The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sched_ule.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  */
   26 
   27 /*
   28  * This file implements the ULE scheduler.  ULE supports independent CPU
   29  * run queues and fine grain locking.  It has superior interactive
   30  * performance under load even on uni-processor systems.
   31  *
   32  * etymology:
   33  *   ULE is the last three letters in schedule.  It owes its name to a
   34  * generic user created for a scheduling system by Paul Mikesell at
   35  * Isilon Systems and a general lack of creativity on the part of the author.
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD: releng/9.0/sys/kern/sched_ule.c 225199 2011-08-26 18:00:07Z delphij $");
   40 
   41 #include "opt_hwpmc_hooks.h"
   42 #include "opt_kdtrace.h"
   43 #include "opt_sched.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/systm.h>
   47 #include <sys/kdb.h>
   48 #include <sys/kernel.h>
   49 #include <sys/ktr.h>
   50 #include <sys/lock.h>
   51 #include <sys/mutex.h>
   52 #include <sys/proc.h>
   53 #include <sys/resource.h>
   54 #include <sys/resourcevar.h>
   55 #include <sys/sched.h>
   56 #include <sys/smp.h>
   57 #include <sys/sx.h>
   58 #include <sys/sysctl.h>
   59 #include <sys/sysproto.h>
   60 #include <sys/turnstile.h>
   61 #include <sys/umtx.h>
   62 #include <sys/vmmeter.h>
   63 #include <sys/cpuset.h>
   64 #include <sys/sbuf.h>
   65 
   66 #ifdef HWPMC_HOOKS
   67 #include <sys/pmckern.h>
   68 #endif
   69 
   70 #ifdef KDTRACE_HOOKS
   71 #include <sys/dtrace_bsd.h>
   72 int                             dtrace_vtime_active;
   73 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
   74 #endif
   75 
   76 #include <machine/cpu.h>
   77 #include <machine/smp.h>
   78 
   79 #if defined(__sparc64__)
   80 #error "This architecture is not currently compatible with ULE"
   81 #endif
   82 
   83 #define KTR_ULE 0
   84 
   85 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
   86 #define TDQ_NAME_LEN    (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
   87 #define TDQ_LOADNAME_LEN        (sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
   88 
   89 /*
   90  * Thread scheduler specific section.  All fields are protected
   91  * by the thread lock.
   92  */
   93 struct td_sched {       
   94         struct runq     *ts_runq;       /* Run-queue we're queued on. */
   95         short           ts_flags;       /* TSF_* flags. */
   96         u_char          ts_cpu;         /* CPU that we have affinity for. */
   97         int             ts_rltick;      /* Real last tick, for affinity. */
   98         int             ts_slice;       /* Ticks of slice remaining. */
   99         u_int           ts_slptime;     /* Number of ticks we vol. slept */
  100         u_int           ts_runtime;     /* Number of ticks we were running */
  101         int             ts_ltick;       /* Last tick that we were running on */
  102         int             ts_incrtick;    /* Last tick that we incremented on */
  103         int             ts_ftick;       /* First tick that we were running on */
  104         int             ts_ticks;       /* Tick count */
  105 #ifdef KTR
  106         char            ts_name[TS_NAME_LEN];
  107 #endif
  108 };
  109 /* flags kept in ts_flags */
  110 #define TSF_BOUND       0x0001          /* Thread can not migrate. */
  111 #define TSF_XFERABLE    0x0002          /* Thread was added as transferable. */
  112 
  113 static struct td_sched td_sched0;
  114 
  115 #define THREAD_CAN_MIGRATE(td)  ((td)->td_pinned == 0)
  116 #define THREAD_CAN_SCHED(td, cpu)       \
  117     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
  118 
  119 /*
  120  * Priority ranges used for interactive and non-interactive timeshare
  121  * threads.  The timeshare priorities are split up into four ranges.
  122  * The first range handles interactive threads.  The last three ranges
  123  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
  124  * ranges supporting nice values.
  125  */
  126 #define PRI_TIMESHARE_RANGE     (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
  127 #define PRI_INTERACT_RANGE      ((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
  128 
  129 #define PRI_MIN_INTERACT        PRI_MIN_TIMESHARE
  130 #define PRI_MAX_INTERACT        (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
  131 #define PRI_MIN_BATCH           (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
  132 #define PRI_MAX_BATCH           PRI_MAX_TIMESHARE
  133 
  134 /*
  135  * Cpu percentage computation macros and defines.
  136  *
  137  * SCHED_TICK_SECS:     Number of seconds to average the cpu usage across.
  138  * SCHED_TICK_TARG:     Number of hz ticks to average the cpu usage across.
  139  * SCHED_TICK_MAX:      Maximum number of ticks before scaling back.
  140  * SCHED_TICK_SHIFT:    Shift factor to avoid rounding away results.
  141  * SCHED_TICK_HZ:       Compute the number of hz ticks for a given ticks count.
  142  * SCHED_TICK_TOTAL:    Gives the amount of time we've been recording ticks.
  143  */
  144 #define SCHED_TICK_SECS         10
  145 #define SCHED_TICK_TARG         (hz * SCHED_TICK_SECS)
  146 #define SCHED_TICK_MAX          (SCHED_TICK_TARG + hz)
  147 #define SCHED_TICK_SHIFT        10
  148 #define SCHED_TICK_HZ(ts)       ((ts)->ts_ticks >> SCHED_TICK_SHIFT)
  149 #define SCHED_TICK_TOTAL(ts)    (max((ts)->ts_ltick - (ts)->ts_ftick, hz))
  150 
  151 /*
  152  * These macros determine priorities for non-interactive threads.  They are
  153  * assigned a priority based on their recent cpu utilization as expressed
  154  * by the ratio of ticks to the tick total.  NHALF priorities at the start
  155  * and end of the MIN to MAX timeshare range are only reachable with negative
  156  * or positive nice respectively.
  157  *
  158  * PRI_RANGE:   Priority range for utilization dependent priorities.
  159  * PRI_NRESV:   Number of nice values.
  160  * PRI_TICKS:   Compute a priority in PRI_RANGE from the ticks count and total.
  161  * PRI_NICE:    Determines the part of the priority inherited from nice.
  162  */
  163 #define SCHED_PRI_NRESV         (PRIO_MAX - PRIO_MIN)
  164 #define SCHED_PRI_NHALF         (SCHED_PRI_NRESV / 2)
  165 #define SCHED_PRI_MIN           (PRI_MIN_BATCH + SCHED_PRI_NHALF)
  166 #define SCHED_PRI_MAX           (PRI_MAX_BATCH - SCHED_PRI_NHALF)
  167 #define SCHED_PRI_RANGE         (SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
  168 #define SCHED_PRI_TICKS(ts)                                             \
  169     (SCHED_TICK_HZ((ts)) /                                              \
  170     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
  171 #define SCHED_PRI_NICE(nice)    (nice)
  172 
  173 /*
  174  * These determine the interactivity of a process.  Interactivity differs from
  175  * cpu utilization in that it expresses the voluntary time slept vs time ran
  176  * while cpu utilization includes all time not running.  This more accurately
  177  * models the intent of the thread.
  178  *
  179  * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
  180  *              before throttling back.
  181  * SLP_RUN_FORK:        Maximum slp+run time to inherit at fork time.
  182  * INTERACT_MAX:        Maximum interactivity value.  Smaller is better.
  183  * INTERACT_THRESH:     Threshold for placement on the current runq.
  184  */
  185 #define SCHED_SLP_RUN_MAX       ((hz * 5) << SCHED_TICK_SHIFT)
  186 #define SCHED_SLP_RUN_FORK      ((hz / 2) << SCHED_TICK_SHIFT)
  187 #define SCHED_INTERACT_MAX      (100)
  188 #define SCHED_INTERACT_HALF     (SCHED_INTERACT_MAX / 2)
  189 #define SCHED_INTERACT_THRESH   (30)
  190 
  191 /*
  192  * tickincr:            Converts a stathz tick into a hz domain scaled by
  193  *                      the shift factor.  Without the shift the error rate
  194  *                      due to rounding would be unacceptably high.
  195  * realstathz:          stathz is sometimes 0 and run off of hz.
  196  * sched_slice:         Runtime of each thread before rescheduling.
  197  * preempt_thresh:      Priority threshold for preemption and remote IPIs.
  198  */
  199 static int sched_interact = SCHED_INTERACT_THRESH;
  200 static int realstathz;
  201 static int tickincr;
  202 static int sched_slice = 1;
  203 #ifdef PREEMPTION
  204 #ifdef FULL_PREEMPTION
  205 static int preempt_thresh = PRI_MAX_IDLE;
  206 #else
  207 static int preempt_thresh = PRI_MIN_KERN;
  208 #endif
  209 #else 
  210 static int preempt_thresh = 0;
  211 #endif
  212 static int static_boost = PRI_MIN_BATCH;
  213 static int sched_idlespins = 10000;
  214 static int sched_idlespinthresh = 16;
  215 
  216 /*
  217  * tdq - per processor runqs and statistics.  All fields are protected by the
  218  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
  219  * locking in sched_pickcpu();
  220  */
  221 struct tdq {
  222         /* Ordered to improve efficiency of cpu_search() and switch(). */
  223         struct mtx      tdq_lock;               /* run queue lock. */
  224         struct cpu_group *tdq_cg;               /* Pointer to cpu topology. */
  225         volatile int    tdq_load;               /* Aggregate load. */
  226         volatile int    tdq_cpu_idle;           /* cpu_idle() is active. */
  227         int             tdq_sysload;            /* For loadavg, !ITHD load. */
  228         int             tdq_transferable;       /* Transferable thread count. */
  229         short           tdq_switchcnt;          /* Switches this tick. */
  230         short           tdq_oldswitchcnt;       /* Switches last tick. */
  231         u_char          tdq_lowpri;             /* Lowest priority thread. */
  232         u_char          tdq_ipipending;         /* IPI pending. */
  233         u_char          tdq_idx;                /* Current insert index. */
  234         u_char          tdq_ridx;               /* Current removal index. */
  235         struct runq     tdq_realtime;           /* real-time run queue. */
  236         struct runq     tdq_timeshare;          /* timeshare run queue. */
  237         struct runq     tdq_idle;               /* Queue of IDLE threads. */
  238         char            tdq_name[TDQ_NAME_LEN];
  239 #ifdef KTR
  240         char            tdq_loadname[TDQ_LOADNAME_LEN];
  241 #endif
  242 } __aligned(64);
  243 
  244 /* Idle thread states and config. */
  245 #define TDQ_RUNNING     1
  246 #define TDQ_IDLE        2
  247 
  248 #ifdef SMP
  249 struct cpu_group *cpu_top;              /* CPU topology */
  250 
  251 #define SCHED_AFFINITY_DEFAULT  (max(1, hz / 1000))
  252 #define SCHED_AFFINITY(ts, t)   ((ts)->ts_rltick > ticks - ((t) * affinity))
  253 
  254 /*
  255  * Run-time tunables.
  256  */
  257 static int rebalance = 1;
  258 static int balance_interval = 128;      /* Default set in sched_initticks(). */
  259 static int affinity;
  260 static int steal_htt = 1;
  261 static int steal_idle = 1;
  262 static int steal_thresh = 2;
  263 
  264 /*
  265  * One thread queue per processor.
  266  */
  267 static struct tdq       tdq_cpu[MAXCPU];
  268 static struct tdq       *balance_tdq;
  269 static int balance_ticks;
  270 
  271 #define TDQ_SELF()      (&tdq_cpu[PCPU_GET(cpuid)])
  272 #define TDQ_CPU(x)      (&tdq_cpu[(x)])
  273 #define TDQ_ID(x)       ((int)((x) - tdq_cpu))
  274 #else   /* !SMP */
  275 static struct tdq       tdq_cpu;
  276 
  277 #define TDQ_ID(x)       (0)
  278 #define TDQ_SELF()      (&tdq_cpu)
  279 #define TDQ_CPU(x)      (&tdq_cpu)
  280 #endif
  281 
  282 #define TDQ_LOCK_ASSERT(t, type)        mtx_assert(TDQ_LOCKPTR((t)), (type))
  283 #define TDQ_LOCK(t)             mtx_lock_spin(TDQ_LOCKPTR((t)))
  284 #define TDQ_LOCK_FLAGS(t, f)    mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
  285 #define TDQ_UNLOCK(t)           mtx_unlock_spin(TDQ_LOCKPTR((t)))
  286 #define TDQ_LOCKPTR(t)          (&(t)->tdq_lock)
  287 
  288 static void sched_priority(struct thread *);
  289 static void sched_thread_priority(struct thread *, u_char);
  290 static int sched_interact_score(struct thread *);
  291 static void sched_interact_update(struct thread *);
  292 static void sched_interact_fork(struct thread *);
  293 static void sched_pctcpu_update(struct td_sched *);
  294 
  295 /* Operations on per processor queues */
  296 static struct thread *tdq_choose(struct tdq *);
  297 static void tdq_setup(struct tdq *);
  298 static void tdq_load_add(struct tdq *, struct thread *);
  299 static void tdq_load_rem(struct tdq *, struct thread *);
  300 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
  301 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
  302 static inline int sched_shouldpreempt(int, int, int);
  303 void tdq_print(int cpu);
  304 static void runq_print(struct runq *rq);
  305 static void tdq_add(struct tdq *, struct thread *, int);
  306 #ifdef SMP
  307 static int tdq_move(struct tdq *, struct tdq *);
  308 static int tdq_idled(struct tdq *);
  309 static void tdq_notify(struct tdq *, struct thread *);
  310 static struct thread *tdq_steal(struct tdq *, int);
  311 static struct thread *runq_steal(struct runq *, int);
  312 static int sched_pickcpu(struct thread *, int);
  313 static void sched_balance(void);
  314 static int sched_balance_pair(struct tdq *, struct tdq *);
  315 static inline struct tdq *sched_setcpu(struct thread *, int, int);
  316 static inline void thread_unblock_switch(struct thread *, struct mtx *);
  317 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
  318 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
  319 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 
  320     struct cpu_group *cg, int indent);
  321 #endif
  322 
  323 static void sched_setup(void *dummy);
  324 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
  325 
  326 static void sched_initticks(void *dummy);
  327 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
  328     NULL);
  329 
  330 /*
  331  * Print the threads waiting on a run-queue.
  332  */
  333 static void
  334 runq_print(struct runq *rq)
  335 {
  336         struct rqhead *rqh;
  337         struct thread *td;
  338         int pri;
  339         int j;
  340         int i;
  341 
  342         for (i = 0; i < RQB_LEN; i++) {
  343                 printf("\t\trunq bits %d 0x%zx\n",
  344                     i, rq->rq_status.rqb_bits[i]);
  345                 for (j = 0; j < RQB_BPW; j++)
  346                         if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
  347                                 pri = j + (i << RQB_L2BPW);
  348                                 rqh = &rq->rq_queues[pri];
  349                                 TAILQ_FOREACH(td, rqh, td_runq) {
  350                                         printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
  351                                             td, td->td_name, td->td_priority,
  352                                             td->td_rqindex, pri);
  353                                 }
  354                         }
  355         }
  356 }
  357 
  358 /*
  359  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
  360  */
  361 void
  362 tdq_print(int cpu)
  363 {
  364         struct tdq *tdq;
  365 
  366         tdq = TDQ_CPU(cpu);
  367 
  368         printf("tdq %d:\n", TDQ_ID(tdq));
  369         printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
  370         printf("\tLock name:      %s\n", tdq->tdq_name);
  371         printf("\tload:           %d\n", tdq->tdq_load);
  372         printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
  373         printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
  374         printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
  375         printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
  376         printf("\tload transferable: %d\n", tdq->tdq_transferable);
  377         printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
  378         printf("\trealtime runq:\n");
  379         runq_print(&tdq->tdq_realtime);
  380         printf("\ttimeshare runq:\n");
  381         runq_print(&tdq->tdq_timeshare);
  382         printf("\tidle runq:\n");
  383         runq_print(&tdq->tdq_idle);
  384 }
  385 
  386 static inline int
  387 sched_shouldpreempt(int pri, int cpri, int remote)
  388 {
  389         /*
  390          * If the new priority is not better than the current priority there is
  391          * nothing to do.
  392          */
  393         if (pri >= cpri)
  394                 return (0);
  395         /*
  396          * Always preempt idle.
  397          */
  398         if (cpri >= PRI_MIN_IDLE)
  399                 return (1);
  400         /*
  401          * If preemption is disabled don't preempt others.
  402          */
  403         if (preempt_thresh == 0)
  404                 return (0);
  405         /*
  406          * Preempt if we exceed the threshold.
  407          */
  408         if (pri <= preempt_thresh)
  409                 return (1);
  410         /*
  411          * If we're interactive or better and there is non-interactive
  412          * or worse running preempt only remote processors.
  413          */
  414         if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
  415                 return (1);
  416         return (0);
  417 }
  418 
  419 #define TS_RQ_PPQ       (((PRI_MAX_BATCH - PRI_MIN_BATCH) + 1) / RQ_NQS)
  420 /*
  421  * Add a thread to the actual run-queue.  Keeps transferable counts up to
  422  * date with what is actually on the run-queue.  Selects the correct
  423  * queue position for timeshare threads.
  424  */
  425 static __inline void
  426 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
  427 {
  428         struct td_sched *ts;
  429         u_char pri;
  430 
  431         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  432         THREAD_LOCK_ASSERT(td, MA_OWNED);
  433 
  434         pri = td->td_priority;
  435         ts = td->td_sched;
  436         TD_SET_RUNQ(td);
  437         if (THREAD_CAN_MIGRATE(td)) {
  438                 tdq->tdq_transferable++;
  439                 ts->ts_flags |= TSF_XFERABLE;
  440         }
  441         if (pri < PRI_MIN_BATCH) {
  442                 ts->ts_runq = &tdq->tdq_realtime;
  443         } else if (pri <= PRI_MAX_BATCH) {
  444                 ts->ts_runq = &tdq->tdq_timeshare;
  445                 KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
  446                         ("Invalid priority %d on timeshare runq", pri));
  447                 /*
  448                  * This queue contains only priorities between MIN and MAX
  449                  * realtime.  Use the whole queue to represent these values.
  450                  */
  451                 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
  452                         pri = (pri - PRI_MIN_BATCH) / TS_RQ_PPQ;
  453                         pri = (pri + tdq->tdq_idx) % RQ_NQS;
  454                         /*
  455                          * This effectively shortens the queue by one so we
  456                          * can have a one slot difference between idx and
  457                          * ridx while we wait for threads to drain.
  458                          */
  459                         if (tdq->tdq_ridx != tdq->tdq_idx &&
  460                             pri == tdq->tdq_ridx)
  461                                 pri = (unsigned char)(pri - 1) % RQ_NQS;
  462                 } else
  463                         pri = tdq->tdq_ridx;
  464                 runq_add_pri(ts->ts_runq, td, pri, flags);
  465                 return;
  466         } else
  467                 ts->ts_runq = &tdq->tdq_idle;
  468         runq_add(ts->ts_runq, td, flags);
  469 }
  470 
  471 /* 
  472  * Remove a thread from a run-queue.  This typically happens when a thread
  473  * is selected to run.  Running threads are not on the queue and the
  474  * transferable count does not reflect them.
  475  */
  476 static __inline void
  477 tdq_runq_rem(struct tdq *tdq, struct thread *td)
  478 {
  479         struct td_sched *ts;
  480 
  481         ts = td->td_sched;
  482         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  483         KASSERT(ts->ts_runq != NULL,
  484             ("tdq_runq_remove: thread %p null ts_runq", td));
  485         if (ts->ts_flags & TSF_XFERABLE) {
  486                 tdq->tdq_transferable--;
  487                 ts->ts_flags &= ~TSF_XFERABLE;
  488         }
  489         if (ts->ts_runq == &tdq->tdq_timeshare) {
  490                 if (tdq->tdq_idx != tdq->tdq_ridx)
  491                         runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
  492                 else
  493                         runq_remove_idx(ts->ts_runq, td, NULL);
  494         } else
  495                 runq_remove(ts->ts_runq, td);
  496 }
  497 
  498 /*
  499  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
  500  * for this thread to the referenced thread queue.
  501  */
  502 static void
  503 tdq_load_add(struct tdq *tdq, struct thread *td)
  504 {
  505 
  506         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  507         THREAD_LOCK_ASSERT(td, MA_OWNED);
  508 
  509         tdq->tdq_load++;
  510         if ((td->td_flags & TDF_NOLOAD) == 0)
  511                 tdq->tdq_sysload++;
  512         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  513 }
  514 
  515 /*
  516  * Remove the load from a thread that is transitioning to a sleep state or
  517  * exiting.
  518  */
  519 static void
  520 tdq_load_rem(struct tdq *tdq, struct thread *td)
  521 {
  522 
  523         THREAD_LOCK_ASSERT(td, MA_OWNED);
  524         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  525         KASSERT(tdq->tdq_load != 0,
  526             ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
  527 
  528         tdq->tdq_load--;
  529         if ((td->td_flags & TDF_NOLOAD) == 0)
  530                 tdq->tdq_sysload--;
  531         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  532 }
  533 
  534 /*
  535  * Set lowpri to its exact value by searching the run-queue and
  536  * evaluating curthread.  curthread may be passed as an optimization.
  537  */
  538 static void
  539 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
  540 {
  541         struct thread *td;
  542 
  543         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  544         if (ctd == NULL)
  545                 ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
  546         td = tdq_choose(tdq);
  547         if (td == NULL || td->td_priority > ctd->td_priority)
  548                 tdq->tdq_lowpri = ctd->td_priority;
  549         else
  550                 tdq->tdq_lowpri = td->td_priority;
  551 }
  552 
  553 #ifdef SMP
  554 struct cpu_search {
  555         cpuset_t cs_mask;
  556         u_int   cs_load;
  557         u_int   cs_cpu;
  558         int     cs_limit;       /* Min priority for low min load for high. */
  559 };
  560 
  561 #define CPU_SEARCH_LOWEST       0x1
  562 #define CPU_SEARCH_HIGHEST      0x2
  563 #define CPU_SEARCH_BOTH         (CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
  564 
  565 #define CPUSET_FOREACH(cpu, mask)                               \
  566         for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)             \
  567                 if (CPU_ISSET(cpu, &mask))
  568 
  569 static __inline int cpu_search(struct cpu_group *cg, struct cpu_search *low,
  570     struct cpu_search *high, const int match);
  571 int cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low);
  572 int cpu_search_highest(struct cpu_group *cg, struct cpu_search *high);
  573 int cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
  574     struct cpu_search *high);
  575 
  576 /*
  577  * This routine compares according to the match argument and should be
  578  * reduced in actual instantiations via constant propagation and dead code
  579  * elimination.
  580  */ 
  581 static __inline int
  582 cpu_compare(int cpu, struct cpu_search *low, struct cpu_search *high,
  583     const int match)
  584 {
  585         struct tdq *tdq;
  586 
  587         tdq = TDQ_CPU(cpu);
  588         if (match & CPU_SEARCH_LOWEST)
  589                 if (CPU_ISSET(cpu, &low->cs_mask) &&
  590                     tdq->tdq_load < low->cs_load &&
  591                     tdq->tdq_lowpri > low->cs_limit) {
  592                         low->cs_cpu = cpu;
  593                         low->cs_load = tdq->tdq_load;
  594                 }
  595         if (match & CPU_SEARCH_HIGHEST)
  596                 if (CPU_ISSET(cpu, &high->cs_mask) &&
  597                     tdq->tdq_load >= high->cs_limit && 
  598                     tdq->tdq_load > high->cs_load &&
  599                     tdq->tdq_transferable) {
  600                         high->cs_cpu = cpu;
  601                         high->cs_load = tdq->tdq_load;
  602                 }
  603         return (tdq->tdq_load);
  604 }
  605 
  606 /*
  607  * Search the tree of cpu_groups for the lowest or highest loaded cpu
  608  * according to the match argument.  This routine actually compares the
  609  * load on all paths through the tree and finds the least loaded cpu on
  610  * the least loaded path, which may differ from the least loaded cpu in
  611  * the system.  This balances work among caches and busses.
  612  *
  613  * This inline is instantiated in three forms below using constants for the
  614  * match argument.  It is reduced to the minimum set for each case.  It is
  615  * also recursive to the depth of the tree.
  616  */
  617 static __inline int
  618 cpu_search(struct cpu_group *cg, struct cpu_search *low,
  619     struct cpu_search *high, const int match)
  620 {
  621         int total;
  622 
  623         total = 0;
  624         if (cg->cg_children) {
  625                 struct cpu_search lgroup;
  626                 struct cpu_search hgroup;
  627                 struct cpu_group *child;
  628                 u_int lload;
  629                 int hload;
  630                 int load;
  631                 int i;
  632 
  633                 lload = -1;
  634                 hload = -1;
  635                 for (i = 0; i < cg->cg_children; i++) {
  636                         child = &cg->cg_child[i];
  637                         if (match & CPU_SEARCH_LOWEST) {
  638                                 lgroup = *low;
  639                                 lgroup.cs_load = -1;
  640                         }
  641                         if (match & CPU_SEARCH_HIGHEST) {
  642                                 hgroup = *high;
  643                                 lgroup.cs_load = 0;
  644                         }
  645                         switch (match) {
  646                         case CPU_SEARCH_LOWEST:
  647                                 load = cpu_search_lowest(child, &lgroup);
  648                                 break;
  649                         case CPU_SEARCH_HIGHEST:
  650                                 load = cpu_search_highest(child, &hgroup);
  651                                 break;
  652                         case CPU_SEARCH_BOTH:
  653                                 load = cpu_search_both(child, &lgroup, &hgroup);
  654                                 break;
  655                         }
  656                         total += load;
  657                         if (match & CPU_SEARCH_LOWEST)
  658                                 if (load < lload || low->cs_cpu == -1) {
  659                                         *low = lgroup;
  660                                         lload = load;
  661                                 }
  662                         if (match & CPU_SEARCH_HIGHEST) 
  663                                 if (load > hload || high->cs_cpu == -1) {
  664                                         hload = load;
  665                                         *high = hgroup;
  666                                 }
  667                 }
  668         } else {
  669                 int cpu;
  670 
  671                 CPUSET_FOREACH(cpu, cg->cg_mask)
  672                         total += cpu_compare(cpu, low, high, match);
  673         }
  674         return (total);
  675 }
  676 
  677 /*
  678  * cpu_search instantiations must pass constants to maintain the inline
  679  * optimization.
  680  */
  681 int
  682 cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low)
  683 {
  684         return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
  685 }
  686 
  687 int
  688 cpu_search_highest(struct cpu_group *cg, struct cpu_search *high)
  689 {
  690         return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
  691 }
  692 
  693 int
  694 cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
  695     struct cpu_search *high)
  696 {
  697         return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
  698 }
  699 
  700 /*
  701  * Find the cpu with the least load via the least loaded path that has a
  702  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
  703  * acceptable.
  704  */
  705 static inline int
  706 sched_lowest(struct cpu_group *cg, cpuset_t mask, int pri)
  707 {
  708         struct cpu_search low;
  709 
  710         low.cs_cpu = -1;
  711         low.cs_load = -1;
  712         low.cs_mask = mask;
  713         low.cs_limit = pri;
  714         cpu_search_lowest(cg, &low);
  715         return low.cs_cpu;
  716 }
  717 
  718 /*
  719  * Find the cpu with the highest load via the highest loaded path.
  720  */
  721 static inline int
  722 sched_highest(struct cpu_group *cg, cpuset_t mask, int minload)
  723 {
  724         struct cpu_search high;
  725 
  726         high.cs_cpu = -1;
  727         high.cs_load = 0;
  728         high.cs_mask = mask;
  729         high.cs_limit = minload;
  730         cpu_search_highest(cg, &high);
  731         return high.cs_cpu;
  732 }
  733 
  734 /*
  735  * Simultaneously find the highest and lowest loaded cpu reachable via
  736  * cg.
  737  */
  738 static inline void 
  739 sched_both(struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
  740 {
  741         struct cpu_search high;
  742         struct cpu_search low;
  743 
  744         low.cs_cpu = -1;
  745         low.cs_limit = -1;
  746         low.cs_load = -1;
  747         low.cs_mask = mask;
  748         high.cs_load = 0;
  749         high.cs_cpu = -1;
  750         high.cs_limit = -1;
  751         high.cs_mask = mask;
  752         cpu_search_both(cg, &low, &high);
  753         *lowcpu = low.cs_cpu;
  754         *highcpu = high.cs_cpu;
  755         return;
  756 }
  757 
  758 static void
  759 sched_balance_group(struct cpu_group *cg)
  760 {
  761         cpuset_t mask;
  762         int high;
  763         int low;
  764         int i;
  765 
  766         CPU_FILL(&mask);
  767         for (;;) {
  768                 sched_both(cg, mask, &low, &high);
  769                 if (low == high || low == -1 || high == -1)
  770                         break;
  771                 if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low)))
  772                         break;
  773                 /*
  774                  * If we failed to move any threads determine which cpu
  775                  * to kick out of the set and try again.
  776                  */
  777                 if (TDQ_CPU(high)->tdq_transferable == 0)
  778                         CPU_CLR(high, &mask);
  779                 else
  780                         CPU_CLR(low, &mask);
  781         }
  782 
  783         for (i = 0; i < cg->cg_children; i++)
  784                 sched_balance_group(&cg->cg_child[i]);
  785 }
  786 
  787 static void
  788 sched_balance(void)
  789 {
  790         struct tdq *tdq;
  791 
  792         /*
  793          * Select a random time between .5 * balance_interval and
  794          * 1.5 * balance_interval.
  795          */
  796         balance_ticks = max(balance_interval / 2, 1);
  797         balance_ticks += random() % balance_interval;
  798         if (smp_started == 0 || rebalance == 0)
  799                 return;
  800         tdq = TDQ_SELF();
  801         TDQ_UNLOCK(tdq);
  802         sched_balance_group(cpu_top);
  803         TDQ_LOCK(tdq);
  804 }
  805 
  806 /*
  807  * Lock two thread queues using their address to maintain lock order.
  808  */
  809 static void
  810 tdq_lock_pair(struct tdq *one, struct tdq *two)
  811 {
  812         if (one < two) {
  813                 TDQ_LOCK(one);
  814                 TDQ_LOCK_FLAGS(two, MTX_DUPOK);
  815         } else {
  816                 TDQ_LOCK(two);
  817                 TDQ_LOCK_FLAGS(one, MTX_DUPOK);
  818         }
  819 }
  820 
  821 /*
  822  * Unlock two thread queues.  Order is not important here.
  823  */
  824 static void
  825 tdq_unlock_pair(struct tdq *one, struct tdq *two)
  826 {
  827         TDQ_UNLOCK(one);
  828         TDQ_UNLOCK(two);
  829 }
  830 
  831 /*
  832  * Transfer load between two imbalanced thread queues.
  833  */
  834 static int
  835 sched_balance_pair(struct tdq *high, struct tdq *low)
  836 {
  837         int transferable;
  838         int high_load;
  839         int low_load;
  840         int moved;
  841         int move;
  842         int diff;
  843         int i;
  844 
  845         tdq_lock_pair(high, low);
  846         transferable = high->tdq_transferable;
  847         high_load = high->tdq_load;
  848         low_load = low->tdq_load;
  849         moved = 0;
  850         /*
  851          * Determine what the imbalance is and then adjust that to how many
  852          * threads we actually have to give up (transferable).
  853          */
  854         if (transferable != 0) {
  855                 diff = high_load - low_load;
  856                 move = diff / 2;
  857                 if (diff & 0x1)
  858                         move++;
  859                 move = min(move, transferable);
  860                 for (i = 0; i < move; i++)
  861                         moved += tdq_move(high, low);
  862                 /*
  863                  * IPI the target cpu to force it to reschedule with the new
  864                  * workload.
  865                  */
  866                 ipi_cpu(TDQ_ID(low), IPI_PREEMPT);
  867         }
  868         tdq_unlock_pair(high, low);
  869         return (moved);
  870 }
  871 
  872 /*
  873  * Move a thread from one thread queue to another.
  874  */
  875 static int
  876 tdq_move(struct tdq *from, struct tdq *to)
  877 {
  878         struct td_sched *ts;
  879         struct thread *td;
  880         struct tdq *tdq;
  881         int cpu;
  882 
  883         TDQ_LOCK_ASSERT(from, MA_OWNED);
  884         TDQ_LOCK_ASSERT(to, MA_OWNED);
  885 
  886         tdq = from;
  887         cpu = TDQ_ID(to);
  888         td = tdq_steal(tdq, cpu);
  889         if (td == NULL)
  890                 return (0);
  891         ts = td->td_sched;
  892         /*
  893          * Although the run queue is locked the thread may be blocked.  Lock
  894          * it to clear this and acquire the run-queue lock.
  895          */
  896         thread_lock(td);
  897         /* Drop recursive lock on from acquired via thread_lock(). */
  898         TDQ_UNLOCK(from);
  899         sched_rem(td);
  900         ts->ts_cpu = cpu;
  901         td->td_lock = TDQ_LOCKPTR(to);
  902         tdq_add(to, td, SRQ_YIELDING);
  903         return (1);
  904 }
  905 
  906 /*
  907  * This tdq has idled.  Try to steal a thread from another cpu and switch
  908  * to it.
  909  */
  910 static int
  911 tdq_idled(struct tdq *tdq)
  912 {
  913         struct cpu_group *cg;
  914         struct tdq *steal;
  915         cpuset_t mask;
  916         int thresh;
  917         int cpu;
  918 
  919         if (smp_started == 0 || steal_idle == 0)
  920                 return (1);
  921         CPU_FILL(&mask);
  922         CPU_CLR(PCPU_GET(cpuid), &mask);
  923         /* We don't want to be preempted while we're iterating. */
  924         spinlock_enter();
  925         for (cg = tdq->tdq_cg; cg != NULL; ) {
  926                 if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
  927                         thresh = steal_thresh;
  928                 else
  929                         thresh = 1;
  930                 cpu = sched_highest(cg, mask, thresh);
  931                 if (cpu == -1) {
  932                         cg = cg->cg_parent;
  933                         continue;
  934                 }
  935                 steal = TDQ_CPU(cpu);
  936                 CPU_CLR(cpu, &mask);
  937                 tdq_lock_pair(tdq, steal);
  938                 if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
  939                         tdq_unlock_pair(tdq, steal);
  940                         continue;
  941                 }
  942                 /*
  943                  * If a thread was added while interrupts were disabled don't
  944                  * steal one here.  If we fail to acquire one due to affinity
  945                  * restrictions loop again with this cpu removed from the
  946                  * set.
  947                  */
  948                 if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
  949                         tdq_unlock_pair(tdq, steal);
  950                         continue;
  951                 }
  952                 spinlock_exit();
  953                 TDQ_UNLOCK(steal);
  954                 mi_switch(SW_VOL | SWT_IDLE, NULL);
  955                 thread_unlock(curthread);
  956 
  957                 return (0);
  958         }
  959         spinlock_exit();
  960         return (1);
  961 }
  962 
  963 /*
  964  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
  965  */
  966 static void
  967 tdq_notify(struct tdq *tdq, struct thread *td)
  968 {
  969         struct thread *ctd;
  970         int pri;
  971         int cpu;
  972 
  973         if (tdq->tdq_ipipending)
  974                 return;
  975         cpu = td->td_sched->ts_cpu;
  976         pri = td->td_priority;
  977         ctd = pcpu_find(cpu)->pc_curthread;
  978         if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
  979                 return;
  980         if (TD_IS_IDLETHREAD(ctd)) {
  981                 /*
  982                  * If the MD code has an idle wakeup routine try that before
  983                  * falling back to IPI.
  984                  */
  985                 if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
  986                         return;
  987         }
  988         tdq->tdq_ipipending = 1;
  989         ipi_cpu(cpu, IPI_PREEMPT);
  990 }
  991 
  992 /*
  993  * Steals load from a timeshare queue.  Honors the rotating queue head
  994  * index.
  995  */
  996 static struct thread *
  997 runq_steal_from(struct runq *rq, int cpu, u_char start)
  998 {
  999         struct rqbits *rqb;
 1000         struct rqhead *rqh;
 1001         struct thread *td;
 1002         int first;
 1003         int bit;
 1004         int pri;
 1005         int i;
 1006 
 1007         rqb = &rq->rq_status;
 1008         bit = start & (RQB_BPW -1);
 1009         pri = 0;
 1010         first = 0;
 1011 again:
 1012         for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
 1013                 if (rqb->rqb_bits[i] == 0)
 1014                         continue;
 1015                 if (bit != 0) {
 1016                         for (pri = bit; pri < RQB_BPW; pri++)
 1017                                 if (rqb->rqb_bits[i] & (1ul << pri))
 1018                                         break;
 1019                         if (pri >= RQB_BPW)
 1020                                 continue;
 1021                 } else
 1022                         pri = RQB_FFS(rqb->rqb_bits[i]);
 1023                 pri += (i << RQB_L2BPW);
 1024                 rqh = &rq->rq_queues[pri];
 1025                 TAILQ_FOREACH(td, rqh, td_runq) {
 1026                         if (first && THREAD_CAN_MIGRATE(td) &&
 1027                             THREAD_CAN_SCHED(td, cpu))
 1028                                 return (td);
 1029                         first = 1;
 1030                 }
 1031         }
 1032         if (start != 0) {
 1033                 start = 0;
 1034                 goto again;
 1035         }
 1036 
 1037         return (NULL);
 1038 }
 1039 
 1040 /*
 1041  * Steals load from a standard linear queue.
 1042  */
 1043 static struct thread *
 1044 runq_steal(struct runq *rq, int cpu)
 1045 {
 1046         struct rqhead *rqh;
 1047         struct rqbits *rqb;
 1048         struct thread *td;
 1049         int word;
 1050         int bit;
 1051 
 1052         rqb = &rq->rq_status;
 1053         for (word = 0; word < RQB_LEN; word++) {
 1054                 if (rqb->rqb_bits[word] == 0)
 1055                         continue;
 1056                 for (bit = 0; bit < RQB_BPW; bit++) {
 1057                         if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
 1058                                 continue;
 1059                         rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
 1060                         TAILQ_FOREACH(td, rqh, td_runq)
 1061                                 if (THREAD_CAN_MIGRATE(td) &&
 1062                                     THREAD_CAN_SCHED(td, cpu))
 1063                                         return (td);
 1064                 }
 1065         }
 1066         return (NULL);
 1067 }
 1068 
 1069 /*
 1070  * Attempt to steal a thread in priority order from a thread queue.
 1071  */
 1072 static struct thread *
 1073 tdq_steal(struct tdq *tdq, int cpu)
 1074 {
 1075         struct thread *td;
 1076 
 1077         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1078         if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
 1079                 return (td);
 1080         if ((td = runq_steal_from(&tdq->tdq_timeshare,
 1081             cpu, tdq->tdq_ridx)) != NULL)
 1082                 return (td);
 1083         return (runq_steal(&tdq->tdq_idle, cpu));
 1084 }
 1085 
 1086 /*
 1087  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
 1088  * current lock and returns with the assigned queue locked.
 1089  */
 1090 static inline struct tdq *
 1091 sched_setcpu(struct thread *td, int cpu, int flags)
 1092 {
 1093 
 1094         struct tdq *tdq;
 1095 
 1096         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1097         tdq = TDQ_CPU(cpu);
 1098         td->td_sched->ts_cpu = cpu;
 1099         /*
 1100          * If the lock matches just return the queue.
 1101          */
 1102         if (td->td_lock == TDQ_LOCKPTR(tdq))
 1103                 return (tdq);
 1104 #ifdef notyet
 1105         /*
 1106          * If the thread isn't running its lockptr is a
 1107          * turnstile or a sleepqueue.  We can just lock_set without
 1108          * blocking.
 1109          */
 1110         if (TD_CAN_RUN(td)) {
 1111                 TDQ_LOCK(tdq);
 1112                 thread_lock_set(td, TDQ_LOCKPTR(tdq));
 1113                 return (tdq);
 1114         }
 1115 #endif
 1116         /*
 1117          * The hard case, migration, we need to block the thread first to
 1118          * prevent order reversals with other cpus locks.
 1119          */
 1120         spinlock_enter();
 1121         thread_lock_block(td);
 1122         TDQ_LOCK(tdq);
 1123         thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
 1124         spinlock_exit();
 1125         return (tdq);
 1126 }
 1127 
 1128 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
 1129 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
 1130 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
 1131 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
 1132 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
 1133 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
 1134 
 1135 static int
 1136 sched_pickcpu(struct thread *td, int flags)
 1137 {
 1138         struct cpu_group *cg;
 1139         struct td_sched *ts;
 1140         struct tdq *tdq;
 1141         cpuset_t mask;
 1142         int self;
 1143         int pri;
 1144         int cpu;
 1145 
 1146         self = PCPU_GET(cpuid);
 1147         ts = td->td_sched;
 1148         if (smp_started == 0)
 1149                 return (self);
 1150         /*
 1151          * Don't migrate a running thread from sched_switch().
 1152          */
 1153         if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
 1154                 return (ts->ts_cpu);
 1155         /*
 1156          * Prefer to run interrupt threads on the processors that generate
 1157          * the interrupt.
 1158          */
 1159         if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
 1160             curthread->td_intr_nesting_level && ts->ts_cpu != self) {
 1161                 SCHED_STAT_INC(pickcpu_intrbind);
 1162                 ts->ts_cpu = self;
 1163         }
 1164         /*
 1165          * If the thread can run on the last cpu and the affinity has not
 1166          * expired or it is idle run it there.
 1167          */
 1168         pri = td->td_priority;
 1169         tdq = TDQ_CPU(ts->ts_cpu);
 1170         if (THREAD_CAN_SCHED(td, ts->ts_cpu)) {
 1171                 if (tdq->tdq_lowpri > PRI_MIN_IDLE) {
 1172                         SCHED_STAT_INC(pickcpu_idle_affinity);
 1173                         return (ts->ts_cpu);
 1174                 }
 1175                 if (SCHED_AFFINITY(ts, CG_SHARE_L2) && tdq->tdq_lowpri > pri) {
 1176                         SCHED_STAT_INC(pickcpu_affinity);
 1177                         return (ts->ts_cpu);
 1178                 }
 1179         }
 1180         /*
 1181          * Search for the highest level in the tree that still has affinity.
 1182          */
 1183         cg = NULL;
 1184         for (cg = tdq->tdq_cg; cg != NULL; cg = cg->cg_parent)
 1185                 if (SCHED_AFFINITY(ts, cg->cg_level))
 1186                         break;
 1187         cpu = -1;
 1188         mask = td->td_cpuset->cs_mask;
 1189         if (cg)
 1190                 cpu = sched_lowest(cg, mask, pri);
 1191         if (cpu == -1)
 1192                 cpu = sched_lowest(cpu_top, mask, -1);
 1193         /*
 1194          * Compare the lowest loaded cpu to current cpu.
 1195          */
 1196         if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
 1197             TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) {
 1198                 SCHED_STAT_INC(pickcpu_local);
 1199                 cpu = self;
 1200         } else
 1201                 SCHED_STAT_INC(pickcpu_lowest);
 1202         if (cpu != ts->ts_cpu)
 1203                 SCHED_STAT_INC(pickcpu_migration);
 1204         KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
 1205         return (cpu);
 1206 }
 1207 #endif
 1208 
 1209 /*
 1210  * Pick the highest priority task we have and return it.
 1211  */
 1212 static struct thread *
 1213 tdq_choose(struct tdq *tdq)
 1214 {
 1215         struct thread *td;
 1216 
 1217         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1218         td = runq_choose(&tdq->tdq_realtime);
 1219         if (td != NULL)
 1220                 return (td);
 1221         td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
 1222         if (td != NULL) {
 1223                 KASSERT(td->td_priority >= PRI_MIN_BATCH,
 1224                     ("tdq_choose: Invalid priority on timeshare queue %d",
 1225                     td->td_priority));
 1226                 return (td);
 1227         }
 1228         td = runq_choose(&tdq->tdq_idle);
 1229         if (td != NULL) {
 1230                 KASSERT(td->td_priority >= PRI_MIN_IDLE,
 1231                     ("tdq_choose: Invalid priority on idle queue %d",
 1232                     td->td_priority));
 1233                 return (td);
 1234         }
 1235 
 1236         return (NULL);
 1237 }
 1238 
 1239 /*
 1240  * Initialize a thread queue.
 1241  */
 1242 static void
 1243 tdq_setup(struct tdq *tdq)
 1244 {
 1245 
 1246         if (bootverbose)
 1247                 printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
 1248         runq_init(&tdq->tdq_realtime);
 1249         runq_init(&tdq->tdq_timeshare);
 1250         runq_init(&tdq->tdq_idle);
 1251         snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
 1252             "sched lock %d", (int)TDQ_ID(tdq));
 1253         mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
 1254             MTX_SPIN | MTX_RECURSE);
 1255 #ifdef KTR
 1256         snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
 1257             "CPU %d load", (int)TDQ_ID(tdq));
 1258 #endif
 1259 }
 1260 
 1261 #ifdef SMP
 1262 static void
 1263 sched_setup_smp(void)
 1264 {
 1265         struct tdq *tdq;
 1266         int i;
 1267 
 1268         cpu_top = smp_topo();
 1269         CPU_FOREACH(i) {
 1270                 tdq = TDQ_CPU(i);
 1271                 tdq_setup(tdq);
 1272                 tdq->tdq_cg = smp_topo_find(cpu_top, i);
 1273                 if (tdq->tdq_cg == NULL)
 1274                         panic("Can't find cpu group for %d\n", i);
 1275         }
 1276         balance_tdq = TDQ_SELF();
 1277         sched_balance();
 1278 }
 1279 #endif
 1280 
 1281 /*
 1282  * Setup the thread queues and initialize the topology based on MD
 1283  * information.
 1284  */
 1285 static void
 1286 sched_setup(void *dummy)
 1287 {
 1288         struct tdq *tdq;
 1289 
 1290         tdq = TDQ_SELF();
 1291 #ifdef SMP
 1292         sched_setup_smp();
 1293 #else
 1294         tdq_setup(tdq);
 1295 #endif
 1296         /*
 1297          * To avoid divide-by-zero, we set realstathz a dummy value
 1298          * in case which sched_clock() called before sched_initticks().
 1299          */
 1300         realstathz = hz;
 1301         sched_slice = (realstathz/10);  /* ~100ms */
 1302         tickincr = 1 << SCHED_TICK_SHIFT;
 1303 
 1304         /* Add thread0's load since it's running. */
 1305         TDQ_LOCK(tdq);
 1306         thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
 1307         tdq_load_add(tdq, &thread0);
 1308         tdq->tdq_lowpri = thread0.td_priority;
 1309         TDQ_UNLOCK(tdq);
 1310 }
 1311 
 1312 /*
 1313  * This routine determines the tickincr after stathz and hz are setup.
 1314  */
 1315 /* ARGSUSED */
 1316 static void
 1317 sched_initticks(void *dummy)
 1318 {
 1319         int incr;
 1320 
 1321         realstathz = stathz ? stathz : hz;
 1322         sched_slice = (realstathz/10);  /* ~100ms */
 1323 
 1324         /*
 1325          * tickincr is shifted out by 10 to avoid rounding errors due to
 1326          * hz not being evenly divisible by stathz on all platforms.
 1327          */
 1328         incr = (hz << SCHED_TICK_SHIFT) / realstathz;
 1329         /*
 1330          * This does not work for values of stathz that are more than
 1331          * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
 1332          */
 1333         if (incr == 0)
 1334                 incr = 1;
 1335         tickincr = incr;
 1336 #ifdef SMP
 1337         /*
 1338          * Set the default balance interval now that we know
 1339          * what realstathz is.
 1340          */
 1341         balance_interval = realstathz;
 1342         /*
 1343          * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4. 
 1344          * This prevents excess thrashing on large machines and excess idle 
 1345          * on smaller machines.
 1346          */
 1347         steal_thresh = min(fls(mp_ncpus) - 1, 3);
 1348         affinity = SCHED_AFFINITY_DEFAULT;
 1349 #endif
 1350 }
 1351 
 1352 
 1353 /*
 1354  * This is the core of the interactivity algorithm.  Determines a score based
 1355  * on past behavior.  It is the ratio of sleep time to run time scaled to
 1356  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
 1357  * differs from the cpu usage because it does not account for time spent
 1358  * waiting on a run-queue.  Would be prettier if we had floating point.
 1359  */
 1360 static int
 1361 sched_interact_score(struct thread *td)
 1362 {
 1363         struct td_sched *ts;
 1364         int div;
 1365 
 1366         ts = td->td_sched;
 1367         /*
 1368          * The score is only needed if this is likely to be an interactive
 1369          * task.  Don't go through the expense of computing it if there's
 1370          * no chance.
 1371          */
 1372         if (sched_interact <= SCHED_INTERACT_HALF &&
 1373                 ts->ts_runtime >= ts->ts_slptime)
 1374                         return (SCHED_INTERACT_HALF);
 1375 
 1376         if (ts->ts_runtime > ts->ts_slptime) {
 1377                 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
 1378                 return (SCHED_INTERACT_HALF +
 1379                     (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
 1380         }
 1381         if (ts->ts_slptime > ts->ts_runtime) {
 1382                 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
 1383                 return (ts->ts_runtime / div);
 1384         }
 1385         /* runtime == slptime */
 1386         if (ts->ts_runtime)
 1387                 return (SCHED_INTERACT_HALF);
 1388 
 1389         /*
 1390          * This can happen if slptime and runtime are 0.
 1391          */
 1392         return (0);
 1393 
 1394 }
 1395 
 1396 /*
 1397  * Scale the scheduling priority according to the "interactivity" of this
 1398  * process.
 1399  */
 1400 static void
 1401 sched_priority(struct thread *td)
 1402 {
 1403         int score;
 1404         int pri;
 1405 
 1406         if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 1407                 return;
 1408         /*
 1409          * If the score is interactive we place the thread in the realtime
 1410          * queue with a priority that is less than kernel and interrupt
 1411          * priorities.  These threads are not subject to nice restrictions.
 1412          *
 1413          * Scores greater than this are placed on the normal timeshare queue
 1414          * where the priority is partially decided by the most recent cpu
 1415          * utilization and the rest is decided by nice value.
 1416          *
 1417          * The nice value of the process has a linear effect on the calculated
 1418          * score.  Negative nice values make it easier for a thread to be
 1419          * considered interactive.
 1420          */
 1421         score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
 1422         if (score < sched_interact) {
 1423                 pri = PRI_MIN_INTERACT;
 1424                 pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
 1425                     sched_interact) * score;
 1426                 KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
 1427                     ("sched_priority: invalid interactive priority %d score %d",
 1428                     pri, score));
 1429         } else {
 1430                 pri = SCHED_PRI_MIN;
 1431                 if (td->td_sched->ts_ticks)
 1432                         pri += SCHED_PRI_TICKS(td->td_sched);
 1433                 pri += SCHED_PRI_NICE(td->td_proc->p_nice);
 1434                 KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
 1435                     ("sched_priority: invalid priority %d: nice %d, " 
 1436                     "ticks %d ftick %d ltick %d tick pri %d",
 1437                     pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
 1438                     td->td_sched->ts_ftick, td->td_sched->ts_ltick,
 1439                     SCHED_PRI_TICKS(td->td_sched)));
 1440         }
 1441         sched_user_prio(td, pri);
 1442 
 1443         return;
 1444 }
 1445 
 1446 /*
 1447  * This routine enforces a maximum limit on the amount of scheduling history
 1448  * kept.  It is called after either the slptime or runtime is adjusted.  This
 1449  * function is ugly due to integer math.
 1450  */
 1451 static void
 1452 sched_interact_update(struct thread *td)
 1453 {
 1454         struct td_sched *ts;
 1455         u_int sum;
 1456 
 1457         ts = td->td_sched;
 1458         sum = ts->ts_runtime + ts->ts_slptime;
 1459         if (sum < SCHED_SLP_RUN_MAX)
 1460                 return;
 1461         /*
 1462          * This only happens from two places:
 1463          * 1) We have added an unusual amount of run time from fork_exit.
 1464          * 2) We have added an unusual amount of sleep time from sched_sleep().
 1465          */
 1466         if (sum > SCHED_SLP_RUN_MAX * 2) {
 1467                 if (ts->ts_runtime > ts->ts_slptime) {
 1468                         ts->ts_runtime = SCHED_SLP_RUN_MAX;
 1469                         ts->ts_slptime = 1;
 1470                 } else {
 1471                         ts->ts_slptime = SCHED_SLP_RUN_MAX;
 1472                         ts->ts_runtime = 1;
 1473                 }
 1474                 return;
 1475         }
 1476         /*
 1477          * If we have exceeded by more than 1/5th then the algorithm below
 1478          * will not bring us back into range.  Dividing by two here forces
 1479          * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
 1480          */
 1481         if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
 1482                 ts->ts_runtime /= 2;
 1483                 ts->ts_slptime /= 2;
 1484                 return;
 1485         }
 1486         ts->ts_runtime = (ts->ts_runtime / 5) * 4;
 1487         ts->ts_slptime = (ts->ts_slptime / 5) * 4;
 1488 }
 1489 
 1490 /*
 1491  * Scale back the interactivity history when a child thread is created.  The
 1492  * history is inherited from the parent but the thread may behave totally
 1493  * differently.  For example, a shell spawning a compiler process.  We want
 1494  * to learn that the compiler is behaving badly very quickly.
 1495  */
 1496 static void
 1497 sched_interact_fork(struct thread *td)
 1498 {
 1499         int ratio;
 1500         int sum;
 1501 
 1502         sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
 1503         if (sum > SCHED_SLP_RUN_FORK) {
 1504                 ratio = sum / SCHED_SLP_RUN_FORK;
 1505                 td->td_sched->ts_runtime /= ratio;
 1506                 td->td_sched->ts_slptime /= ratio;
 1507         }
 1508 }
 1509 
 1510 /*
 1511  * Called from proc0_init() to setup the scheduler fields.
 1512  */
 1513 void
 1514 schedinit(void)
 1515 {
 1516 
 1517         /*
 1518          * Set up the scheduler specific parts of proc0.
 1519          */
 1520         proc0.p_sched = NULL; /* XXX */
 1521         thread0.td_sched = &td_sched0;
 1522         td_sched0.ts_ltick = ticks;
 1523         td_sched0.ts_ftick = ticks;
 1524         td_sched0.ts_slice = sched_slice;
 1525 }
 1526 
 1527 /*
 1528  * This is only somewhat accurate since given many processes of the same
 1529  * priority they will switch when their slices run out, which will be
 1530  * at most sched_slice stathz ticks.
 1531  */
 1532 int
 1533 sched_rr_interval(void)
 1534 {
 1535 
 1536         /* Convert sched_slice to hz */
 1537         return (hz/(realstathz/sched_slice));
 1538 }
 1539 
 1540 /*
 1541  * Update the percent cpu tracking information when it is requested or
 1542  * the total history exceeds the maximum.  We keep a sliding history of
 1543  * tick counts that slowly decays.  This is less precise than the 4BSD
 1544  * mechanism since it happens with less regular and frequent events.
 1545  */
 1546 static void
 1547 sched_pctcpu_update(struct td_sched *ts)
 1548 {
 1549 
 1550         if (ts->ts_ticks == 0)
 1551                 return;
 1552         if (ticks - (hz / 10) < ts->ts_ltick &&
 1553             SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
 1554                 return;
 1555         /*
 1556          * Adjust counters and watermark for pctcpu calc.
 1557          */
 1558         if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
 1559                 ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
 1560                             SCHED_TICK_TARG;
 1561         else
 1562                 ts->ts_ticks = 0;
 1563         ts->ts_ltick = ticks;
 1564         ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
 1565 }
 1566 
 1567 /*
 1568  * Adjust the priority of a thread.  Move it to the appropriate run-queue
 1569  * if necessary.  This is the back-end for several priority related
 1570  * functions.
 1571  */
 1572 static void
 1573 sched_thread_priority(struct thread *td, u_char prio)
 1574 {
 1575         struct td_sched *ts;
 1576         struct tdq *tdq;
 1577         int oldpri;
 1578 
 1579         KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
 1580             "prio:%d", td->td_priority, "new prio:%d", prio,
 1581             KTR_ATTR_LINKED, sched_tdname(curthread));
 1582         if (td != curthread && prio > td->td_priority) {
 1583                 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
 1584                     "lend prio", "prio:%d", td->td_priority, "new prio:%d",
 1585                     prio, KTR_ATTR_LINKED, sched_tdname(td));
 1586         } 
 1587         ts = td->td_sched;
 1588         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1589         if (td->td_priority == prio)
 1590                 return;
 1591         /*
 1592          * If the priority has been elevated due to priority
 1593          * propagation, we may have to move ourselves to a new
 1594          * queue.  This could be optimized to not re-add in some
 1595          * cases.
 1596          */
 1597         if (TD_ON_RUNQ(td) && prio < td->td_priority) {
 1598                 sched_rem(td);
 1599                 td->td_priority = prio;
 1600                 sched_add(td, SRQ_BORROWING);
 1601                 return;
 1602         }
 1603         /*
 1604          * If the thread is currently running we may have to adjust the lowpri
 1605          * information so other cpus are aware of our current priority.
 1606          */
 1607         if (TD_IS_RUNNING(td)) {
 1608                 tdq = TDQ_CPU(ts->ts_cpu);
 1609                 oldpri = td->td_priority;
 1610                 td->td_priority = prio;
 1611                 if (prio < tdq->tdq_lowpri)
 1612                         tdq->tdq_lowpri = prio;
 1613                 else if (tdq->tdq_lowpri == oldpri)
 1614                         tdq_setlowpri(tdq, td);
 1615                 return;
 1616         }
 1617         td->td_priority = prio;
 1618 }
 1619 
 1620 /*
 1621  * Update a thread's priority when it is lent another thread's
 1622  * priority.
 1623  */
 1624 void
 1625 sched_lend_prio(struct thread *td, u_char prio)
 1626 {
 1627 
 1628         td->td_flags |= TDF_BORROWING;
 1629         sched_thread_priority(td, prio);
 1630 }
 1631 
 1632 /*
 1633  * Restore a thread's priority when priority propagation is
 1634  * over.  The prio argument is the minimum priority the thread
 1635  * needs to have to satisfy other possible priority lending
 1636  * requests.  If the thread's regular priority is less
 1637  * important than prio, the thread will keep a priority boost
 1638  * of prio.
 1639  */
 1640 void
 1641 sched_unlend_prio(struct thread *td, u_char prio)
 1642 {
 1643         u_char base_pri;
 1644 
 1645         if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
 1646             td->td_base_pri <= PRI_MAX_TIMESHARE)
 1647                 base_pri = td->td_user_pri;
 1648         else
 1649                 base_pri = td->td_base_pri;
 1650         if (prio >= base_pri) {
 1651                 td->td_flags &= ~TDF_BORROWING;
 1652                 sched_thread_priority(td, base_pri);
 1653         } else
 1654                 sched_lend_prio(td, prio);
 1655 }
 1656 
 1657 /*
 1658  * Standard entry for setting the priority to an absolute value.
 1659  */
 1660 void
 1661 sched_prio(struct thread *td, u_char prio)
 1662 {
 1663         u_char oldprio;
 1664 
 1665         /* First, update the base priority. */
 1666         td->td_base_pri = prio;
 1667 
 1668         /*
 1669          * If the thread is borrowing another thread's priority, don't
 1670          * ever lower the priority.
 1671          */
 1672         if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
 1673                 return;
 1674 
 1675         /* Change the real priority. */
 1676         oldprio = td->td_priority;
 1677         sched_thread_priority(td, prio);
 1678 
 1679         /*
 1680          * If the thread is on a turnstile, then let the turnstile update
 1681          * its state.
 1682          */
 1683         if (TD_ON_LOCK(td) && oldprio != prio)
 1684                 turnstile_adjust(td, oldprio);
 1685 }
 1686 
 1687 /*
 1688  * Set the base user priority, does not effect current running priority.
 1689  */
 1690 void
 1691 sched_user_prio(struct thread *td, u_char prio)
 1692 {
 1693 
 1694         td->td_base_user_pri = prio;
 1695         if (td->td_lend_user_pri <= prio)
 1696                 return;
 1697         td->td_user_pri = prio;
 1698 }
 1699 
 1700 void
 1701 sched_lend_user_prio(struct thread *td, u_char prio)
 1702 {
 1703 
 1704         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1705         td->td_lend_user_pri = prio;
 1706         td->td_user_pri = min(prio, td->td_base_user_pri);
 1707         if (td->td_priority > td->td_user_pri)
 1708                 sched_prio(td, td->td_user_pri);
 1709         else if (td->td_priority != td->td_user_pri)
 1710                 td->td_flags |= TDF_NEEDRESCHED;
 1711 }
 1712 
 1713 /*
 1714  * Handle migration from sched_switch().  This happens only for
 1715  * cpu binding.
 1716  */
 1717 static struct mtx *
 1718 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
 1719 {
 1720         struct tdq *tdn;
 1721 
 1722         tdn = TDQ_CPU(td->td_sched->ts_cpu);
 1723 #ifdef SMP
 1724         tdq_load_rem(tdq, td);
 1725         /*
 1726          * Do the lock dance required to avoid LOR.  We grab an extra
 1727          * spinlock nesting to prevent preemption while we're
 1728          * not holding either run-queue lock.
 1729          */
 1730         spinlock_enter();
 1731         thread_lock_block(td);  /* This releases the lock on tdq. */
 1732 
 1733         /*
 1734          * Acquire both run-queue locks before placing the thread on the new
 1735          * run-queue to avoid deadlocks created by placing a thread with a
 1736          * blocked lock on the run-queue of a remote processor.  The deadlock
 1737          * occurs when a third processor attempts to lock the two queues in
 1738          * question while the target processor is spinning with its own
 1739          * run-queue lock held while waiting for the blocked lock to clear.
 1740          */
 1741         tdq_lock_pair(tdn, tdq);
 1742         tdq_add(tdn, td, flags);
 1743         tdq_notify(tdn, td);
 1744         TDQ_UNLOCK(tdn);
 1745         spinlock_exit();
 1746 #endif
 1747         return (TDQ_LOCKPTR(tdn));
 1748 }
 1749 
 1750 /*
 1751  * Variadic version of thread_lock_unblock() that does not assume td_lock
 1752  * is blocked.
 1753  */
 1754 static inline void
 1755 thread_unblock_switch(struct thread *td, struct mtx *mtx)
 1756 {
 1757         atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
 1758             (uintptr_t)mtx);
 1759 }
 1760 
 1761 /*
 1762  * Switch threads.  This function has to handle threads coming in while
 1763  * blocked for some reason, running, or idle.  It also must deal with
 1764  * migrating a thread from one queue to another as running threads may
 1765  * be assigned elsewhere via binding.
 1766  */
 1767 void
 1768 sched_switch(struct thread *td, struct thread *newtd, int flags)
 1769 {
 1770         struct tdq *tdq;
 1771         struct td_sched *ts;
 1772         struct mtx *mtx;
 1773         int srqflag;
 1774         int cpuid;
 1775 
 1776         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1777         KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
 1778 
 1779         cpuid = PCPU_GET(cpuid);
 1780         tdq = TDQ_CPU(cpuid);
 1781         ts = td->td_sched;
 1782         mtx = td->td_lock;
 1783         ts->ts_rltick = ticks;
 1784         td->td_lastcpu = td->td_oncpu;
 1785         td->td_oncpu = NOCPU;
 1786         if (!(flags & SW_PREEMPT))
 1787                 td->td_flags &= ~TDF_NEEDRESCHED;
 1788         td->td_owepreempt = 0;
 1789         tdq->tdq_switchcnt++;
 1790         /*
 1791          * The lock pointer in an idle thread should never change.  Reset it
 1792          * to CAN_RUN as well.
 1793          */
 1794         if (TD_IS_IDLETHREAD(td)) {
 1795                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1796                 TD_SET_CAN_RUN(td);
 1797         } else if (TD_IS_RUNNING(td)) {
 1798                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1799                 srqflag = (flags & SW_PREEMPT) ?
 1800                     SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
 1801                     SRQ_OURSELF|SRQ_YIELDING;
 1802 #ifdef SMP
 1803                 if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
 1804                         ts->ts_cpu = sched_pickcpu(td, 0);
 1805 #endif
 1806                 if (ts->ts_cpu == cpuid)
 1807                         tdq_runq_add(tdq, td, srqflag);
 1808                 else {
 1809                         KASSERT(THREAD_CAN_MIGRATE(td) ||
 1810                             (ts->ts_flags & TSF_BOUND) != 0,
 1811                             ("Thread %p shouldn't migrate", td));
 1812                         mtx = sched_switch_migrate(tdq, td, srqflag);
 1813                 }
 1814         } else {
 1815                 /* This thread must be going to sleep. */
 1816                 TDQ_LOCK(tdq);
 1817                 mtx = thread_lock_block(td);
 1818                 tdq_load_rem(tdq, td);
 1819         }
 1820         /*
 1821          * We enter here with the thread blocked and assigned to the
 1822          * appropriate cpu run-queue or sleep-queue and with the current
 1823          * thread-queue locked.
 1824          */
 1825         TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 1826         newtd = choosethread();
 1827         /*
 1828          * Call the MD code to switch contexts if necessary.
 1829          */
 1830         if (td != newtd) {
 1831 #ifdef  HWPMC_HOOKS
 1832                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1833                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
 1834 #endif
 1835                 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
 1836                 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
 1837 
 1838 #ifdef KDTRACE_HOOKS
 1839                 /*
 1840                  * If DTrace has set the active vtime enum to anything
 1841                  * other than INACTIVE (0), then it should have set the
 1842                  * function to call.
 1843                  */
 1844                 if (dtrace_vtime_active)
 1845                         (*dtrace_vtime_switch_func)(newtd);
 1846 #endif
 1847 
 1848                 cpu_switch(td, newtd, mtx);
 1849                 /*
 1850                  * We may return from cpu_switch on a different cpu.  However,
 1851                  * we always return with td_lock pointing to the current cpu's
 1852                  * run queue lock.
 1853                  */
 1854                 cpuid = PCPU_GET(cpuid);
 1855                 tdq = TDQ_CPU(cpuid);
 1856                 lock_profile_obtain_lock_success(
 1857                     &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
 1858 #ifdef  HWPMC_HOOKS
 1859                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1860                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
 1861 #endif
 1862         } else
 1863                 thread_unblock_switch(td, mtx);
 1864         /*
 1865          * Assert that all went well and return.
 1866          */
 1867         TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
 1868         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1869         td->td_oncpu = cpuid;
 1870 }
 1871 
 1872 /*
 1873  * Adjust thread priorities as a result of a nice request.
 1874  */
 1875 void
 1876 sched_nice(struct proc *p, int nice)
 1877 {
 1878         struct thread *td;
 1879 
 1880         PROC_LOCK_ASSERT(p, MA_OWNED);
 1881 
 1882         p->p_nice = nice;
 1883         FOREACH_THREAD_IN_PROC(p, td) {
 1884                 thread_lock(td);
 1885                 sched_priority(td);
 1886                 sched_prio(td, td->td_base_user_pri);
 1887                 thread_unlock(td);
 1888         }
 1889 }
 1890 
 1891 /*
 1892  * Record the sleep time for the interactivity scorer.
 1893  */
 1894 void
 1895 sched_sleep(struct thread *td, int prio)
 1896 {
 1897 
 1898         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1899 
 1900         td->td_slptick = ticks;
 1901         if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
 1902                 td->td_flags |= TDF_CANSWAP;
 1903         if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 1904                 return;
 1905         if (static_boost == 1 && prio)
 1906                 sched_prio(td, prio);
 1907         else if (static_boost && td->td_priority > static_boost)
 1908                 sched_prio(td, static_boost);
 1909 }
 1910 
 1911 /*
 1912  * Schedule a thread to resume execution and record how long it voluntarily
 1913  * slept.  We also update the pctcpu, interactivity, and priority.
 1914  */
 1915 void
 1916 sched_wakeup(struct thread *td)
 1917 {
 1918         struct td_sched *ts;
 1919         int slptick;
 1920 
 1921         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1922         ts = td->td_sched;
 1923         td->td_flags &= ~TDF_CANSWAP;
 1924         /*
 1925          * If we slept for more than a tick update our interactivity and
 1926          * priority.
 1927          */
 1928         slptick = td->td_slptick;
 1929         td->td_slptick = 0;
 1930         if (slptick && slptick != ticks) {
 1931                 u_int hzticks;
 1932 
 1933                 hzticks = (ticks - slptick) << SCHED_TICK_SHIFT;
 1934                 ts->ts_slptime += hzticks;
 1935                 sched_interact_update(td);
 1936                 sched_pctcpu_update(ts);
 1937         }
 1938         /* Reset the slice value after we sleep. */
 1939         ts->ts_slice = sched_slice;
 1940         sched_add(td, SRQ_BORING);
 1941 }
 1942 
 1943 /*
 1944  * Penalize the parent for creating a new child and initialize the child's
 1945  * priority.
 1946  */
 1947 void
 1948 sched_fork(struct thread *td, struct thread *child)
 1949 {
 1950         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1951         sched_fork_thread(td, child);
 1952         /*
 1953          * Penalize the parent and child for forking.
 1954          */
 1955         sched_interact_fork(child);
 1956         sched_priority(child);
 1957         td->td_sched->ts_runtime += tickincr;
 1958         sched_interact_update(td);
 1959         sched_priority(td);
 1960 }
 1961 
 1962 /*
 1963  * Fork a new thread, may be within the same process.
 1964  */
 1965 void
 1966 sched_fork_thread(struct thread *td, struct thread *child)
 1967 {
 1968         struct td_sched *ts;
 1969         struct td_sched *ts2;
 1970 
 1971         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1972         /*
 1973          * Initialize child.
 1974          */
 1975         ts = td->td_sched;
 1976         ts2 = child->td_sched;
 1977         child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
 1978         child->td_cpuset = cpuset_ref(td->td_cpuset);
 1979         ts2->ts_cpu = ts->ts_cpu;
 1980         ts2->ts_flags = 0;
 1981         /*
 1982          * Grab our parents cpu estimation information.
 1983          */
 1984         ts2->ts_ticks = ts->ts_ticks;
 1985         ts2->ts_ltick = ts->ts_ltick;
 1986         ts2->ts_incrtick = ts->ts_incrtick;
 1987         ts2->ts_ftick = ts->ts_ftick;
 1988         /*
 1989          * Do not inherit any borrowed priority from the parent.
 1990          */
 1991         child->td_priority = child->td_base_pri;
 1992         /*
 1993          * And update interactivity score.
 1994          */
 1995         ts2->ts_slptime = ts->ts_slptime;
 1996         ts2->ts_runtime = ts->ts_runtime;
 1997         ts2->ts_slice = 1;      /* Attempt to quickly learn interactivity. */
 1998 #ifdef KTR
 1999         bzero(ts2->ts_name, sizeof(ts2->ts_name));
 2000 #endif
 2001 }
 2002 
 2003 /*
 2004  * Adjust the priority class of a thread.
 2005  */
 2006 void
 2007 sched_class(struct thread *td, int class)
 2008 {
 2009 
 2010         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2011         if (td->td_pri_class == class)
 2012                 return;
 2013         td->td_pri_class = class;
 2014 }
 2015 
 2016 /*
 2017  * Return some of the child's priority and interactivity to the parent.
 2018  */
 2019 void
 2020 sched_exit(struct proc *p, struct thread *child)
 2021 {
 2022         struct thread *td;
 2023 
 2024         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
 2025             "prio:%d", child->td_priority);
 2026         PROC_LOCK_ASSERT(p, MA_OWNED);
 2027         td = FIRST_THREAD_IN_PROC(p);
 2028         sched_exit_thread(td, child);
 2029 }
 2030 
 2031 /*
 2032  * Penalize another thread for the time spent on this one.  This helps to
 2033  * worsen the priority and interactivity of processes which schedule batch
 2034  * jobs such as make.  This has little effect on the make process itself but
 2035  * causes new processes spawned by it to receive worse scores immediately.
 2036  */
 2037 void
 2038 sched_exit_thread(struct thread *td, struct thread *child)
 2039 {
 2040 
 2041         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
 2042             "prio:%d", child->td_priority);
 2043         /*
 2044          * Give the child's runtime to the parent without returning the
 2045          * sleep time as a penalty to the parent.  This causes shells that
 2046          * launch expensive things to mark their children as expensive.
 2047          */
 2048         thread_lock(td);
 2049         td->td_sched->ts_runtime += child->td_sched->ts_runtime;
 2050         sched_interact_update(td);
 2051         sched_priority(td);
 2052         thread_unlock(td);
 2053 }
 2054 
 2055 void
 2056 sched_preempt(struct thread *td)
 2057 {
 2058         struct tdq *tdq;
 2059 
 2060         thread_lock(td);
 2061         tdq = TDQ_SELF();
 2062         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2063         tdq->tdq_ipipending = 0;
 2064         if (td->td_priority > tdq->tdq_lowpri) {
 2065                 int flags;
 2066 
 2067                 flags = SW_INVOL | SW_PREEMPT;
 2068                 if (td->td_critnest > 1)
 2069                         td->td_owepreempt = 1;
 2070                 else if (TD_IS_IDLETHREAD(td))
 2071                         mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
 2072                 else
 2073                         mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
 2074         }
 2075         thread_unlock(td);
 2076 }
 2077 
 2078 /*
 2079  * Fix priorities on return to user-space.  Priorities may be elevated due
 2080  * to static priorities in msleep() or similar.
 2081  */
 2082 void
 2083 sched_userret(struct thread *td)
 2084 {
 2085         /*
 2086          * XXX we cheat slightly on the locking here to avoid locking in  
 2087          * the usual case.  Setting td_priority here is essentially an
 2088          * incomplete workaround for not setting it properly elsewhere.
 2089          * Now that some interrupt handlers are threads, not setting it
 2090          * properly elsewhere can clobber it in the window between setting
 2091          * it here and returning to user mode, so don't waste time setting
 2092          * it perfectly here.
 2093          */
 2094         KASSERT((td->td_flags & TDF_BORROWING) == 0,
 2095             ("thread with borrowed priority returning to userland"));
 2096         if (td->td_priority != td->td_user_pri) {
 2097                 thread_lock(td);
 2098                 td->td_priority = td->td_user_pri;
 2099                 td->td_base_pri = td->td_user_pri;
 2100                 tdq_setlowpri(TDQ_SELF(), td);
 2101                 thread_unlock(td);
 2102         }
 2103 }
 2104 
 2105 /*
 2106  * Handle a stathz tick.  This is really only relevant for timeshare
 2107  * threads.
 2108  */
 2109 void
 2110 sched_clock(struct thread *td)
 2111 {
 2112         struct tdq *tdq;
 2113         struct td_sched *ts;
 2114 
 2115         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2116         tdq = TDQ_SELF();
 2117 #ifdef SMP
 2118         /*
 2119          * We run the long term load balancer infrequently on the first cpu.
 2120          */
 2121         if (balance_tdq == tdq) {
 2122                 if (balance_ticks && --balance_ticks == 0)
 2123                         sched_balance();
 2124         }
 2125 #endif
 2126         /*
 2127          * Save the old switch count so we have a record of the last ticks
 2128          * activity.   Initialize the new switch count based on our load.
 2129          * If there is some activity seed it to reflect that.
 2130          */
 2131         tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
 2132         tdq->tdq_switchcnt = tdq->tdq_load;
 2133         /*
 2134          * Advance the insert index once for each tick to ensure that all
 2135          * threads get a chance to run.
 2136          */
 2137         if (tdq->tdq_idx == tdq->tdq_ridx) {
 2138                 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
 2139                 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
 2140                         tdq->tdq_ridx = tdq->tdq_idx;
 2141         }
 2142         ts = td->td_sched;
 2143         if (td->td_pri_class & PRI_FIFO_BIT)
 2144                 return;
 2145         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
 2146                 /*
 2147                  * We used a tick; charge it to the thread so
 2148                  * that we can compute our interactivity.
 2149                  */
 2150                 td->td_sched->ts_runtime += tickincr;
 2151                 sched_interact_update(td);
 2152                 sched_priority(td);
 2153         }
 2154         /*
 2155          * We used up one time slice.
 2156          */
 2157         if (--ts->ts_slice > 0)
 2158                 return;
 2159         /*
 2160          * We're out of time, force a requeue at userret().
 2161          */
 2162         ts->ts_slice = sched_slice;
 2163         td->td_flags |= TDF_NEEDRESCHED;
 2164 }
 2165 
 2166 /*
 2167  * Called once per hz tick.  Used for cpu utilization information.  This
 2168  * is easier than trying to scale based on stathz.
 2169  */
 2170 void
 2171 sched_tick(int cnt)
 2172 {
 2173         struct td_sched *ts;
 2174 
 2175         ts = curthread->td_sched;
 2176         /*
 2177          * Ticks is updated asynchronously on a single cpu.  Check here to
 2178          * avoid incrementing ts_ticks multiple times in a single tick.
 2179          */
 2180         if (ts->ts_incrtick == ticks)
 2181                 return;
 2182         /* Adjust ticks for pctcpu */
 2183         ts->ts_ticks += cnt << SCHED_TICK_SHIFT;
 2184         ts->ts_ltick = ticks;
 2185         ts->ts_incrtick = ticks;
 2186         /*
 2187          * Update if we've exceeded our desired tick threshold by over one
 2188          * second.
 2189          */
 2190         if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
 2191                 sched_pctcpu_update(ts);
 2192 }
 2193 
 2194 /*
 2195  * Return whether the current CPU has runnable tasks.  Used for in-kernel
 2196  * cooperative idle threads.
 2197  */
 2198 int
 2199 sched_runnable(void)
 2200 {
 2201         struct tdq *tdq;
 2202         int load;
 2203 
 2204         load = 1;
 2205 
 2206         tdq = TDQ_SELF();
 2207         if ((curthread->td_flags & TDF_IDLETD) != 0) {
 2208                 if (tdq->tdq_load > 0)
 2209                         goto out;
 2210         } else
 2211                 if (tdq->tdq_load - 1 > 0)
 2212                         goto out;
 2213         load = 0;
 2214 out:
 2215         return (load);
 2216 }
 2217 
 2218 /*
 2219  * Choose the highest priority thread to run.  The thread is removed from
 2220  * the run-queue while running however the load remains.  For SMP we set
 2221  * the tdq in the global idle bitmask if it idles here.
 2222  */
 2223 struct thread *
 2224 sched_choose(void)
 2225 {
 2226         struct thread *td;
 2227         struct tdq *tdq;
 2228 
 2229         tdq = TDQ_SELF();
 2230         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2231         td = tdq_choose(tdq);
 2232         if (td) {
 2233                 td->td_sched->ts_ltick = ticks;
 2234                 tdq_runq_rem(tdq, td);
 2235                 tdq->tdq_lowpri = td->td_priority;
 2236                 return (td);
 2237         }
 2238         tdq->tdq_lowpri = PRI_MAX_IDLE;
 2239         return (PCPU_GET(idlethread));
 2240 }
 2241 
 2242 /*
 2243  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
 2244  * we always request it once we exit a critical section.
 2245  */
 2246 static inline void
 2247 sched_setpreempt(struct thread *td)
 2248 {
 2249         struct thread *ctd;
 2250         int cpri;
 2251         int pri;
 2252 
 2253         THREAD_LOCK_ASSERT(curthread, MA_OWNED);
 2254 
 2255         ctd = curthread;
 2256         pri = td->td_priority;
 2257         cpri = ctd->td_priority;
 2258         if (pri < cpri)
 2259                 ctd->td_flags |= TDF_NEEDRESCHED;
 2260         if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
 2261                 return;
 2262         if (!sched_shouldpreempt(pri, cpri, 0))
 2263                 return;
 2264         ctd->td_owepreempt = 1;
 2265 }
 2266 
 2267 /*
 2268  * Add a thread to a thread queue.  Select the appropriate runq and add the
 2269  * thread to it.  This is the internal function called when the tdq is
 2270  * predetermined.
 2271  */
 2272 void
 2273 tdq_add(struct tdq *tdq, struct thread *td, int flags)
 2274 {
 2275 
 2276         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2277         KASSERT((td->td_inhibitors == 0),
 2278             ("sched_add: trying to run inhibited thread"));
 2279         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 2280             ("sched_add: bad thread state"));
 2281         KASSERT(td->td_flags & TDF_INMEM,
 2282             ("sched_add: thread swapped out"));
 2283 
 2284         if (td->td_priority < tdq->tdq_lowpri)
 2285                 tdq->tdq_lowpri = td->td_priority;
 2286         tdq_runq_add(tdq, td, flags);
 2287         tdq_load_add(tdq, td);
 2288 }
 2289 
 2290 /*
 2291  * Select the target thread queue and add a thread to it.  Request
 2292  * preemption or IPI a remote processor if required.
 2293  */
 2294 void
 2295 sched_add(struct thread *td, int flags)
 2296 {
 2297         struct tdq *tdq;
 2298 #ifdef SMP
 2299         int cpu;
 2300 #endif
 2301 
 2302         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 2303             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 2304             sched_tdname(curthread));
 2305         KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 2306             KTR_ATTR_LINKED, sched_tdname(td));
 2307         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2308         /*
 2309          * Recalculate the priority before we select the target cpu or
 2310          * run-queue.
 2311          */
 2312         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
 2313                 sched_priority(td);
 2314 #ifdef SMP
 2315         /*
 2316          * Pick the destination cpu and if it isn't ours transfer to the
 2317          * target cpu.
 2318          */
 2319         cpu = sched_pickcpu(td, flags);
 2320         tdq = sched_setcpu(td, cpu, flags);
 2321         tdq_add(tdq, td, flags);
 2322         if (cpu != PCPU_GET(cpuid)) {
 2323                 tdq_notify(tdq, td);
 2324                 return;
 2325         }
 2326 #else
 2327         tdq = TDQ_SELF();
 2328         TDQ_LOCK(tdq);
 2329         /*
 2330          * Now that the thread is moving to the run-queue, set the lock
 2331          * to the scheduler's lock.
 2332          */
 2333         thread_lock_set(td, TDQ_LOCKPTR(tdq));
 2334         tdq_add(tdq, td, flags);
 2335 #endif
 2336         if (!(flags & SRQ_YIELDING))
 2337                 sched_setpreempt(td);
 2338 }
 2339 
 2340 /*
 2341  * Remove a thread from a run-queue without running it.  This is used
 2342  * when we're stealing a thread from a remote queue.  Otherwise all threads
 2343  * exit by calling sched_exit_thread() and sched_throw() themselves.
 2344  */
 2345 void
 2346 sched_rem(struct thread *td)
 2347 {
 2348         struct tdq *tdq;
 2349 
 2350         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
 2351             "prio:%d", td->td_priority);
 2352         tdq = TDQ_CPU(td->td_sched->ts_cpu);
 2353         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2354         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2355         KASSERT(TD_ON_RUNQ(td),
 2356             ("sched_rem: thread not on run queue"));
 2357         tdq_runq_rem(tdq, td);
 2358         tdq_load_rem(tdq, td);
 2359         TD_SET_CAN_RUN(td);
 2360         if (td->td_priority == tdq->tdq_lowpri)
 2361                 tdq_setlowpri(tdq, NULL);
 2362 }
 2363 
 2364 /*
 2365  * Fetch cpu utilization information.  Updates on demand.
 2366  */
 2367 fixpt_t
 2368 sched_pctcpu(struct thread *td)
 2369 {
 2370         fixpt_t pctcpu;
 2371         struct td_sched *ts;
 2372 
 2373         pctcpu = 0;
 2374         ts = td->td_sched;
 2375         if (ts == NULL)
 2376                 return (0);
 2377 
 2378         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2379         if (ts->ts_ticks) {
 2380                 int rtick;
 2381 
 2382                 sched_pctcpu_update(ts);
 2383                 /* How many rtick per second ? */
 2384                 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
 2385                 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
 2386         }
 2387 
 2388         return (pctcpu);
 2389 }
 2390 
 2391 /*
 2392  * Enforce affinity settings for a thread.  Called after adjustments to
 2393  * cpumask.
 2394  */
 2395 void
 2396 sched_affinity(struct thread *td)
 2397 {
 2398 #ifdef SMP
 2399         struct td_sched *ts;
 2400 
 2401         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2402         ts = td->td_sched;
 2403         if (THREAD_CAN_SCHED(td, ts->ts_cpu))
 2404                 return;
 2405         if (TD_ON_RUNQ(td)) {
 2406                 sched_rem(td);
 2407                 sched_add(td, SRQ_BORING);
 2408                 return;
 2409         }
 2410         if (!TD_IS_RUNNING(td))
 2411                 return;
 2412         /*
 2413          * Force a switch before returning to userspace.  If the
 2414          * target thread is not running locally send an ipi to force
 2415          * the issue.
 2416          */
 2417         td->td_flags |= TDF_NEEDRESCHED;
 2418         if (td != curthread)
 2419                 ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
 2420 #endif
 2421 }
 2422 
 2423 /*
 2424  * Bind a thread to a target cpu.
 2425  */
 2426 void
 2427 sched_bind(struct thread *td, int cpu)
 2428 {
 2429         struct td_sched *ts;
 2430 
 2431         THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
 2432         KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
 2433         ts = td->td_sched;
 2434         if (ts->ts_flags & TSF_BOUND)
 2435                 sched_unbind(td);
 2436         KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
 2437         ts->ts_flags |= TSF_BOUND;
 2438         sched_pin();
 2439         if (PCPU_GET(cpuid) == cpu)
 2440                 return;
 2441         ts->ts_cpu = cpu;
 2442         /* When we return from mi_switch we'll be on the correct cpu. */
 2443         mi_switch(SW_VOL, NULL);
 2444 }
 2445 
 2446 /*
 2447  * Release a bound thread.
 2448  */
 2449 void
 2450 sched_unbind(struct thread *td)
 2451 {
 2452         struct td_sched *ts;
 2453 
 2454         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2455         KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
 2456         ts = td->td_sched;
 2457         if ((ts->ts_flags & TSF_BOUND) == 0)
 2458                 return;
 2459         ts->ts_flags &= ~TSF_BOUND;
 2460         sched_unpin();
 2461 }
 2462 
 2463 int
 2464 sched_is_bound(struct thread *td)
 2465 {
 2466         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2467         return (td->td_sched->ts_flags & TSF_BOUND);
 2468 }
 2469 
 2470 /*
 2471  * Basic yield call.
 2472  */
 2473 void
 2474 sched_relinquish(struct thread *td)
 2475 {
 2476         thread_lock(td);
 2477         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
 2478         thread_unlock(td);
 2479 }
 2480 
 2481 /*
 2482  * Return the total system load.
 2483  */
 2484 int
 2485 sched_load(void)
 2486 {
 2487 #ifdef SMP
 2488         int total;
 2489         int i;
 2490 
 2491         total = 0;
 2492         CPU_FOREACH(i)
 2493                 total += TDQ_CPU(i)->tdq_sysload;
 2494         return (total);
 2495 #else
 2496         return (TDQ_SELF()->tdq_sysload);
 2497 #endif
 2498 }
 2499 
 2500 int
 2501 sched_sizeof_proc(void)
 2502 {
 2503         return (sizeof(struct proc));
 2504 }
 2505 
 2506 int
 2507 sched_sizeof_thread(void)
 2508 {
 2509         return (sizeof(struct thread) + sizeof(struct td_sched));
 2510 }
 2511 
 2512 #ifdef SMP
 2513 #define TDQ_IDLESPIN(tdq)                                               \
 2514     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
 2515 #else
 2516 #define TDQ_IDLESPIN(tdq)       1
 2517 #endif
 2518 
 2519 /*
 2520  * The actual idle process.
 2521  */
 2522 void
 2523 sched_idletd(void *dummy)
 2524 {
 2525         struct thread *td;
 2526         struct tdq *tdq;
 2527         int switchcnt;
 2528         int i;
 2529 
 2530         mtx_assert(&Giant, MA_NOTOWNED);
 2531         td = curthread;
 2532         tdq = TDQ_SELF();
 2533         for (;;) {
 2534 #ifdef SMP
 2535                 if (tdq_idled(tdq) == 0)
 2536                         continue;
 2537 #endif
 2538                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2539                 /*
 2540                  * If we're switching very frequently, spin while checking
 2541                  * for load rather than entering a low power state that 
 2542                  * may require an IPI.  However, don't do any busy
 2543                  * loops while on SMT machines as this simply steals
 2544                  * cycles from cores doing useful work.
 2545                  */
 2546                 if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
 2547                         for (i = 0; i < sched_idlespins; i++) {
 2548                                 if (tdq->tdq_load)
 2549                                         break;
 2550                                 cpu_spinwait();
 2551                         }
 2552                 }
 2553                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2554                 if (tdq->tdq_load == 0) {
 2555                         tdq->tdq_cpu_idle = 1;
 2556                         if (tdq->tdq_load == 0) {
 2557                                 cpu_idle(switchcnt > sched_idlespinthresh * 4);
 2558                                 tdq->tdq_switchcnt++;
 2559                         }
 2560                         tdq->tdq_cpu_idle = 0;
 2561                 }
 2562                 if (tdq->tdq_load) {
 2563                         thread_lock(td);
 2564                         mi_switch(SW_VOL | SWT_IDLE, NULL);
 2565                         thread_unlock(td);
 2566                 }
 2567         }
 2568 }
 2569 
 2570 /*
 2571  * A CPU is entering for the first time or a thread is exiting.
 2572  */
 2573 void
 2574 sched_throw(struct thread *td)
 2575 {
 2576         struct thread *newtd;
 2577         struct tdq *tdq;
 2578 
 2579         tdq = TDQ_SELF();
 2580         if (td == NULL) {
 2581                 /* Correct spinlock nesting and acquire the correct lock. */
 2582                 TDQ_LOCK(tdq);
 2583                 spinlock_exit();
 2584         } else {
 2585                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2586                 tdq_load_rem(tdq, td);
 2587                 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
 2588         }
 2589         KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
 2590         newtd = choosethread();
 2591         TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
 2592         PCPU_SET(switchtime, cpu_ticks());
 2593         PCPU_SET(switchticks, ticks);
 2594         cpu_throw(td, newtd);           /* doesn't return */
 2595 }
 2596 
 2597 /*
 2598  * This is called from fork_exit().  Just acquire the correct locks and
 2599  * let fork do the rest of the work.
 2600  */
 2601 void
 2602 sched_fork_exit(struct thread *td)
 2603 {
 2604         struct td_sched *ts;
 2605         struct tdq *tdq;
 2606         int cpuid;
 2607 
 2608         /*
 2609          * Finish setting up thread glue so that it begins execution in a
 2610          * non-nested critical section with the scheduler lock held.
 2611          */
 2612         cpuid = PCPU_GET(cpuid);
 2613         tdq = TDQ_CPU(cpuid);
 2614         ts = td->td_sched;
 2615         if (TD_IS_IDLETHREAD(td))
 2616                 td->td_lock = TDQ_LOCKPTR(tdq);
 2617         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2618         td->td_oncpu = cpuid;
 2619         TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 2620         lock_profile_obtain_lock_success(
 2621             &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
 2622 }
 2623 
 2624 /*
 2625  * Create on first use to catch odd startup conditons.
 2626  */
 2627 char *
 2628 sched_tdname(struct thread *td)
 2629 {
 2630 #ifdef KTR
 2631         struct td_sched *ts;
 2632 
 2633         ts = td->td_sched;
 2634         if (ts->ts_name[0] == '\0')
 2635                 snprintf(ts->ts_name, sizeof(ts->ts_name),
 2636                     "%s tid %d", td->td_name, td->td_tid);
 2637         return (ts->ts_name);
 2638 #else
 2639         return (td->td_name);
 2640 #endif
 2641 }
 2642 
 2643 #ifdef SMP
 2644 
 2645 /*
 2646  * Build the CPU topology dump string. Is recursively called to collect
 2647  * the topology tree.
 2648  */
 2649 static int
 2650 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
 2651     int indent)
 2652 {
 2653         char cpusetbuf[CPUSETBUFSIZ];
 2654         int i, first;
 2655 
 2656         sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
 2657             "", 1 + indent / 2, cg->cg_level);
 2658         sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
 2659             cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
 2660         first = TRUE;
 2661         for (i = 0; i < MAXCPU; i++) {
 2662                 if (CPU_ISSET(i, &cg->cg_mask)) {
 2663                         if (!first)
 2664                                 sbuf_printf(sb, ", ");
 2665                         else
 2666                                 first = FALSE;
 2667                         sbuf_printf(sb, "%d", i);
 2668                 }
 2669         }
 2670         sbuf_printf(sb, "</cpu>\n");
 2671 
 2672         if (cg->cg_flags != 0) {
 2673                 sbuf_printf(sb, "%*s <flags>", indent, "");
 2674                 if ((cg->cg_flags & CG_FLAG_HTT) != 0)
 2675                         sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
 2676                 if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
 2677                         sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
 2678                 if ((cg->cg_flags & CG_FLAG_SMT) != 0)
 2679                         sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
 2680                 sbuf_printf(sb, "</flags>\n");
 2681         }
 2682 
 2683         if (cg->cg_children > 0) {
 2684                 sbuf_printf(sb, "%*s <children>\n", indent, "");
 2685                 for (i = 0; i < cg->cg_children; i++)
 2686                         sysctl_kern_sched_topology_spec_internal(sb, 
 2687                             &cg->cg_child[i], indent+2);
 2688                 sbuf_printf(sb, "%*s </children>\n", indent, "");
 2689         }
 2690         sbuf_printf(sb, "%*s</group>\n", indent, "");
 2691         return (0);
 2692 }
 2693 
 2694 /*
 2695  * Sysctl handler for retrieving topology dump. It's a wrapper for
 2696  * the recursive sysctl_kern_smp_topology_spec_internal().
 2697  */
 2698 static int
 2699 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
 2700 {
 2701         struct sbuf *topo;
 2702         int err;
 2703 
 2704         KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
 2705 
 2706         topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
 2707         if (topo == NULL)
 2708                 return (ENOMEM);
 2709 
 2710         sbuf_printf(topo, "<groups>\n");
 2711         err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
 2712         sbuf_printf(topo, "</groups>\n");
 2713 
 2714         if (err == 0) {
 2715                 sbuf_finish(topo);
 2716                 err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
 2717         }
 2718         sbuf_delete(topo);
 2719         return (err);
 2720 }
 2721 
 2722 #endif
 2723 
 2724 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
 2725 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
 2726     "Scheduler name");
 2727 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
 2728     "Slice size for timeshare threads");
 2729 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
 2730      "Interactivity score threshold");
 2731 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
 2732      0,"Min priority for preemption, lower priorities have greater precedence");
 2733 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
 2734      0,"Controls whether static kernel priorities are assigned to sleeping threads.");
 2735 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins,
 2736      0,"Number of times idle will spin waiting for new work.");
 2737 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh,
 2738      0,"Threshold before we will permit idle spinning.");
 2739 #ifdef SMP
 2740 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
 2741     "Number of hz ticks to keep thread affinity for");
 2742 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
 2743     "Enables the long-term load balancer");
 2744 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
 2745     &balance_interval, 0,
 2746     "Average frequency in stathz ticks to run the long-term balancer");
 2747 SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0,
 2748     "Steals work from another hyper-threaded core on idle");
 2749 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
 2750     "Attempts to steal work from other cores before idling");
 2751 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
 2752     "Minimum load on remote cpu before we'll steal");
 2753 
 2754 /* Retrieve SMP topology */
 2755 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
 2756     CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A", 
 2757     "XML dump of detected CPU topology");
 2758 
 2759 #endif
 2760 
 2761 /* ps compat.  All cpu percentages from ULE are weighted. */
 2762 static int ccpu = 0;
 2763 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");

Cache object: 63feb88782eb660ade248eeee533e881


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.