2912  * Return the total system load.
 2913  */
 2914 int
 2915 sched_load(void)
 2916 {
 2917 #ifdef SMP
 2918         int total;
 2919         int i;
 2920 
 2921         total = 0;
 2922         CPU_FOREACH(i)
 2923                 total += atomic_load_int(&TDQ_CPU(i)->tdq_sysload);
 2924         return (total);
 2925 #else
 2926         return (atomic_load_int(&TDQ_SELF()->tdq_sysload));
 2927 #endif
 2928 }
 2929 
 2930 int
 2931 sched_sizeof_proc(void)
 2932 {
 2933         return (sizeof(struct proc));
 2934 }
 2935 
 2936 int
 2937 sched_sizeof_thread(void)
 2938 {
 2939         return (sizeof(struct thread) + sizeof(struct td_sched));
 2940 }
 2941 
 2942 #ifdef SMP
 2943 #define TDQ_IDLESPIN(tdq)                                               \
 2944     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
 2945 #else
 2946 #define TDQ_IDLESPIN(tdq)       1
 2947 #endif
 2948 
 2949 /*
 2950  * The actual idle process.
 2951  */
 2952 void
 2953 sched_idletd(void *dummy)
 2954 {
 2955         struct thread *td;
 2956         struct tdq *tdq;
 2957         int oldswitchcnt, switchcnt;
 2958         int i;
 2959 
 2960         mtx_assert(&Giant, MA_NOTOWNED);
 2961         td = curthread;
 2962         tdq = TDQ_SELF();
 2963         THREAD_NO_SLEEPING();
 2964         oldswitchcnt = -1;
 2965         for (;;) {
 2966                 if (TDQ_LOAD(tdq)) {
 2967                         thread_lock(td);
 2968                         mi_switch(SW_VOL | SWT_IDLE);
 2969                 }
 2970                 switchcnt = TDQ_SWITCHCNT(tdq);
 2971 #ifdef SMP
 2972                 if (always_steal || switchcnt != oldswitchcnt) {
 2973                         oldswitchcnt = switchcnt;
 2974                         if (tdq_idled(tdq) == 0)
 2975                                 continue;
 2976                 }
 2977                 switchcnt = TDQ_SWITCHCNT(tdq);
 2978 #else
 2979                 oldswitchcnt = switchcnt;
 2980 #endif
 2981                 /*
 2982                  * If we're switching very frequently, spin while checking
 2983                  * for load rather than entering a low power state that 
 2984                  * may require an IPI.  However, don't do any busy
 2985                  * loops while on SMT machines as this simply steals
 2986                  * cycles from cores doing useful work.
 2987                  */
 2988                 if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
 2989                         for (i = 0; i < sched_idlespins; i++) {
 2990                                 if (TDQ_LOAD(tdq))
 2991                                         break;
 2992                                 cpu_spinwait();
 2993                         }
 2994                 }
 2995 
 2996                 /* If there was context switch during spin, restart it. */
 2997                 switchcnt = TDQ_SWITCHCNT(tdq);
 2998                 if (TDQ_LOAD(tdq) != 0 || switchcnt != oldswitchcnt)
 2999                         continue;
 3000 
 3001                 /* Run main MD idle handler. */
 3002                 atomic_store_int(&tdq->tdq_cpu_idle, 1);
 3003                 /*
 3004                  * Make sure that the tdq_cpu_idle update is globally visible
 3005                  * before cpu_idle() reads tdq_load.  The order is important
 3006                  * to avoid races with tdq_notify().
 3007                  */
 3008                 atomic_thread_fence_seq_cst();
 3009                 /*
 3010                  * Checking for again after the fence picks up assigned
 3011                  * threads often enough to make it worthwhile to do so in
 3012                  * order to avoid calling cpu_idle().
 3013                  */
 3014                 if (TDQ_LOAD(tdq) != 0) {
 3015                         atomic_store_int(&tdq->tdq_cpu_idle, 0);
 3016                         continue;
 3017                 }
 3018                 cpu_idle(switchcnt * 4 > sched_idlespinthresh);
 3019                 atomic_store_int(&tdq->tdq_cpu_idle, 0);
 3020 
 3021                 /*
 3022                  * Account thread-less hardware interrupts and
 3023                  * other wakeup reasons equal to context switches.
 3024                  */
 3025                 switchcnt = TDQ_SWITCHCNT(tdq);
 3026                 if (switchcnt != oldswitchcnt)
 3027                         continue;
 3028                 TDQ_SWITCHCNT_INC(tdq);
 3029                 oldswitchcnt++;
 3030         }
 3031 }
 3032 
 3033 /*
 3034  * A CPU is entering for the first time or a thread is exiting.
 3035  */
 3036 void
 3037 sched_throw(struct thread *td)
 3038 {
 3039         struct thread *newtd;
 3040         struct tdq *tdq;
 3041 
 3042         tdq = TDQ_SELF();
 3043         if (__predict_false(td == NULL)) {
 3044                 TDQ_LOCK(tdq);
 3045                 /* Correct spinlock nesting. */
 3046                 spinlock_exit();
 3047                 PCPU_SET(switchtime, cpu_ticks());
 3048                 PCPU_SET(switchticks, ticks);
 3049         } else {
 3050                 THREAD_LOCK_ASSERT(td, MA_OWNED);
 3051                 THREAD_LOCKPTR_ASSERT(td, TDQ_LOCKPTR(tdq));
 3052                 tdq_load_rem(tdq, td);
 3053                 td->td_lastcpu = td->td_oncpu;
 3054                 td->td_oncpu = NOCPU;
 3055                 thread_lock_block(td);
 3056         }
 3057         newtd = choosethread();
 3058         spinlock_enter();
 3059         TDQ_UNLOCK(tdq);
 3060         KASSERT(curthread->td_md.md_spinlock_count == 1,
 3061             ("invalid count %d", curthread->td_md.md_spinlock_count));
 3062         /* doesn't return */
 3063         if (__predict_false(td == NULL))
 3064                 cpu_throw(td, newtd);           /* doesn't return */
 3065         else
 3066                 cpu_switch(td, newtd, TDQ_LOCKPTR(tdq));
 3067 }
 3068 
 3069 /*
 3070  * This is called from fork_exit().  Just acquire the correct locks and
 3071  * let fork do the rest of the work.
 3072  */
 3073 void
 3074 sched_fork_exit(struct thread *td)
 3075 {
 3076         struct tdq *tdq;
 3077         int cpuid;
 3078 
 3079         /*
 3080          * Finish setting up thread glue so that it begins execution in a
 3081          * non-nested critical section with the scheduler lock held.
 3082          */
 3083         KASSERT(curthread->td_md.md_spinlock_count == 1,
 3084             ("invalid count %d", curthread->td_md.md_spinlock_count));
 3085         cpuid = PCPU_GET(cpuid);
 3086         tdq = TDQ_SELF();
 3087         TDQ_LOCK(tdq);
 3088         spinlock_exit();
 3089         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 3090         td->td_oncpu = cpuid;
 3091         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 3092             "prio:%d", td->td_priority);
 3093         SDT_PROBE0(sched, , , on__cpu);
 3094 }
 3095 
 3096 /*
 3097  * Create on first use to catch odd startup conditions.
 3098  */
 3099 char *
 3100 sched_tdname(struct thread *td)
 3101 {
 3102 #ifdef KTR
 3103         struct td_sched *ts;
 3104 
 3105         ts = td_get_sched(td);
 3106         if (ts->ts_name[0] == '\0')
 3107                 snprintf(ts->ts_name, sizeof(ts->ts_name),
 3108                     "%s tid %d", td->td_name, td->td_tid);
 3109         return (ts->ts_name);
 3110 #else
 3111         return (td->td_name);
 3112 #endif
 3113 }
 3114 
 3115 #ifdef KTR
 3116 void
 3117 sched_clear_tdname(struct thread *td)
 3118 {
 3119         struct td_sched *ts;
 3120 
 3121         ts = td_get_sched(td);
 3122         ts->ts_name[0] = '\0';
 3123 }
 3124 #endif
 3125 
 3126 #ifdef SMP
 3127 
 3128 /*
 3129  * Build the CPU topology dump string. Is recursively called to collect
 3130  * the topology tree.
 3131  */
 3132 static int
 3133 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
 3134     int indent)
 3135 {
 3136         char cpusetbuf[CPUSETBUFSIZ];
 3137         int i, first;
 3138 
 3139         sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
 3140             "", 1 + indent / 2, cg->cg_level);
 3141         sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
 3142             cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
 3143         first = TRUE;
 3144         for (i = cg->cg_first; i <= cg->cg_last; i++) {
 3145                 if (CPU_ISSET(i, &cg->cg_mask)) {
 3146                         if (!first)
 3147                                 sbuf_printf(sb, ", ");
 3148                         else
 3149                                 first = FALSE;
 3150                         sbuf_printf(sb, "%d", i);
 3151                 }
 3152         }
 3153         sbuf_printf(sb, "</cpu>\n");
 3154 
 3155         if (cg->cg_flags != 0) {
 3156                 sbuf_printf(sb, "%*s <flags>", indent, "");
 3157                 if ((cg->cg_flags & CG_FLAG_HTT) != 0)
 3158                         sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
 3159                 if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
 3160                         sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
 3161                 if ((cg->cg_flags & CG_FLAG_SMT) != 0)
 3162                         sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
 3163                 if ((cg->cg_flags & CG_FLAG_NODE) != 0)
 3164                         sbuf_printf(sb, "<flag name=\"NODE\">NUMA node</flag>");
 3165                 sbuf_printf(sb, "</flags>\n");
 3166         }
 3167 
 3168         if (cg->cg_children > 0) {
 3169                 sbuf_printf(sb, "%*s <children>\n", indent, "");
 3170                 for (i = 0; i < cg->cg_children; i++)
 3171                         sysctl_kern_sched_topology_spec_internal(sb, 
 3172                             &cg->cg_child[i], indent+2);
 3173                 sbuf_printf(sb, "%*s </children>\n", indent, "");
 3174         }
 3175         sbuf_printf(sb, "%*s</group>\n", indent, "");
 3176         return (0);
 3177 }
 3178 
 3179 /*
 3180  * Sysctl handler for retrieving topology dump. It's a wrapper for
 3181  * the recursive sysctl_kern_smp_topology_spec_internal().
 3182  */
 3183 static int
 3184 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
 3185 {
 3186         struct sbuf *topo;
 3187         int err;
 3188 
 3189         KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
 3190 
 3191         topo = sbuf_new_for_sysctl(NULL, NULL, 512, req);
 3192         if (topo == NULL)
 3193                 return (ENOMEM);
 3194 
 3195         sbuf_printf(topo, "<groups>\n");
 3196         err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
 3197         sbuf_printf(topo, "</groups>\n");
 3198 
 3199         if (err == 0) {
 3200                 err = sbuf_finish(topo);
 3201         }
 3202         sbuf_delete(topo);
 3203         return (err);
 3204 }
 3205 
 3206 #endif
 3207 
 3208 static int
 3209 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
 3210 {
 3211         int error, new_val, period;
 3212 
 3213         period = 1000000 / realstathz;
 3214         new_val = period * sched_slice;
 3215         error = sysctl_handle_int(oidp, &new_val, 0, req);
 3216         if (error != 0 || req->newptr == NULL)
 3217                 return (error);
 3218         if (new_val <= 0)
 3219                 return (EINVAL);
 3220         sched_slice = imax(1, (new_val + period / 2) / period);
 3221         sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
 3222         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 3223             realstathz);
 3224         return (0);
 3225 }
 3226 
 3227 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
 3228     "Scheduler");
 3229 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
 3230     "Scheduler name");
 3231 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum,
 3232     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
 3233     sysctl_kern_quantum, "I",
 3234     "Quantum for timeshare threads in microseconds");
 3235 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
 3236     "Quantum for timeshare threads in stathz ticks");
 3237 SYSCTL_UINT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
 3238     "Interactivity score threshold");
 3239 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
 3240     &preempt_thresh, 0,
 3241     "Maximal (lowest) priority for preemption");
 3242 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
 3243     "Assign static kernel priorities to sleeping threads");
 3244 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
 3245     "Number of times idle thread will spin waiting for new work");
 3246 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
 3247     &sched_idlespinthresh, 0,
 3248     "Threshold before we will permit idle thread spinning");
 3249 #ifdef SMP
 3250 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
 3251     "Number of hz ticks to keep thread affinity for");
 3252 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
 3253     "Enables the long-term load balancer");
 3254 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
 3255     &balance_interval, 0,
 3256     "Average period in stathz ticks to run the long-term balancer");
 3257 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
 3258     "Attempts to steal work from other cores before idling");
 3259 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
 3260     "Minimum load on remote CPU before we'll steal");
 3261 SYSCTL_INT(_kern_sched, OID_AUTO, trysteal_limit, CTLFLAG_RW, &trysteal_limit,
 3262     0, "Topological distance limit for stealing threads in sched_switch()");
 3263 SYSCTL_INT(_kern_sched, OID_AUTO, always_steal, CTLFLAG_RW, &always_steal, 0,
 3264     "Always run the stealer from the idle thread");
 3265 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
 3266     CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
 3267     "XML dump of detected CPU topology");
 3268 #endif
 3269 
 3270 /* ps compat.  All cpu percentages from ULE are weighted. */
 3271 static int ccpu = 0;
 3272 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0,
 3273     "Decay factor used for updating %CPU in 4BSD scheduler");

Cache object: 1547d5870260813f5078470c4e5c8463


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.