The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sched_ule.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  */
   26 
   27 /*
   28  * This file implements the ULE scheduler.  ULE supports independent CPU
   29  * run queues and fine grain locking.  It has superior interactive
   30  * performance under load even on uni-processor systems.
   31  *
   32  * etymology:
   33  *   ULE is the last three letters in schedule.  It owes its name to a
   34  * generic user created for a scheduling system by Paul Mikesell at
   35  * Isilon Systems and a general lack of creativity on the part of the author.
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD: releng/8.4/sys/kern/sched_ule.c 242543 2012-11-04 01:20:57Z eadler $");
   40 
   41 #include "opt_hwpmc_hooks.h"
   42 #include "opt_kdtrace.h"
   43 #include "opt_sched.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/systm.h>
   47 #include <sys/kdb.h>
   48 #include <sys/kernel.h>
   49 #include <sys/ktr.h>
   50 #include <sys/lock.h>
   51 #include <sys/mutex.h>
   52 #include <sys/proc.h>
   53 #include <sys/resource.h>
   54 #include <sys/resourcevar.h>
   55 #include <sys/sched.h>
   56 #include <sys/sdt.h>
   57 #include <sys/smp.h>
   58 #include <sys/sx.h>
   59 #include <sys/sysctl.h>
   60 #include <sys/sysproto.h>
   61 #include <sys/turnstile.h>
   62 #include <sys/umtx.h>
   63 #include <sys/vmmeter.h>
   64 #include <sys/cpuset.h>
   65 #include <sys/sbuf.h>
   66 #ifdef KTRACE
   67 #include <sys/uio.h>
   68 #include <sys/ktrace.h>
   69 #endif
   70 
   71 #ifdef HWPMC_HOOKS
   72 #include <sys/pmckern.h>
   73 #endif
   74 
   75 #ifdef KDTRACE_HOOKS
   76 #include <sys/dtrace_bsd.h>
   77 int                             dtrace_vtime_active;
   78 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
   79 #endif
   80 
   81 #include <machine/cpu.h>
   82 #include <machine/smp.h>
   83 
   84 #if defined(__sparc64__)
   85 #error "This architecture is not currently compatible with ULE"
   86 #endif
   87 
   88 #define KTR_ULE 0
   89 
   90 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
   91 #define TDQ_NAME_LEN    (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
   92 #define TDQ_LOADNAME_LEN        (PCPU_NAME_LEN + sizeof(" load"))
   93 
   94 /*
   95  * Thread scheduler specific section.  All fields are protected
   96  * by the thread lock.
   97  */
   98 struct td_sched {       
   99         struct runq     *ts_runq;       /* Run-queue we're queued on. */
  100         short           ts_flags;       /* TSF_* flags. */
  101         u_char          ts_cpu;         /* CPU that we have affinity for. */
  102         int             ts_rltick;      /* Real last tick, for affinity. */
  103         int             ts_slice;       /* Ticks of slice remaining. */
  104         u_int           ts_slptime;     /* Number of ticks we vol. slept */
  105         u_int           ts_runtime;     /* Number of ticks we were running */
  106         int             ts_ltick;       /* Last tick that we were running on */
  107         int             ts_incrtick;    /* Last tick that we incremented on */
  108         int             ts_ftick;       /* First tick that we were running on */
  109         int             ts_ticks;       /* Tick count */
  110 #ifdef KTR
  111         char            ts_name[TS_NAME_LEN];
  112 #endif
  113 };
  114 /* flags kept in ts_flags */
  115 #define TSF_BOUND       0x0001          /* Thread can not migrate. */
  116 #define TSF_XFERABLE    0x0002          /* Thread was added as transferable. */
  117 
  118 static struct td_sched td_sched0;
  119 
  120 #define THREAD_CAN_MIGRATE(td)  ((td)->td_pinned == 0)
  121 #define THREAD_CAN_SCHED(td, cpu)       \
  122     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
  123 
  124 /*
  125  * Priority ranges used for interactive and non-interactive timeshare
  126  * threads.  Interactive threads use realtime priorities.
  127  */
  128 #define PRI_MIN_INTERACT        PRI_MIN_REALTIME
  129 #define PRI_MAX_INTERACT        PRI_MAX_REALTIME
  130 #define PRI_MIN_BATCH           PRI_MIN_TIMESHARE
  131 #define PRI_MAX_BATCH           PRI_MAX_TIMESHARE
  132 
  133 /*
  134  * Cpu percentage computation macros and defines.
  135  *
  136  * SCHED_TICK_SECS:     Number of seconds to average the cpu usage across.
  137  * SCHED_TICK_TARG:     Number of hz ticks to average the cpu usage across.
  138  * SCHED_TICK_MAX:      Maximum number of ticks before scaling back.
  139  * SCHED_TICK_SHIFT:    Shift factor to avoid rounding away results.
  140  * SCHED_TICK_HZ:       Compute the number of hz ticks for a given ticks count.
  141  * SCHED_TICK_TOTAL:    Gives the amount of time we've been recording ticks.
  142  */
  143 #define SCHED_TICK_SECS         10
  144 #define SCHED_TICK_TARG         (hz * SCHED_TICK_SECS)
  145 #define SCHED_TICK_MAX          (SCHED_TICK_TARG + hz)
  146 #define SCHED_TICK_SHIFT        10
  147 #define SCHED_TICK_HZ(ts)       ((ts)->ts_ticks >> SCHED_TICK_SHIFT)
  148 #define SCHED_TICK_TOTAL(ts)    (max((ts)->ts_ltick - (ts)->ts_ftick, hz))
  149 
  150 /*
  151  * These macros determine priorities for non-interactive threads.  They are
  152  * assigned a priority based on their recent cpu utilization as expressed
  153  * by the ratio of ticks to the tick total.  NHALF priorities at the start
  154  * and end of the MIN to MAX timeshare range are only reachable with negative
  155  * or positive nice respectively.
  156  *
  157  * PRI_RANGE:   Priority range for utilization dependent priorities.
  158  * PRI_NRESV:   Number of nice values.
  159  * PRI_TICKS:   Compute a priority in PRI_RANGE from the ticks count and total.
  160  * PRI_NICE:    Determines the part of the priority inherited from nice.
  161  */
  162 #define SCHED_PRI_NRESV         (PRIO_MAX - PRIO_MIN)
  163 #define SCHED_PRI_NHALF         (SCHED_PRI_NRESV / 2)
  164 #define SCHED_PRI_MIN           (PRI_MIN_BATCH + SCHED_PRI_NHALF)
  165 #define SCHED_PRI_MAX           (PRI_MAX_BATCH - SCHED_PRI_NHALF)
  166 #define SCHED_PRI_RANGE         (SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
  167 #define SCHED_PRI_TICKS(ts)                                             \
  168     (SCHED_TICK_HZ((ts)) /                                              \
  169     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
  170 #define SCHED_PRI_NICE(nice)    (nice)
  171 
  172 /*
  173  * These determine the interactivity of a process.  Interactivity differs from
  174  * cpu utilization in that it expresses the voluntary time slept vs time ran
  175  * while cpu utilization includes all time not running.  This more accurately
  176  * models the intent of the thread.
  177  *
  178  * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
  179  *              before throttling back.
  180  * SLP_RUN_FORK:        Maximum slp+run time to inherit at fork time.
  181  * INTERACT_MAX:        Maximum interactivity value.  Smaller is better.
  182  * INTERACT_THRESH:     Threshold for placement on the current runq.
  183  */
  184 #define SCHED_SLP_RUN_MAX       ((hz * 5) << SCHED_TICK_SHIFT)
  185 #define SCHED_SLP_RUN_FORK      ((hz / 2) << SCHED_TICK_SHIFT)
  186 #define SCHED_INTERACT_MAX      (100)
  187 #define SCHED_INTERACT_HALF     (SCHED_INTERACT_MAX / 2)
  188 #define SCHED_INTERACT_THRESH   (30)
  189 
  190 /* Flags kept in td_flags. */
  191 #define TDF_SLICEEND    TDF_SCHED2      /* Thread time slice is over. */
  192 
  193 /*
  194  * tickincr:            Converts a stathz tick into a hz domain scaled by
  195  *                      the shift factor.  Without the shift the error rate
  196  *                      due to rounding would be unacceptably high.
  197  * realstathz:          stathz is sometimes 0 and run off of hz.
  198  * sched_slice:         Runtime of each thread before rescheduling.
  199  * preempt_thresh:      Priority threshold for preemption and remote IPIs.
  200  */
  201 static int sched_interact = SCHED_INTERACT_THRESH;
  202 static int realstathz = 127;
  203 static int tickincr = 8 << SCHED_TICK_SHIFT;
  204 static int sched_slice = 12;
  205 #ifdef PREEMPTION
  206 #ifdef FULL_PREEMPTION
  207 static int preempt_thresh = PRI_MAX_IDLE;
  208 #else
  209 static int preempt_thresh = PRI_MIN_KERN;
  210 #endif
  211 #else 
  212 static int preempt_thresh = 0;
  213 #endif
  214 static int static_boost = PRI_MIN_BATCH;
  215 static int sched_idlespins = 10000;
  216 static int sched_idlespinthresh = 4;
  217 
  218 /*
  219  * tdq - per processor runqs and statistics.  All fields are protected by the
  220  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
  221  * locking in sched_pickcpu();
  222  */
  223 struct tdq {
  224         /* Ordered to improve efficiency of cpu_search() and switch(). */
  225         struct mtx      tdq_lock;               /* run queue lock. */
  226         struct cpu_group *tdq_cg;               /* Pointer to cpu topology. */
  227         volatile int    tdq_load;               /* Aggregate load. */
  228         int             tdq_sysload;            /* For loadavg, !ITHD load. */
  229         int             tdq_transferable;       /* Transferable thread count. */
  230         short           tdq_switchcnt;          /* Switches this tick. */
  231         short           tdq_oldswitchcnt;       /* Switches last tick. */
  232         u_char          tdq_lowpri;             /* Lowest priority thread. */
  233         u_char          tdq_ipipending;         /* IPI pending. */
  234         u_char          tdq_idx;                /* Current insert index. */
  235         u_char          tdq_ridx;               /* Current removal index. */
  236         struct runq     tdq_realtime;           /* real-time run queue. */
  237         struct runq     tdq_timeshare;          /* timeshare run queue. */
  238         struct runq     tdq_idle;               /* Queue of IDLE threads. */
  239         char            tdq_name[TDQ_NAME_LEN];
  240 #ifdef KTR
  241         char            tdq_loadname[TDQ_LOADNAME_LEN];
  242 #endif
  243 } __aligned(64);
  244 
  245 /* Idle thread states and config. */
  246 #define TDQ_RUNNING     1
  247 #define TDQ_IDLE        2
  248 
  249 #ifdef SMP
  250 struct cpu_group *cpu_top;              /* CPU topology */
  251 
  252 #define SCHED_AFFINITY_DEFAULT  (max(1, hz / 1000))
  253 #define SCHED_AFFINITY(ts, t)   ((ts)->ts_rltick > ticks - ((t) * affinity))
  254 
  255 /*
  256  * Run-time tunables.
  257  */
  258 static int rebalance = 1;
  259 static int balance_interval = 128;      /* Default set in sched_initticks(). */
  260 static int affinity;
  261 static int steal_idle = 1;
  262 static int steal_thresh = 2;
  263 
  264 /*
  265  * One thread queue per processor.
  266  */
  267 static struct tdq       tdq_cpu[MAXCPU];
  268 static struct tdq       *balance_tdq;
  269 static int balance_ticks;
  270 static DPCPU_DEFINE(uint32_t, randomval);
  271 
  272 #define TDQ_SELF()      (&tdq_cpu[PCPU_GET(cpuid)])
  273 #define TDQ_CPU(x)      (&tdq_cpu[(x)])
  274 #define TDQ_ID(x)       ((int)((x) - tdq_cpu))
  275 #else   /* !SMP */
  276 static struct tdq       tdq_cpu;
  277 
  278 #define TDQ_ID(x)       (0)
  279 #define TDQ_SELF()      (&tdq_cpu)
  280 #define TDQ_CPU(x)      (&tdq_cpu)
  281 #endif
  282 
  283 #define TDQ_LOCK_ASSERT(t, type)        mtx_assert(TDQ_LOCKPTR((t)), (type))
  284 #define TDQ_LOCK(t)             mtx_lock_spin(TDQ_LOCKPTR((t)))
  285 #define TDQ_LOCK_FLAGS(t, f)    mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
  286 #define TDQ_UNLOCK(t)           mtx_unlock_spin(TDQ_LOCKPTR((t)))
  287 #define TDQ_LOCKPTR(t)          (&(t)->tdq_lock)
  288 
  289 static void sched_priority(struct thread *);
  290 static void sched_thread_priority(struct thread *, u_char);
  291 static int sched_interact_score(struct thread *);
  292 static void sched_interact_update(struct thread *);
  293 static void sched_interact_fork(struct thread *);
  294 static void sched_pctcpu_update(struct td_sched *);
  295 
  296 /* Operations on per processor queues */
  297 static struct thread *tdq_choose(struct tdq *);
  298 static void tdq_setup(struct tdq *);
  299 static void tdq_load_add(struct tdq *, struct thread *);
  300 static void tdq_load_rem(struct tdq *, struct thread *);
  301 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
  302 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
  303 static inline int sched_shouldpreempt(int, int, int);
  304 void tdq_print(int cpu);
  305 static void runq_print(struct runq *rq);
  306 static void tdq_add(struct tdq *, struct thread *, int);
  307 #ifdef SMP
  308 static int tdq_move(struct tdq *, struct tdq *);
  309 static int tdq_idled(struct tdq *);
  310 static void tdq_notify(struct tdq *, struct thread *);
  311 static struct thread *tdq_steal(struct tdq *, int);
  312 static struct thread *runq_steal(struct runq *, int);
  313 static int sched_pickcpu(struct thread *, int);
  314 static void sched_balance(void);
  315 static int sched_balance_pair(struct tdq *, struct tdq *);
  316 static inline struct tdq *sched_setcpu(struct thread *, int, int);
  317 static inline void thread_unblock_switch(struct thread *, struct mtx *);
  318 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
  319 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
  320 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 
  321     struct cpu_group *cg, int indent);
  322 #endif
  323 
  324 static void sched_setup(void *dummy);
  325 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
  326 
  327 static void sched_initticks(void *dummy);
  328 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
  329     NULL);
  330 
  331 SDT_PROVIDER_DEFINE(sched);
  332 
  333 SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *", 
  334     "struct proc *", "uint8_t");
  335 SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *", 
  336     "struct proc *", "void *");
  337 SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *", 
  338     "struct proc *", "void *", "int");
  339 SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *", 
  340     "struct proc *", "uint8_t", "struct thread *");
  341 SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int");
  342 SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *", 
  343     "struct proc *");
  344 SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu);
  345 SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu);
  346 SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *", 
  347     "struct proc *");
  348 
  349 /*
  350  * Print the threads waiting on a run-queue.
  351  */
  352 static void
  353 runq_print(struct runq *rq)
  354 {
  355         struct rqhead *rqh;
  356         struct thread *td;
  357         int pri;
  358         int j;
  359         int i;
  360 
  361         for (i = 0; i < RQB_LEN; i++) {
  362                 printf("\t\trunq bits %d 0x%zx\n",
  363                     i, rq->rq_status.rqb_bits[i]);
  364                 for (j = 0; j < RQB_BPW; j++)
  365                         if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
  366                                 pri = j + (i << RQB_L2BPW);
  367                                 rqh = &rq->rq_queues[pri];
  368                                 TAILQ_FOREACH(td, rqh, td_runq) {
  369                                         printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
  370                                             td, td->td_name, td->td_priority,
  371                                             td->td_rqindex, pri);
  372                                 }
  373                         }
  374         }
  375 }
  376 
  377 /*
  378  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
  379  */
  380 void
  381 tdq_print(int cpu)
  382 {
  383         struct tdq *tdq;
  384 
  385         tdq = TDQ_CPU(cpu);
  386 
  387         printf("tdq %d:\n", TDQ_ID(tdq));
  388         printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
  389         printf("\tLock name:      %s\n", tdq->tdq_name);
  390         printf("\tload:           %d\n", tdq->tdq_load);
  391         printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
  392         printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
  393         printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
  394         printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
  395         printf("\tload transferable: %d\n", tdq->tdq_transferable);
  396         printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
  397         printf("\trealtime runq:\n");
  398         runq_print(&tdq->tdq_realtime);
  399         printf("\ttimeshare runq:\n");
  400         runq_print(&tdq->tdq_timeshare);
  401         printf("\tidle runq:\n");
  402         runq_print(&tdq->tdq_idle);
  403 }
  404 
  405 static inline int
  406 sched_shouldpreempt(int pri, int cpri, int remote)
  407 {
  408         /*
  409          * If the new priority is not better than the current priority there is
  410          * nothing to do.
  411          */
  412         if (pri >= cpri)
  413                 return (0);
  414         /*
  415          * Always preempt idle.
  416          */
  417         if (cpri >= PRI_MIN_IDLE)
  418                 return (1);
  419         /*
  420          * If preemption is disabled don't preempt others.
  421          */
  422         if (preempt_thresh == 0)
  423                 return (0);
  424         /*
  425          * Preempt if we exceed the threshold.
  426          */
  427         if (pri <= preempt_thresh)
  428                 return (1);
  429         /*
  430          * If we're interactive or better and there is non-interactive
  431          * or worse running preempt only remote processors.
  432          */
  433         if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
  434                 return (1);
  435         return (0);
  436 }
  437 
  438 /*
  439  * Add a thread to the actual run-queue.  Keeps transferable counts up to
  440  * date with what is actually on the run-queue.  Selects the correct
  441  * queue position for timeshare threads.
  442  */
  443 static __inline void
  444 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
  445 {
  446         struct td_sched *ts;
  447         u_char pri;
  448 
  449         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  450         THREAD_LOCK_ASSERT(td, MA_OWNED);
  451 
  452         pri = td->td_priority;
  453         ts = td->td_sched;
  454         TD_SET_RUNQ(td);
  455         if (THREAD_CAN_MIGRATE(td)) {
  456                 tdq->tdq_transferable++;
  457                 ts->ts_flags |= TSF_XFERABLE;
  458         }
  459         if (pri < PRI_MIN_BATCH) {
  460                 ts->ts_runq = &tdq->tdq_realtime;
  461         } else if (pri <= PRI_MAX_BATCH) {
  462                 ts->ts_runq = &tdq->tdq_timeshare;
  463                 KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
  464                         ("Invalid priority %d on timeshare runq", pri));
  465                 /*
  466                  * This queue contains only priorities between MIN and MAX
  467                  * realtime.  Use the whole queue to represent these values.
  468                  */
  469                 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
  470                         pri = RQ_NQS * (pri - PRI_MIN_BATCH) /
  471                             (PRI_MAX_BATCH - PRI_MIN_BATCH + 1);
  472                         pri = (pri + tdq->tdq_idx) % RQ_NQS;
  473                         /*
  474                          * This effectively shortens the queue by one so we
  475                          * can have a one slot difference between idx and
  476                          * ridx while we wait for threads to drain.
  477                          */
  478                         if (tdq->tdq_ridx != tdq->tdq_idx &&
  479                             pri == tdq->tdq_ridx)
  480                                 pri = (unsigned char)(pri - 1) % RQ_NQS;
  481                 } else
  482                         pri = tdq->tdq_ridx;
  483                 runq_add_pri(ts->ts_runq, td, pri, flags);
  484                 return;
  485         } else
  486                 ts->ts_runq = &tdq->tdq_idle;
  487         runq_add(ts->ts_runq, td, flags);
  488 }
  489 
  490 /* 
  491  * Remove a thread from a run-queue.  This typically happens when a thread
  492  * is selected to run.  Running threads are not on the queue and the
  493  * transferable count does not reflect them.
  494  */
  495 static __inline void
  496 tdq_runq_rem(struct tdq *tdq, struct thread *td)
  497 {
  498         struct td_sched *ts;
  499 
  500         ts = td->td_sched;
  501         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  502         KASSERT(ts->ts_runq != NULL,
  503             ("tdq_runq_remove: thread %p null ts_runq", td));
  504         if (ts->ts_flags & TSF_XFERABLE) {
  505                 tdq->tdq_transferable--;
  506                 ts->ts_flags &= ~TSF_XFERABLE;
  507         }
  508         if (ts->ts_runq == &tdq->tdq_timeshare) {
  509                 if (tdq->tdq_idx != tdq->tdq_ridx)
  510                         runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
  511                 else
  512                         runq_remove_idx(ts->ts_runq, td, NULL);
  513         } else
  514                 runq_remove(ts->ts_runq, td);
  515 }
  516 
  517 /*
  518  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
  519  * for this thread to the referenced thread queue.
  520  */
  521 static void
  522 tdq_load_add(struct tdq *tdq, struct thread *td)
  523 {
  524 
  525         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  526         THREAD_LOCK_ASSERT(td, MA_OWNED);
  527 
  528         tdq->tdq_load++;
  529         if ((td->td_flags & TDF_NOLOAD) == 0)
  530                 tdq->tdq_sysload++;
  531         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  532         SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
  533 }
  534 
  535 /*
  536  * Remove the load from a thread that is transitioning to a sleep state or
  537  * exiting.
  538  */
  539 static void
  540 tdq_load_rem(struct tdq *tdq, struct thread *td)
  541 {
  542 
  543         THREAD_LOCK_ASSERT(td, MA_OWNED);
  544         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  545         KASSERT(tdq->tdq_load != 0,
  546             ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
  547 
  548         tdq->tdq_load--;
  549         if ((td->td_flags & TDF_NOLOAD) == 0)
  550                 tdq->tdq_sysload--;
  551         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  552         SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
  553 }
  554 
  555 /*
  556  * Set lowpri to its exact value by searching the run-queue and
  557  * evaluating curthread.  curthread may be passed as an optimization.
  558  */
  559 static void
  560 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
  561 {
  562         struct thread *td;
  563 
  564         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  565         if (ctd == NULL)
  566                 ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
  567         td = tdq_choose(tdq);
  568         if (td == NULL || td->td_priority > ctd->td_priority)
  569                 tdq->tdq_lowpri = ctd->td_priority;
  570         else
  571                 tdq->tdq_lowpri = td->td_priority;
  572 }
  573 
  574 #ifdef SMP
  575 struct cpu_search {
  576         cpuset_t cs_mask;
  577         u_int   cs_prefer;
  578         int     cs_pri;         /* Min priority for low. */
  579         int     cs_limit;       /* Max load for low, min load for high. */
  580         int     cs_cpu;
  581         int     cs_load;
  582 };
  583 
  584 #define CPU_SEARCH_LOWEST       0x1
  585 #define CPU_SEARCH_HIGHEST      0x2
  586 #define CPU_SEARCH_BOTH         (CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
  587 
  588 #define CPUSET_FOREACH(cpu, mask)                               \
  589         for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)             \
  590                 if ((mask) & 1 << (cpu))
  591 
  592 static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
  593     struct cpu_search *high, const int match);
  594 int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
  595 int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
  596 int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
  597     struct cpu_search *high);
  598 
  599 /*
  600  * Search the tree of cpu_groups for the lowest or highest loaded cpu
  601  * according to the match argument.  This routine actually compares the
  602  * load on all paths through the tree and finds the least loaded cpu on
  603  * the least loaded path, which may differ from the least loaded cpu in
  604  * the system.  This balances work among caches and busses.
  605  *
  606  * This inline is instantiated in three forms below using constants for the
  607  * match argument.  It is reduced to the minimum set for each case.  It is
  608  * also recursive to the depth of the tree.
  609  */
  610 static __inline int
  611 cpu_search(const struct cpu_group *cg, struct cpu_search *low,
  612     struct cpu_search *high, const int match)
  613 {
  614         struct cpu_search lgroup;
  615         struct cpu_search hgroup;
  616         cpumask_t cpumask;
  617         struct cpu_group *child;
  618         struct tdq *tdq;
  619         int cpu, i, hload, lload, load, total, rnd, *rndptr;
  620 
  621         total = 0;
  622         cpumask = cg->cg_mask;
  623         if (match & CPU_SEARCH_LOWEST) {
  624                 lload = INT_MAX;
  625                 lgroup = *low;
  626         }
  627         if (match & CPU_SEARCH_HIGHEST) {
  628                 hload = INT_MIN;
  629                 hgroup = *high;
  630         }
  631 
  632         /* Iterate through the child CPU groups and then remaining CPUs. */
  633         for (i = cg->cg_children, cpu = mp_maxid; i >= 0; ) {
  634                 if (i == 0) {
  635                         while (cpu >= 0 && ((1 << cpu) & cpumask) == 0)
  636                                 cpu--;
  637                         if (cpu < 0)
  638                                 break;
  639                         child = NULL;
  640                 } else
  641                         child = &cg->cg_child[i - 1];
  642 
  643                 if (match & CPU_SEARCH_LOWEST)
  644                         lgroup.cs_cpu = -1;
  645                 if (match & CPU_SEARCH_HIGHEST)
  646                         hgroup.cs_cpu = -1;
  647                 if (child) {                    /* Handle child CPU group. */
  648                         cpumask &= ~child->cg_mask;
  649                         switch (match) {
  650                         case CPU_SEARCH_LOWEST:
  651                                 load = cpu_search_lowest(child, &lgroup);
  652                                 break;
  653                         case CPU_SEARCH_HIGHEST:
  654                                 load = cpu_search_highest(child, &hgroup);
  655                                 break;
  656                         case CPU_SEARCH_BOTH:
  657                                 load = cpu_search_both(child, &lgroup, &hgroup);
  658                                 break;
  659                         }
  660                 } else {                        /* Handle child CPU. */
  661                         tdq = TDQ_CPU(cpu);
  662                         load = tdq->tdq_load * 256;
  663                         rndptr = DPCPU_PTR(randomval);
  664                         rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
  665                         if (match & CPU_SEARCH_LOWEST) {
  666                                 if (cpu == low->cs_prefer)
  667                                         load -= 64;
  668                                 /* If that CPU is allowed and get data. */
  669                                 if (tdq->tdq_lowpri > lgroup.cs_pri &&
  670                                     tdq->tdq_load <= lgroup.cs_limit &&
  671                                     CPU_ISSET(cpu, &lgroup.cs_mask)) {
  672                                         lgroup.cs_cpu = cpu;
  673                                         lgroup.cs_load = load - rnd;
  674                                 }
  675                         }
  676                         if (match & CPU_SEARCH_HIGHEST)
  677                                 if (tdq->tdq_load >= hgroup.cs_limit &&
  678                                     tdq->tdq_transferable &&
  679                                     CPU_ISSET(cpu, &hgroup.cs_mask)) {
  680                                         hgroup.cs_cpu = cpu;
  681                                         hgroup.cs_load = load - rnd;
  682                                 }
  683                 }
  684                 total += load;
  685 
  686                 /* We have info about child item. Compare it. */
  687                 if (match & CPU_SEARCH_LOWEST) {
  688                         if (lgroup.cs_cpu >= 0 &&
  689                             (load < lload ||
  690                              (load == lload && lgroup.cs_load < low->cs_load))) {
  691                                 lload = load;
  692                                 low->cs_cpu = lgroup.cs_cpu;
  693                                 low->cs_load = lgroup.cs_load;
  694                         }
  695                 }
  696                 if (match & CPU_SEARCH_HIGHEST)
  697                         if (hgroup.cs_cpu >= 0 &&
  698                             (load > hload ||
  699                              (load == hload && hgroup.cs_load > high->cs_load))) {
  700                                 hload = load;
  701                                 high->cs_cpu = hgroup.cs_cpu;
  702                                 high->cs_load = hgroup.cs_load;
  703                         }
  704                 if (child) {
  705                         i--;
  706                         if (i == 0 && cpumask == 0)
  707                                 break;
  708                 } else
  709                         cpu--;
  710         }
  711         return (total);
  712 }
  713 
  714 /*
  715  * cpu_search instantiations must pass constants to maintain the inline
  716  * optimization.
  717  */
  718 int
  719 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
  720 {
  721         return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
  722 }
  723 
  724 int
  725 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
  726 {
  727         return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
  728 }
  729 
  730 int
  731 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
  732     struct cpu_search *high)
  733 {
  734         return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
  735 }
  736 
  737 /*
  738  * Find the cpu with the least load via the least loaded path that has a
  739  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
  740  * acceptable.
  741  */
  742 static inline int
  743 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
  744     int prefer)
  745 {
  746         struct cpu_search low;
  747 
  748         low.cs_cpu = -1;
  749         low.cs_prefer = prefer;
  750         low.cs_mask = mask;
  751         low.cs_pri = pri;
  752         low.cs_limit = maxload;
  753         cpu_search_lowest(cg, &low);
  754         return low.cs_cpu;
  755 }
  756 
  757 /*
  758  * Find the cpu with the highest load via the highest loaded path.
  759  */
  760 static inline int
  761 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
  762 {
  763         struct cpu_search high;
  764 
  765         high.cs_cpu = -1;
  766         high.cs_mask = mask;
  767         high.cs_limit = minload;
  768         cpu_search_highest(cg, &high);
  769         return high.cs_cpu;
  770 }
  771 
  772 /*
  773  * Simultaneously find the highest and lowest loaded cpu reachable via
  774  * cg.
  775  */
  776 static inline void
  777 sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
  778 {
  779         struct cpu_search high;
  780         struct cpu_search low;
  781 
  782         low.cs_cpu = -1;
  783         low.cs_prefer = -1;
  784         low.cs_pri = -1;
  785         low.cs_limit = INT_MAX;
  786         low.cs_mask = mask;
  787         high.cs_cpu = -1;
  788         high.cs_limit = -1;
  789         high.cs_mask = mask;
  790         cpu_search_both(cg, &low, &high);
  791         *lowcpu = low.cs_cpu;
  792         *highcpu = high.cs_cpu;
  793         return;
  794 }
  795 
  796 static void
  797 sched_balance_group(struct cpu_group *cg)
  798 {
  799         cpuset_t hmask, lmask;
  800         int high, low, anylow;
  801 
  802         CPU_FILL(&hmask);
  803         for (;;) {
  804                 high = sched_highest(cg, hmask, 1);
  805                 /* Stop if there is no more CPU with transferrable threads. */
  806                 if (high == -1)
  807                         break;
  808                 CPU_CLR(high, &hmask);
  809                 CPU_COPY(&hmask, &lmask);
  810                 /* Stop if there is no more CPU left for low. */
  811                 if (CPU_EMPTY(&lmask))
  812                         break;
  813                 anylow = 1;
  814 nextlow:
  815                 low = sched_lowest(cg, lmask, -1,
  816                     TDQ_CPU(high)->tdq_load - 1, high);
  817                 /* Stop if we looked well and found no less loaded CPU. */
  818                 if (anylow && low == -1)
  819                         break;
  820                 /* Go to next high if we found no less loaded CPU. */
  821                 if (low == -1)
  822                         continue;
  823                 /* Transfer thread from high to low. */
  824                 if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
  825                         /* CPU that got thread can no longer be a donor. */
  826                         CPU_CLR(low, &hmask);
  827                 } else {
  828                         /*
  829                          * If failed, then there is no threads on high
  830                          * that can run on this low. Drop low from low
  831                          * mask and look for different one.
  832                          */
  833                         CPU_CLR(low, &lmask);
  834                         anylow = 0;
  835                         goto nextlow;
  836                 }
  837         }
  838 }
  839 
  840 static void
  841 sched_balance(void)
  842 {
  843         struct tdq *tdq;
  844 
  845         /*
  846          * Select a random time between .5 * balance_interval and
  847          * 1.5 * balance_interval.
  848          */
  849         balance_ticks = max(balance_interval / 2, 1);
  850         balance_ticks += random() % balance_interval;
  851         if (smp_started == 0 || rebalance == 0)
  852                 return;
  853         tdq = TDQ_SELF();
  854         TDQ_UNLOCK(tdq);
  855         sched_balance_group(cpu_top);
  856         TDQ_LOCK(tdq);
  857 }
  858 
  859 /*
  860  * Lock two thread queues using their address to maintain lock order.
  861  */
  862 static void
  863 tdq_lock_pair(struct tdq *one, struct tdq *two)
  864 {
  865         if (one < two) {
  866                 TDQ_LOCK(one);
  867                 TDQ_LOCK_FLAGS(two, MTX_DUPOK);
  868         } else {
  869                 TDQ_LOCK(two);
  870                 TDQ_LOCK_FLAGS(one, MTX_DUPOK);
  871         }
  872 }
  873 
  874 /*
  875  * Unlock two thread queues.  Order is not important here.
  876  */
  877 static void
  878 tdq_unlock_pair(struct tdq *one, struct tdq *two)
  879 {
  880         TDQ_UNLOCK(one);
  881         TDQ_UNLOCK(two);
  882 }
  883 
  884 /*
  885  * Transfer load between two imbalanced thread queues.
  886  */
  887 static int
  888 sched_balance_pair(struct tdq *high, struct tdq *low)
  889 {
  890         int moved;
  891 
  892         tdq_lock_pair(high, low);
  893         moved = 0;
  894         /*
  895          * Determine what the imbalance is and then adjust that to how many
  896          * threads we actually have to give up (transferable).
  897          */
  898         if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
  899             (moved = tdq_move(high, low)) > 0) {
  900                 /*
  901                  * IPI the target cpu to force it to reschedule with the new
  902                  * workload.
  903                  */
  904                 ipi_cpu(TDQ_ID(low), IPI_PREEMPT);
  905         }
  906         tdq_unlock_pair(high, low);
  907         return (moved);
  908 }
  909 
  910 /*
  911  * Move a thread from one thread queue to another.
  912  */
  913 static int
  914 tdq_move(struct tdq *from, struct tdq *to)
  915 {
  916         struct td_sched *ts;
  917         struct thread *td;
  918         struct tdq *tdq;
  919         int cpu;
  920 
  921         TDQ_LOCK_ASSERT(from, MA_OWNED);
  922         TDQ_LOCK_ASSERT(to, MA_OWNED);
  923 
  924         tdq = from;
  925         cpu = TDQ_ID(to);
  926         td = tdq_steal(tdq, cpu);
  927         if (td == NULL)
  928                 return (0);
  929         ts = td->td_sched;
  930         /*
  931          * Although the run queue is locked the thread may be blocked.  Lock
  932          * it to clear this and acquire the run-queue lock.
  933          */
  934         thread_lock(td);
  935         /* Drop recursive lock on from acquired via thread_lock(). */
  936         TDQ_UNLOCK(from);
  937         sched_rem(td);
  938         ts->ts_cpu = cpu;
  939         td->td_lock = TDQ_LOCKPTR(to);
  940         tdq_add(to, td, SRQ_YIELDING);
  941         return (1);
  942 }
  943 
  944 /*
  945  * This tdq has idled.  Try to steal a thread from another cpu and switch
  946  * to it.
  947  */
  948 static int
  949 tdq_idled(struct tdq *tdq)
  950 {
  951         struct cpu_group *cg;
  952         struct tdq *steal;
  953         cpuset_t mask;
  954         int thresh;
  955         int cpu;
  956 
  957         if (smp_started == 0 || steal_idle == 0)
  958                 return (1);
  959         CPU_FILL(&mask);
  960         CPU_CLR(PCPU_GET(cpuid), &mask);
  961         /* We don't want to be preempted while we're iterating. */
  962         spinlock_enter();
  963         for (cg = tdq->tdq_cg; cg != NULL; ) {
  964                 if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
  965                         thresh = steal_thresh;
  966                 else
  967                         thresh = 1;
  968                 cpu = sched_highest(cg, mask, thresh);
  969                 if (cpu == -1) {
  970                         cg = cg->cg_parent;
  971                         continue;
  972                 }
  973                 steal = TDQ_CPU(cpu);
  974                 CPU_CLR(cpu, &mask);
  975                 tdq_lock_pair(tdq, steal);
  976                 if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
  977                         tdq_unlock_pair(tdq, steal);
  978                         continue;
  979                 }
  980                 /*
  981                  * If a thread was added while interrupts were disabled don't
  982                  * steal one here.  If we fail to acquire one due to affinity
  983                  * restrictions loop again with this cpu removed from the
  984                  * set.
  985                  */
  986                 if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
  987                         tdq_unlock_pair(tdq, steal);
  988                         continue;
  989                 }
  990                 spinlock_exit();
  991                 TDQ_UNLOCK(steal);
  992                 mi_switch(SW_VOL | SWT_IDLE, NULL);
  993                 thread_unlock(curthread);
  994 
  995                 return (0);
  996         }
  997         spinlock_exit();
  998         return (1);
  999 }
 1000 
 1001 /*
 1002  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
 1003  */
 1004 static void
 1005 tdq_notify(struct tdq *tdq, struct thread *td)
 1006 {
 1007         struct thread *ctd;
 1008         int pri;
 1009         int cpu;
 1010 
 1011         if (tdq->tdq_ipipending)
 1012                 return;
 1013         cpu = td->td_sched->ts_cpu;
 1014         pri = td->td_priority;
 1015         ctd = pcpu_find(cpu)->pc_curthread;
 1016         if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
 1017                 return;
 1018         if (TD_IS_IDLETHREAD(ctd)) {
 1019                 /*
 1020                  * If the MD code has an idle wakeup routine try that before
 1021                  * falling back to IPI.
 1022                  */
 1023                 if (cpu_idle_wakeup(cpu))
 1024                         return;
 1025         }
 1026         tdq->tdq_ipipending = 1;
 1027         ipi_cpu(cpu, IPI_PREEMPT);
 1028 }
 1029 
 1030 /*
 1031  * Steals load from a timeshare queue.  Honors the rotating queue head
 1032  * index.
 1033  */
 1034 static struct thread *
 1035 runq_steal_from(struct runq *rq, int cpu, u_char start)
 1036 {
 1037         struct rqbits *rqb;
 1038         struct rqhead *rqh;
 1039         struct thread *td, *first;
 1040         int bit;
 1041         int pri;
 1042         int i;
 1043 
 1044         rqb = &rq->rq_status;
 1045         bit = start & (RQB_BPW -1);
 1046         pri = 0;
 1047         first = NULL;
 1048 again:
 1049         for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
 1050                 if (rqb->rqb_bits[i] == 0)
 1051                         continue;
 1052                 if (bit != 0) {
 1053                         for (pri = bit; pri < RQB_BPW; pri++)
 1054                                 if (rqb->rqb_bits[i] & (1ul << pri))
 1055                                         break;
 1056                         if (pri >= RQB_BPW)
 1057                                 continue;
 1058                 } else
 1059                         pri = RQB_FFS(rqb->rqb_bits[i]);
 1060                 pri += (i << RQB_L2BPW);
 1061                 rqh = &rq->rq_queues[pri];
 1062                 TAILQ_FOREACH(td, rqh, td_runq) {
 1063                         if (first && THREAD_CAN_MIGRATE(td) &&
 1064                             THREAD_CAN_SCHED(td, cpu))
 1065                                 return (td);
 1066                         first = td;
 1067                 }
 1068         }
 1069         if (start != 0) {
 1070                 start = 0;
 1071                 goto again;
 1072         }
 1073 
 1074         if (first && THREAD_CAN_MIGRATE(first) &&
 1075             THREAD_CAN_SCHED(first, cpu))
 1076                 return (first);
 1077         return (NULL);
 1078 }
 1079 
 1080 /*
 1081  * Steals load from a standard linear queue.
 1082  */
 1083 static struct thread *
 1084 runq_steal(struct runq *rq, int cpu)
 1085 {
 1086         struct rqhead *rqh;
 1087         struct rqbits *rqb;
 1088         struct thread *td;
 1089         int word;
 1090         int bit;
 1091 
 1092         rqb = &rq->rq_status;
 1093         for (word = 0; word < RQB_LEN; word++) {
 1094                 if (rqb->rqb_bits[word] == 0)
 1095                         continue;
 1096                 for (bit = 0; bit < RQB_BPW; bit++) {
 1097                         if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
 1098                                 continue;
 1099                         rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
 1100                         TAILQ_FOREACH(td, rqh, td_runq)
 1101                                 if (THREAD_CAN_MIGRATE(td) &&
 1102                                     THREAD_CAN_SCHED(td, cpu))
 1103                                         return (td);
 1104                 }
 1105         }
 1106         return (NULL);
 1107 }
 1108 
 1109 /*
 1110  * Attempt to steal a thread in priority order from a thread queue.
 1111  */
 1112 static struct thread *
 1113 tdq_steal(struct tdq *tdq, int cpu)
 1114 {
 1115         struct thread *td;
 1116 
 1117         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1118         if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
 1119                 return (td);
 1120         if ((td = runq_steal_from(&tdq->tdq_timeshare,
 1121             cpu, tdq->tdq_ridx)) != NULL)
 1122                 return (td);
 1123         return (runq_steal(&tdq->tdq_idle, cpu));
 1124 }
 1125 
 1126 /*
 1127  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
 1128  * current lock and returns with the assigned queue locked.
 1129  */
 1130 static inline struct tdq *
 1131 sched_setcpu(struct thread *td, int cpu, int flags)
 1132 {
 1133 
 1134         struct tdq *tdq;
 1135 
 1136         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1137         tdq = TDQ_CPU(cpu);
 1138         td->td_sched->ts_cpu = cpu;
 1139         /*
 1140          * If the lock matches just return the queue.
 1141          */
 1142         if (td->td_lock == TDQ_LOCKPTR(tdq))
 1143                 return (tdq);
 1144 #ifdef notyet
 1145         /*
 1146          * If the thread isn't running its lockptr is a
 1147          * turnstile or a sleepqueue.  We can just lock_set without
 1148          * blocking.
 1149          */
 1150         if (TD_CAN_RUN(td)) {
 1151                 TDQ_LOCK(tdq);
 1152                 thread_lock_set(td, TDQ_LOCKPTR(tdq));
 1153                 return (tdq);
 1154         }
 1155 #endif
 1156         /*
 1157          * The hard case, migration, we need to block the thread first to
 1158          * prevent order reversals with other cpus locks.
 1159          */
 1160         spinlock_enter();
 1161         thread_lock_block(td);
 1162         TDQ_LOCK(tdq);
 1163         thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
 1164         spinlock_exit();
 1165         return (tdq);
 1166 }
 1167 
 1168 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
 1169 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
 1170 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
 1171 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
 1172 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
 1173 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
 1174 
 1175 static int
 1176 sched_pickcpu(struct thread *td, int flags)
 1177 {
 1178         struct cpu_group *cg, *ccg;
 1179         struct td_sched *ts;
 1180         struct tdq *tdq;
 1181         cpuset_t mask;
 1182         int cpu, pri, self;
 1183 
 1184         self = PCPU_GET(cpuid);
 1185         ts = td->td_sched;
 1186         if (smp_started == 0)
 1187                 return (self);
 1188         /*
 1189          * Don't migrate a running thread from sched_switch().
 1190          */
 1191         if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
 1192                 return (ts->ts_cpu);
 1193         /*
 1194          * Prefer to run interrupt threads on the processors that generate
 1195          * the interrupt.
 1196          */
 1197         pri = td->td_priority;
 1198         if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
 1199             curthread->td_intr_nesting_level && ts->ts_cpu != self) {
 1200                 SCHED_STAT_INC(pickcpu_intrbind);
 1201                 ts->ts_cpu = self;
 1202                 if (TDQ_CPU(self)->tdq_lowpri > pri) {
 1203                         SCHED_STAT_INC(pickcpu_affinity);
 1204                         return (ts->ts_cpu);
 1205                 }
 1206         }
 1207         /*
 1208          * If the thread can run on the last cpu and the affinity has not
 1209          * expired or it is idle run it there.
 1210          */
 1211         tdq = TDQ_CPU(ts->ts_cpu);
 1212         cg = tdq->tdq_cg;
 1213         if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
 1214             tdq->tdq_lowpri >= PRI_MIN_IDLE &&
 1215             SCHED_AFFINITY(ts, CG_SHARE_L2)) {
 1216                 if (cg->cg_flags & CG_FLAG_THREAD) {
 1217                         CPUSET_FOREACH(cpu, cg->cg_mask) {
 1218                                 if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
 1219                                         break;
 1220                         }
 1221                 } else
 1222                         cpu = INT_MAX;
 1223                 if (cpu > mp_maxid) {
 1224                         SCHED_STAT_INC(pickcpu_idle_affinity);
 1225                         return (ts->ts_cpu);
 1226                 }
 1227         }
 1228         /*
 1229          * Search for the last level cache CPU group in the tree.
 1230          * Skip caches with expired affinity time and SMT groups.
 1231          * Affinity to higher level caches will be handled less aggressively.
 1232          */
 1233         for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
 1234                 if (cg->cg_flags & CG_FLAG_THREAD)
 1235                         continue;
 1236                 if (!SCHED_AFFINITY(ts, cg->cg_level))
 1237                         continue;
 1238                 ccg = cg;
 1239         }
 1240         if (ccg != NULL)
 1241                 cg = ccg;
 1242         cpu = -1;
 1243         /* Search the group for the less loaded idle CPU we can run now. */
 1244         mask = td->td_cpuset->cs_mask;
 1245         if (cg != NULL && cg != cpu_top &&
 1246             cg->cg_mask != cpu_top->cg_mask)
 1247                 cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
 1248                     INT_MAX, ts->ts_cpu);
 1249         /* Search globally for the less loaded CPU we can run now. */
 1250         if (cpu == -1)
 1251                 cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
 1252         /* Search globally for the less loaded CPU. */
 1253         if (cpu == -1)
 1254                 cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
 1255         KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
 1256         /*
 1257          * Compare the lowest loaded cpu to current cpu.
 1258          */
 1259         if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
 1260             TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
 1261             TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
 1262                 SCHED_STAT_INC(pickcpu_local);
 1263                 cpu = self;
 1264         } else
 1265                 SCHED_STAT_INC(pickcpu_lowest);
 1266         if (cpu != ts->ts_cpu)
 1267                 SCHED_STAT_INC(pickcpu_migration);
 1268         return (cpu);
 1269 }
 1270 #endif
 1271 
 1272 /*
 1273  * Pick the highest priority task we have and return it.
 1274  */
 1275 static struct thread *
 1276 tdq_choose(struct tdq *tdq)
 1277 {
 1278         struct thread *td;
 1279 
 1280         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1281         td = runq_choose(&tdq->tdq_realtime);
 1282         if (td != NULL)
 1283                 return (td);
 1284         td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
 1285         if (td != NULL) {
 1286                 KASSERT(td->td_priority >= PRI_MIN_BATCH,
 1287                     ("tdq_choose: Invalid priority on timeshare queue %d",
 1288                     td->td_priority));
 1289                 return (td);
 1290         }
 1291         td = runq_choose(&tdq->tdq_idle);
 1292         if (td != NULL) {
 1293                 KASSERT(td->td_priority >= PRI_MIN_IDLE,
 1294                     ("tdq_choose: Invalid priority on idle queue %d",
 1295                     td->td_priority));
 1296                 return (td);
 1297         }
 1298 
 1299         return (NULL);
 1300 }
 1301 
 1302 /*
 1303  * Initialize a thread queue.
 1304  */
 1305 static void
 1306 tdq_setup(struct tdq *tdq)
 1307 {
 1308 
 1309         if (bootverbose)
 1310                 printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
 1311         runq_init(&tdq->tdq_realtime);
 1312         runq_init(&tdq->tdq_timeshare);
 1313         runq_init(&tdq->tdq_idle);
 1314         snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
 1315             "sched lock %d", (int)TDQ_ID(tdq));
 1316         mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
 1317             MTX_SPIN | MTX_RECURSE);
 1318 #ifdef KTR
 1319         snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
 1320             "CPU %d load", (int)TDQ_ID(tdq));
 1321 #endif
 1322 }
 1323 
 1324 #ifdef SMP
 1325 static void
 1326 sched_setup_smp(void)
 1327 {
 1328         struct tdq *tdq;
 1329         int i;
 1330 
 1331         cpu_top = smp_topo();
 1332         CPU_FOREACH(i) {
 1333                 tdq = TDQ_CPU(i);
 1334                 tdq_setup(tdq);
 1335                 tdq->tdq_cg = smp_topo_find(cpu_top, i);
 1336                 if (tdq->tdq_cg == NULL)
 1337                         panic("Can't find cpu group for %d\n", i);
 1338         }
 1339         balance_tdq = TDQ_SELF();
 1340         sched_balance();
 1341 }
 1342 #endif
 1343 
 1344 /*
 1345  * Setup the thread queues and initialize the topology based on MD
 1346  * information.
 1347  */
 1348 static void
 1349 sched_setup(void *dummy)
 1350 {
 1351         struct tdq *tdq;
 1352 
 1353         tdq = TDQ_SELF();
 1354 #ifdef SMP
 1355         sched_setup_smp();
 1356 #else
 1357         tdq_setup(tdq);
 1358 #endif
 1359 
 1360         /* Add thread0's load since it's running. */
 1361         TDQ_LOCK(tdq);
 1362         thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
 1363         tdq_load_add(tdq, &thread0);
 1364         tdq->tdq_lowpri = thread0.td_priority;
 1365         TDQ_UNLOCK(tdq);
 1366 }
 1367 
 1368 /*
 1369  * This routine determines time constants after stathz and hz are setup.
 1370  */
 1371 /* ARGSUSED */
 1372 static void
 1373 sched_initticks(void *dummy)
 1374 {
 1375         int incr;
 1376 
 1377         realstathz = stathz ? stathz : hz;
 1378         sched_slice = realstathz / 10;  /* ~100ms */
 1379         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 1380             realstathz);
 1381 
 1382         /*
 1383          * tickincr is shifted out by 10 to avoid rounding errors due to
 1384          * hz not being evenly divisible by stathz on all platforms.
 1385          */
 1386         incr = (hz << SCHED_TICK_SHIFT) / realstathz;
 1387         /*
 1388          * This does not work for values of stathz that are more than
 1389          * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
 1390          */
 1391         if (incr == 0)
 1392                 incr = 1;
 1393         tickincr = incr;
 1394 #ifdef SMP
 1395         /*
 1396          * Set the default balance interval now that we know
 1397          * what realstathz is.
 1398          */
 1399         balance_interval = realstathz;
 1400         /*
 1401          * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4. 
 1402          * This prevents excess thrashing on large machines and excess idle 
 1403          * on smaller machines.
 1404          */
 1405         steal_thresh = min(fls(mp_ncpus) - 1, 3);
 1406         affinity = SCHED_AFFINITY_DEFAULT;
 1407 #endif
 1408 }
 1409 
 1410 
 1411 /*
 1412  * This is the core of the interactivity algorithm.  Determines a score based
 1413  * on past behavior.  It is the ratio of sleep time to run time scaled to
 1414  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
 1415  * differs from the cpu usage because it does not account for time spent
 1416  * waiting on a run-queue.  Would be prettier if we had floating point.
 1417  */
 1418 static int
 1419 sched_interact_score(struct thread *td)
 1420 {
 1421         struct td_sched *ts;
 1422         int div;
 1423 
 1424         ts = td->td_sched;
 1425         /*
 1426          * The score is only needed if this is likely to be an interactive
 1427          * task.  Don't go through the expense of computing it if there's
 1428          * no chance.
 1429          */
 1430         if (sched_interact <= SCHED_INTERACT_HALF &&
 1431                 ts->ts_runtime >= ts->ts_slptime)
 1432                         return (SCHED_INTERACT_HALF);
 1433 
 1434         if (ts->ts_runtime > ts->ts_slptime) {
 1435                 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
 1436                 return (SCHED_INTERACT_HALF +
 1437                     (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
 1438         }
 1439         if (ts->ts_slptime > ts->ts_runtime) {
 1440                 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
 1441                 return (ts->ts_runtime / div);
 1442         }
 1443         /* runtime == slptime */
 1444         if (ts->ts_runtime)
 1445                 return (SCHED_INTERACT_HALF);
 1446 
 1447         /*
 1448          * This can happen if slptime and runtime are 0.
 1449          */
 1450         return (0);
 1451 
 1452 }
 1453 
 1454 /*
 1455  * Scale the scheduling priority according to the "interactivity" of this
 1456  * process.
 1457  */
 1458 static void
 1459 sched_priority(struct thread *td)
 1460 {
 1461         int score;
 1462         int pri;
 1463 
 1464         if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 1465                 return;
 1466         /*
 1467          * If the score is interactive we place the thread in the realtime
 1468          * queue with a priority that is less than kernel and interrupt
 1469          * priorities.  These threads are not subject to nice restrictions.
 1470          *
 1471          * Scores greater than this are placed on the normal timeshare queue
 1472          * where the priority is partially decided by the most recent cpu
 1473          * utilization and the rest is decided by nice value.
 1474          *
 1475          * The nice value of the process has a linear effect on the calculated
 1476          * score.  Negative nice values make it easier for a thread to be
 1477          * considered interactive.
 1478          */
 1479         score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
 1480         if (score < sched_interact) {
 1481                 pri = PRI_MIN_INTERACT;
 1482                 pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
 1483                     sched_interact) * score;
 1484                 KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
 1485                     ("sched_priority: invalid interactive priority %d score %d",
 1486                     pri, score));
 1487         } else {
 1488                 pri = SCHED_PRI_MIN;
 1489                 if (td->td_sched->ts_ticks)
 1490                         pri += min(SCHED_PRI_TICKS(td->td_sched),
 1491                             SCHED_PRI_RANGE);
 1492                 pri += SCHED_PRI_NICE(td->td_proc->p_nice);
 1493                 KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
 1494                     ("sched_priority: invalid priority %d: nice %d, " 
 1495                     "ticks %d ftick %d ltick %d tick pri %d",
 1496                     pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
 1497                     td->td_sched->ts_ftick, td->td_sched->ts_ltick,
 1498                     SCHED_PRI_TICKS(td->td_sched)));
 1499         }
 1500         sched_user_prio(td, pri);
 1501 
 1502         return;
 1503 }
 1504 
 1505 /*
 1506  * This routine enforces a maximum limit on the amount of scheduling history
 1507  * kept.  It is called after either the slptime or runtime is adjusted.  This
 1508  * function is ugly due to integer math.
 1509  */
 1510 static void
 1511 sched_interact_update(struct thread *td)
 1512 {
 1513         struct td_sched *ts;
 1514         u_int sum;
 1515 
 1516         ts = td->td_sched;
 1517         sum = ts->ts_runtime + ts->ts_slptime;
 1518         if (sum < SCHED_SLP_RUN_MAX)
 1519                 return;
 1520         /*
 1521          * This only happens from two places:
 1522          * 1) We have added an unusual amount of run time from fork_exit.
 1523          * 2) We have added an unusual amount of sleep time from sched_sleep().
 1524          */
 1525         if (sum > SCHED_SLP_RUN_MAX * 2) {
 1526                 if (ts->ts_runtime > ts->ts_slptime) {
 1527                         ts->ts_runtime = SCHED_SLP_RUN_MAX;
 1528                         ts->ts_slptime = 1;
 1529                 } else {
 1530                         ts->ts_slptime = SCHED_SLP_RUN_MAX;
 1531                         ts->ts_runtime = 1;
 1532                 }
 1533                 return;
 1534         }
 1535         /*
 1536          * If we have exceeded by more than 1/5th then the algorithm below
 1537          * will not bring us back into range.  Dividing by two here forces
 1538          * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
 1539          */
 1540         if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
 1541                 ts->ts_runtime /= 2;
 1542                 ts->ts_slptime /= 2;
 1543                 return;
 1544         }
 1545         ts->ts_runtime = (ts->ts_runtime / 5) * 4;
 1546         ts->ts_slptime = (ts->ts_slptime / 5) * 4;
 1547 }
 1548 
 1549 /*
 1550  * Scale back the interactivity history when a child thread is created.  The
 1551  * history is inherited from the parent but the thread may behave totally
 1552  * differently.  For example, a shell spawning a compiler process.  We want
 1553  * to learn that the compiler is behaving badly very quickly.
 1554  */
 1555 static void
 1556 sched_interact_fork(struct thread *td)
 1557 {
 1558         int ratio;
 1559         int sum;
 1560 
 1561         sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
 1562         if (sum > SCHED_SLP_RUN_FORK) {
 1563                 ratio = sum / SCHED_SLP_RUN_FORK;
 1564                 td->td_sched->ts_runtime /= ratio;
 1565                 td->td_sched->ts_slptime /= ratio;
 1566         }
 1567 }
 1568 
 1569 /*
 1570  * Called from proc0_init() to setup the scheduler fields.
 1571  */
 1572 void
 1573 schedinit(void)
 1574 {
 1575 
 1576         /*
 1577          * Set up the scheduler specific parts of proc0.
 1578          */
 1579         proc0.p_sched = NULL; /* XXX */
 1580         thread0.td_sched = &td_sched0;
 1581         td_sched0.ts_ltick = ticks;
 1582         td_sched0.ts_ftick = ticks;
 1583         td_sched0.ts_slice = sched_slice;
 1584 }
 1585 
 1586 /*
 1587  * This is only somewhat accurate since given many processes of the same
 1588  * priority they will switch when their slices run out, which will be
 1589  * at most sched_slice stathz ticks.
 1590  */
 1591 int
 1592 sched_rr_interval(void)
 1593 {
 1594 
 1595         /* Convert sched_slice from stathz to hz. */
 1596         return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
 1597 }
 1598 
 1599 /*
 1600  * Update the percent cpu tracking information when it is requested or
 1601  * the total history exceeds the maximum.  We keep a sliding history of
 1602  * tick counts that slowly decays.  This is less precise than the 4BSD
 1603  * mechanism since it happens with less regular and frequent events.
 1604  */
 1605 static void
 1606 sched_pctcpu_update(struct td_sched *ts)
 1607 {
 1608 
 1609         if (ts->ts_ticks == 0)
 1610                 return;
 1611         if (ticks - (hz / 10) < ts->ts_ltick &&
 1612             SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
 1613                 return;
 1614         /*
 1615          * Adjust counters and watermark for pctcpu calc.
 1616          */
 1617         if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
 1618                 ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
 1619                             SCHED_TICK_TARG;
 1620         else
 1621                 ts->ts_ticks = 0;
 1622         ts->ts_ltick = ticks;
 1623         ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
 1624 }
 1625 
 1626 /*
 1627  * Adjust the priority of a thread.  Move it to the appropriate run-queue
 1628  * if necessary.  This is the back-end for several priority related
 1629  * functions.
 1630  */
 1631 static void
 1632 sched_thread_priority(struct thread *td, u_char prio)
 1633 {
 1634         struct td_sched *ts;
 1635         struct tdq *tdq;
 1636         int oldpri;
 1637 
 1638         KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
 1639             "prio:%d", td->td_priority, "new prio:%d", prio,
 1640             KTR_ATTR_LINKED, sched_tdname(curthread));
 1641         SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio);
 1642         if (td != curthread && prio < td->td_priority) {
 1643                 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
 1644                     "lend prio", "prio:%d", td->td_priority, "new prio:%d",
 1645                     prio, KTR_ATTR_LINKED, sched_tdname(td));
 1646                 SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio, 
 1647                     curthread);
 1648         } 
 1649         ts = td->td_sched;
 1650         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1651         if (td->td_priority == prio)
 1652                 return;
 1653         /*
 1654          * If the priority has been elevated due to priority
 1655          * propagation, we may have to move ourselves to a new
 1656          * queue.  This could be optimized to not re-add in some
 1657          * cases.
 1658          */
 1659         if (TD_ON_RUNQ(td) && prio < td->td_priority) {
 1660                 sched_rem(td);
 1661                 td->td_priority = prio;
 1662                 sched_add(td, SRQ_BORROWING);
 1663                 return;
 1664         }
 1665         /*
 1666          * If the thread is currently running we may have to adjust the lowpri
 1667          * information so other cpus are aware of our current priority.
 1668          */
 1669         if (TD_IS_RUNNING(td)) {
 1670                 tdq = TDQ_CPU(ts->ts_cpu);
 1671                 oldpri = td->td_priority;
 1672                 td->td_priority = prio;
 1673                 if (prio < tdq->tdq_lowpri)
 1674                         tdq->tdq_lowpri = prio;
 1675                 else if (tdq->tdq_lowpri == oldpri)
 1676                         tdq_setlowpri(tdq, td);
 1677                 return;
 1678         }
 1679         td->td_priority = prio;
 1680 }
 1681 
 1682 /*
 1683  * Update a thread's priority when it is lent another thread's
 1684  * priority.
 1685  */
 1686 void
 1687 sched_lend_prio(struct thread *td, u_char prio)
 1688 {
 1689 
 1690         td->td_flags |= TDF_BORROWING;
 1691         sched_thread_priority(td, prio);
 1692 }
 1693 
 1694 /*
 1695  * Restore a thread's priority when priority propagation is
 1696  * over.  The prio argument is the minimum priority the thread
 1697  * needs to have to satisfy other possible priority lending
 1698  * requests.  If the thread's regular priority is less
 1699  * important than prio, the thread will keep a priority boost
 1700  * of prio.
 1701  */
 1702 void
 1703 sched_unlend_prio(struct thread *td, u_char prio)
 1704 {
 1705         u_char base_pri;
 1706 
 1707         if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
 1708             td->td_base_pri <= PRI_MAX_TIMESHARE)
 1709                 base_pri = td->td_user_pri;
 1710         else
 1711                 base_pri = td->td_base_pri;
 1712         if (prio >= base_pri) {
 1713                 td->td_flags &= ~TDF_BORROWING;
 1714                 sched_thread_priority(td, base_pri);
 1715         } else
 1716                 sched_lend_prio(td, prio);
 1717 }
 1718 
 1719 /*
 1720  * Standard entry for setting the priority to an absolute value.
 1721  */
 1722 void
 1723 sched_prio(struct thread *td, u_char prio)
 1724 {
 1725         u_char oldprio;
 1726 
 1727         /* First, update the base priority. */
 1728         td->td_base_pri = prio;
 1729 
 1730         /*
 1731          * If the thread is borrowing another thread's priority, don't
 1732          * ever lower the priority.
 1733          */
 1734         if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
 1735                 return;
 1736 
 1737         /* Change the real priority. */
 1738         oldprio = td->td_priority;
 1739         sched_thread_priority(td, prio);
 1740 
 1741         /*
 1742          * If the thread is on a turnstile, then let the turnstile update
 1743          * its state.
 1744          */
 1745         if (TD_ON_LOCK(td) && oldprio != prio)
 1746                 turnstile_adjust(td, oldprio);
 1747 }
 1748 
 1749 /*
 1750  * Set the base user priority, does not effect current running priority.
 1751  */
 1752 void
 1753 sched_user_prio(struct thread *td, u_char prio)
 1754 {
 1755         u_char oldprio;
 1756 
 1757         td->td_base_user_pri = prio;
 1758         if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
 1759                 return;
 1760         oldprio = td->td_user_pri;
 1761         td->td_user_pri = prio;
 1762 }
 1763 
 1764 void
 1765 sched_lend_user_prio(struct thread *td, u_char prio)
 1766 {
 1767         u_char oldprio;
 1768 
 1769         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1770         td->td_flags |= TDF_UBORROWING;
 1771         oldprio = td->td_user_pri;
 1772         td->td_user_pri = prio;
 1773 }
 1774 
 1775 void
 1776 sched_unlend_user_prio(struct thread *td, u_char prio)
 1777 {
 1778         u_char base_pri;
 1779 
 1780         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1781         base_pri = td->td_base_user_pri;
 1782         if (prio >= base_pri) {
 1783                 td->td_flags &= ~TDF_UBORROWING;
 1784                 sched_user_prio(td, base_pri);
 1785         } else {
 1786                 sched_lend_user_prio(td, prio);
 1787         }
 1788 }
 1789 
 1790 /*
 1791  * Handle migration from sched_switch().  This happens only for
 1792  * cpu binding.
 1793  */
 1794 static struct mtx *
 1795 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
 1796 {
 1797         struct tdq *tdn;
 1798 
 1799         tdn = TDQ_CPU(td->td_sched->ts_cpu);
 1800 #ifdef SMP
 1801         tdq_load_rem(tdq, td);
 1802         /*
 1803          * Do the lock dance required to avoid LOR.  We grab an extra
 1804          * spinlock nesting to prevent preemption while we're
 1805          * not holding either run-queue lock.
 1806          */
 1807         spinlock_enter();
 1808         thread_lock_block(td);  /* This releases the lock on tdq. */
 1809 
 1810         /*
 1811          * Acquire both run-queue locks before placing the thread on the new
 1812          * run-queue to avoid deadlocks created by placing a thread with a
 1813          * blocked lock on the run-queue of a remote processor.  The deadlock
 1814          * occurs when a third processor attempts to lock the two queues in
 1815          * question while the target processor is spinning with its own
 1816          * run-queue lock held while waiting for the blocked lock to clear.
 1817          */
 1818         tdq_lock_pair(tdn, tdq);
 1819         tdq_add(tdn, td, flags);
 1820         tdq_notify(tdn, td);
 1821         TDQ_UNLOCK(tdn);
 1822         spinlock_exit();
 1823 #endif
 1824         return (TDQ_LOCKPTR(tdn));
 1825 }
 1826 
 1827 /*
 1828  * Variadic version of thread_lock_unblock() that does not assume td_lock
 1829  * is blocked.
 1830  */
 1831 static inline void
 1832 thread_unblock_switch(struct thread *td, struct mtx *mtx)
 1833 {
 1834         atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
 1835             (uintptr_t)mtx);
 1836 }
 1837 
 1838 /*
 1839  * Switch threads.  This function has to handle threads coming in while
 1840  * blocked for some reason, running, or idle.  It also must deal with
 1841  * migrating a thread from one queue to another as running threads may
 1842  * be assigned elsewhere via binding.
 1843  */
 1844 void
 1845 sched_switch(struct thread *td, struct thread *newtd, int flags)
 1846 {
 1847         struct tdq *tdq;
 1848         struct td_sched *ts;
 1849         struct mtx *mtx;
 1850         int srqflag;
 1851         int cpuid, preempted;
 1852 
 1853         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1854         KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
 1855 
 1856         cpuid = PCPU_GET(cpuid);
 1857         tdq = TDQ_CPU(cpuid);
 1858         ts = td->td_sched;
 1859         mtx = td->td_lock;
 1860         ts->ts_rltick = ticks;
 1861         td->td_lastcpu = td->td_oncpu;
 1862         td->td_oncpu = NOCPU;
 1863         preempted = !(td->td_flags & TDF_SLICEEND);
 1864         td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
 1865         td->td_owepreempt = 0;
 1866         tdq->tdq_switchcnt++;
 1867         /*
 1868          * The lock pointer in an idle thread should never change.  Reset it
 1869          * to CAN_RUN as well.
 1870          */
 1871         if (TD_IS_IDLETHREAD(td)) {
 1872                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1873                 TD_SET_CAN_RUN(td);
 1874         } else if (TD_IS_RUNNING(td)) {
 1875                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1876                 srqflag = preempted ?
 1877                     SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
 1878                     SRQ_OURSELF|SRQ_YIELDING;
 1879 #ifdef SMP
 1880                 if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
 1881                         ts->ts_cpu = sched_pickcpu(td, 0);
 1882 #endif
 1883                 if (ts->ts_cpu == cpuid)
 1884                         tdq_runq_add(tdq, td, srqflag);
 1885                 else {
 1886                         KASSERT(THREAD_CAN_MIGRATE(td) ||
 1887                             (ts->ts_flags & TSF_BOUND) != 0,
 1888                             ("Thread %p shouldn't migrate", td));
 1889                         mtx = sched_switch_migrate(tdq, td, srqflag);
 1890                 }
 1891         } else {
 1892                 /* This thread must be going to sleep. */
 1893                 TDQ_LOCK(tdq);
 1894                 mtx = thread_lock_block(td);
 1895                 tdq_load_rem(tdq, td);
 1896         }
 1897         /*
 1898          * We enter here with the thread blocked and assigned to the
 1899          * appropriate cpu run-queue or sleep-queue and with the current
 1900          * thread-queue locked.
 1901          */
 1902         TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 1903         newtd = choosethread();
 1904         /*
 1905          * Call the MD code to switch contexts if necessary.
 1906          */
 1907         if (td != newtd) {
 1908 #ifdef  HWPMC_HOOKS
 1909                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1910                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
 1911 #endif
 1912                 SDT_PROBE2(sched, , , off_cpu, td, td->td_proc);
 1913                 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
 1914                 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
 1915 
 1916 #ifdef KDTRACE_HOOKS
 1917                 /*
 1918                  * If DTrace has set the active vtime enum to anything
 1919                  * other than INACTIVE (0), then it should have set the
 1920                  * function to call.
 1921                  */
 1922                 if (dtrace_vtime_active)
 1923                         (*dtrace_vtime_switch_func)(newtd);
 1924 #endif
 1925 
 1926                 cpu_switch(td, newtd, mtx);
 1927                 /*
 1928                  * We may return from cpu_switch on a different cpu.  However,
 1929                  * we always return with td_lock pointing to the current cpu's
 1930                  * run queue lock.
 1931                  */
 1932                 cpuid = PCPU_GET(cpuid);
 1933                 tdq = TDQ_CPU(cpuid);
 1934                 lock_profile_obtain_lock_success(
 1935                     &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
 1936 
 1937                 SDT_PROBE0(sched, , , on_cpu);
 1938 #ifdef  HWPMC_HOOKS
 1939                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1940                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
 1941 #endif
 1942         } else {
 1943                 thread_unblock_switch(td, mtx);
 1944                 SDT_PROBE0(sched, , , remain_cpu);
 1945         }
 1946         /*
 1947          * Assert that all went well and return.
 1948          */
 1949         TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
 1950         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1951         td->td_oncpu = cpuid;
 1952 }
 1953 
 1954 /*
 1955  * Adjust thread priorities as a result of a nice request.
 1956  */
 1957 void
 1958 sched_nice(struct proc *p, int nice)
 1959 {
 1960         struct thread *td;
 1961 
 1962         PROC_LOCK_ASSERT(p, MA_OWNED);
 1963 
 1964         p->p_nice = nice;
 1965         FOREACH_THREAD_IN_PROC(p, td) {
 1966                 thread_lock(td);
 1967                 sched_priority(td);
 1968                 sched_prio(td, td->td_base_user_pri);
 1969                 thread_unlock(td);
 1970         }
 1971 }
 1972 
 1973 /*
 1974  * Record the sleep time for the interactivity scorer.
 1975  */
 1976 void
 1977 sched_sleep(struct thread *td, int prio)
 1978 {
 1979 
 1980         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1981 
 1982         td->td_slptick = ticks;
 1983         if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
 1984                 td->td_flags |= TDF_CANSWAP;
 1985         if (static_boost == 1 && prio)
 1986                 sched_prio(td, prio);
 1987         else if (static_boost && td->td_priority > static_boost)
 1988                 sched_prio(td, static_boost);
 1989 }
 1990 
 1991 /*
 1992  * Schedule a thread to resume execution and record how long it voluntarily
 1993  * slept.  We also update the pctcpu, interactivity, and priority.
 1994  */
 1995 void
 1996 sched_wakeup(struct thread *td)
 1997 {
 1998         struct td_sched *ts;
 1999         int slptick;
 2000 
 2001         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2002         ts = td->td_sched;
 2003         td->td_flags &= ~TDF_CANSWAP;
 2004         /*
 2005          * If we slept for more than a tick update our interactivity and
 2006          * priority.
 2007          */
 2008         slptick = td->td_slptick;
 2009         td->td_slptick = 0;
 2010         if (slptick && slptick != ticks) {
 2011                 u_int hzticks;
 2012 
 2013                 hzticks = (ticks - slptick) << SCHED_TICK_SHIFT;
 2014                 ts->ts_slptime += hzticks;
 2015                 sched_interact_update(td);
 2016                 sched_pctcpu_update(ts);
 2017         }
 2018         /* Reset the slice value after we sleep. */
 2019         ts->ts_slice = sched_slice;
 2020         sched_add(td, SRQ_BORING);
 2021 }
 2022 
 2023 /*
 2024  * Penalize the parent for creating a new child and initialize the child's
 2025  * priority.
 2026  */
 2027 void
 2028 sched_fork(struct thread *td, struct thread *child)
 2029 {
 2030         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2031         sched_fork_thread(td, child);
 2032         /*
 2033          * Penalize the parent and child for forking.
 2034          */
 2035         sched_interact_fork(child);
 2036         sched_priority(child);
 2037         td->td_sched->ts_runtime += tickincr;
 2038         sched_interact_update(td);
 2039         sched_priority(td);
 2040 }
 2041 
 2042 /*
 2043  * Fork a new thread, may be within the same process.
 2044  */
 2045 void
 2046 sched_fork_thread(struct thread *td, struct thread *child)
 2047 {
 2048         struct td_sched *ts;
 2049         struct td_sched *ts2;
 2050 
 2051         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2052         /*
 2053          * Initialize child.
 2054          */
 2055         ts = td->td_sched;
 2056         ts2 = child->td_sched;
 2057         child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
 2058         child->td_cpuset = cpuset_ref(td->td_cpuset);
 2059         ts2->ts_cpu = ts->ts_cpu;
 2060         ts2->ts_flags = 0;
 2061         /*
 2062          * Grab our parents cpu estimation information.
 2063          */
 2064         ts2->ts_ticks = ts->ts_ticks;
 2065         ts2->ts_ltick = ts->ts_ltick;
 2066         ts2->ts_incrtick = ts->ts_incrtick;
 2067         ts2->ts_ftick = ts->ts_ftick;
 2068         /*
 2069          * Do not inherit any borrowed priority from the parent.
 2070          */
 2071         child->td_priority = child->td_base_pri;
 2072         /*
 2073          * And update interactivity score.
 2074          */
 2075         ts2->ts_slptime = ts->ts_slptime;
 2076         ts2->ts_runtime = ts->ts_runtime;
 2077         ts2->ts_slice = 1;      /* Attempt to quickly learn interactivity. */
 2078 #ifdef KTR
 2079         bzero(ts2->ts_name, sizeof(ts2->ts_name));
 2080 #endif
 2081 }
 2082 
 2083 /*
 2084  * Adjust the priority class of a thread.
 2085  */
 2086 void
 2087 sched_class(struct thread *td, int class)
 2088 {
 2089 
 2090         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2091         if (td->td_pri_class == class)
 2092                 return;
 2093         td->td_pri_class = class;
 2094 }
 2095 
 2096 /*
 2097  * Return some of the child's priority and interactivity to the parent.
 2098  */
 2099 void
 2100 sched_exit(struct proc *p, struct thread *child)
 2101 {
 2102         struct thread *td;
 2103 
 2104         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
 2105             "prio:%d", child->td_priority);
 2106         PROC_LOCK_ASSERT(p, MA_OWNED);
 2107         td = FIRST_THREAD_IN_PROC(p);
 2108         sched_exit_thread(td, child);
 2109 }
 2110 
 2111 /*
 2112  * Penalize another thread for the time spent on this one.  This helps to
 2113  * worsen the priority and interactivity of processes which schedule batch
 2114  * jobs such as make.  This has little effect on the make process itself but
 2115  * causes new processes spawned by it to receive worse scores immediately.
 2116  */
 2117 void
 2118 sched_exit_thread(struct thread *td, struct thread *child)
 2119 {
 2120 
 2121         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
 2122             "prio:%d", child->td_priority);
 2123         /*
 2124          * Give the child's runtime to the parent without returning the
 2125          * sleep time as a penalty to the parent.  This causes shells that
 2126          * launch expensive things to mark their children as expensive.
 2127          */
 2128         thread_lock(td);
 2129         td->td_sched->ts_runtime += child->td_sched->ts_runtime;
 2130         sched_interact_update(td);
 2131         sched_priority(td);
 2132         thread_unlock(td);
 2133 }
 2134 
 2135 void
 2136 sched_preempt(struct thread *td)
 2137 {
 2138         struct tdq *tdq;
 2139 
 2140         SDT_PROBE2(sched, , , surrender, td, td->td_proc);
 2141 
 2142         thread_lock(td);
 2143         tdq = TDQ_SELF();
 2144         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2145         tdq->tdq_ipipending = 0;
 2146         if (td->td_priority > tdq->tdq_lowpri) {
 2147                 int flags;
 2148 
 2149                 flags = SW_INVOL | SW_PREEMPT;
 2150                 if (td->td_critnest > 1)
 2151                         td->td_owepreempt = 1;
 2152                 else if (TD_IS_IDLETHREAD(td))
 2153                         mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
 2154                 else
 2155                         mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
 2156         }
 2157         thread_unlock(td);
 2158 }
 2159 
 2160 /*
 2161  * Fix priorities on return to user-space.  Priorities may be elevated due
 2162  * to static priorities in msleep() or similar.
 2163  */
 2164 void
 2165 sched_userret(struct thread *td)
 2166 {
 2167         /*
 2168          * XXX we cheat slightly on the locking here to avoid locking in  
 2169          * the usual case.  Setting td_priority here is essentially an
 2170          * incomplete workaround for not setting it properly elsewhere.
 2171          * Now that some interrupt handlers are threads, not setting it
 2172          * properly elsewhere can clobber it in the window between setting
 2173          * it here and returning to user mode, so don't waste time setting
 2174          * it perfectly here.
 2175          */
 2176         KASSERT((td->td_flags & TDF_BORROWING) == 0,
 2177             ("thread with borrowed priority returning to userland"));
 2178         if (td->td_priority != td->td_user_pri) {
 2179                 thread_lock(td);
 2180                 td->td_priority = td->td_user_pri;
 2181                 td->td_base_pri = td->td_user_pri;
 2182                 tdq_setlowpri(TDQ_SELF(), td);
 2183                 thread_unlock(td);
 2184         }
 2185 }
 2186 
 2187 /*
 2188  * Handle a stathz tick.  This is really only relevant for timeshare
 2189  * threads.
 2190  */
 2191 void
 2192 sched_clock(struct thread *td)
 2193 {
 2194         struct tdq *tdq;
 2195         struct td_sched *ts;
 2196 
 2197         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2198         tdq = TDQ_SELF();
 2199 #ifdef SMP
 2200         /*
 2201          * We run the long term load balancer infrequently on the first cpu.
 2202          */
 2203         if (balance_tdq == tdq) {
 2204                 if (balance_ticks && --balance_ticks == 0)
 2205                         sched_balance();
 2206         }
 2207 #endif
 2208         /*
 2209          * Save the old switch count so we have a record of the last ticks
 2210          * activity.   Initialize the new switch count based on our load.
 2211          * If there is some activity seed it to reflect that.
 2212          */
 2213         tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
 2214         tdq->tdq_switchcnt = tdq->tdq_load;
 2215         /*
 2216          * Advance the insert index once for each tick to ensure that all
 2217          * threads get a chance to run.
 2218          */
 2219         if (tdq->tdq_idx == tdq->tdq_ridx) {
 2220                 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
 2221                 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
 2222                         tdq->tdq_ridx = tdq->tdq_idx;
 2223         }
 2224         ts = td->td_sched;
 2225         if (td->td_pri_class & PRI_FIFO_BIT)
 2226                 return;
 2227         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
 2228                 /*
 2229                  * We used a tick; charge it to the thread so
 2230                  * that we can compute our interactivity.
 2231                  */
 2232                 td->td_sched->ts_runtime += tickincr;
 2233                 sched_interact_update(td);
 2234                 sched_priority(td);
 2235         }
 2236 
 2237         /*
 2238          * Force a context switch if the current thread has used up a full
 2239          * time slice (default is 100ms).
 2240          */
 2241         if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
 2242                 ts->ts_slice = sched_slice;
 2243                 td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
 2244         }
 2245 }
 2246 
 2247 /*
 2248  * Called once per hz tick.  Used for cpu utilization information.  This
 2249  * is easier than trying to scale based on stathz.
 2250  */
 2251 void
 2252 sched_tick(void)
 2253 {
 2254         struct td_sched *ts;
 2255 
 2256         ts = curthread->td_sched;
 2257         /*
 2258          * Ticks is updated asynchronously on a single cpu.  Check here to
 2259          * avoid incrementing ts_ticks multiple times in a single tick.
 2260          */
 2261         if (ts->ts_incrtick == ticks)
 2262                 return;
 2263         /* Adjust ticks for pctcpu */
 2264         ts->ts_ticks += 1 << SCHED_TICK_SHIFT;
 2265         ts->ts_ltick = ticks;
 2266         ts->ts_incrtick = ticks;
 2267         /*
 2268          * Update if we've exceeded our desired tick threshold by over one
 2269          * second.
 2270          */
 2271         if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
 2272                 sched_pctcpu_update(ts);
 2273 }
 2274 
 2275 /*
 2276  * Return whether the current CPU has runnable tasks.  Used for in-kernel
 2277  * cooperative idle threads.
 2278  */
 2279 int
 2280 sched_runnable(void)
 2281 {
 2282         struct tdq *tdq;
 2283         int load;
 2284 
 2285         load = 1;
 2286 
 2287         tdq = TDQ_SELF();
 2288         if ((curthread->td_flags & TDF_IDLETD) != 0) {
 2289                 if (tdq->tdq_load > 0)
 2290                         goto out;
 2291         } else
 2292                 if (tdq->tdq_load - 1 > 0)
 2293                         goto out;
 2294         load = 0;
 2295 out:
 2296         return (load);
 2297 }
 2298 
 2299 /*
 2300  * Choose the highest priority thread to run.  The thread is removed from
 2301  * the run-queue while running however the load remains.  For SMP we set
 2302  * the tdq in the global idle bitmask if it idles here.
 2303  */
 2304 struct thread *
 2305 sched_choose(void)
 2306 {
 2307         struct thread *td;
 2308         struct tdq *tdq;
 2309 
 2310         tdq = TDQ_SELF();
 2311         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2312         td = tdq_choose(tdq);
 2313         if (td) {
 2314                 td->td_sched->ts_ltick = ticks;
 2315                 tdq_runq_rem(tdq, td);
 2316                 tdq->tdq_lowpri = td->td_priority;
 2317                 return (td);
 2318         }
 2319         tdq->tdq_lowpri = PRI_MAX_IDLE;
 2320         return (PCPU_GET(idlethread));
 2321 }
 2322 
 2323 /*
 2324  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
 2325  * we always request it once we exit a critical section.
 2326  */
 2327 static inline void
 2328 sched_setpreempt(struct thread *td)
 2329 {
 2330         struct thread *ctd;
 2331         int cpri;
 2332         int pri;
 2333 
 2334         THREAD_LOCK_ASSERT(curthread, MA_OWNED);
 2335 
 2336         ctd = curthread;
 2337         pri = td->td_priority;
 2338         cpri = ctd->td_priority;
 2339         if (pri < cpri)
 2340                 ctd->td_flags |= TDF_NEEDRESCHED;
 2341         if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
 2342                 return;
 2343         if (!sched_shouldpreempt(pri, cpri, 0))
 2344                 return;
 2345         ctd->td_owepreempt = 1;
 2346 }
 2347 
 2348 /*
 2349  * Add a thread to a thread queue.  Select the appropriate runq and add the
 2350  * thread to it.  This is the internal function called when the tdq is
 2351  * predetermined.
 2352  */
 2353 void
 2354 tdq_add(struct tdq *tdq, struct thread *td, int flags)
 2355 {
 2356 
 2357         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2358         KASSERT((td->td_inhibitors == 0),
 2359             ("sched_add: trying to run inhibited thread"));
 2360         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 2361             ("sched_add: bad thread state"));
 2362         KASSERT(td->td_flags & TDF_INMEM,
 2363             ("sched_add: thread swapped out"));
 2364 
 2365         if (td->td_priority < tdq->tdq_lowpri)
 2366                 tdq->tdq_lowpri = td->td_priority;
 2367         tdq_runq_add(tdq, td, flags);
 2368         tdq_load_add(tdq, td);
 2369 }
 2370 
 2371 /*
 2372  * Select the target thread queue and add a thread to it.  Request
 2373  * preemption or IPI a remote processor if required.
 2374  */
 2375 void
 2376 sched_add(struct thread *td, int flags)
 2377 {
 2378         struct tdq *tdq;
 2379 #ifdef SMP
 2380         int cpu;
 2381 #endif
 2382 
 2383         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 2384             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 2385             sched_tdname(curthread));
 2386         KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 2387             KTR_ATTR_LINKED, sched_tdname(td));
 2388         SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
 2389             flags & SRQ_PREEMPTED);
 2390         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2391         /*
 2392          * Recalculate the priority before we select the target cpu or
 2393          * run-queue.
 2394          */
 2395         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
 2396                 sched_priority(td);
 2397 #ifdef SMP
 2398         /*
 2399          * Pick the destination cpu and if it isn't ours transfer to the
 2400          * target cpu.
 2401          */
 2402         cpu = sched_pickcpu(td, flags);
 2403         tdq = sched_setcpu(td, cpu, flags);
 2404         tdq_add(tdq, td, flags);
 2405         if (cpu != PCPU_GET(cpuid)) {
 2406                 tdq_notify(tdq, td);
 2407                 return;
 2408         }
 2409 #else
 2410         tdq = TDQ_SELF();
 2411         TDQ_LOCK(tdq);
 2412         /*
 2413          * Now that the thread is moving to the run-queue, set the lock
 2414          * to the scheduler's lock.
 2415          */
 2416         thread_lock_set(td, TDQ_LOCKPTR(tdq));
 2417         tdq_add(tdq, td, flags);
 2418 #endif
 2419         if (!(flags & SRQ_YIELDING))
 2420                 sched_setpreempt(td);
 2421 }
 2422 
 2423 /*
 2424  * Remove a thread from a run-queue without running it.  This is used
 2425  * when we're stealing a thread from a remote queue.  Otherwise all threads
 2426  * exit by calling sched_exit_thread() and sched_throw() themselves.
 2427  */
 2428 void
 2429 sched_rem(struct thread *td)
 2430 {
 2431         struct tdq *tdq;
 2432 
 2433         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
 2434             "prio:%d", td->td_priority);
 2435         SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
 2436         tdq = TDQ_CPU(td->td_sched->ts_cpu);
 2437         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2438         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2439         KASSERT(TD_ON_RUNQ(td),
 2440             ("sched_rem: thread not on run queue"));
 2441         tdq_runq_rem(tdq, td);
 2442         tdq_load_rem(tdq, td);
 2443         TD_SET_CAN_RUN(td);
 2444         if (td->td_priority == tdq->tdq_lowpri)
 2445                 tdq_setlowpri(tdq, NULL);
 2446 }
 2447 
 2448 /*
 2449  * Fetch cpu utilization information.  Updates on demand.
 2450  */
 2451 fixpt_t
 2452 sched_pctcpu(struct thread *td)
 2453 {
 2454         fixpt_t pctcpu;
 2455         struct td_sched *ts;
 2456 
 2457         pctcpu = 0;
 2458         ts = td->td_sched;
 2459         if (ts == NULL)
 2460                 return (0);
 2461 
 2462         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2463         if (ts->ts_ticks) {
 2464                 int rtick;
 2465 
 2466                 sched_pctcpu_update(ts);
 2467                 /* How many rtick per second ? */
 2468                 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
 2469                 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
 2470         }
 2471 
 2472         return (pctcpu);
 2473 }
 2474 
 2475 /*
 2476  * Enforce affinity settings for a thread.  Called after adjustments to
 2477  * cpumask.
 2478  */
 2479 void
 2480 sched_affinity(struct thread *td)
 2481 {
 2482 #ifdef SMP
 2483         struct td_sched *ts;
 2484 
 2485         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2486         ts = td->td_sched;
 2487         if (THREAD_CAN_SCHED(td, ts->ts_cpu))
 2488                 return;
 2489         if (TD_ON_RUNQ(td)) {
 2490                 sched_rem(td);
 2491                 sched_add(td, SRQ_BORING);
 2492                 return;
 2493         }
 2494         if (!TD_IS_RUNNING(td))
 2495                 return;
 2496         /*
 2497          * Force a switch before returning to userspace.  If the
 2498          * target thread is not running locally send an ipi to force
 2499          * the issue.
 2500          */
 2501         td->td_flags |= TDF_NEEDRESCHED;
 2502         if (td != curthread)
 2503                 ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
 2504 #endif
 2505 }
 2506 
 2507 /*
 2508  * Bind a thread to a target cpu.
 2509  */
 2510 void
 2511 sched_bind(struct thread *td, int cpu)
 2512 {
 2513         struct td_sched *ts;
 2514 
 2515         THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
 2516         KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
 2517         ts = td->td_sched;
 2518         if (ts->ts_flags & TSF_BOUND)
 2519                 sched_unbind(td);
 2520         KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
 2521         ts->ts_flags |= TSF_BOUND;
 2522         sched_pin();
 2523         if (PCPU_GET(cpuid) == cpu)
 2524                 return;
 2525         ts->ts_cpu = cpu;
 2526         /* When we return from mi_switch we'll be on the correct cpu. */
 2527         mi_switch(SW_VOL, NULL);
 2528 }
 2529 
 2530 /*
 2531  * Release a bound thread.
 2532  */
 2533 void
 2534 sched_unbind(struct thread *td)
 2535 {
 2536         struct td_sched *ts;
 2537 
 2538         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2539         KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
 2540         ts = td->td_sched;
 2541         if ((ts->ts_flags & TSF_BOUND) == 0)
 2542                 return;
 2543         ts->ts_flags &= ~TSF_BOUND;
 2544         sched_unpin();
 2545 }
 2546 
 2547 int
 2548 sched_is_bound(struct thread *td)
 2549 {
 2550         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2551         return (td->td_sched->ts_flags & TSF_BOUND);
 2552 }
 2553 
 2554 /*
 2555  * Basic yield call.
 2556  */
 2557 void
 2558 sched_relinquish(struct thread *td)
 2559 {
 2560         thread_lock(td);
 2561         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
 2562         thread_unlock(td);
 2563 }
 2564 
 2565 /*
 2566  * Return the total system load.
 2567  */
 2568 int
 2569 sched_load(void)
 2570 {
 2571 #ifdef SMP
 2572         int total;
 2573         int i;
 2574 
 2575         total = 0;
 2576         CPU_FOREACH(i)
 2577                 total += TDQ_CPU(i)->tdq_sysload;
 2578         return (total);
 2579 #else
 2580         return (TDQ_SELF()->tdq_sysload);
 2581 #endif
 2582 }
 2583 
 2584 int
 2585 sched_sizeof_proc(void)
 2586 {
 2587         return (sizeof(struct proc));
 2588 }
 2589 
 2590 int
 2591 sched_sizeof_thread(void)
 2592 {
 2593         return (sizeof(struct thread) + sizeof(struct td_sched));
 2594 }
 2595 
 2596 #ifdef SMP
 2597 #define TDQ_IDLESPIN(tdq)                                               \
 2598     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
 2599 #else
 2600 #define TDQ_IDLESPIN(tdq)       1
 2601 #endif
 2602 
 2603 /*
 2604  * The actual idle process.
 2605  */
 2606 void
 2607 sched_idletd(void *dummy)
 2608 {
 2609         struct thread *td;
 2610         struct tdq *tdq;
 2611         int switchcnt;
 2612         int i;
 2613 
 2614         mtx_assert(&Giant, MA_NOTOWNED);
 2615         td = curthread;
 2616         tdq = TDQ_SELF();
 2617         for (;;) {
 2618 #ifdef SMP
 2619                 if (tdq_idled(tdq) == 0)
 2620                         continue;
 2621 #endif
 2622                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2623                 /*
 2624                  * If we're switching very frequently, spin while checking
 2625                  * for load rather than entering a low power state that 
 2626                  * may require an IPI.  However, don't do any busy
 2627                  * loops while on SMT machines as this simply steals
 2628                  * cycles from cores doing useful work.
 2629                  */
 2630                 if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
 2631                         for (i = 0; i < sched_idlespins; i++) {
 2632                                 if (tdq->tdq_load)
 2633                                         break;
 2634                                 cpu_spinwait();
 2635                         }
 2636                 }
 2637                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2638                 if (tdq->tdq_load == 0)
 2639                         cpu_idle(switchcnt > 1);
 2640                 if (tdq->tdq_load) {
 2641                         thread_lock(td);
 2642                         mi_switch(SW_VOL | SWT_IDLE, NULL);
 2643                         thread_unlock(td);
 2644                 }
 2645         }
 2646 }
 2647 
 2648 /*
 2649  * A CPU is entering for the first time or a thread is exiting.
 2650  */
 2651 void
 2652 sched_throw(struct thread *td)
 2653 {
 2654         struct thread *newtd;
 2655         struct tdq *tdq;
 2656 
 2657         tdq = TDQ_SELF();
 2658         if (td == NULL) {
 2659                 /* Correct spinlock nesting and acquire the correct lock. */
 2660                 TDQ_LOCK(tdq);
 2661                 spinlock_exit();
 2662                 PCPU_SET(switchtime, cpu_ticks());
 2663                 PCPU_SET(switchticks, ticks);
 2664         } else {
 2665                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2666                 tdq_load_rem(tdq, td);
 2667                 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
 2668         }
 2669         KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
 2670         newtd = choosethread();
 2671         TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
 2672         cpu_throw(td, newtd);           /* doesn't return */
 2673 }
 2674 
 2675 /*
 2676  * This is called from fork_exit().  Just acquire the correct locks and
 2677  * let fork do the rest of the work.
 2678  */
 2679 void
 2680 sched_fork_exit(struct thread *td)
 2681 {
 2682         struct td_sched *ts;
 2683         struct tdq *tdq;
 2684         int cpuid;
 2685 
 2686         /*
 2687          * Finish setting up thread glue so that it begins execution in a
 2688          * non-nested critical section with the scheduler lock held.
 2689          */
 2690         cpuid = PCPU_GET(cpuid);
 2691         tdq = TDQ_CPU(cpuid);
 2692         ts = td->td_sched;
 2693         if (TD_IS_IDLETHREAD(td))
 2694                 td->td_lock = TDQ_LOCKPTR(tdq);
 2695         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2696         td->td_oncpu = cpuid;
 2697         TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 2698         lock_profile_obtain_lock_success(
 2699             &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
 2700 }
 2701 
 2702 /*
 2703  * Create on first use to catch odd startup conditons.
 2704  */
 2705 char *
 2706 sched_tdname(struct thread *td)
 2707 {
 2708 #ifdef KTR
 2709         struct td_sched *ts;
 2710 
 2711         ts = td->td_sched;
 2712         if (ts->ts_name[0] == '\0')
 2713                 snprintf(ts->ts_name, sizeof(ts->ts_name),
 2714                     "%s tid %d", td->td_name, td->td_tid);
 2715         return (ts->ts_name);
 2716 #else
 2717         return (td->td_name);
 2718 #endif
 2719 }
 2720 
 2721 #ifdef KTR
 2722 void
 2723 sched_clear_tdname(struct thread *td)
 2724 {
 2725         struct td_sched *ts;
 2726 
 2727         ts = td->td_sched;
 2728         ts->ts_name[0] = '\0';
 2729 }
 2730 #endif
 2731 
 2732 #ifdef SMP
 2733 
 2734 /*
 2735  * Build the CPU topology dump string. Is recursively called to collect
 2736  * the topology tree.
 2737  */
 2738 static int
 2739 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
 2740     int indent)
 2741 {
 2742         int i, first;
 2743 
 2744         sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
 2745             "", 1 + indent / 2, cg->cg_level);
 2746         sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"0x%x\">", indent, "",
 2747             cg->cg_count, cg->cg_mask);
 2748         first = TRUE;
 2749         for (i = 0; i < MAXCPU; i++) {
 2750                 if ((cg->cg_mask & (1 << i)) != 0) {
 2751                         if (!first)
 2752                                 sbuf_printf(sb, ", ");
 2753                         else
 2754                                 first = FALSE;
 2755                         sbuf_printf(sb, "%d", i);
 2756                 }
 2757         }
 2758         sbuf_printf(sb, "</cpu>\n");
 2759 
 2760         if (cg->cg_flags != 0) {
 2761                 sbuf_printf(sb, "%*s <flags>", indent, "");
 2762                 if ((cg->cg_flags & CG_FLAG_HTT) != 0)
 2763                         sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
 2764                 if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
 2765                         sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
 2766                 if ((cg->cg_flags & CG_FLAG_SMT) != 0)
 2767                         sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
 2768                 sbuf_printf(sb, "</flags>\n");
 2769         }
 2770 
 2771         if (cg->cg_children > 0) {
 2772                 sbuf_printf(sb, "%*s <children>\n", indent, "");
 2773                 for (i = 0; i < cg->cg_children; i++)
 2774                         sysctl_kern_sched_topology_spec_internal(sb, 
 2775                             &cg->cg_child[i], indent+2);
 2776                 sbuf_printf(sb, "%*s </children>\n", indent, "");
 2777         }
 2778         sbuf_printf(sb, "%*s</group>\n", indent, "");
 2779         return (0);
 2780 }
 2781 
 2782 /*
 2783  * Sysctl handler for retrieving topology dump. It's a wrapper for
 2784  * the recursive sysctl_kern_smp_topology_spec_internal().
 2785  */
 2786 static int
 2787 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
 2788 {
 2789         struct sbuf *topo;
 2790         int err;
 2791 
 2792         KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
 2793 
 2794         topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
 2795         if (topo == NULL)
 2796                 return (ENOMEM);
 2797 
 2798         sbuf_printf(topo, "<groups>\n");
 2799         err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
 2800         sbuf_printf(topo, "</groups>\n");
 2801 
 2802         if (err == 0) {
 2803                 sbuf_finish(topo);
 2804                 err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
 2805         }
 2806         sbuf_delete(topo);
 2807         return (err);
 2808 }
 2809 #endif
 2810 
 2811 static int
 2812 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
 2813 {
 2814         int error, new_val, period;
 2815 
 2816         period = 1000000 / realstathz;
 2817         new_val = period * sched_slice;
 2818         error = sysctl_handle_int(oidp, &new_val, 0, req);
 2819         if (error != 0 || req->newptr == NULL)
 2820                 return (error);
 2821         if (new_val <= 0)
 2822                 return (EINVAL);
 2823         sched_slice = imax(1, (new_val + period / 2) / period);
 2824         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 2825             realstathz);
 2826         return (0);
 2827 }
 2828 
 2829 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
 2830 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
 2831     "Scheduler name");
 2832 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
 2833     NULL, 0, sysctl_kern_quantum, "I",
 2834     "Quantum for timeshare threads in microseconds");
 2835 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
 2836     "Quantum for timeshare threads in stathz ticks");
 2837 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
 2838     "Interactivity score threshold");
 2839 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
 2840     &preempt_thresh, 0,
 2841     "Maximal (lowest) priority for preemption");
 2842 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
 2843     "Assign static kernel priorities to sleeping threads");
 2844 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
 2845     "Number of times idle thread will spin waiting for new work");
 2846 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
 2847     &sched_idlespinthresh, 0,
 2848     "Threshold before we will permit idle thread spinning");
 2849 #ifdef SMP
 2850 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
 2851     "Number of hz ticks to keep thread affinity for");
 2852 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
 2853     "Enables the long-term load balancer");
 2854 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
 2855     &balance_interval, 0,
 2856     "Average period in stathz ticks to run the long-term balancer");
 2857 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
 2858     "Attempts to steal work from other cores before idling");
 2859 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
 2860     "Minimum load on remote CPU before we'll steal");
 2861 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
 2862     CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
 2863     "XML dump of detected CPU topology");
 2864 #endif
 2865 
 2866 /* ps compat.  All cpu percentages from ULE are weighted. */
 2867 static int ccpu = 0;
 2868 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");

Cache object: 2471050d626be45cc6d6635e8b25f849


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.