The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sched_ule.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  */
   26 
   27 /*
   28  * This file implements the ULE scheduler.  ULE supports independent CPU
   29  * run queues and fine grain locking.  It has superior interactive
   30  * performance under load even on uni-processor systems.
   31  *
   32  * etymology:
   33  *   ULE is the last three letters in schedule.  It owes its name to a
   34  * generic user created for a scheduling system by Paul Mikesell at
   35  * Isilon Systems and a general lack of creativity on the part of the author.
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD: releng/9.1/sys/kern/sched_ule.c 236547 2012-06-04 07:16:12Z mav $");
   40 
   41 #include "opt_hwpmc_hooks.h"
   42 #include "opt_kdtrace.h"
   43 #include "opt_sched.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/systm.h>
   47 #include <sys/kdb.h>
   48 #include <sys/kernel.h>
   49 #include <sys/ktr.h>
   50 #include <sys/lock.h>
   51 #include <sys/mutex.h>
   52 #include <sys/proc.h>
   53 #include <sys/resource.h>
   54 #include <sys/resourcevar.h>
   55 #include <sys/sched.h>
   56 #include <sys/sdt.h>
   57 #include <sys/smp.h>
   58 #include <sys/sx.h>
   59 #include <sys/sysctl.h>
   60 #include <sys/sysproto.h>
   61 #include <sys/turnstile.h>
   62 #include <sys/umtx.h>
   63 #include <sys/vmmeter.h>
   64 #include <sys/cpuset.h>
   65 #include <sys/sbuf.h>
   66 
   67 #ifdef HWPMC_HOOKS
   68 #include <sys/pmckern.h>
   69 #endif
   70 
   71 #ifdef KDTRACE_HOOKS
   72 #include <sys/dtrace_bsd.h>
   73 int                             dtrace_vtime_active;
   74 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
   75 #endif
   76 
   77 #include <machine/cpu.h>
   78 #include <machine/smp.h>
   79 
   80 #if defined(__powerpc__) && defined(E500)
   81 #error "This architecture is not currently compatible with ULE"
   82 #endif
   83 
   84 #define KTR_ULE 0
   85 
   86 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
   87 #define TDQ_NAME_LEN    (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
   88 #define TDQ_LOADNAME_LEN        (sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
   89 
   90 /*
   91  * Thread scheduler specific section.  All fields are protected
   92  * by the thread lock.
   93  */
   94 struct td_sched {       
   95         struct runq     *ts_runq;       /* Run-queue we're queued on. */
   96         short           ts_flags;       /* TSF_* flags. */
   97         u_char          ts_cpu;         /* CPU that we have affinity for. */
   98         int             ts_rltick;      /* Real last tick, for affinity. */
   99         int             ts_slice;       /* Ticks of slice remaining. */
  100         u_int           ts_slptime;     /* Number of ticks we vol. slept */
  101         u_int           ts_runtime;     /* Number of ticks we were running */
  102         int             ts_ltick;       /* Last tick that we were running on */
  103         int             ts_ftick;       /* First tick that we were running on */
  104         int             ts_ticks;       /* Tick count */
  105 #ifdef KTR
  106         char            ts_name[TS_NAME_LEN];
  107 #endif
  108 };
  109 /* flags kept in ts_flags */
  110 #define TSF_BOUND       0x0001          /* Thread can not migrate. */
  111 #define TSF_XFERABLE    0x0002          /* Thread was added as transferable. */
  112 
  113 static struct td_sched td_sched0;
  114 
  115 #define THREAD_CAN_MIGRATE(td)  ((td)->td_pinned == 0)
  116 #define THREAD_CAN_SCHED(td, cpu)       \
  117     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
  118 
  119 /*
  120  * Priority ranges used for interactive and non-interactive timeshare
  121  * threads.  The timeshare priorities are split up into four ranges.
  122  * The first range handles interactive threads.  The last three ranges
  123  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
  124  * ranges supporting nice values.
  125  */
  126 #define PRI_TIMESHARE_RANGE     (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
  127 #define PRI_INTERACT_RANGE      ((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
  128 #define PRI_BATCH_RANGE         (PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
  129 
  130 #define PRI_MIN_INTERACT        PRI_MIN_TIMESHARE
  131 #define PRI_MAX_INTERACT        (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
  132 #define PRI_MIN_BATCH           (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
  133 #define PRI_MAX_BATCH           PRI_MAX_TIMESHARE
  134 
  135 /*
  136  * Cpu percentage computation macros and defines.
  137  *
  138  * SCHED_TICK_SECS:     Number of seconds to average the cpu usage across.
  139  * SCHED_TICK_TARG:     Number of hz ticks to average the cpu usage across.
  140  * SCHED_TICK_MAX:      Maximum number of ticks before scaling back.
  141  * SCHED_TICK_SHIFT:    Shift factor to avoid rounding away results.
  142  * SCHED_TICK_HZ:       Compute the number of hz ticks for a given ticks count.
  143  * SCHED_TICK_TOTAL:    Gives the amount of time we've been recording ticks.
  144  */
  145 #define SCHED_TICK_SECS         10
  146 #define SCHED_TICK_TARG         (hz * SCHED_TICK_SECS)
  147 #define SCHED_TICK_MAX          (SCHED_TICK_TARG + hz)
  148 #define SCHED_TICK_SHIFT        10
  149 #define SCHED_TICK_HZ(ts)       ((ts)->ts_ticks >> SCHED_TICK_SHIFT)
  150 #define SCHED_TICK_TOTAL(ts)    (max((ts)->ts_ltick - (ts)->ts_ftick, hz))
  151 
  152 /*
  153  * These macros determine priorities for non-interactive threads.  They are
  154  * assigned a priority based on their recent cpu utilization as expressed
  155  * by the ratio of ticks to the tick total.  NHALF priorities at the start
  156  * and end of the MIN to MAX timeshare range are only reachable with negative
  157  * or positive nice respectively.
  158  *
  159  * PRI_RANGE:   Priority range for utilization dependent priorities.
  160  * PRI_NRESV:   Number of nice values.
  161  * PRI_TICKS:   Compute a priority in PRI_RANGE from the ticks count and total.
  162  * PRI_NICE:    Determines the part of the priority inherited from nice.
  163  */
  164 #define SCHED_PRI_NRESV         (PRIO_MAX - PRIO_MIN)
  165 #define SCHED_PRI_NHALF         (SCHED_PRI_NRESV / 2)
  166 #define SCHED_PRI_MIN           (PRI_MIN_BATCH + SCHED_PRI_NHALF)
  167 #define SCHED_PRI_MAX           (PRI_MAX_BATCH - SCHED_PRI_NHALF)
  168 #define SCHED_PRI_RANGE         (SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
  169 #define SCHED_PRI_TICKS(ts)                                             \
  170     (SCHED_TICK_HZ((ts)) /                                              \
  171     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
  172 #define SCHED_PRI_NICE(nice)    (nice)
  173 
  174 /*
  175  * These determine the interactivity of a process.  Interactivity differs from
  176  * cpu utilization in that it expresses the voluntary time slept vs time ran
  177  * while cpu utilization includes all time not running.  This more accurately
  178  * models the intent of the thread.
  179  *
  180  * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
  181  *              before throttling back.
  182  * SLP_RUN_FORK:        Maximum slp+run time to inherit at fork time.
  183  * INTERACT_MAX:        Maximum interactivity value.  Smaller is better.
  184  * INTERACT_THRESH:     Threshold for placement on the current runq.
  185  */
  186 #define SCHED_SLP_RUN_MAX       ((hz * 5) << SCHED_TICK_SHIFT)
  187 #define SCHED_SLP_RUN_FORK      ((hz / 2) << SCHED_TICK_SHIFT)
  188 #define SCHED_INTERACT_MAX      (100)
  189 #define SCHED_INTERACT_HALF     (SCHED_INTERACT_MAX / 2)
  190 #define SCHED_INTERACT_THRESH   (30)
  191 
  192 /*
  193  * tickincr:            Converts a stathz tick into a hz domain scaled by
  194  *                      the shift factor.  Without the shift the error rate
  195  *                      due to rounding would be unacceptably high.
  196  * realstathz:          stathz is sometimes 0 and run off of hz.
  197  * sched_slice:         Runtime of each thread before rescheduling.
  198  * preempt_thresh:      Priority threshold for preemption and remote IPIs.
  199  */
  200 static int sched_interact = SCHED_INTERACT_THRESH;
  201 static int realstathz;
  202 static int tickincr;
  203 static int sched_slice = 1;
  204 #ifdef PREEMPTION
  205 #ifdef FULL_PREEMPTION
  206 static int preempt_thresh = PRI_MAX_IDLE;
  207 #else
  208 static int preempt_thresh = PRI_MIN_KERN;
  209 #endif
  210 #else 
  211 static int preempt_thresh = 0;
  212 #endif
  213 static int static_boost = PRI_MIN_BATCH;
  214 static int sched_idlespins = 10000;
  215 static int sched_idlespinthresh = -1;
  216 
  217 /*
  218  * tdq - per processor runqs and statistics.  All fields are protected by the
  219  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
  220  * locking in sched_pickcpu();
  221  */
  222 struct tdq {
  223         /* Ordered to improve efficiency of cpu_search() and switch(). */
  224         struct mtx      tdq_lock;               /* run queue lock. */
  225         struct cpu_group *tdq_cg;               /* Pointer to cpu topology. */
  226         volatile int    tdq_load;               /* Aggregate load. */
  227         volatile int    tdq_cpu_idle;           /* cpu_idle() is active. */
  228         int             tdq_sysload;            /* For loadavg, !ITHD load. */
  229         int             tdq_transferable;       /* Transferable thread count. */
  230         short           tdq_switchcnt;          /* Switches this tick. */
  231         short           tdq_oldswitchcnt;       /* Switches last tick. */
  232         u_char          tdq_lowpri;             /* Lowest priority thread. */
  233         u_char          tdq_ipipending;         /* IPI pending. */
  234         u_char          tdq_idx;                /* Current insert index. */
  235         u_char          tdq_ridx;               /* Current removal index. */
  236         struct runq     tdq_realtime;           /* real-time run queue. */
  237         struct runq     tdq_timeshare;          /* timeshare run queue. */
  238         struct runq     tdq_idle;               /* Queue of IDLE threads. */
  239         char            tdq_name[TDQ_NAME_LEN];
  240 #ifdef KTR
  241         char            tdq_loadname[TDQ_LOADNAME_LEN];
  242 #endif
  243 } __aligned(64);
  244 
  245 /* Idle thread states and config. */
  246 #define TDQ_RUNNING     1
  247 #define TDQ_IDLE        2
  248 
  249 #ifdef SMP
  250 struct cpu_group *cpu_top;              /* CPU topology */
  251 
  252 #define SCHED_AFFINITY_DEFAULT  (max(1, hz / 1000))
  253 #define SCHED_AFFINITY(ts, t)   ((ts)->ts_rltick > ticks - ((t) * affinity))
  254 
  255 /*
  256  * Run-time tunables.
  257  */
  258 static int rebalance = 1;
  259 static int balance_interval = 128;      /* Default set in sched_initticks(). */
  260 static int affinity;
  261 static int steal_idle = 1;
  262 static int steal_thresh = 2;
  263 
  264 /*
  265  * One thread queue per processor.
  266  */
  267 static struct tdq       tdq_cpu[MAXCPU];
  268 static struct tdq       *balance_tdq;
  269 static int balance_ticks;
  270 static DPCPU_DEFINE(uint32_t, randomval);
  271 
  272 #define TDQ_SELF()      (&tdq_cpu[PCPU_GET(cpuid)])
  273 #define TDQ_CPU(x)      (&tdq_cpu[(x)])
  274 #define TDQ_ID(x)       ((int)((x) - tdq_cpu))
  275 #else   /* !SMP */
  276 static struct tdq       tdq_cpu;
  277 
  278 #define TDQ_ID(x)       (0)
  279 #define TDQ_SELF()      (&tdq_cpu)
  280 #define TDQ_CPU(x)      (&tdq_cpu)
  281 #endif
  282 
  283 #define TDQ_LOCK_ASSERT(t, type)        mtx_assert(TDQ_LOCKPTR((t)), (type))
  284 #define TDQ_LOCK(t)             mtx_lock_spin(TDQ_LOCKPTR((t)))
  285 #define TDQ_LOCK_FLAGS(t, f)    mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
  286 #define TDQ_UNLOCK(t)           mtx_unlock_spin(TDQ_LOCKPTR((t)))
  287 #define TDQ_LOCKPTR(t)          (&(t)->tdq_lock)
  288 
  289 static void sched_priority(struct thread *);
  290 static void sched_thread_priority(struct thread *, u_char);
  291 static int sched_interact_score(struct thread *);
  292 static void sched_interact_update(struct thread *);
  293 static void sched_interact_fork(struct thread *);
  294 static void sched_pctcpu_update(struct td_sched *, int);
  295 
  296 /* Operations on per processor queues */
  297 static struct thread *tdq_choose(struct tdq *);
  298 static void tdq_setup(struct tdq *);
  299 static void tdq_load_add(struct tdq *, struct thread *);
  300 static void tdq_load_rem(struct tdq *, struct thread *);
  301 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
  302 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
  303 static inline int sched_shouldpreempt(int, int, int);
  304 void tdq_print(int cpu);
  305 static void runq_print(struct runq *rq);
  306 static void tdq_add(struct tdq *, struct thread *, int);
  307 #ifdef SMP
  308 static int tdq_move(struct tdq *, struct tdq *);
  309 static int tdq_idled(struct tdq *);
  310 static void tdq_notify(struct tdq *, struct thread *);
  311 static struct thread *tdq_steal(struct tdq *, int);
  312 static struct thread *runq_steal(struct runq *, int);
  313 static int sched_pickcpu(struct thread *, int);
  314 static void sched_balance(void);
  315 static int sched_balance_pair(struct tdq *, struct tdq *);
  316 static inline struct tdq *sched_setcpu(struct thread *, int, int);
  317 static inline void thread_unblock_switch(struct thread *, struct mtx *);
  318 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
  319 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
  320 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 
  321     struct cpu_group *cg, int indent);
  322 #endif
  323 
  324 static void sched_setup(void *dummy);
  325 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
  326 
  327 static void sched_initticks(void *dummy);
  328 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
  329     NULL);
  330 
  331 SDT_PROVIDER_DEFINE(sched);
  332 
  333 SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *", 
  334     "struct proc *", "uint8_t");
  335 SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *", 
  336     "struct proc *", "void *");
  337 SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *", 
  338     "struct proc *", "void *", "int");
  339 SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *", 
  340     "struct proc *", "uint8_t", "struct thread *");
  341 SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int");
  342 SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *", 
  343     "struct proc *");
  344 SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu);
  345 SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu);
  346 SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *", 
  347     "struct proc *");
  348 
  349 /*
  350  * Print the threads waiting on a run-queue.
  351  */
  352 static void
  353 runq_print(struct runq *rq)
  354 {
  355         struct rqhead *rqh;
  356         struct thread *td;
  357         int pri;
  358         int j;
  359         int i;
  360 
  361         for (i = 0; i < RQB_LEN; i++) {
  362                 printf("\t\trunq bits %d 0x%zx\n",
  363                     i, rq->rq_status.rqb_bits[i]);
  364                 for (j = 0; j < RQB_BPW; j++)
  365                         if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
  366                                 pri = j + (i << RQB_L2BPW);
  367                                 rqh = &rq->rq_queues[pri];
  368                                 TAILQ_FOREACH(td, rqh, td_runq) {
  369                                         printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
  370                                             td, td->td_name, td->td_priority,
  371                                             td->td_rqindex, pri);
  372                                 }
  373                         }
  374         }
  375 }
  376 
  377 /*
  378  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
  379  */
  380 void
  381 tdq_print(int cpu)
  382 {
  383         struct tdq *tdq;
  384 
  385         tdq = TDQ_CPU(cpu);
  386 
  387         printf("tdq %d:\n", TDQ_ID(tdq));
  388         printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
  389         printf("\tLock name:      %s\n", tdq->tdq_name);
  390         printf("\tload:           %d\n", tdq->tdq_load);
  391         printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
  392         printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
  393         printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
  394         printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
  395         printf("\tload transferable: %d\n", tdq->tdq_transferable);
  396         printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
  397         printf("\trealtime runq:\n");
  398         runq_print(&tdq->tdq_realtime);
  399         printf("\ttimeshare runq:\n");
  400         runq_print(&tdq->tdq_timeshare);
  401         printf("\tidle runq:\n");
  402         runq_print(&tdq->tdq_idle);
  403 }
  404 
  405 static inline int
  406 sched_shouldpreempt(int pri, int cpri, int remote)
  407 {
  408         /*
  409          * If the new priority is not better than the current priority there is
  410          * nothing to do.
  411          */
  412         if (pri >= cpri)
  413                 return (0);
  414         /*
  415          * Always preempt idle.
  416          */
  417         if (cpri >= PRI_MIN_IDLE)
  418                 return (1);
  419         /*
  420          * If preemption is disabled don't preempt others.
  421          */
  422         if (preempt_thresh == 0)
  423                 return (0);
  424         /*
  425          * Preempt if we exceed the threshold.
  426          */
  427         if (pri <= preempt_thresh)
  428                 return (1);
  429         /*
  430          * If we're interactive or better and there is non-interactive
  431          * or worse running preempt only remote processors.
  432          */
  433         if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
  434                 return (1);
  435         return (0);
  436 }
  437 
  438 /*
  439  * Add a thread to the actual run-queue.  Keeps transferable counts up to
  440  * date with what is actually on the run-queue.  Selects the correct
  441  * queue position for timeshare threads.
  442  */
  443 static __inline void
  444 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
  445 {
  446         struct td_sched *ts;
  447         u_char pri;
  448 
  449         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  450         THREAD_LOCK_ASSERT(td, MA_OWNED);
  451 
  452         pri = td->td_priority;
  453         ts = td->td_sched;
  454         TD_SET_RUNQ(td);
  455         if (THREAD_CAN_MIGRATE(td)) {
  456                 tdq->tdq_transferable++;
  457                 ts->ts_flags |= TSF_XFERABLE;
  458         }
  459         if (pri < PRI_MIN_BATCH) {
  460                 ts->ts_runq = &tdq->tdq_realtime;
  461         } else if (pri <= PRI_MAX_BATCH) {
  462                 ts->ts_runq = &tdq->tdq_timeshare;
  463                 KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
  464                         ("Invalid priority %d on timeshare runq", pri));
  465                 /*
  466                  * This queue contains only priorities between MIN and MAX
  467                  * realtime.  Use the whole queue to represent these values.
  468                  */
  469                 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
  470                         pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
  471                         pri = (pri + tdq->tdq_idx) % RQ_NQS;
  472                         /*
  473                          * This effectively shortens the queue by one so we
  474                          * can have a one slot difference between idx and
  475                          * ridx while we wait for threads to drain.
  476                          */
  477                         if (tdq->tdq_ridx != tdq->tdq_idx &&
  478                             pri == tdq->tdq_ridx)
  479                                 pri = (unsigned char)(pri - 1) % RQ_NQS;
  480                 } else
  481                         pri = tdq->tdq_ridx;
  482                 runq_add_pri(ts->ts_runq, td, pri, flags);
  483                 return;
  484         } else
  485                 ts->ts_runq = &tdq->tdq_idle;
  486         runq_add(ts->ts_runq, td, flags);
  487 }
  488 
  489 /* 
  490  * Remove a thread from a run-queue.  This typically happens when a thread
  491  * is selected to run.  Running threads are not on the queue and the
  492  * transferable count does not reflect them.
  493  */
  494 static __inline void
  495 tdq_runq_rem(struct tdq *tdq, struct thread *td)
  496 {
  497         struct td_sched *ts;
  498 
  499         ts = td->td_sched;
  500         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  501         KASSERT(ts->ts_runq != NULL,
  502             ("tdq_runq_remove: thread %p null ts_runq", td));
  503         if (ts->ts_flags & TSF_XFERABLE) {
  504                 tdq->tdq_transferable--;
  505                 ts->ts_flags &= ~TSF_XFERABLE;
  506         }
  507         if (ts->ts_runq == &tdq->tdq_timeshare) {
  508                 if (tdq->tdq_idx != tdq->tdq_ridx)
  509                         runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
  510                 else
  511                         runq_remove_idx(ts->ts_runq, td, NULL);
  512         } else
  513                 runq_remove(ts->ts_runq, td);
  514 }
  515 
  516 /*
  517  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
  518  * for this thread to the referenced thread queue.
  519  */
  520 static void
  521 tdq_load_add(struct tdq *tdq, struct thread *td)
  522 {
  523 
  524         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  525         THREAD_LOCK_ASSERT(td, MA_OWNED);
  526 
  527         tdq->tdq_load++;
  528         if ((td->td_flags & TDF_NOLOAD) == 0)
  529                 tdq->tdq_sysload++;
  530         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  531         SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
  532 }
  533 
  534 /*
  535  * Remove the load from a thread that is transitioning to a sleep state or
  536  * exiting.
  537  */
  538 static void
  539 tdq_load_rem(struct tdq *tdq, struct thread *td)
  540 {
  541 
  542         THREAD_LOCK_ASSERT(td, MA_OWNED);
  543         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  544         KASSERT(tdq->tdq_load != 0,
  545             ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
  546 
  547         tdq->tdq_load--;
  548         if ((td->td_flags & TDF_NOLOAD) == 0)
  549                 tdq->tdq_sysload--;
  550         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  551         SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
  552 }
  553 
  554 /*
  555  * Set lowpri to its exact value by searching the run-queue and
  556  * evaluating curthread.  curthread may be passed as an optimization.
  557  */
  558 static void
  559 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
  560 {
  561         struct thread *td;
  562 
  563         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  564         if (ctd == NULL)
  565                 ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
  566         td = tdq_choose(tdq);
  567         if (td == NULL || td->td_priority > ctd->td_priority)
  568                 tdq->tdq_lowpri = ctd->td_priority;
  569         else
  570                 tdq->tdq_lowpri = td->td_priority;
  571 }
  572 
  573 #ifdef SMP
  574 struct cpu_search {
  575         cpuset_t cs_mask;
  576         u_int   cs_prefer;
  577         int     cs_pri;         /* Min priority for low. */
  578         int     cs_limit;       /* Max load for low, min load for high. */
  579         int     cs_cpu;
  580         int     cs_load;
  581 };
  582 
  583 #define CPU_SEARCH_LOWEST       0x1
  584 #define CPU_SEARCH_HIGHEST      0x2
  585 #define CPU_SEARCH_BOTH         (CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
  586 
  587 #define CPUSET_FOREACH(cpu, mask)                               \
  588         for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)             \
  589                 if (CPU_ISSET(cpu, &mask))
  590 
  591 static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
  592     struct cpu_search *high, const int match);
  593 int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
  594 int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
  595 int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
  596     struct cpu_search *high);
  597 
  598 /*
  599  * Search the tree of cpu_groups for the lowest or highest loaded cpu
  600  * according to the match argument.  This routine actually compares the
  601  * load on all paths through the tree and finds the least loaded cpu on
  602  * the least loaded path, which may differ from the least loaded cpu in
  603  * the system.  This balances work among caches and busses.
  604  *
  605  * This inline is instantiated in three forms below using constants for the
  606  * match argument.  It is reduced to the minimum set for each case.  It is
  607  * also recursive to the depth of the tree.
  608  */
  609 static __inline int
  610 cpu_search(const struct cpu_group *cg, struct cpu_search *low,
  611     struct cpu_search *high, const int match)
  612 {
  613         struct cpu_search lgroup;
  614         struct cpu_search hgroup;
  615         cpuset_t cpumask;
  616         struct cpu_group *child;
  617         struct tdq *tdq;
  618         int cpu, i, hload, lload, load, total, rnd, *rndptr;
  619 
  620         total = 0;
  621         cpumask = cg->cg_mask;
  622         if (match & CPU_SEARCH_LOWEST) {
  623                 lload = INT_MAX;
  624                 lgroup = *low;
  625         }
  626         if (match & CPU_SEARCH_HIGHEST) {
  627                 hload = INT_MIN;
  628                 hgroup = *high;
  629         }
  630 
  631         /* Iterate through the child CPU groups and then remaining CPUs. */
  632         for (i = cg->cg_children, cpu = mp_maxid; i >= 0; ) {
  633                 if (i == 0) {
  634                         while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
  635                                 cpu--;
  636                         if (cpu < 0)
  637                                 break;
  638                         child = NULL;
  639                 } else
  640                         child = &cg->cg_child[i - 1];
  641 
  642                 if (match & CPU_SEARCH_LOWEST)
  643                         lgroup.cs_cpu = -1;
  644                 if (match & CPU_SEARCH_HIGHEST)
  645                         hgroup.cs_cpu = -1;
  646                 if (child) {                    /* Handle child CPU group. */
  647                         CPU_NAND(&cpumask, &child->cg_mask);
  648                         switch (match) {
  649                         case CPU_SEARCH_LOWEST:
  650                                 load = cpu_search_lowest(child, &lgroup);
  651                                 break;
  652                         case CPU_SEARCH_HIGHEST:
  653                                 load = cpu_search_highest(child, &hgroup);
  654                                 break;
  655                         case CPU_SEARCH_BOTH:
  656                                 load = cpu_search_both(child, &lgroup, &hgroup);
  657                                 break;
  658                         }
  659                 } else {                        /* Handle child CPU. */
  660                         tdq = TDQ_CPU(cpu);
  661                         load = tdq->tdq_load * 256;
  662                         rndptr = DPCPU_PTR(randomval);
  663                         rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
  664                         if (match & CPU_SEARCH_LOWEST) {
  665                                 if (cpu == low->cs_prefer)
  666                                         load -= 64;
  667                                 /* If that CPU is allowed and get data. */
  668                                 if (tdq->tdq_lowpri > lgroup.cs_pri &&
  669                                     tdq->tdq_load <= lgroup.cs_limit &&
  670                                     CPU_ISSET(cpu, &lgroup.cs_mask)) {
  671                                         lgroup.cs_cpu = cpu;
  672                                         lgroup.cs_load = load - rnd;
  673                                 }
  674                         }
  675                         if (match & CPU_SEARCH_HIGHEST)
  676                                 if (tdq->tdq_load >= hgroup.cs_limit &&
  677                                     tdq->tdq_transferable &&
  678                                     CPU_ISSET(cpu, &hgroup.cs_mask)) {
  679                                         hgroup.cs_cpu = cpu;
  680                                         hgroup.cs_load = load - rnd;
  681                                 }
  682                 }
  683                 total += load;
  684 
  685                 /* We have info about child item. Compare it. */
  686                 if (match & CPU_SEARCH_LOWEST) {
  687                         if (lgroup.cs_cpu >= 0 &&
  688                             (load < lload ||
  689                              (load == lload && lgroup.cs_load < low->cs_load))) {
  690                                 lload = load;
  691                                 low->cs_cpu = lgroup.cs_cpu;
  692                                 low->cs_load = lgroup.cs_load;
  693                         }
  694                 }
  695                 if (match & CPU_SEARCH_HIGHEST)
  696                         if (hgroup.cs_cpu >= 0 &&
  697                             (load > hload ||
  698                              (load == hload && hgroup.cs_load > high->cs_load))) {
  699                                 hload = load;
  700                                 high->cs_cpu = hgroup.cs_cpu;
  701                                 high->cs_load = hgroup.cs_load;
  702                         }
  703                 if (child) {
  704                         i--;
  705                         if (i == 0 && CPU_EMPTY(&cpumask))
  706                                 break;
  707                 } else
  708                         cpu--;
  709         }
  710         return (total);
  711 }
  712 
  713 /*
  714  * cpu_search instantiations must pass constants to maintain the inline
  715  * optimization.
  716  */
  717 int
  718 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
  719 {
  720         return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
  721 }
  722 
  723 int
  724 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
  725 {
  726         return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
  727 }
  728 
  729 int
  730 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
  731     struct cpu_search *high)
  732 {
  733         return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
  734 }
  735 
  736 /*
  737  * Find the cpu with the least load via the least loaded path that has a
  738  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
  739  * acceptable.
  740  */
  741 static inline int
  742 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
  743     int prefer)
  744 {
  745         struct cpu_search low;
  746 
  747         low.cs_cpu = -1;
  748         low.cs_prefer = prefer;
  749         low.cs_mask = mask;
  750         low.cs_pri = pri;
  751         low.cs_limit = maxload;
  752         cpu_search_lowest(cg, &low);
  753         return low.cs_cpu;
  754 }
  755 
  756 /*
  757  * Find the cpu with the highest load via the highest loaded path.
  758  */
  759 static inline int
  760 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
  761 {
  762         struct cpu_search high;
  763 
  764         high.cs_cpu = -1;
  765         high.cs_mask = mask;
  766         high.cs_limit = minload;
  767         cpu_search_highest(cg, &high);
  768         return high.cs_cpu;
  769 }
  770 
  771 /*
  772  * Simultaneously find the highest and lowest loaded cpu reachable via
  773  * cg.
  774  */
  775 static inline void
  776 sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
  777 {
  778         struct cpu_search high;
  779         struct cpu_search low;
  780 
  781         low.cs_cpu = -1;
  782         low.cs_prefer = -1;
  783         low.cs_pri = -1;
  784         low.cs_limit = INT_MAX;
  785         low.cs_mask = mask;
  786         high.cs_cpu = -1;
  787         high.cs_limit = -1;
  788         high.cs_mask = mask;
  789         cpu_search_both(cg, &low, &high);
  790         *lowcpu = low.cs_cpu;
  791         *highcpu = high.cs_cpu;
  792         return;
  793 }
  794 
  795 static void
  796 sched_balance_group(struct cpu_group *cg)
  797 {
  798         cpuset_t hmask, lmask;
  799         int high, low, anylow;
  800 
  801         CPU_FILL(&hmask);
  802         for (;;) {
  803                 high = sched_highest(cg, hmask, 1);
  804                 /* Stop if there is no more CPU with transferrable threads. */
  805                 if (high == -1)
  806                         break;
  807                 CPU_CLR(high, &hmask);
  808                 CPU_COPY(&hmask, &lmask);
  809                 /* Stop if there is no more CPU left for low. */
  810                 if (CPU_EMPTY(&lmask))
  811                         break;
  812                 anylow = 1;
  813 nextlow:
  814                 low = sched_lowest(cg, lmask, -1,
  815                     TDQ_CPU(high)->tdq_load - 1, high);
  816                 /* Stop if we looked well and found no less loaded CPU. */
  817                 if (anylow && low == -1)
  818                         break;
  819                 /* Go to next high if we found no less loaded CPU. */
  820                 if (low == -1)
  821                         continue;
  822                 /* Transfer thread from high to low. */
  823                 if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
  824                         /* CPU that got thread can no longer be a donor. */
  825                         CPU_CLR(low, &hmask);
  826                 } else {
  827                         /*
  828                          * If failed, then there is no threads on high
  829                          * that can run on this low. Drop low from low
  830                          * mask and look for different one.
  831                          */
  832                         CPU_CLR(low, &lmask);
  833                         anylow = 0;
  834                         goto nextlow;
  835                 }
  836         }
  837 }
  838 
  839 static void
  840 sched_balance(void)
  841 {
  842         struct tdq *tdq;
  843 
  844         /*
  845          * Select a random time between .5 * balance_interval and
  846          * 1.5 * balance_interval.
  847          */
  848         balance_ticks = max(balance_interval / 2, 1);
  849         balance_ticks += random() % balance_interval;
  850         if (smp_started == 0 || rebalance == 0)
  851                 return;
  852         tdq = TDQ_SELF();
  853         TDQ_UNLOCK(tdq);
  854         sched_balance_group(cpu_top);
  855         TDQ_LOCK(tdq);
  856 }
  857 
  858 /*
  859  * Lock two thread queues using their address to maintain lock order.
  860  */
  861 static void
  862 tdq_lock_pair(struct tdq *one, struct tdq *two)
  863 {
  864         if (one < two) {
  865                 TDQ_LOCK(one);
  866                 TDQ_LOCK_FLAGS(two, MTX_DUPOK);
  867         } else {
  868                 TDQ_LOCK(two);
  869                 TDQ_LOCK_FLAGS(one, MTX_DUPOK);
  870         }
  871 }
  872 
  873 /*
  874  * Unlock two thread queues.  Order is not important here.
  875  */
  876 static void
  877 tdq_unlock_pair(struct tdq *one, struct tdq *two)
  878 {
  879         TDQ_UNLOCK(one);
  880         TDQ_UNLOCK(two);
  881 }
  882 
  883 /*
  884  * Transfer load between two imbalanced thread queues.
  885  */
  886 static int
  887 sched_balance_pair(struct tdq *high, struct tdq *low)
  888 {
  889         int moved;
  890         int cpu;
  891 
  892         tdq_lock_pair(high, low);
  893         moved = 0;
  894         /*
  895          * Determine what the imbalance is and then adjust that to how many
  896          * threads we actually have to give up (transferable).
  897          */
  898         if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
  899             (moved = tdq_move(high, low)) > 0) {
  900                 /*
  901                  * In case the target isn't the current cpu IPI it to force a
  902                  * reschedule with the new workload.
  903                  */
  904                 cpu = TDQ_ID(low);
  905                 sched_pin();
  906                 if (cpu != PCPU_GET(cpuid))
  907                         ipi_cpu(cpu, IPI_PREEMPT);
  908                 sched_unpin();
  909         }
  910         tdq_unlock_pair(high, low);
  911         return (moved);
  912 }
  913 
  914 /*
  915  * Move a thread from one thread queue to another.
  916  */
  917 static int
  918 tdq_move(struct tdq *from, struct tdq *to)
  919 {
  920         struct td_sched *ts;
  921         struct thread *td;
  922         struct tdq *tdq;
  923         int cpu;
  924 
  925         TDQ_LOCK_ASSERT(from, MA_OWNED);
  926         TDQ_LOCK_ASSERT(to, MA_OWNED);
  927 
  928         tdq = from;
  929         cpu = TDQ_ID(to);
  930         td = tdq_steal(tdq, cpu);
  931         if (td == NULL)
  932                 return (0);
  933         ts = td->td_sched;
  934         /*
  935          * Although the run queue is locked the thread may be blocked.  Lock
  936          * it to clear this and acquire the run-queue lock.
  937          */
  938         thread_lock(td);
  939         /* Drop recursive lock on from acquired via thread_lock(). */
  940         TDQ_UNLOCK(from);
  941         sched_rem(td);
  942         ts->ts_cpu = cpu;
  943         td->td_lock = TDQ_LOCKPTR(to);
  944         tdq_add(to, td, SRQ_YIELDING);
  945         return (1);
  946 }
  947 
  948 /*
  949  * This tdq has idled.  Try to steal a thread from another cpu and switch
  950  * to it.
  951  */
  952 static int
  953 tdq_idled(struct tdq *tdq)
  954 {
  955         struct cpu_group *cg;
  956         struct tdq *steal;
  957         cpuset_t mask;
  958         int thresh;
  959         int cpu;
  960 
  961         if (smp_started == 0 || steal_idle == 0)
  962                 return (1);
  963         CPU_FILL(&mask);
  964         CPU_CLR(PCPU_GET(cpuid), &mask);
  965         /* We don't want to be preempted while we're iterating. */
  966         spinlock_enter();
  967         for (cg = tdq->tdq_cg; cg != NULL; ) {
  968                 if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
  969                         thresh = steal_thresh;
  970                 else
  971                         thresh = 1;
  972                 cpu = sched_highest(cg, mask, thresh);
  973                 if (cpu == -1) {
  974                         cg = cg->cg_parent;
  975                         continue;
  976                 }
  977                 steal = TDQ_CPU(cpu);
  978                 CPU_CLR(cpu, &mask);
  979                 tdq_lock_pair(tdq, steal);
  980                 if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
  981                         tdq_unlock_pair(tdq, steal);
  982                         continue;
  983                 }
  984                 /*
  985                  * If a thread was added while interrupts were disabled don't
  986                  * steal one here.  If we fail to acquire one due to affinity
  987                  * restrictions loop again with this cpu removed from the
  988                  * set.
  989                  */
  990                 if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
  991                         tdq_unlock_pair(tdq, steal);
  992                         continue;
  993                 }
  994                 spinlock_exit();
  995                 TDQ_UNLOCK(steal);
  996                 mi_switch(SW_VOL | SWT_IDLE, NULL);
  997                 thread_unlock(curthread);
  998 
  999                 return (0);
 1000         }
 1001         spinlock_exit();
 1002         return (1);
 1003 }
 1004 
 1005 /*
 1006  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
 1007  */
 1008 static void
 1009 tdq_notify(struct tdq *tdq, struct thread *td)
 1010 {
 1011         struct thread *ctd;
 1012         int pri;
 1013         int cpu;
 1014 
 1015         if (tdq->tdq_ipipending)
 1016                 return;
 1017         cpu = td->td_sched->ts_cpu;
 1018         pri = td->td_priority;
 1019         ctd = pcpu_find(cpu)->pc_curthread;
 1020         if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
 1021                 return;
 1022         if (TD_IS_IDLETHREAD(ctd)) {
 1023                 /*
 1024                  * If the MD code has an idle wakeup routine try that before
 1025                  * falling back to IPI.
 1026                  */
 1027                 if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
 1028                         return;
 1029         }
 1030         tdq->tdq_ipipending = 1;
 1031         ipi_cpu(cpu, IPI_PREEMPT);
 1032 }
 1033 
 1034 /*
 1035  * Steals load from a timeshare queue.  Honors the rotating queue head
 1036  * index.
 1037  */
 1038 static struct thread *
 1039 runq_steal_from(struct runq *rq, int cpu, u_char start)
 1040 {
 1041         struct rqbits *rqb;
 1042         struct rqhead *rqh;
 1043         struct thread *td, *first;
 1044         int bit;
 1045         int pri;
 1046         int i;
 1047 
 1048         rqb = &rq->rq_status;
 1049         bit = start & (RQB_BPW -1);
 1050         pri = 0;
 1051         first = NULL;
 1052 again:
 1053         for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
 1054                 if (rqb->rqb_bits[i] == 0)
 1055                         continue;
 1056                 if (bit != 0) {
 1057                         for (pri = bit; pri < RQB_BPW; pri++)
 1058                                 if (rqb->rqb_bits[i] & (1ul << pri))
 1059                                         break;
 1060                         if (pri >= RQB_BPW)
 1061                                 continue;
 1062                 } else
 1063                         pri = RQB_FFS(rqb->rqb_bits[i]);
 1064                 pri += (i << RQB_L2BPW);
 1065                 rqh = &rq->rq_queues[pri];
 1066                 TAILQ_FOREACH(td, rqh, td_runq) {
 1067                         if (first && THREAD_CAN_MIGRATE(td) &&
 1068                             THREAD_CAN_SCHED(td, cpu))
 1069                                 return (td);
 1070                         first = td;
 1071                 }
 1072         }
 1073         if (start != 0) {
 1074                 start = 0;
 1075                 goto again;
 1076         }
 1077 
 1078         if (first && THREAD_CAN_MIGRATE(first) &&
 1079             THREAD_CAN_SCHED(first, cpu))
 1080                 return (first);
 1081         return (NULL);
 1082 }
 1083 
 1084 /*
 1085  * Steals load from a standard linear queue.
 1086  */
 1087 static struct thread *
 1088 runq_steal(struct runq *rq, int cpu)
 1089 {
 1090         struct rqhead *rqh;
 1091         struct rqbits *rqb;
 1092         struct thread *td;
 1093         int word;
 1094         int bit;
 1095 
 1096         rqb = &rq->rq_status;
 1097         for (word = 0; word < RQB_LEN; word++) {
 1098                 if (rqb->rqb_bits[word] == 0)
 1099                         continue;
 1100                 for (bit = 0; bit < RQB_BPW; bit++) {
 1101                         if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
 1102                                 continue;
 1103                         rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
 1104                         TAILQ_FOREACH(td, rqh, td_runq)
 1105                                 if (THREAD_CAN_MIGRATE(td) &&
 1106                                     THREAD_CAN_SCHED(td, cpu))
 1107                                         return (td);
 1108                 }
 1109         }
 1110         return (NULL);
 1111 }
 1112 
 1113 /*
 1114  * Attempt to steal a thread in priority order from a thread queue.
 1115  */
 1116 static struct thread *
 1117 tdq_steal(struct tdq *tdq, int cpu)
 1118 {
 1119         struct thread *td;
 1120 
 1121         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1122         if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
 1123                 return (td);
 1124         if ((td = runq_steal_from(&tdq->tdq_timeshare,
 1125             cpu, tdq->tdq_ridx)) != NULL)
 1126                 return (td);
 1127         return (runq_steal(&tdq->tdq_idle, cpu));
 1128 }
 1129 
 1130 /*
 1131  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
 1132  * current lock and returns with the assigned queue locked.
 1133  */
 1134 static inline struct tdq *
 1135 sched_setcpu(struct thread *td, int cpu, int flags)
 1136 {
 1137 
 1138         struct tdq *tdq;
 1139 
 1140         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1141         tdq = TDQ_CPU(cpu);
 1142         td->td_sched->ts_cpu = cpu;
 1143         /*
 1144          * If the lock matches just return the queue.
 1145          */
 1146         if (td->td_lock == TDQ_LOCKPTR(tdq))
 1147                 return (tdq);
 1148 #ifdef notyet
 1149         /*
 1150          * If the thread isn't running its lockptr is a
 1151          * turnstile or a sleepqueue.  We can just lock_set without
 1152          * blocking.
 1153          */
 1154         if (TD_CAN_RUN(td)) {
 1155                 TDQ_LOCK(tdq);
 1156                 thread_lock_set(td, TDQ_LOCKPTR(tdq));
 1157                 return (tdq);
 1158         }
 1159 #endif
 1160         /*
 1161          * The hard case, migration, we need to block the thread first to
 1162          * prevent order reversals with other cpus locks.
 1163          */
 1164         spinlock_enter();
 1165         thread_lock_block(td);
 1166         TDQ_LOCK(tdq);
 1167         thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
 1168         spinlock_exit();
 1169         return (tdq);
 1170 }
 1171 
 1172 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
 1173 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
 1174 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
 1175 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
 1176 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
 1177 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
 1178 
 1179 static int
 1180 sched_pickcpu(struct thread *td, int flags)
 1181 {
 1182         struct cpu_group *cg, *ccg;
 1183         struct td_sched *ts;
 1184         struct tdq *tdq;
 1185         cpuset_t mask;
 1186         int cpu, pri, self;
 1187 
 1188         self = PCPU_GET(cpuid);
 1189         ts = td->td_sched;
 1190         if (smp_started == 0)
 1191                 return (self);
 1192         /*
 1193          * Don't migrate a running thread from sched_switch().
 1194          */
 1195         if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
 1196                 return (ts->ts_cpu);
 1197         /*
 1198          * Prefer to run interrupt threads on the processors that generate
 1199          * the interrupt.
 1200          */
 1201         pri = td->td_priority;
 1202         if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
 1203             curthread->td_intr_nesting_level && ts->ts_cpu != self) {
 1204                 SCHED_STAT_INC(pickcpu_intrbind);
 1205                 ts->ts_cpu = self;
 1206                 if (TDQ_CPU(self)->tdq_lowpri > pri) {
 1207                         SCHED_STAT_INC(pickcpu_affinity);
 1208                         return (ts->ts_cpu);
 1209                 }
 1210         }
 1211         /*
 1212          * If the thread can run on the last cpu and the affinity has not
 1213          * expired or it is idle run it there.
 1214          */
 1215         tdq = TDQ_CPU(ts->ts_cpu);
 1216         cg = tdq->tdq_cg;
 1217         if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
 1218             tdq->tdq_lowpri >= PRI_MIN_IDLE &&
 1219             SCHED_AFFINITY(ts, CG_SHARE_L2)) {
 1220                 if (cg->cg_flags & CG_FLAG_THREAD) {
 1221                         CPUSET_FOREACH(cpu, cg->cg_mask) {
 1222                                 if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
 1223                                         break;
 1224                         }
 1225                 } else
 1226                         cpu = INT_MAX;
 1227                 if (cpu > mp_maxid) {
 1228                         SCHED_STAT_INC(pickcpu_idle_affinity);
 1229                         return (ts->ts_cpu);
 1230                 }
 1231         }
 1232         /*
 1233          * Search for the last level cache CPU group in the tree.
 1234          * Skip caches with expired affinity time and SMT groups.
 1235          * Affinity to higher level caches will be handled less aggressively.
 1236          */
 1237         for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
 1238                 if (cg->cg_flags & CG_FLAG_THREAD)
 1239                         continue;
 1240                 if (!SCHED_AFFINITY(ts, cg->cg_level))
 1241                         continue;
 1242                 ccg = cg;
 1243         }
 1244         if (ccg != NULL)
 1245                 cg = ccg;
 1246         cpu = -1;
 1247         /* Search the group for the less loaded idle CPU we can run now. */
 1248         mask = td->td_cpuset->cs_mask;
 1249         if (cg != NULL && cg != cpu_top &&
 1250             CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
 1251                 cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
 1252                     INT_MAX, ts->ts_cpu);
 1253         /* Search globally for the less loaded CPU we can run now. */
 1254         if (cpu == -1)
 1255                 cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
 1256         /* Search globally for the less loaded CPU. */
 1257         if (cpu == -1)
 1258                 cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
 1259         KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
 1260         /*
 1261          * Compare the lowest loaded cpu to current cpu.
 1262          */
 1263         if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
 1264             TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
 1265             TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
 1266                 SCHED_STAT_INC(pickcpu_local);
 1267                 cpu = self;
 1268         } else
 1269                 SCHED_STAT_INC(pickcpu_lowest);
 1270         if (cpu != ts->ts_cpu)
 1271                 SCHED_STAT_INC(pickcpu_migration);
 1272         return (cpu);
 1273 }
 1274 #endif
 1275 
 1276 /*
 1277  * Pick the highest priority task we have and return it.
 1278  */
 1279 static struct thread *
 1280 tdq_choose(struct tdq *tdq)
 1281 {
 1282         struct thread *td;
 1283 
 1284         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1285         td = runq_choose(&tdq->tdq_realtime);
 1286         if (td != NULL)
 1287                 return (td);
 1288         td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
 1289         if (td != NULL) {
 1290                 KASSERT(td->td_priority >= PRI_MIN_BATCH,
 1291                     ("tdq_choose: Invalid priority on timeshare queue %d",
 1292                     td->td_priority));
 1293                 return (td);
 1294         }
 1295         td = runq_choose(&tdq->tdq_idle);
 1296         if (td != NULL) {
 1297                 KASSERT(td->td_priority >= PRI_MIN_IDLE,
 1298                     ("tdq_choose: Invalid priority on idle queue %d",
 1299                     td->td_priority));
 1300                 return (td);
 1301         }
 1302 
 1303         return (NULL);
 1304 }
 1305 
 1306 /*
 1307  * Initialize a thread queue.
 1308  */
 1309 static void
 1310 tdq_setup(struct tdq *tdq)
 1311 {
 1312 
 1313         if (bootverbose)
 1314                 printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
 1315         runq_init(&tdq->tdq_realtime);
 1316         runq_init(&tdq->tdq_timeshare);
 1317         runq_init(&tdq->tdq_idle);
 1318         snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
 1319             "sched lock %d", (int)TDQ_ID(tdq));
 1320         mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
 1321             MTX_SPIN | MTX_RECURSE);
 1322 #ifdef KTR
 1323         snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
 1324             "CPU %d load", (int)TDQ_ID(tdq));
 1325 #endif
 1326 }
 1327 
 1328 #ifdef SMP
 1329 static void
 1330 sched_setup_smp(void)
 1331 {
 1332         struct tdq *tdq;
 1333         int i;
 1334 
 1335         cpu_top = smp_topo();
 1336         CPU_FOREACH(i) {
 1337                 tdq = TDQ_CPU(i);
 1338                 tdq_setup(tdq);
 1339                 tdq->tdq_cg = smp_topo_find(cpu_top, i);
 1340                 if (tdq->tdq_cg == NULL)
 1341                         panic("Can't find cpu group for %d\n", i);
 1342         }
 1343         balance_tdq = TDQ_SELF();
 1344         sched_balance();
 1345 }
 1346 #endif
 1347 
 1348 /*
 1349  * Setup the thread queues and initialize the topology based on MD
 1350  * information.
 1351  */
 1352 static void
 1353 sched_setup(void *dummy)
 1354 {
 1355         struct tdq *tdq;
 1356 
 1357         tdq = TDQ_SELF();
 1358 #ifdef SMP
 1359         sched_setup_smp();
 1360 #else
 1361         tdq_setup(tdq);
 1362 #endif
 1363         /*
 1364          * To avoid divide-by-zero, we set realstathz a dummy value
 1365          * in case which sched_clock() called before sched_initticks().
 1366          */
 1367         realstathz = hz;
 1368         sched_slice = (realstathz/10);  /* ~100ms */
 1369         tickincr = 1 << SCHED_TICK_SHIFT;
 1370 
 1371         /* Add thread0's load since it's running. */
 1372         TDQ_LOCK(tdq);
 1373         thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
 1374         tdq_load_add(tdq, &thread0);
 1375         tdq->tdq_lowpri = thread0.td_priority;
 1376         TDQ_UNLOCK(tdq);
 1377 }
 1378 
 1379 /*
 1380  * This routine determines the tickincr after stathz and hz are setup.
 1381  */
 1382 /* ARGSUSED */
 1383 static void
 1384 sched_initticks(void *dummy)
 1385 {
 1386         int incr;
 1387 
 1388         realstathz = stathz ? stathz : hz;
 1389         sched_slice = (realstathz/10);  /* ~100ms */
 1390 
 1391         /*
 1392          * tickincr is shifted out by 10 to avoid rounding errors due to
 1393          * hz not being evenly divisible by stathz on all platforms.
 1394          */
 1395         incr = (hz << SCHED_TICK_SHIFT) / realstathz;
 1396         /*
 1397          * This does not work for values of stathz that are more than
 1398          * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
 1399          */
 1400         if (incr == 0)
 1401                 incr = 1;
 1402         tickincr = incr;
 1403 #ifdef SMP
 1404         /*
 1405          * Set the default balance interval now that we know
 1406          * what realstathz is.
 1407          */
 1408         balance_interval = realstathz;
 1409         /*
 1410          * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4. 
 1411          * This prevents excess thrashing on large machines and excess idle 
 1412          * on smaller machines.
 1413          */
 1414         steal_thresh = min(fls(mp_ncpus) - 1, 3);
 1415         affinity = SCHED_AFFINITY_DEFAULT;
 1416 #endif
 1417         if (sched_idlespinthresh < 0)
 1418                 sched_idlespinthresh = max(16, 2 * hz / realstathz);
 1419 }
 1420 
 1421 
 1422 /*
 1423  * This is the core of the interactivity algorithm.  Determines a score based
 1424  * on past behavior.  It is the ratio of sleep time to run time scaled to
 1425  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
 1426  * differs from the cpu usage because it does not account for time spent
 1427  * waiting on a run-queue.  Would be prettier if we had floating point.
 1428  */
 1429 static int
 1430 sched_interact_score(struct thread *td)
 1431 {
 1432         struct td_sched *ts;
 1433         int div;
 1434 
 1435         ts = td->td_sched;
 1436         /*
 1437          * The score is only needed if this is likely to be an interactive
 1438          * task.  Don't go through the expense of computing it if there's
 1439          * no chance.
 1440          */
 1441         if (sched_interact <= SCHED_INTERACT_HALF &&
 1442                 ts->ts_runtime >= ts->ts_slptime)
 1443                         return (SCHED_INTERACT_HALF);
 1444 
 1445         if (ts->ts_runtime > ts->ts_slptime) {
 1446                 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
 1447                 return (SCHED_INTERACT_HALF +
 1448                     (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
 1449         }
 1450         if (ts->ts_slptime > ts->ts_runtime) {
 1451                 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
 1452                 return (ts->ts_runtime / div);
 1453         }
 1454         /* runtime == slptime */
 1455         if (ts->ts_runtime)
 1456                 return (SCHED_INTERACT_HALF);
 1457 
 1458         /*
 1459          * This can happen if slptime and runtime are 0.
 1460          */
 1461         return (0);
 1462 
 1463 }
 1464 
 1465 /*
 1466  * Scale the scheduling priority according to the "interactivity" of this
 1467  * process.
 1468  */
 1469 static void
 1470 sched_priority(struct thread *td)
 1471 {
 1472         int score;
 1473         int pri;
 1474 
 1475         if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 1476                 return;
 1477         /*
 1478          * If the score is interactive we place the thread in the realtime
 1479          * queue with a priority that is less than kernel and interrupt
 1480          * priorities.  These threads are not subject to nice restrictions.
 1481          *
 1482          * Scores greater than this are placed on the normal timeshare queue
 1483          * where the priority is partially decided by the most recent cpu
 1484          * utilization and the rest is decided by nice value.
 1485          *
 1486          * The nice value of the process has a linear effect on the calculated
 1487          * score.  Negative nice values make it easier for a thread to be
 1488          * considered interactive.
 1489          */
 1490         score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
 1491         if (score < sched_interact) {
 1492                 pri = PRI_MIN_INTERACT;
 1493                 pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
 1494                     sched_interact) * score;
 1495                 KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
 1496                     ("sched_priority: invalid interactive priority %d score %d",
 1497                     pri, score));
 1498         } else {
 1499                 pri = SCHED_PRI_MIN;
 1500                 if (td->td_sched->ts_ticks)
 1501                         pri += min(SCHED_PRI_TICKS(td->td_sched),
 1502                             SCHED_PRI_RANGE);
 1503                 pri += SCHED_PRI_NICE(td->td_proc->p_nice);
 1504                 KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
 1505                     ("sched_priority: invalid priority %d: nice %d, " 
 1506                     "ticks %d ftick %d ltick %d tick pri %d",
 1507                     pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
 1508                     td->td_sched->ts_ftick, td->td_sched->ts_ltick,
 1509                     SCHED_PRI_TICKS(td->td_sched)));
 1510         }
 1511         sched_user_prio(td, pri);
 1512 
 1513         return;
 1514 }
 1515 
 1516 /*
 1517  * This routine enforces a maximum limit on the amount of scheduling history
 1518  * kept.  It is called after either the slptime or runtime is adjusted.  This
 1519  * function is ugly due to integer math.
 1520  */
 1521 static void
 1522 sched_interact_update(struct thread *td)
 1523 {
 1524         struct td_sched *ts;
 1525         u_int sum;
 1526 
 1527         ts = td->td_sched;
 1528         sum = ts->ts_runtime + ts->ts_slptime;
 1529         if (sum < SCHED_SLP_RUN_MAX)
 1530                 return;
 1531         /*
 1532          * This only happens from two places:
 1533          * 1) We have added an unusual amount of run time from fork_exit.
 1534          * 2) We have added an unusual amount of sleep time from sched_sleep().
 1535          */
 1536         if (sum > SCHED_SLP_RUN_MAX * 2) {
 1537                 if (ts->ts_runtime > ts->ts_slptime) {
 1538                         ts->ts_runtime = SCHED_SLP_RUN_MAX;
 1539                         ts->ts_slptime = 1;
 1540                 } else {
 1541                         ts->ts_slptime = SCHED_SLP_RUN_MAX;
 1542                         ts->ts_runtime = 1;
 1543                 }
 1544                 return;
 1545         }
 1546         /*
 1547          * If we have exceeded by more than 1/5th then the algorithm below
 1548          * will not bring us back into range.  Dividing by two here forces
 1549          * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
 1550          */
 1551         if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
 1552                 ts->ts_runtime /= 2;
 1553                 ts->ts_slptime /= 2;
 1554                 return;
 1555         }
 1556         ts->ts_runtime = (ts->ts_runtime / 5) * 4;
 1557         ts->ts_slptime = (ts->ts_slptime / 5) * 4;
 1558 }
 1559 
 1560 /*
 1561  * Scale back the interactivity history when a child thread is created.  The
 1562  * history is inherited from the parent but the thread may behave totally
 1563  * differently.  For example, a shell spawning a compiler process.  We want
 1564  * to learn that the compiler is behaving badly very quickly.
 1565  */
 1566 static void
 1567 sched_interact_fork(struct thread *td)
 1568 {
 1569         int ratio;
 1570         int sum;
 1571 
 1572         sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
 1573         if (sum > SCHED_SLP_RUN_FORK) {
 1574                 ratio = sum / SCHED_SLP_RUN_FORK;
 1575                 td->td_sched->ts_runtime /= ratio;
 1576                 td->td_sched->ts_slptime /= ratio;
 1577         }
 1578 }
 1579 
 1580 /*
 1581  * Called from proc0_init() to setup the scheduler fields.
 1582  */
 1583 void
 1584 schedinit(void)
 1585 {
 1586 
 1587         /*
 1588          * Set up the scheduler specific parts of proc0.
 1589          */
 1590         proc0.p_sched = NULL; /* XXX */
 1591         thread0.td_sched = &td_sched0;
 1592         td_sched0.ts_ltick = ticks;
 1593         td_sched0.ts_ftick = ticks;
 1594         td_sched0.ts_slice = sched_slice;
 1595 }
 1596 
 1597 /*
 1598  * This is only somewhat accurate since given many processes of the same
 1599  * priority they will switch when their slices run out, which will be
 1600  * at most sched_slice stathz ticks.
 1601  */
 1602 int
 1603 sched_rr_interval(void)
 1604 {
 1605 
 1606         /* Convert sched_slice to hz */
 1607         return (hz/(realstathz/sched_slice));
 1608 }
 1609 
 1610 /*
 1611  * Update the percent cpu tracking information when it is requested or
 1612  * the total history exceeds the maximum.  We keep a sliding history of
 1613  * tick counts that slowly decays.  This is less precise than the 4BSD
 1614  * mechanism since it happens with less regular and frequent events.
 1615  */
 1616 static void
 1617 sched_pctcpu_update(struct td_sched *ts, int run)
 1618 {
 1619         int t = ticks;
 1620 
 1621         if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
 1622                 ts->ts_ticks = 0;
 1623                 ts->ts_ftick = t - SCHED_TICK_TARG;
 1624         } else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
 1625                 ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
 1626                     (ts->ts_ltick - (t - SCHED_TICK_TARG));
 1627                 ts->ts_ftick = t - SCHED_TICK_TARG;
 1628         }
 1629         if (run)
 1630                 ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
 1631         ts->ts_ltick = t;
 1632 }
 1633 
 1634 /*
 1635  * Adjust the priority of a thread.  Move it to the appropriate run-queue
 1636  * if necessary.  This is the back-end for several priority related
 1637  * functions.
 1638  */
 1639 static void
 1640 sched_thread_priority(struct thread *td, u_char prio)
 1641 {
 1642         struct td_sched *ts;
 1643         struct tdq *tdq;
 1644         int oldpri;
 1645 
 1646         KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
 1647             "prio:%d", td->td_priority, "new prio:%d", prio,
 1648             KTR_ATTR_LINKED, sched_tdname(curthread));
 1649         SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio);
 1650         if (td != curthread && prio > td->td_priority) {
 1651                 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
 1652                     "lend prio", "prio:%d", td->td_priority, "new prio:%d",
 1653                     prio, KTR_ATTR_LINKED, sched_tdname(td));
 1654                 SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio, 
 1655                     curthread);
 1656         } 
 1657         ts = td->td_sched;
 1658         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1659         if (td->td_priority == prio)
 1660                 return;
 1661         /*
 1662          * If the priority has been elevated due to priority
 1663          * propagation, we may have to move ourselves to a new
 1664          * queue.  This could be optimized to not re-add in some
 1665          * cases.
 1666          */
 1667         if (TD_ON_RUNQ(td) && prio < td->td_priority) {
 1668                 sched_rem(td);
 1669                 td->td_priority = prio;
 1670                 sched_add(td, SRQ_BORROWING);
 1671                 return;
 1672         }
 1673         /*
 1674          * If the thread is currently running we may have to adjust the lowpri
 1675          * information so other cpus are aware of our current priority.
 1676          */
 1677         if (TD_IS_RUNNING(td)) {
 1678                 tdq = TDQ_CPU(ts->ts_cpu);
 1679                 oldpri = td->td_priority;
 1680                 td->td_priority = prio;
 1681                 if (prio < tdq->tdq_lowpri)
 1682                         tdq->tdq_lowpri = prio;
 1683                 else if (tdq->tdq_lowpri == oldpri)
 1684                         tdq_setlowpri(tdq, td);
 1685                 return;
 1686         }
 1687         td->td_priority = prio;
 1688 }
 1689 
 1690 /*
 1691  * Update a thread's priority when it is lent another thread's
 1692  * priority.
 1693  */
 1694 void
 1695 sched_lend_prio(struct thread *td, u_char prio)
 1696 {
 1697 
 1698         td->td_flags |= TDF_BORROWING;
 1699         sched_thread_priority(td, prio);
 1700 }
 1701 
 1702 /*
 1703  * Restore a thread's priority when priority propagation is
 1704  * over.  The prio argument is the minimum priority the thread
 1705  * needs to have to satisfy other possible priority lending
 1706  * requests.  If the thread's regular priority is less
 1707  * important than prio, the thread will keep a priority boost
 1708  * of prio.
 1709  */
 1710 void
 1711 sched_unlend_prio(struct thread *td, u_char prio)
 1712 {
 1713         u_char base_pri;
 1714 
 1715         if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
 1716             td->td_base_pri <= PRI_MAX_TIMESHARE)
 1717                 base_pri = td->td_user_pri;
 1718         else
 1719                 base_pri = td->td_base_pri;
 1720         if (prio >= base_pri) {
 1721                 td->td_flags &= ~TDF_BORROWING;
 1722                 sched_thread_priority(td, base_pri);
 1723         } else
 1724                 sched_lend_prio(td, prio);
 1725 }
 1726 
 1727 /*
 1728  * Standard entry for setting the priority to an absolute value.
 1729  */
 1730 void
 1731 sched_prio(struct thread *td, u_char prio)
 1732 {
 1733         u_char oldprio;
 1734 
 1735         /* First, update the base priority. */
 1736         td->td_base_pri = prio;
 1737 
 1738         /*
 1739          * If the thread is borrowing another thread's priority, don't
 1740          * ever lower the priority.
 1741          */
 1742         if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
 1743                 return;
 1744 
 1745         /* Change the real priority. */
 1746         oldprio = td->td_priority;
 1747         sched_thread_priority(td, prio);
 1748 
 1749         /*
 1750          * If the thread is on a turnstile, then let the turnstile update
 1751          * its state.
 1752          */
 1753         if (TD_ON_LOCK(td) && oldprio != prio)
 1754                 turnstile_adjust(td, oldprio);
 1755 }
 1756 
 1757 /*
 1758  * Set the base user priority, does not effect current running priority.
 1759  */
 1760 void
 1761 sched_user_prio(struct thread *td, u_char prio)
 1762 {
 1763 
 1764         td->td_base_user_pri = prio;
 1765         if (td->td_lend_user_pri <= prio)
 1766                 return;
 1767         td->td_user_pri = prio;
 1768 }
 1769 
 1770 void
 1771 sched_lend_user_prio(struct thread *td, u_char prio)
 1772 {
 1773 
 1774         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1775         td->td_lend_user_pri = prio;
 1776         td->td_user_pri = min(prio, td->td_base_user_pri);
 1777         if (td->td_priority > td->td_user_pri)
 1778                 sched_prio(td, td->td_user_pri);
 1779         else if (td->td_priority != td->td_user_pri)
 1780                 td->td_flags |= TDF_NEEDRESCHED;
 1781 }
 1782 
 1783 /*
 1784  * Handle migration from sched_switch().  This happens only for
 1785  * cpu binding.
 1786  */
 1787 static struct mtx *
 1788 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
 1789 {
 1790         struct tdq *tdn;
 1791 
 1792         tdn = TDQ_CPU(td->td_sched->ts_cpu);
 1793 #ifdef SMP
 1794         tdq_load_rem(tdq, td);
 1795         /*
 1796          * Do the lock dance required to avoid LOR.  We grab an extra
 1797          * spinlock nesting to prevent preemption while we're
 1798          * not holding either run-queue lock.
 1799          */
 1800         spinlock_enter();
 1801         thread_lock_block(td);  /* This releases the lock on tdq. */
 1802 
 1803         /*
 1804          * Acquire both run-queue locks before placing the thread on the new
 1805          * run-queue to avoid deadlocks created by placing a thread with a
 1806          * blocked lock on the run-queue of a remote processor.  The deadlock
 1807          * occurs when a third processor attempts to lock the two queues in
 1808          * question while the target processor is spinning with its own
 1809          * run-queue lock held while waiting for the blocked lock to clear.
 1810          */
 1811         tdq_lock_pair(tdn, tdq);
 1812         tdq_add(tdn, td, flags);
 1813         tdq_notify(tdn, td);
 1814         TDQ_UNLOCK(tdn);
 1815         spinlock_exit();
 1816 #endif
 1817         return (TDQ_LOCKPTR(tdn));
 1818 }
 1819 
 1820 /*
 1821  * Variadic version of thread_lock_unblock() that does not assume td_lock
 1822  * is blocked.
 1823  */
 1824 static inline void
 1825 thread_unblock_switch(struct thread *td, struct mtx *mtx)
 1826 {
 1827         atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
 1828             (uintptr_t)mtx);
 1829 }
 1830 
 1831 /*
 1832  * Switch threads.  This function has to handle threads coming in while
 1833  * blocked for some reason, running, or idle.  It also must deal with
 1834  * migrating a thread from one queue to another as running threads may
 1835  * be assigned elsewhere via binding.
 1836  */
 1837 void
 1838 sched_switch(struct thread *td, struct thread *newtd, int flags)
 1839 {
 1840         struct tdq *tdq;
 1841         struct td_sched *ts;
 1842         struct mtx *mtx;
 1843         int srqflag;
 1844         int cpuid;
 1845 
 1846         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1847         KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
 1848 
 1849         cpuid = PCPU_GET(cpuid);
 1850         tdq = TDQ_CPU(cpuid);
 1851         ts = td->td_sched;
 1852         mtx = td->td_lock;
 1853         sched_pctcpu_update(ts, 1);
 1854         ts->ts_rltick = ticks;
 1855         td->td_lastcpu = td->td_oncpu;
 1856         td->td_oncpu = NOCPU;
 1857         if (!(flags & SW_PREEMPT))
 1858                 td->td_flags &= ~TDF_NEEDRESCHED;
 1859         td->td_owepreempt = 0;
 1860         tdq->tdq_switchcnt++;
 1861         /*
 1862          * The lock pointer in an idle thread should never change.  Reset it
 1863          * to CAN_RUN as well.
 1864          */
 1865         if (TD_IS_IDLETHREAD(td)) {
 1866                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1867                 TD_SET_CAN_RUN(td);
 1868         } else if (TD_IS_RUNNING(td)) {
 1869                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1870                 srqflag = (flags & SW_PREEMPT) ?
 1871                     SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
 1872                     SRQ_OURSELF|SRQ_YIELDING;
 1873 #ifdef SMP
 1874                 if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
 1875                         ts->ts_cpu = sched_pickcpu(td, 0);
 1876 #endif
 1877                 if (ts->ts_cpu == cpuid)
 1878                         tdq_runq_add(tdq, td, srqflag);
 1879                 else {
 1880                         KASSERT(THREAD_CAN_MIGRATE(td) ||
 1881                             (ts->ts_flags & TSF_BOUND) != 0,
 1882                             ("Thread %p shouldn't migrate", td));
 1883                         mtx = sched_switch_migrate(tdq, td, srqflag);
 1884                 }
 1885         } else {
 1886                 /* This thread must be going to sleep. */
 1887                 TDQ_LOCK(tdq);
 1888                 mtx = thread_lock_block(td);
 1889                 tdq_load_rem(tdq, td);
 1890         }
 1891         /*
 1892          * We enter here with the thread blocked and assigned to the
 1893          * appropriate cpu run-queue or sleep-queue and with the current
 1894          * thread-queue locked.
 1895          */
 1896         TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 1897         newtd = choosethread();
 1898         /*
 1899          * Call the MD code to switch contexts if necessary.
 1900          */
 1901         if (td != newtd) {
 1902 #ifdef  HWPMC_HOOKS
 1903                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1904                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
 1905 #endif
 1906                 SDT_PROBE2(sched, , , off_cpu, td, td->td_proc);
 1907                 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
 1908                 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
 1909                 sched_pctcpu_update(newtd->td_sched, 0);
 1910 
 1911 #ifdef KDTRACE_HOOKS
 1912                 /*
 1913                  * If DTrace has set the active vtime enum to anything
 1914                  * other than INACTIVE (0), then it should have set the
 1915                  * function to call.
 1916                  */
 1917                 if (dtrace_vtime_active)
 1918                         (*dtrace_vtime_switch_func)(newtd);
 1919 #endif
 1920 
 1921                 cpu_switch(td, newtd, mtx);
 1922                 /*
 1923                  * We may return from cpu_switch on a different cpu.  However,
 1924                  * we always return with td_lock pointing to the current cpu's
 1925                  * run queue lock.
 1926                  */
 1927                 cpuid = PCPU_GET(cpuid);
 1928                 tdq = TDQ_CPU(cpuid);
 1929                 lock_profile_obtain_lock_success(
 1930                     &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
 1931 
 1932                 SDT_PROBE0(sched, , , on_cpu);
 1933 #ifdef  HWPMC_HOOKS
 1934                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 1935                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
 1936 #endif
 1937         } else {
 1938                 thread_unblock_switch(td, mtx);
 1939                 SDT_PROBE0(sched, , , remain_cpu);
 1940         }
 1941         /*
 1942          * Assert that all went well and return.
 1943          */
 1944         TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
 1945         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 1946         td->td_oncpu = cpuid;
 1947 }
 1948 
 1949 /*
 1950  * Adjust thread priorities as a result of a nice request.
 1951  */
 1952 void
 1953 sched_nice(struct proc *p, int nice)
 1954 {
 1955         struct thread *td;
 1956 
 1957         PROC_LOCK_ASSERT(p, MA_OWNED);
 1958 
 1959         p->p_nice = nice;
 1960         FOREACH_THREAD_IN_PROC(p, td) {
 1961                 thread_lock(td);
 1962                 sched_priority(td);
 1963                 sched_prio(td, td->td_base_user_pri);
 1964                 thread_unlock(td);
 1965         }
 1966 }
 1967 
 1968 /*
 1969  * Record the sleep time for the interactivity scorer.
 1970  */
 1971 void
 1972 sched_sleep(struct thread *td, int prio)
 1973 {
 1974 
 1975         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1976 
 1977         td->td_slptick = ticks;
 1978         if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
 1979                 td->td_flags |= TDF_CANSWAP;
 1980         if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 1981                 return;
 1982         if (static_boost == 1 && prio)
 1983                 sched_prio(td, prio);
 1984         else if (static_boost && td->td_priority > static_boost)
 1985                 sched_prio(td, static_boost);
 1986 }
 1987 
 1988 /*
 1989  * Schedule a thread to resume execution and record how long it voluntarily
 1990  * slept.  We also update the pctcpu, interactivity, and priority.
 1991  */
 1992 void
 1993 sched_wakeup(struct thread *td)
 1994 {
 1995         struct td_sched *ts;
 1996         int slptick;
 1997 
 1998         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1999         ts = td->td_sched;
 2000         td->td_flags &= ~TDF_CANSWAP;
 2001         /*
 2002          * If we slept for more than a tick update our interactivity and
 2003          * priority.
 2004          */
 2005         slptick = td->td_slptick;
 2006         td->td_slptick = 0;
 2007         if (slptick && slptick != ticks) {
 2008                 ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
 2009                 sched_interact_update(td);
 2010                 sched_pctcpu_update(ts, 0);
 2011         }
 2012         /* Reset the slice value after we sleep. */
 2013         ts->ts_slice = sched_slice;
 2014         sched_add(td, SRQ_BORING);
 2015 }
 2016 
 2017 /*
 2018  * Penalize the parent for creating a new child and initialize the child's
 2019  * priority.
 2020  */
 2021 void
 2022 sched_fork(struct thread *td, struct thread *child)
 2023 {
 2024         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2025         sched_pctcpu_update(td->td_sched, 1);
 2026         sched_fork_thread(td, child);
 2027         /*
 2028          * Penalize the parent and child for forking.
 2029          */
 2030         sched_interact_fork(child);
 2031         sched_priority(child);
 2032         td->td_sched->ts_runtime += tickincr;
 2033         sched_interact_update(td);
 2034         sched_priority(td);
 2035 }
 2036 
 2037 /*
 2038  * Fork a new thread, may be within the same process.
 2039  */
 2040 void
 2041 sched_fork_thread(struct thread *td, struct thread *child)
 2042 {
 2043         struct td_sched *ts;
 2044         struct td_sched *ts2;
 2045 
 2046         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2047         /*
 2048          * Initialize child.
 2049          */
 2050         ts = td->td_sched;
 2051         ts2 = child->td_sched;
 2052         child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
 2053         child->td_cpuset = cpuset_ref(td->td_cpuset);
 2054         ts2->ts_cpu = ts->ts_cpu;
 2055         ts2->ts_flags = 0;
 2056         /*
 2057          * Grab our parents cpu estimation information.
 2058          */
 2059         ts2->ts_ticks = ts->ts_ticks;
 2060         ts2->ts_ltick = ts->ts_ltick;
 2061         ts2->ts_ftick = ts->ts_ftick;
 2062         /*
 2063          * Do not inherit any borrowed priority from the parent.
 2064          */
 2065         child->td_priority = child->td_base_pri;
 2066         /*
 2067          * And update interactivity score.
 2068          */
 2069         ts2->ts_slptime = ts->ts_slptime;
 2070         ts2->ts_runtime = ts->ts_runtime;
 2071         ts2->ts_slice = 1;      /* Attempt to quickly learn interactivity. */
 2072 #ifdef KTR
 2073         bzero(ts2->ts_name, sizeof(ts2->ts_name));
 2074 #endif
 2075 }
 2076 
 2077 /*
 2078  * Adjust the priority class of a thread.
 2079  */
 2080 void
 2081 sched_class(struct thread *td, int class)
 2082 {
 2083 
 2084         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2085         if (td->td_pri_class == class)
 2086                 return;
 2087         td->td_pri_class = class;
 2088 }
 2089 
 2090 /*
 2091  * Return some of the child's priority and interactivity to the parent.
 2092  */
 2093 void
 2094 sched_exit(struct proc *p, struct thread *child)
 2095 {
 2096         struct thread *td;
 2097 
 2098         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
 2099             "prio:%d", child->td_priority);
 2100         PROC_LOCK_ASSERT(p, MA_OWNED);
 2101         td = FIRST_THREAD_IN_PROC(p);
 2102         sched_exit_thread(td, child);
 2103 }
 2104 
 2105 /*
 2106  * Penalize another thread for the time spent on this one.  This helps to
 2107  * worsen the priority and interactivity of processes which schedule batch
 2108  * jobs such as make.  This has little effect on the make process itself but
 2109  * causes new processes spawned by it to receive worse scores immediately.
 2110  */
 2111 void
 2112 sched_exit_thread(struct thread *td, struct thread *child)
 2113 {
 2114 
 2115         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
 2116             "prio:%d", child->td_priority);
 2117         /*
 2118          * Give the child's runtime to the parent without returning the
 2119          * sleep time as a penalty to the parent.  This causes shells that
 2120          * launch expensive things to mark their children as expensive.
 2121          */
 2122         thread_lock(td);
 2123         td->td_sched->ts_runtime += child->td_sched->ts_runtime;
 2124         sched_interact_update(td);
 2125         sched_priority(td);
 2126         thread_unlock(td);
 2127 }
 2128 
 2129 void
 2130 sched_preempt(struct thread *td)
 2131 {
 2132         struct tdq *tdq;
 2133 
 2134         SDT_PROBE2(sched, , , surrender, td, td->td_proc);
 2135 
 2136         thread_lock(td);
 2137         tdq = TDQ_SELF();
 2138         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2139         tdq->tdq_ipipending = 0;
 2140         if (td->td_priority > tdq->tdq_lowpri) {
 2141                 int flags;
 2142 
 2143                 flags = SW_INVOL | SW_PREEMPT;
 2144                 if (td->td_critnest > 1)
 2145                         td->td_owepreempt = 1;
 2146                 else if (TD_IS_IDLETHREAD(td))
 2147                         mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
 2148                 else
 2149                         mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
 2150         }
 2151         thread_unlock(td);
 2152 }
 2153 
 2154 /*
 2155  * Fix priorities on return to user-space.  Priorities may be elevated due
 2156  * to static priorities in msleep() or similar.
 2157  */
 2158 void
 2159 sched_userret(struct thread *td)
 2160 {
 2161         /*
 2162          * XXX we cheat slightly on the locking here to avoid locking in  
 2163          * the usual case.  Setting td_priority here is essentially an
 2164          * incomplete workaround for not setting it properly elsewhere.
 2165          * Now that some interrupt handlers are threads, not setting it
 2166          * properly elsewhere can clobber it in the window between setting
 2167          * it here and returning to user mode, so don't waste time setting
 2168          * it perfectly here.
 2169          */
 2170         KASSERT((td->td_flags & TDF_BORROWING) == 0,
 2171             ("thread with borrowed priority returning to userland"));
 2172         if (td->td_priority != td->td_user_pri) {
 2173                 thread_lock(td);
 2174                 td->td_priority = td->td_user_pri;
 2175                 td->td_base_pri = td->td_user_pri;
 2176                 tdq_setlowpri(TDQ_SELF(), td);
 2177                 thread_unlock(td);
 2178         }
 2179 }
 2180 
 2181 /*
 2182  * Handle a stathz tick.  This is really only relevant for timeshare
 2183  * threads.
 2184  */
 2185 void
 2186 sched_clock(struct thread *td)
 2187 {
 2188         struct tdq *tdq;
 2189         struct td_sched *ts;
 2190 
 2191         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2192         tdq = TDQ_SELF();
 2193 #ifdef SMP
 2194         /*
 2195          * We run the long term load balancer infrequently on the first cpu.
 2196          */
 2197         if (balance_tdq == tdq) {
 2198                 if (balance_ticks && --balance_ticks == 0)
 2199                         sched_balance();
 2200         }
 2201 #endif
 2202         /*
 2203          * Save the old switch count so we have a record of the last ticks
 2204          * activity.   Initialize the new switch count based on our load.
 2205          * If there is some activity seed it to reflect that.
 2206          */
 2207         tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
 2208         tdq->tdq_switchcnt = tdq->tdq_load;
 2209         /*
 2210          * Advance the insert index once for each tick to ensure that all
 2211          * threads get a chance to run.
 2212          */
 2213         if (tdq->tdq_idx == tdq->tdq_ridx) {
 2214                 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
 2215                 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
 2216                         tdq->tdq_ridx = tdq->tdq_idx;
 2217         }
 2218         ts = td->td_sched;
 2219         sched_pctcpu_update(ts, 1);
 2220         if (td->td_pri_class & PRI_FIFO_BIT)
 2221                 return;
 2222         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
 2223                 /*
 2224                  * We used a tick; charge it to the thread so
 2225                  * that we can compute our interactivity.
 2226                  */
 2227                 td->td_sched->ts_runtime += tickincr;
 2228                 sched_interact_update(td);
 2229                 sched_priority(td);
 2230         }
 2231         /*
 2232          * We used up one time slice.
 2233          */
 2234         if (--ts->ts_slice > 0)
 2235                 return;
 2236         /*
 2237          * We're out of time, force a requeue at userret().
 2238          */
 2239         ts->ts_slice = sched_slice;
 2240         td->td_flags |= TDF_NEEDRESCHED;
 2241 }
 2242 
 2243 /*
 2244  * Called once per hz tick.
 2245  */
 2246 void
 2247 sched_tick(int cnt)
 2248 {
 2249 
 2250 }
 2251 
 2252 /*
 2253  * Return whether the current CPU has runnable tasks.  Used for in-kernel
 2254  * cooperative idle threads.
 2255  */
 2256 int
 2257 sched_runnable(void)
 2258 {
 2259         struct tdq *tdq;
 2260         int load;
 2261 
 2262         load = 1;
 2263 
 2264         tdq = TDQ_SELF();
 2265         if ((curthread->td_flags & TDF_IDLETD) != 0) {
 2266                 if (tdq->tdq_load > 0)
 2267                         goto out;
 2268         } else
 2269                 if (tdq->tdq_load - 1 > 0)
 2270                         goto out;
 2271         load = 0;
 2272 out:
 2273         return (load);
 2274 }
 2275 
 2276 /*
 2277  * Choose the highest priority thread to run.  The thread is removed from
 2278  * the run-queue while running however the load remains.  For SMP we set
 2279  * the tdq in the global idle bitmask if it idles here.
 2280  */
 2281 struct thread *
 2282 sched_choose(void)
 2283 {
 2284         struct thread *td;
 2285         struct tdq *tdq;
 2286 
 2287         tdq = TDQ_SELF();
 2288         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2289         td = tdq_choose(tdq);
 2290         if (td) {
 2291                 tdq_runq_rem(tdq, td);
 2292                 tdq->tdq_lowpri = td->td_priority;
 2293                 return (td);
 2294         }
 2295         tdq->tdq_lowpri = PRI_MAX_IDLE;
 2296         return (PCPU_GET(idlethread));
 2297 }
 2298 
 2299 /*
 2300  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
 2301  * we always request it once we exit a critical section.
 2302  */
 2303 static inline void
 2304 sched_setpreempt(struct thread *td)
 2305 {
 2306         struct thread *ctd;
 2307         int cpri;
 2308         int pri;
 2309 
 2310         THREAD_LOCK_ASSERT(curthread, MA_OWNED);
 2311 
 2312         ctd = curthread;
 2313         pri = td->td_priority;
 2314         cpri = ctd->td_priority;
 2315         if (pri < cpri)
 2316                 ctd->td_flags |= TDF_NEEDRESCHED;
 2317         if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
 2318                 return;
 2319         if (!sched_shouldpreempt(pri, cpri, 0))
 2320                 return;
 2321         ctd->td_owepreempt = 1;
 2322 }
 2323 
 2324 /*
 2325  * Add a thread to a thread queue.  Select the appropriate runq and add the
 2326  * thread to it.  This is the internal function called when the tdq is
 2327  * predetermined.
 2328  */
 2329 void
 2330 tdq_add(struct tdq *tdq, struct thread *td, int flags)
 2331 {
 2332 
 2333         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2334         KASSERT((td->td_inhibitors == 0),
 2335             ("sched_add: trying to run inhibited thread"));
 2336         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 2337             ("sched_add: bad thread state"));
 2338         KASSERT(td->td_flags & TDF_INMEM,
 2339             ("sched_add: thread swapped out"));
 2340 
 2341         if (td->td_priority < tdq->tdq_lowpri)
 2342                 tdq->tdq_lowpri = td->td_priority;
 2343         tdq_runq_add(tdq, td, flags);
 2344         tdq_load_add(tdq, td);
 2345 }
 2346 
 2347 /*
 2348  * Select the target thread queue and add a thread to it.  Request
 2349  * preemption or IPI a remote processor if required.
 2350  */
 2351 void
 2352 sched_add(struct thread *td, int flags)
 2353 {
 2354         struct tdq *tdq;
 2355 #ifdef SMP
 2356         int cpu;
 2357 #endif
 2358 
 2359         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 2360             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 2361             sched_tdname(curthread));
 2362         KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 2363             KTR_ATTR_LINKED, sched_tdname(td));
 2364         SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
 2365             flags & SRQ_PREEMPTED);
 2366         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2367         /*
 2368          * Recalculate the priority before we select the target cpu or
 2369          * run-queue.
 2370          */
 2371         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
 2372                 sched_priority(td);
 2373 #ifdef SMP
 2374         /*
 2375          * Pick the destination cpu and if it isn't ours transfer to the
 2376          * target cpu.
 2377          */
 2378         cpu = sched_pickcpu(td, flags);
 2379         tdq = sched_setcpu(td, cpu, flags);
 2380         tdq_add(tdq, td, flags);
 2381         if (cpu != PCPU_GET(cpuid)) {
 2382                 tdq_notify(tdq, td);
 2383                 return;
 2384         }
 2385 #else
 2386         tdq = TDQ_SELF();
 2387         TDQ_LOCK(tdq);
 2388         /*
 2389          * Now that the thread is moving to the run-queue, set the lock
 2390          * to the scheduler's lock.
 2391          */
 2392         thread_lock_set(td, TDQ_LOCKPTR(tdq));
 2393         tdq_add(tdq, td, flags);
 2394 #endif
 2395         if (!(flags & SRQ_YIELDING))
 2396                 sched_setpreempt(td);
 2397 }
 2398 
 2399 /*
 2400  * Remove a thread from a run-queue without running it.  This is used
 2401  * when we're stealing a thread from a remote queue.  Otherwise all threads
 2402  * exit by calling sched_exit_thread() and sched_throw() themselves.
 2403  */
 2404 void
 2405 sched_rem(struct thread *td)
 2406 {
 2407         struct tdq *tdq;
 2408 
 2409         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
 2410             "prio:%d", td->td_priority);
 2411         SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
 2412         tdq = TDQ_CPU(td->td_sched->ts_cpu);
 2413         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2414         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2415         KASSERT(TD_ON_RUNQ(td),
 2416             ("sched_rem: thread not on run queue"));
 2417         tdq_runq_rem(tdq, td);
 2418         tdq_load_rem(tdq, td);
 2419         TD_SET_CAN_RUN(td);
 2420         if (td->td_priority == tdq->tdq_lowpri)
 2421                 tdq_setlowpri(tdq, NULL);
 2422 }
 2423 
 2424 /*
 2425  * Fetch cpu utilization information.  Updates on demand.
 2426  */
 2427 fixpt_t
 2428 sched_pctcpu(struct thread *td)
 2429 {
 2430         fixpt_t pctcpu;
 2431         struct td_sched *ts;
 2432 
 2433         pctcpu = 0;
 2434         ts = td->td_sched;
 2435         if (ts == NULL)
 2436                 return (0);
 2437 
 2438         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2439         sched_pctcpu_update(ts, TD_IS_RUNNING(td));
 2440         if (ts->ts_ticks) {
 2441                 int rtick;
 2442 
 2443                 /* How many rtick per second ? */
 2444                 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
 2445                 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
 2446         }
 2447 
 2448         return (pctcpu);
 2449 }
 2450 
 2451 /*
 2452  * Enforce affinity settings for a thread.  Called after adjustments to
 2453  * cpumask.
 2454  */
 2455 void
 2456 sched_affinity(struct thread *td)
 2457 {
 2458 #ifdef SMP
 2459         struct td_sched *ts;
 2460 
 2461         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2462         ts = td->td_sched;
 2463         if (THREAD_CAN_SCHED(td, ts->ts_cpu))
 2464                 return;
 2465         if (TD_ON_RUNQ(td)) {
 2466                 sched_rem(td);
 2467                 sched_add(td, SRQ_BORING);
 2468                 return;
 2469         }
 2470         if (!TD_IS_RUNNING(td))
 2471                 return;
 2472         /*
 2473          * Force a switch before returning to userspace.  If the
 2474          * target thread is not running locally send an ipi to force
 2475          * the issue.
 2476          */
 2477         td->td_flags |= TDF_NEEDRESCHED;
 2478         if (td != curthread)
 2479                 ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
 2480 #endif
 2481 }
 2482 
 2483 /*
 2484  * Bind a thread to a target cpu.
 2485  */
 2486 void
 2487 sched_bind(struct thread *td, int cpu)
 2488 {
 2489         struct td_sched *ts;
 2490 
 2491         THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
 2492         KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
 2493         ts = td->td_sched;
 2494         if (ts->ts_flags & TSF_BOUND)
 2495                 sched_unbind(td);
 2496         KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
 2497         ts->ts_flags |= TSF_BOUND;
 2498         sched_pin();
 2499         if (PCPU_GET(cpuid) == cpu)
 2500                 return;
 2501         ts->ts_cpu = cpu;
 2502         /* When we return from mi_switch we'll be on the correct cpu. */
 2503         mi_switch(SW_VOL, NULL);
 2504 }
 2505 
 2506 /*
 2507  * Release a bound thread.
 2508  */
 2509 void
 2510 sched_unbind(struct thread *td)
 2511 {
 2512         struct td_sched *ts;
 2513 
 2514         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2515         KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
 2516         ts = td->td_sched;
 2517         if ((ts->ts_flags & TSF_BOUND) == 0)
 2518                 return;
 2519         ts->ts_flags &= ~TSF_BOUND;
 2520         sched_unpin();
 2521 }
 2522 
 2523 int
 2524 sched_is_bound(struct thread *td)
 2525 {
 2526         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2527         return (td->td_sched->ts_flags & TSF_BOUND);
 2528 }
 2529 
 2530 /*
 2531  * Basic yield call.
 2532  */
 2533 void
 2534 sched_relinquish(struct thread *td)
 2535 {
 2536         thread_lock(td);
 2537         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
 2538         thread_unlock(td);
 2539 }
 2540 
 2541 /*
 2542  * Return the total system load.
 2543  */
 2544 int
 2545 sched_load(void)
 2546 {
 2547 #ifdef SMP
 2548         int total;
 2549         int i;
 2550 
 2551         total = 0;
 2552         CPU_FOREACH(i)
 2553                 total += TDQ_CPU(i)->tdq_sysload;
 2554         return (total);
 2555 #else
 2556         return (TDQ_SELF()->tdq_sysload);
 2557 #endif
 2558 }
 2559 
 2560 int
 2561 sched_sizeof_proc(void)
 2562 {
 2563         return (sizeof(struct proc));
 2564 }
 2565 
 2566 int
 2567 sched_sizeof_thread(void)
 2568 {
 2569         return (sizeof(struct thread) + sizeof(struct td_sched));
 2570 }
 2571 
 2572 #ifdef SMP
 2573 #define TDQ_IDLESPIN(tdq)                                               \
 2574     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
 2575 #else
 2576 #define TDQ_IDLESPIN(tdq)       1
 2577 #endif
 2578 
 2579 /*
 2580  * The actual idle process.
 2581  */
 2582 void
 2583 sched_idletd(void *dummy)
 2584 {
 2585         struct thread *td;
 2586         struct tdq *tdq;
 2587         int switchcnt;
 2588         int i;
 2589 
 2590         mtx_assert(&Giant, MA_NOTOWNED);
 2591         td = curthread;
 2592         tdq = TDQ_SELF();
 2593         for (;;) {
 2594 #ifdef SMP
 2595                 if (tdq_idled(tdq) == 0)
 2596                         continue;
 2597 #endif
 2598                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2599                 /*
 2600                  * If we're switching very frequently, spin while checking
 2601                  * for load rather than entering a low power state that 
 2602                  * may require an IPI.  However, don't do any busy
 2603                  * loops while on SMT machines as this simply steals
 2604                  * cycles from cores doing useful work.
 2605                  */
 2606                 if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
 2607                         for (i = 0; i < sched_idlespins; i++) {
 2608                                 if (tdq->tdq_load)
 2609                                         break;
 2610                                 cpu_spinwait();
 2611                         }
 2612                 }
 2613                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2614                 if (tdq->tdq_load == 0) {
 2615                         tdq->tdq_cpu_idle = 1;
 2616                         if (tdq->tdq_load == 0) {
 2617                                 cpu_idle(switchcnt > sched_idlespinthresh * 4);
 2618                                 tdq->tdq_switchcnt++;
 2619                         }
 2620                         tdq->tdq_cpu_idle = 0;
 2621                 }
 2622                 if (tdq->tdq_load) {
 2623                         thread_lock(td);
 2624                         mi_switch(SW_VOL | SWT_IDLE, NULL);
 2625                         thread_unlock(td);
 2626                 }
 2627         }
 2628 }
 2629 
 2630 /*
 2631  * A CPU is entering for the first time or a thread is exiting.
 2632  */
 2633 void
 2634 sched_throw(struct thread *td)
 2635 {
 2636         struct thread *newtd;
 2637         struct tdq *tdq;
 2638 
 2639         tdq = TDQ_SELF();
 2640         if (td == NULL) {
 2641                 /* Correct spinlock nesting and acquire the correct lock. */
 2642                 TDQ_LOCK(tdq);
 2643                 spinlock_exit();
 2644                 PCPU_SET(switchtime, cpu_ticks());
 2645                 PCPU_SET(switchticks, ticks);
 2646         } else {
 2647                 MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2648                 tdq_load_rem(tdq, td);
 2649                 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
 2650         }
 2651         KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
 2652         newtd = choosethread();
 2653         TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
 2654         cpu_throw(td, newtd);           /* doesn't return */
 2655 }
 2656 
 2657 /*
 2658  * This is called from fork_exit().  Just acquire the correct locks and
 2659  * let fork do the rest of the work.
 2660  */
 2661 void
 2662 sched_fork_exit(struct thread *td)
 2663 {
 2664         struct td_sched *ts;
 2665         struct tdq *tdq;
 2666         int cpuid;
 2667 
 2668         /*
 2669          * Finish setting up thread glue so that it begins execution in a
 2670          * non-nested critical section with the scheduler lock held.
 2671          */
 2672         cpuid = PCPU_GET(cpuid);
 2673         tdq = TDQ_CPU(cpuid);
 2674         ts = td->td_sched;
 2675         if (TD_IS_IDLETHREAD(td))
 2676                 td->td_lock = TDQ_LOCKPTR(tdq);
 2677         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2678         td->td_oncpu = cpuid;
 2679         TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 2680         lock_profile_obtain_lock_success(
 2681             &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
 2682 }
 2683 
 2684 /*
 2685  * Create on first use to catch odd startup conditons.
 2686  */
 2687 char *
 2688 sched_tdname(struct thread *td)
 2689 {
 2690 #ifdef KTR
 2691         struct td_sched *ts;
 2692 
 2693         ts = td->td_sched;
 2694         if (ts->ts_name[0] == '\0')
 2695                 snprintf(ts->ts_name, sizeof(ts->ts_name),
 2696                     "%s tid %d", td->td_name, td->td_tid);
 2697         return (ts->ts_name);
 2698 #else
 2699         return (td->td_name);
 2700 #endif
 2701 }
 2702 
 2703 #ifdef KTR
 2704 void
 2705 sched_clear_tdname(struct thread *td)
 2706 {
 2707         struct td_sched *ts;
 2708 
 2709         ts = td->td_sched;
 2710         ts->ts_name[0] = '\0';
 2711 }
 2712 #endif
 2713 
 2714 #ifdef SMP
 2715 
 2716 /*
 2717  * Build the CPU topology dump string. Is recursively called to collect
 2718  * the topology tree.
 2719  */
 2720 static int
 2721 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
 2722     int indent)
 2723 {
 2724         char cpusetbuf[CPUSETBUFSIZ];
 2725         int i, first;
 2726 
 2727         sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
 2728             "", 1 + indent / 2, cg->cg_level);
 2729         sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
 2730             cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
 2731         first = TRUE;
 2732         for (i = 0; i < MAXCPU; i++) {
 2733                 if (CPU_ISSET(i, &cg->cg_mask)) {
 2734                         if (!first)
 2735                                 sbuf_printf(sb, ", ");
 2736                         else
 2737                                 first = FALSE;
 2738                         sbuf_printf(sb, "%d", i);
 2739                 }
 2740         }
 2741         sbuf_printf(sb, "</cpu>\n");
 2742 
 2743         if (cg->cg_flags != 0) {
 2744                 sbuf_printf(sb, "%*s <flags>", indent, "");
 2745                 if ((cg->cg_flags & CG_FLAG_HTT) != 0)
 2746                         sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
 2747                 if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
 2748                         sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
 2749                 if ((cg->cg_flags & CG_FLAG_SMT) != 0)
 2750                         sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
 2751                 sbuf_printf(sb, "</flags>\n");
 2752         }
 2753 
 2754         if (cg->cg_children > 0) {
 2755                 sbuf_printf(sb, "%*s <children>\n", indent, "");
 2756                 for (i = 0; i < cg->cg_children; i++)
 2757                         sysctl_kern_sched_topology_spec_internal(sb, 
 2758                             &cg->cg_child[i], indent+2);
 2759                 sbuf_printf(sb, "%*s </children>\n", indent, "");
 2760         }
 2761         sbuf_printf(sb, "%*s</group>\n", indent, "");
 2762         return (0);
 2763 }
 2764 
 2765 /*
 2766  * Sysctl handler for retrieving topology dump. It's a wrapper for
 2767  * the recursive sysctl_kern_smp_topology_spec_internal().
 2768  */
 2769 static int
 2770 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
 2771 {
 2772         struct sbuf *topo;
 2773         int err;
 2774 
 2775         KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
 2776 
 2777         topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
 2778         if (topo == NULL)
 2779                 return (ENOMEM);
 2780 
 2781         sbuf_printf(topo, "<groups>\n");
 2782         err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
 2783         sbuf_printf(topo, "</groups>\n");
 2784 
 2785         if (err == 0) {
 2786                 sbuf_finish(topo);
 2787                 err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
 2788         }
 2789         sbuf_delete(topo);
 2790         return (err);
 2791 }
 2792 
 2793 #endif
 2794 
 2795 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
 2796 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
 2797     "Scheduler name");
 2798 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
 2799     "Slice size for timeshare threads");
 2800 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
 2801      "Interactivity score threshold");
 2802 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
 2803      0,"Min priority for preemption, lower priorities have greater precedence");
 2804 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
 2805      0,"Controls whether static kernel priorities are assigned to sleeping threads.");
 2806 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins,
 2807      0,"Number of times idle will spin waiting for new work.");
 2808 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh,
 2809      0,"Threshold before we will permit idle spinning.");
 2810 #ifdef SMP
 2811 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
 2812     "Number of hz ticks to keep thread affinity for");
 2813 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
 2814     "Enables the long-term load balancer");
 2815 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
 2816     &balance_interval, 0,
 2817     "Average frequency in stathz ticks to run the long-term balancer");
 2818 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
 2819     "Attempts to steal work from other cores before idling");
 2820 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
 2821     "Minimum load on remote cpu before we'll steal");
 2822 
 2823 /* Retrieve SMP topology */
 2824 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
 2825     CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A", 
 2826     "XML dump of detected CPU topology");
 2827 
 2828 #endif
 2829 
 2830 /* ps compat.  All cpu percentages from ULE are weighted. */
 2831 static int ccpu = 0;
 2832 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");

Cache object: ac2da86bd78dd6129ed2fd25d6469b98


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.