The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sched_ule.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/5.2/sys/kern/sched_ule.c 123251 2003-12-07 18:21:53Z peter $");
   29 
   30 #include <sys/param.h>
   31 #include <sys/systm.h>
   32 #include <sys/kernel.h>
   33 #include <sys/ktr.h>
   34 #include <sys/lock.h>
   35 #include <sys/mutex.h>
   36 #include <sys/proc.h>
   37 #include <sys/resource.h>
   38 #include <sys/resourcevar.h>
   39 #include <sys/sched.h>
   40 #include <sys/smp.h>
   41 #include <sys/sx.h>
   42 #include <sys/sysctl.h>
   43 #include <sys/sysproto.h>
   44 #include <sys/vmmeter.h>
   45 #ifdef DDB
   46 #include <ddb/ddb.h>
   47 #endif
   48 #ifdef KTRACE
   49 #include <sys/uio.h>
   50 #include <sys/ktrace.h>
   51 #endif
   52 
   53 #include <machine/cpu.h>
   54 #include <machine/smp.h>
   55 
   56 #define KTR_ULE         KTR_NFS
   57 
   58 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
   59 /* XXX This is bogus compatability crap for ps */
   60 static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
   61 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
   62 
   63 static void sched_setup(void *dummy);
   64 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
   65 
   66 static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
   67 
   68 static int sched_strict;
   69 SYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");
   70 
   71 static int slice_min = 1;
   72 SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
   73 
   74 static int slice_max = 10;
   75 SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
   76 
   77 int realstathz;
   78 int tickincr = 1;
   79 
   80 #ifdef SMP
   81 /* Callout to handle load balancing SMP systems. */
   82 static struct callout kseq_lb_callout;
   83 #endif
   84 
   85 /*
   86  * These datastructures are allocated within their parent datastructure but
   87  * are scheduler specific.
   88  */
   89 
   90 struct ke_sched {
   91         int             ske_slice;
   92         struct runq     *ske_runq;
   93         /* The following variables are only used for pctcpu calculation */
   94         int             ske_ltick;      /* Last tick that we were running on */
   95         int             ske_ftick;      /* First tick that we were running on */
   96         int             ske_ticks;      /* Tick count */
   97         /* CPU that we have affinity for. */
   98         u_char          ske_cpu;
   99 };
  100 #define ke_slice        ke_sched->ske_slice
  101 #define ke_runq         ke_sched->ske_runq
  102 #define ke_ltick        ke_sched->ske_ltick
  103 #define ke_ftick        ke_sched->ske_ftick
  104 #define ke_ticks        ke_sched->ske_ticks
  105 #define ke_cpu          ke_sched->ske_cpu
  106 #define ke_assign       ke_procq.tqe_next
  107 
  108 #define KEF_ASSIGNED    KEF_SCHED0      /* KSE is being migrated. */
  109 #define KEF_BOUND       KEF_SCHED1      /* KSE can not migrate. */
  110 
  111 struct kg_sched {
  112         int     skg_slptime;            /* Number of ticks we vol. slept */
  113         int     skg_runtime;            /* Number of ticks we were running */
  114 };
  115 #define kg_slptime      kg_sched->skg_slptime
  116 #define kg_runtime      kg_sched->skg_runtime
  117 
  118 struct td_sched {
  119         int     std_slptime;
  120 };
  121 #define td_slptime      td_sched->std_slptime
  122 
  123 struct td_sched td_sched;
  124 struct ke_sched ke_sched;
  125 struct kg_sched kg_sched;
  126 
  127 struct ke_sched *kse0_sched = &ke_sched;
  128 struct kg_sched *ksegrp0_sched = &kg_sched;
  129 struct p_sched *proc0_sched = NULL;
  130 struct td_sched *thread0_sched = &td_sched;
  131 
  132 /*
  133  * The priority is primarily determined by the interactivity score.  Thus, we
  134  * give lower(better) priorities to kse groups that use less CPU.  The nice
  135  * value is then directly added to this to allow nice to have some effect
  136  * on latency.
  137  *
  138  * PRI_RANGE:   Total priority range for timeshare threads.
  139  * PRI_NRESV:   Number of nice values.
  140  * PRI_BASE:    The start of the dynamic range.
  141  */
  142 #define SCHED_PRI_RANGE         (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
  143 #define SCHED_PRI_NRESV         ((PRIO_MAX - PRIO_MIN) + 1)
  144 #define SCHED_PRI_NHALF         (SCHED_PRI_NRESV / 2)
  145 #define SCHED_PRI_BASE          (PRI_MIN_TIMESHARE)
  146 #define SCHED_PRI_INTERACT(score)                                       \
  147     ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
  148 
  149 /*
  150  * These determine the interactivity of a process.
  151  *
  152  * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
  153  *              before throttling back.
  154  * SLP_RUN_FORK:        Maximum slp+run time to inherit at fork time.
  155  * INTERACT_MAX:        Maximum interactivity value.  Smaller is better.
  156  * INTERACT_THRESH:     Threshhold for placement on the current runq.
  157  */
  158 #define SCHED_SLP_RUN_MAX       ((hz * 5) << 10)
  159 #define SCHED_SLP_RUN_FORK      ((hz / 2) << 10)
  160 #define SCHED_INTERACT_MAX      (100)
  161 #define SCHED_INTERACT_HALF     (SCHED_INTERACT_MAX / 2)
  162 #define SCHED_INTERACT_THRESH   (30)
  163 
  164 /*
  165  * These parameters and macros determine the size of the time slice that is
  166  * granted to each thread.
  167  *
  168  * SLICE_MIN:   Minimum time slice granted, in units of ticks.
  169  * SLICE_MAX:   Maximum time slice granted.
  170  * SLICE_RANGE: Range of available time slices scaled by hz.
  171  * SLICE_SCALE: The number slices granted per val in the range of [0, max].
  172  * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
  173  * SLICE_NTHRESH:       The nice cutoff point for slice assignment.
  174  */
  175 #define SCHED_SLICE_MIN                 (slice_min)
  176 #define SCHED_SLICE_MAX                 (slice_max)
  177 #define SCHED_SLICE_NTHRESH     (SCHED_PRI_NHALF - 1)
  178 #define SCHED_SLICE_RANGE               (SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
  179 #define SCHED_SLICE_SCALE(val, max)     (((val) * SCHED_SLICE_RANGE) / (max))
  180 #define SCHED_SLICE_NICE(nice)                                          \
  181     (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
  182 
  183 /*
  184  * This macro determines whether or not the kse belongs on the current or
  185  * next run queue.
  186  */
  187 #define SCHED_INTERACTIVE(kg)                                           \
  188     (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
  189 #define SCHED_CURR(kg, ke)                                              \
  190     (ke->ke_thread->td_priority != kg->kg_user_pri ||                   \
  191     SCHED_INTERACTIVE(kg))
  192 
  193 /*
  194  * Cpu percentage computation macros and defines.
  195  *
  196  * SCHED_CPU_TIME:      Number of seconds to average the cpu usage across.
  197  * SCHED_CPU_TICKS:     Number of hz ticks to average the cpu usage across.
  198  */
  199 
  200 #define SCHED_CPU_TIME  10
  201 #define SCHED_CPU_TICKS (hz * SCHED_CPU_TIME)
  202 
  203 /*
  204  * kseq - per processor runqs and statistics.
  205  */
  206 
  207 #define KSEQ_NCLASS     (PRI_IDLE + 1)  /* Number of run classes. */
  208 
  209 struct kseq {
  210         struct runq     ksq_idle;               /* Queue of IDLE threads. */
  211         struct runq     ksq_timeshare[2];       /* Run queues for !IDLE. */
  212         struct runq     *ksq_next;              /* Next timeshare queue. */
  213         struct runq     *ksq_curr;              /* Current queue. */
  214         int             ksq_load_timeshare;     /* Load for timeshare. */
  215         int             ksq_load;               /* Aggregate load. */
  216         short           ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
  217         short           ksq_nicemin;            /* Least nice. */
  218 #ifdef SMP
  219         int             ksq_load_transferable;  /* kses that may be migrated. */
  220         int             ksq_idled;
  221         int             ksq_cpus;       /* Count of CPUs in this kseq. */
  222         volatile struct kse *ksq_assigned;      /* assigned by another CPU. */
  223 #endif
  224 };
  225 
  226 /*
  227  * One kse queue per processor.
  228  */
  229 #ifdef SMP
  230 static int kseq_idle;
  231 static struct kseq      kseq_cpu[MAXCPU];
  232 static struct kseq      *kseq_idmap[MAXCPU];
  233 #define KSEQ_SELF()     (kseq_idmap[PCPU_GET(cpuid)])
  234 #define KSEQ_CPU(x)     (kseq_idmap[(x)])
  235 #else
  236 static struct kseq      kseq_cpu;
  237 #define KSEQ_SELF()     (&kseq_cpu)
  238 #define KSEQ_CPU(x)     (&kseq_cpu)
  239 #endif
  240 
  241 static void sched_slice(struct kse *ke);
  242 static void sched_priority(struct ksegrp *kg);
  243 static int sched_interact_score(struct ksegrp *kg);
  244 static void sched_interact_update(struct ksegrp *kg);
  245 static void sched_interact_fork(struct ksegrp *kg);
  246 static void sched_pctcpu_update(struct kse *ke);
  247 
  248 /* Operations on per processor queues */
  249 static struct kse * kseq_choose(struct kseq *kseq);
  250 static void kseq_setup(struct kseq *kseq);
  251 static void kseq_load_add(struct kseq *kseq, struct kse *ke);
  252 static void kseq_load_rem(struct kseq *kseq, struct kse *ke);
  253 static __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
  254 static __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
  255 static void kseq_nice_add(struct kseq *kseq, int nice);
  256 static void kseq_nice_rem(struct kseq *kseq, int nice);
  257 void kseq_print(int cpu);
  258 #ifdef SMP
  259 static struct kse *runq_steal(struct runq *rq);
  260 static void sched_balance(void *arg);
  261 static void kseq_move(struct kseq *from, int cpu);
  262 static __inline void kseq_setidle(struct kseq *kseq);
  263 static void kseq_notify(struct kse *ke, int cpu);
  264 static void kseq_assign(struct kseq *);
  265 static struct kse *kseq_steal(struct kseq *kseq);
  266 #define KSE_CAN_MIGRATE(ke, class)                                      \
  267     ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&          \
  268     ((ke)->ke_flags & KEF_BOUND) == 0)
  269 #endif
  270 
  271 void
  272 kseq_print(int cpu)
  273 {
  274         struct kseq *kseq;
  275         int i;
  276 
  277         kseq = KSEQ_CPU(cpu);
  278 
  279         printf("kseq:\n");
  280         printf("\tload:           %d\n", kseq->ksq_load);
  281         printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
  282 #ifdef SMP
  283         printf("\tload transferable: %d\n", kseq->ksq_load_transferable);
  284 #endif
  285         printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
  286         printf("\tnice counts:\n");
  287         for (i = 0; i < SCHED_PRI_NRESV; i++)
  288                 if (kseq->ksq_nice[i])
  289                         printf("\t\t%d = %d\n",
  290                             i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
  291 }
  292 
  293 static __inline void
  294 kseq_runq_add(struct kseq *kseq, struct kse *ke)
  295 {
  296 #ifdef SMP
  297         if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
  298                 kseq->ksq_load_transferable++;
  299 #endif
  300         runq_add(ke->ke_runq, ke);
  301 }
  302 
  303 static __inline void
  304 kseq_runq_rem(struct kseq *kseq, struct kse *ke)
  305 {
  306 #ifdef SMP
  307         if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
  308                 kseq->ksq_load_transferable--;
  309 #endif
  310         runq_remove(ke->ke_runq, ke);
  311 }
  312 
  313 static void
  314 kseq_load_add(struct kseq *kseq, struct kse *ke)
  315 {
  316         int class;
  317         mtx_assert(&sched_lock, MA_OWNED);
  318         class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
  319         if (class == PRI_TIMESHARE)
  320                 kseq->ksq_load_timeshare++;
  321         kseq->ksq_load++;
  322         if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
  323                 CTR6(KTR_ULE,
  324                     "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
  325                     ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
  326                     ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
  327         if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
  328                 kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
  329 }
  330 
  331 static void
  332 kseq_load_rem(struct kseq *kseq, struct kse *ke)
  333 {
  334         int class;
  335         mtx_assert(&sched_lock, MA_OWNED);
  336         class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
  337         if (class == PRI_TIMESHARE)
  338                 kseq->ksq_load_timeshare--;
  339         kseq->ksq_load--;
  340         ke->ke_runq = NULL;
  341         if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
  342                 kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
  343 }
  344 
  345 static void
  346 kseq_nice_add(struct kseq *kseq, int nice)
  347 {
  348         mtx_assert(&sched_lock, MA_OWNED);
  349         /* Normalize to zero. */
  350         kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
  351         if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
  352                 kseq->ksq_nicemin = nice;
  353 }
  354 
  355 static void
  356 kseq_nice_rem(struct kseq *kseq, int nice) 
  357 {
  358         int n;
  359 
  360         mtx_assert(&sched_lock, MA_OWNED);
  361         /* Normalize to zero. */
  362         n = nice + SCHED_PRI_NHALF;
  363         kseq->ksq_nice[n]--;
  364         KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
  365 
  366         /*
  367          * If this wasn't the smallest nice value or there are more in
  368          * this bucket we can just return.  Otherwise we have to recalculate
  369          * the smallest nice.
  370          */
  371         if (nice != kseq->ksq_nicemin ||
  372             kseq->ksq_nice[n] != 0 ||
  373             kseq->ksq_load_timeshare == 0)
  374                 return;
  375 
  376         for (; n < SCHED_PRI_NRESV; n++)
  377                 if (kseq->ksq_nice[n]) {
  378                         kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
  379                         return;
  380                 }
  381 }
  382 
  383 #ifdef SMP
  384 /*
  385  * sched_balance is a simple CPU load balancing algorithm.  It operates by
  386  * finding the least loaded and most loaded cpu and equalizing their load
  387  * by migrating some processes.
  388  *
  389  * Dealing only with two CPUs at a time has two advantages.  Firstly, most
  390  * installations will only have 2 cpus.  Secondly, load balancing too much at
  391  * once can have an unpleasant effect on the system.  The scheduler rarely has
  392  * enough information to make perfect decisions.  So this algorithm chooses
  393  * algorithm simplicity and more gradual effects on load in larger systems.
  394  *
  395  * It could be improved by considering the priorities and slices assigned to
  396  * each task prior to balancing them.  There are many pathological cases with
  397  * any approach and so the semi random algorithm below may work as well as any.
  398  *
  399  */
  400 static void
  401 sched_balance(void *arg)
  402 {
  403         struct kseq *kseq;
  404         int high_load;
  405         int low_load;
  406         int high_cpu;
  407         int low_cpu;
  408         int move;
  409         int diff;
  410         int i;
  411 
  412         high_cpu = 0;
  413         low_cpu = 0;
  414         high_load = 0;
  415         low_load = -1;
  416 
  417         mtx_lock_spin(&sched_lock);
  418         if (smp_started == 0)
  419                 goto out;
  420 
  421         for (i = 0; i <= mp_maxid; i++) {
  422                 if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
  423                         continue;
  424                 kseq = KSEQ_CPU(i);
  425                 if (kseq->ksq_load_transferable > high_load) {
  426                         high_load = kseq->ksq_load_transferable;
  427                         high_cpu = i;
  428                 }
  429                 if (low_load == -1 || kseq->ksq_load < low_load) {
  430                         low_load = kseq->ksq_load;
  431                         low_cpu = i;
  432                 }
  433         }
  434         kseq = KSEQ_CPU(high_cpu);
  435         /*
  436          * Nothing to do.
  437          */
  438         if (high_load == 0 || low_load >= kseq->ksq_load)
  439                 goto out;
  440         /*
  441          * Determine what the imbalance is and then adjust that to how many
  442          * kses we actually have to give up (load_transferable).
  443          */
  444         diff = kseq->ksq_load - low_load;
  445         move = diff / 2;
  446         if (diff & 0x1)
  447                 move++;
  448         move = min(move, high_load);
  449         for (i = 0; i < move; i++)
  450                 kseq_move(kseq, low_cpu);
  451 out:
  452         mtx_unlock_spin(&sched_lock);
  453         callout_reset(&kseq_lb_callout, hz, sched_balance, NULL);
  454 
  455         return;
  456 }
  457 
  458 static void
  459 kseq_move(struct kseq *from, int cpu)
  460 {
  461         struct kse *ke;
  462 
  463         ke = kseq_steal(from);
  464         ke->ke_state = KES_THREAD;
  465         kseq_runq_rem(from, ke);
  466         kseq_load_rem(from, ke);
  467 
  468         ke->ke_cpu = cpu;
  469         kseq_notify(ke, cpu);
  470 }
  471 
  472 static __inline void
  473 kseq_setidle(struct kseq *kseq)
  474 {
  475         if (kseq->ksq_idled)
  476                 return;
  477         kseq->ksq_idled = 1;
  478         atomic_set_int(&kseq_idle, PCPU_GET(cpumask));
  479         return;
  480 }
  481 
  482 static void
  483 kseq_assign(struct kseq *kseq)
  484 {
  485         struct kse *nke;
  486         struct kse *ke;
  487 
  488         do {
  489                 (volatile struct kse *)ke = kseq->ksq_assigned;
  490         } while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
  491         for (; ke != NULL; ke = nke) {
  492                 nke = ke->ke_assign;
  493                 ke->ke_flags &= ~KEF_ASSIGNED;
  494                 sched_add(ke->ke_thread);
  495         }
  496 }
  497 
  498 static void
  499 kseq_notify(struct kse *ke, int cpu)
  500 {
  501         struct kseq *kseq;
  502         struct thread *td;
  503         struct pcpu *pcpu;
  504 
  505         ke->ke_flags |= KEF_ASSIGNED;
  506 
  507         kseq = KSEQ_CPU(cpu);
  508 
  509         /*
  510          * Place a KSE on another cpu's queue and force a resched.
  511          */
  512         do {
  513                 (volatile struct kse *)ke->ke_assign = kseq->ksq_assigned;
  514         } while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
  515         pcpu = pcpu_find(cpu);
  516         td = pcpu->pc_curthread;
  517         if (ke->ke_thread->td_priority < td->td_priority ||
  518             td == pcpu->pc_idlethread) {
  519                 td->td_flags |= TDF_NEEDRESCHED;
  520                 ipi_selected(1 << cpu, IPI_AST);
  521         }
  522 }
  523 
  524 static struct kse *
  525 runq_steal(struct runq *rq)
  526 {
  527         struct rqhead *rqh;
  528         struct rqbits *rqb;
  529         struct kse *ke;
  530         int word;
  531         int bit;
  532 
  533         mtx_assert(&sched_lock, MA_OWNED);
  534         rqb = &rq->rq_status;
  535         for (word = 0; word < RQB_LEN; word++) {
  536                 if (rqb->rqb_bits[word] == 0)
  537                         continue;
  538                 for (bit = 0; bit < RQB_BPW; bit++) {
  539                         if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
  540                                 continue;
  541                         rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
  542                         TAILQ_FOREACH(ke, rqh, ke_procq) {
  543                                 if (KSE_CAN_MIGRATE(ke,
  544                                     PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
  545                                         return (ke);
  546                         }
  547                 }
  548         }
  549         return (NULL);
  550 }
  551 
  552 static struct kse *
  553 kseq_steal(struct kseq *kseq)
  554 {
  555         struct kse *ke;
  556 
  557         if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
  558                 return (ke);
  559         if ((ke = runq_steal(kseq->ksq_next)) != NULL)
  560                 return (ke);
  561         return (runq_steal(&kseq->ksq_idle));
  562 }
  563 #endif  /* SMP */
  564 
  565 /*
  566  * Pick the highest priority task we have and return it.
  567  */
  568 
  569 static struct kse *
  570 kseq_choose(struct kseq *kseq)
  571 {
  572         struct kse *ke;
  573         struct runq *swap;
  574 
  575         mtx_assert(&sched_lock, MA_OWNED);
  576         swap = NULL;
  577 
  578         for (;;) {
  579                 ke = runq_choose(kseq->ksq_curr);
  580                 if (ke == NULL) {
  581                         /*
  582                          * We already swaped once and didn't get anywhere.
  583                          */
  584                         if (swap)
  585                                 break;
  586                         swap = kseq->ksq_curr;
  587                         kseq->ksq_curr = kseq->ksq_next;
  588                         kseq->ksq_next = swap;
  589                         continue;
  590                 }
  591                 /*
  592                  * If we encounter a slice of 0 the kse is in a
  593                  * TIMESHARE kse group and its nice was too far out
  594                  * of the range that receives slices. 
  595                  */
  596                 if (ke->ke_slice == 0) {
  597                         runq_remove(ke->ke_runq, ke);
  598                         sched_slice(ke);
  599                         ke->ke_runq = kseq->ksq_next;
  600                         runq_add(ke->ke_runq, ke);
  601                         continue;
  602                 }
  603                 return (ke);
  604         }
  605 
  606         return (runq_choose(&kseq->ksq_idle));
  607 }
  608 
  609 static void
  610 kseq_setup(struct kseq *kseq)
  611 {
  612         runq_init(&kseq->ksq_timeshare[0]);
  613         runq_init(&kseq->ksq_timeshare[1]);
  614         runq_init(&kseq->ksq_idle);
  615         kseq->ksq_curr = &kseq->ksq_timeshare[0];
  616         kseq->ksq_next = &kseq->ksq_timeshare[1];
  617         kseq->ksq_load = 0;
  618         kseq->ksq_load_timeshare = 0;
  619 #ifdef SMP
  620         kseq->ksq_load_transferable = 0;
  621         kseq->ksq_idled = 0;
  622         kseq->ksq_assigned = NULL;
  623 #endif
  624 }
  625 
  626 static void
  627 sched_setup(void *dummy)
  628 {
  629 #ifdef SMP
  630         int i;
  631 #endif
  632 
  633         slice_min = (hz/100);   /* 10ms */
  634         slice_max = (hz/7);     /* ~140ms */
  635 
  636 #ifdef SMP
  637         /* init kseqs */
  638         /* Create the idmap. */
  639 #ifdef ULE_HTT_EXPERIMENTAL
  640         if (smp_topology == NULL) {
  641 #else
  642         if (1) {
  643 #endif
  644                 for (i = 0; i < MAXCPU; i++) {
  645                         kseq_setup(&kseq_cpu[i]);
  646                         kseq_idmap[i] = &kseq_cpu[i];
  647                         kseq_cpu[i].ksq_cpus = 1;
  648                 }
  649         } else {
  650                 int j;
  651 
  652                 for (i = 0; i < smp_topology->ct_count; i++) {
  653                         struct cpu_group *cg;
  654 
  655                         cg = &smp_topology->ct_group[i];
  656                         kseq_setup(&kseq_cpu[i]);
  657 
  658                         for (j = 0; j < MAXCPU; j++)
  659                                 if ((cg->cg_mask & (1 << j)) != 0)
  660                                         kseq_idmap[j] = &kseq_cpu[i];
  661                         kseq_cpu[i].ksq_cpus = cg->cg_count;
  662                 }
  663         }
  664         callout_init(&kseq_lb_callout, CALLOUT_MPSAFE);
  665         sched_balance(NULL);
  666 #else
  667         kseq_setup(KSEQ_SELF());
  668 #endif
  669         mtx_lock_spin(&sched_lock);
  670         kseq_load_add(KSEQ_SELF(), &kse0);
  671         mtx_unlock_spin(&sched_lock);
  672 }
  673 
  674 /*
  675  * Scale the scheduling priority according to the "interactivity" of this
  676  * process.
  677  */
  678 static void
  679 sched_priority(struct ksegrp *kg)
  680 {
  681         int pri;
  682 
  683         if (kg->kg_pri_class != PRI_TIMESHARE)
  684                 return;
  685 
  686         pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
  687         pri += SCHED_PRI_BASE;
  688         pri += kg->kg_nice;
  689 
  690         if (pri > PRI_MAX_TIMESHARE)
  691                 pri = PRI_MAX_TIMESHARE;
  692         else if (pri < PRI_MIN_TIMESHARE)
  693                 pri = PRI_MIN_TIMESHARE;
  694 
  695         kg->kg_user_pri = pri;
  696 
  697         return;
  698 }
  699 
  700 /*
  701  * Calculate a time slice based on the properties of the kseg and the runq
  702  * that we're on.  This is only for PRI_TIMESHARE ksegrps.
  703  */
  704 static void
  705 sched_slice(struct kse *ke)
  706 {
  707         struct kseq *kseq;
  708         struct ksegrp *kg;
  709 
  710         kg = ke->ke_ksegrp;
  711         kseq = KSEQ_CPU(ke->ke_cpu);
  712 
  713         /*
  714          * Rationale:
  715          * KSEs in interactive ksegs get the minimum slice so that we
  716          * quickly notice if it abuses its advantage.
  717          *
  718          * KSEs in non-interactive ksegs are assigned a slice that is
  719          * based on the ksegs nice value relative to the least nice kseg
  720          * on the run queue for this cpu.
  721          *
  722          * If the KSE is less nice than all others it gets the maximum
  723          * slice and other KSEs will adjust their slice relative to
  724          * this when they first expire.
  725          *
  726          * There is 20 point window that starts relative to the least
  727          * nice kse on the run queue.  Slice size is determined by
  728          * the kse distance from the last nice ksegrp.
  729          *
  730          * If the kse is outside of the window it will get no slice
  731          * and will be reevaluated each time it is selected on the
  732          * run queue.  The exception to this is nice 0 ksegs when
  733          * a nice -20 is running.  They are always granted a minimum
  734          * slice.
  735          */
  736         if (!SCHED_INTERACTIVE(kg)) {
  737                 int nice;
  738 
  739                 nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
  740                 if (kseq->ksq_load_timeshare == 0 ||
  741                     kg->kg_nice < kseq->ksq_nicemin)
  742                         ke->ke_slice = SCHED_SLICE_MAX;
  743                 else if (nice <= SCHED_SLICE_NTHRESH)
  744                         ke->ke_slice = SCHED_SLICE_NICE(nice);
  745                 else if (kg->kg_nice == 0)
  746                         ke->ke_slice = SCHED_SLICE_MIN;
  747                 else
  748                         ke->ke_slice = 0;
  749         } else
  750                 ke->ke_slice = SCHED_SLICE_MIN;
  751 
  752         CTR6(KTR_ULE,
  753             "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
  754             ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
  755             kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
  756 
  757         return;
  758 }
  759 
  760 /*
  761  * This routine enforces a maximum limit on the amount of scheduling history
  762  * kept.  It is called after either the slptime or runtime is adjusted.
  763  * This routine will not operate correctly when slp or run times have been
  764  * adjusted to more than double their maximum.
  765  */
  766 static void
  767 sched_interact_update(struct ksegrp *kg)
  768 {
  769         int sum;
  770 
  771         sum = kg->kg_runtime + kg->kg_slptime;
  772         if (sum < SCHED_SLP_RUN_MAX)
  773                 return;
  774         /*
  775          * If we have exceeded by more than 1/5th then the algorithm below
  776          * will not bring us back into range.  Dividing by two here forces
  777          * us into the range of [3/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
  778          */
  779         if (sum > (SCHED_INTERACT_MAX / 5) * 6) {
  780                 kg->kg_runtime /= 2;
  781                 kg->kg_slptime /= 2;
  782                 return;
  783         }
  784         kg->kg_runtime = (kg->kg_runtime / 5) * 4;
  785         kg->kg_slptime = (kg->kg_slptime / 5) * 4;
  786 }
  787 
  788 static void
  789 sched_interact_fork(struct ksegrp *kg)
  790 {
  791         int ratio;
  792         int sum;
  793 
  794         sum = kg->kg_runtime + kg->kg_slptime;
  795         if (sum > SCHED_SLP_RUN_FORK) {
  796                 ratio = sum / SCHED_SLP_RUN_FORK;
  797                 kg->kg_runtime /= ratio;
  798                 kg->kg_slptime /= ratio;
  799         }
  800 }
  801 
  802 static int
  803 sched_interact_score(struct ksegrp *kg)
  804 {
  805         int div;
  806 
  807         if (kg->kg_runtime > kg->kg_slptime) {
  808                 div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
  809                 return (SCHED_INTERACT_HALF +
  810                     (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
  811         } if (kg->kg_slptime > kg->kg_runtime) {
  812                 div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
  813                 return (kg->kg_runtime / div);
  814         }
  815 
  816         /*
  817          * This can happen if slptime and runtime are 0.
  818          */
  819         return (0);
  820 
  821 }
  822 
  823 /*
  824  * This is only somewhat accurate since given many processes of the same
  825  * priority they will switch when their slices run out, which will be
  826  * at most SCHED_SLICE_MAX.
  827  */
  828 int
  829 sched_rr_interval(void)
  830 {
  831         return (SCHED_SLICE_MAX);
  832 }
  833 
  834 static void
  835 sched_pctcpu_update(struct kse *ke)
  836 {
  837         /*
  838          * Adjust counters and watermark for pctcpu calc.
  839          */
  840         if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
  841                 /*
  842                  * Shift the tick count out so that the divide doesn't
  843                  * round away our results.
  844                  */
  845                 ke->ke_ticks <<= 10;
  846                 ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
  847                             SCHED_CPU_TICKS;
  848                 ke->ke_ticks >>= 10;
  849         } else
  850                 ke->ke_ticks = 0;
  851         ke->ke_ltick = ticks;
  852         ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
  853 }
  854 
  855 void
  856 sched_prio(struct thread *td, u_char prio)
  857 {
  858         struct kse *ke;
  859 
  860         ke = td->td_kse;
  861         mtx_assert(&sched_lock, MA_OWNED);
  862         if (TD_ON_RUNQ(td)) {
  863                 /*
  864                  * If the priority has been elevated due to priority
  865                  * propagation, we may have to move ourselves to a new
  866                  * queue.  We still call adjustrunqueue below in case kse
  867                  * needs to fix things up.
  868                  */
  869                 if (prio < td->td_priority && ke &&
  870                     (ke->ke_flags & KEF_ASSIGNED) == 0 &&
  871                     ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
  872                         runq_remove(ke->ke_runq, ke);
  873                         ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
  874                         runq_add(ke->ke_runq, ke);
  875                 }
  876                 adjustrunqueue(td, prio);
  877         } else
  878                 td->td_priority = prio;
  879 }
  880 
  881 void
  882 sched_switch(struct thread *td)
  883 {
  884         struct thread *newtd;
  885         struct kse *ke;
  886 
  887         mtx_assert(&sched_lock, MA_OWNED);
  888 
  889         ke = td->td_kse;
  890 
  891         td->td_last_kse = ke;
  892         td->td_lastcpu = td->td_oncpu;
  893         td->td_oncpu = NOCPU;
  894         td->td_flags &= ~TDF_NEEDRESCHED;
  895 
  896         if (TD_IS_RUNNING(td)) {
  897                 if (td->td_proc->p_flag & P_SA) {
  898                         kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
  899                         setrunqueue(td);
  900                 } else {
  901                         /*
  902                          * This queue is always correct except for idle threads
  903                          * which have a higher priority due to priority
  904                          * propagation.
  905                          */
  906                         if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE) {
  907                                 if (td->td_priority < PRI_MIN_IDLE)
  908                                         ke->ke_runq = KSEQ_SELF()->ksq_curr;
  909                                 else
  910                                         ke->ke_runq = &KSEQ_SELF()->ksq_idle;
  911                         }
  912                         kseq_runq_add(KSEQ_SELF(), ke);
  913                 }
  914         } else {
  915                 if (ke->ke_runq)
  916                         kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
  917                 /*
  918                  * We will not be on the run queue. So we must be
  919                  * sleeping or similar.
  920                  */
  921                 if (td->td_proc->p_flag & P_SA)
  922                         kse_reassign(ke);
  923         }
  924         newtd = choosethread();
  925         if (td != newtd)
  926                 cpu_switch(td, newtd);
  927         sched_lock.mtx_lock = (uintptr_t)td;
  928 
  929         td->td_oncpu = PCPU_GET(cpuid);
  930 }
  931 
  932 void
  933 sched_nice(struct ksegrp *kg, int nice)
  934 {
  935         struct kse *ke;
  936         struct thread *td;
  937         struct kseq *kseq;
  938 
  939         PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
  940         mtx_assert(&sched_lock, MA_OWNED);
  941         /*
  942          * We need to adjust the nice counts for running KSEs.
  943          */
  944         if (kg->kg_pri_class == PRI_TIMESHARE)
  945                 FOREACH_KSE_IN_GROUP(kg, ke) {
  946                         if (ke->ke_runq == NULL)
  947                                 continue;
  948                         kseq = KSEQ_CPU(ke->ke_cpu);
  949                         kseq_nice_rem(kseq, kg->kg_nice);
  950                         kseq_nice_add(kseq, nice);
  951                 }
  952         kg->kg_nice = nice;
  953         sched_priority(kg);
  954         FOREACH_THREAD_IN_GROUP(kg, td)
  955                 td->td_flags |= TDF_NEEDRESCHED;
  956 }
  957 
  958 void
  959 sched_sleep(struct thread *td, u_char prio)
  960 {
  961         mtx_assert(&sched_lock, MA_OWNED);
  962 
  963         td->td_slptime = ticks;
  964         td->td_priority = prio;
  965 
  966         CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
  967             td->td_kse, td->td_slptime);
  968 }
  969 
  970 void
  971 sched_wakeup(struct thread *td)
  972 {
  973         mtx_assert(&sched_lock, MA_OWNED);
  974 
  975         /*
  976          * Let the kseg know how long we slept for.  This is because process
  977          * interactivity behavior is modeled in the kseg.
  978          */
  979         if (td->td_slptime) {
  980                 struct ksegrp *kg;
  981                 int hzticks;
  982 
  983                 kg = td->td_ksegrp;
  984                 hzticks = (ticks - td->td_slptime) << 10;
  985                 if (hzticks >= SCHED_SLP_RUN_MAX) {
  986                         kg->kg_slptime = SCHED_SLP_RUN_MAX;
  987                         kg->kg_runtime = 1;
  988                 } else {
  989                         kg->kg_slptime += hzticks;
  990                         sched_interact_update(kg);
  991                 }
  992                 sched_priority(kg);
  993                 if (td->td_kse)
  994                         sched_slice(td->td_kse);
  995                 CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
  996                     td->td_kse, hzticks);
  997                 td->td_slptime = 0;
  998         }
  999         setrunqueue(td);
 1000 }
 1001 
 1002 /*
 1003  * Penalize the parent for creating a new child and initialize the child's
 1004  * priority.
 1005  */
 1006 void
 1007 sched_fork(struct proc *p, struct proc *p1)
 1008 {
 1009 
 1010         mtx_assert(&sched_lock, MA_OWNED);
 1011 
 1012         sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
 1013         sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
 1014         sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
 1015 }
 1016 
 1017 void
 1018 sched_fork_kse(struct kse *ke, struct kse *child)
 1019 {
 1020 
 1021         child->ke_slice = 1;    /* Attempt to quickly learn interactivity. */
 1022         child->ke_cpu = ke->ke_cpu;
 1023         child->ke_runq = NULL;
 1024 
 1025         /* Grab our parents cpu estimation information. */
 1026         child->ke_ticks = ke->ke_ticks;
 1027         child->ke_ltick = ke->ke_ltick;
 1028         child->ke_ftick = ke->ke_ftick;
 1029 }
 1030 
 1031 void
 1032 sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
 1033 {
 1034         PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
 1035 
 1036         child->kg_slptime = kg->kg_slptime;
 1037         child->kg_runtime = kg->kg_runtime;
 1038         child->kg_user_pri = kg->kg_user_pri;
 1039         child->kg_nice = kg->kg_nice;
 1040         sched_interact_fork(child);
 1041         kg->kg_runtime += tickincr << 10;
 1042         sched_interact_update(kg);
 1043 
 1044         CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
 1045             kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime, 
 1046             child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
 1047 }
 1048 
 1049 void
 1050 sched_fork_thread(struct thread *td, struct thread *child)
 1051 {
 1052 }
 1053 
 1054 void
 1055 sched_class(struct ksegrp *kg, int class)
 1056 {
 1057         struct kseq *kseq;
 1058         struct kse *ke;
 1059         int nclass;
 1060         int oclass;
 1061 
 1062         mtx_assert(&sched_lock, MA_OWNED);
 1063         if (kg->kg_pri_class == class)
 1064                 return;
 1065 
 1066         nclass = PRI_BASE(class);
 1067         oclass = PRI_BASE(kg->kg_pri_class);
 1068         FOREACH_KSE_IN_GROUP(kg, ke) {
 1069                 if (ke->ke_state != KES_ONRUNQ &&
 1070                     ke->ke_state != KES_THREAD)
 1071                         continue;
 1072                 kseq = KSEQ_CPU(ke->ke_cpu);
 1073 
 1074 #ifdef SMP
 1075                 /*
 1076                  * On SMP if we're on the RUNQ we must adjust the transferable
 1077                  * count because could be changing to or from an interrupt
 1078                  * class.
 1079                  */
 1080                 if (ke->ke_state == KES_ONRUNQ) {
 1081                         if (KSE_CAN_MIGRATE(ke, oclass))
 1082                                 kseq->ksq_load_transferable--;
 1083                         if (KSE_CAN_MIGRATE(ke, nclass))
 1084                                 kseq->ksq_load_transferable++;
 1085                 }
 1086 #endif
 1087                 if (oclass == PRI_TIMESHARE) {
 1088                         kseq->ksq_load_timeshare--;
 1089                         kseq_nice_rem(kseq, kg->kg_nice);
 1090                 }
 1091                 if (nclass == PRI_TIMESHARE) {
 1092                         kseq->ksq_load_timeshare++;
 1093                         kseq_nice_add(kseq, kg->kg_nice);
 1094                 }
 1095         }
 1096 
 1097         kg->kg_pri_class = class;
 1098 }
 1099 
 1100 /*
 1101  * Return some of the child's priority and interactivity to the parent.
 1102  */
 1103 void
 1104 sched_exit(struct proc *p, struct proc *child)
 1105 {
 1106         mtx_assert(&sched_lock, MA_OWNED);
 1107         sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
 1108         sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
 1109 }
 1110 
 1111 void
 1112 sched_exit_kse(struct kse *ke, struct kse *child)
 1113 {
 1114         kseq_load_rem(KSEQ_CPU(child->ke_cpu), child);
 1115 }
 1116 
 1117 void
 1118 sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
 1119 {
 1120         /* kg->kg_slptime += child->kg_slptime; */
 1121         kg->kg_runtime += child->kg_runtime;
 1122         sched_interact_update(kg);
 1123 }
 1124 
 1125 void
 1126 sched_exit_thread(struct thread *td, struct thread *child)
 1127 {
 1128 }
 1129 
 1130 void
 1131 sched_clock(struct thread *td)
 1132 {
 1133         struct kseq *kseq;
 1134         struct ksegrp *kg;
 1135         struct kse *ke;
 1136 
 1137         /*
 1138          * sched_setup() apparently happens prior to stathz being set.  We
 1139          * need to resolve the timers earlier in the boot so we can avoid
 1140          * calculating this here.
 1141          */
 1142         if (realstathz == 0) {
 1143                 realstathz = stathz ? stathz : hz;
 1144                 tickincr = hz / realstathz;
 1145                 /*
 1146                  * XXX This does not work for values of stathz that are much
 1147                  * larger than hz.
 1148                  */
 1149                 if (tickincr == 0)
 1150                         tickincr = 1;
 1151         }
 1152 
 1153         ke = td->td_kse;
 1154         kg = ke->ke_ksegrp;
 1155 
 1156         mtx_assert(&sched_lock, MA_OWNED);
 1157         KASSERT((td != NULL), ("schedclock: null thread pointer"));
 1158 
 1159         /* Adjust ticks for pctcpu */
 1160         ke->ke_ticks++;
 1161         ke->ke_ltick = ticks;
 1162 
 1163         /* Go up to one second beyond our max and then trim back down */
 1164         if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
 1165                 sched_pctcpu_update(ke);
 1166 
 1167         if (td->td_flags & TDF_IDLETD)
 1168                 return;
 1169 
 1170         CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
 1171             ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
 1172         /*
 1173          * We only do slicing code for TIMESHARE ksegrps.
 1174          */
 1175         if (kg->kg_pri_class != PRI_TIMESHARE)
 1176                 return;
 1177         /*
 1178          * We used a tick charge it to the ksegrp so that we can compute our
 1179          * interactivity.
 1180          */
 1181         kg->kg_runtime += tickincr << 10;
 1182         sched_interact_update(kg);
 1183 
 1184         /*
 1185          * We used up one time slice.
 1186          */
 1187         if (--ke->ke_slice > 0)
 1188                 return;
 1189         /*
 1190          * We're out of time, recompute priorities and requeue.
 1191          */
 1192         kseq = KSEQ_SELF();
 1193         kseq_load_rem(kseq, ke);
 1194         sched_priority(kg);
 1195         sched_slice(ke);
 1196         if (SCHED_CURR(kg, ke))
 1197                 ke->ke_runq = kseq->ksq_curr;
 1198         else
 1199                 ke->ke_runq = kseq->ksq_next;
 1200         kseq_load_add(kseq, ke);
 1201         td->td_flags |= TDF_NEEDRESCHED;
 1202 }
 1203 
 1204 int
 1205 sched_runnable(void)
 1206 {
 1207         struct kseq *kseq;
 1208         int load;
 1209 
 1210         load = 1;
 1211 
 1212         kseq = KSEQ_SELF();
 1213 #ifdef SMP
 1214         if (kseq->ksq_assigned) {
 1215                 mtx_lock_spin(&sched_lock);
 1216                 kseq_assign(kseq);
 1217                 mtx_unlock_spin(&sched_lock);
 1218         }
 1219 #endif
 1220         if ((curthread->td_flags & TDF_IDLETD) != 0) {
 1221                 if (kseq->ksq_load > 0)
 1222                         goto out;
 1223         } else
 1224                 if (kseq->ksq_load - 1 > 0)
 1225                         goto out;
 1226         load = 0;
 1227 out:
 1228         return (load);
 1229 }
 1230 
 1231 void
 1232 sched_userret(struct thread *td)
 1233 {
 1234         struct ksegrp *kg;
 1235 
 1236         kg = td->td_ksegrp;
 1237         
 1238         if (td->td_priority != kg->kg_user_pri) {
 1239                 mtx_lock_spin(&sched_lock);
 1240                 td->td_priority = kg->kg_user_pri;
 1241                 mtx_unlock_spin(&sched_lock);
 1242         }
 1243 }
 1244 
 1245 struct kse *
 1246 sched_choose(void)
 1247 {
 1248         struct kseq *kseq;
 1249         struct kse *ke;
 1250 
 1251         mtx_assert(&sched_lock, MA_OWNED);
 1252         kseq = KSEQ_SELF();
 1253 #ifdef SMP
 1254         if (kseq->ksq_assigned)
 1255                 kseq_assign(kseq);
 1256 #endif
 1257         ke = kseq_choose(kseq);
 1258         if (ke) {
 1259 #ifdef SMP
 1260                 if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
 1261                         kseq_setidle(kseq);
 1262 #endif
 1263                 kseq_runq_rem(kseq, ke);
 1264                 ke->ke_state = KES_THREAD;
 1265 
 1266                 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
 1267                         CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
 1268                             ke, ke->ke_runq, ke->ke_slice,
 1269                             ke->ke_thread->td_priority);
 1270                 }
 1271                 return (ke);
 1272         }
 1273 #ifdef SMP
 1274         kseq_setidle(kseq);
 1275 #endif
 1276         return (NULL);
 1277 }
 1278 
 1279 void
 1280 sched_add(struct thread *td)
 1281 {
 1282         struct kseq *kseq;
 1283         struct ksegrp *kg;
 1284         struct kse *ke;
 1285         int class;
 1286 
 1287         mtx_assert(&sched_lock, MA_OWNED);
 1288         ke = td->td_kse;
 1289         kg = td->td_ksegrp;
 1290         if (ke->ke_flags & KEF_ASSIGNED)
 1291                 return;
 1292         kseq = KSEQ_SELF();
 1293         KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
 1294         KASSERT((ke->ke_thread->td_kse != NULL),
 1295             ("sched_add: No KSE on thread"));
 1296         KASSERT(ke->ke_state != KES_ONRUNQ,
 1297             ("sched_add: kse %p (%s) already in run queue", ke,
 1298             ke->ke_proc->p_comm));
 1299         KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
 1300             ("sched_add: process swapped out"));
 1301         KASSERT(ke->ke_runq == NULL,
 1302             ("sched_add: KSE %p is still assigned to a run queue", ke));
 1303 
 1304         class = PRI_BASE(kg->kg_pri_class);
 1305         switch (class) {
 1306         case PRI_ITHD:
 1307         case PRI_REALTIME:
 1308                 ke->ke_runq = kseq->ksq_curr;
 1309                 ke->ke_slice = SCHED_SLICE_MAX;
 1310                 ke->ke_cpu = PCPU_GET(cpuid);
 1311                 break;
 1312         case PRI_TIMESHARE:
 1313 #ifdef SMP
 1314                 if (ke->ke_cpu != PCPU_GET(cpuid)) {
 1315                         kseq_notify(ke, ke->ke_cpu);
 1316                         return;
 1317                 }
 1318 #endif
 1319                 if (SCHED_CURR(kg, ke))
 1320                         ke->ke_runq = kseq->ksq_curr;
 1321                 else
 1322                         ke->ke_runq = kseq->ksq_next;
 1323                 break;
 1324         case PRI_IDLE:
 1325 #ifdef SMP
 1326                 if (ke->ke_cpu != PCPU_GET(cpuid)) {
 1327                         kseq_notify(ke, ke->ke_cpu);
 1328                         return;
 1329                 }
 1330 #endif
 1331                 /*
 1332                  * This is for priority prop.
 1333                  */
 1334                 if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
 1335                         ke->ke_runq = kseq->ksq_curr;
 1336                 else
 1337                         ke->ke_runq = &kseq->ksq_idle;
 1338                 ke->ke_slice = SCHED_SLICE_MIN;
 1339                 break;
 1340         default:
 1341                 panic("Unknown pri class.");
 1342                 break;
 1343         }
 1344 #ifdef SMP
 1345         /*
 1346          * If there are any idle processors, give them our extra load.  The
 1347          * threshold at which we start to reassign kses has a large impact
 1348          * on the overall performance of the system.  Tuned too high and
 1349          * some CPUs may idle.  Too low and there will be excess migration
 1350          * and context swiches.
 1351          */
 1352         if (kseq->ksq_load_transferable > kseq->ksq_cpus &&
 1353             KSE_CAN_MIGRATE(ke, class) && kseq_idle) {
 1354                 int cpu;
 1355 
 1356                 /*
 1357                  * Multiple cpus could find this bit simultaneously but the
 1358                  * race shouldn't be terrible.
 1359                  */
 1360                 cpu = ffs(kseq_idle);
 1361                 if (cpu) {
 1362                         cpu--;
 1363                         atomic_clear_int(&kseq_idle, 1 << cpu);
 1364                         ke->ke_cpu = cpu;
 1365                         ke->ke_runq = NULL;
 1366                         kseq_notify(ke, cpu);
 1367                         return;
 1368                 }
 1369         }
 1370         if (kseq->ksq_idled &&
 1371             (class == PRI_TIMESHARE || class == PRI_REALTIME)) {
 1372                 atomic_clear_int(&kseq_idle, PCPU_GET(cpumask));
 1373                 kseq->ksq_idled = 0;
 1374         }
 1375 #endif
 1376         if (td->td_priority < curthread->td_priority)
 1377                 curthread->td_flags |= TDF_NEEDRESCHED;
 1378 
 1379         ke->ke_ksegrp->kg_runq_kses++;
 1380         ke->ke_state = KES_ONRUNQ;
 1381 
 1382         kseq_runq_add(kseq, ke);
 1383         kseq_load_add(kseq, ke);
 1384 }
 1385 
 1386 void
 1387 sched_rem(struct thread *td)
 1388 {
 1389         struct kseq *kseq;
 1390         struct kse *ke;
 1391 
 1392         ke = td->td_kse;
 1393         /*
 1394          * It is safe to just return here because sched_rem() is only ever
 1395          * used in places where we're immediately going to add the
 1396          * kse back on again.  In that case it'll be added with the correct
 1397          * thread and priority when the caller drops the sched_lock.
 1398          */
 1399         if (ke->ke_flags & KEF_ASSIGNED)
 1400                 return;
 1401         mtx_assert(&sched_lock, MA_OWNED);
 1402         KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
 1403 
 1404         ke->ke_state = KES_THREAD;
 1405         ke->ke_ksegrp->kg_runq_kses--;
 1406         kseq = KSEQ_CPU(ke->ke_cpu);
 1407         kseq_runq_rem(kseq, ke);
 1408         kseq_load_rem(kseq, ke);
 1409 }
 1410 
 1411 fixpt_t
 1412 sched_pctcpu(struct thread *td)
 1413 {
 1414         fixpt_t pctcpu;
 1415         struct kse *ke;
 1416 
 1417         pctcpu = 0;
 1418         ke = td->td_kse;
 1419         if (ke == NULL)
 1420                 return (0);
 1421 
 1422         mtx_lock_spin(&sched_lock);
 1423         if (ke->ke_ticks) {
 1424                 int rtick;
 1425 
 1426                 /*
 1427                  * Don't update more frequently than twice a second.  Allowing
 1428                  * this causes the cpu usage to decay away too quickly due to
 1429                  * rounding errors.
 1430                  */
 1431                 if (ke->ke_ltick < (ticks - (hz / 2)))
 1432                         sched_pctcpu_update(ke);
 1433                 /* How many rtick per second ? */
 1434                 rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
 1435                 pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
 1436         }
 1437 
 1438         ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
 1439         mtx_unlock_spin(&sched_lock);
 1440 
 1441         return (pctcpu);
 1442 }
 1443 
 1444 void
 1445 sched_bind(struct thread *td, int cpu)
 1446 {
 1447         struct kse *ke;
 1448 
 1449         mtx_assert(&sched_lock, MA_OWNED);
 1450         ke = td->td_kse;
 1451 #ifndef SMP
 1452         ke->ke_flags |= KEF_BOUND;
 1453 #else
 1454         if (PCPU_GET(cpuid) == cpu) {
 1455                 ke->ke_flags |= KEF_BOUND;
 1456                 return;
 1457         }
 1458         /* sched_rem without the runq_remove */
 1459         ke->ke_state = KES_THREAD;
 1460         ke->ke_ksegrp->kg_runq_kses--;
 1461         kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
 1462         ke->ke_cpu = cpu;
 1463         kseq_notify(ke, cpu);
 1464         /* When we return from mi_switch we'll be on the correct cpu. */
 1465         td->td_proc->p_stats->p_ru.ru_nvcsw++;
 1466         mi_switch();
 1467 #endif
 1468 }
 1469 
 1470 void
 1471 sched_unbind(struct thread *td)
 1472 {
 1473         mtx_assert(&sched_lock, MA_OWNED);
 1474         td->td_kse->ke_flags &= ~KEF_BOUND;
 1475 }
 1476 
 1477 int
 1478 sched_sizeof_kse(void)
 1479 {
 1480         return (sizeof(struct kse) + sizeof(struct ke_sched));
 1481 }
 1482 
 1483 int
 1484 sched_sizeof_ksegrp(void)
 1485 {
 1486         return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
 1487 }
 1488 
 1489 int
 1490 sched_sizeof_proc(void)
 1491 {
 1492         return (sizeof(struct proc));
 1493 }
 1494 
 1495 int
 1496 sched_sizeof_thread(void)
 1497 {
 1498         return (sizeof(struct thread) + sizeof(struct td_sched));
 1499 }

Cache object: d0de2063d64d0f2d19e35ea2046f4faf


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.