The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sched_ule.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice unmodified, this list of conditions, and the following
   12  *    disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 /*
   30  * This file implements the ULE scheduler.  ULE supports independent CPU
   31  * run queues and fine grain locking.  It has superior interactive
   32  * performance under load even on uni-processor systems.
   33  *
   34  * etymology:
   35  *   ULE is the last three letters in schedule.  It owes its name to a
   36  * generic user created for a scheduling system by Paul Mikesell at
   37  * Isilon Systems and a general lack of creativity on the part of the author.
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD$");
   42 
   43 #include "opt_hwpmc_hooks.h"
   44 #include "opt_sched.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/kdb.h>
   49 #include <sys/kernel.h>
   50 #include <sys/ktr.h>
   51 #include <sys/limits.h>
   52 #include <sys/lock.h>
   53 #include <sys/mutex.h>
   54 #include <sys/proc.h>
   55 #include <sys/resource.h>
   56 #include <sys/resourcevar.h>
   57 #include <sys/sched.h>
   58 #include <sys/sdt.h>
   59 #include <sys/smp.h>
   60 #include <sys/sx.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/sysproto.h>
   63 #include <sys/turnstile.h>
   64 #include <sys/umtx.h>
   65 #include <sys/vmmeter.h>
   66 #include <sys/cpuset.h>
   67 #include <sys/sbuf.h>
   68 
   69 #ifdef HWPMC_HOOKS
   70 #include <sys/pmckern.h>
   71 #endif
   72 
   73 #ifdef KDTRACE_HOOKS
   74 #include <sys/dtrace_bsd.h>
   75 int __read_mostly               dtrace_vtime_active;
   76 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
   77 #endif
   78 
   79 #include <machine/cpu.h>
   80 #include <machine/smp.h>
   81 
   82 #define KTR_ULE 0
   83 
   84 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
   85 #define TDQ_NAME_LEN    (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
   86 #define TDQ_LOADNAME_LEN        (sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
   87 
   88 /*
   89  * Thread scheduler specific section.  All fields are protected
   90  * by the thread lock.
   91  */
   92 struct td_sched {       
   93         struct runq     *ts_runq;       /* Run-queue we're queued on. */
   94         short           ts_flags;       /* TSF_* flags. */
   95         int             ts_cpu;         /* CPU that we have affinity for. */
   96         int             ts_rltick;      /* Real last tick, for affinity. */
   97         int             ts_slice;       /* Ticks of slice remaining. */
   98         u_int           ts_slptime;     /* Number of ticks we vol. slept */
   99         u_int           ts_runtime;     /* Number of ticks we were running */
  100         int             ts_ltick;       /* Last tick that we were running on */
  101         int             ts_ftick;       /* First tick that we were running on */
  102         int             ts_ticks;       /* Tick count */
  103 #ifdef KTR
  104         char            ts_name[TS_NAME_LEN];
  105 #endif
  106 };
  107 /* flags kept in ts_flags */
  108 #define TSF_BOUND       0x0001          /* Thread can not migrate. */
  109 #define TSF_XFERABLE    0x0002          /* Thread was added as transferable. */
  110 
  111 #define THREAD_CAN_MIGRATE(td)  ((td)->td_pinned == 0)
  112 #define THREAD_CAN_SCHED(td, cpu)       \
  113     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
  114 
  115 _Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
  116     sizeof(struct thread0_storage),
  117     "increase struct thread0_storage.t0st_sched size");
  118 
  119 /*
  120  * Priority ranges used for interactive and non-interactive timeshare
  121  * threads.  The timeshare priorities are split up into four ranges.
  122  * The first range handles interactive threads.  The last three ranges
  123  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
  124  * ranges supporting nice values.
  125  */
  126 #define PRI_TIMESHARE_RANGE     (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
  127 #define PRI_INTERACT_RANGE      ((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
  128 #define PRI_BATCH_RANGE         (PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
  129 
  130 #define PRI_MIN_INTERACT        PRI_MIN_TIMESHARE
  131 #define PRI_MAX_INTERACT        (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
  132 #define PRI_MIN_BATCH           (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
  133 #define PRI_MAX_BATCH           PRI_MAX_TIMESHARE
  134 
  135 /*
  136  * Cpu percentage computation macros and defines.
  137  *
  138  * SCHED_TICK_SECS:     Number of seconds to average the cpu usage across.
  139  * SCHED_TICK_TARG:     Number of hz ticks to average the cpu usage across.
  140  * SCHED_TICK_MAX:      Maximum number of ticks before scaling back.
  141  * SCHED_TICK_SHIFT:    Shift factor to avoid rounding away results.
  142  * SCHED_TICK_HZ:       Compute the number of hz ticks for a given ticks count.
  143  * SCHED_TICK_TOTAL:    Gives the amount of time we've been recording ticks.
  144  */
  145 #define SCHED_TICK_SECS         10
  146 #define SCHED_TICK_TARG         (hz * SCHED_TICK_SECS)
  147 #define SCHED_TICK_MAX          (SCHED_TICK_TARG + hz)
  148 #define SCHED_TICK_SHIFT        10
  149 #define SCHED_TICK_HZ(ts)       ((ts)->ts_ticks >> SCHED_TICK_SHIFT)
  150 #define SCHED_TICK_TOTAL(ts)    (max((ts)->ts_ltick - (ts)->ts_ftick, hz))
  151 
  152 /*
  153  * These macros determine priorities for non-interactive threads.  They are
  154  * assigned a priority based on their recent cpu utilization as expressed
  155  * by the ratio of ticks to the tick total.  NHALF priorities at the start
  156  * and end of the MIN to MAX timeshare range are only reachable with negative
  157  * or positive nice respectively.
  158  *
  159  * PRI_RANGE:   Priority range for utilization dependent priorities.
  160  * PRI_NRESV:   Number of nice values.
  161  * PRI_TICKS:   Compute a priority in PRI_RANGE from the ticks count and total.
  162  * PRI_NICE:    Determines the part of the priority inherited from nice.
  163  */
  164 #define SCHED_PRI_NRESV         (PRIO_MAX - PRIO_MIN)
  165 #define SCHED_PRI_NHALF         (SCHED_PRI_NRESV / 2)
  166 #define SCHED_PRI_MIN           (PRI_MIN_BATCH + SCHED_PRI_NHALF)
  167 #define SCHED_PRI_MAX           (PRI_MAX_BATCH - SCHED_PRI_NHALF)
  168 #define SCHED_PRI_RANGE         (SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
  169 #define SCHED_PRI_TICKS(ts)                                             \
  170     (SCHED_TICK_HZ((ts)) /                                              \
  171     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
  172 #define SCHED_PRI_NICE(nice)    (nice)
  173 
  174 /*
  175  * These determine the interactivity of a process.  Interactivity differs from
  176  * cpu utilization in that it expresses the voluntary time slept vs time ran
  177  * while cpu utilization includes all time not running.  This more accurately
  178  * models the intent of the thread.
  179  *
  180  * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
  181  *              before throttling back.
  182  * SLP_RUN_FORK:        Maximum slp+run time to inherit at fork time.
  183  * INTERACT_MAX:        Maximum interactivity value.  Smaller is better.
  184  * INTERACT_THRESH:     Threshold for placement on the current runq.
  185  */
  186 #define SCHED_SLP_RUN_MAX       ((hz * 5) << SCHED_TICK_SHIFT)
  187 #define SCHED_SLP_RUN_FORK      ((hz / 2) << SCHED_TICK_SHIFT)
  188 #define SCHED_INTERACT_MAX      (100)
  189 #define SCHED_INTERACT_HALF     (SCHED_INTERACT_MAX / 2)
  190 #define SCHED_INTERACT_THRESH   (30)
  191 
  192 /*
  193  * These parameters determine the slice behavior for batch work.
  194  */
  195 #define SCHED_SLICE_DEFAULT_DIVISOR     10      /* ~94 ms, 12 stathz ticks. */
  196 #define SCHED_SLICE_MIN_DIVISOR         6       /* DEFAULT/MIN = ~16 ms. */
  197 
  198 /* Flags kept in td_flags. */
  199 #define TDF_PICKCPU     TDF_SCHED0      /* Thread should pick new CPU. */
  200 #define TDF_SLICEEND    TDF_SCHED2      /* Thread time slice is over. */
  201 
  202 /*
  203  * tickincr:            Converts a stathz tick into a hz domain scaled by
  204  *                      the shift factor.  Without the shift the error rate
  205  *                      due to rounding would be unacceptably high.
  206  * realstathz:          stathz is sometimes 0 and run off of hz.
  207  * sched_slice:         Runtime of each thread before rescheduling.
  208  * preempt_thresh:      Priority threshold for preemption and remote IPIs.
  209  */
  210 static u_int __read_mostly sched_interact = SCHED_INTERACT_THRESH;
  211 static int __read_mostly tickincr = 8 << SCHED_TICK_SHIFT;
  212 static int __read_mostly realstathz = 127;      /* reset during boot. */
  213 static int __read_mostly sched_slice = 10;      /* reset during boot. */
  214 static int __read_mostly sched_slice_min = 1;   /* reset during boot. */
  215 #ifdef PREEMPTION
  216 #ifdef FULL_PREEMPTION
  217 static int __read_mostly preempt_thresh = PRI_MAX_IDLE;
  218 #else
  219 static int __read_mostly preempt_thresh = PRI_MIN_KERN;
  220 #endif
  221 #else 
  222 static int __read_mostly preempt_thresh = 0;
  223 #endif
  224 static int __read_mostly static_boost = PRI_MIN_BATCH;
  225 static int __read_mostly sched_idlespins = 10000;
  226 static int __read_mostly sched_idlespinthresh = -1;
  227 
  228 /*
  229  * tdq - per processor runqs and statistics.  All fields are protected by the
  230  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
  231  * locking in sched_pickcpu();
  232  */
  233 struct tdq {
  234         /* 
  235          * Ordered to improve efficiency of cpu_search() and switch().
  236          * tdq_lock is padded to avoid false sharing with tdq_load and
  237          * tdq_cpu_idle.
  238          */
  239         struct mtx_padalign tdq_lock;           /* run queue lock. */
  240         struct cpu_group *tdq_cg;               /* Pointer to cpu topology. */
  241         volatile int    tdq_load;               /* Aggregate load. */
  242         volatile int    tdq_cpu_idle;           /* cpu_idle() is active. */
  243         int             tdq_sysload;            /* For loadavg, !ITHD load. */
  244         volatile int    tdq_transferable;       /* Transferable thread count. */
  245         volatile short  tdq_switchcnt;          /* Switches this tick. */
  246         volatile short  tdq_oldswitchcnt;       /* Switches last tick. */
  247         u_char          tdq_lowpri;             /* Lowest priority thread. */
  248         u_char          tdq_owepreempt;         /* Remote preemption pending. */
  249         u_char          tdq_idx;                /* Current insert index. */
  250         u_char          tdq_ridx;               /* Current removal index. */
  251         int             tdq_id;                 /* cpuid. */
  252         struct runq     tdq_realtime;           /* real-time run queue. */
  253         struct runq     tdq_timeshare;          /* timeshare run queue. */
  254         struct runq     tdq_idle;               /* Queue of IDLE threads. */
  255         char            tdq_name[TDQ_NAME_LEN];
  256 #ifdef KTR
  257         char            tdq_loadname[TDQ_LOADNAME_LEN];
  258 #endif
  259 } __aligned(64);
  260 
  261 /* Idle thread states and config. */
  262 #define TDQ_RUNNING     1
  263 #define TDQ_IDLE        2
  264 
  265 #ifdef SMP
  266 struct cpu_group __read_mostly *cpu_top;                /* CPU topology */
  267 
  268 #define SCHED_AFFINITY_DEFAULT  (max(1, hz / 1000))
  269 #define SCHED_AFFINITY(ts, t)   ((ts)->ts_rltick > ticks - ((t) * affinity))
  270 
  271 /*
  272  * Run-time tunables.
  273  */
  274 static int rebalance = 1;
  275 static int balance_interval = 128;      /* Default set in sched_initticks(). */
  276 static int __read_mostly affinity;
  277 static int __read_mostly steal_idle = 1;
  278 static int __read_mostly steal_thresh = 2;
  279 static int __read_mostly always_steal = 0;
  280 static int __read_mostly trysteal_limit = 2;
  281 
  282 /*
  283  * One thread queue per processor.
  284  */
  285 static struct tdq __read_mostly *balance_tdq;
  286 static int balance_ticks;
  287 DPCPU_DEFINE_STATIC(struct tdq, tdq);
  288 DPCPU_DEFINE_STATIC(uint32_t, randomval);
  289 
  290 #define TDQ_SELF()      ((struct tdq *)PCPU_GET(sched))
  291 #define TDQ_CPU(x)      (DPCPU_ID_PTR((x), tdq))
  292 #define TDQ_ID(x)       ((x)->tdq_id)
  293 #else   /* !SMP */
  294 static struct tdq       tdq_cpu;
  295 
  296 #define TDQ_ID(x)       (0)
  297 #define TDQ_SELF()      (&tdq_cpu)
  298 #define TDQ_CPU(x)      (&tdq_cpu)
  299 #endif
  300 
  301 #define TDQ_LOCK_ASSERT(t, type)        mtx_assert(TDQ_LOCKPTR((t)), (type))
  302 #define TDQ_LOCK(t)             mtx_lock_spin(TDQ_LOCKPTR((t)))
  303 #define TDQ_LOCK_FLAGS(t, f)    mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
  304 #define TDQ_TRYLOCK(t)          mtx_trylock_spin(TDQ_LOCKPTR((t)))
  305 #define TDQ_TRYLOCK_FLAGS(t, f) mtx_trylock_spin_flags(TDQ_LOCKPTR((t)), (f))
  306 #define TDQ_UNLOCK(t)           mtx_unlock_spin(TDQ_LOCKPTR((t)))
  307 #define TDQ_LOCKPTR(t)          ((struct mtx *)(&(t)->tdq_lock))
  308 
  309 static void sched_priority(struct thread *);
  310 static void sched_thread_priority(struct thread *, u_char);
  311 static int sched_interact_score(struct thread *);
  312 static void sched_interact_update(struct thread *);
  313 static void sched_interact_fork(struct thread *);
  314 static void sched_pctcpu_update(struct td_sched *, int);
  315 
  316 /* Operations on per processor queues */
  317 static struct thread *tdq_choose(struct tdq *);
  318 static void tdq_setup(struct tdq *, int i);
  319 static void tdq_load_add(struct tdq *, struct thread *);
  320 static void tdq_load_rem(struct tdq *, struct thread *);
  321 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
  322 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
  323 static inline int sched_shouldpreempt(int, int, int);
  324 void tdq_print(int cpu);
  325 static void runq_print(struct runq *rq);
  326 static void tdq_add(struct tdq *, struct thread *, int);
  327 #ifdef SMP
  328 static struct thread *tdq_move(struct tdq *, struct tdq *);
  329 static int tdq_idled(struct tdq *);
  330 static void tdq_notify(struct tdq *, struct thread *);
  331 static struct thread *tdq_steal(struct tdq *, int);
  332 static struct thread *runq_steal(struct runq *, int);
  333 static int sched_pickcpu(struct thread *, int);
  334 static void sched_balance(void);
  335 static int sched_balance_pair(struct tdq *, struct tdq *);
  336 static inline struct tdq *sched_setcpu(struct thread *, int, int);
  337 static inline void thread_unblock_switch(struct thread *, struct mtx *);
  338 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
  339 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 
  340     struct cpu_group *cg, int indent);
  341 #endif
  342 
  343 static void sched_setup(void *dummy);
  344 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
  345 
  346 static void sched_initticks(void *dummy);
  347 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
  348     NULL);
  349 
  350 SDT_PROVIDER_DEFINE(sched);
  351 
  352 SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *", 
  353     "struct proc *", "uint8_t");
  354 SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *", 
  355     "struct proc *", "void *");
  356 SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *", 
  357     "struct proc *", "void *", "int");
  358 SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *", 
  359     "struct proc *", "uint8_t", "struct thread *");
  360 SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
  361 SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *", 
  362     "struct proc *");
  363 SDT_PROBE_DEFINE(sched, , , on__cpu);
  364 SDT_PROBE_DEFINE(sched, , , remain__cpu);
  365 SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *", 
  366     "struct proc *");
  367 
  368 /*
  369  * Print the threads waiting on a run-queue.
  370  */
  371 static void
  372 runq_print(struct runq *rq)
  373 {
  374         struct rqhead *rqh;
  375         struct thread *td;
  376         int pri;
  377         int j;
  378         int i;
  379 
  380         for (i = 0; i < RQB_LEN; i++) {
  381                 printf("\t\trunq bits %d 0x%zx\n",
  382                     i, rq->rq_status.rqb_bits[i]);
  383                 for (j = 0; j < RQB_BPW; j++)
  384                         if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
  385                                 pri = j + (i << RQB_L2BPW);
  386                                 rqh = &rq->rq_queues[pri];
  387                                 TAILQ_FOREACH(td, rqh, td_runq) {
  388                                         printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
  389                                             td, td->td_name, td->td_priority,
  390                                             td->td_rqindex, pri);
  391                                 }
  392                         }
  393         }
  394 }
  395 
  396 /*
  397  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
  398  */
  399 void
  400 tdq_print(int cpu)
  401 {
  402         struct tdq *tdq;
  403 
  404         tdq = TDQ_CPU(cpu);
  405 
  406         printf("tdq %d:\n", TDQ_ID(tdq));
  407         printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
  408         printf("\tLock name:      %s\n", tdq->tdq_name);
  409         printf("\tload:           %d\n", tdq->tdq_load);
  410         printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
  411         printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
  412         printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
  413         printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
  414         printf("\tload transferable: %d\n", tdq->tdq_transferable);
  415         printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
  416         printf("\trealtime runq:\n");
  417         runq_print(&tdq->tdq_realtime);
  418         printf("\ttimeshare runq:\n");
  419         runq_print(&tdq->tdq_timeshare);
  420         printf("\tidle runq:\n");
  421         runq_print(&tdq->tdq_idle);
  422 }
  423 
  424 static inline int
  425 sched_shouldpreempt(int pri, int cpri, int remote)
  426 {
  427         /*
  428          * If the new priority is not better than the current priority there is
  429          * nothing to do.
  430          */
  431         if (pri >= cpri)
  432                 return (0);
  433         /*
  434          * Always preempt idle.
  435          */
  436         if (cpri >= PRI_MIN_IDLE)
  437                 return (1);
  438         /*
  439          * If preemption is disabled don't preempt others.
  440          */
  441         if (preempt_thresh == 0)
  442                 return (0);
  443         /*
  444          * Preempt if we exceed the threshold.
  445          */
  446         if (pri <= preempt_thresh)
  447                 return (1);
  448         /*
  449          * If we're interactive or better and there is non-interactive
  450          * or worse running preempt only remote processors.
  451          */
  452         if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
  453                 return (1);
  454         return (0);
  455 }
  456 
  457 /*
  458  * Add a thread to the actual run-queue.  Keeps transferable counts up to
  459  * date with what is actually on the run-queue.  Selects the correct
  460  * queue position for timeshare threads.
  461  */
  462 static __inline void
  463 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
  464 {
  465         struct td_sched *ts;
  466         u_char pri;
  467 
  468         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  469         THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
  470 
  471         pri = td->td_priority;
  472         ts = td_get_sched(td);
  473         TD_SET_RUNQ(td);
  474         if (THREAD_CAN_MIGRATE(td)) {
  475                 tdq->tdq_transferable++;
  476                 ts->ts_flags |= TSF_XFERABLE;
  477         }
  478         if (pri < PRI_MIN_BATCH) {
  479                 ts->ts_runq = &tdq->tdq_realtime;
  480         } else if (pri <= PRI_MAX_BATCH) {
  481                 ts->ts_runq = &tdq->tdq_timeshare;
  482                 KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
  483                         ("Invalid priority %d on timeshare runq", pri));
  484                 /*
  485                  * This queue contains only priorities between MIN and MAX
  486                  * realtime.  Use the whole queue to represent these values.
  487                  */
  488                 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
  489                         pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
  490                         pri = (pri + tdq->tdq_idx) % RQ_NQS;
  491                         /*
  492                          * This effectively shortens the queue by one so we
  493                          * can have a one slot difference between idx and
  494                          * ridx while we wait for threads to drain.
  495                          */
  496                         if (tdq->tdq_ridx != tdq->tdq_idx &&
  497                             pri == tdq->tdq_ridx)
  498                                 pri = (unsigned char)(pri - 1) % RQ_NQS;
  499                 } else
  500                         pri = tdq->tdq_ridx;
  501                 runq_add_pri(ts->ts_runq, td, pri, flags);
  502                 return;
  503         } else
  504                 ts->ts_runq = &tdq->tdq_idle;
  505         runq_add(ts->ts_runq, td, flags);
  506 }
  507 
  508 /* 
  509  * Remove a thread from a run-queue.  This typically happens when a thread
  510  * is selected to run.  Running threads are not on the queue and the
  511  * transferable count does not reflect them.
  512  */
  513 static __inline void
  514 tdq_runq_rem(struct tdq *tdq, struct thread *td)
  515 {
  516         struct td_sched *ts;
  517 
  518         ts = td_get_sched(td);
  519         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  520         THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
  521         KASSERT(ts->ts_runq != NULL,
  522             ("tdq_runq_remove: thread %p null ts_runq", td));
  523         if (ts->ts_flags & TSF_XFERABLE) {
  524                 tdq->tdq_transferable--;
  525                 ts->ts_flags &= ~TSF_XFERABLE;
  526         }
  527         if (ts->ts_runq == &tdq->tdq_timeshare) {
  528                 if (tdq->tdq_idx != tdq->tdq_ridx)
  529                         runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
  530                 else
  531                         runq_remove_idx(ts->ts_runq, td, NULL);
  532         } else
  533                 runq_remove(ts->ts_runq, td);
  534 }
  535 
  536 /*
  537  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
  538  * for this thread to the referenced thread queue.
  539  */
  540 static void
  541 tdq_load_add(struct tdq *tdq, struct thread *td)
  542 {
  543 
  544         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  545         THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
  546 
  547         tdq->tdq_load++;
  548         if ((td->td_flags & TDF_NOLOAD) == 0)
  549                 tdq->tdq_sysload++;
  550         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  551         SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
  552 }
  553 
  554 /*
  555  * Remove the load from a thread that is transitioning to a sleep state or
  556  * exiting.
  557  */
  558 static void
  559 tdq_load_rem(struct tdq *tdq, struct thread *td)
  560 {
  561 
  562         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  563         THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
  564         KASSERT(tdq->tdq_load != 0,
  565             ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
  566 
  567         tdq->tdq_load--;
  568         if ((td->td_flags & TDF_NOLOAD) == 0)
  569                 tdq->tdq_sysload--;
  570         KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
  571         SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
  572 }
  573 
  574 /*
  575  * Bound timeshare latency by decreasing slice size as load increases.  We
  576  * consider the maximum latency as the sum of the threads waiting to run
  577  * aside from curthread and target no more than sched_slice latency but
  578  * no less than sched_slice_min runtime.
  579  */
  580 static inline int
  581 tdq_slice(struct tdq *tdq)
  582 {
  583         int load;
  584 
  585         /*
  586          * It is safe to use sys_load here because this is called from
  587          * contexts where timeshare threads are running and so there
  588          * cannot be higher priority load in the system.
  589          */
  590         load = tdq->tdq_sysload - 1;
  591         if (load >= SCHED_SLICE_MIN_DIVISOR)
  592                 return (sched_slice_min);
  593         if (load <= 1)
  594                 return (sched_slice);
  595         return (sched_slice / load);
  596 }
  597 
  598 /*
  599  * Set lowpri to its exact value by searching the run-queue and
  600  * evaluating curthread.  curthread may be passed as an optimization.
  601  */
  602 static void
  603 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
  604 {
  605         struct thread *td;
  606 
  607         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
  608         if (ctd == NULL)
  609                 ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
  610         td = tdq_choose(tdq);
  611         if (td == NULL || td->td_priority > ctd->td_priority)
  612                 tdq->tdq_lowpri = ctd->td_priority;
  613         else
  614                 tdq->tdq_lowpri = td->td_priority;
  615 }
  616 
  617 #ifdef SMP
  618 /*
  619  * We need some randomness. Implement a classic Linear Congruential
  620  * Generator X_{n+1}=(aX_n+c) mod m. These values are optimized for
  621  * m = 2^32, a = 69069 and c = 5. We only return the upper 16 bits
  622  * of the random state (in the low bits of our answer) to keep
  623  * the maximum randomness.
  624  */
  625 static uint32_t
  626 sched_random(void)
  627 {
  628         uint32_t *rndptr;
  629 
  630         rndptr = DPCPU_PTR(randomval);
  631         *rndptr = *rndptr * 69069 + 5;
  632 
  633         return (*rndptr >> 16);
  634 }
  635 
  636 struct cpu_search {
  637         cpuset_t *cs_mask;      /* The mask of allowed CPUs to choose from. */
  638         int     cs_prefer;      /* Prefer this CPU and groups including it. */
  639         int     cs_running;     /* The thread is now running at cs_prefer. */
  640         int     cs_pri;         /* Min priority for low. */
  641         int     cs_load;        /* Max load for low, min load for high. */
  642         int     cs_trans;       /* Min transferable load for high. */
  643 };
  644 
  645 struct cpu_search_res {
  646         int     csr_cpu;        /* The best CPU found. */
  647         int     csr_load;       /* The load of cs_cpu. */
  648 };
  649 
  650 /*
  651  * Search the tree of cpu_groups for the lowest or highest loaded CPU.
  652  * These routines actually compare the load on all paths through the tree
  653  * and find the least loaded cpu on the least loaded path, which may differ
  654  * from the least loaded cpu in the system.  This balances work among caches
  655  * and buses.
  656  */
  657 static int
  658 cpu_search_lowest(const struct cpu_group *cg, const struct cpu_search *s,
  659     struct cpu_search_res *r)
  660 {
  661         struct cpu_search_res lr;
  662         struct tdq *tdq;
  663         int c, bload, l, load, p, total;
  664 
  665         total = 0;
  666         bload = INT_MAX;
  667         r->csr_cpu = -1;
  668 
  669         /* Loop through children CPU groups if there are any. */
  670         if (cg->cg_children > 0) {
  671                 for (c = cg->cg_children - 1; c >= 0; c--) {
  672                         load = cpu_search_lowest(&cg->cg_child[c], s, &lr);
  673                         total += load;
  674 
  675                         /*
  676                          * When balancing do not prefer SMT groups with load >1.
  677                          * It allows round-robin between SMT groups with equal
  678                          * load within parent group for more fair scheduling.
  679                          */
  680                         if (__predict_false(s->cs_running) &&
  681                             (cg->cg_child[c].cg_flags & CG_FLAG_THREAD) &&
  682                             load >= 128 && (load & 128) != 0)
  683                                 load += 128;
  684 
  685                         if (lr.csr_cpu >= 0 && (load < bload ||
  686                             (load == bload && lr.csr_load < r->csr_load))) {
  687                                 bload = load;
  688                                 r->csr_cpu = lr.csr_cpu;
  689                                 r->csr_load = lr.csr_load;
  690                         }
  691                 }
  692                 return (total);
  693         }
  694 
  695         /* Loop through children CPUs otherwise. */
  696         for (c = cg->cg_last; c >= cg->cg_first; c--) {
  697                 if (!CPU_ISSET(c, &cg->cg_mask))
  698                         continue;
  699                 tdq = TDQ_CPU(c);
  700                 l = tdq->tdq_load;
  701                 if (c == s->cs_prefer) {
  702                         if (__predict_false(s->cs_running))
  703                                 l--;
  704                         p = 128;
  705                 } else
  706                         p = 0;
  707                 load = l * 256;
  708                 total += load - p;
  709 
  710                 /*
  711                  * Check this CPU is acceptable.
  712                  * If the threads is already on the CPU, don't look on the TDQ
  713                  * priority, since it can be the priority of the thread itself.
  714                  */
  715                 if (l > s->cs_load || (tdq->tdq_lowpri <= s->cs_pri &&
  716                      (!s->cs_running || c != s->cs_prefer)) ||
  717                     !CPU_ISSET(c, s->cs_mask))
  718                         continue;
  719 
  720                 /*
  721                  * When balancing do not prefer CPUs with load > 1.
  722                  * It allows round-robin between CPUs with equal load
  723                  * within the CPU group for more fair scheduling.
  724                  */
  725                 if (__predict_false(s->cs_running) && l > 0)
  726                         p = 0;
  727 
  728                 load -= sched_random() % 128;
  729                 if (bload > load - p) {
  730                         bload = load - p;
  731                         r->csr_cpu = c;
  732                         r->csr_load = load;
  733                 }
  734         }
  735         return (total);
  736 }
  737 
  738 static int
  739 cpu_search_highest(const struct cpu_group *cg, const struct cpu_search *s,
  740     struct cpu_search_res *r)
  741 {
  742         struct cpu_search_res lr;
  743         struct tdq *tdq;
  744         int c, bload, l, load, total;
  745 
  746         total = 0;
  747         bload = INT_MIN;
  748         r->csr_cpu = -1;
  749 
  750         /* Loop through children CPU groups if there are any. */
  751         if (cg->cg_children > 0) {
  752                 for (c = cg->cg_children - 1; c >= 0; c--) {
  753                         load = cpu_search_highest(&cg->cg_child[c], s, &lr);
  754                         total += load;
  755                         if (lr.csr_cpu >= 0 && (load > bload ||
  756                             (load == bload && lr.csr_load > r->csr_load))) {
  757                                 bload = load;
  758                                 r->csr_cpu = lr.csr_cpu;
  759                                 r->csr_load = lr.csr_load;
  760                         }
  761                 }
  762                 return (total);
  763         }
  764 
  765         /* Loop through children CPUs otherwise. */
  766         for (c = cg->cg_last; c >= cg->cg_first; c--) {
  767                 if (!CPU_ISSET(c, &cg->cg_mask))
  768                         continue;
  769                 tdq = TDQ_CPU(c);
  770                 l = tdq->tdq_load;
  771                 load = l * 256;
  772                 total += load;
  773 
  774                 /*
  775                  * Check this CPU is acceptable.
  776                  */
  777                 if (l < s->cs_load || (tdq->tdq_transferable < s->cs_trans) ||
  778                     !CPU_ISSET(c, s->cs_mask))
  779                         continue;
  780 
  781                 load -= sched_random() % 256;
  782                 if (load > bload) {
  783                         bload = load;
  784                         r->csr_cpu = c;
  785                 }
  786         }
  787         r->csr_load = bload;
  788         return (total);
  789 }
  790 
  791 /*
  792  * Find the cpu with the least load via the least loaded path that has a
  793  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
  794  * acceptable.
  795  */
  796 static inline int
  797 sched_lowest(const struct cpu_group *cg, cpuset_t *mask, int pri, int maxload,
  798     int prefer, int running)
  799 {
  800         struct cpu_search s;
  801         struct cpu_search_res r;
  802 
  803         s.cs_prefer = prefer;
  804         s.cs_running = running;
  805         s.cs_mask = mask;
  806         s.cs_pri = pri;
  807         s.cs_load = maxload;
  808         cpu_search_lowest(cg, &s, &r);
  809         return (r.csr_cpu);
  810 }
  811 
  812 /*
  813  * Find the cpu with the highest load via the highest loaded path.
  814  */
  815 static inline int
  816 sched_highest(const struct cpu_group *cg, cpuset_t *mask, int minload,
  817     int mintrans)
  818 {
  819         struct cpu_search s;
  820         struct cpu_search_res r;
  821 
  822         s.cs_mask = mask;
  823         s.cs_load = minload;
  824         s.cs_trans = mintrans;
  825         cpu_search_highest(cg, &s, &r);
  826         return (r.csr_cpu);
  827 }
  828 
  829 static void
  830 sched_balance_group(struct cpu_group *cg)
  831 {
  832         struct tdq *tdq;
  833         struct thread *td;
  834         cpuset_t hmask, lmask;
  835         int high, low, anylow;
  836 
  837         CPU_FILL(&hmask);
  838         for (;;) {
  839                 high = sched_highest(cg, &hmask, 1, 0);
  840                 /* Stop if there is no more CPU with transferrable threads. */
  841                 if (high == -1)
  842                         break;
  843                 CPU_CLR(high, &hmask);
  844                 CPU_COPY(&hmask, &lmask);
  845                 /* Stop if there is no more CPU left for low. */
  846                 if (CPU_EMPTY(&lmask))
  847                         break;
  848                 tdq = TDQ_CPU(high);
  849                 if (tdq->tdq_load == 1) {
  850                         /*
  851                          * There is only one running thread.  We can't move
  852                          * it from here, so tell it to pick new CPU by itself.
  853                          */
  854                         TDQ_LOCK(tdq);
  855                         td = pcpu_find(high)->pc_curthread;
  856                         if ((td->td_flags & TDF_IDLETD) == 0 &&
  857                             THREAD_CAN_MIGRATE(td)) {
  858                                 td->td_flags |= TDF_NEEDRESCHED | TDF_PICKCPU;
  859                                 if (high != curcpu)
  860                                         ipi_cpu(high, IPI_AST);
  861                         }
  862                         TDQ_UNLOCK(tdq);
  863                         break;
  864                 }
  865                 anylow = 1;
  866 nextlow:
  867                 if (tdq->tdq_transferable == 0)
  868                         continue;
  869                 low = sched_lowest(cg, &lmask, -1, tdq->tdq_load - 1, high, 1);
  870                 /* Stop if we looked well and found no less loaded CPU. */
  871                 if (anylow && low == -1)
  872                         break;
  873                 /* Go to next high if we found no less loaded CPU. */
  874                 if (low == -1)
  875                         continue;
  876                 /* Transfer thread from high to low. */
  877                 if (sched_balance_pair(tdq, TDQ_CPU(low))) {
  878                         /* CPU that got thread can no longer be a donor. */
  879                         CPU_CLR(low, &hmask);
  880                 } else {
  881                         /*
  882                          * If failed, then there is no threads on high
  883                          * that can run on this low. Drop low from low
  884                          * mask and look for different one.
  885                          */
  886                         CPU_CLR(low, &lmask);
  887                         anylow = 0;
  888                         goto nextlow;
  889                 }
  890         }
  891 }
  892 
  893 static void
  894 sched_balance(void)
  895 {
  896         struct tdq *tdq;
  897 
  898         balance_ticks = max(balance_interval / 2, 1) +
  899             (sched_random() % balance_interval);
  900         tdq = TDQ_SELF();
  901         TDQ_UNLOCK(tdq);
  902         sched_balance_group(cpu_top);
  903         TDQ_LOCK(tdq);
  904 }
  905 
  906 /*
  907  * Lock two thread queues using their address to maintain lock order.
  908  */
  909 static void
  910 tdq_lock_pair(struct tdq *one, struct tdq *two)
  911 {
  912         if (one < two) {
  913                 TDQ_LOCK(one);
  914                 TDQ_LOCK_FLAGS(two, MTX_DUPOK);
  915         } else {
  916                 TDQ_LOCK(two);
  917                 TDQ_LOCK_FLAGS(one, MTX_DUPOK);
  918         }
  919 }
  920 
  921 /*
  922  * Unlock two thread queues.  Order is not important here.
  923  */
  924 static void
  925 tdq_unlock_pair(struct tdq *one, struct tdq *two)
  926 {
  927         TDQ_UNLOCK(one);
  928         TDQ_UNLOCK(two);
  929 }
  930 
  931 /*
  932  * Transfer load between two imbalanced thread queues.
  933  */
  934 static int
  935 sched_balance_pair(struct tdq *high, struct tdq *low)
  936 {
  937         struct thread *td;
  938         int cpu;
  939 
  940         tdq_lock_pair(high, low);
  941         td = NULL;
  942         /*
  943          * Transfer a thread from high to low.
  944          */
  945         if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
  946             (td = tdq_move(high, low)) != NULL) {
  947                 /*
  948                  * In case the target isn't the current cpu notify it of the
  949                  * new load, possibly sending an IPI to force it to reschedule.
  950                  */
  951                 cpu = TDQ_ID(low);
  952                 if (cpu != PCPU_GET(cpuid))
  953                         tdq_notify(low, td);
  954         }
  955         tdq_unlock_pair(high, low);
  956         return (td != NULL);
  957 }
  958 
  959 /*
  960  * Move a thread from one thread queue to another.
  961  */
  962 static struct thread *
  963 tdq_move(struct tdq *from, struct tdq *to)
  964 {
  965         struct thread *td;
  966         struct tdq *tdq;
  967         int cpu;
  968 
  969         TDQ_LOCK_ASSERT(from, MA_OWNED);
  970         TDQ_LOCK_ASSERT(to, MA_OWNED);
  971 
  972         tdq = from;
  973         cpu = TDQ_ID(to);
  974         td = tdq_steal(tdq, cpu);
  975         if (td == NULL)
  976                 return (NULL);
  977 
  978         /*
  979          * Although the run queue is locked the thread may be
  980          * blocked.  We can not set the lock until it is unblocked.
  981          */
  982         thread_lock_block_wait(td);
  983         sched_rem(td);
  984         THREAD_LOCKPTR_ASSERT(td, TDQ_LOCKPTR(from));
  985         td->td_lock = TDQ_LOCKPTR(to);
  986         td_get_sched(td)->ts_cpu = cpu;
  987         tdq_add(to, td, SRQ_YIELDING);
  988 
  989         return (td);
  990 }
  991 
  992 /*
  993  * This tdq has idled.  Try to steal a thread from another cpu and switch
  994  * to it.
  995  */
  996 static int
  997 tdq_idled(struct tdq *tdq)
  998 {
  999         struct cpu_group *cg, *parent;
 1000         struct tdq *steal;
 1001         cpuset_t mask;
 1002         int cpu, switchcnt, goup;
 1003 
 1004         if (smp_started == 0 || steal_idle == 0 || tdq->tdq_cg == NULL)
 1005                 return (1);
 1006         CPU_FILL(&mask);
 1007         CPU_CLR(PCPU_GET(cpuid), &mask);
 1008     restart:
 1009         switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 1010         for (cg = tdq->tdq_cg, goup = 0; ; ) {
 1011                 cpu = sched_highest(cg, &mask, steal_thresh, 1);
 1012                 /*
 1013                  * We were assigned a thread but not preempted.  Returning
 1014                  * 0 here will cause our caller to switch to it.
 1015                  */
 1016                 if (tdq->tdq_load)
 1017                         return (0);
 1018 
 1019                 /*
 1020                  * We found no CPU to steal from in this group.  Escalate to
 1021                  * the parent and repeat.  But if parent has only two children
 1022                  * groups we can avoid searching this group again by searching
 1023                  * the other one specifically and then escalating two levels.
 1024                  */
 1025                 if (cpu == -1) {
 1026                         if (goup) {
 1027                                 cg = cg->cg_parent;
 1028                                 goup = 0;
 1029                         }
 1030                         parent = cg->cg_parent;
 1031                         if (parent == NULL)
 1032                                 return (1);
 1033                         if (parent->cg_children == 2) {
 1034                                 if (cg == &parent->cg_child[0])
 1035                                         cg = &parent->cg_child[1];
 1036                                 else
 1037                                         cg = &parent->cg_child[0];
 1038                                 goup = 1;
 1039                         } else
 1040                                 cg = parent;
 1041                         continue;
 1042                 }
 1043                 steal = TDQ_CPU(cpu);
 1044                 /*
 1045                  * The data returned by sched_highest() is stale and
 1046                  * the chosen CPU no longer has an eligible thread.
 1047                  *
 1048                  * Testing this ahead of tdq_lock_pair() only catches
 1049                  * this situation about 20% of the time on an 8 core
 1050                  * 16 thread Ryzen 7, but it still helps performance.
 1051                  */
 1052                 if (steal->tdq_load < steal_thresh ||
 1053                     steal->tdq_transferable == 0)
 1054                         goto restart;
 1055                 /*
 1056                  * Try to lock both queues. If we are assigned a thread while
 1057                  * waited for the lock, switch to it now instead of stealing.
 1058                  * If we can't get the lock, then somebody likely got there
 1059                  * first so continue searching.
 1060                  */
 1061                 TDQ_LOCK(tdq);
 1062                 if (tdq->tdq_load > 0) {
 1063                         mi_switch(SW_VOL | SWT_IDLE);
 1064                         return (0);
 1065                 }
 1066                 if (TDQ_TRYLOCK_FLAGS(steal, MTX_DUPOK) == 0) {
 1067                         TDQ_UNLOCK(tdq);
 1068                         CPU_CLR(cpu, &mask);
 1069                         continue;
 1070                 }
 1071                 /*
 1072                  * The data returned by sched_highest() is stale and
 1073                  * the chosen CPU no longer has an eligible thread, or
 1074                  * we were preempted and the CPU loading info may be out
 1075                  * of date.  The latter is rare.  In either case restart
 1076                  * the search.
 1077                  */
 1078                 if (steal->tdq_load < steal_thresh ||
 1079                     steal->tdq_transferable == 0 ||
 1080                     switchcnt != tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt) {
 1081                         tdq_unlock_pair(tdq, steal);
 1082                         goto restart;
 1083                 }
 1084                 /*
 1085                  * Steal the thread and switch to it.
 1086                  */
 1087                 if (tdq_move(steal, tdq) != NULL)
 1088                         break;
 1089                 /*
 1090                  * We failed to acquire a thread even though it looked
 1091                  * like one was available.  This could be due to affinity
 1092                  * restrictions or for other reasons.  Loop again after
 1093                  * removing this CPU from the set.  The restart logic
 1094                  * above does not restore this CPU to the set due to the
 1095                  * likelyhood of failing here again.
 1096                  */
 1097                 CPU_CLR(cpu, &mask);
 1098                 tdq_unlock_pair(tdq, steal);
 1099         }
 1100         TDQ_UNLOCK(steal);
 1101         mi_switch(SW_VOL | SWT_IDLE);
 1102         return (0);
 1103 }
 1104 
 1105 /*
 1106  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
 1107  */
 1108 static void
 1109 tdq_notify(struct tdq *tdq, struct thread *td)
 1110 {
 1111         struct thread *ctd;
 1112         int pri;
 1113         int cpu;
 1114 
 1115         if (tdq->tdq_owepreempt)
 1116                 return;
 1117         cpu = td_get_sched(td)->ts_cpu;
 1118         pri = td->td_priority;
 1119         ctd = pcpu_find(cpu)->pc_curthread;
 1120         if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
 1121                 return;
 1122 
 1123         /*
 1124          * Make sure that our caller's earlier update to tdq_load is
 1125          * globally visible before we read tdq_cpu_idle.  Idle thread
 1126          * accesses both of them without locks, and the order is important.
 1127          */
 1128         atomic_thread_fence_seq_cst();
 1129 
 1130         if (TD_IS_IDLETHREAD(ctd)) {
 1131                 /*
 1132                  * If the MD code has an idle wakeup routine try that before
 1133                  * falling back to IPI.
 1134                  */
 1135                 if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
 1136                         return;
 1137         }
 1138 
 1139         /*
 1140          * The run queues have been updated, so any switch on the remote CPU
 1141          * will satisfy the preemption request.
 1142          */
 1143         tdq->tdq_owepreempt = 1;
 1144         ipi_cpu(cpu, IPI_PREEMPT);
 1145 }
 1146 
 1147 /*
 1148  * Steals load from a timeshare queue.  Honors the rotating queue head
 1149  * index.
 1150  */
 1151 static struct thread *
 1152 runq_steal_from(struct runq *rq, int cpu, u_char start)
 1153 {
 1154         struct rqbits *rqb;
 1155         struct rqhead *rqh;
 1156         struct thread *td, *first;
 1157         int bit;
 1158         int i;
 1159 
 1160         rqb = &rq->rq_status;
 1161         bit = start & (RQB_BPW -1);
 1162         first = NULL;
 1163 again:
 1164         for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
 1165                 if (rqb->rqb_bits[i] == 0)
 1166                         continue;
 1167                 if (bit == 0)
 1168                         bit = RQB_FFS(rqb->rqb_bits[i]);
 1169                 for (; bit < RQB_BPW; bit++) {
 1170                         if ((rqb->rqb_bits[i] & (1ul << bit)) == 0)
 1171                                 continue;
 1172                         rqh = &rq->rq_queues[bit + (i << RQB_L2BPW)];
 1173                         TAILQ_FOREACH(td, rqh, td_runq) {
 1174                                 if (first) {
 1175                                         if (THREAD_CAN_MIGRATE(td) &&
 1176                                             THREAD_CAN_SCHED(td, cpu))
 1177                                                 return (td);
 1178                                 } else
 1179                                         first = td;
 1180                         }
 1181                 }
 1182         }
 1183         if (start != 0) {
 1184                 start = 0;
 1185                 goto again;
 1186         }
 1187 
 1188         if (first && THREAD_CAN_MIGRATE(first) &&
 1189             THREAD_CAN_SCHED(first, cpu))
 1190                 return (first);
 1191         return (NULL);
 1192 }
 1193 
 1194 /*
 1195  * Steals load from a standard linear queue.
 1196  */
 1197 static struct thread *
 1198 runq_steal(struct runq *rq, int cpu)
 1199 {
 1200         struct rqhead *rqh;
 1201         struct rqbits *rqb;
 1202         struct thread *td;
 1203         int word;
 1204         int bit;
 1205 
 1206         rqb = &rq->rq_status;
 1207         for (word = 0; word < RQB_LEN; word++) {
 1208                 if (rqb->rqb_bits[word] == 0)
 1209                         continue;
 1210                 for (bit = 0; bit < RQB_BPW; bit++) {
 1211                         if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
 1212                                 continue;
 1213                         rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
 1214                         TAILQ_FOREACH(td, rqh, td_runq)
 1215                                 if (THREAD_CAN_MIGRATE(td) &&
 1216                                     THREAD_CAN_SCHED(td, cpu))
 1217                                         return (td);
 1218                 }
 1219         }
 1220         return (NULL);
 1221 }
 1222 
 1223 /*
 1224  * Attempt to steal a thread in priority order from a thread queue.
 1225  */
 1226 static struct thread *
 1227 tdq_steal(struct tdq *tdq, int cpu)
 1228 {
 1229         struct thread *td;
 1230 
 1231         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1232         if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
 1233                 return (td);
 1234         if ((td = runq_steal_from(&tdq->tdq_timeshare,
 1235             cpu, tdq->tdq_ridx)) != NULL)
 1236                 return (td);
 1237         return (runq_steal(&tdq->tdq_idle, cpu));
 1238 }
 1239 
 1240 /*
 1241  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
 1242  * current lock and returns with the assigned queue locked.
 1243  */
 1244 static inline struct tdq *
 1245 sched_setcpu(struct thread *td, int cpu, int flags)
 1246 {
 1247 
 1248         struct tdq *tdq;
 1249         struct mtx *mtx;
 1250 
 1251         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1252         tdq = TDQ_CPU(cpu);
 1253         td_get_sched(td)->ts_cpu = cpu;
 1254         /*
 1255          * If the lock matches just return the queue.
 1256          */
 1257         if (td->td_lock == TDQ_LOCKPTR(tdq)) {
 1258                 KASSERT((flags & SRQ_HOLD) == 0,
 1259                     ("sched_setcpu: Invalid lock for SRQ_HOLD"));
 1260                 return (tdq);
 1261         }
 1262 
 1263         /*
 1264          * The hard case, migration, we need to block the thread first to
 1265          * prevent order reversals with other cpus locks.
 1266          */
 1267         spinlock_enter();
 1268         mtx = thread_lock_block(td);
 1269         if ((flags & SRQ_HOLD) == 0)
 1270                 mtx_unlock_spin(mtx);
 1271         TDQ_LOCK(tdq);
 1272         thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
 1273         spinlock_exit();
 1274         return (tdq);
 1275 }
 1276 
 1277 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
 1278 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
 1279 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
 1280 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
 1281 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
 1282 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
 1283 
 1284 static int
 1285 sched_pickcpu(struct thread *td, int flags)
 1286 {
 1287         struct cpu_group *cg, *ccg;
 1288         struct td_sched *ts;
 1289         struct tdq *tdq;
 1290         cpuset_t *mask;
 1291         int cpu, pri, r, self, intr;
 1292 
 1293         self = PCPU_GET(cpuid);
 1294         ts = td_get_sched(td);
 1295         KASSERT(!CPU_ABSENT(ts->ts_cpu), ("sched_pickcpu: Start scheduler on "
 1296             "absent CPU %d for thread %s.", ts->ts_cpu, td->td_name));
 1297         if (smp_started == 0)
 1298                 return (self);
 1299         /*
 1300          * Don't migrate a running thread from sched_switch().
 1301          */
 1302         if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
 1303                 return (ts->ts_cpu);
 1304         /*
 1305          * Prefer to run interrupt threads on the processors that generate
 1306          * the interrupt.
 1307          */
 1308         if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
 1309             curthread->td_intr_nesting_level) {
 1310                 tdq = TDQ_SELF();
 1311                 if (tdq->tdq_lowpri >= PRI_MIN_IDLE) {
 1312                         SCHED_STAT_INC(pickcpu_idle_affinity);
 1313                         return (self);
 1314                 }
 1315                 ts->ts_cpu = self;
 1316                 intr = 1;
 1317                 cg = tdq->tdq_cg;
 1318                 goto llc;
 1319         } else {
 1320                 intr = 0;
 1321                 tdq = TDQ_CPU(ts->ts_cpu);
 1322                 cg = tdq->tdq_cg;
 1323         }
 1324         /*
 1325          * If the thread can run on the last cpu and the affinity has not
 1326          * expired and it is idle, run it there.
 1327          */
 1328         if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
 1329             tdq->tdq_lowpri >= PRI_MIN_IDLE &&
 1330             SCHED_AFFINITY(ts, CG_SHARE_L2)) {
 1331                 if (cg->cg_flags & CG_FLAG_THREAD) {
 1332                         /* Check all SMT threads for being idle. */
 1333                         for (cpu = cg->cg_first; cpu <= cg->cg_last; cpu++) {
 1334                                 if (CPU_ISSET(cpu, &cg->cg_mask) &&
 1335                                     TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
 1336                                         break;
 1337                         }
 1338                         if (cpu > cg->cg_last) {
 1339                                 SCHED_STAT_INC(pickcpu_idle_affinity);
 1340                                 return (ts->ts_cpu);
 1341                         }
 1342                 } else {
 1343                         SCHED_STAT_INC(pickcpu_idle_affinity);
 1344                         return (ts->ts_cpu);
 1345                 }
 1346         }
 1347 llc:
 1348         /*
 1349          * Search for the last level cache CPU group in the tree.
 1350          * Skip SMT, identical groups and caches with expired affinity.
 1351          * Interrupt threads affinity is explicit and never expires.
 1352          */
 1353         for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
 1354                 if (cg->cg_flags & CG_FLAG_THREAD)
 1355                         continue;
 1356                 if (cg->cg_children == 1 || cg->cg_count == 1)
 1357                         continue;
 1358                 if (cg->cg_level == CG_SHARE_NONE ||
 1359                     (!intr && !SCHED_AFFINITY(ts, cg->cg_level)))
 1360                         continue;
 1361                 ccg = cg;
 1362         }
 1363         /* Found LLC shared by all CPUs, so do a global search. */
 1364         if (ccg == cpu_top)
 1365                 ccg = NULL;
 1366         cpu = -1;
 1367         mask = &td->td_cpuset->cs_mask;
 1368         pri = td->td_priority;
 1369         r = TD_IS_RUNNING(td);
 1370         /*
 1371          * Try hard to keep interrupts within found LLC.  Search the LLC for
 1372          * the least loaded CPU we can run now.  For NUMA systems it should
 1373          * be within target domain, and it also reduces scheduling overhead.
 1374          */
 1375         if (ccg != NULL && intr) {
 1376                 cpu = sched_lowest(ccg, mask, pri, INT_MAX, ts->ts_cpu, r);
 1377                 if (cpu >= 0)
 1378                         SCHED_STAT_INC(pickcpu_intrbind);
 1379         } else
 1380         /* Search the LLC for the least loaded idle CPU we can run now. */
 1381         if (ccg != NULL) {
 1382                 cpu = sched_lowest(ccg, mask, max(pri, PRI_MAX_TIMESHARE),
 1383                     INT_MAX, ts->ts_cpu, r);
 1384                 if (cpu >= 0)
 1385                         SCHED_STAT_INC(pickcpu_affinity);
 1386         }
 1387         /* Search globally for the least loaded CPU we can run now. */
 1388         if (cpu < 0) {
 1389                 cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu, r);
 1390                 if (cpu >= 0)
 1391                         SCHED_STAT_INC(pickcpu_lowest);
 1392         }
 1393         /* Search globally for the least loaded CPU. */
 1394         if (cpu < 0) {
 1395                 cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu, r);
 1396                 if (cpu >= 0)
 1397                         SCHED_STAT_INC(pickcpu_lowest);
 1398         }
 1399         KASSERT(cpu >= 0, ("sched_pickcpu: Failed to find a cpu."));
 1400         KASSERT(!CPU_ABSENT(cpu), ("sched_pickcpu: Picked absent CPU %d.", cpu));
 1401         /*
 1402          * Compare the lowest loaded cpu to current cpu.
 1403          */
 1404         tdq = TDQ_CPU(cpu);
 1405         if (THREAD_CAN_SCHED(td, self) && TDQ_SELF()->tdq_lowpri > pri &&
 1406             tdq->tdq_lowpri < PRI_MIN_IDLE &&
 1407             TDQ_SELF()->tdq_load <= tdq->tdq_load + 1) {
 1408                 SCHED_STAT_INC(pickcpu_local);
 1409                 cpu = self;
 1410         }
 1411         if (cpu != ts->ts_cpu)
 1412                 SCHED_STAT_INC(pickcpu_migration);
 1413         return (cpu);
 1414 }
 1415 #endif
 1416 
 1417 /*
 1418  * Pick the highest priority task we have and return it.
 1419  */
 1420 static struct thread *
 1421 tdq_choose(struct tdq *tdq)
 1422 {
 1423         struct thread *td;
 1424 
 1425         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 1426         td = runq_choose(&tdq->tdq_realtime);
 1427         if (td != NULL)
 1428                 return (td);
 1429         td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
 1430         if (td != NULL) {
 1431                 KASSERT(td->td_priority >= PRI_MIN_BATCH,
 1432                     ("tdq_choose: Invalid priority on timeshare queue %d",
 1433                     td->td_priority));
 1434                 return (td);
 1435         }
 1436         td = runq_choose(&tdq->tdq_idle);
 1437         if (td != NULL) {
 1438                 KASSERT(td->td_priority >= PRI_MIN_IDLE,
 1439                     ("tdq_choose: Invalid priority on idle queue %d",
 1440                     td->td_priority));
 1441                 return (td);
 1442         }
 1443 
 1444         return (NULL);
 1445 }
 1446 
 1447 /*
 1448  * Initialize a thread queue.
 1449  */
 1450 static void
 1451 tdq_setup(struct tdq *tdq, int id)
 1452 {
 1453 
 1454         if (bootverbose)
 1455                 printf("ULE: setup cpu %d\n", id);
 1456         runq_init(&tdq->tdq_realtime);
 1457         runq_init(&tdq->tdq_timeshare);
 1458         runq_init(&tdq->tdq_idle);
 1459         tdq->tdq_id = id;
 1460         snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
 1461             "sched lock %d", (int)TDQ_ID(tdq));
 1462         mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock", MTX_SPIN);
 1463 #ifdef KTR
 1464         snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
 1465             "CPU %d load", (int)TDQ_ID(tdq));
 1466 #endif
 1467 }
 1468 
 1469 #ifdef SMP
 1470 static void
 1471 sched_setup_smp(void)
 1472 {
 1473         struct tdq *tdq;
 1474         int i;
 1475 
 1476         cpu_top = smp_topo();
 1477         CPU_FOREACH(i) {
 1478                 tdq = DPCPU_ID_PTR(i, tdq);
 1479                 tdq_setup(tdq, i);
 1480                 tdq->tdq_cg = smp_topo_find(cpu_top, i);
 1481                 if (tdq->tdq_cg == NULL)
 1482                         panic("Can't find cpu group for %d\n", i);
 1483                 DPCPU_ID_SET(i, randomval, i * 69069 + 5);
 1484         }
 1485         PCPU_SET(sched, DPCPU_PTR(tdq));
 1486         balance_tdq = TDQ_SELF();
 1487 }
 1488 #endif
 1489 
 1490 /*
 1491  * Setup the thread queues and initialize the topology based on MD
 1492  * information.
 1493  */
 1494 static void
 1495 sched_setup(void *dummy)
 1496 {
 1497         struct tdq *tdq;
 1498 
 1499 #ifdef SMP
 1500         sched_setup_smp();
 1501 #else
 1502         tdq_setup(TDQ_SELF(), 0);
 1503 #endif
 1504         tdq = TDQ_SELF();
 1505 
 1506         /* Add thread0's load since it's running. */
 1507         TDQ_LOCK(tdq);
 1508         thread0.td_lock = TDQ_LOCKPTR(tdq);
 1509         tdq_load_add(tdq, &thread0);
 1510         tdq->tdq_lowpri = thread0.td_priority;
 1511         TDQ_UNLOCK(tdq);
 1512 }
 1513 
 1514 /*
 1515  * This routine determines time constants after stathz and hz are setup.
 1516  */
 1517 /* ARGSUSED */
 1518 static void
 1519 sched_initticks(void *dummy)
 1520 {
 1521         int incr;
 1522 
 1523         realstathz = stathz ? stathz : hz;
 1524         sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
 1525         sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
 1526         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 1527             realstathz);
 1528 
 1529         /*
 1530          * tickincr is shifted out by 10 to avoid rounding errors due to
 1531          * hz not being evenly divisible by stathz on all platforms.
 1532          */
 1533         incr = (hz << SCHED_TICK_SHIFT) / realstathz;
 1534         /*
 1535          * This does not work for values of stathz that are more than
 1536          * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
 1537          */
 1538         if (incr == 0)
 1539                 incr = 1;
 1540         tickincr = incr;
 1541 #ifdef SMP
 1542         /*
 1543          * Set the default balance interval now that we know
 1544          * what realstathz is.
 1545          */
 1546         balance_interval = realstathz;
 1547         balance_ticks = balance_interval;
 1548         affinity = SCHED_AFFINITY_DEFAULT;
 1549 #endif
 1550         if (sched_idlespinthresh < 0)
 1551                 sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
 1552 }
 1553 
 1554 /*
 1555  * This is the core of the interactivity algorithm.  Determines a score based
 1556  * on past behavior.  It is the ratio of sleep time to run time scaled to
 1557  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
 1558  * differs from the cpu usage because it does not account for time spent
 1559  * waiting on a run-queue.  Would be prettier if we had floating point.
 1560  *
 1561  * When a thread's sleep time is greater than its run time the
 1562  * calculation is:
 1563  *
 1564  *                           scaling factor 
 1565  * interactivity score =  ---------------------
 1566  *                        sleep time / run time
 1567  *
 1568  *
 1569  * When a thread's run time is greater than its sleep time the
 1570  * calculation is:
 1571  *
 1572  *                           scaling factor 
 1573  * interactivity score =  ---------------------    + scaling factor
 1574  *                        run time / sleep time
 1575  */
 1576 static int
 1577 sched_interact_score(struct thread *td)
 1578 {
 1579         struct td_sched *ts;
 1580         int div;
 1581 
 1582         ts = td_get_sched(td);
 1583         /*
 1584          * The score is only needed if this is likely to be an interactive
 1585          * task.  Don't go through the expense of computing it if there's
 1586          * no chance.
 1587          */
 1588         if (sched_interact <= SCHED_INTERACT_HALF &&
 1589                 ts->ts_runtime >= ts->ts_slptime)
 1590                         return (SCHED_INTERACT_HALF);
 1591 
 1592         if (ts->ts_runtime > ts->ts_slptime) {
 1593                 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
 1594                 return (SCHED_INTERACT_HALF +
 1595                     (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
 1596         }
 1597         if (ts->ts_slptime > ts->ts_runtime) {
 1598                 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
 1599                 return (ts->ts_runtime / div);
 1600         }
 1601         /* runtime == slptime */
 1602         if (ts->ts_runtime)
 1603                 return (SCHED_INTERACT_HALF);
 1604 
 1605         /*
 1606          * This can happen if slptime and runtime are 0.
 1607          */
 1608         return (0);
 1609 
 1610 }
 1611 
 1612 /*
 1613  * Scale the scheduling priority according to the "interactivity" of this
 1614  * process.
 1615  */
 1616 static void
 1617 sched_priority(struct thread *td)
 1618 {
 1619         u_int pri, score;
 1620 
 1621         if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 1622                 return;
 1623         /*
 1624          * If the score is interactive we place the thread in the realtime
 1625          * queue with a priority that is less than kernel and interrupt
 1626          * priorities.  These threads are not subject to nice restrictions.
 1627          *
 1628          * Scores greater than this are placed on the normal timeshare queue
 1629          * where the priority is partially decided by the most recent cpu
 1630          * utilization and the rest is decided by nice value.
 1631          *
 1632          * The nice value of the process has a linear effect on the calculated
 1633          * score.  Negative nice values make it easier for a thread to be
 1634          * considered interactive.
 1635          */
 1636         score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
 1637         if (score < sched_interact) {
 1638                 pri = PRI_MIN_INTERACT;
 1639                 pri += (PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) * score /
 1640                     sched_interact;
 1641                 KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
 1642                     ("sched_priority: invalid interactive priority %u score %u",
 1643                     pri, score));
 1644         } else {
 1645                 pri = SCHED_PRI_MIN;
 1646                 if (td_get_sched(td)->ts_ticks)
 1647                         pri += min(SCHED_PRI_TICKS(td_get_sched(td)),
 1648                             SCHED_PRI_RANGE - 1);
 1649                 pri += SCHED_PRI_NICE(td->td_proc->p_nice);
 1650                 KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
 1651                     ("sched_priority: invalid priority %u: nice %d, "
 1652                     "ticks %d ftick %d ltick %d tick pri %d",
 1653                     pri, td->td_proc->p_nice, td_get_sched(td)->ts_ticks,
 1654                     td_get_sched(td)->ts_ftick, td_get_sched(td)->ts_ltick,
 1655                     SCHED_PRI_TICKS(td_get_sched(td))));
 1656         }
 1657         sched_user_prio(td, pri);
 1658 
 1659         return;
 1660 }
 1661 
 1662 /*
 1663  * This routine enforces a maximum limit on the amount of scheduling history
 1664  * kept.  It is called after either the slptime or runtime is adjusted.  This
 1665  * function is ugly due to integer math.
 1666  */
 1667 static void
 1668 sched_interact_update(struct thread *td)
 1669 {
 1670         struct td_sched *ts;
 1671         u_int sum;
 1672 
 1673         ts = td_get_sched(td);
 1674         sum = ts->ts_runtime + ts->ts_slptime;
 1675         if (sum < SCHED_SLP_RUN_MAX)
 1676                 return;
 1677         /*
 1678          * This only happens from two places:
 1679          * 1) We have added an unusual amount of run time from fork_exit.
 1680          * 2) We have added an unusual amount of sleep time from sched_sleep().
 1681          */
 1682         if (sum > SCHED_SLP_RUN_MAX * 2) {
 1683                 if (ts->ts_runtime > ts->ts_slptime) {
 1684                         ts->ts_runtime = SCHED_SLP_RUN_MAX;
 1685                         ts->ts_slptime = 1;
 1686                 } else {
 1687                         ts->ts_slptime = SCHED_SLP_RUN_MAX;
 1688                         ts->ts_runtime = 1;
 1689                 }
 1690                 return;
 1691         }
 1692         /*
 1693          * If we have exceeded by more than 1/5th then the algorithm below
 1694          * will not bring us back into range.  Dividing by two here forces
 1695          * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
 1696          */
 1697         if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
 1698                 ts->ts_runtime /= 2;
 1699                 ts->ts_slptime /= 2;
 1700                 return;
 1701         }
 1702         ts->ts_runtime = (ts->ts_runtime / 5) * 4;
 1703         ts->ts_slptime = (ts->ts_slptime / 5) * 4;
 1704 }
 1705 
 1706 /*
 1707  * Scale back the interactivity history when a child thread is created.  The
 1708  * history is inherited from the parent but the thread may behave totally
 1709  * differently.  For example, a shell spawning a compiler process.  We want
 1710  * to learn that the compiler is behaving badly very quickly.
 1711  */
 1712 static void
 1713 sched_interact_fork(struct thread *td)
 1714 {
 1715         struct td_sched *ts;
 1716         int ratio;
 1717         int sum;
 1718 
 1719         ts = td_get_sched(td);
 1720         sum = ts->ts_runtime + ts->ts_slptime;
 1721         if (sum > SCHED_SLP_RUN_FORK) {
 1722                 ratio = sum / SCHED_SLP_RUN_FORK;
 1723                 ts->ts_runtime /= ratio;
 1724                 ts->ts_slptime /= ratio;
 1725         }
 1726 }
 1727 
 1728 /*
 1729  * Called from proc0_init() to setup the scheduler fields.
 1730  */
 1731 void
 1732 schedinit(void)
 1733 {
 1734         struct td_sched *ts0;
 1735 
 1736         /*
 1737          * Set up the scheduler specific parts of thread0.
 1738          */
 1739         ts0 = td_get_sched(&thread0);
 1740         ts0->ts_ltick = ticks;
 1741         ts0->ts_ftick = ticks;
 1742         ts0->ts_slice = 0;
 1743         ts0->ts_cpu = curcpu;   /* set valid CPU number */
 1744 }
 1745 
 1746 /*
 1747  * This is only somewhat accurate since given many processes of the same
 1748  * priority they will switch when their slices run out, which will be
 1749  * at most sched_slice stathz ticks.
 1750  */
 1751 int
 1752 sched_rr_interval(void)
 1753 {
 1754 
 1755         /* Convert sched_slice from stathz to hz. */
 1756         return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
 1757 }
 1758 
 1759 /*
 1760  * Update the percent cpu tracking information when it is requested or
 1761  * the total history exceeds the maximum.  We keep a sliding history of
 1762  * tick counts that slowly decays.  This is less precise than the 4BSD
 1763  * mechanism since it happens with less regular and frequent events.
 1764  */
 1765 static void
 1766 sched_pctcpu_update(struct td_sched *ts, int run)
 1767 {
 1768         int t = ticks;
 1769 
 1770         /*
 1771          * The signed difference may be negative if the thread hasn't run for
 1772          * over half of the ticks rollover period.
 1773          */
 1774         if ((u_int)(t - ts->ts_ltick) >= SCHED_TICK_TARG) {
 1775                 ts->ts_ticks = 0;
 1776                 ts->ts_ftick = t - SCHED_TICK_TARG;
 1777         } else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
 1778                 ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
 1779                     (ts->ts_ltick - (t - SCHED_TICK_TARG));
 1780                 ts->ts_ftick = t - SCHED_TICK_TARG;
 1781         }
 1782         if (run)
 1783                 ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
 1784         ts->ts_ltick = t;
 1785 }
 1786 
 1787 /*
 1788  * Adjust the priority of a thread.  Move it to the appropriate run-queue
 1789  * if necessary.  This is the back-end for several priority related
 1790  * functions.
 1791  */
 1792 static void
 1793 sched_thread_priority(struct thread *td, u_char prio)
 1794 {
 1795         struct td_sched *ts;
 1796         struct tdq *tdq;
 1797         int oldpri;
 1798 
 1799         KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
 1800             "prio:%d", td->td_priority, "new prio:%d", prio,
 1801             KTR_ATTR_LINKED, sched_tdname(curthread));
 1802         SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
 1803         if (td != curthread && prio < td->td_priority) {
 1804                 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
 1805                     "lend prio", "prio:%d", td->td_priority, "new prio:%d",
 1806                     prio, KTR_ATTR_LINKED, sched_tdname(td));
 1807                 SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio, 
 1808                     curthread);
 1809         } 
 1810         ts = td_get_sched(td);
 1811         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1812         if (td->td_priority == prio)
 1813                 return;
 1814         /*
 1815          * If the priority has been elevated due to priority
 1816          * propagation, we may have to move ourselves to a new
 1817          * queue.  This could be optimized to not re-add in some
 1818          * cases.
 1819          */
 1820         if (TD_ON_RUNQ(td) && prio < td->td_priority) {
 1821                 sched_rem(td);
 1822                 td->td_priority = prio;
 1823                 sched_add(td, SRQ_BORROWING | SRQ_HOLDTD);
 1824                 return;
 1825         }
 1826         /*
 1827          * If the thread is currently running we may have to adjust the lowpri
 1828          * information so other cpus are aware of our current priority.
 1829          */
 1830         if (TD_IS_RUNNING(td)) {
 1831                 tdq = TDQ_CPU(ts->ts_cpu);
 1832                 oldpri = td->td_priority;
 1833                 td->td_priority = prio;
 1834                 if (prio < tdq->tdq_lowpri)
 1835                         tdq->tdq_lowpri = prio;
 1836                 else if (tdq->tdq_lowpri == oldpri)
 1837                         tdq_setlowpri(tdq, td);
 1838                 return;
 1839         }
 1840         td->td_priority = prio;
 1841 }
 1842 
 1843 /*
 1844  * Update a thread's priority when it is lent another thread's
 1845  * priority.
 1846  */
 1847 void
 1848 sched_lend_prio(struct thread *td, u_char prio)
 1849 {
 1850 
 1851         td->td_flags |= TDF_BORROWING;
 1852         sched_thread_priority(td, prio);
 1853 }
 1854 
 1855 /*
 1856  * Restore a thread's priority when priority propagation is
 1857  * over.  The prio argument is the minimum priority the thread
 1858  * needs to have to satisfy other possible priority lending
 1859  * requests.  If the thread's regular priority is less
 1860  * important than prio, the thread will keep a priority boost
 1861  * of prio.
 1862  */
 1863 void
 1864 sched_unlend_prio(struct thread *td, u_char prio)
 1865 {
 1866         u_char base_pri;
 1867 
 1868         if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
 1869             td->td_base_pri <= PRI_MAX_TIMESHARE)
 1870                 base_pri = td->td_user_pri;
 1871         else
 1872                 base_pri = td->td_base_pri;
 1873         if (prio >= base_pri) {
 1874                 td->td_flags &= ~TDF_BORROWING;
 1875                 sched_thread_priority(td, base_pri);
 1876         } else
 1877                 sched_lend_prio(td, prio);
 1878 }
 1879 
 1880 /*
 1881  * Standard entry for setting the priority to an absolute value.
 1882  */
 1883 void
 1884 sched_prio(struct thread *td, u_char prio)
 1885 {
 1886         u_char oldprio;
 1887 
 1888         /* First, update the base priority. */
 1889         td->td_base_pri = prio;
 1890 
 1891         /*
 1892          * If the thread is borrowing another thread's priority, don't
 1893          * ever lower the priority.
 1894          */
 1895         if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
 1896                 return;
 1897 
 1898         /* Change the real priority. */
 1899         oldprio = td->td_priority;
 1900         sched_thread_priority(td, prio);
 1901 
 1902         /*
 1903          * If the thread is on a turnstile, then let the turnstile update
 1904          * its state.
 1905          */
 1906         if (TD_ON_LOCK(td) && oldprio != prio)
 1907                 turnstile_adjust(td, oldprio);
 1908 }
 1909 
 1910 /*
 1911  * Set the base user priority, does not effect current running priority.
 1912  */
 1913 void
 1914 sched_user_prio(struct thread *td, u_char prio)
 1915 {
 1916 
 1917         td->td_base_user_pri = prio;
 1918         if (td->td_lend_user_pri <= prio)
 1919                 return;
 1920         td->td_user_pri = prio;
 1921 }
 1922 
 1923 void
 1924 sched_lend_user_prio(struct thread *td, u_char prio)
 1925 {
 1926 
 1927         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1928         td->td_lend_user_pri = prio;
 1929         td->td_user_pri = min(prio, td->td_base_user_pri);
 1930         if (td->td_priority > td->td_user_pri)
 1931                 sched_prio(td, td->td_user_pri);
 1932         else if (td->td_priority != td->td_user_pri)
 1933                 td->td_flags |= TDF_NEEDRESCHED;
 1934 }
 1935 
 1936 /*
 1937  * Like the above but first check if there is anything to do.
 1938  */
 1939 void
 1940 sched_lend_user_prio_cond(struct thread *td, u_char prio)
 1941 {
 1942 
 1943         if (td->td_lend_user_pri != prio)
 1944                 goto lend;
 1945         if (td->td_user_pri != min(prio, td->td_base_user_pri))
 1946                 goto lend;
 1947         if (td->td_priority != td->td_user_pri)
 1948                 goto lend;
 1949         return;
 1950 
 1951 lend:
 1952         thread_lock(td);
 1953         sched_lend_user_prio(td, prio);
 1954         thread_unlock(td);
 1955 }
 1956 
 1957 #ifdef SMP
 1958 /*
 1959  * This tdq is about to idle.  Try to steal a thread from another CPU before
 1960  * choosing the idle thread.
 1961  */
 1962 static void
 1963 tdq_trysteal(struct tdq *tdq)
 1964 {
 1965         struct cpu_group *cg, *parent;
 1966         struct tdq *steal;
 1967         cpuset_t mask;
 1968         int cpu, i, goup;
 1969 
 1970         if (smp_started == 0 || steal_idle == 0 || trysteal_limit == 0 ||
 1971             tdq->tdq_cg == NULL)
 1972                 return;
 1973         CPU_FILL(&mask);
 1974         CPU_CLR(PCPU_GET(cpuid), &mask);
 1975         /* We don't want to be preempted while we're iterating. */
 1976         spinlock_enter();
 1977         TDQ_UNLOCK(tdq);
 1978         for (i = 1, cg = tdq->tdq_cg, goup = 0; ; ) {
 1979                 cpu = sched_highest(cg, &mask, steal_thresh, 1);
 1980                 /*
 1981                  * If a thread was added while interrupts were disabled don't
 1982                  * steal one here.
 1983                  */
 1984                 if (tdq->tdq_load > 0) {
 1985                         TDQ_LOCK(tdq);
 1986                         break;
 1987                 }
 1988 
 1989                 /*
 1990                  * We found no CPU to steal from in this group.  Escalate to
 1991                  * the parent and repeat.  But if parent has only two children
 1992                  * groups we can avoid searching this group again by searching
 1993                  * the other one specifically and then escalating two levels.
 1994                  */
 1995                 if (cpu == -1) {
 1996                         if (goup) {
 1997                                 cg = cg->cg_parent;
 1998                                 goup = 0;
 1999                         }
 2000                         if (++i > trysteal_limit) {
 2001                                 TDQ_LOCK(tdq);
 2002                                 break;
 2003                         }
 2004                         parent = cg->cg_parent;
 2005                         if (parent == NULL) {
 2006                                 TDQ_LOCK(tdq);
 2007                                 break;
 2008                         }
 2009                         if (parent->cg_children == 2) {
 2010                                 if (cg == &parent->cg_child[0])
 2011                                         cg = &parent->cg_child[1];
 2012                                 else
 2013                                         cg = &parent->cg_child[0];
 2014                                 goup = 1;
 2015                         } else
 2016                                 cg = parent;
 2017                         continue;
 2018                 }
 2019                 steal = TDQ_CPU(cpu);
 2020                 /*
 2021                  * The data returned by sched_highest() is stale and
 2022                  * the chosen CPU no longer has an eligible thread.
 2023                  * At this point unconditionally exit the loop to bound
 2024                  * the time spent in the critcal section.
 2025                  */
 2026                 if (steal->tdq_load < steal_thresh ||
 2027                     steal->tdq_transferable == 0)
 2028                         continue;
 2029                 /*
 2030                  * Try to lock both queues. If we are assigned a thread while
 2031                  * waited for the lock, switch to it now instead of stealing.
 2032                  * If we can't get the lock, then somebody likely got there
 2033                  * first.
 2034                  */
 2035                 TDQ_LOCK(tdq);
 2036                 if (tdq->tdq_load > 0)
 2037                         break;
 2038                 if (TDQ_TRYLOCK_FLAGS(steal, MTX_DUPOK) == 0)
 2039                         break;
 2040                 /*
 2041                  * The data returned by sched_highest() is stale and
 2042                  * the chosen CPU no longer has an eligible thread.
 2043                  */
 2044                 if (steal->tdq_load < steal_thresh ||
 2045                     steal->tdq_transferable == 0) {
 2046                         TDQ_UNLOCK(steal);
 2047                         break;
 2048                 }
 2049                 /*
 2050                  * If we fail to acquire one due to affinity restrictions,
 2051                  * bail out and let the idle thread to a more complete search
 2052                  * outside of a critical section.
 2053                  */
 2054                 if (tdq_move(steal, tdq) == NULL) {
 2055                         TDQ_UNLOCK(steal);
 2056                         break;
 2057                 }
 2058                 TDQ_UNLOCK(steal);
 2059                 break;
 2060         }
 2061         spinlock_exit();
 2062 }
 2063 #endif
 2064 
 2065 /*
 2066  * Handle migration from sched_switch().  This happens only for
 2067  * cpu binding.
 2068  */
 2069 static struct mtx *
 2070 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
 2071 {
 2072         struct tdq *tdn;
 2073 
 2074         KASSERT(THREAD_CAN_MIGRATE(td) ||
 2075             (td_get_sched(td)->ts_flags & TSF_BOUND) != 0,
 2076             ("Thread %p shouldn't migrate", td));
 2077         KASSERT(!CPU_ABSENT(td_get_sched(td)->ts_cpu), ("sched_switch_migrate: "
 2078             "thread %s queued on absent CPU %d.", td->td_name,
 2079             td_get_sched(td)->ts_cpu));
 2080         tdn = TDQ_CPU(td_get_sched(td)->ts_cpu);
 2081 #ifdef SMP
 2082         tdq_load_rem(tdq, td);
 2083         /*
 2084          * Do the lock dance required to avoid LOR.  We have an 
 2085          * extra spinlock nesting from sched_switch() which will
 2086          * prevent preemption while we're holding neither run-queue lock.
 2087          */
 2088         TDQ_UNLOCK(tdq);
 2089         TDQ_LOCK(tdn);
 2090         tdq_add(tdn, td, flags);
 2091         tdq_notify(tdn, td);
 2092         TDQ_UNLOCK(tdn);
 2093         TDQ_LOCK(tdq);
 2094 #endif
 2095         return (TDQ_LOCKPTR(tdn));
 2096 }
 2097 
 2098 /*
 2099  * thread_lock_unblock() that does not assume td_lock is blocked.
 2100  */
 2101 static inline void
 2102 thread_unblock_switch(struct thread *td, struct mtx *mtx)
 2103 {
 2104         atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
 2105             (uintptr_t)mtx);
 2106 }
 2107 
 2108 /*
 2109  * Switch threads.  This function has to handle threads coming in while
 2110  * blocked for some reason, running, or idle.  It also must deal with
 2111  * migrating a thread from one queue to another as running threads may
 2112  * be assigned elsewhere via binding.
 2113  */
 2114 void
 2115 sched_switch(struct thread *td, int flags)
 2116 {
 2117         struct thread *newtd;
 2118         struct tdq *tdq;
 2119         struct td_sched *ts;
 2120         struct mtx *mtx;
 2121         int srqflag;
 2122         int cpuid, preempted;
 2123 #ifdef SMP
 2124         int pickcpu;
 2125 #endif
 2126 
 2127         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2128 
 2129         cpuid = PCPU_GET(cpuid);
 2130         tdq = TDQ_SELF();
 2131         ts = td_get_sched(td);
 2132         sched_pctcpu_update(ts, 1);
 2133 #ifdef SMP
 2134         pickcpu = (td->td_flags & TDF_PICKCPU) != 0;
 2135         if (pickcpu)
 2136                 ts->ts_rltick = ticks - affinity * MAX_CACHE_LEVELS;
 2137         else
 2138                 ts->ts_rltick = ticks;
 2139 #endif
 2140         td->td_lastcpu = td->td_oncpu;
 2141         preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
 2142             (flags & SW_PREEMPT) != 0;
 2143         td->td_flags &= ~(TDF_NEEDRESCHED | TDF_PICKCPU | TDF_SLICEEND);
 2144         td->td_owepreempt = 0;
 2145         tdq->tdq_owepreempt = 0;
 2146         if (!TD_IS_IDLETHREAD(td))
 2147                 tdq->tdq_switchcnt++;
 2148 
 2149         /*
 2150          * Always block the thread lock so we can drop the tdq lock early.
 2151          */
 2152         mtx = thread_lock_block(td);
 2153         spinlock_enter();
 2154         if (TD_IS_IDLETHREAD(td)) {
 2155                 MPASS(mtx == TDQ_LOCKPTR(tdq));
 2156                 TD_SET_CAN_RUN(td);
 2157         } else if (TD_IS_RUNNING(td)) {
 2158                 MPASS(mtx == TDQ_LOCKPTR(tdq));
 2159                 srqflag = preempted ?
 2160                     SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
 2161                     SRQ_OURSELF|SRQ_YIELDING;
 2162 #ifdef SMP
 2163                 if (THREAD_CAN_MIGRATE(td) && (!THREAD_CAN_SCHED(td, ts->ts_cpu)
 2164                     || pickcpu))
 2165                         ts->ts_cpu = sched_pickcpu(td, 0);
 2166 #endif
 2167                 if (ts->ts_cpu == cpuid)
 2168                         tdq_runq_add(tdq, td, srqflag);
 2169                 else
 2170                         mtx = sched_switch_migrate(tdq, td, srqflag);
 2171         } else {
 2172                 /* This thread must be going to sleep. */
 2173                 if (mtx != TDQ_LOCKPTR(tdq)) {
 2174                         mtx_unlock_spin(mtx);
 2175                         TDQ_LOCK(tdq);
 2176                 }
 2177                 tdq_load_rem(tdq, td);
 2178 #ifdef SMP
 2179                 if (tdq->tdq_load == 0)
 2180                         tdq_trysteal(tdq);
 2181 #endif
 2182         }
 2183 
 2184 #if (KTR_COMPILE & KTR_SCHED) != 0
 2185         if (TD_IS_IDLETHREAD(td))
 2186                 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
 2187                     "prio:%d", td->td_priority);
 2188         else
 2189                 KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
 2190                     "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
 2191                     "lockname:\"%s\"", td->td_lockname);
 2192 #endif
 2193 
 2194         /*
 2195          * We enter here with the thread blocked and assigned to the
 2196          * appropriate cpu run-queue or sleep-queue and with the current
 2197          * thread-queue locked.
 2198          */
 2199         TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
 2200         newtd = choosethread();
 2201         sched_pctcpu_update(td_get_sched(newtd), 0);
 2202         TDQ_UNLOCK(tdq);
 2203 
 2204         /*
 2205          * Call the MD code to switch contexts if necessary.
 2206          */
 2207         if (td != newtd) {
 2208 #ifdef  HWPMC_HOOKS
 2209                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 2210                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
 2211 #endif
 2212                 SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
 2213 
 2214 #ifdef KDTRACE_HOOKS
 2215                 /*
 2216                  * If DTrace has set the active vtime enum to anything
 2217                  * other than INACTIVE (0), then it should have set the
 2218                  * function to call.
 2219                  */
 2220                 if (dtrace_vtime_active)
 2221                         (*dtrace_vtime_switch_func)(newtd);
 2222 #endif
 2223                 td->td_oncpu = NOCPU;
 2224                 cpu_switch(td, newtd, mtx);
 2225                 cpuid = td->td_oncpu = PCPU_GET(cpuid);
 2226 
 2227                 SDT_PROBE0(sched, , , on__cpu);
 2228 #ifdef  HWPMC_HOOKS
 2229                 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
 2230                         PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
 2231 #endif
 2232         } else {
 2233                 thread_unblock_switch(td, mtx);
 2234                 SDT_PROBE0(sched, , , remain__cpu);
 2235         }
 2236         KASSERT(curthread->td_md.md_spinlock_count == 1,
 2237             ("invalid count %d", curthread->td_md.md_spinlock_count));
 2238 
 2239         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 2240             "prio:%d", td->td_priority);
 2241 }
 2242 
 2243 /*
 2244  * Adjust thread priorities as a result of a nice request.
 2245  */
 2246 void
 2247 sched_nice(struct proc *p, int nice)
 2248 {
 2249         struct thread *td;
 2250 
 2251         PROC_LOCK_ASSERT(p, MA_OWNED);
 2252 
 2253         p->p_nice = nice;
 2254         FOREACH_THREAD_IN_PROC(p, td) {
 2255                 thread_lock(td);
 2256                 sched_priority(td);
 2257                 sched_prio(td, td->td_base_user_pri);
 2258                 thread_unlock(td);
 2259         }
 2260 }
 2261 
 2262 /*
 2263  * Record the sleep time for the interactivity scorer.
 2264  */
 2265 void
 2266 sched_sleep(struct thread *td, int prio)
 2267 {
 2268 
 2269         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2270 
 2271         td->td_slptick = ticks;
 2272         if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
 2273                 td->td_flags |= TDF_CANSWAP;
 2274         if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
 2275                 return;
 2276         if (static_boost == 1 && prio)
 2277                 sched_prio(td, prio);
 2278         else if (static_boost && td->td_priority > static_boost)
 2279                 sched_prio(td, static_boost);
 2280 }
 2281 
 2282 /*
 2283  * Schedule a thread to resume execution and record how long it voluntarily
 2284  * slept.  We also update the pctcpu, interactivity, and priority.
 2285  *
 2286  * Requires the thread lock on entry, drops on exit.
 2287  */
 2288 void
 2289 sched_wakeup(struct thread *td, int srqflags)
 2290 {
 2291         struct td_sched *ts;
 2292         int slptick;
 2293 
 2294         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2295         ts = td_get_sched(td);
 2296         td->td_flags &= ~TDF_CANSWAP;
 2297 
 2298         /*
 2299          * If we slept for more than a tick update our interactivity and
 2300          * priority.
 2301          */
 2302         slptick = td->td_slptick;
 2303         td->td_slptick = 0;
 2304         if (slptick && slptick != ticks) {
 2305                 ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
 2306                 sched_interact_update(td);
 2307                 sched_pctcpu_update(ts, 0);
 2308         }
 2309         /*
 2310          * Reset the slice value since we slept and advanced the round-robin.
 2311          */
 2312         ts->ts_slice = 0;
 2313         sched_add(td, SRQ_BORING | srqflags);
 2314 }
 2315 
 2316 /*
 2317  * Penalize the parent for creating a new child and initialize the child's
 2318  * priority.
 2319  */
 2320 void
 2321 sched_fork(struct thread *td, struct thread *child)
 2322 {
 2323         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2324         sched_pctcpu_update(td_get_sched(td), 1);
 2325         sched_fork_thread(td, child);
 2326         /*
 2327          * Penalize the parent and child for forking.
 2328          */
 2329         sched_interact_fork(child);
 2330         sched_priority(child);
 2331         td_get_sched(td)->ts_runtime += tickincr;
 2332         sched_interact_update(td);
 2333         sched_priority(td);
 2334 }
 2335 
 2336 /*
 2337  * Fork a new thread, may be within the same process.
 2338  */
 2339 void
 2340 sched_fork_thread(struct thread *td, struct thread *child)
 2341 {
 2342         struct td_sched *ts;
 2343         struct td_sched *ts2;
 2344         struct tdq *tdq;
 2345 
 2346         tdq = TDQ_SELF();
 2347         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2348         /*
 2349          * Initialize child.
 2350          */
 2351         ts = td_get_sched(td);
 2352         ts2 = td_get_sched(child);
 2353         child->td_oncpu = NOCPU;
 2354         child->td_lastcpu = NOCPU;
 2355         child->td_lock = TDQ_LOCKPTR(tdq);
 2356         child->td_cpuset = cpuset_ref(td->td_cpuset);
 2357         child->td_domain.dr_policy = td->td_cpuset->cs_domain;
 2358         ts2->ts_cpu = ts->ts_cpu;
 2359         ts2->ts_flags = 0;
 2360         /*
 2361          * Grab our parents cpu estimation information.
 2362          */
 2363         ts2->ts_ticks = ts->ts_ticks;
 2364         ts2->ts_ltick = ts->ts_ltick;
 2365         ts2->ts_ftick = ts->ts_ftick;
 2366         /*
 2367          * Do not inherit any borrowed priority from the parent.
 2368          */
 2369         child->td_priority = child->td_base_pri;
 2370         /*
 2371          * And update interactivity score.
 2372          */
 2373         ts2->ts_slptime = ts->ts_slptime;
 2374         ts2->ts_runtime = ts->ts_runtime;
 2375         /* Attempt to quickly learn interactivity. */
 2376         ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
 2377 #ifdef KTR
 2378         bzero(ts2->ts_name, sizeof(ts2->ts_name));
 2379 #endif
 2380 }
 2381 
 2382 /*
 2383  * Adjust the priority class of a thread.
 2384  */
 2385 void
 2386 sched_class(struct thread *td, int class)
 2387 {
 2388 
 2389         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2390         if (td->td_pri_class == class)
 2391                 return;
 2392         td->td_pri_class = class;
 2393 }
 2394 
 2395 /*
 2396  * Return some of the child's priority and interactivity to the parent.
 2397  */
 2398 void
 2399 sched_exit(struct proc *p, struct thread *child)
 2400 {
 2401         struct thread *td;
 2402 
 2403         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
 2404             "prio:%d", child->td_priority);
 2405         PROC_LOCK_ASSERT(p, MA_OWNED);
 2406         td = FIRST_THREAD_IN_PROC(p);
 2407         sched_exit_thread(td, child);
 2408 }
 2409 
 2410 /*
 2411  * Penalize another thread for the time spent on this one.  This helps to
 2412  * worsen the priority and interactivity of processes which schedule batch
 2413  * jobs such as make.  This has little effect on the make process itself but
 2414  * causes new processes spawned by it to receive worse scores immediately.
 2415  */
 2416 void
 2417 sched_exit_thread(struct thread *td, struct thread *child)
 2418 {
 2419 
 2420         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
 2421             "prio:%d", child->td_priority);
 2422         /*
 2423          * Give the child's runtime to the parent without returning the
 2424          * sleep time as a penalty to the parent.  This causes shells that
 2425          * launch expensive things to mark their children as expensive.
 2426          */
 2427         thread_lock(td);
 2428         td_get_sched(td)->ts_runtime += td_get_sched(child)->ts_runtime;
 2429         sched_interact_update(td);
 2430         sched_priority(td);
 2431         thread_unlock(td);
 2432 }
 2433 
 2434 void
 2435 sched_preempt(struct thread *td)
 2436 {
 2437         struct tdq *tdq;
 2438         int flags;
 2439 
 2440         SDT_PROBE2(sched, , , surrender, td, td->td_proc);
 2441 
 2442         thread_lock(td);
 2443         tdq = TDQ_SELF();
 2444         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2445         if (td->td_priority > tdq->tdq_lowpri) {
 2446                 if (td->td_critnest == 1) {
 2447                         flags = SW_INVOL | SW_PREEMPT;
 2448                         flags |= TD_IS_IDLETHREAD(td) ? SWT_REMOTEWAKEIDLE :
 2449                             SWT_REMOTEPREEMPT;
 2450                         mi_switch(flags);
 2451                         /* Switch dropped thread lock. */
 2452                         return;
 2453                 }
 2454                 td->td_owepreempt = 1;
 2455         } else {
 2456                 tdq->tdq_owepreempt = 0;
 2457         }
 2458         thread_unlock(td);
 2459 }
 2460 
 2461 /*
 2462  * Fix priorities on return to user-space.  Priorities may be elevated due
 2463  * to static priorities in msleep() or similar.
 2464  */
 2465 void
 2466 sched_userret_slowpath(struct thread *td)
 2467 {
 2468 
 2469         thread_lock(td);
 2470         td->td_priority = td->td_user_pri;
 2471         td->td_base_pri = td->td_user_pri;
 2472         tdq_setlowpri(TDQ_SELF(), td);
 2473         thread_unlock(td);
 2474 }
 2475 
 2476 /*
 2477  * Handle a stathz tick.  This is really only relevant for timeshare
 2478  * threads.
 2479  */
 2480 void
 2481 sched_clock(struct thread *td, int cnt)
 2482 {
 2483         struct tdq *tdq;
 2484         struct td_sched *ts;
 2485 
 2486         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2487         tdq = TDQ_SELF();
 2488 #ifdef SMP
 2489         /*
 2490          * We run the long term load balancer infrequently on the first cpu.
 2491          */
 2492         if (balance_tdq == tdq && smp_started != 0 && rebalance != 0 &&
 2493             balance_ticks != 0) {
 2494                 balance_ticks -= cnt;
 2495                 if (balance_ticks <= 0)
 2496                         sched_balance();
 2497         }
 2498 #endif
 2499         /*
 2500          * Save the old switch count so we have a record of the last ticks
 2501          * activity.   Initialize the new switch count based on our load.
 2502          * If there is some activity seed it to reflect that.
 2503          */
 2504         tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
 2505         tdq->tdq_switchcnt = tdq->tdq_load;
 2506         /*
 2507          * Advance the insert index once for each tick to ensure that all
 2508          * threads get a chance to run.
 2509          */
 2510         if (tdq->tdq_idx == tdq->tdq_ridx) {
 2511                 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
 2512                 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
 2513                         tdq->tdq_ridx = tdq->tdq_idx;
 2514         }
 2515         ts = td_get_sched(td);
 2516         sched_pctcpu_update(ts, 1);
 2517         if ((td->td_pri_class & PRI_FIFO_BIT) || TD_IS_IDLETHREAD(td))
 2518                 return;
 2519 
 2520         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
 2521                 /*
 2522                  * We used a tick; charge it to the thread so
 2523                  * that we can compute our interactivity.
 2524                  */
 2525                 td_get_sched(td)->ts_runtime += tickincr * cnt;
 2526                 sched_interact_update(td);
 2527                 sched_priority(td);
 2528         }
 2529 
 2530         /*
 2531          * Force a context switch if the current thread has used up a full
 2532          * time slice (default is 100ms).
 2533          */
 2534         ts->ts_slice += cnt;
 2535         if (ts->ts_slice >= tdq_slice(tdq)) {
 2536                 ts->ts_slice = 0;
 2537                 td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
 2538         }
 2539 }
 2540 
 2541 u_int
 2542 sched_estcpu(struct thread *td __unused)
 2543 {
 2544 
 2545         return (0);
 2546 }
 2547 
 2548 /*
 2549  * Return whether the current CPU has runnable tasks.  Used for in-kernel
 2550  * cooperative idle threads.
 2551  */
 2552 int
 2553 sched_runnable(void)
 2554 {
 2555         struct tdq *tdq;
 2556         int load;
 2557 
 2558         load = 1;
 2559 
 2560         tdq = TDQ_SELF();
 2561         if ((curthread->td_flags & TDF_IDLETD) != 0) {
 2562                 if (tdq->tdq_load > 0)
 2563                         goto out;
 2564         } else
 2565                 if (tdq->tdq_load - 1 > 0)
 2566                         goto out;
 2567         load = 0;
 2568 out:
 2569         return (load);
 2570 }
 2571 
 2572 /*
 2573  * Choose the highest priority thread to run.  The thread is removed from
 2574  * the run-queue while running however the load remains.  For SMP we set
 2575  * the tdq in the global idle bitmask if it idles here.
 2576  */
 2577 struct thread *
 2578 sched_choose(void)
 2579 {
 2580         struct thread *td;
 2581         struct tdq *tdq;
 2582 
 2583         tdq = TDQ_SELF();
 2584         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2585         td = tdq_choose(tdq);
 2586         if (td) {
 2587                 tdq_runq_rem(tdq, td);
 2588                 tdq->tdq_lowpri = td->td_priority;
 2589                 return (td);
 2590         }
 2591         tdq->tdq_lowpri = PRI_MAX_IDLE;
 2592         return (PCPU_GET(idlethread));
 2593 }
 2594 
 2595 /*
 2596  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
 2597  * we always request it once we exit a critical section.
 2598  */
 2599 static inline void
 2600 sched_setpreempt(struct thread *td)
 2601 {
 2602         struct thread *ctd;
 2603         int cpri;
 2604         int pri;
 2605 
 2606         THREAD_LOCK_ASSERT(curthread, MA_OWNED);
 2607 
 2608         ctd = curthread;
 2609         pri = td->td_priority;
 2610         cpri = ctd->td_priority;
 2611         if (pri < cpri)
 2612                 ctd->td_flags |= TDF_NEEDRESCHED;
 2613         if (KERNEL_PANICKED() || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
 2614                 return;
 2615         if (!sched_shouldpreempt(pri, cpri, 0))
 2616                 return;
 2617         ctd->td_owepreempt = 1;
 2618 }
 2619 
 2620 /*
 2621  * Add a thread to a thread queue.  Select the appropriate runq and add the
 2622  * thread to it.  This is the internal function called when the tdq is
 2623  * predetermined.
 2624  */
 2625 void
 2626 tdq_add(struct tdq *tdq, struct thread *td, int flags)
 2627 {
 2628 
 2629         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2630         THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
 2631         KASSERT((td->td_inhibitors == 0),
 2632             ("sched_add: trying to run inhibited thread"));
 2633         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
 2634             ("sched_add: bad thread state"));
 2635         KASSERT(td->td_flags & TDF_INMEM,
 2636             ("sched_add: thread swapped out"));
 2637 
 2638         if (td->td_priority < tdq->tdq_lowpri)
 2639                 tdq->tdq_lowpri = td->td_priority;
 2640         tdq_runq_add(tdq, td, flags);
 2641         tdq_load_add(tdq, td);
 2642 }
 2643 
 2644 /*
 2645  * Select the target thread queue and add a thread to it.  Request
 2646  * preemption or IPI a remote processor if required.
 2647  *
 2648  * Requires the thread lock on entry, drops on exit.
 2649  */
 2650 void
 2651 sched_add(struct thread *td, int flags)
 2652 {
 2653         struct tdq *tdq;
 2654 #ifdef SMP
 2655         int cpu;
 2656 #endif
 2657 
 2658         KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
 2659             "prio:%d", td->td_priority, KTR_ATTR_LINKED,
 2660             sched_tdname(curthread));
 2661         KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
 2662             KTR_ATTR_LINKED, sched_tdname(td));
 2663         SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 
 2664             flags & SRQ_PREEMPTED);
 2665         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2666         /*
 2667          * Recalculate the priority before we select the target cpu or
 2668          * run-queue.
 2669          */
 2670         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
 2671                 sched_priority(td);
 2672 #ifdef SMP
 2673         /*
 2674          * Pick the destination cpu and if it isn't ours transfer to the
 2675          * target cpu.
 2676          */
 2677         cpu = sched_pickcpu(td, flags);
 2678         tdq = sched_setcpu(td, cpu, flags);
 2679         tdq_add(tdq, td, flags);
 2680         if (cpu != PCPU_GET(cpuid))
 2681                 tdq_notify(tdq, td);
 2682         else if (!(flags & SRQ_YIELDING))
 2683                 sched_setpreempt(td);
 2684 #else
 2685         tdq = TDQ_SELF();
 2686         /*
 2687          * Now that the thread is moving to the run-queue, set the lock
 2688          * to the scheduler's lock.
 2689          */
 2690         if (td->td_lock != TDQ_LOCKPTR(tdq)) {
 2691                 TDQ_LOCK(tdq);
 2692                 if ((flags & SRQ_HOLD) != 0)
 2693                         td->td_lock = TDQ_LOCKPTR(tdq);
 2694                 else
 2695                         thread_lock_set(td, TDQ_LOCKPTR(tdq));
 2696         }
 2697         tdq_add(tdq, td, flags);
 2698         if (!(flags & SRQ_YIELDING))
 2699                 sched_setpreempt(td);
 2700 #endif
 2701         if (!(flags & SRQ_HOLDTD))
 2702                 thread_unlock(td);
 2703 }
 2704 
 2705 /*
 2706  * Remove a thread from a run-queue without running it.  This is used
 2707  * when we're stealing a thread from a remote queue.  Otherwise all threads
 2708  * exit by calling sched_exit_thread() and sched_throw() themselves.
 2709  */
 2710 void
 2711 sched_rem(struct thread *td)
 2712 {
 2713         struct tdq *tdq;
 2714 
 2715         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
 2716             "prio:%d", td->td_priority);
 2717         SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
 2718         tdq = TDQ_CPU(td_get_sched(td)->ts_cpu);
 2719         TDQ_LOCK_ASSERT(tdq, MA_OWNED);
 2720         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 2721         KASSERT(TD_ON_RUNQ(td),
 2722             ("sched_rem: thread not on run queue"));
 2723         tdq_runq_rem(tdq, td);
 2724         tdq_load_rem(tdq, td);
 2725         TD_SET_CAN_RUN(td);
 2726         if (td->td_priority == tdq->tdq_lowpri)
 2727                 tdq_setlowpri(tdq, NULL);
 2728 }
 2729 
 2730 /*
 2731  * Fetch cpu utilization information.  Updates on demand.
 2732  */
 2733 fixpt_t
 2734 sched_pctcpu(struct thread *td)
 2735 {
 2736         fixpt_t pctcpu;
 2737         struct td_sched *ts;
 2738 
 2739         pctcpu = 0;
 2740         ts = td_get_sched(td);
 2741 
 2742         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2743         sched_pctcpu_update(ts, TD_IS_RUNNING(td));
 2744         if (ts->ts_ticks) {
 2745                 int rtick;
 2746 
 2747                 /* How many rtick per second ? */
 2748                 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
 2749                 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
 2750         }
 2751 
 2752         return (pctcpu);
 2753 }
 2754 
 2755 /*
 2756  * Enforce affinity settings for a thread.  Called after adjustments to
 2757  * cpumask.
 2758  */
 2759 void
 2760 sched_affinity(struct thread *td)
 2761 {
 2762 #ifdef SMP
 2763         struct td_sched *ts;
 2764 
 2765         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2766         ts = td_get_sched(td);
 2767         if (THREAD_CAN_SCHED(td, ts->ts_cpu))
 2768                 return;
 2769         if (TD_ON_RUNQ(td)) {
 2770                 sched_rem(td);
 2771                 sched_add(td, SRQ_BORING | SRQ_HOLDTD);
 2772                 return;
 2773         }
 2774         if (!TD_IS_RUNNING(td))
 2775                 return;
 2776         /*
 2777          * Force a switch before returning to userspace.  If the
 2778          * target thread is not running locally send an ipi to force
 2779          * the issue.
 2780          */
 2781         td->td_flags |= TDF_NEEDRESCHED;
 2782         if (td != curthread)
 2783                 ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
 2784 #endif
 2785 }
 2786 
 2787 /*
 2788  * Bind a thread to a target cpu.
 2789  */
 2790 void
 2791 sched_bind(struct thread *td, int cpu)
 2792 {
 2793         struct td_sched *ts;
 2794 
 2795         THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
 2796         KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
 2797         ts = td_get_sched(td);
 2798         if (ts->ts_flags & TSF_BOUND)
 2799                 sched_unbind(td);
 2800         KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
 2801         ts->ts_flags |= TSF_BOUND;
 2802         sched_pin();
 2803         if (PCPU_GET(cpuid) == cpu)
 2804                 return;
 2805         ts->ts_cpu = cpu;
 2806         /* When we return from mi_switch we'll be on the correct cpu. */
 2807         mi_switch(SW_VOL);
 2808         thread_lock(td);
 2809 }
 2810 
 2811 /*
 2812  * Release a bound thread.
 2813  */
 2814 void
 2815 sched_unbind(struct thread *td)
 2816 {
 2817         struct td_sched *ts;
 2818 
 2819         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2820         KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
 2821         ts = td_get_sched(td);
 2822         if ((ts->ts_flags & TSF_BOUND) == 0)
 2823                 return;
 2824         ts->ts_flags &= ~TSF_BOUND;
 2825         sched_unpin();
 2826 }
 2827 
 2828 int
 2829 sched_is_bound(struct thread *td)
 2830 {
 2831         THREAD_LOCK_ASSERT(td, MA_OWNED);
 2832         return (td_get_sched(td)->ts_flags & TSF_BOUND);
 2833 }
 2834 
 2835 /*
 2836  * Basic yield call.
 2837  */
 2838 void
 2839 sched_relinquish(struct thread *td)
 2840 {
 2841         thread_lock(td);
 2842         mi_switch(SW_VOL | SWT_RELINQUISH);
 2843 }
 2844 
 2845 /*
 2846  * Return the total system load.
 2847  */
 2848 int
 2849 sched_load(void)
 2850 {
 2851 #ifdef SMP
 2852         int total;
 2853         int i;
 2854 
 2855         total = 0;
 2856         CPU_FOREACH(i)
 2857                 total += TDQ_CPU(i)->tdq_sysload;
 2858         return (total);
 2859 #else
 2860         return (TDQ_SELF()->tdq_sysload);
 2861 #endif
 2862 }
 2863 
 2864 int
 2865 sched_sizeof_proc(void)
 2866 {
 2867         return (sizeof(struct proc));
 2868 }
 2869 
 2870 int
 2871 sched_sizeof_thread(void)
 2872 {
 2873         return (sizeof(struct thread) + sizeof(struct td_sched));
 2874 }
 2875 
 2876 #ifdef SMP
 2877 #define TDQ_IDLESPIN(tdq)                                               \
 2878     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
 2879 #else
 2880 #define TDQ_IDLESPIN(tdq)       1
 2881 #endif
 2882 
 2883 /*
 2884  * The actual idle process.
 2885  */
 2886 void
 2887 sched_idletd(void *dummy)
 2888 {
 2889         struct thread *td;
 2890         struct tdq *tdq;
 2891         int oldswitchcnt, switchcnt;
 2892         int i;
 2893 
 2894         mtx_assert(&Giant, MA_NOTOWNED);
 2895         td = curthread;
 2896         tdq = TDQ_SELF();
 2897         THREAD_NO_SLEEPING();
 2898         oldswitchcnt = -1;
 2899         for (;;) {
 2900                 if (tdq->tdq_load) {
 2901                         thread_lock(td);
 2902                         mi_switch(SW_VOL | SWT_IDLE);
 2903                 }
 2904                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2905 #ifdef SMP
 2906                 if (always_steal || switchcnt != oldswitchcnt) {
 2907                         oldswitchcnt = switchcnt;
 2908                         if (tdq_idled(tdq) == 0)
 2909                                 continue;
 2910                 }
 2911                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2912 #else
 2913                 oldswitchcnt = switchcnt;
 2914 #endif
 2915                 /*
 2916                  * If we're switching very frequently, spin while checking
 2917                  * for load rather than entering a low power state that 
 2918                  * may require an IPI.  However, don't do any busy
 2919                  * loops while on SMT machines as this simply steals
 2920                  * cycles from cores doing useful work.
 2921                  */
 2922                 if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
 2923                         for (i = 0; i < sched_idlespins; i++) {
 2924                                 if (tdq->tdq_load)
 2925                                         break;
 2926                                 cpu_spinwait();
 2927                         }
 2928                 }
 2929 
 2930                 /* If there was context switch during spin, restart it. */
 2931                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2932                 if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt)
 2933                         continue;
 2934 
 2935                 /* Run main MD idle handler. */
 2936                 tdq->tdq_cpu_idle = 1;
 2937                 /*
 2938                  * Make sure that tdq_cpu_idle update is globally visible
 2939                  * before cpu_idle() read tdq_load.  The order is important
 2940                  * to avoid race with tdq_notify.
 2941                  */
 2942                 atomic_thread_fence_seq_cst();
 2943                 /*
 2944                  * Checking for again after the fence picks up assigned
 2945                  * threads often enough to make it worthwhile to do so in
 2946                  * order to avoid calling cpu_idle().
 2947                  */
 2948                 if (tdq->tdq_load != 0) {
 2949                         tdq->tdq_cpu_idle = 0;
 2950                         continue;
 2951                 }
 2952                 cpu_idle(switchcnt * 4 > sched_idlespinthresh);
 2953                 tdq->tdq_cpu_idle = 0;
 2954 
 2955                 /*
 2956                  * Account thread-less hardware interrupts and
 2957                  * other wakeup reasons equal to context switches.
 2958                  */
 2959                 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
 2960                 if (switchcnt != oldswitchcnt)
 2961                         continue;
 2962                 tdq->tdq_switchcnt++;
 2963                 oldswitchcnt++;
 2964         }
 2965 }
 2966 
 2967 /*
 2968  * A CPU is entering for the first time or a thread is exiting.
 2969  */
 2970 void
 2971 sched_throw(struct thread *td)
 2972 {
 2973         struct thread *newtd;
 2974         struct tdq *tdq;
 2975 
 2976         if (__predict_false(td == NULL)) {
 2977 #ifdef SMP
 2978                 PCPU_SET(sched, DPCPU_PTR(tdq));
 2979 #endif
 2980                 /* Correct spinlock nesting and acquire the correct lock. */
 2981                 tdq = TDQ_SELF();
 2982                 TDQ_LOCK(tdq);
 2983                 spinlock_exit();
 2984                 PCPU_SET(switchtime, cpu_ticks());
 2985                 PCPU_SET(switchticks, ticks);
 2986                 PCPU_GET(idlethread)->td_lock = TDQ_LOCKPTR(tdq);
 2987         } else {
 2988                 tdq = TDQ_SELF();
 2989                 THREAD_LOCK_ASSERT(td, MA_OWNED);
 2990                 THREAD_LOCKPTR_ASSERT(td, TDQ_LOCKPTR(tdq));
 2991                 tdq_load_rem(tdq, td);
 2992                 td->td_lastcpu = td->td_oncpu;
 2993                 td->td_oncpu = NOCPU;
 2994                 thread_lock_block(td);
 2995         }
 2996         newtd = choosethread();
 2997         spinlock_enter();
 2998         TDQ_UNLOCK(tdq);
 2999         KASSERT(curthread->td_md.md_spinlock_count == 1,
 3000             ("invalid count %d", curthread->td_md.md_spinlock_count));
 3001         /* doesn't return */
 3002         if (__predict_false(td == NULL))
 3003                 cpu_throw(td, newtd);           /* doesn't return */
 3004         else
 3005                 cpu_switch(td, newtd, TDQ_LOCKPTR(tdq));
 3006 }
 3007 
 3008 /*
 3009  * This is called from fork_exit().  Just acquire the correct locks and
 3010  * let fork do the rest of the work.
 3011  */
 3012 void
 3013 sched_fork_exit(struct thread *td)
 3014 {
 3015         struct tdq *tdq;
 3016         int cpuid;
 3017 
 3018         /*
 3019          * Finish setting up thread glue so that it begins execution in a
 3020          * non-nested critical section with the scheduler lock held.
 3021          */
 3022         KASSERT(curthread->td_md.md_spinlock_count == 1,
 3023             ("invalid count %d", curthread->td_md.md_spinlock_count));
 3024         cpuid = PCPU_GET(cpuid);
 3025         tdq = TDQ_SELF();
 3026         TDQ_LOCK(tdq);
 3027         spinlock_exit();
 3028         MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
 3029         td->td_oncpu = cpuid;
 3030         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
 3031             "prio:%d", td->td_priority);
 3032         SDT_PROBE0(sched, , , on__cpu);
 3033 }
 3034 
 3035 /*
 3036  * Create on first use to catch odd startup conditions.
 3037  */
 3038 char *
 3039 sched_tdname(struct thread *td)
 3040 {
 3041 #ifdef KTR
 3042         struct td_sched *ts;
 3043 
 3044         ts = td_get_sched(td);
 3045         if (ts->ts_name[0] == '\0')
 3046                 snprintf(ts->ts_name, sizeof(ts->ts_name),
 3047                     "%s tid %d", td->td_name, td->td_tid);
 3048         return (ts->ts_name);
 3049 #else
 3050         return (td->td_name);
 3051 #endif
 3052 }
 3053 
 3054 #ifdef KTR
 3055 void
 3056 sched_clear_tdname(struct thread *td)
 3057 {
 3058         struct td_sched *ts;
 3059 
 3060         ts = td_get_sched(td);
 3061         ts->ts_name[0] = '\0';
 3062 }
 3063 #endif
 3064 
 3065 #ifdef SMP
 3066 
 3067 /*
 3068  * Build the CPU topology dump string. Is recursively called to collect
 3069  * the topology tree.
 3070  */
 3071 static int
 3072 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
 3073     int indent)
 3074 {
 3075         char cpusetbuf[CPUSETBUFSIZ];
 3076         int i, first;
 3077 
 3078         sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
 3079             "", 1 + indent / 2, cg->cg_level);
 3080         sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
 3081             cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
 3082         first = TRUE;
 3083         for (i = cg->cg_first; i <= cg->cg_last; i++) {
 3084                 if (CPU_ISSET(i, &cg->cg_mask)) {
 3085                         if (!first)
 3086                                 sbuf_printf(sb, ", ");
 3087                         else
 3088                                 first = FALSE;
 3089                         sbuf_printf(sb, "%d", i);
 3090                 }
 3091         }
 3092         sbuf_printf(sb, "</cpu>\n");
 3093 
 3094         if (cg->cg_flags != 0) {
 3095                 sbuf_printf(sb, "%*s <flags>", indent, "");
 3096                 if ((cg->cg_flags & CG_FLAG_HTT) != 0)
 3097                         sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
 3098                 if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
 3099                         sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
 3100                 if ((cg->cg_flags & CG_FLAG_SMT) != 0)
 3101                         sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
 3102                 if ((cg->cg_flags & CG_FLAG_NODE) != 0)
 3103                         sbuf_printf(sb, "<flag name=\"NODE\">NUMA node</flag>");
 3104                 sbuf_printf(sb, "</flags>\n");
 3105         }
 3106 
 3107         if (cg->cg_children > 0) {
 3108                 sbuf_printf(sb, "%*s <children>\n", indent, "");
 3109                 for (i = 0; i < cg->cg_children; i++)
 3110                         sysctl_kern_sched_topology_spec_internal(sb, 
 3111                             &cg->cg_child[i], indent+2);
 3112                 sbuf_printf(sb, "%*s </children>\n", indent, "");
 3113         }
 3114         sbuf_printf(sb, "%*s</group>\n", indent, "");
 3115         return (0);
 3116 }
 3117 
 3118 /*
 3119  * Sysctl handler for retrieving topology dump. It's a wrapper for
 3120  * the recursive sysctl_kern_smp_topology_spec_internal().
 3121  */
 3122 static int
 3123 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
 3124 {
 3125         struct sbuf *topo;
 3126         int err;
 3127 
 3128         KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
 3129 
 3130         topo = sbuf_new_for_sysctl(NULL, NULL, 512, req);
 3131         if (topo == NULL)
 3132                 return (ENOMEM);
 3133 
 3134         sbuf_printf(topo, "<groups>\n");
 3135         err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
 3136         sbuf_printf(topo, "</groups>\n");
 3137 
 3138         if (err == 0) {
 3139                 err = sbuf_finish(topo);
 3140         }
 3141         sbuf_delete(topo);
 3142         return (err);
 3143 }
 3144 
 3145 #endif
 3146 
 3147 static int
 3148 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
 3149 {
 3150         int error, new_val, period;
 3151 
 3152         period = 1000000 / realstathz;
 3153         new_val = period * sched_slice;
 3154         error = sysctl_handle_int(oidp, &new_val, 0, req);
 3155         if (error != 0 || req->newptr == NULL)
 3156                 return (error);
 3157         if (new_val <= 0)
 3158                 return (EINVAL);
 3159         sched_slice = imax(1, (new_val + period / 2) / period);
 3160         sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
 3161         hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
 3162             realstathz);
 3163         return (0);
 3164 }
 3165 
 3166 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
 3167     "Scheduler");
 3168 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
 3169     "Scheduler name");
 3170 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum,
 3171     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
 3172     sysctl_kern_quantum, "I",
 3173     "Quantum for timeshare threads in microseconds");
 3174 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
 3175     "Quantum for timeshare threads in stathz ticks");
 3176 SYSCTL_UINT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
 3177     "Interactivity score threshold");
 3178 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
 3179     &preempt_thresh, 0,
 3180     "Maximal (lowest) priority for preemption");
 3181 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
 3182     "Assign static kernel priorities to sleeping threads");
 3183 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
 3184     "Number of times idle thread will spin waiting for new work");
 3185 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
 3186     &sched_idlespinthresh, 0,
 3187     "Threshold before we will permit idle thread spinning");
 3188 #ifdef SMP
 3189 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
 3190     "Number of hz ticks to keep thread affinity for");
 3191 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
 3192     "Enables the long-term load balancer");
 3193 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
 3194     &balance_interval, 0,
 3195     "Average period in stathz ticks to run the long-term balancer");
 3196 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
 3197     "Attempts to steal work from other cores before idling");
 3198 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
 3199     "Minimum load on remote CPU before we'll steal");
 3200 SYSCTL_INT(_kern_sched, OID_AUTO, trysteal_limit, CTLFLAG_RW, &trysteal_limit,
 3201     0, "Topological distance limit for stealing threads in sched_switch()");
 3202 SYSCTL_INT(_kern_sched, OID_AUTO, always_steal, CTLFLAG_RW, &always_steal, 0,
 3203     "Always run the stealer from the idle thread");
 3204 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
 3205     CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
 3206     "XML dump of detected CPU topology");
 3207 #endif
 3208 
 3209 /* ps compat.  All cpu percentages from ULE are weighted. */
 3210 static int ccpu = 0;
 3211 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0,
 3212     "Decay factor used for updating %CPU in 4BSD scheduler");

Cache object: 8cd1a68207150bf649af8632d593f6a7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.