The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sched_ule.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  */
   26 
   27 /*
   28  * This file implements the ULE scheduler.  ULE supports independent CPU
   29  * run queues and fine grain locking.  It has superior interactive
   30  * performance under load even on uni-processor systems.
   31  *
   32  * etymology:
   33  *   ULE is the last three letters in schedule.  It owes its name to a
   34  * generic user created for a scheduling system by Paul Mikesell at
   35  * Isilon Systems and a general lack of creativity on the part of the author.
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD$");
   40 
   41 #include "opt_hwpmc_hooks.h"
   42 #include "opt_sched.h"
   43 
   44 #include <sys/param.h>
   45 #include <sys/systm.h>
   46 #include <sys/kdb.h>
   47 #include <sys/kernel.h>
   48 #include <sys/ktr.h>
   49 #include <sys/lock.h>
   50 #include <sys/mutex.h>
   51 #include <sys/proc.h>
   52 #include <sys/resource.h>
   53 #include <sys/resourcevar.h>
   54 #include <sys/sched.h>
   55 #include <sys/smp.h>
   56 #include <sys/sx.h>
   57 #include <sys/sysctl.h>
   58 #include <sys/sysproto.h>
   59 #include <sys/turnstile.h>
   60 #include <sys/umtx.h>
   61 #include <sys/vmmeter.h>
   62 #ifdef KTRACE
   63 #include <sys/uio.h>
   64 #include <sys/ktrace.h>
   65 #endif
   66 
   67 #ifdef HWPMC_HOOKS
   68 #include <sys/pmckern.h>
   69 #endif
   70 
   71 #include <machine/cpu.h>
   72 #include <machine/smp.h>
   73 
   74 #if !defined(__i386__) && !defined(__amd64__) && !defined(__arm__)
   75 #error "This architecture is not currently compatible with ULE"
   76 #endif
   77 
   78 #define KTR_ULE 0
   79 
   80 /*
   81  * Thread scheduler specific section.  All fields are protected
   82  * by the thread lock.
   83  */
   84 struct td_sched {       
   85         TAILQ_ENTRY(td_sched) ts_procq; /* Run queue. */
   86         struct thread   *ts_thread;     /* Active associated thread. */
   87         struct runq     *ts_runq;       /* Run-queue we're queued on. */
   88         short           ts_flags;       /* TSF_* flags. */
   89         u_char          ts_rqindex;     /* Run queue index. */
   90         u_char          ts_cpu;         /* CPU that we have affinity for. */
   91         int             ts_slice;       /* Ticks of slice remaining. */
   92         u_int           ts_slptime;     /* Number of ticks we vol. slept */
   93         u_int           ts_runtime;     /* Number of ticks we were running */
   94         /* The following variables are only used for pctcpu calculation */
   95         int             ts_ltick;       /* Last tick that we were running on */
   96         int             ts_ftick;       /* First tick that we were running on */
   97         int             ts_ticks;       /* Tick count */
   98 #ifdef SMP
   99         int             ts_rltick;      /* Real last tick, for affinity. */
  100 #endif
  101 };
  102 /* flags kept in ts_flags */
  103 #define TSF_BOUND       0x0001          /* Thread can not migrate. */
  104 #define TSF_XFERABLE    0x0002          /* Thread was added as transferable. */
  105 
  106 static struct td_sched td_sched0;
  107 
  108 /*
  109  * Cpu percentage computation macros and defines.
  110  *
  111  * SCHED_TICK_SECS:     Number of seconds to average the cpu usage across.
  112  * SCHED_TICK_TARG:     Number of hz ticks to average the cpu usage across.
  113  * SCHED_TICK_MAX:      Maximum number of ticks before scaling back.
  114  * SCHED_TICK_SHIFT:    Shift factor to avoid rounding away results.
  115  * SCHED_TICK_HZ:       Compute the number of hz ticks for a given ticks count.
  116  * SCHED_TICK_TOTAL:    Gives the amount of time we've been recording ticks.
  117  */
  118 #define SCHED_TICK_SECS         10
  119 #define SCHED_TICK_TARG         (hz * SCHED_TICK_SECS)
  120 #define SCHED_TICK_MAX          (SCHED_TICK_TARG + hz)
  121 #define SCHED_TICK_SHIFT        10
  122 #define SCHED_TICK_HZ(ts)       ((ts)->ts_ticks >> SCHED_TICK_SHIFT)
  123 #define SCHED_TICK_TOTAL(ts)    (max((ts)->ts_ltick - (ts)->ts_ftick, hz))
  124 
  125 /*
  126  * These macros determine priorities for non-interactive threads.  They are
  127  * assigned a priority based on their recent cpu utilization as expressed
  128  * by the ratio of ticks to the tick total.  NHALF priorities at the start
  129  * and end of the MIN to MAX timeshare range are only reachable with negative
  130  * or positive nice respectively.
  131  *
  132  * PRI_RANGE:   Priority range for utilization dependent priorities.
  133  * PRI_NRESV:   Number of nice values.
  134  * PRI_TICKS:   Compute a priority in PRI_RANGE from the ticks count and total.
  135  * PRI_NICE:    Determines the part of the priority inherited from nice.
  136  */
  137 #define SCHED_PRI_NRESV         (PRIO_MAX - PRIO_MIN)
  138 #define SCHED_PRI_NHALF         (SCHED_PRI_NRESV / 2)
  139 #define SCHED_PRI_MIN           (PRI_MIN_TIMESHARE + SCHED_PRI_NHALF)
  140 #define SCHED_PRI_MAX           (PRI_MAX_TIMESHARE - SCHED_PRI_NHALF)
  141 #define SCHED_PRI_RANGE         (SCHED_PRI_MAX - SCHED_PRI_MIN)
  142 #define SCHED_PRI_TICKS(ts)                                             \
  143     (SCHED_TICK_HZ((ts)) /                                              \
  144     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
  145 #define SCHED_PRI_NICE(nice)    (nice)
  146 
  147 /*
  148  * These determine the interactivity of a process.  Interactivity differs from
  149  * cpu utilization in that it expresses the voluntary time slept vs time ran
  150  * while cpu utilization includes all time not running.  This more accurately
  151  * models the intent of the thread.
  152  *
  153  * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
  154  *              before throttling back.
  155  * SLP_RUN_FORK:        Maximum slp+run time to inherit at fork time.
  156  * INTERACT_MAX:        Maximum interactivity value.  Smaller is better.
  157  * INTERACT_THRESH:     Threshhold for placement on the current runq.
  158  */
  159 #define SCHED_SLP_RUN_MAX       ((hz * 5) << SCHED_TICK_SHIFT)
  160 #define SCHED_SLP_RUN_FORK      ((hz / 2) << SCHED_TICK_SHIFT)
  161 #define SCHED_INTERACT_MAX      (100)
  162 #define SCHED_INTERACT_HALF     (SCHED_INTERACT_MAX / 2)
  163 #define SCHED_INTERACT_THRESH   (30)
  164 
  165 /*
  166  * tickincr:            Converts a stathz tick into a hz domain scaled by
  167  *                      the shift factor.  Without the shift the error rate
  168  *                      due to rounding would be unacceptably high.
  169  * realstathz:          stathz is sometimes 0 and run off of hz.
  170  * sched_slice:         Runtime of each thread before rescheduling.
  171  * preempt_thresh:      Priority threshold for preemption and remote IPIs.
  172  */
  173 static int sched_interact = SCHED_INTERACT_THRESH;
  174 static int realstathz;
  175 static int tickincr;
  176 static int sched_slice;
  177 #ifdef PREEMPTION
  178 #ifdef FULL_PREEMPTION
  179 static int preempt_thresh = PRI_MAX_IDLE;
  180 #else
  181 static int preempt_thresh = PRI_MIN_KERN;
  182 #endif
  183 #else 
  184 static int preempt_thresh = 0;
  185 #endif
  186 
  187 /*
  188  * tdq - per processor runqs and statistics.  All fields are protected by the
  189  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
  190  * locking in sched_pickcpu();
  191  */
  192 struct tdq {
  193         struct mtx      *tdq_lock;              /* Pointer to group lock. */
  194         struct runq     tdq_realtime;           /* real-time run queue. */
  195         struct runq     tdq_timeshare;          /* timeshare run queue. */
  196         struct runq     tdq_idle;               /* Queue of IDLE threads. */
  197         int             tdq_load;               /* Aggregate load. */
  198         u_char          tdq_idx;                /* Current insert index. */
  199         u_char          tdq_ridx;               /* Current removal index. */
  200 #ifdef SMP
  201         u_char          tdq_lowpri;             /* Lowest priority thread. */
  202         int             tdq_transferable;       /* Transferable thread count. */
  203         LIST_ENTRY(tdq) tdq_siblings;           /* Next in tdq group. */
  204         struct tdq_group *tdq_group;            /* Our processor group. */
  205 #else
  206         int             tdq_sysload;            /* For loadavg, !ITHD load. */
  207 #endif
  208 } __aligned(64);
  209 
  210 
  211 #ifdef SMP
  212 /*
  213  * tdq groups are groups of processors which can cheaply share threads.  When
  214  * one processor in the group goes idle it will check the runqs of the other
  215  * processors in its group prior to halting and waiting for an interrupt.
  216  * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
  217  * In a numa environment we'd want an idle bitmap per group and a two tiered
  218  * load balancer.
  219  */
  220 struct tdq_group {
  221         struct mtx      tdg_lock;       /* Protects all fields below. */
  222         int             tdg_cpus;       /* Count of CPUs in this tdq group. */
  223         cpumask_t       tdg_cpumask;    /* Mask of cpus in this group. */
  224         cpumask_t       tdg_idlemask;   /* Idle cpus in this group. */
  225         cpumask_t       tdg_mask;       /* Bit mask for first cpu. */
  226         int             tdg_load;       /* Total load of this group. */
  227         int     tdg_transferable;       /* Transferable load of this group. */
  228         LIST_HEAD(, tdq) tdg_members;   /* Linked list of all members. */
  229         char            tdg_name[16];   /* lock name. */
  230 } __aligned(64);
  231 
  232 #define SCHED_AFFINITY_DEFAULT  (max(1, hz / 300))
  233 #define SCHED_AFFINITY(ts)      ((ts)->ts_rltick > ticks - affinity)
  234 
  235 /*
  236  * Run-time tunables.
  237  */
  238 static int rebalance = 1;
  239 static int balance_interval = 128;      /* Default set in sched_initticks(). */
  240 static int pick_pri = 1;
  241 static int affinity;
  242 static int tryself = 1;
  243 static int steal_htt = 1;
  244 static int steal_idle = 1;
  245 static int steal_thresh = 2;
  246 static int topology = 0;
  247 
  248 /*
  249  * One thread queue per processor.
  250  */
  251 static volatile cpumask_t tdq_idle;
  252 static int tdg_maxid;
  253 static struct tdq       tdq_cpu[MAXCPU];
  254 static struct tdq_group tdq_groups[MAXCPU];
  255 static struct tdq       *balance_tdq;
  256 static int balance_group_ticks;
  257 static int balance_ticks;
  258 
  259 #define TDQ_SELF()      (&tdq_cpu[PCPU_GET(cpuid)])
  260 #define TDQ_CPU(x)      (&tdq_cpu[(x)])
  261 #define TDQ_ID(x)       ((int)((x) - tdq_cpu))
  262 #define TDQ_GROUP(x)    (&tdq_groups[(x)])
  263 #define TDG_ID(x)       ((int)((x) - tdq_groups))
  264 #else   /* !SMP */
  265 static struct tdq       tdq_cpu;
  266 static struct mtx       tdq_lock;
  267 
  268 #define TDQ_ID(x)       (0)
  269 #define TDQ_SELF()      (&tdq_cpu)
  270 #define TDQ_CPU(x)      (&tdq_cpu)
  271 #endif
  272 
  273 #define TDQ_LOCK_ASSERT(t, type)        mtx_assert(TDQ_LOCKPTR((t)), (type))
  274 #define TDQ_LOCK(t)             mtx_lock_spin(TDQ_LOCKPTR((t)))
  275 #define TDQ_LOCK_FLAGS(t, f)    mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
  276 #define TDQ_UNLOCK(t)           mtx_unlock_spin(TDQ_LOCKPTR((t)))
  277 #define TDQ_LOCKPTR(t)          ((t)->tdq_lock)
  278 
  279 static void sched_priority(struct thread *);
  280 static void sched_thread_priority(struct thread *, u_char);
  281 static int sched_interact_score(struct thread *);
  282 static void sched_interact_update(struct thread *);
  283 static void sched_interact_fork(struct thread *);
  284 static void sched_pctcpu_update(struct td_sched *);
  285 
  286 /* Operations on per processor queues */
  287 static struct td_sched * tdq_choose(struct tdq *);
  288 static void tdq_setup(struct tdq *);
  289 static void tdq_load_add(struct tdq *, struct td_sched *);
  290 static void tdq_load_rem(struct tdq *, struct td_sched *);
  291 static __inline void tdq_runq_add(struct tdq *, struct td_sched *, int);
  292 static __inline void tdq_runq_rem(struct tdq *, struct td_sched *);
  293 void tdq_print(int cpu);
  294 static void runq_print(struct runq *rq);
  295 static void tdq_add(struct tdq *, struct thread *, int);
  296 #ifdef SMP
  297 static void tdq_move(struct tdq *, struct tdq *);
  298 static int tdq_idled(struct tdq *);
  299 static void tdq_notify(struct td_sched *);
  300 static struct td_sched *tdq_steal(struct tdq *);
  301 static struct td_sched *runq_steal(struct runq *);
  302 static int sched_pickcpu(struct td_sched *, int);
  303 static void sched_balance(void);
  304 static void sched_balance_groups(void);
  305 static void sched_balance_group(struct tdq_group *);
  306 static void sched_balance_pair(struct tdq *, struct tdq *);
  307 static inline struct tdq *sched_setcpu(struct td_sched *, int, int);
  308 static inline struct mtx *thread_block_switch(struct thread *);
  309 static inline void thread_unblock_switch(struct thread *, struct mtx *);
  310 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
  311 
  312 #define THREAD_CAN_MIGRATE(td)   ((td)->td_pinned == 0)
  313 #endif
  314 
  315 static void sched_setup(void *dummy);
  316 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
  317 
  318 static void sched_initticks(void *dummy);
  319 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks, NULL)
  320 
  321 /*
  322  * Print the threads waiting on a run-queue.
  323  */
  324 static void
  325 runq_print(struct runq *rq)
  326 {
  327         struct rqhead *rqh;
  328         struct td_sched *ts;
  329         int pri;
  330         int j;
  331         int i;
  332 
  333         for (i = 0; i < RQB_LEN; i++) {
  334                 printf("\t\trunq bits %d 0x%zx\n",
  335                     i, rq->rq_status.rqb_bits[i]);
  336                 for (j = 0; j < RQB_BPW; j++)
  337                         if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
  338                                 pri = j + (i << RQB_L2BPW);
  339                                 rqh = &rq->rq_queues[pri];
  340                                 TAILQ_FOREACH(ts, rqh, ts_procq) {
  341                                         printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
  342                                             ts->ts_thread, ts->ts_thread->td_proc->p_comm, ts->ts_thread->td_priority, ts->ts_rqindex, pri);
  343                                 }
  344                         }
  345         }
  346 }
  347 
  348 /*
  349  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
  350  */
  351 void
  352 tdq_print(int cpu)
  353 {
  354         struct tdq *tdq;
  355 
  356         tdq = TDQ_CPU(cpu);
  357 
  358         printf("tdq %d:\n", TDQ_ID(tdq));
  359         printf("\tlockptr         %p\n", TDQ_LOCKPTR(tdq));
  360         printf("\tload:           %d\n", tdq->tdq_load);
  361         printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
  362         printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
  363         printf("\trealtime runq:\n");
  364         runq_print(&tdq->tdq_realtime);
  365         printf("\ttimeshare runq:\n");
  366         runq_print(&tdq->tdq_timeshare);
  367         printf("\tidle runq:\n");
  368         runq_print(&tdq->tdq_idle);
  369 #ifdef SMP
  370         printf("\tload transferable: %d\n", tdq->tdq_transferable);
  371         printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
  372         printf("\tgroup:             %d\n", TDG_ID(tdq->tdq_group));
  373         printf("\tLock name:         %s\n", tdq->tdq_group->tdg_name);
  374 #endif
  375 }
  376 
  377 #define TS_RQ_PPQ       (((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE) + 1) / RQ_NQS)
  378 /*
  379  * Add a thread to the actual run-queue.  Keeps transferable counts up to
  380  * date with what is actually on the run-queue.  Selects the correct
  381  * queue position for timeshare threads.
  382  */
  383 static __inline void
  384 tdq_runq_add(struct tdq *tdq, struct td_sched *ts, int flags)
  385 {
  386         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  387         THREAD_LOCK_ASSERT(ts->ts_thread, MA_OWNED);
  388 #ifdef SMP
  389         if (THREAD_CAN_MIGRATE(ts->ts_thread)) {
  390                 tdq->tdq_transferable++;
  391                 tdq->tdq_group->tdg_transferable++;
  392                 ts->ts_flags |= TSF_XFERABLE;
  393         }
  394 #endif
  395         if (ts->ts_runq == &tdq->tdq_timeshare) {
  396                 u_char pri;
  397 
  398                 pri = ts->ts_thread->td_priority;
  399                 KASSERT(pri <= PRI_MAX_TIMESHARE && pri >= PRI_MIN_TIMESHARE,
  400                         ("Invalid priority %d on timeshare runq", pri));
  401                 /*
  402                  * This queue contains only priorities between MIN and MAX
  403                  * realtime.  Use the whole queue to represent these values.
  404                  */
  405                 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
  406                         pri = (pri - PRI_MIN_TIMESHARE) / TS_RQ_PPQ;
  407                         pri = (pri + tdq->tdq_idx) % RQ_NQS;
  408                         /*
  409                          * This effectively shortens the queue by one so we
  410                          * can have a one slot difference between idx and
  411                          * ridx while we wait for threads to drain.
  412                          */
  413                         if (tdq->tdq_ridx != tdq->tdq_idx &&
  414                             pri == tdq->tdq_ridx)
  415                                 pri = (unsigned char)(pri - 1) % RQ_NQS;
  416                 } else
  417                         pri = tdq->tdq_ridx;
  418                 runq_add_pri(ts->ts_runq, ts, pri, flags);
  419         } else
  420                 runq_add(ts->ts_runq, ts, flags);
  421 }
  422 
  423 /* 
  424  * Remove a thread from a run-queue.  This typically happens when a thread
  425  * is selected to run.  Running threads are not on the queue and the
  426  * transferable count does not reflect them.
  427  */
  428 static __inline void
  429 tdq_runq_rem(struct tdq *tdq, struct td_sched *ts)
  430 {
  431         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  432         KASSERT(ts->ts_runq != NULL,
  433             ("tdq_runq_remove: thread %p null ts_runq", ts->ts_thread));
  434 #ifdef SMP
  435         if (ts->ts_flags & TSF_XFERABLE) {
  436                 tdq->tdq_transferable--;
  437                 tdq->tdq_group->tdg_transferable--;
  438                 ts->ts_flags &= ~TSF_XFERABLE;
  439         }
  440 #endif
  441         if (ts->ts_runq == &tdq->tdq_timeshare) {
  442                 if (tdq->tdq_idx != tdq->tdq_ridx)
  443                         runq_remove_idx(ts->ts_runq, ts, &tdq->tdq_ridx);
  444                 else
  445                         runq_remove_idx(ts->ts_runq, ts, NULL);
  446                 /*
  447                  * For timeshare threads we update the priority here so
  448                  * the priority reflects the time we've been sleeping.
  449                  */
  450                 ts->ts_ltick = ticks;
  451                 sched_pctcpu_update(ts);
  452                 sched_priority(ts->ts_thread);
  453         } else
  454                 runq_remove(ts->ts_runq, ts);
  455 }
  456 
  457 /*
  458  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
  459  * for this thread to the referenced thread queue.
  460  */
  461 static void
  462 tdq_load_add(struct tdq *tdq, struct td_sched *ts)
  463 {
  464         int class;
  465 
  466         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  467         THREAD_LOCK_ASSERT(ts->ts_thread, MA_OWNED);
  468         class = PRI_BASE(ts->ts_thread->td_pri_class);
  469         tdq->tdq_load++;
  470         CTR2(KTR_SCHED, "cpu %d load: %d", TDQ_ID(tdq), tdq->tdq_load);
  471         if (class != PRI_ITHD &&
  472             (ts->ts_thread->td_proc->p_flag & P_NOLOAD) == 0)
  473 #ifdef SMP
  474                 tdq->tdq_group->tdg_load++;
  475 #else
  476                 tdq->tdq_sysload++;
  477 #endif
  478 }
  479 
  480 /*
  481  * Remove the load from a thread that is transitioning to a sleep state or
  482  * exiting.
  483  */
  484 static void
  485 tdq_load_rem(struct tdq *tdq, struct td_sched *ts)
  486 {
  487         int class;
  488 
  489         THREAD_LOCK_ASSERT(ts->ts_thread, MA_OWNED);
  490         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  491         class = PRI_BASE(ts->ts_thread->td_pri_class);
  492         if (class != PRI_ITHD &&
  493             (ts->ts_thread->td_proc->p_flag & P_NOLOAD) == 0)
  494 #ifdef SMP
  495                 tdq->tdq_group->tdg_load--;
  496 #else
  497                 tdq->tdq_sysload--;
  498 #endif
  499         KASSERT(tdq->tdq_load != 0,
  500             ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
  501         tdq->tdq_load--;
  502         CTR1(KTR_SCHED, "load: %d", tdq->tdq_load);
  503         ts->ts_runq = NULL;
  504 }
  505 
  506 #ifdef SMP
  507 /*
  508  * sched_balance is a simple CPU load balancing algorithm.  It operates by
  509  * finding the least loaded and most loaded cpu and equalizing their load
  510  * by migrating some processes.
  511  *
  512  * Dealing only with two CPUs at a time has two advantages.  Firstly, most
  513  * installations will only have 2 cpus.  Secondly, load balancing too much at
  514  * once can have an unpleasant effect on the system.  The scheduler rarely has
  515  * enough information to make perfect decisions.  So this algorithm chooses
  516  * simplicity and more gradual effects on load in larger systems.
  517  *
  518  */
  519 static void
  520 sched_balance()
  521 {
  522         struct tdq_group *high;
  523         struct tdq_group *low;
  524         struct tdq_group *tdg;
  525         struct tdq *tdq;
  526         int cnt;
  527         int i;
  528 
  529         /*
  530          * Select a random time between .5 * balance_interval and
  531          * 1.5 * balance_interval.
  532          */
  533         balance_ticks = max(balance_interval / 2, 1);
  534         balance_ticks += random() % balance_interval;
  535         if (smp_started == 0 || rebalance == 0)
  536                 return;
  537         tdq = TDQ_SELF();
  538         TDQ_UNLOCK(tdq);
  539         low = high = NULL;
  540         i = random() % (tdg_maxid + 1);
  541         for (cnt = 0; cnt <= tdg_maxid; cnt++) {
  542                 tdg = TDQ_GROUP(i);
  543                 /*
  544                  * Find the CPU with the highest load that has some
  545                  * threads to transfer.
  546                  */
  547                 if ((high == NULL || tdg->tdg_load > high->tdg_load)
  548                     && tdg->tdg_transferable)
  549                         high = tdg;
  550                 if (low == NULL || tdg->tdg_load < low->tdg_load)
  551                         low = tdg;
  552                 if (++i > tdg_maxid)
  553                         i = 0;
  554         }
  555         if (low != NULL && high != NULL && high != low)
  556                 sched_balance_pair(LIST_FIRST(&high->tdg_members),
  557                     LIST_FIRST(&low->tdg_members));
  558         TDQ_LOCK(tdq);
  559 }
  560 
  561 /*
  562  * Balance load between CPUs in a group.  Will only migrate within the group.
  563  */
  564 static void
  565 sched_balance_groups()
  566 {
  567         struct tdq *tdq;
  568         int i;
  569 
  570         /*
  571          * Select a random time between .5 * balance_interval and
  572          * 1.5 * balance_interval.
  573          */
  574         balance_group_ticks = max(balance_interval / 2, 1);
  575         balance_group_ticks += random() % balance_interval;
  576         if (smp_started == 0 || rebalance == 0)
  577                 return;
  578         tdq = TDQ_SELF();
  579         TDQ_UNLOCK(tdq);
  580         for (i = 0; i <= tdg_maxid; i++)
  581                 sched_balance_group(TDQ_GROUP(i));
  582         TDQ_LOCK(tdq);
  583 }
  584 
  585 /*
  586  * Finds the greatest imbalance between two tdqs in a group.
  587  */
  588 static void
  589 sched_balance_group(struct tdq_group *tdg)
  590 {
  591         struct tdq *tdq;
  592         struct tdq *high;
  593         struct tdq *low;
  594         int load;
  595 
  596         if (tdg->tdg_transferable == 0)
  597                 return;
  598         low = NULL;
  599         high = NULL;
  600         LIST_FOREACH(tdq, &tdg->tdg_members, tdq_siblings) {
  601                 load = tdq->tdq_load;
  602                 if (high == NULL || load > high->tdq_load)
  603                         high = tdq;
  604                 if (low == NULL || load < low->tdq_load)
  605                         low = tdq;
  606         }
  607         if (high != NULL && low != NULL && high != low)
  608                 sched_balance_pair(high, low);
  609 }
  610 
  611 /*
  612  * Lock two thread queues using their address to maintain lock order.
  613  */
  614 static void
  615 tdq_lock_pair(struct tdq *one, struct tdq *two)
  616 {
  617         if (one < two) {
  618                 TDQ_LOCK(one);
  619                 TDQ_LOCK_FLAGS(two, MTX_DUPOK);
  620         } else {
  621                 TDQ_LOCK(two);
  622                 TDQ_LOCK_FLAGS(one, MTX_DUPOK);
  623         }
  624 }
  625 
  626 /*
  627  * Unlock two thread queues.  Order is not important here.
  628  */
  629 static void
  630 tdq_unlock_pair(struct tdq *one, struct tdq *two)
  631 {
  632         TDQ_UNLOCK(one);
  633         TDQ_UNLOCK(two);
  634 }
  635 
  636 /*
  637  * Transfer load between two imbalanced thread queues.
  638  */
  639 static void
  640 sched_balance_pair(struct tdq *high, struct tdq *low)
  641 {
  642         int transferable;
  643         int high_load;
  644         int low_load;
  645         int move;
  646         int diff;
  647         int i;
  648 
  649         tdq_lock_pair(high, low);
  650         /*
  651          * If we're transfering within a group we have to use this specific
  652          * tdq's transferable count, otherwise we can steal from other members
  653          * of the group.
  654          */
  655         if (high->tdq_group == low->tdq_group) {
  656                 transferable = high->tdq_transferable;
  657                 high_load = high->tdq_load;
  658                 low_load = low->tdq_load;
  659         } else {
  660                 transferable = high->tdq_group->tdg_transferable;
  661                 high_load = high->tdq_group->tdg_load;
  662                 low_load = low->tdq_group->tdg_load;
  663         }
  664         /*
  665          * Determine what the imbalance is and then adjust that to how many
  666          * threads we actually have to give up (transferable).
  667          */
  668         if (transferable != 0) {
  669                 diff = high_load - low_load;
  670                 move = diff / 2;
  671                 if (diff & 0x1)
  672                         move++;
  673                 move = min(move, transferable);
  674                 for (i = 0; i < move; i++)
  675                         tdq_move(high, low);
  676                 /*
  677                  * IPI the target cpu to force it to reschedule with the new
  678                  * workload.
  679                  */
  680                 ipi_selected(1 << TDQ_ID(low), IPI_PREEMPT);
  681         }
  682         tdq_unlock_pair(high, low);
  683         return;
  684 }
  685 
  686 /*
  687  * Move a thread from one thread queue to another.
  688  */
  689 static void
  690 tdq_move(struct tdq *from, struct tdq *to)
  691 {
  692         struct td_sched *ts;
  693         struct thread *td;
  694         struct tdq *tdq;
  695         int cpu;
  696 
  697         TDQ_LOCK_ASSERT(from, MA_OWNED);
  698         TDQ_LOCK_ASSERT(to, MA_OWNED);
  699 
  700         tdq = from;
  701         cpu = TDQ_ID(to);
  702         ts = tdq_steal(tdq);
  703         if (ts == NULL) {
  704                 struct tdq_group *tdg;
  705 
  706                 tdg = tdq->tdq_group;
  707                 LIST_FOREACH(tdq, &tdg->tdg_members, tdq_siblings) {
  708                         if (tdq == from || tdq->tdq_transferable == 0)
  709                                 continue;
  710                         ts = tdq_steal(tdq);
  711                         break;
  712                 }
  713                 if (ts == NULL)
  714                         return;
  715         }
  716         if (tdq == to)
  717                 return;
  718         td = ts->ts_thread;
  719         /*
  720          * Although the run queue is locked the thread may be blocked.  Lock
  721          * it to clear this and acquire the run-queue lock.
  722          */
  723         thread_lock(td);
  724         /* Drop recursive lock on from acquired via thread_lock(). */
  725         TDQ_UNLOCK(from);
  726         sched_rem(td);
  727         ts->ts_cpu = cpu;
  728         td->td_lock = TDQ_LOCKPTR(to);
  729         tdq_add(to, td, SRQ_YIELDING);
  730 }
  731 
  732 /*
  733  * This tdq has idled.  Try to steal a thread from another cpu and switch
  734  * to it.
  735  */
  736 static int
  737 tdq_idled(struct tdq *tdq)
  738 {
  739         struct tdq_group *tdg;
  740         struct tdq *steal;
  741         int highload;
  742         int highcpu;
  743         int cpu;
  744 
  745         if (smp_started == 0 || steal_idle == 0)
  746                 return (1);
  747         /* We don't want to be preempted while we're iterating over tdqs */
  748         spinlock_enter();
  749         tdg = tdq->tdq_group;
  750         /*
  751          * If we're in a cpu group, try and steal threads from another cpu in
  752          * the group before idling.  In a HTT group all cpus share the same
  753          * run-queue lock, however, we still need a recursive lock to
  754          * call tdq_move().
  755          */
  756         if (steal_htt && tdg->tdg_cpus > 1 && tdg->tdg_transferable) {
  757                 TDQ_LOCK(tdq);
  758                 LIST_FOREACH(steal, &tdg->tdg_members, tdq_siblings) {
  759                         if (steal == tdq || steal->tdq_transferable == 0)
  760                                 continue;
  761                         TDQ_LOCK(steal);
  762                         goto steal;
  763                 }
  764                 TDQ_UNLOCK(tdq);
  765         }
  766         /*
  767          * Find the least loaded CPU with a transferable thread and attempt
  768          * to steal it.  We make a lockless pass and then verify that the
  769          * thread is still available after locking.
  770          */
  771         for (;;) {
  772                 highcpu = 0;
  773                 highload = 0;
  774                 for (cpu = 0; cpu <= mp_maxid; cpu++) {
  775                         if (CPU_ABSENT(cpu))
  776                                 continue;
  777                         steal = TDQ_CPU(cpu);
  778                         if (steal->tdq_transferable == 0)
  779                                 continue;
  780                         if (steal->tdq_load < highload)
  781                                 continue;
  782                         highload = steal->tdq_load;
  783                         highcpu = cpu;
  784                 }
  785                 if (highload < steal_thresh)
  786                         break;
  787                 steal = TDQ_CPU(highcpu);
  788                 if (steal == tdq)
  789                         break;
  790                 tdq_lock_pair(tdq, steal);
  791                 if (steal->tdq_load >= steal_thresh && steal->tdq_transferable)
  792                         goto steal;
  793                 tdq_unlock_pair(tdq, steal);
  794         }
  795         spinlock_exit();
  796         return (1);
  797 steal:
  798         spinlock_exit();
  799         tdq_move(steal, tdq);
  800         TDQ_UNLOCK(steal);
  801         mi_switch(SW_VOL, NULL);
  802         thread_unlock(curthread);
  803 
  804         return (0);
  805 }
  806 
  807 /*
  808  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
  809  */
  810 static void
  811 tdq_notify(struct td_sched *ts)
  812 {
  813         struct thread *ctd;
  814         struct pcpu *pcpu;
  815         int cpri;
  816         int pri;
  817         int cpu;
  818 
  819         cpu = ts->ts_cpu;
  820         pri = ts->ts_thread->td_priority;
  821         pcpu = pcpu_find(cpu);
  822         ctd = pcpu->pc_curthread;
  823         cpri = ctd->td_priority;
  824 
  825         /*
  826          * If our priority is not better than the current priority there is
  827          * nothing to do.
  828          */
  829         if (pri > cpri)
  830                 return;
  831         /*
  832          * Always IPI idle.
  833          */
  834         if (cpri > PRI_MIN_IDLE)
  835                 goto sendipi;
  836         /*
  837          * If we're realtime or better and there is timeshare or worse running
  838          * send an IPI.
  839          */
  840         if (pri < PRI_MAX_REALTIME && cpri > PRI_MAX_REALTIME)
  841                 goto sendipi;
  842         /*
  843          * Otherwise only IPI if we exceed the threshold.
  844          */
  845         if (pri > preempt_thresh)
  846                 return;
  847 sendipi:
  848         ctd->td_flags |= TDF_NEEDRESCHED;
  849         ipi_selected(1 << cpu, IPI_PREEMPT);
  850 }
  851 
  852 /*
  853  * Steals load from a timeshare queue.  Honors the rotating queue head
  854  * index.
  855  */
  856 static struct td_sched *
  857 runq_steal_from(struct runq *rq, u_char start)
  858 {
  859         struct td_sched *ts;
  860         struct rqbits *rqb;
  861         struct rqhead *rqh;
  862         int first;
  863         int bit;
  864         int pri;
  865         int i;
  866 
  867         rqb = &rq->rq_status;
  868         bit = start & (RQB_BPW -1);
  869         pri = 0;
  870         first = 0;
  871 again:
  872         for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
  873                 if (rqb->rqb_bits[i] == 0)
  874                         continue;
  875                 if (bit != 0) {
  876                         for (pri = bit; pri < RQB_BPW; pri++)
  877                                 if (rqb->rqb_bits[i] & (1ul << pri))
  878                                         break;
  879                         if (pri >= RQB_BPW)
  880                                 continue;
  881                 } else
  882                         pri = RQB_FFS(rqb->rqb_bits[i]);
  883                 pri += (i << RQB_L2BPW);
  884                 rqh = &rq->rq_queues[pri];
  885                 TAILQ_FOREACH(ts, rqh, ts_procq) {
  886                         if (first && THREAD_CAN_MIGRATE(ts->ts_thread))
  887                                 return (ts);
  888                         first = 1;
  889                 }
  890         }
  891         if (start != 0) {
  892                 start = 0;
  893                 goto again;
  894         }
  895 
  896         return (NULL);
  897 }
  898 
  899 /*
  900  * Steals load from a standard linear queue.
  901  */
  902 static struct td_sched *
  903 runq_steal(struct runq *rq)
  904 {
  905         struct rqhead *rqh;
  906         struct rqbits *rqb;
  907         struct td_sched *ts;
  908         int word;
  909         int bit;
  910 
  911         rqb = &rq->rq_status;
  912         for (word = 0; word < RQB_LEN; word++) {
  913                 if (rqb->rqb_bits[word] == 0)
  914                         continue;
  915                 for (bit = 0; bit < RQB_BPW; bit++) {
  916                         if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
  917                                 continue;
  918                         rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
  919                         TAILQ_FOREACH(ts, rqh, ts_procq)
  920                                 if (THREAD_CAN_MIGRATE(ts->ts_thread))
  921                                         return (ts);
  922                 }
  923         }
  924         return (NULL);
  925 }
  926 
  927 /*
  928  * Attempt to steal a thread in priority order from a thread queue.
  929  */
  930 static struct td_sched *
  931 tdq_steal(struct tdq *tdq)
  932 {
  933         struct td_sched *ts;
  934 
  935         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  936         if ((ts = runq_steal(&tdq->tdq_realtime)) != NULL)
  937                 return (ts);
  938         if ((ts = runq_steal_from(&tdq->tdq_timeshare, tdq->tdq_ridx)) != NULL)
  939                 return (ts);
  940         return (runq_steal(&tdq->tdq_idle));
  941 }
  942 
  943 /*
  944  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
  945  * current lock and returns with the assigned queue locked.
  946  */
  947 static inline struct tdq *
  948 sched_setcpu(struct td_sched *ts, int cpu, int flags)
  949 {
  950         struct thread *td;
  951         struct tdq *tdq;
  952 
  953         THREAD_LOCK_ASSERT(ts->ts_thread, MA_OWNED);
  954 
  955         tdq = TDQ_CPU(cpu);
  956         td = ts->ts_thread;
  957         ts->ts_cpu = cpu;
  958 
  959         /* If the lock matches just return the queue. */
  960         if (td->td_lock == TDQ_LOCKPTR(tdq))
  961                 return (tdq);
  962 #ifdef notyet
  963         /*
  964          * If the thread isn't running its lockptr is a
  965          * turnstile or a sleepqueue.  We can just lock_set without
  966          * blocking.
  967          */
  968         if (TD_CAN_RUN(td)) {
  969                 TDQ_LOCK(tdq);
  970                 thread_lock_set(td, TDQ_LOCKPTR(tdq));
  971                 return (tdq);
  972         }
  973 #endif
  974         /*
  975          * The hard case, migration, we need to block the thread first to
  976          * prevent order reversals with other cpus locks.
  977          */
  978         thread_lock_block(td);
  979         TDQ_LOCK(tdq);
  980         thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
  981         return (tdq);
  982 }
  983 
  984 /*
  985  * Find the thread queue running the lowest priority thread.
  986  */
  987 static int
  988 tdq_lowestpri(void)
  989 {
  990         struct tdq *tdq;
  991         int lowpri;
  992         int lowcpu;
  993         int lowload;
  994         int load;
  995         int cpu;
  996         int pri;
  997 
  998         lowload = 0;
  999         lowpri = lowcpu = 0;
 1000         for (cpu = 0; cpu <= mp_maxid; cpu++) {
 1001                 if (CPU_ABSENT(cpu))
 1002                         continue;
 1003                 tdq = TDQ_CPU(cpu);
 1004                 pri = tdq->tdq_lowpri;
 1005                 load = TDQ_CPU(cpu)->tdq_load;
 1006                 CTR4(KTR_ULE,
 1007                     "cpu %d pri %d lowcpu %d lowpri %d",
 1008                     cpu, pri, lowcpu, lowpri);
 1009                 if (pri < lowpri)
 1010                         continue;
 1011                 if (lowpri && lowpri == pri && load > lowload)
 1012                         continue;
 1013                 lowpri = pri;
 1014                 lowcpu = cpu;
 1015                 lowload = load;
 1016         }
 1017 
 1018         return (lowcpu);
 1019 }
 1020 
 1021 /*
 1022  * Find the thread queue with the least load.
 1023  */
 1024 static int
 1025 tdq_lowestload(void)
 1026 {
 1027         struct tdq *tdq;
 1028         int lowload;
 1029         int lowpri;
 1030         int lowcpu;
 1031         int load;
 1032         int cpu;
 1033         int pri;
 1034 
 1035         lowcpu = 0;
 1036         lowload = TDQ_CPU(0)->tdq_load;
 1037         lowpri = TDQ_CPU(0)->tdq_lowpri;
 1038         for (cpu = 1; cpu <= mp_maxid; cpu++) {
 1039                 if (CPU_ABSENT(cpu))
 1040                         continue;
 1041                 tdq = TDQ_CPU(cpu);
 1042                 load = tdq->tdq_load;
 1043                 pri = tdq->tdq_lowpri;
 1044                 CTR4(KTR_ULE, "cpu %d load %d lowcpu %d lowload %d",
 1045                     cpu, load, lowcpu, lowload);
 1046                 if (load > lowload)
 1047                         continue;
 1048                 if (load == lowload && pri < lowpri)
 1049                         continue;
 1050                 lowcpu = cpu;
 1051                 lowload = load;
 1052                 lowpri = pri;
 1053         }
 1054 
 1055         return (lowcpu);
 1056 }
 1057 
 1058 /*
 1059  * Pick the destination cpu for sched_add().  Respects affinity and makes
 1060  * a determination based on load or priority of available processors.
 1061  */
 1062 static int
 1063 sched_pickcpu(struct td_sched *ts, int flags)
 1064 {
 1065         struct tdq *tdq;
 1066         int self;
 1067         int pri;
 1068         int cpu;
 1069 
 1070         cpu = self = PCPU_GET(cpuid);
 1071         if (smp_started == 0)
 1072                 return (self);
 1073         /*
 1074          * Don't migrate a running thread from sched_switch().
 1075          */
 1076         if (flags & SRQ_OURSELF) {
 1077                 CTR1(KTR_ULE, "YIELDING %d",
 1078                     curthread->td_priority);
 1079                 return (self);
 1080         }
 1081         pri = ts->ts_thread->td_priority;
 1082         cpu = ts->ts_cpu;
 1083         /*
 1084          * Regardless of affinity, if the last cpu is idle send it there.
 1085          */
 1086         tdq = TDQ_CPU(cpu);
 1087         if (tdq->tdq_lowpri > PRI_MIN_IDLE) {
 1088                 CTR5(KTR_ULE,
 1089                     "ts_cpu %d idle, ltick %d ticks %d pri %d curthread %d",
 1090                     ts->ts_cpu, ts->ts_rltick, ticks, pri,
 1091                     tdq->tdq_lowpri);
 1092                 return (ts->ts_cpu);
 1093         }
 1094         /*
 1095          * If we have affinity, try to place it on the cpu we last ran on.
 1096          */
 1097         if (SCHED_AFFINITY(ts) && tdq->tdq_lowpri > pri) {
 1098                 CTR5(KTR_ULE,
 1099                     "affinity for %d, ltick %d ticks %d pri %d curthread %d",
 1100                     ts->ts_cpu, ts->ts_rltick, ticks, pri,
 1101                     tdq->tdq_lowpri);
 1102                 return (ts->ts_cpu);
 1103         }
 1104         /*
 1105          * Look for an idle group.
 1106          */
 1107         CTR1(KTR_ULE, "tdq_idle %X", tdq_idle);
 1108         cpu = ffs(tdq_idle);
 1109         if (cpu)
 1110                 return (--cpu);
 1111         /*
 1112          * If there are no idle cores see if we can run the thread locally.
 1113          * This may improve locality among sleepers and wakers when there
 1114          * is shared data.
 1115          */
 1116         if (tryself && pri < curthread->td_priority) {
 1117                 CTR1(KTR_ULE, "tryself %d",
 1118                     curthread->td_priority);
 1119                 return (self);
 1120         }
 1121         /*
 1122          * Now search for the cpu running the lowest priority thread with
 1123          * the least load.
 1124          */
 1125         if (pick_pri)
 1126                 cpu = tdq_lowestpri();
 1127         else
 1128                 cpu = tdq_lowestload();
 1129         return (cpu);
 1130 }
 1131 
 1132 #endif  /* SMP */
 1133 
 1134 /*
 1135  * Pick the highest priority task we have and return it.
 1136  */
 1137 static struct td_sched *
 1138 tdq_choose(struct tdq *tdq)
 1139 {
 1140         struct td_sched *ts;
 1141 
 1142         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1143         ts = runq_choose(&tdq->tdq_realtime);
 1144         if (ts != NULL)
 1145                 return (ts);
 1146         ts = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
 1147         if (ts != NULL) {
 1148                 KASSERT(ts->ts_thread->td_priority >= PRI_MIN_TIMESHARE,
 1149                     ("tdq_choose: Invalid priority on timeshare queue %d",
 1150                     ts->ts_thread->td_priority));
 1151                 return (ts);
 1152         }
 1153 
 1154         ts = runq_choose(&tdq->tdq_idle);
 1155         if (ts != NULL) {
 1156                 KASSERT(ts->ts_thread->td_priority >= PRI_MIN_IDLE,
 1157                     ("tdq_choose: Invalid priority on idle queue %d",
 1158                     ts->ts_thread->td_priority));
 1159                 return (ts);
 1160         }
 1161 
 1162         return (NULL);
 1163 }
 1164 
 1165 /*
 1166  * Initialize a thread queue.
 1167  */
 1168 static void
 1169 tdq_setup(struct tdq *tdq)
 1170 {
 1171 
 1172         if (bootverbose)
 1173                 printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
 1174         runq_init(&tdq->tdq_realtime);
 1175         runq_init(&tdq->tdq_timeshare);
 1176         runq_init(&tdq->tdq_idle);
 1177         tdq->tdq_load = 0;
 1178 }
 1179 
 1180 #ifdef SMP
 1181 static void
 1182 tdg_setup(struct tdq_group *tdg)
 1183 {
 1184         if (bootverbose)
 1185                 printf("ULE: setup cpu group %d\n", TDG_ID(tdg));
 1186         snprintf(tdg->tdg_name, sizeof(tdg->tdg_name),
 1187             "sched lock %d", (int)TDG_ID(tdg));
 1188         mtx_init(&tdg->tdg_lock, tdg->tdg_name, "sched lock",
 1189             MTX_SPIN | MTX_RECURSE);
 1190         LIST_INIT(&tdg->tdg_members);
 1191         tdg->tdg_load = 0;
 1192         tdg->tdg_transferable = 0;
 1193         tdg->tdg_cpus = 0;
 1194         tdg->tdg_mask = 0;
 1195         tdg->tdg_cpumask = 0;
 1196         tdg->tdg_idlemask = 0;
 1197 }
 1198 
 1199 static void
 1200 tdg_add(struct tdq_group *tdg, struct tdq *tdq)
 1201 {
 1202         if (tdg->tdg_mask == 0)
 1203                 tdg->tdg_mask |= 1 << TDQ_ID(tdq);
 1204         tdg->tdg_cpumask |= 1 << TDQ_ID(tdq);
 1205         tdg->tdg_cpus++;
 1206         tdq->tdq_group = tdg;
 1207         tdq->tdq_lock = &tdg->tdg_lock;
 1208         LIST_INSERT_HEAD(&tdg->tdg_members, tdq, tdq_siblings);
 1209         if (bootverbose)
 1210                 printf("ULE: adding cpu %d to group %d: cpus %d mask 0x%X\n",
 1211                     TDQ_ID(tdq), TDG_ID(tdg), tdg->tdg_cpus, tdg->tdg_cpumask);
 1212 }
 1213 
 1214 static void
 1215 sched_setup_topology(void)
 1216 {
 1217         struct tdq_group *tdg;
 1218         struct cpu_group *cg;
 1219         int balance_groups;
 1220         struct tdq *tdq;
 1221         int i;
 1222         int j;
 1223 
 1224         topology = 1;
 1225         balance_groups = 0;
 1226         for (i = 0; i < smp_topology->ct_count; i++) {
 1227                 cg = &smp_topology->ct_group[i];
 1228                 tdg = &tdq_groups[i];
 1229                 /*
 1230                  * Initialize the group.
 1231                  */
 1232                 tdg_setup(tdg);
 1233                 /*
 1234                  * Find all of the group members and add them.
 1235                  */
 1236                 for (j = 0; j < MAXCPU; j++) { 
 1237                         if ((cg->cg_mask & (1 << j)) != 0) {
 1238                                 tdq = TDQ_CPU(j);
 1239                                 tdq_setup(tdq);
 1240                                 tdg_add(tdg, tdq);
 1241                         }
 1242                 }
 1243                 if (tdg->tdg_cpus > 1)
 1244                         balance_groups = 1;
 1245         }
 1246         tdg_maxid = smp_topology->ct_count - 1;
 1247         if (balance_groups)
 1248                 sched_balance_groups();
 1249 }
 1250 
 1251 static void
 1252 sched_setup_smp(void)
 1253 {
 1254         struct tdq_group *tdg;
 1255         struct tdq *tdq;
 1256         int cpus;
 1257         int i;
 1258 
 1259         for (cpus = 0, i = 0; i < MAXCPU; i++) {
 1260                 if (CPU_ABSENT(i))
 1261                         continue;
 1262                 tdq = &tdq_cpu[i];
 1263                 tdg = &tdq_groups[i];
 1264                 /*
 1265                  * Setup a tdq group with one member.
 1266                  */
 1267                 tdg_setup(tdg);
 1268                 tdq_setup(tdq);
 1269                 tdg_add(tdg, tdq);
 1270                 cpus++;
 1271         }
 1272         tdg_maxid = cpus - 1;
 1273 }
 1274 
 1275 /*
 1276  * Fake a topology with one group containing all CPUs.
 1277  */
 1278 static void
 1279 sched_fake_topo(void)
 1280 {
 1281 #ifdef SCHED_FAKE_TOPOLOGY
 1282         static struct cpu_top top;
 1283         static struct cpu_group group;
 1284 
 1285         top.ct_count = 1;
 1286         top.ct_group = &group;
 1287         group.cg_mask = all_cpus;
 1288         group.cg_count = mp_ncpus;
 1289         group.cg_children = 0;
 1290         smp_topology = &top;
 1291 #endif
 1292 }
 1293 #endif
 1294 
 1295 /*
 1296  * Setup the thread queues and initialize the topology based on MD
 1297  * information.
 1298  */
 1299 static void
 1300 sched_setup(void *dummy)
 1301 {
 1302         struct tdq *tdq;
 1303 
 1304         tdq = TDQ_SELF();
 1305 #ifdef SMP
 1306         sched_fake_topo();
 1307         /*
 1308          * Setup tdqs based on a topology configuration or vanilla SMP based
 1309          * on mp_maxid.
 1310          */
 1311         if (smp_topology == NULL)
 1312                 sched_setup_smp();
 1313         else 
 1314                 sched_setup_topology();
 1315         balance_tdq = tdq;
 1316         sched_balance();
 1317 #else
 1318         tdq_setup(tdq);
 1319         mtx_init(&tdq_lock, "sched lock", "sched lock", MTX_SPIN | MTX_RECURSE);
 1320         tdq->tdq_lock = &tdq_lock;
 1321 #endif
 1322         /*
 1323          * To avoid divide-by-zero, we set realstathz a dummy value
 1324          * in case which sched_clock() called before sched_initticks().
 1325          */
 1326         realstathz = hz;
 1327         sched_slice = (realstathz/10);  /* ~100ms */
 1328         tickincr = 1 << SCHED_TICK_SHIFT;
 1329 
 1330         /* Add thread0's load since it's running. */
 1331         TDQ_LOCK(tdq);
 1332         thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
 1333         tdq_load_add(tdq, &td_sched0);
 1334         TDQ_UNLOCK(tdq);
 1335 }
 1336 
 1337 /*
 1338  * This routine determines the tickincr after stathz and hz are setup.
 1339  */
 1340 /* ARGSUSED */
 1341 static void
 1342 sched_initticks(void *dummy)
 1343 {
 1344         int incr;
 1345 
 1346         realstathz = stathz ? stathz : hz;
 1347         sched_slice = (realstathz/10);  /* ~100ms */
 1348 
 1349         /*
 1350          * tickincr is shifted out by 10 to avoid rounding errors due to
 1351          * hz not being evenly divisible by stathz on all platforms.
 1352          */
 1353         incr = (hz << SCHED_TICK_SHIFT) / realstathz;
 1354         /*
 1355          * This does not work for values of stathz that are more than
 1356          * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
 1357          */
 1358         if (incr == 0)
 1359                 incr = 1;
 1360         tickincr = incr;
 1361 #ifdef SMP
 1362         /*
 1363          * Set the default balance interval now that we know
 1364          * what realstathz is.
 1365          */
 1366         balance_interval = realstathz;
 1367         /*
 1368          * Set steal thresh to log2(mp_ncpu) but no greater than 4.  This
 1369          * prevents excess thrashing on large machines and excess idle on
 1370          * smaller machines.
 1371          */
 1372         steal_thresh = min(ffs(mp_ncpus) - 1, 4);
 1373         affinity = SCHED_AFFINITY_DEFAULT;
 1374 #endif
 1375 }
 1376 
 1377 
 1378 /*
 1379  * This is the core of the interactivity algorithm.  Determines a score based
 1380  * on past behavior.  It is the ratio of sleep time to run time scaled to
 1381  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
 1382  * differs from the cpu usage because it does not account for time spent
 1383  * waiting on a run-queue.  Would be prettier if we had floating point.
 1384  */
 1385 static int
 1386 sched_interact_score(struct thread *td)
 1387 {
 1388         struct td_sched *ts;
 1389         int div;
 1390 
 1391         ts = td->td_sched;
 1392         /*
 1393          * The score is only needed if this is likely to be an interactive
 1394          * task.  Don't go through the expense of computing it if there's
 1395          * no chance.
 1396          */
 1397         if (sched_interact <= SCHED_INTERACT_HALF &&
 1398                 ts->ts_runtime >= ts->ts_slptime)
 1399                         return (SCHED_INTERACT_HALF);
 1400 
 1401         if (ts->ts_runtime > ts->ts_slptime) {
 1402                 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
 1403                 return (SCHED_INTERACT_HALF +
 1404                     (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
 1405         }
 1406         if (ts->ts_slptime > ts->ts_runtime) {
 1407                 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
 1408                 return (ts->ts_runtime / div);
 1409         }
 1410         /* runtime == slptime */
 1411         if (ts->ts_runtime)
 1412                 return (SCHED_INTERACT_HALF);
 1413 
 1414         /*
 1415          * This can happen if slptime and runtime are 0.
 1416          */
 1417         return (0);
 1418 
 1419 }
 1420 
 1421 /*
 1422  * Scale the scheduling priority according to the "interactivity" of this
 1423  * process.
 1424  */
 1425 static void
 1426 sched_priority(struct thread *td)
 1427 {
 1428         int score;
 1429         int pri;
 1430 
 1431         if (td->td_pri_class != PRI_TIMESHARE)
 1432                 return;
 1433         /*
 1434          * If the score is interactive we place the thread in the realtime
 1435          * queue with a priority that is less than kernel and interrupt
 1436          * priorities.  These threads are not subject to nice restrictions.
 1437          *
 1438          * Scores greater than this are placed on the normal timeshare queue
 1439          * where the priority is partially decided by the most recent cpu
 1440          * utilization and the rest is decided by nice value.
 1441          *
 1442          * The nice value of the process has a linear effect on the calculated
 1443          * score.  Negative nice values make it easier for a thread to be
 1444          * considered interactive.
 1445          */
 1446         score = imax(0, sched_interact_score(td) - td->td_proc->p_nice);
 1447         if (score < sched_interact) {
 1448                 pri = PRI_MIN_REALTIME;
 1449                 pri += ((PRI_MAX_REALTIME - PRI_MIN_REALTIME) / sched_interact)
 1450                     * score;
 1451                 KASSERT(pri >= PRI_MIN_REALTIME && pri <= PRI_MAX_REALTIME,
 1452                     ("sched_priority: invalid interactive priority %d score %d",
 1453                     pri, score));
 1454         } else {
 1455                 pri = SCHED_PRI_MIN;
 1456                 if (td->td_sched->ts_ticks)
 1457                         pri += SCHED_PRI_TICKS(td->td_sched);
 1458                 pri += SCHED_PRI_NICE(td->td_proc->p_nice);
 1459                 KASSERT(pri >= PRI_MIN_TIMESHARE && pri <= PRI_MAX_TIMESHARE,
 1460                     ("sched_priority: invalid priority %d: nice %d, " 
 1461                     "ticks %d ftick %d ltick %d tick pri %d",
 1462                     pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
 1463                     td->td_sched->ts_ftick, td->td_sched->ts_ltick,
 1464                     SCHED_PRI_TICKS(td->td_sched)));
 1465         }
 1466         sched_user_prio(td, pri);
 1467 
 1468         return;
 1469 }
 1470 
 1471 /*
 1472  * This routine enforces a maximum limit on the amount of scheduling history
 1473  * kept.  It is called after either the slptime or runtime is adjusted.  This
 1474  * function is ugly due to integer math.
 1475  */
 1476 static void
 1477 sched_interact_update(struct thread *td)
 1478 {
 1479         struct td_sched *ts;
 1480         u_int sum;
 1481 
 1482         ts = td->td_sched;
 1483         sum = ts->ts_runtime + ts->ts_slptime;
 1484         if (sum < SCHED_SLP_RUN_MAX)
 1485                 return;
 1486         /*
 1487          * This only happens from two places:
 1488          * 1) We have added an unusual amount of run time from fork_exit.
 1489          * 2) We have added an unusual amount of sleep time from sched_sleep().
 1490          */
 1491         if (sum > SCHED_SLP_RUN_MAX * 2) {
 1492                 if (ts->ts_runtime > ts->ts_slptime) {
 1493                         ts->ts_runtime = SCHED_SLP_RUN_MAX;
 1494                         ts->ts_slptime = 1;
 1495                 } else {
 1496                         ts->ts_slptime = SCHED_SLP_RUN_MAX;
 1497                         ts->ts_runtime = 1;
 1498                 }
 1499                 return;
 1500         }
 1501         /*
 1502          * If we have exceeded by more than 1/5th then the algorithm below
 1503          * will not bring us back into range.  Dividing by two here forces
 1504          * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
 1505          */
 1506         if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
 1507                 ts->ts_runtime /= 2;
 1508                 ts->ts_slptime /= 2;
 1509                 return;
 1510         }
 1511         ts->ts_runtime = (ts->ts_runtime / 5) * 4;
 1512         ts->ts_slptime = (ts->ts_slptime / 5) * 4;
 1513 }
 1514 
 1515 /*
 1516  * Scale back the interactivity history when a child thread is created.  The
 1517  * history is inherited from the parent but the thread may behave totally
 1518  * differently.  For example, a shell spawning a compiler process.  We want
 1519  * to learn that the compiler is behaving badly very quickly.
 1520  */
 1521 static void
 1522 sched_interact_fork(struct thread *td)
 1523 {
 1524         int ratio;
 1525         int sum;
 1526 
 1527         sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
 1528         if (sum > SCHED_SLP_RUN_FORK) {
 1529                 ratio = sum / SCHED_SLP_RUN_FORK;
 1530                 td->td_sched->ts_runtime /= ratio;
 1531                 td->td_sched->ts_slptime /= ratio;
 1532         }
 1533 }
 1534 
 1535 /*
 1536  * Called from proc0_init() to setup the scheduler fields.
 1537  */
 1538 void
 1539 schedinit(void)
 1540 {
 1541 
 1542         /*
 1543          * Set up the scheduler specific parts of proc0.
 1544          */
 1545         proc0.p_sched = NULL; /* XXX */
 1546         thread0.td_sched = &td_sched0;
 1547         td_sched0.ts_ltick = ticks;
 1548         td_sched0.ts_ftick = ticks;
 1549         td_sched0.ts_thread = &thread0;
 1550 }
 1551 
 1552 /*
 1553  * This is only somewhat accurate since given many processes of the same
 1554  * priority they will switch when their slices run out, which will be
 1555  * at most sched_slice stathz ticks.
 1556  */
 1557 int
 1558 sched_rr_interval(void)
 1559 {
 1560 
 1561         /* Convert sched_slice to hz */
 1562         return (hz/(realstathz/sched_slice));
 1563 }
 1564 
 1565 /*
 1566  * Update the percent cpu tracking information when it is requested or
 1567  * the total history exceeds the maximum.  We keep a sliding history of
 1568  * tick counts that slowly decays.  This is less precise than the 4BSD
 1569  * mechanism since it happens with less regular and frequent events.
 1570  */
 1571 static void
 1572 sched_pctcpu_update(struct td_sched *ts)
 1573 {
 1574 
 1575         if (ts->ts_ticks == 0)
 1576                 return;
 1577         if (ticks - (hz / 10) < ts->ts_ltick &&
 1578             SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
 1579                 return;
 1580         /*
 1581          * Adjust counters and watermark for pctcpu calc.
 1582          */
 1583         if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
 1584                 ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
 1585                             SCHED_TICK_TARG;
 1586         else
 1587                 ts->ts_ticks = 0;
 1588         ts->ts_ltick = ticks;
 1589         ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
 1590 }
 1591 
 1592 /*
 1593  * Adjust the priority of a thread.  Move it to the appropriate run-queue
 1594  * if necessary.  This is the back-end for several priority related
 1595  * functions.
 1596  */
 1597 static void
 1598 sched_thread_priority(struct thread *td, u_char prio)
 1599 {
 1600         struct td_sched *ts;
 1601 
 1602         CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
 1603             td, td->td_proc->p_comm, td->td_priority, prio, curthread,
 1604             curthread->td_proc->p_comm);
 1605         ts = td->td_sched;
 1606         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1607         if (td->td_priority == prio)
 1608                 return;
 1609 
 1610         if (TD_ON_RUNQ(td) && prio < td->td_priority) {
 1611                 /*
 1612                  * If the priority has been elevated due to priority
 1613                  * propagation, we may have to move ourselves to a new
 1614                  * queue.  This could be optimized to not re-add in some
 1615                  * cases.
 1616                  */
 1617                 sched_rem(td);
 1618                 td->td_priority = prio;
 1619                 sched_add(td, SRQ_BORROWING);
 1620         } else {
 1621 #ifdef SMP
 1622                 struct tdq *tdq;
 1623 
 1624                 tdq = TDQ_CPU(ts->ts_cpu);
 1625                 if (prio < tdq->tdq_lowpri)
 1626                         tdq->tdq_lowpri = prio;
 1627 #endif
 1628                 td->td_priority = prio;
 1629         }
 1630 }
 1631 
 1632 /*
 1633  * Update a thread's priority when it is lent another thread's
 1634  * priority.
 1635  */
 1636 void
 1637 sched_lend_prio(struct thread *td, u_char prio)
 1638 {
 1639 
 1640         td->td_flags |= TDF_BORROWING;
 1641         sched_thread_priority(td, prio);
 1642 }
 1643 
 1644 /*
 1645  * Restore a thread's priority when priority propagation is
 1646  * over.  The prio argument is the minimum priority the thread
 1647  * needs to have to satisfy other possible priority lending
 1648  * requests.  If the thread's regular priority is less
 1649  * important than prio, the thread will keep a priority boost
 1650  * of prio.
 1651  */
 1652 void
 1653 sched_unlend_prio(struct thread *td, u_char prio)
 1654 {
 1655         u_char base_pri;
 1656 
 1657         if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
 1658             td->td_base_pri <= PRI_MAX_TIMESHARE)
 1659                 base_pri = td->td_user_pri;
 1660         else
 1661                 base_pri = td->td_base_pri;
 1662         if (prio >= base_pri) {
 1663                 td->td_flags &= ~TDF_BORROWING;
 1664                 sched_thread_priority(td, base_pri);
 1665         } else
 1666                 sched_lend_prio(td, prio);
 1667 }
 1668 
 1669 /*
 1670  * Standard entry for setting the priority to an absolute value.
 1671  */
 1672 void
 1673 sched_prio(struct thread *td, u_char prio)
 1674 {
 1675         u_char oldprio;
 1676 
 1677         /* First, update the base priority. */
 1678         td->td_base_pri = prio;
 1679 
 1680         /*
 1681          * If the thread is borrowing another thread's priority, don't
 1682          * ever lower the priority.
 1683          */
 1684         if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
 1685                 return;
 1686 
 1687         /* Change the real priority. */
 1688         oldprio = td->td_priority;
 1689         sched_thread_priority(td, prio);
 1690 
 1691         /*
 1692          * If the thread is on a turnstile, then let the turnstile update
 1693          * its state.
 1694          */
 1695         if (TD_ON_LOCK(td) && oldprio != prio)
 1696                 turnstile_adjust(td, oldprio);
 1697 }
 1698 
 1699 /*
 1700  * Set the base user priority, does not effect current running priority.
 1701  */
 1702 void
 1703 sched_user_prio(struct thread *td, u_char prio)
 1704 {
 1705         u_char oldprio;
 1706 
 1707         td->td_base_user_pri = prio;
 1708         if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
 1709                 return;
 1710         oldprio = td->td_user_pri;
 1711         td->td_user_pri = prio;
 1712 }
 1713 
 1714 void
 1715 sched_lend_user_prio(struct thread *td, u_char prio)
 1716 {
 1717         u_char oldprio;
 1718 
 1719         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1720         td->td_flags |= TDF_UBORROWING;
 1721         oldprio = td->td_user_pri;
 1722         td->td_user_pri = prio;
 1723 }
 1724 
 1725 void
 1726 sched_unlend_user_prio(struct thread *td, u_char prio)
 1727 {
 1728         u_char base_pri;
 1729 
 1730         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1731         base_pri = td->td_base_user_pri;
 1732         if (prio >= base_pri) {
 1733                 td->td_flags &= ~TDF_UBORROWING;
 1734                 sched_user_prio(td, base_pri);
 1735         } else {
 1736                 sched_lend_user_prio(td, prio);
 1737         }
 1738 }
 1739 
 1740 /*
 1741  * Add the thread passed as 'newtd' to the run queue before selecting
 1742  * the next thread to run.  This is only used for KSE.
 1743  */
 1744 static void
 1745 sched_switchin(struct tdq *tdq, struct thread *td)
 1746 {
 1747 #ifdef SMP
 1748         spinlock_enter();
 1749         TDQ_UNLOCK(tdq);
 1750         thread_lock(td);
 1751         spinlock_exit();
 1752         sched_setcpu(td->td_sched, TDQ_ID(tdq), SRQ_YIELDING);
 1753 #else
 1754         td->td_lock = TDQ_LOCKPTR(tdq);
 1755 #endif
 1756         tdq_add(tdq, td, SRQ_YIELDING);
 1757         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1758 }
 1759 
 1760 /*
 1761  * Handle migration from sched_switch().  This happens only for
 1762  * cpu binding.
 1763  */
 1764 static struct mtx *
 1765 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
 1766 {
 1767         struct tdq *tdn;
 1768 
 1769         tdn = TDQ_CPU(td->td_sched->ts_cpu);
 1770 #ifdef SMP
 1771         /*
 1772          * Do the lock dance required to avoid LOR.  We grab an extra
 1773          * spinlock nesting to prevent preemption while we're
 1774          * not holding either run-queue lock.
 1775          */
 1776         spinlock_enter();
 1777         thread_block_switch(td);        /* This releases the lock on tdq. */
 1778         TDQ_LOCK(tdn);
 1779         tdq_add(tdn, td, flags);
 1780         tdq_notify(td->td_sched);
 1781         /*
 1782          * After we unlock tdn the new cpu still can't switch into this
 1783          * thread until we've unblocked it in cpu_switch().  The lock
 1784          * pointers may match in the case of HTT cores.  Don't unlock here
 1785          * or we can deadlock when the other CPU runs the IPI handler.
 1786          */
 1787         if (TDQ_LOCKPTR(tdn) != TDQ_LOCKPTR(tdq)) {
 1788                 TDQ_UNLOCK(tdn);
 1789                 TDQ_LOCK(tdq);
 1790         }
 1791         spinlock_exit();
 1792 #endif
 1793         return (TDQ_LOCKPTR(tdn));
 1794 }
 1795 
 1796 /*
 1797  * Block a thread for switching.  Similar to thread_block() but does not
 1798  * bump the spin count.
 1799  */
 1800 static inline struct mtx *
 1801 thread_block_switch(struct thread *td)
 1802 {
 1803         struct mtx *lock;
 1804 
 1805         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1806         lock = td->td_lock;
 1807         td->td_lock = &blocked_lock;
 1808         mtx_unlock_spin(lock);
 1809 
 1810         return (lock);
 1811 }
 1812 
 1813 /*
 1814  * Release a thread that was blocked with thread_block_switch().
 1815  */
 1816 static inline void
 1817 thread_unblock_switch(struct thread *td, struct mtx *mtx)
 1818 {
 1819         atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
 1820             (uintptr_t)mtx);
 1821 }
 1822 
 1823 /*
 1824  * Switch threads.  This function has to handle threads coming in while
 1825  * blocked for some reason, running, or idle.  It also must deal with
 1826  * migrating a thread from one queue to another as running threads may
 1827  * be assigned elsewhere via binding.
 1828  */
 1829 void
 1830 sched_switch(struct thread *td, struct thread *newtd, int flags)
 1831 {
 1832         struct tdq *tdq;
 1833         struct td_sched *ts;
 1834         struct mtx *mtx;
 1835         int srqflag;
 1836         int cpuid;
 1837 
 1838         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1839 
 1840         cpuid = PCPU_GET(cpuid);
 1841         tdq = TDQ_CPU(cpuid);
 1842         ts = td->td_sched;
 1843         mtx = td->td_lock;
 1844 #ifdef SMP
 1845         ts->ts_rltick = ticks;
 1846         if (newtd && newtd->td_priority < tdq->tdq_lowpri)
 1847                 tdq->tdq_lowpri = newtd->td_priority;
 1848 #endif
 1849         td->td_lastcpu = td->td_oncpu;
 1850         td->td_oncpu = NOCPU;
 1851         td->td_flags &= ~TDF_NEEDRESCHED;
 1852         td->td_owepreempt = 0;
 1853         /*
 1854          * The lock pointer in an idle thread should never change.  Reset it
 1855          * to CAN_RUN as well.
 1856          */
 1857         if (TD_IS_IDLETHREAD(td)) {
 1858                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1859                 TD_SET_CAN_RUN(td);
 1860         } else if (TD_IS_RUNNING(td)) {
 1861                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1862                 tdq_load_rem(tdq, ts);
 1863                 srqflag = (flags & SW_PREEMPT) ?
 1864                     SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
 1865                     SRQ_OURSELF|SRQ_YIELDING;
 1866                 if (ts->ts_cpu == cpuid)
 1867                         tdq_add(tdq, td, srqflag);
 1868                 else
 1869                         mtx = sched_switch_migrate(tdq, td, srqflag);
 1870         } else {
 1871                 /* This thread must be going to sleep. */
 1872                 TDQ_LOCK(tdq);
 1873                 mtx = thread_block_switch(td);
 1874                 tdq_load_rem(tdq, ts);
 1875         }
 1876         /*
 1877          * We enter here with the thread blocked and assigned to the
 1878          * appropriate cpu run-queue or sleep-queue and with the current
 1879          * thread-queue locked.
 1880          */
 1881         TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 1882         /*
 1883          * If KSE assigned a new thread just add it here and let choosethread
 1884          * select the best one.
 1885          */
 1886         if (newtd != NULL)
 1887                 sched_switchin(tdq, newtd);
 1888         newtd = choosethread();
 1889         /*
 1890          * Call the MD code to switch contexts if necessary.
 1891          */
 1892         if (td != newtd) {
 1893 #ifdef  HWPMC_HOOKS
 1894                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1895                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
 1896 #endif
 1897                 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
 1898                 cpu_switch(td, newtd, mtx);
 1899                 /*
 1900                  * We may return from cpu_switch on a different cpu.  However,
 1901                  * we always return with td_lock pointing to the current cpu's
 1902                  * run queue lock.
 1903                  */
 1904                 cpuid = PCPU_GET(cpuid);
 1905                 tdq = TDQ_CPU(cpuid);
 1906 #ifdef  HWPMC_HOOKS
 1907                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1908                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
 1909 #endif
 1910         } else
 1911                 thread_unblock_switch(td, mtx);
 1912         /*
 1913          * Assert that all went well and return.
 1914          */
 1915 #ifdef SMP
 1916         /* We should always get here with the lowest priority td possible */
 1917         tdq->tdq_lowpri = td->td_priority;
 1918 #endif
 1919         TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
 1920         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1921         td->td_oncpu = cpuid;
 1922 }
 1923 
 1924 /*
 1925  * Adjust thread priorities as a result of a nice request.
 1926  */
 1927 void
 1928 sched_nice(struct proc *p, int nice)
 1929 {
 1930         struct thread *td;
 1931 
 1932         PROC_LOCK_ASSERT(p, MA_OWNED);
 1933         PROC_SLOCK_ASSERT(p, MA_OWNED);
 1934 
 1935         p->p_nice = nice;
 1936         FOREACH_THREAD_IN_PROC(p, td) {
 1937                 thread_lock(td);
 1938                 sched_priority(td);
 1939                 sched_prio(td, td->td_base_user_pri);
 1940                 thread_unlock(td);
 1941         }
 1942 }
 1943 
 1944 /*
 1945  * Record the sleep time for the interactivity scorer.
 1946  */
 1947 void
 1948 sched_sleep(struct thread *td)
 1949 {
 1950 
 1951         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1952 
 1953         td->td_slptick = ticks;
 1954 }
 1955 
 1956 /*
 1957  * Schedule a thread to resume execution and record how long it voluntarily
 1958  * slept.  We also update the pctcpu, interactivity, and priority.
 1959  */
 1960 void
 1961 sched_wakeup(struct thread *td)
 1962 {
 1963         struct td_sched *ts;
 1964         int slptick;
 1965 
 1966         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1967         ts = td->td_sched;
 1968         /*
 1969          * If we slept for more than a tick update our interactivity and
 1970          * priority.
 1971          */
 1972         slptick = td->td_slptick;
 1973         td->td_slptick = 0;
 1974         if (slptick && slptick != ticks) {
 1975                 u_int hzticks;
 1976 
 1977                 hzticks = (ticks - slptick) << SCHED_TICK_SHIFT;
 1978                 ts->ts_slptime += hzticks;
 1979                 sched_interact_update(td);
 1980                 sched_pctcpu_update(ts);
 1981                 sched_priority(td);
 1982         }
 1983         /* Reset the slice value after we sleep. */
 1984         ts->ts_slice = sched_slice;
 1985         sched_add(td, SRQ_BORING);
 1986 }
 1987 
 1988 /*
 1989  * Penalize the parent for creating a new child and initialize the child's
 1990  * priority.
 1991  */
 1992 void
 1993 sched_fork(struct thread *td, struct thread *child)
 1994 {
 1995         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1996         sched_fork_thread(td, child);
 1997         /*
 1998          * Penalize the parent and child for forking.
 1999          */
 2000         sched_interact_fork(child);
 2001         sched_priority(child);
 2002         td->td_sched->ts_runtime += tickincr;
 2003         sched_interact_update(td);
 2004         sched_priority(td);
 2005 }
 2006 
 2007 /*
 2008  * Fork a new thread, may be within the same process.
 2009  */
 2010 void
 2011 sched_fork_thread(struct thread *td, struct thread *child)
 2012 {
 2013         struct td_sched *ts;
 2014         struct td_sched *ts2;
 2015 
 2016         /*
 2017          * Initialize child.
 2018          */
 2019         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2020         sched_newthread(child);
 2021         child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
 2022         ts = td->td_sched;
 2023         ts2 = child->td_sched;
 2024         ts2->ts_cpu = ts->ts_cpu;
 2025         ts2->ts_runq = NULL;
 2026         /*
 2027          * Grab our parents cpu estimation information and priority.
 2028          */
 2029         ts2->ts_ticks = ts->ts_ticks;
 2030         ts2->ts_ltick = ts->ts_ltick;
 2031         ts2->ts_ftick = ts->ts_ftick;
 2032         child->td_user_pri = td->td_user_pri;
 2033         child->td_base_user_pri = td->td_base_user_pri;
 2034         /*
 2035          * And update interactivity score.
 2036          */
 2037         ts2->ts_slptime = ts->ts_slptime;
 2038         ts2->ts_runtime = ts->ts_runtime;
 2039         ts2->ts_slice = 1;      /* Attempt to quickly learn interactivity. */
 2040 }
 2041 
 2042 /*
 2043  * Adjust the priority class of a thread.
 2044  */
 2045 void
 2046 sched_class(struct thread *td, int class)
 2047 {
 2048 
 2049         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2050         if (td->td_pri_class == class)
 2051                 return;
 2052 
 2053 #ifdef SMP
 2054         /*
 2055          * On SMP if we're on the RUNQ we must adjust the transferable
 2056          * count because could be changing to or from an interrupt
 2057          * class.
 2058          */
 2059         if (TD_ON_RUNQ(td)) {
 2060                 struct tdq *tdq;
 2061 
 2062                 tdq = TDQ_CPU(td->td_sched->ts_cpu);
 2063                 if (THREAD_CAN_MIGRATE(td)) {
 2064                         tdq->tdq_transferable--;
 2065                         tdq->tdq_group->tdg_transferable--;
 2066                 }
 2067                 td->td_pri_class = class;
 2068                 if (THREAD_CAN_MIGRATE(td)) {
 2069                         tdq->tdq_transferable++;
 2070                         tdq->tdq_group->tdg_transferable++;
 2071                 }
 2072         }
 2073 #endif
 2074         td->td_pri_class = class;
 2075 }
 2076 
 2077 /*
 2078  * Return some of the child's priority and interactivity to the parent.
 2079  */
 2080 void
 2081 sched_exit(struct proc *p, struct thread *child)
 2082 {
 2083         struct thread *td;
 2084         
 2085         CTR3(KTR_SCHED, "sched_exit: %p(%s) prio %d",
 2086             child, child->td_proc->p_comm, child->td_priority);
 2087 
 2088         PROC_SLOCK_ASSERT(p, MA_OWNED);
 2089         td = FIRST_THREAD_IN_PROC(p);
 2090         sched_exit_thread(td, child);
 2091 }
 2092 
 2093 /*
 2094  * Penalize another thread for the time spent on this one.  This helps to
 2095  * worsen the priority and interactivity of processes which schedule batch
 2096  * jobs such as make.  This has little effect on the make process itself but
 2097  * causes new processes spawned by it to receive worse scores immediately.
 2098  */
 2099 void
 2100 sched_exit_thread(struct thread *td, struct thread *child)
 2101 {
 2102 
 2103         CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
 2104             child, child->td_proc->p_comm, child->td_priority);
 2105 
 2106 #ifdef KSE
 2107         /*
 2108          * KSE forks and exits so often that this penalty causes short-lived
 2109          * threads to always be non-interactive.  This causes mozilla to
 2110          * crawl under load.
 2111          */
 2112         if ((td->td_pflags & TDP_SA) && td->td_proc == child->td_proc)
 2113                 return;
 2114 #endif
 2115         /*
 2116          * Give the child's runtime to the parent without returning the
 2117          * sleep time as a penalty to the parent.  This causes shells that
 2118          * launch expensive things to mark their children as expensive.
 2119          */
 2120         thread_lock(td);
 2121         td->td_sched->ts_runtime += child->td_sched->ts_runtime;
 2122         sched_interact_update(td);
 2123         sched_priority(td);
 2124         thread_unlock(td);
 2125 }
 2126 
 2127 /*
 2128  * Fix priorities on return to user-space.  Priorities may be elevated due
 2129  * to static priorities in msleep() or similar.
 2130  */
 2131 void
 2132 sched_userret(struct thread *td)
 2133 {
 2134         /*
 2135          * XXX we cheat slightly on the locking here to avoid locking in  
 2136          * the usual case.  Setting td_priority here is essentially an
 2137          * incomplete workaround for not setting it properly elsewhere.
 2138          * Now that some interrupt handlers are threads, not setting it
 2139          * properly elsewhere can clobber it in the window between setting
 2140          * it here and returning to user mode, so don't waste time setting
 2141          * it perfectly here.
 2142          */
 2143         KASSERT((td->td_flags & TDF_BORROWING) == 0,
 2144             ("thread with borrowed priority returning to userland"));
 2145         if (td->td_priority != td->td_user_pri) {
 2146                 thread_lock(td);
 2147                 td->td_priority = td->td_user_pri;
 2148                 td->td_base_pri = td->td_user_pri;
 2149                 thread_unlock(td);
 2150         }
 2151 }
 2152 
 2153 /*
 2154  * Handle a stathz tick.  This is really only relevant for timeshare
 2155  * threads.
 2156  */
 2157 void
 2158 sched_clock(struct thread *td)
 2159 {
 2160         struct tdq *tdq;
 2161         struct td_sched *ts;
 2162 
 2163         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2164         tdq = TDQ_SELF();
 2165 #ifdef SMP
 2166         /*
 2167          * We run the long term load balancer infrequently on the first cpu.
 2168          */
 2169         if (balance_tdq == tdq) {
 2170                 if (balance_ticks && --balance_ticks == 0)
 2171                         sched_balance();
 2172                 if (balance_group_ticks && --balance_group_ticks == 0)
 2173                         sched_balance_groups();
 2174         }
 2175 #endif
 2176         /*
 2177          * Advance the insert index once for each tick to ensure that all
 2178          * threads get a chance to run.
 2179          */
 2180         if (tdq->tdq_idx == tdq->tdq_ridx) {
 2181                 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
 2182                 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
 2183                         tdq->tdq_ridx = tdq->tdq_idx;
 2184         }
 2185         ts = td->td_sched;
 2186         /*
 2187          * We only do slicing code for TIMESHARE threads.
 2188          */
 2189         if (td->td_pri_class != PRI_TIMESHARE)
 2190                 return;
 2191         /*
 2192          * We used a tick; charge it to the thread so that we can compute our
 2193          * interactivity.
 2194          */
 2195         td->td_sched->ts_runtime += tickincr;
 2196         sched_interact_update(td);
 2197         /*
 2198          * We used up one time slice.
 2199          */
 2200         if (--ts->ts_slice > 0)
 2201                 return;
 2202         /*
 2203          * We're out of time, recompute priorities and requeue.
 2204          */
 2205         sched_priority(td);
 2206         td->td_flags |= TDF_NEEDRESCHED;
 2207 }
 2208 
 2209 /*
 2210  * Called once per hz tick.  Used for cpu utilization information.  This
 2211  * is easier than trying to scale based on stathz.
 2212  */
 2213 void
 2214 sched_tick(void)
 2215 {
 2216         struct td_sched *ts;
 2217 
 2218         ts = curthread->td_sched;
 2219         /* Adjust ticks for pctcpu */
 2220         ts->ts_ticks += 1 << SCHED_TICK_SHIFT;
 2221         ts->ts_ltick = ticks;
 2222         /*
 2223          * Update if we've exceeded our desired tick threshhold by over one
 2224          * second.
 2225          */
 2226         if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
 2227                 sched_pctcpu_update(ts);
 2228 }
 2229 
 2230 /*
 2231  * Return whether the current CPU has runnable tasks.  Used for in-kernel
 2232  * cooperative idle threads.
 2233  */
 2234 int
 2235 sched_runnable(void)
 2236 {
 2237         struct tdq *tdq;
 2238         int load;
 2239 
 2240         load = 1;
 2241 
 2242         tdq = TDQ_SELF();
 2243         if ((curthread->td_flags & TDF_IDLETD) != 0) {
 2244                 if (tdq->tdq_load > 0)
 2245                         goto out;
 2246         } else
 2247                 if (tdq->tdq_load - 1 > 0)
 2248                         goto out;
 2249         load = 0;
 2250 out:
 2251         return (load);
 2252 }
 2253 
 2254 /*
 2255  * Choose the highest priority thread to run.  The thread is removed from
 2256  * the run-queue while running however the load remains.  For SMP we set
 2257  * the tdq in the global idle bitmask if it idles here.
 2258  */
 2259 struct thread *
 2260 sched_choose(void)
 2261 {
 2262 #ifdef SMP
 2263         struct tdq_group *tdg;
 2264 #endif
 2265         struct td_sched *ts;
 2266         struct tdq *tdq;
 2267 
 2268         tdq = TDQ_SELF();
 2269         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2270         ts = tdq_choose(tdq);
 2271         if (ts) {
 2272                 tdq_runq_rem(tdq, ts);
 2273                 return (ts->ts_thread);
 2274         }
 2275 #ifdef SMP
 2276         /*
 2277          * We only set the idled bit when all of the cpus in the group are
 2278          * idle.  Otherwise we could get into a situation where a thread bounces
 2279          * back and forth between two idle cores on seperate physical CPUs.
 2280          */
 2281         tdg = tdq->tdq_group;
 2282         tdg->tdg_idlemask |= PCPU_GET(cpumask);
 2283         if (tdg->tdg_idlemask == tdg->tdg_cpumask)
 2284                 atomic_set_int(&tdq_idle, tdg->tdg_mask);
 2285         tdq->tdq_lowpri = PRI_MAX_IDLE;
 2286 #endif
 2287         return (PCPU_GET(idlethread));
 2288 }
 2289 
 2290 /*
 2291  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
 2292  * we always request it once we exit a critical section.
 2293  */
 2294 static inline void
 2295 sched_setpreempt(struct thread *td)
 2296 {
 2297         struct thread *ctd;
 2298         int cpri;
 2299         int pri;
 2300 
 2301         ctd = curthread;
 2302         pri = td->td_priority;
 2303         cpri = ctd->td_priority;
 2304         if (td->td_priority < ctd->td_priority)
 2305                 curthread->td_flags |= TDF_NEEDRESCHED;
 2306         if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
 2307                 return;
 2308         /*
 2309          * Always preempt IDLE threads.  Otherwise only if the preempting
 2310          * thread is an ithread.
 2311          */
 2312         if (pri > preempt_thresh && cpri < PRI_MIN_IDLE)
 2313                 return;
 2314         ctd->td_owepreempt = 1;
 2315         return;
 2316 }
 2317 
 2318 /*
 2319  * Add a thread to a thread queue.  Initializes priority, slice, runq, and
 2320  * add it to the appropriate queue.  This is the internal function called
 2321  * when the tdq is predetermined.
 2322  */
 2323 void
 2324 tdq_add(struct tdq *tdq, struct thread *td, int flags)
 2325 {
 2326         struct td_sched *ts;
 2327         int class;
 2328 #ifdef SMP
 2329         int cpumask;
 2330 #endif
 2331 
 2332         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2333         KASSERT((td->td_inhibitors == 0),
 2334             ("sched_add: trying to run inhibited thread"));
 2335         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 2336             ("sched_add: bad thread state"));
 2337         KASSERT(td->td_flags & TDF_INMEM,
 2338             ("sched_add: thread swapped out"));
 2339 
 2340         ts = td->td_sched;
 2341         class = PRI_BASE(td->td_pri_class);
 2342         TD_SET_RUNQ(td);
 2343         if (ts->ts_slice == 0)
 2344                 ts->ts_slice = sched_slice;
 2345         /*
 2346          * Pick the run queue based on priority.
 2347          */
 2348         if (td->td_priority <= PRI_MAX_REALTIME)
 2349                 ts->ts_runq = &tdq->tdq_realtime;
 2350         else if (td->td_priority <= PRI_MAX_TIMESHARE)
 2351                 ts->ts_runq = &tdq->tdq_timeshare;
 2352         else
 2353                 ts->ts_runq = &tdq->tdq_idle;
 2354 #ifdef SMP
 2355         cpumask = 1 << ts->ts_cpu;
 2356         /*
 2357          * If we had been idle, clear our bit in the group and potentially
 2358          * the global bitmap.
 2359          */
 2360         if ((class != PRI_IDLE && class != PRI_ITHD) &&
 2361             (tdq->tdq_group->tdg_idlemask & cpumask) != 0) {
 2362                 /*
 2363                  * Check to see if our group is unidling, and if so, remove it
 2364                  * from the global idle mask.
 2365                  */
 2366                 if (tdq->tdq_group->tdg_idlemask ==
 2367                     tdq->tdq_group->tdg_cpumask)
 2368                         atomic_clear_int(&tdq_idle, tdq->tdq_group->tdg_mask);
 2369                 /*
 2370                  * Now remove ourselves from the group specific idle mask.
 2371                  */
 2372                 tdq->tdq_group->tdg_idlemask &= ~cpumask;
 2373         }
 2374         if (td->td_priority < tdq->tdq_lowpri)
 2375                 tdq->tdq_lowpri = td->td_priority;
 2376 #endif
 2377         tdq_runq_add(tdq, ts, flags);
 2378         tdq_load_add(tdq, ts);
 2379 }
 2380 
 2381 /*
 2382  * Select the target thread queue and add a thread to it.  Request
 2383  * preemption or IPI a remote processor if required.
 2384  */
 2385 void
 2386 sched_add(struct thread *td, int flags)
 2387 {
 2388         struct td_sched *ts;
 2389         struct tdq *tdq;
 2390 #ifdef SMP
 2391         int cpuid;
 2392         int cpu;
 2393 #endif
 2394         CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
 2395             td, td->td_proc->p_comm, td->td_priority, curthread,
 2396             curthread->td_proc->p_comm);
 2397         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2398         ts = td->td_sched;
 2399         /*
 2400          * Recalculate the priority before we select the target cpu or
 2401          * run-queue.
 2402          */
 2403         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
 2404                 sched_priority(td);
 2405 #ifdef SMP
 2406         cpuid = PCPU_GET(cpuid);
 2407         /*
 2408          * Pick the destination cpu and if it isn't ours transfer to the
 2409          * target cpu.
 2410          */
 2411         if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_MIGRATE(td))
 2412                 cpu = cpuid;
 2413         else if (!THREAD_CAN_MIGRATE(td))
 2414                 cpu = ts->ts_cpu;
 2415         else
 2416                 cpu = sched_pickcpu(ts, flags);
 2417         tdq = sched_setcpu(ts, cpu, flags);
 2418         tdq_add(tdq, td, flags);
 2419         if (cpu != cpuid) {
 2420                 tdq_notify(ts);
 2421                 return;
 2422         }
 2423 #else
 2424         tdq = TDQ_SELF();
 2425         TDQ_LOCK(tdq);
 2426         /*
 2427          * Now that the thread is moving to the run-queue, set the lock
 2428          * to the scheduler's lock.
 2429          */
 2430         thread_lock_set(td, TDQ_LOCKPTR(tdq));
 2431         tdq_add(tdq, td, flags);
 2432 #endif
 2433         if (!(flags & SRQ_YIELDING))
 2434                 sched_setpreempt(td);
 2435 }
 2436 
 2437 /*
 2438  * Remove a thread from a run-queue without running it.  This is used
 2439  * when we're stealing a thread from a remote queue.  Otherwise all threads
 2440  * exit by calling sched_exit_thread() and sched_throw() themselves.
 2441  */
 2442 void
 2443 sched_rem(struct thread *td)
 2444 {
 2445         struct tdq *tdq;
 2446         struct td_sched *ts;
 2447 
 2448         CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
 2449             td, td->td_proc->p_comm, td->td_priority, curthread,
 2450             curthread->td_proc->p_comm);
 2451         ts = td->td_sched;
 2452         tdq = TDQ_CPU(ts->ts_cpu);
 2453         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2454         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2455         KASSERT(TD_ON_RUNQ(td),
 2456             ("sched_rem: thread not on run queue"));
 2457         tdq_runq_rem(tdq, ts);
 2458         tdq_load_rem(tdq, ts);
 2459         TD_SET_CAN_RUN(td);
 2460 }
 2461 
 2462 /*
 2463  * Fetch cpu utilization information.  Updates on demand.
 2464  */
 2465 fixpt_t
 2466 sched_pctcpu(struct thread *td)
 2467 {
 2468         fixpt_t pctcpu;
 2469         struct td_sched *ts;
 2470 
 2471         pctcpu = 0;
 2472         ts = td->td_sched;
 2473         if (ts == NULL)
 2474                 return (0);
 2475 
 2476         thread_lock(td);
 2477         if (ts->ts_ticks) {
 2478                 int rtick;
 2479 
 2480                 sched_pctcpu_update(ts);
 2481                 /* How many rtick per second ? */
 2482                 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
 2483                 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
 2484         }
 2485         thread_unlock(td);
 2486 
 2487         return (pctcpu);
 2488 }
 2489 
 2490 /*
 2491  * Bind a thread to a target cpu.
 2492  */
 2493 void
 2494 sched_bind(struct thread *td, int cpu)
 2495 {
 2496         struct td_sched *ts;
 2497 
 2498         THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
 2499         ts = td->td_sched;
 2500         if (ts->ts_flags & TSF_BOUND)
 2501                 sched_unbind(td);
 2502         ts->ts_flags |= TSF_BOUND;
 2503 #ifdef SMP
 2504         sched_pin();
 2505         if (PCPU_GET(cpuid) == cpu)
 2506                 return;
 2507         ts->ts_cpu = cpu;
 2508         /* When we return from mi_switch we'll be on the correct cpu. */
 2509         mi_switch(SW_VOL, NULL);
 2510 #endif
 2511 }
 2512 
 2513 /*
 2514  * Release a bound thread.
 2515  */
 2516 void
 2517 sched_unbind(struct thread *td)
 2518 {
 2519         struct td_sched *ts;
 2520 
 2521         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2522         ts = td->td_sched;
 2523         if ((ts->ts_flags & TSF_BOUND) == 0)
 2524                 return;
 2525         ts->ts_flags &= ~TSF_BOUND;
 2526 #ifdef SMP
 2527         sched_unpin();
 2528 #endif
 2529 }
 2530 
 2531 int
 2532 sched_is_bound(struct thread *td)
 2533 {
 2534         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2535         return (td->td_sched->ts_flags & TSF_BOUND);
 2536 }
 2537 
 2538 /*
 2539  * Basic yield call.
 2540  */
 2541 void
 2542 sched_relinquish(struct thread *td)
 2543 {
 2544         thread_lock(td);
 2545         SCHED_STAT_INC(switch_relinquish);
 2546         mi_switch(SW_VOL, NULL);
 2547         thread_unlock(td);
 2548 }
 2549 
 2550 /*
 2551  * Return the total system load.
 2552  */
 2553 int
 2554 sched_load(void)
 2555 {
 2556 #ifdef SMP
 2557         int total;
 2558         int i;
 2559 
 2560         total = 0;
 2561         for (i = 0; i <= tdg_maxid; i++)
 2562                 total += TDQ_GROUP(i)->tdg_load;
 2563         return (total);
 2564 #else
 2565         return (TDQ_SELF()->tdq_sysload);
 2566 #endif
 2567 }
 2568 
 2569 int
 2570 sched_sizeof_proc(void)
 2571 {
 2572         return (sizeof(struct proc));
 2573 }
 2574 
 2575 int
 2576 sched_sizeof_thread(void)
 2577 {
 2578         return (sizeof(struct thread) + sizeof(struct td_sched));
 2579 }
 2580 
 2581 /*
 2582  * The actual idle process.
 2583  */
 2584 void
 2585 sched_idletd(void *dummy)
 2586 {
 2587         struct thread *td;
 2588         struct tdq *tdq;
 2589 
 2590         td = curthread;
 2591         tdq = TDQ_SELF();
 2592         mtx_assert(&Giant, MA_NOTOWNED);
 2593         /* ULE relies on preemption for idle interruption. */
 2594         for (;;) {
 2595 #ifdef SMP
 2596                 if (tdq_idled(tdq))
 2597                         cpu_idle();
 2598 #else
 2599                 cpu_idle();
 2600 #endif
 2601         }
 2602 }
 2603 
 2604 /*
 2605  * A CPU is entering for the first time or a thread is exiting.
 2606  */
 2607 void
 2608 sched_throw(struct thread *td)
 2609 {
 2610         struct thread *newtd;
 2611         struct tdq *tdq;
 2612 
 2613         tdq = TDQ_SELF();
 2614         if (td == NULL) {
 2615                 /* Correct spinlock nesting and acquire the correct lock. */
 2616                 TDQ_LOCK(tdq);
 2617                 spinlock_exit();
 2618         } else {
 2619                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2620                 tdq_load_rem(tdq, td->td_sched);
 2621         }
 2622         KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
 2623         newtd = choosethread();
 2624         TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
 2625         PCPU_SET(switchtime, cpu_ticks());
 2626         PCPU_SET(switchticks, ticks);
 2627         cpu_throw(td, newtd);           /* doesn't return */
 2628 }
 2629 
 2630 /*
 2631  * This is called from fork_exit().  Just acquire the correct locks and
 2632  * let fork do the rest of the work.
 2633  */
 2634 void
 2635 sched_fork_exit(struct thread *td)
 2636 {
 2637         struct td_sched *ts;
 2638         struct tdq *tdq;
 2639         int cpuid;
 2640 
 2641         /*
 2642          * Finish setting up thread glue so that it begins execution in a
 2643          * non-nested critical section with the scheduler lock held.
 2644          */
 2645         cpuid = PCPU_GET(cpuid);
 2646         tdq = TDQ_CPU(cpuid);
 2647         ts = td->td_sched;
 2648         if (TD_IS_IDLETHREAD(td))
 2649                 td->td_lock = TDQ_LOCKPTR(tdq);
 2650         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2651         td->td_oncpu = cpuid;
 2652         TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 2653 }
 2654 
 2655 static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0,
 2656     "Scheduler");
 2657 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
 2658     "Scheduler name");
 2659 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
 2660     "Slice size for timeshare threads");
 2661 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
 2662      "Interactivity score threshold");
 2663 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
 2664      0,"Min priority for preemption, lower priorities have greater precedence");
 2665 #ifdef SMP
 2666 SYSCTL_INT(_kern_sched, OID_AUTO, pick_pri, CTLFLAG_RW, &pick_pri, 0,
 2667     "Pick the target cpu based on priority rather than load.");
 2668 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
 2669     "Number of hz ticks to keep thread affinity for");
 2670 SYSCTL_INT(_kern_sched, OID_AUTO, tryself, CTLFLAG_RW, &tryself, 0, "");
 2671 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
 2672     "Enables the long-term load balancer");
 2673 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
 2674     &balance_interval, 0,
 2675     "Average frequency in stathz ticks to run the long-term balancer");
 2676 SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0,
 2677     "Steals work from another hyper-threaded core on idle");
 2678 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
 2679     "Attempts to steal work from other cores before idling");
 2680 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
 2681     "Minimum load on remote cpu before we'll steal");
 2682 SYSCTL_INT(_kern_sched, OID_AUTO, topology, CTLFLAG_RD, &topology, 0,
 2683     "True when a topology has been specified by the MD code.");
 2684 #endif
 2685 
 2686 /* ps compat.  All cpu percentages from ULE are weighted. */
 2687 static int ccpu = 0;
 2688 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
 2689 
 2690 
 2691 #define KERN_SWITCH_INCLUDE 1
 2692 #include "kern/kern_switch.c"

Cache object: ad2ec52a95ed4137c5be2cffb5f13f4b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.