The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_bus.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997,1998,2003 Doug Rabson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/10.0/sys/kern/subr_bus.c 256381 2013-10-12 15:31:36Z markm $");
   29 
   30 #include "opt_bus.h"
   31 #include "opt_random.h"
   32 
   33 #include <sys/param.h>
   34 #include <sys/conf.h>
   35 #include <sys/filio.h>
   36 #include <sys/lock.h>
   37 #include <sys/kernel.h>
   38 #include <sys/kobj.h>
   39 #include <sys/limits.h>
   40 #include <sys/malloc.h>
   41 #include <sys/module.h>
   42 #include <sys/mutex.h>
   43 #include <sys/poll.h>
   44 #include <sys/proc.h>
   45 #include <sys/condvar.h>
   46 #include <sys/queue.h>
   47 #include <machine/bus.h>
   48 #include <sys/random.h>
   49 #include <sys/rman.h>
   50 #include <sys/selinfo.h>
   51 #include <sys/signalvar.h>
   52 #include <sys/sysctl.h>
   53 #include <sys/systm.h>
   54 #include <sys/uio.h>
   55 #include <sys/bus.h>
   56 #include <sys/interrupt.h>
   57 
   58 #include <net/vnet.h>
   59 
   60 #include <machine/cpu.h>
   61 #include <machine/stdarg.h>
   62 
   63 #include <vm/uma.h>
   64 
   65 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
   66 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
   67 
   68 /*
   69  * Used to attach drivers to devclasses.
   70  */
   71 typedef struct driverlink *driverlink_t;
   72 struct driverlink {
   73         kobj_class_t    driver;
   74         TAILQ_ENTRY(driverlink) link;   /* list of drivers in devclass */
   75         int             pass;
   76         TAILQ_ENTRY(driverlink) passlink;
   77 };
   78 
   79 /*
   80  * Forward declarations
   81  */
   82 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
   83 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
   84 typedef TAILQ_HEAD(device_list, device) device_list_t;
   85 
   86 struct devclass {
   87         TAILQ_ENTRY(devclass) link;
   88         devclass_t      parent;         /* parent in devclass hierarchy */
   89         driver_list_t   drivers;     /* bus devclasses store drivers for bus */
   90         char            *name;
   91         device_t        *devices;       /* array of devices indexed by unit */
   92         int             maxunit;        /* size of devices array */
   93         int             flags;
   94 #define DC_HAS_CHILDREN         1
   95 
   96         struct sysctl_ctx_list sysctl_ctx;
   97         struct sysctl_oid *sysctl_tree;
   98 };
   99 
  100 /**
  101  * @brief Implementation of device.
  102  */
  103 struct device {
  104         /*
  105          * A device is a kernel object. The first field must be the
  106          * current ops table for the object.
  107          */
  108         KOBJ_FIELDS;
  109 
  110         /*
  111          * Device hierarchy.
  112          */
  113         TAILQ_ENTRY(device)     link;   /**< list of devices in parent */
  114         TAILQ_ENTRY(device)     devlink; /**< global device list membership */
  115         device_t        parent;         /**< parent of this device  */
  116         device_list_t   children;       /**< list of child devices */
  117 
  118         /*
  119          * Details of this device.
  120          */
  121         driver_t        *driver;        /**< current driver */
  122         devclass_t      devclass;       /**< current device class */
  123         int             unit;           /**< current unit number */
  124         char*           nameunit;       /**< name+unit e.g. foodev0 */
  125         char*           desc;           /**< driver specific description */
  126         int             busy;           /**< count of calls to device_busy() */
  127         device_state_t  state;          /**< current device state  */
  128         uint32_t        devflags;       /**< api level flags for device_get_flags() */
  129         u_int           flags;          /**< internal device flags  */
  130 #define DF_ENABLED      0x01            /* device should be probed/attached */
  131 #define DF_FIXEDCLASS   0x02            /* devclass specified at create time */
  132 #define DF_WILDCARD     0x04            /* unit was originally wildcard */
  133 #define DF_DESCMALLOCED 0x08            /* description was malloced */
  134 #define DF_QUIET        0x10            /* don't print verbose attach message */
  135 #define DF_DONENOMATCH  0x20            /* don't execute DEVICE_NOMATCH again */
  136 #define DF_EXTERNALSOFTC 0x40           /* softc not allocated by us */
  137 #define DF_REBID        0x80            /* Can rebid after attach */
  138         u_int   order;                  /**< order from device_add_child_ordered() */
  139         void    *ivars;                 /**< instance variables  */
  140         void    *softc;                 /**< current driver's variables  */
  141 
  142         struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
  143         struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
  144 };
  145 
  146 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
  147 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
  148 
  149 #ifdef BUS_DEBUG
  150 
  151 static int bus_debug = 1;
  152 TUNABLE_INT("bus.debug", &bus_debug);
  153 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
  154     "Debug bus code");
  155 
  156 #define PDEBUG(a)       if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
  157 #define DEVICENAME(d)   ((d)? device_get_name(d): "no device")
  158 #define DRIVERNAME(d)   ((d)? d->name : "no driver")
  159 #define DEVCLANAME(d)   ((d)? d->name : "no devclass")
  160 
  161 /**
  162  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
  163  * prevent syslog from deleting initial spaces
  164  */
  165 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
  166 
  167 static void print_device_short(device_t dev, int indent);
  168 static void print_device(device_t dev, int indent);
  169 void print_device_tree_short(device_t dev, int indent);
  170 void print_device_tree(device_t dev, int indent);
  171 static void print_driver_short(driver_t *driver, int indent);
  172 static void print_driver(driver_t *driver, int indent);
  173 static void print_driver_list(driver_list_t drivers, int indent);
  174 static void print_devclass_short(devclass_t dc, int indent);
  175 static void print_devclass(devclass_t dc, int indent);
  176 void print_devclass_list_short(void);
  177 void print_devclass_list(void);
  178 
  179 #else
  180 /* Make the compiler ignore the function calls */
  181 #define PDEBUG(a)                       /* nop */
  182 #define DEVICENAME(d)                   /* nop */
  183 #define DRIVERNAME(d)                   /* nop */
  184 #define DEVCLANAME(d)                   /* nop */
  185 
  186 #define print_device_short(d,i)         /* nop */
  187 #define print_device(d,i)               /* nop */
  188 #define print_device_tree_short(d,i)    /* nop */
  189 #define print_device_tree(d,i)          /* nop */
  190 #define print_driver_short(d,i)         /* nop */
  191 #define print_driver(d,i)               /* nop */
  192 #define print_driver_list(d,i)          /* nop */
  193 #define print_devclass_short(d,i)       /* nop */
  194 #define print_devclass(d,i)             /* nop */
  195 #define print_devclass_list_short()     /* nop */
  196 #define print_devclass_list()           /* nop */
  197 #endif
  198 
  199 /*
  200  * dev sysctl tree
  201  */
  202 
  203 enum {
  204         DEVCLASS_SYSCTL_PARENT,
  205 };
  206 
  207 static int
  208 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
  209 {
  210         devclass_t dc = (devclass_t)arg1;
  211         const char *value;
  212 
  213         switch (arg2) {
  214         case DEVCLASS_SYSCTL_PARENT:
  215                 value = dc->parent ? dc->parent->name : "";
  216                 break;
  217         default:
  218                 return (EINVAL);
  219         }
  220         return (SYSCTL_OUT(req, value, strlen(value)));
  221 }
  222 
  223 static void
  224 devclass_sysctl_init(devclass_t dc)
  225 {
  226 
  227         if (dc->sysctl_tree != NULL)
  228                 return;
  229         sysctl_ctx_init(&dc->sysctl_ctx);
  230         dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
  231             SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
  232             CTLFLAG_RD, NULL, "");
  233         SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
  234             OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
  235             dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
  236             "parent class");
  237 }
  238 
  239 enum {
  240         DEVICE_SYSCTL_DESC,
  241         DEVICE_SYSCTL_DRIVER,
  242         DEVICE_SYSCTL_LOCATION,
  243         DEVICE_SYSCTL_PNPINFO,
  244         DEVICE_SYSCTL_PARENT,
  245 };
  246 
  247 static int
  248 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
  249 {
  250         device_t dev = (device_t)arg1;
  251         const char *value;
  252         char *buf;
  253         int error;
  254 
  255         buf = NULL;
  256         switch (arg2) {
  257         case DEVICE_SYSCTL_DESC:
  258                 value = dev->desc ? dev->desc : "";
  259                 break;
  260         case DEVICE_SYSCTL_DRIVER:
  261                 value = dev->driver ? dev->driver->name : "";
  262                 break;
  263         case DEVICE_SYSCTL_LOCATION:
  264                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  265                 bus_child_location_str(dev, buf, 1024);
  266                 break;
  267         case DEVICE_SYSCTL_PNPINFO:
  268                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  269                 bus_child_pnpinfo_str(dev, buf, 1024);
  270                 break;
  271         case DEVICE_SYSCTL_PARENT:
  272                 value = dev->parent ? dev->parent->nameunit : "";
  273                 break;
  274         default:
  275                 return (EINVAL);
  276         }
  277         error = SYSCTL_OUT(req, value, strlen(value));
  278         if (buf != NULL)
  279                 free(buf, M_BUS);
  280         return (error);
  281 }
  282 
  283 static void
  284 device_sysctl_init(device_t dev)
  285 {
  286         devclass_t dc = dev->devclass;
  287 
  288         if (dev->sysctl_tree != NULL)
  289                 return;
  290         devclass_sysctl_init(dc);
  291         sysctl_ctx_init(&dev->sysctl_ctx);
  292         dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
  293             SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
  294             dev->nameunit + strlen(dc->name),
  295             CTLFLAG_RD, NULL, "");
  296         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  297             OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
  298             dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
  299             "device description");
  300         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  301             OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
  302             dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
  303             "device driver name");
  304         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  305             OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
  306             dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
  307             "device location relative to parent");
  308         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  309             OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
  310             dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
  311             "device identification");
  312         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  313             OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
  314             dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
  315             "parent device");
  316 }
  317 
  318 static void
  319 device_sysctl_update(device_t dev)
  320 {
  321         devclass_t dc = dev->devclass;
  322 
  323         if (dev->sysctl_tree == NULL)
  324                 return;
  325         sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
  326 }
  327 
  328 static void
  329 device_sysctl_fini(device_t dev)
  330 {
  331         if (dev->sysctl_tree == NULL)
  332                 return;
  333         sysctl_ctx_free(&dev->sysctl_ctx);
  334         dev->sysctl_tree = NULL;
  335 }
  336 
  337 /*
  338  * /dev/devctl implementation
  339  */
  340 
  341 /*
  342  * This design allows only one reader for /dev/devctl.  This is not desirable
  343  * in the long run, but will get a lot of hair out of this implementation.
  344  * Maybe we should make this device a clonable device.
  345  *
  346  * Also note: we specifically do not attach a device to the device_t tree
  347  * to avoid potential chicken and egg problems.  One could argue that all
  348  * of this belongs to the root node.  One could also further argue that the
  349  * sysctl interface that we have not might more properly be an ioctl
  350  * interface, but at this stage of the game, I'm not inclined to rock that
  351  * boat.
  352  *
  353  * I'm also not sure that the SIGIO support is done correctly or not, as
  354  * I copied it from a driver that had SIGIO support that likely hasn't been
  355  * tested since 3.4 or 2.2.8!
  356  */
  357 
  358 /* Deprecated way to adjust queue length */
  359 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
  360 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
  361 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
  362     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
  363 
  364 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
  365 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
  366 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  367 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
  368 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
  369     0, sysctl_devctl_queue, "I", "devctl queue length");
  370 
  371 static d_open_t         devopen;
  372 static d_close_t        devclose;
  373 static d_read_t         devread;
  374 static d_ioctl_t        devioctl;
  375 static d_poll_t         devpoll;
  376 
  377 static struct cdevsw dev_cdevsw = {
  378         .d_version =    D_VERSION,
  379         .d_flags =      D_NEEDGIANT,
  380         .d_open =       devopen,
  381         .d_close =      devclose,
  382         .d_read =       devread,
  383         .d_ioctl =      devioctl,
  384         .d_poll =       devpoll,
  385         .d_name =       "devctl",
  386 };
  387 
  388 struct dev_event_info
  389 {
  390         char *dei_data;
  391         TAILQ_ENTRY(dev_event_info) dei_link;
  392 };
  393 
  394 TAILQ_HEAD(devq, dev_event_info);
  395 
  396 static struct dev_softc
  397 {
  398         int     inuse;
  399         int     nonblock;
  400         int     queued;
  401         struct mtx mtx;
  402         struct cv cv;
  403         struct selinfo sel;
  404         struct devq devq;
  405         struct proc *async_proc;
  406 } devsoftc;
  407 
  408 static struct cdev *devctl_dev;
  409 
  410 static void
  411 devinit(void)
  412 {
  413         devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
  414             UID_ROOT, GID_WHEEL, 0600, "devctl");
  415         mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
  416         cv_init(&devsoftc.cv, "dev cv");
  417         TAILQ_INIT(&devsoftc.devq);
  418 }
  419 
  420 static int
  421 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
  422 {
  423         if (devsoftc.inuse)
  424                 return (EBUSY);
  425         /* move to init */
  426         devsoftc.inuse = 1;
  427         devsoftc.nonblock = 0;
  428         devsoftc.async_proc = NULL;
  429         return (0);
  430 }
  431 
  432 static int
  433 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
  434 {
  435         devsoftc.inuse = 0;
  436         mtx_lock(&devsoftc.mtx);
  437         cv_broadcast(&devsoftc.cv);
  438         mtx_unlock(&devsoftc.mtx);
  439         devsoftc.async_proc = NULL;
  440         return (0);
  441 }
  442 
  443 /*
  444  * The read channel for this device is used to report changes to
  445  * userland in realtime.  We are required to free the data as well as
  446  * the n1 object because we allocate them separately.  Also note that
  447  * we return one record at a time.  If you try to read this device a
  448  * character at a time, you will lose the rest of the data.  Listening
  449  * programs are expected to cope.
  450  */
  451 static int
  452 devread(struct cdev *dev, struct uio *uio, int ioflag)
  453 {
  454         struct dev_event_info *n1;
  455         int rv;
  456 
  457         mtx_lock(&devsoftc.mtx);
  458         while (TAILQ_EMPTY(&devsoftc.devq)) {
  459                 if (devsoftc.nonblock) {
  460                         mtx_unlock(&devsoftc.mtx);
  461                         return (EAGAIN);
  462                 }
  463                 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
  464                 if (rv) {
  465                         /*
  466                          * Need to translate ERESTART to EINTR here? -- jake
  467                          */
  468                         mtx_unlock(&devsoftc.mtx);
  469                         return (rv);
  470                 }
  471         }
  472         n1 = TAILQ_FIRST(&devsoftc.devq);
  473         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  474         devsoftc.queued--;
  475         mtx_unlock(&devsoftc.mtx);
  476         rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
  477         free(n1->dei_data, M_BUS);
  478         free(n1, M_BUS);
  479         return (rv);
  480 }
  481 
  482 static  int
  483 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
  484 {
  485         switch (cmd) {
  486 
  487         case FIONBIO:
  488                 if (*(int*)data)
  489                         devsoftc.nonblock = 1;
  490                 else
  491                         devsoftc.nonblock = 0;
  492                 return (0);
  493         case FIOASYNC:
  494                 if (*(int*)data)
  495                         devsoftc.async_proc = td->td_proc;
  496                 else
  497                         devsoftc.async_proc = NULL;
  498                 return (0);
  499 
  500                 /* (un)Support for other fcntl() calls. */
  501         case FIOCLEX:
  502         case FIONCLEX:
  503         case FIONREAD:
  504         case FIOSETOWN:
  505         case FIOGETOWN:
  506         default:
  507                 break;
  508         }
  509         return (ENOTTY);
  510 }
  511 
  512 static  int
  513 devpoll(struct cdev *dev, int events, struct thread *td)
  514 {
  515         int     revents = 0;
  516 
  517         mtx_lock(&devsoftc.mtx);
  518         if (events & (POLLIN | POLLRDNORM)) {
  519                 if (!TAILQ_EMPTY(&devsoftc.devq))
  520                         revents = events & (POLLIN | POLLRDNORM);
  521                 else
  522                         selrecord(td, &devsoftc.sel);
  523         }
  524         mtx_unlock(&devsoftc.mtx);
  525 
  526         return (revents);
  527 }
  528 
  529 /**
  530  * @brief Return whether the userland process is running
  531  */
  532 boolean_t
  533 devctl_process_running(void)
  534 {
  535         return (devsoftc.inuse == 1);
  536 }
  537 
  538 /**
  539  * @brief Queue data to be read from the devctl device
  540  *
  541  * Generic interface to queue data to the devctl device.  It is
  542  * assumed that @p data is properly formatted.  It is further assumed
  543  * that @p data is allocated using the M_BUS malloc type.
  544  */
  545 void
  546 devctl_queue_data_f(char *data, int flags)
  547 {
  548         struct dev_event_info *n1 = NULL, *n2 = NULL;
  549         struct proc *p;
  550 
  551         if (strlen(data) == 0)
  552                 goto out;
  553         if (devctl_queue_length == 0)
  554                 goto out;
  555         n1 = malloc(sizeof(*n1), M_BUS, flags);
  556         if (n1 == NULL)
  557                 goto out;
  558         n1->dei_data = data;
  559         mtx_lock(&devsoftc.mtx);
  560         if (devctl_queue_length == 0) {
  561                 mtx_unlock(&devsoftc.mtx);
  562                 free(n1->dei_data, M_BUS);
  563                 free(n1, M_BUS);
  564                 return;
  565         }
  566         /* Leave at least one spot in the queue... */
  567         while (devsoftc.queued > devctl_queue_length - 1) {
  568                 n2 = TAILQ_FIRST(&devsoftc.devq);
  569                 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
  570                 free(n2->dei_data, M_BUS);
  571                 free(n2, M_BUS);
  572                 devsoftc.queued--;
  573         }
  574         TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
  575         devsoftc.queued++;
  576         cv_broadcast(&devsoftc.cv);
  577         mtx_unlock(&devsoftc.mtx);
  578         selwakeup(&devsoftc.sel);
  579         p = devsoftc.async_proc;
  580         if (p != NULL) {
  581                 PROC_LOCK(p);
  582                 kern_psignal(p, SIGIO);
  583                 PROC_UNLOCK(p);
  584         }
  585         return;
  586 out:
  587         /*
  588          * We have to free data on all error paths since the caller
  589          * assumes it will be free'd when this item is dequeued.
  590          */
  591         free(data, M_BUS);
  592         return;
  593 }
  594 
  595 void
  596 devctl_queue_data(char *data)
  597 {
  598 
  599         devctl_queue_data_f(data, M_NOWAIT);
  600 }
  601 
  602 /**
  603  * @brief Send a 'notification' to userland, using standard ways
  604  */
  605 void
  606 devctl_notify_f(const char *system, const char *subsystem, const char *type,
  607     const char *data, int flags)
  608 {
  609         int len = 0;
  610         char *msg;
  611 
  612         if (system == NULL)
  613                 return;         /* BOGUS!  Must specify system. */
  614         if (subsystem == NULL)
  615                 return;         /* BOGUS!  Must specify subsystem. */
  616         if (type == NULL)
  617                 return;         /* BOGUS!  Must specify type. */
  618         len += strlen(" system=") + strlen(system);
  619         len += strlen(" subsystem=") + strlen(subsystem);
  620         len += strlen(" type=") + strlen(type);
  621         /* add in the data message plus newline. */
  622         if (data != NULL)
  623                 len += strlen(data);
  624         len += 3;       /* '!', '\n', and NUL */
  625         msg = malloc(len, M_BUS, flags);
  626         if (msg == NULL)
  627                 return;         /* Drop it on the floor */
  628         if (data != NULL)
  629                 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
  630                     system, subsystem, type, data);
  631         else
  632                 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
  633                     system, subsystem, type);
  634         devctl_queue_data_f(msg, flags);
  635 }
  636 
  637 void
  638 devctl_notify(const char *system, const char *subsystem, const char *type,
  639     const char *data)
  640 {
  641 
  642         devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
  643 }
  644 
  645 /*
  646  * Common routine that tries to make sending messages as easy as possible.
  647  * We allocate memory for the data, copy strings into that, but do not
  648  * free it unless there's an error.  The dequeue part of the driver should
  649  * free the data.  We don't send data when the device is disabled.  We do
  650  * send data, even when we have no listeners, because we wish to avoid
  651  * races relating to startup and restart of listening applications.
  652  *
  653  * devaddq is designed to string together the type of event, with the
  654  * object of that event, plus the plug and play info and location info
  655  * for that event.  This is likely most useful for devices, but less
  656  * useful for other consumers of this interface.  Those should use
  657  * the devctl_queue_data() interface instead.
  658  */
  659 static void
  660 devaddq(const char *type, const char *what, device_t dev)
  661 {
  662         char *data = NULL;
  663         char *loc = NULL;
  664         char *pnp = NULL;
  665         const char *parstr;
  666 
  667         if (!devctl_queue_length)/* Rare race, but lost races safely discard */
  668                 return;
  669         data = malloc(1024, M_BUS, M_NOWAIT);
  670         if (data == NULL)
  671                 goto bad;
  672 
  673         /* get the bus specific location of this device */
  674         loc = malloc(1024, M_BUS, M_NOWAIT);
  675         if (loc == NULL)
  676                 goto bad;
  677         *loc = '\0';
  678         bus_child_location_str(dev, loc, 1024);
  679 
  680         /* Get the bus specific pnp info of this device */
  681         pnp = malloc(1024, M_BUS, M_NOWAIT);
  682         if (pnp == NULL)
  683                 goto bad;
  684         *pnp = '\0';
  685         bus_child_pnpinfo_str(dev, pnp, 1024);
  686 
  687         /* Get the parent of this device, or / if high enough in the tree. */
  688         if (device_get_parent(dev) == NULL)
  689                 parstr = ".";   /* Or '/' ? */
  690         else
  691                 parstr = device_get_nameunit(device_get_parent(dev));
  692         /* String it all together. */
  693         snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
  694           parstr);
  695         free(loc, M_BUS);
  696         free(pnp, M_BUS);
  697         devctl_queue_data(data);
  698         return;
  699 bad:
  700         free(pnp, M_BUS);
  701         free(loc, M_BUS);
  702         free(data, M_BUS);
  703         return;
  704 }
  705 
  706 /*
  707  * A device was added to the tree.  We are called just after it successfully
  708  * attaches (that is, probe and attach success for this device).  No call
  709  * is made if a device is merely parented into the tree.  See devnomatch
  710  * if probe fails.  If attach fails, no notification is sent (but maybe
  711  * we should have a different message for this).
  712  */
  713 static void
  714 devadded(device_t dev)
  715 {
  716         devaddq("+", device_get_nameunit(dev), dev);
  717 }
  718 
  719 /*
  720  * A device was removed from the tree.  We are called just before this
  721  * happens.
  722  */
  723 static void
  724 devremoved(device_t dev)
  725 {
  726         devaddq("-", device_get_nameunit(dev), dev);
  727 }
  728 
  729 /*
  730  * Called when there's no match for this device.  This is only called
  731  * the first time that no match happens, so we don't keep getting this
  732  * message.  Should that prove to be undesirable, we can change it.
  733  * This is called when all drivers that can attach to a given bus
  734  * decline to accept this device.  Other errors may not be detected.
  735  */
  736 static void
  737 devnomatch(device_t dev)
  738 {
  739         devaddq("?", "", dev);
  740 }
  741 
  742 static int
  743 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
  744 {
  745         struct dev_event_info *n1;
  746         int dis, error;
  747 
  748         dis = devctl_queue_length == 0;
  749         error = sysctl_handle_int(oidp, &dis, 0, req);
  750         if (error || !req->newptr)
  751                 return (error);
  752         mtx_lock(&devsoftc.mtx);
  753         if (dis) {
  754                 while (!TAILQ_EMPTY(&devsoftc.devq)) {
  755                         n1 = TAILQ_FIRST(&devsoftc.devq);
  756                         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  757                         free(n1->dei_data, M_BUS);
  758                         free(n1, M_BUS);
  759                 }
  760                 devsoftc.queued = 0;
  761                 devctl_queue_length = 0;
  762         } else {
  763                 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  764         }
  765         mtx_unlock(&devsoftc.mtx);
  766         return (0);
  767 }
  768 
  769 static int
  770 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
  771 {
  772         struct dev_event_info *n1;
  773         int q, error;
  774 
  775         q = devctl_queue_length;
  776         error = sysctl_handle_int(oidp, &q, 0, req);
  777         if (error || !req->newptr)
  778                 return (error);
  779         if (q < 0)
  780                 return (EINVAL);
  781         mtx_lock(&devsoftc.mtx);
  782         devctl_queue_length = q;
  783         while (devsoftc.queued > devctl_queue_length) {
  784                 n1 = TAILQ_FIRST(&devsoftc.devq);
  785                 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  786                 free(n1->dei_data, M_BUS);
  787                 free(n1, M_BUS);
  788                 devsoftc.queued--;
  789         }
  790         mtx_unlock(&devsoftc.mtx);
  791         return (0);
  792 }
  793 
  794 /* End of /dev/devctl code */
  795 
  796 static TAILQ_HEAD(,device)      bus_data_devices;
  797 static int bus_data_generation = 1;
  798 
  799 static kobj_method_t null_methods[] = {
  800         KOBJMETHOD_END
  801 };
  802 
  803 DEFINE_CLASS(null, null_methods, 0);
  804 
  805 /*
  806  * Bus pass implementation
  807  */
  808 
  809 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
  810 int bus_current_pass = BUS_PASS_ROOT;
  811 
  812 /**
  813  * @internal
  814  * @brief Register the pass level of a new driver attachment
  815  *
  816  * Register a new driver attachment's pass level.  If no driver
  817  * attachment with the same pass level has been added, then @p new
  818  * will be added to the global passes list.
  819  *
  820  * @param new           the new driver attachment
  821  */
  822 static void
  823 driver_register_pass(struct driverlink *new)
  824 {
  825         struct driverlink *dl;
  826 
  827         /* We only consider pass numbers during boot. */
  828         if (bus_current_pass == BUS_PASS_DEFAULT)
  829                 return;
  830 
  831         /*
  832          * Walk the passes list.  If we already know about this pass
  833          * then there is nothing to do.  If we don't, then insert this
  834          * driver link into the list.
  835          */
  836         TAILQ_FOREACH(dl, &passes, passlink) {
  837                 if (dl->pass < new->pass)
  838                         continue;
  839                 if (dl->pass == new->pass)
  840                         return;
  841                 TAILQ_INSERT_BEFORE(dl, new, passlink);
  842                 return;
  843         }
  844         TAILQ_INSERT_TAIL(&passes, new, passlink);
  845 }
  846 
  847 /**
  848  * @brief Raise the current bus pass
  849  *
  850  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
  851  * method on the root bus to kick off a new device tree scan for each
  852  * new pass level that has at least one driver.
  853  */
  854 void
  855 bus_set_pass(int pass)
  856 {
  857         struct driverlink *dl;
  858 
  859         if (bus_current_pass > pass)
  860                 panic("Attempt to lower bus pass level");
  861 
  862         TAILQ_FOREACH(dl, &passes, passlink) {
  863                 /* Skip pass values below the current pass level. */
  864                 if (dl->pass <= bus_current_pass)
  865                         continue;
  866 
  867                 /*
  868                  * Bail once we hit a driver with a pass level that is
  869                  * too high.
  870                  */
  871                 if (dl->pass > pass)
  872                         break;
  873 
  874                 /*
  875                  * Raise the pass level to the next level and rescan
  876                  * the tree.
  877                  */
  878                 bus_current_pass = dl->pass;
  879                 BUS_NEW_PASS(root_bus);
  880         }
  881 
  882         /*
  883          * If there isn't a driver registered for the requested pass,
  884          * then bus_current_pass might still be less than 'pass'.  Set
  885          * it to 'pass' in that case.
  886          */
  887         if (bus_current_pass < pass)
  888                 bus_current_pass = pass;
  889         KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
  890 }
  891 
  892 /*
  893  * Devclass implementation
  894  */
  895 
  896 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
  897 
  898 /**
  899  * @internal
  900  * @brief Find or create a device class
  901  *
  902  * If a device class with the name @p classname exists, return it,
  903  * otherwise if @p create is non-zero create and return a new device
  904  * class.
  905  *
  906  * If @p parentname is non-NULL, the parent of the devclass is set to
  907  * the devclass of that name.
  908  *
  909  * @param classname     the devclass name to find or create
  910  * @param parentname    the parent devclass name or @c NULL
  911  * @param create        non-zero to create a devclass
  912  */
  913 static devclass_t
  914 devclass_find_internal(const char *classname, const char *parentname,
  915                        int create)
  916 {
  917         devclass_t dc;
  918 
  919         PDEBUG(("looking for %s", classname));
  920         if (!classname)
  921                 return (NULL);
  922 
  923         TAILQ_FOREACH(dc, &devclasses, link) {
  924                 if (!strcmp(dc->name, classname))
  925                         break;
  926         }
  927 
  928         if (create && !dc) {
  929                 PDEBUG(("creating %s", classname));
  930                 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
  931                     M_BUS, M_NOWAIT | M_ZERO);
  932                 if (!dc)
  933                         return (NULL);
  934                 dc->parent = NULL;
  935                 dc->name = (char*) (dc + 1);
  936                 strcpy(dc->name, classname);
  937                 TAILQ_INIT(&dc->drivers);
  938                 TAILQ_INSERT_TAIL(&devclasses, dc, link);
  939 
  940                 bus_data_generation_update();
  941         }
  942 
  943         /*
  944          * If a parent class is specified, then set that as our parent so
  945          * that this devclass will support drivers for the parent class as
  946          * well.  If the parent class has the same name don't do this though
  947          * as it creates a cycle that can trigger an infinite loop in
  948          * device_probe_child() if a device exists for which there is no
  949          * suitable driver.
  950          */
  951         if (parentname && dc && !dc->parent &&
  952             strcmp(classname, parentname) != 0) {
  953                 dc->parent = devclass_find_internal(parentname, NULL, TRUE);
  954                 dc->parent->flags |= DC_HAS_CHILDREN;
  955         }
  956 
  957         return (dc);
  958 }
  959 
  960 /**
  961  * @brief Create a device class
  962  *
  963  * If a device class with the name @p classname exists, return it,
  964  * otherwise create and return a new device class.
  965  *
  966  * @param classname     the devclass name to find or create
  967  */
  968 devclass_t
  969 devclass_create(const char *classname)
  970 {
  971         return (devclass_find_internal(classname, NULL, TRUE));
  972 }
  973 
  974 /**
  975  * @brief Find a device class
  976  *
  977  * If a device class with the name @p classname exists, return it,
  978  * otherwise return @c NULL.
  979  *
  980  * @param classname     the devclass name to find
  981  */
  982 devclass_t
  983 devclass_find(const char *classname)
  984 {
  985         return (devclass_find_internal(classname, NULL, FALSE));
  986 }
  987 
  988 /**
  989  * @brief Register that a device driver has been added to a devclass
  990  *
  991  * Register that a device driver has been added to a devclass.  This
  992  * is called by devclass_add_driver to accomplish the recursive
  993  * notification of all the children classes of dc, as well as dc.
  994  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
  995  * the devclass.
  996  *
  997  * We do a full search here of the devclass list at each iteration
  998  * level to save storing children-lists in the devclass structure.  If
  999  * we ever move beyond a few dozen devices doing this, we may need to
 1000  * reevaluate...
 1001  *
 1002  * @param dc            the devclass to edit
 1003  * @param driver        the driver that was just added
 1004  */
 1005 static void
 1006 devclass_driver_added(devclass_t dc, driver_t *driver)
 1007 {
 1008         devclass_t parent;
 1009         int i;
 1010 
 1011         /*
 1012          * Call BUS_DRIVER_ADDED for any existing busses in this class.
 1013          */
 1014         for (i = 0; i < dc->maxunit; i++)
 1015                 if (dc->devices[i] && device_is_attached(dc->devices[i]))
 1016                         BUS_DRIVER_ADDED(dc->devices[i], driver);
 1017 
 1018         /*
 1019          * Walk through the children classes.  Since we only keep a
 1020          * single parent pointer around, we walk the entire list of
 1021          * devclasses looking for children.  We set the
 1022          * DC_HAS_CHILDREN flag when a child devclass is created on
 1023          * the parent, so we only walk the list for those devclasses
 1024          * that have children.
 1025          */
 1026         if (!(dc->flags & DC_HAS_CHILDREN))
 1027                 return;
 1028         parent = dc;
 1029         TAILQ_FOREACH(dc, &devclasses, link) {
 1030                 if (dc->parent == parent)
 1031                         devclass_driver_added(dc, driver);
 1032         }
 1033 }
 1034 
 1035 /**
 1036  * @brief Add a device driver to a device class
 1037  *
 1038  * Add a device driver to a devclass. This is normally called
 1039  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
 1040  * all devices in the devclass will be called to allow them to attempt
 1041  * to re-probe any unmatched children.
 1042  *
 1043  * @param dc            the devclass to edit
 1044  * @param driver        the driver to register
 1045  */
 1046 int
 1047 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
 1048 {
 1049         driverlink_t dl;
 1050         const char *parentname;
 1051 
 1052         PDEBUG(("%s", DRIVERNAME(driver)));
 1053 
 1054         /* Don't allow invalid pass values. */
 1055         if (pass <= BUS_PASS_ROOT)
 1056                 return (EINVAL);
 1057 
 1058         dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
 1059         if (!dl)
 1060                 return (ENOMEM);
 1061 
 1062         /*
 1063          * Compile the driver's methods. Also increase the reference count
 1064          * so that the class doesn't get freed when the last instance
 1065          * goes. This means we can safely use static methods and avoids a
 1066          * double-free in devclass_delete_driver.
 1067          */
 1068         kobj_class_compile((kobj_class_t) driver);
 1069 
 1070         /*
 1071          * If the driver has any base classes, make the
 1072          * devclass inherit from the devclass of the driver's
 1073          * first base class. This will allow the system to
 1074          * search for drivers in both devclasses for children
 1075          * of a device using this driver.
 1076          */
 1077         if (driver->baseclasses)
 1078                 parentname = driver->baseclasses[0]->name;
 1079         else
 1080                 parentname = NULL;
 1081         *dcp = devclass_find_internal(driver->name, parentname, TRUE);
 1082 
 1083         dl->driver = driver;
 1084         TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
 1085         driver->refs++;         /* XXX: kobj_mtx */
 1086         dl->pass = pass;
 1087         driver_register_pass(dl);
 1088 
 1089         devclass_driver_added(dc, driver);
 1090         bus_data_generation_update();
 1091         return (0);
 1092 }
 1093 
 1094 /**
 1095  * @brief Register that a device driver has been deleted from a devclass
 1096  *
 1097  * Register that a device driver has been removed from a devclass.
 1098  * This is called by devclass_delete_driver to accomplish the
 1099  * recursive notification of all the children classes of busclass, as
 1100  * well as busclass.  Each layer will attempt to detach the driver
 1101  * from any devices that are children of the bus's devclass.  The function
 1102  * will return an error if a device fails to detach.
 1103  * 
 1104  * We do a full search here of the devclass list at each iteration
 1105  * level to save storing children-lists in the devclass structure.  If
 1106  * we ever move beyond a few dozen devices doing this, we may need to
 1107  * reevaluate...
 1108  *
 1109  * @param busclass      the devclass of the parent bus
 1110  * @param dc            the devclass of the driver being deleted
 1111  * @param driver        the driver being deleted
 1112  */
 1113 static int
 1114 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
 1115 {
 1116         devclass_t parent;
 1117         device_t dev;
 1118         int error, i;
 1119 
 1120         /*
 1121          * Disassociate from any devices.  We iterate through all the
 1122          * devices in the devclass of the driver and detach any which are
 1123          * using the driver and which have a parent in the devclass which
 1124          * we are deleting from.
 1125          *
 1126          * Note that since a driver can be in multiple devclasses, we
 1127          * should not detach devices which are not children of devices in
 1128          * the affected devclass.
 1129          */
 1130         for (i = 0; i < dc->maxunit; i++) {
 1131                 if (dc->devices[i]) {
 1132                         dev = dc->devices[i];
 1133                         if (dev->driver == driver && dev->parent &&
 1134                             dev->parent->devclass == busclass) {
 1135                                 if ((error = device_detach(dev)) != 0)
 1136                                         return (error);
 1137                                 BUS_PROBE_NOMATCH(dev->parent, dev);
 1138                                 devnomatch(dev);
 1139                                 dev->flags |= DF_DONENOMATCH;
 1140                         }
 1141                 }
 1142         }
 1143 
 1144         /*
 1145          * Walk through the children classes.  Since we only keep a
 1146          * single parent pointer around, we walk the entire list of
 1147          * devclasses looking for children.  We set the
 1148          * DC_HAS_CHILDREN flag when a child devclass is created on
 1149          * the parent, so we only walk the list for those devclasses
 1150          * that have children.
 1151          */
 1152         if (!(busclass->flags & DC_HAS_CHILDREN))
 1153                 return (0);
 1154         parent = busclass;
 1155         TAILQ_FOREACH(busclass, &devclasses, link) {
 1156                 if (busclass->parent == parent) {
 1157                         error = devclass_driver_deleted(busclass, dc, driver);
 1158                         if (error)
 1159                                 return (error);
 1160                 }
 1161         }
 1162         return (0);
 1163 }
 1164 
 1165 /**
 1166  * @brief Delete a device driver from a device class
 1167  *
 1168  * Delete a device driver from a devclass. This is normally called
 1169  * automatically by DRIVER_MODULE().
 1170  *
 1171  * If the driver is currently attached to any devices,
 1172  * devclass_delete_driver() will first attempt to detach from each
 1173  * device. If one of the detach calls fails, the driver will not be
 1174  * deleted.
 1175  *
 1176  * @param dc            the devclass to edit
 1177  * @param driver        the driver to unregister
 1178  */
 1179 int
 1180 devclass_delete_driver(devclass_t busclass, driver_t *driver)
 1181 {
 1182         devclass_t dc = devclass_find(driver->name);
 1183         driverlink_t dl;
 1184         int error;
 1185 
 1186         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1187 
 1188         if (!dc)
 1189                 return (0);
 1190 
 1191         /*
 1192          * Find the link structure in the bus' list of drivers.
 1193          */
 1194         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1195                 if (dl->driver == driver)
 1196                         break;
 1197         }
 1198 
 1199         if (!dl) {
 1200                 PDEBUG(("%s not found in %s list", driver->name,
 1201                     busclass->name));
 1202                 return (ENOENT);
 1203         }
 1204 
 1205         error = devclass_driver_deleted(busclass, dc, driver);
 1206         if (error != 0)
 1207                 return (error);
 1208 
 1209         TAILQ_REMOVE(&busclass->drivers, dl, link);
 1210         free(dl, M_BUS);
 1211 
 1212         /* XXX: kobj_mtx */
 1213         driver->refs--;
 1214         if (driver->refs == 0)
 1215                 kobj_class_free((kobj_class_t) driver);
 1216 
 1217         bus_data_generation_update();
 1218         return (0);
 1219 }
 1220 
 1221 /**
 1222  * @brief Quiesces a set of device drivers from a device class
 1223  *
 1224  * Quiesce a device driver from a devclass. This is normally called
 1225  * automatically by DRIVER_MODULE().
 1226  *
 1227  * If the driver is currently attached to any devices,
 1228  * devclass_quiesece_driver() will first attempt to quiesce each
 1229  * device.
 1230  *
 1231  * @param dc            the devclass to edit
 1232  * @param driver        the driver to unregister
 1233  */
 1234 static int
 1235 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
 1236 {
 1237         devclass_t dc = devclass_find(driver->name);
 1238         driverlink_t dl;
 1239         device_t dev;
 1240         int i;
 1241         int error;
 1242 
 1243         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1244 
 1245         if (!dc)
 1246                 return (0);
 1247 
 1248         /*
 1249          * Find the link structure in the bus' list of drivers.
 1250          */
 1251         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1252                 if (dl->driver == driver)
 1253                         break;
 1254         }
 1255 
 1256         if (!dl) {
 1257                 PDEBUG(("%s not found in %s list", driver->name,
 1258                     busclass->name));
 1259                 return (ENOENT);
 1260         }
 1261 
 1262         /*
 1263          * Quiesce all devices.  We iterate through all the devices in
 1264          * the devclass of the driver and quiesce any which are using
 1265          * the driver and which have a parent in the devclass which we
 1266          * are quiescing.
 1267          *
 1268          * Note that since a driver can be in multiple devclasses, we
 1269          * should not quiesce devices which are not children of
 1270          * devices in the affected devclass.
 1271          */
 1272         for (i = 0; i < dc->maxunit; i++) {
 1273                 if (dc->devices[i]) {
 1274                         dev = dc->devices[i];
 1275                         if (dev->driver == driver && dev->parent &&
 1276                             dev->parent->devclass == busclass) {
 1277                                 if ((error = device_quiesce(dev)) != 0)
 1278                                         return (error);
 1279                         }
 1280                 }
 1281         }
 1282 
 1283         return (0);
 1284 }
 1285 
 1286 /**
 1287  * @internal
 1288  */
 1289 static driverlink_t
 1290 devclass_find_driver_internal(devclass_t dc, const char *classname)
 1291 {
 1292         driverlink_t dl;
 1293 
 1294         PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
 1295 
 1296         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1297                 if (!strcmp(dl->driver->name, classname))
 1298                         return (dl);
 1299         }
 1300 
 1301         PDEBUG(("not found"));
 1302         return (NULL);
 1303 }
 1304 
 1305 /**
 1306  * @brief Return the name of the devclass
 1307  */
 1308 const char *
 1309 devclass_get_name(devclass_t dc)
 1310 {
 1311         return (dc->name);
 1312 }
 1313 
 1314 /**
 1315  * @brief Find a device given a unit number
 1316  *
 1317  * @param dc            the devclass to search
 1318  * @param unit          the unit number to search for
 1319  * 
 1320  * @returns             the device with the given unit number or @c
 1321  *                      NULL if there is no such device
 1322  */
 1323 device_t
 1324 devclass_get_device(devclass_t dc, int unit)
 1325 {
 1326         if (dc == NULL || unit < 0 || unit >= dc->maxunit)
 1327                 return (NULL);
 1328         return (dc->devices[unit]);
 1329 }
 1330 
 1331 /**
 1332  * @brief Find the softc field of a device given a unit number
 1333  *
 1334  * @param dc            the devclass to search
 1335  * @param unit          the unit number to search for
 1336  * 
 1337  * @returns             the softc field of the device with the given
 1338  *                      unit number or @c NULL if there is no such
 1339  *                      device
 1340  */
 1341 void *
 1342 devclass_get_softc(devclass_t dc, int unit)
 1343 {
 1344         device_t dev;
 1345 
 1346         dev = devclass_get_device(dc, unit);
 1347         if (!dev)
 1348                 return (NULL);
 1349 
 1350         return (device_get_softc(dev));
 1351 }
 1352 
 1353 /**
 1354  * @brief Get a list of devices in the devclass
 1355  *
 1356  * An array containing a list of all the devices in the given devclass
 1357  * is allocated and returned in @p *devlistp. The number of devices
 1358  * in the array is returned in @p *devcountp. The caller should free
 1359  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
 1360  *
 1361  * @param dc            the devclass to examine
 1362  * @param devlistp      points at location for array pointer return
 1363  *                      value
 1364  * @param devcountp     points at location for array size return value
 1365  *
 1366  * @retval 0            success
 1367  * @retval ENOMEM       the array allocation failed
 1368  */
 1369 int
 1370 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
 1371 {
 1372         int count, i;
 1373         device_t *list;
 1374 
 1375         count = devclass_get_count(dc);
 1376         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 1377         if (!list)
 1378                 return (ENOMEM);
 1379 
 1380         count = 0;
 1381         for (i = 0; i < dc->maxunit; i++) {
 1382                 if (dc->devices[i]) {
 1383                         list[count] = dc->devices[i];
 1384                         count++;
 1385                 }
 1386         }
 1387 
 1388         *devlistp = list;
 1389         *devcountp = count;
 1390 
 1391         return (0);
 1392 }
 1393 
 1394 /**
 1395  * @brief Get a list of drivers in the devclass
 1396  *
 1397  * An array containing a list of pointers to all the drivers in the
 1398  * given devclass is allocated and returned in @p *listp.  The number
 1399  * of drivers in the array is returned in @p *countp. The caller should
 1400  * free the array using @c free(p, M_TEMP).
 1401  *
 1402  * @param dc            the devclass to examine
 1403  * @param listp         gives location for array pointer return value
 1404  * @param countp        gives location for number of array elements
 1405  *                      return value
 1406  *
 1407  * @retval 0            success
 1408  * @retval ENOMEM       the array allocation failed
 1409  */
 1410 int
 1411 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
 1412 {
 1413         driverlink_t dl;
 1414         driver_t **list;
 1415         int count;
 1416 
 1417         count = 0;
 1418         TAILQ_FOREACH(dl, &dc->drivers, link)
 1419                 count++;
 1420         list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
 1421         if (list == NULL)
 1422                 return (ENOMEM);
 1423 
 1424         count = 0;
 1425         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1426                 list[count] = dl->driver;
 1427                 count++;
 1428         }
 1429         *listp = list;
 1430         *countp = count;
 1431 
 1432         return (0);
 1433 }
 1434 
 1435 /**
 1436  * @brief Get the number of devices in a devclass
 1437  *
 1438  * @param dc            the devclass to examine
 1439  */
 1440 int
 1441 devclass_get_count(devclass_t dc)
 1442 {
 1443         int count, i;
 1444 
 1445         count = 0;
 1446         for (i = 0; i < dc->maxunit; i++)
 1447                 if (dc->devices[i])
 1448                         count++;
 1449         return (count);
 1450 }
 1451 
 1452 /**
 1453  * @brief Get the maximum unit number used in a devclass
 1454  *
 1455  * Note that this is one greater than the highest currently-allocated
 1456  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
 1457  * that not even the devclass has been allocated yet.
 1458  *
 1459  * @param dc            the devclass to examine
 1460  */
 1461 int
 1462 devclass_get_maxunit(devclass_t dc)
 1463 {
 1464         if (dc == NULL)
 1465                 return (-1);
 1466         return (dc->maxunit);
 1467 }
 1468 
 1469 /**
 1470  * @brief Find a free unit number in a devclass
 1471  *
 1472  * This function searches for the first unused unit number greater
 1473  * that or equal to @p unit.
 1474  *
 1475  * @param dc            the devclass to examine
 1476  * @param unit          the first unit number to check
 1477  */
 1478 int
 1479 devclass_find_free_unit(devclass_t dc, int unit)
 1480 {
 1481         if (dc == NULL)
 1482                 return (unit);
 1483         while (unit < dc->maxunit && dc->devices[unit] != NULL)
 1484                 unit++;
 1485         return (unit);
 1486 }
 1487 
 1488 /**
 1489  * @brief Set the parent of a devclass
 1490  *
 1491  * The parent class is normally initialised automatically by
 1492  * DRIVER_MODULE().
 1493  *
 1494  * @param dc            the devclass to edit
 1495  * @param pdc           the new parent devclass
 1496  */
 1497 void
 1498 devclass_set_parent(devclass_t dc, devclass_t pdc)
 1499 {
 1500         dc->parent = pdc;
 1501 }
 1502 
 1503 /**
 1504  * @brief Get the parent of a devclass
 1505  *
 1506  * @param dc            the devclass to examine
 1507  */
 1508 devclass_t
 1509 devclass_get_parent(devclass_t dc)
 1510 {
 1511         return (dc->parent);
 1512 }
 1513 
 1514 struct sysctl_ctx_list *
 1515 devclass_get_sysctl_ctx(devclass_t dc)
 1516 {
 1517         return (&dc->sysctl_ctx);
 1518 }
 1519 
 1520 struct sysctl_oid *
 1521 devclass_get_sysctl_tree(devclass_t dc)
 1522 {
 1523         return (dc->sysctl_tree);
 1524 }
 1525 
 1526 /**
 1527  * @internal
 1528  * @brief Allocate a unit number
 1529  *
 1530  * On entry, @p *unitp is the desired unit number (or @c -1 if any
 1531  * will do). The allocated unit number is returned in @p *unitp.
 1532 
 1533  * @param dc            the devclass to allocate from
 1534  * @param unitp         points at the location for the allocated unit
 1535  *                      number
 1536  *
 1537  * @retval 0            success
 1538  * @retval EEXIST       the requested unit number is already allocated
 1539  * @retval ENOMEM       memory allocation failure
 1540  */
 1541 static int
 1542 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
 1543 {
 1544         const char *s;
 1545         int unit = *unitp;
 1546 
 1547         PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1548 
 1549         /* Ask the parent bus if it wants to wire this device. */
 1550         if (unit == -1)
 1551                 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
 1552                     &unit);
 1553 
 1554         /* If we were given a wired unit number, check for existing device */
 1555         /* XXX imp XXX */
 1556         if (unit != -1) {
 1557                 if (unit >= 0 && unit < dc->maxunit &&
 1558                     dc->devices[unit] != NULL) {
 1559                         if (bootverbose)
 1560                                 printf("%s: %s%d already exists; skipping it\n",
 1561                                     dc->name, dc->name, *unitp);
 1562                         return (EEXIST);
 1563                 }
 1564         } else {
 1565                 /* Unwired device, find the next available slot for it */
 1566                 unit = 0;
 1567                 for (unit = 0;; unit++) {
 1568                         /* If there is an "at" hint for a unit then skip it. */
 1569                         if (resource_string_value(dc->name, unit, "at", &s) ==
 1570                             0)
 1571                                 continue;
 1572 
 1573                         /* If this device slot is already in use, skip it. */
 1574                         if (unit < dc->maxunit && dc->devices[unit] != NULL)
 1575                                 continue;
 1576 
 1577                         break;
 1578                 }
 1579         }
 1580 
 1581         /*
 1582          * We've selected a unit beyond the length of the table, so let's
 1583          * extend the table to make room for all units up to and including
 1584          * this one.
 1585          */
 1586         if (unit >= dc->maxunit) {
 1587                 device_t *newlist, *oldlist;
 1588                 int newsize;
 1589 
 1590                 oldlist = dc->devices;
 1591                 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
 1592                 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
 1593                 if (!newlist)
 1594                         return (ENOMEM);
 1595                 if (oldlist != NULL)
 1596                         bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
 1597                 bzero(newlist + dc->maxunit,
 1598                     sizeof(device_t) * (newsize - dc->maxunit));
 1599                 dc->devices = newlist;
 1600                 dc->maxunit = newsize;
 1601                 if (oldlist != NULL)
 1602                         free(oldlist, M_BUS);
 1603         }
 1604         PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1605 
 1606         *unitp = unit;
 1607         return (0);
 1608 }
 1609 
 1610 /**
 1611  * @internal
 1612  * @brief Add a device to a devclass
 1613  *
 1614  * A unit number is allocated for the device (using the device's
 1615  * preferred unit number if any) and the device is registered in the
 1616  * devclass. This allows the device to be looked up by its unit
 1617  * number, e.g. by decoding a dev_t minor number.
 1618  *
 1619  * @param dc            the devclass to add to
 1620  * @param dev           the device to add
 1621  *
 1622  * @retval 0            success
 1623  * @retval EEXIST       the requested unit number is already allocated
 1624  * @retval ENOMEM       memory allocation failure
 1625  */
 1626 static int
 1627 devclass_add_device(devclass_t dc, device_t dev)
 1628 {
 1629         int buflen, error;
 1630 
 1631         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1632 
 1633         buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
 1634         if (buflen < 0)
 1635                 return (ENOMEM);
 1636         dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
 1637         if (!dev->nameunit)
 1638                 return (ENOMEM);
 1639 
 1640         if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
 1641                 free(dev->nameunit, M_BUS);
 1642                 dev->nameunit = NULL;
 1643                 return (error);
 1644         }
 1645         dc->devices[dev->unit] = dev;
 1646         dev->devclass = dc;
 1647         snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
 1648 
 1649         return (0);
 1650 }
 1651 
 1652 /**
 1653  * @internal
 1654  * @brief Delete a device from a devclass
 1655  *
 1656  * The device is removed from the devclass's device list and its unit
 1657  * number is freed.
 1658 
 1659  * @param dc            the devclass to delete from
 1660  * @param dev           the device to delete
 1661  *
 1662  * @retval 0            success
 1663  */
 1664 static int
 1665 devclass_delete_device(devclass_t dc, device_t dev)
 1666 {
 1667         if (!dc || !dev)
 1668                 return (0);
 1669 
 1670         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1671 
 1672         if (dev->devclass != dc || dc->devices[dev->unit] != dev)
 1673                 panic("devclass_delete_device: inconsistent device class");
 1674         dc->devices[dev->unit] = NULL;
 1675         if (dev->flags & DF_WILDCARD)
 1676                 dev->unit = -1;
 1677         dev->devclass = NULL;
 1678         free(dev->nameunit, M_BUS);
 1679         dev->nameunit = NULL;
 1680 
 1681         return (0);
 1682 }
 1683 
 1684 /**
 1685  * @internal
 1686  * @brief Make a new device and add it as a child of @p parent
 1687  *
 1688  * @param parent        the parent of the new device
 1689  * @param name          the devclass name of the new device or @c NULL
 1690  *                      to leave the devclass unspecified
 1691  * @parem unit          the unit number of the new device of @c -1 to
 1692  *                      leave the unit number unspecified
 1693  *
 1694  * @returns the new device
 1695  */
 1696 static device_t
 1697 make_device(device_t parent, const char *name, int unit)
 1698 {
 1699         device_t dev;
 1700         devclass_t dc;
 1701 
 1702         PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
 1703 
 1704         if (name) {
 1705                 dc = devclass_find_internal(name, NULL, TRUE);
 1706                 if (!dc) {
 1707                         printf("make_device: can't find device class %s\n",
 1708                             name);
 1709                         return (NULL);
 1710                 }
 1711         } else {
 1712                 dc = NULL;
 1713         }
 1714 
 1715         dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
 1716         if (!dev)
 1717                 return (NULL);
 1718 
 1719         dev->parent = parent;
 1720         TAILQ_INIT(&dev->children);
 1721         kobj_init((kobj_t) dev, &null_class);
 1722         dev->driver = NULL;
 1723         dev->devclass = NULL;
 1724         dev->unit = unit;
 1725         dev->nameunit = NULL;
 1726         dev->desc = NULL;
 1727         dev->busy = 0;
 1728         dev->devflags = 0;
 1729         dev->flags = DF_ENABLED;
 1730         dev->order = 0;
 1731         if (unit == -1)
 1732                 dev->flags |= DF_WILDCARD;
 1733         if (name) {
 1734                 dev->flags |= DF_FIXEDCLASS;
 1735                 if (devclass_add_device(dc, dev)) {
 1736                         kobj_delete((kobj_t) dev, M_BUS);
 1737                         return (NULL);
 1738                 }
 1739         }
 1740         dev->ivars = NULL;
 1741         dev->softc = NULL;
 1742 
 1743         dev->state = DS_NOTPRESENT;
 1744 
 1745         TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
 1746         bus_data_generation_update();
 1747 
 1748         return (dev);
 1749 }
 1750 
 1751 /**
 1752  * @internal
 1753  * @brief Print a description of a device.
 1754  */
 1755 static int
 1756 device_print_child(device_t dev, device_t child)
 1757 {
 1758         int retval = 0;
 1759 
 1760         if (device_is_alive(child))
 1761                 retval += BUS_PRINT_CHILD(dev, child);
 1762         else
 1763                 retval += device_printf(child, " not found\n");
 1764 
 1765         return (retval);
 1766 }
 1767 
 1768 /**
 1769  * @brief Create a new device
 1770  *
 1771  * This creates a new device and adds it as a child of an existing
 1772  * parent device. The new device will be added after the last existing
 1773  * child with order zero.
 1774  * 
 1775  * @param dev           the device which will be the parent of the
 1776  *                      new child device
 1777  * @param name          devclass name for new device or @c NULL if not
 1778  *                      specified
 1779  * @param unit          unit number for new device or @c -1 if not
 1780  *                      specified
 1781  * 
 1782  * @returns             the new device
 1783  */
 1784 device_t
 1785 device_add_child(device_t dev, const char *name, int unit)
 1786 {
 1787         return (device_add_child_ordered(dev, 0, name, unit));
 1788 }
 1789 
 1790 /**
 1791  * @brief Create a new device
 1792  *
 1793  * This creates a new device and adds it as a child of an existing
 1794  * parent device. The new device will be added after the last existing
 1795  * child with the same order.
 1796  * 
 1797  * @param dev           the device which will be the parent of the
 1798  *                      new child device
 1799  * @param order         a value which is used to partially sort the
 1800  *                      children of @p dev - devices created using
 1801  *                      lower values of @p order appear first in @p
 1802  *                      dev's list of children
 1803  * @param name          devclass name for new device or @c NULL if not
 1804  *                      specified
 1805  * @param unit          unit number for new device or @c -1 if not
 1806  *                      specified
 1807  * 
 1808  * @returns             the new device
 1809  */
 1810 device_t
 1811 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
 1812 {
 1813         device_t child;
 1814         device_t place;
 1815 
 1816         PDEBUG(("%s at %s with order %u as unit %d",
 1817             name, DEVICENAME(dev), order, unit));
 1818         KASSERT(name != NULL || unit == -1,
 1819             ("child device with wildcard name and specific unit number"));
 1820 
 1821         child = make_device(dev, name, unit);
 1822         if (child == NULL)
 1823                 return (child);
 1824         child->order = order;
 1825 
 1826         TAILQ_FOREACH(place, &dev->children, link) {
 1827                 if (place->order > order)
 1828                         break;
 1829         }
 1830 
 1831         if (place) {
 1832                 /*
 1833                  * The device 'place' is the first device whose order is
 1834                  * greater than the new child.
 1835                  */
 1836                 TAILQ_INSERT_BEFORE(place, child, link);
 1837         } else {
 1838                 /*
 1839                  * The new child's order is greater or equal to the order of
 1840                  * any existing device. Add the child to the tail of the list.
 1841                  */
 1842                 TAILQ_INSERT_TAIL(&dev->children, child, link);
 1843         }
 1844 
 1845         bus_data_generation_update();
 1846         return (child);
 1847 }
 1848 
 1849 /**
 1850  * @brief Delete a device
 1851  *
 1852  * This function deletes a device along with all of its children. If
 1853  * the device currently has a driver attached to it, the device is
 1854  * detached first using device_detach().
 1855  * 
 1856  * @param dev           the parent device
 1857  * @param child         the device to delete
 1858  *
 1859  * @retval 0            success
 1860  * @retval non-zero     a unit error code describing the error
 1861  */
 1862 int
 1863 device_delete_child(device_t dev, device_t child)
 1864 {
 1865         int error;
 1866         device_t grandchild;
 1867 
 1868         PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
 1869 
 1870         /* remove children first */
 1871         while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
 1872                 error = device_delete_child(child, grandchild);
 1873                 if (error)
 1874                         return (error);
 1875         }
 1876 
 1877         if ((error = device_detach(child)) != 0)
 1878                 return (error);
 1879         if (child->devclass)
 1880                 devclass_delete_device(child->devclass, child);
 1881         if (child->parent)
 1882                 BUS_CHILD_DELETED(dev, child);
 1883         TAILQ_REMOVE(&dev->children, child, link);
 1884         TAILQ_REMOVE(&bus_data_devices, child, devlink);
 1885         kobj_delete((kobj_t) child, M_BUS);
 1886 
 1887         bus_data_generation_update();
 1888         return (0);
 1889 }
 1890 
 1891 /**
 1892  * @brief Delete all children devices of the given device, if any.
 1893  *
 1894  * This function deletes all children devices of the given device, if
 1895  * any, using the device_delete_child() function for each device it
 1896  * finds. If a child device cannot be deleted, this function will
 1897  * return an error code.
 1898  * 
 1899  * @param dev           the parent device
 1900  *
 1901  * @retval 0            success
 1902  * @retval non-zero     a device would not detach
 1903  */
 1904 int
 1905 device_delete_children(device_t dev)
 1906 {
 1907         device_t child;
 1908         int error;
 1909 
 1910         PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
 1911 
 1912         error = 0;
 1913 
 1914         while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
 1915                 error = device_delete_child(dev, child);
 1916                 if (error) {
 1917                         PDEBUG(("Failed deleting %s", DEVICENAME(child)));
 1918                         break;
 1919                 }
 1920         }
 1921         return (error);
 1922 }
 1923 
 1924 /**
 1925  * @brief Find a device given a unit number
 1926  *
 1927  * This is similar to devclass_get_devices() but only searches for
 1928  * devices which have @p dev as a parent.
 1929  *
 1930  * @param dev           the parent device to search
 1931  * @param unit          the unit number to search for.  If the unit is -1,
 1932  *                      return the first child of @p dev which has name
 1933  *                      @p classname (that is, the one with the lowest unit.)
 1934  *
 1935  * @returns             the device with the given unit number or @c
 1936  *                      NULL if there is no such device
 1937  */
 1938 device_t
 1939 device_find_child(device_t dev, const char *classname, int unit)
 1940 {
 1941         devclass_t dc;
 1942         device_t child;
 1943 
 1944         dc = devclass_find(classname);
 1945         if (!dc)
 1946                 return (NULL);
 1947 
 1948         if (unit != -1) {
 1949                 child = devclass_get_device(dc, unit);
 1950                 if (child && child->parent == dev)
 1951                         return (child);
 1952         } else {
 1953                 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
 1954                         child = devclass_get_device(dc, unit);
 1955                         if (child && child->parent == dev)
 1956                                 return (child);
 1957                 }
 1958         }
 1959         return (NULL);
 1960 }
 1961 
 1962 /**
 1963  * @internal
 1964  */
 1965 static driverlink_t
 1966 first_matching_driver(devclass_t dc, device_t dev)
 1967 {
 1968         if (dev->devclass)
 1969                 return (devclass_find_driver_internal(dc, dev->devclass->name));
 1970         return (TAILQ_FIRST(&dc->drivers));
 1971 }
 1972 
 1973 /**
 1974  * @internal
 1975  */
 1976 static driverlink_t
 1977 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
 1978 {
 1979         if (dev->devclass) {
 1980                 driverlink_t dl;
 1981                 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
 1982                         if (!strcmp(dev->devclass->name, dl->driver->name))
 1983                                 return (dl);
 1984                 return (NULL);
 1985         }
 1986         return (TAILQ_NEXT(last, link));
 1987 }
 1988 
 1989 /**
 1990  * @internal
 1991  */
 1992 int
 1993 device_probe_child(device_t dev, device_t child)
 1994 {
 1995         devclass_t dc;
 1996         driverlink_t best = NULL;
 1997         driverlink_t dl;
 1998         int result, pri = 0;
 1999         int hasclass = (child->devclass != NULL);
 2000 
 2001         GIANT_REQUIRED;
 2002 
 2003         dc = dev->devclass;
 2004         if (!dc)
 2005                 panic("device_probe_child: parent device has no devclass");
 2006 
 2007         /*
 2008          * If the state is already probed, then return.  However, don't
 2009          * return if we can rebid this object.
 2010          */
 2011         if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
 2012                 return (0);
 2013 
 2014         for (; dc; dc = dc->parent) {
 2015                 for (dl = first_matching_driver(dc, child);
 2016                      dl;
 2017                      dl = next_matching_driver(dc, child, dl)) {
 2018                         /* If this driver's pass is too high, then ignore it. */
 2019                         if (dl->pass > bus_current_pass)
 2020                                 continue;
 2021 
 2022                         PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
 2023                         result = device_set_driver(child, dl->driver);
 2024                         if (result == ENOMEM)
 2025                                 return (result);
 2026                         else if (result != 0)
 2027                                 continue;
 2028                         if (!hasclass) {
 2029                                 if (device_set_devclass(child,
 2030                                     dl->driver->name) != 0) {
 2031                                         char const * devname =
 2032                                             device_get_name(child);
 2033                                         if (devname == NULL)
 2034                                                 devname = "(unknown)";
 2035                                         printf("driver bug: Unable to set "
 2036                                             "devclass (class: %s "
 2037                                             "devname: %s)\n",
 2038                                             dl->driver->name,
 2039                                             devname);
 2040                                         (void)device_set_driver(child, NULL);
 2041                                         continue;
 2042                                 }
 2043                         }
 2044 
 2045                         /* Fetch any flags for the device before probing. */
 2046                         resource_int_value(dl->driver->name, child->unit,
 2047                             "flags", &child->devflags);
 2048 
 2049                         result = DEVICE_PROBE(child);
 2050 
 2051                         /* Reset flags and devclass before the next probe. */
 2052                         child->devflags = 0;
 2053                         if (!hasclass)
 2054                                 (void)device_set_devclass(child, NULL);
 2055 
 2056                         /*
 2057                          * If the driver returns SUCCESS, there can be
 2058                          * no higher match for this device.
 2059                          */
 2060                         if (result == 0) {
 2061                                 best = dl;
 2062                                 pri = 0;
 2063                                 break;
 2064                         }
 2065 
 2066                         /*
 2067                          * The driver returned an error so it
 2068                          * certainly doesn't match.
 2069                          */
 2070                         if (result > 0) {
 2071                                 (void)device_set_driver(child, NULL);
 2072                                 continue;
 2073                         }
 2074 
 2075                         /*
 2076                          * A priority lower than SUCCESS, remember the
 2077                          * best matching driver. Initialise the value
 2078                          * of pri for the first match.
 2079                          */
 2080                         if (best == NULL || result > pri) {
 2081                                 /*
 2082                                  * Probes that return BUS_PROBE_NOWILDCARD
 2083                                  * or lower only match on devices whose
 2084                                  * driver was explicitly specified.
 2085                                  */
 2086                                 if (result <= BUS_PROBE_NOWILDCARD &&
 2087                                     !(child->flags & DF_FIXEDCLASS))
 2088                                         continue;
 2089                                 best = dl;
 2090                                 pri = result;
 2091                                 continue;
 2092                         }
 2093                 }
 2094                 /*
 2095                  * If we have an unambiguous match in this devclass,
 2096                  * don't look in the parent.
 2097                  */
 2098                 if (best && pri == 0)
 2099                         break;
 2100         }
 2101 
 2102         /*
 2103          * If we found a driver, change state and initialise the devclass.
 2104          */
 2105         /* XXX What happens if we rebid and got no best? */
 2106         if (best) {
 2107                 /*
 2108                  * If this device was attached, and we were asked to
 2109                  * rescan, and it is a different driver, then we have
 2110                  * to detach the old driver and reattach this new one.
 2111                  * Note, we don't have to check for DF_REBID here
 2112                  * because if the state is > DS_ALIVE, we know it must
 2113                  * be.
 2114                  *
 2115                  * This assumes that all DF_REBID drivers can have
 2116                  * their probe routine called at any time and that
 2117                  * they are idempotent as well as completely benign in
 2118                  * normal operations.
 2119                  *
 2120                  * We also have to make sure that the detach
 2121                  * succeeded, otherwise we fail the operation (or
 2122                  * maybe it should just fail silently?  I'm torn).
 2123                  */
 2124                 if (child->state > DS_ALIVE && best->driver != child->driver)
 2125                         if ((result = device_detach(dev)) != 0)
 2126                                 return (result);
 2127 
 2128                 /* Set the winning driver, devclass, and flags. */
 2129                 if (!child->devclass) {
 2130                         result = device_set_devclass(child, best->driver->name);
 2131                         if (result != 0)
 2132                                 return (result);
 2133                 }
 2134                 result = device_set_driver(child, best->driver);
 2135                 if (result != 0)
 2136                         return (result);
 2137                 resource_int_value(best->driver->name, child->unit,
 2138                     "flags", &child->devflags);
 2139 
 2140                 if (pri < 0) {
 2141                         /*
 2142                          * A bit bogus. Call the probe method again to make
 2143                          * sure that we have the right description.
 2144                          */
 2145                         DEVICE_PROBE(child);
 2146 #if 0
 2147                         child->flags |= DF_REBID;
 2148 #endif
 2149                 } else
 2150                         child->flags &= ~DF_REBID;
 2151                 child->state = DS_ALIVE;
 2152 
 2153                 bus_data_generation_update();
 2154                 return (0);
 2155         }
 2156 
 2157         return (ENXIO);
 2158 }
 2159 
 2160 /**
 2161  * @brief Return the parent of a device
 2162  */
 2163 device_t
 2164 device_get_parent(device_t dev)
 2165 {
 2166         return (dev->parent);
 2167 }
 2168 
 2169 /**
 2170  * @brief Get a list of children of a device
 2171  *
 2172  * An array containing a list of all the children of the given device
 2173  * is allocated and returned in @p *devlistp. The number of devices
 2174  * in the array is returned in @p *devcountp. The caller should free
 2175  * the array using @c free(p, M_TEMP).
 2176  *
 2177  * @param dev           the device to examine
 2178  * @param devlistp      points at location for array pointer return
 2179  *                      value
 2180  * @param devcountp     points at location for array size return value
 2181  *
 2182  * @retval 0            success
 2183  * @retval ENOMEM       the array allocation failed
 2184  */
 2185 int
 2186 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
 2187 {
 2188         int count;
 2189         device_t child;
 2190         device_t *list;
 2191 
 2192         count = 0;
 2193         TAILQ_FOREACH(child, &dev->children, link) {
 2194                 count++;
 2195         }
 2196         if (count == 0) {
 2197                 *devlistp = NULL;
 2198                 *devcountp = 0;
 2199                 return (0);
 2200         }
 2201 
 2202         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 2203         if (!list)
 2204                 return (ENOMEM);
 2205 
 2206         count = 0;
 2207         TAILQ_FOREACH(child, &dev->children, link) {
 2208                 list[count] = child;
 2209                 count++;
 2210         }
 2211 
 2212         *devlistp = list;
 2213         *devcountp = count;
 2214 
 2215         return (0);
 2216 }
 2217 
 2218 /**
 2219  * @brief Return the current driver for the device or @c NULL if there
 2220  * is no driver currently attached
 2221  */
 2222 driver_t *
 2223 device_get_driver(device_t dev)
 2224 {
 2225         return (dev->driver);
 2226 }
 2227 
 2228 /**
 2229  * @brief Return the current devclass for the device or @c NULL if
 2230  * there is none.
 2231  */
 2232 devclass_t
 2233 device_get_devclass(device_t dev)
 2234 {
 2235         return (dev->devclass);
 2236 }
 2237 
 2238 /**
 2239  * @brief Return the name of the device's devclass or @c NULL if there
 2240  * is none.
 2241  */
 2242 const char *
 2243 device_get_name(device_t dev)
 2244 {
 2245         if (dev != NULL && dev->devclass)
 2246                 return (devclass_get_name(dev->devclass));
 2247         return (NULL);
 2248 }
 2249 
 2250 /**
 2251  * @brief Return a string containing the device's devclass name
 2252  * followed by an ascii representation of the device's unit number
 2253  * (e.g. @c "foo2").
 2254  */
 2255 const char *
 2256 device_get_nameunit(device_t dev)
 2257 {
 2258         return (dev->nameunit);
 2259 }
 2260 
 2261 /**
 2262  * @brief Return the device's unit number.
 2263  */
 2264 int
 2265 device_get_unit(device_t dev)
 2266 {
 2267         return (dev->unit);
 2268 }
 2269 
 2270 /**
 2271  * @brief Return the device's description string
 2272  */
 2273 const char *
 2274 device_get_desc(device_t dev)
 2275 {
 2276         return (dev->desc);
 2277 }
 2278 
 2279 /**
 2280  * @brief Return the device's flags
 2281  */
 2282 uint32_t
 2283 device_get_flags(device_t dev)
 2284 {
 2285         return (dev->devflags);
 2286 }
 2287 
 2288 struct sysctl_ctx_list *
 2289 device_get_sysctl_ctx(device_t dev)
 2290 {
 2291         return (&dev->sysctl_ctx);
 2292 }
 2293 
 2294 struct sysctl_oid *
 2295 device_get_sysctl_tree(device_t dev)
 2296 {
 2297         return (dev->sysctl_tree);
 2298 }
 2299 
 2300 /**
 2301  * @brief Print the name of the device followed by a colon and a space
 2302  *
 2303  * @returns the number of characters printed
 2304  */
 2305 int
 2306 device_print_prettyname(device_t dev)
 2307 {
 2308         const char *name = device_get_name(dev);
 2309 
 2310         if (name == NULL)
 2311                 return (printf("unknown: "));
 2312         return (printf("%s%d: ", name, device_get_unit(dev)));
 2313 }
 2314 
 2315 /**
 2316  * @brief Print the name of the device followed by a colon, a space
 2317  * and the result of calling vprintf() with the value of @p fmt and
 2318  * the following arguments.
 2319  *
 2320  * @returns the number of characters printed
 2321  */
 2322 int
 2323 device_printf(device_t dev, const char * fmt, ...)
 2324 {
 2325         va_list ap;
 2326         int retval;
 2327 
 2328         retval = device_print_prettyname(dev);
 2329         va_start(ap, fmt);
 2330         retval += vprintf(fmt, ap);
 2331         va_end(ap);
 2332         return (retval);
 2333 }
 2334 
 2335 /**
 2336  * @internal
 2337  */
 2338 static void
 2339 device_set_desc_internal(device_t dev, const char* desc, int copy)
 2340 {
 2341         if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
 2342                 free(dev->desc, M_BUS);
 2343                 dev->flags &= ~DF_DESCMALLOCED;
 2344                 dev->desc = NULL;
 2345         }
 2346 
 2347         if (copy && desc) {
 2348                 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
 2349                 if (dev->desc) {
 2350                         strcpy(dev->desc, desc);
 2351                         dev->flags |= DF_DESCMALLOCED;
 2352                 }
 2353         } else {
 2354                 /* Avoid a -Wcast-qual warning */
 2355                 dev->desc = (char *)(uintptr_t) desc;
 2356         }
 2357 
 2358         bus_data_generation_update();
 2359 }
 2360 
 2361 /**
 2362  * @brief Set the device's description
 2363  *
 2364  * The value of @c desc should be a string constant that will not
 2365  * change (at least until the description is changed in a subsequent
 2366  * call to device_set_desc() or device_set_desc_copy()).
 2367  */
 2368 void
 2369 device_set_desc(device_t dev, const char* desc)
 2370 {
 2371         device_set_desc_internal(dev, desc, FALSE);
 2372 }
 2373 
 2374 /**
 2375  * @brief Set the device's description
 2376  *
 2377  * The string pointed to by @c desc is copied. Use this function if
 2378  * the device description is generated, (e.g. with sprintf()).
 2379  */
 2380 void
 2381 device_set_desc_copy(device_t dev, const char* desc)
 2382 {
 2383         device_set_desc_internal(dev, desc, TRUE);
 2384 }
 2385 
 2386 /**
 2387  * @brief Set the device's flags
 2388  */
 2389 void
 2390 device_set_flags(device_t dev, uint32_t flags)
 2391 {
 2392         dev->devflags = flags;
 2393 }
 2394 
 2395 /**
 2396  * @brief Return the device's softc field
 2397  *
 2398  * The softc is allocated and zeroed when a driver is attached, based
 2399  * on the size field of the driver.
 2400  */
 2401 void *
 2402 device_get_softc(device_t dev)
 2403 {
 2404         return (dev->softc);
 2405 }
 2406 
 2407 /**
 2408  * @brief Set the device's softc field
 2409  *
 2410  * Most drivers do not need to use this since the softc is allocated
 2411  * automatically when the driver is attached.
 2412  */
 2413 void
 2414 device_set_softc(device_t dev, void *softc)
 2415 {
 2416         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
 2417                 free(dev->softc, M_BUS_SC);
 2418         dev->softc = softc;
 2419         if (dev->softc)
 2420                 dev->flags |= DF_EXTERNALSOFTC;
 2421         else
 2422                 dev->flags &= ~DF_EXTERNALSOFTC;
 2423 }
 2424 
 2425 /**
 2426  * @brief Free claimed softc
 2427  *
 2428  * Most drivers do not need to use this since the softc is freed
 2429  * automatically when the driver is detached.
 2430  */
 2431 void
 2432 device_free_softc(void *softc)
 2433 {
 2434         free(softc, M_BUS_SC);
 2435 }
 2436 
 2437 /**
 2438  * @brief Claim softc
 2439  *
 2440  * This function can be used to let the driver free the automatically
 2441  * allocated softc using "device_free_softc()". This function is
 2442  * useful when the driver is refcounting the softc and the softc
 2443  * cannot be freed when the "device_detach" method is called.
 2444  */
 2445 void
 2446 device_claim_softc(device_t dev)
 2447 {
 2448         if (dev->softc)
 2449                 dev->flags |= DF_EXTERNALSOFTC;
 2450         else
 2451                 dev->flags &= ~DF_EXTERNALSOFTC;
 2452 }
 2453 
 2454 /**
 2455  * @brief Get the device's ivars field
 2456  *
 2457  * The ivars field is used by the parent device to store per-device
 2458  * state (e.g. the physical location of the device or a list of
 2459  * resources).
 2460  */
 2461 void *
 2462 device_get_ivars(device_t dev)
 2463 {
 2464 
 2465         KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
 2466         return (dev->ivars);
 2467 }
 2468 
 2469 /**
 2470  * @brief Set the device's ivars field
 2471  */
 2472 void
 2473 device_set_ivars(device_t dev, void * ivars)
 2474 {
 2475 
 2476         KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
 2477         dev->ivars = ivars;
 2478 }
 2479 
 2480 /**
 2481  * @brief Return the device's state
 2482  */
 2483 device_state_t
 2484 device_get_state(device_t dev)
 2485 {
 2486         return (dev->state);
 2487 }
 2488 
 2489 /**
 2490  * @brief Set the DF_ENABLED flag for the device
 2491  */
 2492 void
 2493 device_enable(device_t dev)
 2494 {
 2495         dev->flags |= DF_ENABLED;
 2496 }
 2497 
 2498 /**
 2499  * @brief Clear the DF_ENABLED flag for the device
 2500  */
 2501 void
 2502 device_disable(device_t dev)
 2503 {
 2504         dev->flags &= ~DF_ENABLED;
 2505 }
 2506 
 2507 /**
 2508  * @brief Increment the busy counter for the device
 2509  */
 2510 void
 2511 device_busy(device_t dev)
 2512 {
 2513         if (dev->state < DS_ATTACHING)
 2514                 panic("device_busy: called for unattached device");
 2515         if (dev->busy == 0 && dev->parent)
 2516                 device_busy(dev->parent);
 2517         dev->busy++;
 2518         if (dev->state == DS_ATTACHED)
 2519                 dev->state = DS_BUSY;
 2520 }
 2521 
 2522 /**
 2523  * @brief Decrement the busy counter for the device
 2524  */
 2525 void
 2526 device_unbusy(device_t dev)
 2527 {
 2528         if (dev->busy != 0 && dev->state != DS_BUSY &&
 2529             dev->state != DS_ATTACHING)
 2530                 panic("device_unbusy: called for non-busy device %s",
 2531                     device_get_nameunit(dev));
 2532         dev->busy--;
 2533         if (dev->busy == 0) {
 2534                 if (dev->parent)
 2535                         device_unbusy(dev->parent);
 2536                 if (dev->state == DS_BUSY)
 2537                         dev->state = DS_ATTACHED;
 2538         }
 2539 }
 2540 
 2541 /**
 2542  * @brief Set the DF_QUIET flag for the device
 2543  */
 2544 void
 2545 device_quiet(device_t dev)
 2546 {
 2547         dev->flags |= DF_QUIET;
 2548 }
 2549 
 2550 /**
 2551  * @brief Clear the DF_QUIET flag for the device
 2552  */
 2553 void
 2554 device_verbose(device_t dev)
 2555 {
 2556         dev->flags &= ~DF_QUIET;
 2557 }
 2558 
 2559 /**
 2560  * @brief Return non-zero if the DF_QUIET flag is set on the device
 2561  */
 2562 int
 2563 device_is_quiet(device_t dev)
 2564 {
 2565         return ((dev->flags & DF_QUIET) != 0);
 2566 }
 2567 
 2568 /**
 2569  * @brief Return non-zero if the DF_ENABLED flag is set on the device
 2570  */
 2571 int
 2572 device_is_enabled(device_t dev)
 2573 {
 2574         return ((dev->flags & DF_ENABLED) != 0);
 2575 }
 2576 
 2577 /**
 2578  * @brief Return non-zero if the device was successfully probed
 2579  */
 2580 int
 2581 device_is_alive(device_t dev)
 2582 {
 2583         return (dev->state >= DS_ALIVE);
 2584 }
 2585 
 2586 /**
 2587  * @brief Return non-zero if the device currently has a driver
 2588  * attached to it
 2589  */
 2590 int
 2591 device_is_attached(device_t dev)
 2592 {
 2593         return (dev->state >= DS_ATTACHED);
 2594 }
 2595 
 2596 /**
 2597  * @brief Set the devclass of a device
 2598  * @see devclass_add_device().
 2599  */
 2600 int
 2601 device_set_devclass(device_t dev, const char *classname)
 2602 {
 2603         devclass_t dc;
 2604         int error;
 2605 
 2606         if (!classname) {
 2607                 if (dev->devclass)
 2608                         devclass_delete_device(dev->devclass, dev);
 2609                 return (0);
 2610         }
 2611 
 2612         if (dev->devclass) {
 2613                 printf("device_set_devclass: device class already set\n");
 2614                 return (EINVAL);
 2615         }
 2616 
 2617         dc = devclass_find_internal(classname, NULL, TRUE);
 2618         if (!dc)
 2619                 return (ENOMEM);
 2620 
 2621         error = devclass_add_device(dc, dev);
 2622 
 2623         bus_data_generation_update();
 2624         return (error);
 2625 }
 2626 
 2627 /**
 2628  * @brief Set the driver of a device
 2629  *
 2630  * @retval 0            success
 2631  * @retval EBUSY        the device already has a driver attached
 2632  * @retval ENOMEM       a memory allocation failure occurred
 2633  */
 2634 int
 2635 device_set_driver(device_t dev, driver_t *driver)
 2636 {
 2637         if (dev->state >= DS_ATTACHED)
 2638                 return (EBUSY);
 2639 
 2640         if (dev->driver == driver)
 2641                 return (0);
 2642 
 2643         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
 2644                 free(dev->softc, M_BUS_SC);
 2645                 dev->softc = NULL;
 2646         }
 2647         device_set_desc(dev, NULL);
 2648         kobj_delete((kobj_t) dev, NULL);
 2649         dev->driver = driver;
 2650         if (driver) {
 2651                 kobj_init((kobj_t) dev, (kobj_class_t) driver);
 2652                 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
 2653                         dev->softc = malloc(driver->size, M_BUS_SC,
 2654                             M_NOWAIT | M_ZERO);
 2655                         if (!dev->softc) {
 2656                                 kobj_delete((kobj_t) dev, NULL);
 2657                                 kobj_init((kobj_t) dev, &null_class);
 2658                                 dev->driver = NULL;
 2659                                 return (ENOMEM);
 2660                         }
 2661                 }
 2662         } else {
 2663                 kobj_init((kobj_t) dev, &null_class);
 2664         }
 2665 
 2666         bus_data_generation_update();
 2667         return (0);
 2668 }
 2669 
 2670 /**
 2671  * @brief Probe a device, and return this status.
 2672  *
 2673  * This function is the core of the device autoconfiguration
 2674  * system. Its purpose is to select a suitable driver for a device and
 2675  * then call that driver to initialise the hardware appropriately. The
 2676  * driver is selected by calling the DEVICE_PROBE() method of a set of
 2677  * candidate drivers and then choosing the driver which returned the
 2678  * best value. This driver is then attached to the device using
 2679  * device_attach().
 2680  *
 2681  * The set of suitable drivers is taken from the list of drivers in
 2682  * the parent device's devclass. If the device was originally created
 2683  * with a specific class name (see device_add_child()), only drivers
 2684  * with that name are probed, otherwise all drivers in the devclass
 2685  * are probed. If no drivers return successful probe values in the
 2686  * parent devclass, the search continues in the parent of that
 2687  * devclass (see devclass_get_parent()) if any.
 2688  *
 2689  * @param dev           the device to initialise
 2690  *
 2691  * @retval 0            success
 2692  * @retval ENXIO        no driver was found
 2693  * @retval ENOMEM       memory allocation failure
 2694  * @retval non-zero     some other unix error code
 2695  * @retval -1           Device already attached
 2696  */
 2697 int
 2698 device_probe(device_t dev)
 2699 {
 2700         int error;
 2701 
 2702         GIANT_REQUIRED;
 2703 
 2704         if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
 2705                 return (-1);
 2706 
 2707         if (!(dev->flags & DF_ENABLED)) {
 2708                 if (bootverbose && device_get_name(dev) != NULL) {
 2709                         device_print_prettyname(dev);
 2710                         printf("not probed (disabled)\n");
 2711                 }
 2712                 return (-1);
 2713         }
 2714         if ((error = device_probe_child(dev->parent, dev)) != 0) {              
 2715                 if (bus_current_pass == BUS_PASS_DEFAULT &&
 2716                     !(dev->flags & DF_DONENOMATCH)) {
 2717                         BUS_PROBE_NOMATCH(dev->parent, dev);
 2718                         devnomatch(dev);
 2719                         dev->flags |= DF_DONENOMATCH;
 2720                 }
 2721                 return (error);
 2722         }
 2723         return (0);
 2724 }
 2725 
 2726 /**
 2727  * @brief Probe a device and attach a driver if possible
 2728  *
 2729  * calls device_probe() and attaches if that was successful.
 2730  */
 2731 int
 2732 device_probe_and_attach(device_t dev)
 2733 {
 2734         int error;
 2735 
 2736         GIANT_REQUIRED;
 2737 
 2738         error = device_probe(dev);
 2739         if (error == -1)
 2740                 return (0);
 2741         else if (error != 0)
 2742                 return (error);
 2743 
 2744         CURVNET_SET_QUIET(vnet0);
 2745         error = device_attach(dev);
 2746         CURVNET_RESTORE();
 2747         return error;
 2748 }
 2749 
 2750 /**
 2751  * @brief Attach a device driver to a device
 2752  *
 2753  * This function is a wrapper around the DEVICE_ATTACH() driver
 2754  * method. In addition to calling DEVICE_ATTACH(), it initialises the
 2755  * device's sysctl tree, optionally prints a description of the device
 2756  * and queues a notification event for user-based device management
 2757  * services.
 2758  *
 2759  * Normally this function is only called internally from
 2760  * device_probe_and_attach().
 2761  *
 2762  * @param dev           the device to initialise
 2763  *
 2764  * @retval 0            success
 2765  * @retval ENXIO        no driver was found
 2766  * @retval ENOMEM       memory allocation failure
 2767  * @retval non-zero     some other unix error code
 2768  */
 2769 int
 2770 device_attach(device_t dev)
 2771 {
 2772         uint64_t attachtime;
 2773         int error;
 2774 
 2775         if (resource_disabled(dev->driver->name, dev->unit)) {
 2776                 device_disable(dev);
 2777                 if (bootverbose)
 2778                          device_printf(dev, "disabled via hints entry\n");
 2779                 return (ENXIO);
 2780         }
 2781 
 2782         device_sysctl_init(dev);
 2783         if (!device_is_quiet(dev))
 2784                 device_print_child(dev->parent, dev);
 2785         attachtime = get_cyclecount();
 2786         dev->state = DS_ATTACHING;
 2787         if ((error = DEVICE_ATTACH(dev)) != 0) {
 2788                 printf("device_attach: %s%d attach returned %d\n",
 2789                     dev->driver->name, dev->unit, error);
 2790                 if (!(dev->flags & DF_FIXEDCLASS))
 2791                         devclass_delete_device(dev->devclass, dev);
 2792                 (void)device_set_driver(dev, NULL);
 2793                 device_sysctl_fini(dev);
 2794                 KASSERT(dev->busy == 0, ("attach failed but busy"));
 2795                 dev->state = DS_NOTPRESENT;
 2796                 return (error);
 2797         }
 2798         attachtime = get_cyclecount() - attachtime;
 2799         /*
 2800          * 4 bits per device is a reasonable value for desktop and server
 2801          * hardware with good get_cyclecount() implementations, but may
 2802          * need to be adjusted on other platforms.
 2803          */
 2804 #ifdef RANDOM_DEBUG
 2805         printf("%s(): feeding %d bit(s) of entropy from %s%d\n",
 2806             __func__, 4, dev->driver->name, dev->unit);
 2807 #endif
 2808         random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH);
 2809         device_sysctl_update(dev);
 2810         if (dev->busy)
 2811                 dev->state = DS_BUSY;
 2812         else
 2813                 dev->state = DS_ATTACHED;
 2814         dev->flags &= ~DF_DONENOMATCH;
 2815         devadded(dev);
 2816         return (0);
 2817 }
 2818 
 2819 /**
 2820  * @brief Detach a driver from a device
 2821  *
 2822  * This function is a wrapper around the DEVICE_DETACH() driver
 2823  * method. If the call to DEVICE_DETACH() succeeds, it calls
 2824  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
 2825  * notification event for user-based device management services and
 2826  * cleans up the device's sysctl tree.
 2827  *
 2828  * @param dev           the device to un-initialise
 2829  *
 2830  * @retval 0            success
 2831  * @retval ENXIO        no driver was found
 2832  * @retval ENOMEM       memory allocation failure
 2833  * @retval non-zero     some other unix error code
 2834  */
 2835 int
 2836 device_detach(device_t dev)
 2837 {
 2838         int error;
 2839 
 2840         GIANT_REQUIRED;
 2841 
 2842         PDEBUG(("%s", DEVICENAME(dev)));
 2843         if (dev->state == DS_BUSY)
 2844                 return (EBUSY);
 2845         if (dev->state != DS_ATTACHED)
 2846                 return (0);
 2847 
 2848         if ((error = DEVICE_DETACH(dev)) != 0)
 2849                 return (error);
 2850         devremoved(dev);
 2851         if (!device_is_quiet(dev))
 2852                 device_printf(dev, "detached\n");
 2853         if (dev->parent)
 2854                 BUS_CHILD_DETACHED(dev->parent, dev);
 2855 
 2856         if (!(dev->flags & DF_FIXEDCLASS))
 2857                 devclass_delete_device(dev->devclass, dev);
 2858 
 2859         dev->state = DS_NOTPRESENT;
 2860         (void)device_set_driver(dev, NULL);
 2861         device_sysctl_fini(dev);
 2862 
 2863         return (0);
 2864 }
 2865 
 2866 /**
 2867  * @brief Tells a driver to quiesce itself.
 2868  *
 2869  * This function is a wrapper around the DEVICE_QUIESCE() driver
 2870  * method. If the call to DEVICE_QUIESCE() succeeds.
 2871  *
 2872  * @param dev           the device to quiesce
 2873  *
 2874  * @retval 0            success
 2875  * @retval ENXIO        no driver was found
 2876  * @retval ENOMEM       memory allocation failure
 2877  * @retval non-zero     some other unix error code
 2878  */
 2879 int
 2880 device_quiesce(device_t dev)
 2881 {
 2882 
 2883         PDEBUG(("%s", DEVICENAME(dev)));
 2884         if (dev->state == DS_BUSY)
 2885                 return (EBUSY);
 2886         if (dev->state != DS_ATTACHED)
 2887                 return (0);
 2888 
 2889         return (DEVICE_QUIESCE(dev));
 2890 }
 2891 
 2892 /**
 2893  * @brief Notify a device of system shutdown
 2894  *
 2895  * This function calls the DEVICE_SHUTDOWN() driver method if the
 2896  * device currently has an attached driver.
 2897  *
 2898  * @returns the value returned by DEVICE_SHUTDOWN()
 2899  */
 2900 int
 2901 device_shutdown(device_t dev)
 2902 {
 2903         if (dev->state < DS_ATTACHED)
 2904                 return (0);
 2905         return (DEVICE_SHUTDOWN(dev));
 2906 }
 2907 
 2908 /**
 2909  * @brief Set the unit number of a device
 2910  *
 2911  * This function can be used to override the unit number used for a
 2912  * device (e.g. to wire a device to a pre-configured unit number).
 2913  */
 2914 int
 2915 device_set_unit(device_t dev, int unit)
 2916 {
 2917         devclass_t dc;
 2918         int err;
 2919 
 2920         dc = device_get_devclass(dev);
 2921         if (unit < dc->maxunit && dc->devices[unit])
 2922                 return (EBUSY);
 2923         err = devclass_delete_device(dc, dev);
 2924         if (err)
 2925                 return (err);
 2926         dev->unit = unit;
 2927         err = devclass_add_device(dc, dev);
 2928         if (err)
 2929                 return (err);
 2930 
 2931         bus_data_generation_update();
 2932         return (0);
 2933 }
 2934 
 2935 /*======================================*/
 2936 /*
 2937  * Some useful method implementations to make life easier for bus drivers.
 2938  */
 2939 
 2940 /**
 2941  * @brief Initialise a resource list.
 2942  *
 2943  * @param rl            the resource list to initialise
 2944  */
 2945 void
 2946 resource_list_init(struct resource_list *rl)
 2947 {
 2948         STAILQ_INIT(rl);
 2949 }
 2950 
 2951 /**
 2952  * @brief Reclaim memory used by a resource list.
 2953  *
 2954  * This function frees the memory for all resource entries on the list
 2955  * (if any).
 2956  *
 2957  * @param rl            the resource list to free               
 2958  */
 2959 void
 2960 resource_list_free(struct resource_list *rl)
 2961 {
 2962         struct resource_list_entry *rle;
 2963 
 2964         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 2965                 if (rle->res)
 2966                         panic("resource_list_free: resource entry is busy");
 2967                 STAILQ_REMOVE_HEAD(rl, link);
 2968                 free(rle, M_BUS);
 2969         }
 2970 }
 2971 
 2972 /**
 2973  * @brief Add a resource entry.
 2974  *
 2975  * This function adds a resource entry using the given @p type, @p
 2976  * start, @p end and @p count values. A rid value is chosen by
 2977  * searching sequentially for the first unused rid starting at zero.
 2978  *
 2979  * @param rl            the resource list to edit
 2980  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2981  * @param start         the start address of the resource
 2982  * @param end           the end address of the resource
 2983  * @param count         XXX end-start+1
 2984  */
 2985 int
 2986 resource_list_add_next(struct resource_list *rl, int type, u_long start,
 2987     u_long end, u_long count)
 2988 {
 2989         int rid;
 2990 
 2991         rid = 0;
 2992         while (resource_list_find(rl, type, rid) != NULL)
 2993                 rid++;
 2994         resource_list_add(rl, type, rid, start, end, count);
 2995         return (rid);
 2996 }
 2997 
 2998 /**
 2999  * @brief Add or modify a resource entry.
 3000  *
 3001  * If an existing entry exists with the same type and rid, it will be
 3002  * modified using the given values of @p start, @p end and @p
 3003  * count. If no entry exists, a new one will be created using the
 3004  * given values.  The resource list entry that matches is then returned.
 3005  *
 3006  * @param rl            the resource list to edit
 3007  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3008  * @param rid           the resource identifier
 3009  * @param start         the start address of the resource
 3010  * @param end           the end address of the resource
 3011  * @param count         XXX end-start+1
 3012  */
 3013 struct resource_list_entry *
 3014 resource_list_add(struct resource_list *rl, int type, int rid,
 3015     u_long start, u_long end, u_long count)
 3016 {
 3017         struct resource_list_entry *rle;
 3018 
 3019         rle = resource_list_find(rl, type, rid);
 3020         if (!rle) {
 3021                 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
 3022                     M_NOWAIT);
 3023                 if (!rle)
 3024                         panic("resource_list_add: can't record entry");
 3025                 STAILQ_INSERT_TAIL(rl, rle, link);
 3026                 rle->type = type;
 3027                 rle->rid = rid;
 3028                 rle->res = NULL;
 3029                 rle->flags = 0;
 3030         }
 3031 
 3032         if (rle->res)
 3033                 panic("resource_list_add: resource entry is busy");
 3034 
 3035         rle->start = start;
 3036         rle->end = end;
 3037         rle->count = count;
 3038         return (rle);
 3039 }
 3040 
 3041 /**
 3042  * @brief Determine if a resource entry is busy.
 3043  *
 3044  * Returns true if a resource entry is busy meaning that it has an
 3045  * associated resource that is not an unallocated "reserved" resource.
 3046  *
 3047  * @param rl            the resource list to search
 3048  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3049  * @param rid           the resource identifier
 3050  *
 3051  * @returns Non-zero if the entry is busy, zero otherwise.
 3052  */
 3053 int
 3054 resource_list_busy(struct resource_list *rl, int type, int rid)
 3055 {
 3056         struct resource_list_entry *rle;
 3057 
 3058         rle = resource_list_find(rl, type, rid);
 3059         if (rle == NULL || rle->res == NULL)
 3060                 return (0);
 3061         if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
 3062                 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
 3063                     ("reserved resource is active"));
 3064                 return (0);
 3065         }
 3066         return (1);
 3067 }
 3068 
 3069 /**
 3070  * @brief Determine if a resource entry is reserved.
 3071  *
 3072  * Returns true if a resource entry is reserved meaning that it has an
 3073  * associated "reserved" resource.  The resource can either be
 3074  * allocated or unallocated.
 3075  *
 3076  * @param rl            the resource list to search
 3077  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3078  * @param rid           the resource identifier
 3079  *
 3080  * @returns Non-zero if the entry is reserved, zero otherwise.
 3081  */
 3082 int
 3083 resource_list_reserved(struct resource_list *rl, int type, int rid)
 3084 {
 3085         struct resource_list_entry *rle;
 3086 
 3087         rle = resource_list_find(rl, type, rid);
 3088         if (rle != NULL && rle->flags & RLE_RESERVED)
 3089                 return (1);
 3090         return (0);
 3091 }
 3092 
 3093 /**
 3094  * @brief Find a resource entry by type and rid.
 3095  *
 3096  * @param rl            the resource list to search
 3097  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3098  * @param rid           the resource identifier
 3099  *
 3100  * @returns the resource entry pointer or NULL if there is no such
 3101  * entry.
 3102  */
 3103 struct resource_list_entry *
 3104 resource_list_find(struct resource_list *rl, int type, int rid)
 3105 {
 3106         struct resource_list_entry *rle;
 3107 
 3108         STAILQ_FOREACH(rle, rl, link) {
 3109                 if (rle->type == type && rle->rid == rid)
 3110                         return (rle);
 3111         }
 3112         return (NULL);
 3113 }
 3114 
 3115 /**
 3116  * @brief Delete a resource entry.
 3117  *
 3118  * @param rl            the resource list to edit
 3119  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3120  * @param rid           the resource identifier
 3121  */
 3122 void
 3123 resource_list_delete(struct resource_list *rl, int type, int rid)
 3124 {
 3125         struct resource_list_entry *rle = resource_list_find(rl, type, rid);
 3126 
 3127         if (rle) {
 3128                 if (rle->res != NULL)
 3129                         panic("resource_list_delete: resource has not been released");
 3130                 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
 3131                 free(rle, M_BUS);
 3132         }
 3133 }
 3134 
 3135 /**
 3136  * @brief Allocate a reserved resource
 3137  *
 3138  * This can be used by busses to force the allocation of resources
 3139  * that are always active in the system even if they are not allocated
 3140  * by a driver (e.g. PCI BARs).  This function is usually called when
 3141  * adding a new child to the bus.  The resource is allocated from the
 3142  * parent bus when it is reserved.  The resource list entry is marked
 3143  * with RLE_RESERVED to note that it is a reserved resource.
 3144  *
 3145  * Subsequent attempts to allocate the resource with
 3146  * resource_list_alloc() will succeed the first time and will set
 3147  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
 3148  * resource that has been allocated is released with
 3149  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
 3150  * the actual resource remains allocated.  The resource can be released to
 3151  * the parent bus by calling resource_list_unreserve().
 3152  *
 3153  * @param rl            the resource list to allocate from
 3154  * @param bus           the parent device of @p child
 3155  * @param child         the device for which the resource is being reserved
 3156  * @param type          the type of resource to allocate
 3157  * @param rid           a pointer to the resource identifier
 3158  * @param start         hint at the start of the resource range - pass
 3159  *                      @c 0UL for any start address
 3160  * @param end           hint at the end of the resource range - pass
 3161  *                      @c ~0UL for any end address
 3162  * @param count         hint at the size of range required - pass @c 1
 3163  *                      for any size
 3164  * @param flags         any extra flags to control the resource
 3165  *                      allocation - see @c RF_XXX flags in
 3166  *                      <sys/rman.h> for details
 3167  * 
 3168  * @returns             the resource which was allocated or @c NULL if no
 3169  *                      resource could be allocated
 3170  */
 3171 struct resource *
 3172 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
 3173     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
 3174 {
 3175         struct resource_list_entry *rle = NULL;
 3176         int passthrough = (device_get_parent(child) != bus);
 3177         struct resource *r;
 3178 
 3179         if (passthrough)
 3180                 panic(
 3181     "resource_list_reserve() should only be called for direct children");
 3182         if (flags & RF_ACTIVE)
 3183                 panic(
 3184     "resource_list_reserve() should only reserve inactive resources");
 3185 
 3186         r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
 3187             flags);
 3188         if (r != NULL) {
 3189                 rle = resource_list_find(rl, type, *rid);
 3190                 rle->flags |= RLE_RESERVED;
 3191         }
 3192         return (r);
 3193 }
 3194 
 3195 /**
 3196  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
 3197  *
 3198  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
 3199  * and passing the allocation up to the parent of @p bus. This assumes
 3200  * that the first entry of @c device_get_ivars(child) is a struct
 3201  * resource_list. This also handles 'passthrough' allocations where a
 3202  * child is a remote descendant of bus by passing the allocation up to
 3203  * the parent of bus.
 3204  *
 3205  * Typically, a bus driver would store a list of child resources
 3206  * somewhere in the child device's ivars (see device_get_ivars()) and
 3207  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
 3208  * then call resource_list_alloc() to perform the allocation.
 3209  *
 3210  * @param rl            the resource list to allocate from
 3211  * @param bus           the parent device of @p child
 3212  * @param child         the device which is requesting an allocation
 3213  * @param type          the type of resource to allocate
 3214  * @param rid           a pointer to the resource identifier
 3215  * @param start         hint at the start of the resource range - pass
 3216  *                      @c 0UL for any start address
 3217  * @param end           hint at the end of the resource range - pass
 3218  *                      @c ~0UL for any end address
 3219  * @param count         hint at the size of range required - pass @c 1
 3220  *                      for any size
 3221  * @param flags         any extra flags to control the resource
 3222  *                      allocation - see @c RF_XXX flags in
 3223  *                      <sys/rman.h> for details
 3224  * 
 3225  * @returns             the resource which was allocated or @c NULL if no
 3226  *                      resource could be allocated
 3227  */
 3228 struct resource *
 3229 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
 3230     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
 3231 {
 3232         struct resource_list_entry *rle = NULL;
 3233         int passthrough = (device_get_parent(child) != bus);
 3234         int isdefault = (start == 0UL && end == ~0UL);
 3235 
 3236         if (passthrough) {
 3237                 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 3238                     type, rid, start, end, count, flags));
 3239         }
 3240 
 3241         rle = resource_list_find(rl, type, *rid);
 3242 
 3243         if (!rle)
 3244                 return (NULL);          /* no resource of that type/rid */
 3245 
 3246         if (rle->res) {
 3247                 if (rle->flags & RLE_RESERVED) {
 3248                         if (rle->flags & RLE_ALLOCATED)
 3249                                 return (NULL);
 3250                         if ((flags & RF_ACTIVE) &&
 3251                             bus_activate_resource(child, type, *rid,
 3252                             rle->res) != 0)
 3253                                 return (NULL);
 3254                         rle->flags |= RLE_ALLOCATED;
 3255                         return (rle->res);
 3256                 }
 3257                 panic("resource_list_alloc: resource entry is busy");
 3258         }
 3259 
 3260         if (isdefault) {
 3261                 start = rle->start;
 3262                 count = ulmax(count, rle->count);
 3263                 end = ulmax(rle->end, start + count - 1);
 3264         }
 3265 
 3266         rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 3267             type, rid, start, end, count, flags);
 3268 
 3269         /*
 3270          * Record the new range.
 3271          */
 3272         if (rle->res) {
 3273                 rle->start = rman_get_start(rle->res);
 3274                 rle->end = rman_get_end(rle->res);
 3275                 rle->count = count;
 3276         }
 3277 
 3278         return (rle->res);
 3279 }
 3280 
 3281 /**
 3282  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
 3283  * 
 3284  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
 3285  * used with resource_list_alloc().
 3286  * 
 3287  * @param rl            the resource list which was allocated from
 3288  * @param bus           the parent device of @p child
 3289  * @param child         the device which is requesting a release
 3290  * @param type          the type of resource to release
 3291  * @param rid           the resource identifier
 3292  * @param res           the resource to release
 3293  * 
 3294  * @retval 0            success
 3295  * @retval non-zero     a standard unix error code indicating what
 3296  *                      error condition prevented the operation
 3297  */
 3298 int
 3299 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
 3300     int type, int rid, struct resource *res)
 3301 {
 3302         struct resource_list_entry *rle = NULL;
 3303         int passthrough = (device_get_parent(child) != bus);
 3304         int error;
 3305 
 3306         if (passthrough) {
 3307                 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3308                     type, rid, res));
 3309         }
 3310 
 3311         rle = resource_list_find(rl, type, rid);
 3312 
 3313         if (!rle)
 3314                 panic("resource_list_release: can't find resource");
 3315         if (!rle->res)
 3316                 panic("resource_list_release: resource entry is not busy");
 3317         if (rle->flags & RLE_RESERVED) {
 3318                 if (rle->flags & RLE_ALLOCATED) {
 3319                         if (rman_get_flags(res) & RF_ACTIVE) {
 3320                                 error = bus_deactivate_resource(child, type,
 3321                                     rid, res);
 3322                                 if (error)
 3323                                         return (error);
 3324                         }
 3325                         rle->flags &= ~RLE_ALLOCATED;
 3326                         return (0);
 3327                 }
 3328                 return (EINVAL);
 3329         }
 3330 
 3331         error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3332             type, rid, res);
 3333         if (error)
 3334                 return (error);
 3335 
 3336         rle->res = NULL;
 3337         return (0);
 3338 }
 3339 
 3340 /**
 3341  * @brief Release all active resources of a given type
 3342  *
 3343  * Release all active resources of a specified type.  This is intended
 3344  * to be used to cleanup resources leaked by a driver after detach or
 3345  * a failed attach.
 3346  *
 3347  * @param rl            the resource list which was allocated from
 3348  * @param bus           the parent device of @p child
 3349  * @param child         the device whose active resources are being released
 3350  * @param type          the type of resources to release
 3351  * 
 3352  * @retval 0            success
 3353  * @retval EBUSY        at least one resource was active
 3354  */
 3355 int
 3356 resource_list_release_active(struct resource_list *rl, device_t bus,
 3357     device_t child, int type)
 3358 {
 3359         struct resource_list_entry *rle;
 3360         int error, retval;
 3361 
 3362         retval = 0;
 3363         STAILQ_FOREACH(rle, rl, link) {
 3364                 if (rle->type != type)
 3365                         continue;
 3366                 if (rle->res == NULL)
 3367                         continue;
 3368                 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
 3369                     RLE_RESERVED)
 3370                         continue;
 3371                 retval = EBUSY;
 3372                 error = resource_list_release(rl, bus, child, type,
 3373                     rman_get_rid(rle->res), rle->res);
 3374                 if (error != 0)
 3375                         device_printf(bus,
 3376                             "Failed to release active resource: %d\n", error);
 3377         }
 3378         return (retval);
 3379 }
 3380 
 3381 
 3382 /**
 3383  * @brief Fully release a reserved resource
 3384  *
 3385  * Fully releases a resource reserved via resource_list_reserve().
 3386  *
 3387  * @param rl            the resource list which was allocated from
 3388  * @param bus           the parent device of @p child
 3389  * @param child         the device whose reserved resource is being released
 3390  * @param type          the type of resource to release
 3391  * @param rid           the resource identifier
 3392  * @param res           the resource to release
 3393  * 
 3394  * @retval 0            success
 3395  * @retval non-zero     a standard unix error code indicating what
 3396  *                      error condition prevented the operation
 3397  */
 3398 int
 3399 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
 3400     int type, int rid)
 3401 {
 3402         struct resource_list_entry *rle = NULL;
 3403         int passthrough = (device_get_parent(child) != bus);
 3404 
 3405         if (passthrough)
 3406                 panic(
 3407     "resource_list_unreserve() should only be called for direct children");
 3408 
 3409         rle = resource_list_find(rl, type, rid);
 3410 
 3411         if (!rle)
 3412                 panic("resource_list_unreserve: can't find resource");
 3413         if (!(rle->flags & RLE_RESERVED))
 3414                 return (EINVAL);
 3415         if (rle->flags & RLE_ALLOCATED)
 3416                 return (EBUSY);
 3417         rle->flags &= ~RLE_RESERVED;
 3418         return (resource_list_release(rl, bus, child, type, rid, rle->res));
 3419 }
 3420 
 3421 /**
 3422  * @brief Print a description of resources in a resource list
 3423  *
 3424  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
 3425  * The name is printed if at least one resource of the given type is available.
 3426  * The format is used to print resource start and end.
 3427  *
 3428  * @param rl            the resource list to print
 3429  * @param name          the name of @p type, e.g. @c "memory"
 3430  * @param type          type type of resource entry to print
 3431  * @param format        printf(9) format string to print resource
 3432  *                      start and end values
 3433  * 
 3434  * @returns             the number of characters printed
 3435  */
 3436 int
 3437 resource_list_print_type(struct resource_list *rl, const char *name, int type,
 3438     const char *format)
 3439 {
 3440         struct resource_list_entry *rle;
 3441         int printed, retval;
 3442 
 3443         printed = 0;
 3444         retval = 0;
 3445         /* Yes, this is kinda cheating */
 3446         STAILQ_FOREACH(rle, rl, link) {
 3447                 if (rle->type == type) {
 3448                         if (printed == 0)
 3449                                 retval += printf(" %s ", name);
 3450                         else
 3451                                 retval += printf(",");
 3452                         printed++;
 3453                         retval += printf(format, rle->start);
 3454                         if (rle->count > 1) {
 3455                                 retval += printf("-");
 3456                                 retval += printf(format, rle->start +
 3457                                                  rle->count - 1);
 3458                         }
 3459                 }
 3460         }
 3461         return (retval);
 3462 }
 3463 
 3464 /**
 3465  * @brief Releases all the resources in a list.
 3466  *
 3467  * @param rl            The resource list to purge.
 3468  * 
 3469  * @returns             nothing
 3470  */
 3471 void
 3472 resource_list_purge(struct resource_list *rl)
 3473 {
 3474         struct resource_list_entry *rle;
 3475 
 3476         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 3477                 if (rle->res)
 3478                         bus_release_resource(rman_get_device(rle->res),
 3479                             rle->type, rle->rid, rle->res);
 3480                 STAILQ_REMOVE_HEAD(rl, link);
 3481                 free(rle, M_BUS);
 3482         }
 3483 }
 3484 
 3485 device_t
 3486 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
 3487 {
 3488 
 3489         return (device_add_child_ordered(dev, order, name, unit));
 3490 }
 3491 
 3492 /**
 3493  * @brief Helper function for implementing DEVICE_PROBE()
 3494  *
 3495  * This function can be used to help implement the DEVICE_PROBE() for
 3496  * a bus (i.e. a device which has other devices attached to it). It
 3497  * calls the DEVICE_IDENTIFY() method of each driver in the device's
 3498  * devclass.
 3499  */
 3500 int
 3501 bus_generic_probe(device_t dev)
 3502 {
 3503         devclass_t dc = dev->devclass;
 3504         driverlink_t dl;
 3505 
 3506         TAILQ_FOREACH(dl, &dc->drivers, link) {
 3507                 /*
 3508                  * If this driver's pass is too high, then ignore it.
 3509                  * For most drivers in the default pass, this will
 3510                  * never be true.  For early-pass drivers they will
 3511                  * only call the identify routines of eligible drivers
 3512                  * when this routine is called.  Drivers for later
 3513                  * passes should have their identify routines called
 3514                  * on early-pass busses during BUS_NEW_PASS().
 3515                  */
 3516                 if (dl->pass > bus_current_pass)
 3517                         continue;
 3518                 DEVICE_IDENTIFY(dl->driver, dev);
 3519         }
 3520 
 3521         return (0);
 3522 }
 3523 
 3524 /**
 3525  * @brief Helper function for implementing DEVICE_ATTACH()
 3526  *
 3527  * This function can be used to help implement the DEVICE_ATTACH() for
 3528  * a bus. It calls device_probe_and_attach() for each of the device's
 3529  * children.
 3530  */
 3531 int
 3532 bus_generic_attach(device_t dev)
 3533 {
 3534         device_t child;
 3535 
 3536         TAILQ_FOREACH(child, &dev->children, link) {
 3537                 device_probe_and_attach(child);
 3538         }
 3539 
 3540         return (0);
 3541 }
 3542 
 3543 /**
 3544  * @brief Helper function for implementing DEVICE_DETACH()
 3545  *
 3546  * This function can be used to help implement the DEVICE_DETACH() for
 3547  * a bus. It calls device_detach() for each of the device's
 3548  * children.
 3549  */
 3550 int
 3551 bus_generic_detach(device_t dev)
 3552 {
 3553         device_t child;
 3554         int error;
 3555 
 3556         if (dev->state != DS_ATTACHED)
 3557                 return (EBUSY);
 3558 
 3559         TAILQ_FOREACH(child, &dev->children, link) {
 3560                 if ((error = device_detach(child)) != 0)
 3561                         return (error);
 3562         }
 3563 
 3564         return (0);
 3565 }
 3566 
 3567 /**
 3568  * @brief Helper function for implementing DEVICE_SHUTDOWN()
 3569  *
 3570  * This function can be used to help implement the DEVICE_SHUTDOWN()
 3571  * for a bus. It calls device_shutdown() for each of the device's
 3572  * children.
 3573  */
 3574 int
 3575 bus_generic_shutdown(device_t dev)
 3576 {
 3577         device_t child;
 3578 
 3579         TAILQ_FOREACH(child, &dev->children, link) {
 3580                 device_shutdown(child);
 3581         }
 3582 
 3583         return (0);
 3584 }
 3585 
 3586 /**
 3587  * @brief Helper function for implementing DEVICE_SUSPEND()
 3588  *
 3589  * This function can be used to help implement the DEVICE_SUSPEND()
 3590  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
 3591  * children. If any call to DEVICE_SUSPEND() fails, the suspend
 3592  * operation is aborted and any devices which were suspended are
 3593  * resumed immediately by calling their DEVICE_RESUME() methods.
 3594  */
 3595 int
 3596 bus_generic_suspend(device_t dev)
 3597 {
 3598         int             error;
 3599         device_t        child, child2;
 3600 
 3601         TAILQ_FOREACH(child, &dev->children, link) {
 3602                 error = DEVICE_SUSPEND(child);
 3603                 if (error) {
 3604                         for (child2 = TAILQ_FIRST(&dev->children);
 3605                              child2 && child2 != child;
 3606                              child2 = TAILQ_NEXT(child2, link))
 3607                                 DEVICE_RESUME(child2);
 3608                         return (error);
 3609                 }
 3610         }
 3611         return (0);
 3612 }
 3613 
 3614 /**
 3615  * @brief Helper function for implementing DEVICE_RESUME()
 3616  *
 3617  * This function can be used to help implement the DEVICE_RESUME() for
 3618  * a bus. It calls DEVICE_RESUME() on each of the device's children.
 3619  */
 3620 int
 3621 bus_generic_resume(device_t dev)
 3622 {
 3623         device_t        child;
 3624 
 3625         TAILQ_FOREACH(child, &dev->children, link) {
 3626                 DEVICE_RESUME(child);
 3627                 /* if resume fails, there's nothing we can usefully do... */
 3628         }
 3629         return (0);
 3630 }
 3631 
 3632 /**
 3633  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3634  *
 3635  * This function prints the first part of the ascii representation of
 3636  * @p child, including its name, unit and description (if any - see
 3637  * device_set_desc()).
 3638  *
 3639  * @returns the number of characters printed
 3640  */
 3641 int
 3642 bus_print_child_header(device_t dev, device_t child)
 3643 {
 3644         int     retval = 0;
 3645 
 3646         if (device_get_desc(child)) {
 3647                 retval += device_printf(child, "<%s>", device_get_desc(child));
 3648         } else {
 3649                 retval += printf("%s", device_get_nameunit(child));
 3650         }
 3651 
 3652         return (retval);
 3653 }
 3654 
 3655 /**
 3656  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3657  *
 3658  * This function prints the last part of the ascii representation of
 3659  * @p child, which consists of the string @c " on " followed by the
 3660  * name and unit of the @p dev.
 3661  *
 3662  * @returns the number of characters printed
 3663  */
 3664 int
 3665 bus_print_child_footer(device_t dev, device_t child)
 3666 {
 3667         return (printf(" on %s\n", device_get_nameunit(dev)));
 3668 }
 3669 
 3670 /**
 3671  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3672  *
 3673  * This function simply calls bus_print_child_header() followed by
 3674  * bus_print_child_footer().
 3675  *
 3676  * @returns the number of characters printed
 3677  */
 3678 int
 3679 bus_generic_print_child(device_t dev, device_t child)
 3680 {
 3681         int     retval = 0;
 3682 
 3683         retval += bus_print_child_header(dev, child);
 3684         retval += bus_print_child_footer(dev, child);
 3685 
 3686         return (retval);
 3687 }
 3688 
 3689 /**
 3690  * @brief Stub function for implementing BUS_READ_IVAR().
 3691  * 
 3692  * @returns ENOENT
 3693  */
 3694 int
 3695 bus_generic_read_ivar(device_t dev, device_t child, int index,
 3696     uintptr_t * result)
 3697 {
 3698         return (ENOENT);
 3699 }
 3700 
 3701 /**
 3702  * @brief Stub function for implementing BUS_WRITE_IVAR().
 3703  * 
 3704  * @returns ENOENT
 3705  */
 3706 int
 3707 bus_generic_write_ivar(device_t dev, device_t child, int index,
 3708     uintptr_t value)
 3709 {
 3710         return (ENOENT);
 3711 }
 3712 
 3713 /**
 3714  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
 3715  * 
 3716  * @returns NULL
 3717  */
 3718 struct resource_list *
 3719 bus_generic_get_resource_list(device_t dev, device_t child)
 3720 {
 3721         return (NULL);
 3722 }
 3723 
 3724 /**
 3725  * @brief Helper function for implementing BUS_DRIVER_ADDED().
 3726  *
 3727  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
 3728  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
 3729  * and then calls device_probe_and_attach() for each unattached child.
 3730  */
 3731 void
 3732 bus_generic_driver_added(device_t dev, driver_t *driver)
 3733 {
 3734         device_t child;
 3735 
 3736         DEVICE_IDENTIFY(driver, dev);
 3737         TAILQ_FOREACH(child, &dev->children, link) {
 3738                 if (child->state == DS_NOTPRESENT ||
 3739                     (child->flags & DF_REBID))
 3740                         device_probe_and_attach(child);
 3741         }
 3742 }
 3743 
 3744 /**
 3745  * @brief Helper function for implementing BUS_NEW_PASS().
 3746  *
 3747  * This implementing of BUS_NEW_PASS() first calls the identify
 3748  * routines for any drivers that probe at the current pass.  Then it
 3749  * walks the list of devices for this bus.  If a device is already
 3750  * attached, then it calls BUS_NEW_PASS() on that device.  If the
 3751  * device is not already attached, it attempts to attach a driver to
 3752  * it.
 3753  */
 3754 void
 3755 bus_generic_new_pass(device_t dev)
 3756 {
 3757         driverlink_t dl;
 3758         devclass_t dc;
 3759         device_t child;
 3760 
 3761         dc = dev->devclass;
 3762         TAILQ_FOREACH(dl, &dc->drivers, link) {
 3763                 if (dl->pass == bus_current_pass)
 3764                         DEVICE_IDENTIFY(dl->driver, dev);
 3765         }
 3766         TAILQ_FOREACH(child, &dev->children, link) {
 3767                 if (child->state >= DS_ATTACHED)
 3768                         BUS_NEW_PASS(child);
 3769                 else if (child->state == DS_NOTPRESENT)
 3770                         device_probe_and_attach(child);
 3771         }
 3772 }
 3773 
 3774 /**
 3775  * @brief Helper function for implementing BUS_SETUP_INTR().
 3776  *
 3777  * This simple implementation of BUS_SETUP_INTR() simply calls the
 3778  * BUS_SETUP_INTR() method of the parent of @p dev.
 3779  */
 3780 int
 3781 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
 3782     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 
 3783     void **cookiep)
 3784 {
 3785         /* Propagate up the bus hierarchy until someone handles it. */
 3786         if (dev->parent)
 3787                 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
 3788                     filter, intr, arg, cookiep));
 3789         return (EINVAL);
 3790 }
 3791 
 3792 /**
 3793  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
 3794  *
 3795  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
 3796  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
 3797  */
 3798 int
 3799 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
 3800     void *cookie)
 3801 {
 3802         /* Propagate up the bus hierarchy until someone handles it. */
 3803         if (dev->parent)
 3804                 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
 3805         return (EINVAL);
 3806 }
 3807 
 3808 /**
 3809  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
 3810  *
 3811  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
 3812  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
 3813  */
 3814 int
 3815 bus_generic_adjust_resource(device_t dev, device_t child, int type,
 3816     struct resource *r, u_long start, u_long end)
 3817 {
 3818         /* Propagate up the bus hierarchy until someone handles it. */
 3819         if (dev->parent)
 3820                 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
 3821                     end));
 3822         return (EINVAL);
 3823 }
 3824 
 3825 /**
 3826  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3827  *
 3828  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
 3829  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
 3830  */
 3831 struct resource *
 3832 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
 3833     u_long start, u_long end, u_long count, u_int flags)
 3834 {
 3835         /* Propagate up the bus hierarchy until someone handles it. */
 3836         if (dev->parent)
 3837                 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
 3838                     start, end, count, flags));
 3839         return (NULL);
 3840 }
 3841 
 3842 /**
 3843  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3844  *
 3845  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
 3846  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
 3847  */
 3848 int
 3849 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
 3850     struct resource *r)
 3851 {
 3852         /* Propagate up the bus hierarchy until someone handles it. */
 3853         if (dev->parent)
 3854                 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
 3855                     r));
 3856         return (EINVAL);
 3857 }
 3858 
 3859 /**
 3860  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
 3861  *
 3862  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
 3863  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
 3864  */
 3865 int
 3866 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
 3867     struct resource *r)
 3868 {
 3869         /* Propagate up the bus hierarchy until someone handles it. */
 3870         if (dev->parent)
 3871                 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3872                     r));
 3873         return (EINVAL);
 3874 }
 3875 
 3876 /**
 3877  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
 3878  *
 3879  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
 3880  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
 3881  */
 3882 int
 3883 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
 3884     int rid, struct resource *r)
 3885 {
 3886         /* Propagate up the bus hierarchy until someone handles it. */
 3887         if (dev->parent)
 3888                 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3889                     r));
 3890         return (EINVAL);
 3891 }
 3892 
 3893 /**
 3894  * @brief Helper function for implementing BUS_BIND_INTR().
 3895  *
 3896  * This simple implementation of BUS_BIND_INTR() simply calls the
 3897  * BUS_BIND_INTR() method of the parent of @p dev.
 3898  */
 3899 int
 3900 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
 3901     int cpu)
 3902 {
 3903 
 3904         /* Propagate up the bus hierarchy until someone handles it. */
 3905         if (dev->parent)
 3906                 return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
 3907         return (EINVAL);
 3908 }
 3909 
 3910 /**
 3911  * @brief Helper function for implementing BUS_CONFIG_INTR().
 3912  *
 3913  * This simple implementation of BUS_CONFIG_INTR() simply calls the
 3914  * BUS_CONFIG_INTR() method of the parent of @p dev.
 3915  */
 3916 int
 3917 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
 3918     enum intr_polarity pol)
 3919 {
 3920 
 3921         /* Propagate up the bus hierarchy until someone handles it. */
 3922         if (dev->parent)
 3923                 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
 3924         return (EINVAL);
 3925 }
 3926 
 3927 /**
 3928  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
 3929  *
 3930  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
 3931  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
 3932  */
 3933 int
 3934 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
 3935     void *cookie, const char *descr)
 3936 {
 3937 
 3938         /* Propagate up the bus hierarchy until someone handles it. */
 3939         if (dev->parent)
 3940                 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
 3941                     descr));
 3942         return (EINVAL);
 3943 }
 3944 
 3945 /**
 3946  * @brief Helper function for implementing BUS_GET_DMA_TAG().
 3947  *
 3948  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
 3949  * BUS_GET_DMA_TAG() method of the parent of @p dev.
 3950  */
 3951 bus_dma_tag_t
 3952 bus_generic_get_dma_tag(device_t dev, device_t child)
 3953 {
 3954 
 3955         /* Propagate up the bus hierarchy until someone handles it. */
 3956         if (dev->parent != NULL)
 3957                 return (BUS_GET_DMA_TAG(dev->parent, child));
 3958         return (NULL);
 3959 }
 3960 
 3961 /**
 3962  * @brief Helper function for implementing BUS_GET_RESOURCE().
 3963  *
 3964  * This implementation of BUS_GET_RESOURCE() uses the
 3965  * resource_list_find() function to do most of the work. It calls
 3966  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3967  * search.
 3968  */
 3969 int
 3970 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
 3971     u_long *startp, u_long *countp)
 3972 {
 3973         struct resource_list *          rl = NULL;
 3974         struct resource_list_entry *    rle = NULL;
 3975 
 3976         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3977         if (!rl)
 3978                 return (EINVAL);
 3979 
 3980         rle = resource_list_find(rl, type, rid);
 3981         if (!rle)
 3982                 return (ENOENT);
 3983 
 3984         if (startp)
 3985                 *startp = rle->start;
 3986         if (countp)
 3987                 *countp = rle->count;
 3988 
 3989         return (0);
 3990 }
 3991 
 3992 /**
 3993  * @brief Helper function for implementing BUS_SET_RESOURCE().
 3994  *
 3995  * This implementation of BUS_SET_RESOURCE() uses the
 3996  * resource_list_add() function to do most of the work. It calls
 3997  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3998  * edit.
 3999  */
 4000 int
 4001 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
 4002     u_long start, u_long count)
 4003 {
 4004         struct resource_list *          rl = NULL;
 4005 
 4006         rl = BUS_GET_RESOURCE_LIST(dev, child);
 4007         if (!rl)
 4008                 return (EINVAL);
 4009 
 4010         resource_list_add(rl, type, rid, start, (start + count - 1), count);
 4011 
 4012         return (0);
 4013 }
 4014 
 4015 /**
 4016  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
 4017  *
 4018  * This implementation of BUS_DELETE_RESOURCE() uses the
 4019  * resource_list_delete() function to do most of the work. It calls
 4020  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 4021  * edit.
 4022  */
 4023 void
 4024 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
 4025 {
 4026         struct resource_list *          rl = NULL;
 4027 
 4028         rl = BUS_GET_RESOURCE_LIST(dev, child);
 4029         if (!rl)
 4030                 return;
 4031 
 4032         resource_list_delete(rl, type, rid);
 4033 
 4034         return;
 4035 }
 4036 
 4037 /**
 4038  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 4039  *
 4040  * This implementation of BUS_RELEASE_RESOURCE() uses the
 4041  * resource_list_release() function to do most of the work. It calls
 4042  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 4043  */
 4044 int
 4045 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
 4046     int rid, struct resource *r)
 4047 {
 4048         struct resource_list *          rl = NULL;
 4049 
 4050         if (device_get_parent(child) != dev)
 4051                 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
 4052                     type, rid, r));
 4053 
 4054         rl = BUS_GET_RESOURCE_LIST(dev, child);
 4055         if (!rl)
 4056                 return (EINVAL);
 4057 
 4058         return (resource_list_release(rl, dev, child, type, rid, r));
 4059 }
 4060 
 4061 /**
 4062  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 4063  *
 4064  * This implementation of BUS_ALLOC_RESOURCE() uses the
 4065  * resource_list_alloc() function to do most of the work. It calls
 4066  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 4067  */
 4068 struct resource *
 4069 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
 4070     int *rid, u_long start, u_long end, u_long count, u_int flags)
 4071 {
 4072         struct resource_list *          rl = NULL;
 4073 
 4074         if (device_get_parent(child) != dev)
 4075                 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
 4076                     type, rid, start, end, count, flags));
 4077 
 4078         rl = BUS_GET_RESOURCE_LIST(dev, child);
 4079         if (!rl)
 4080                 return (NULL);
 4081 
 4082         return (resource_list_alloc(rl, dev, child, type, rid,
 4083             start, end, count, flags));
 4084 }
 4085 
 4086 /**
 4087  * @brief Helper function for implementing BUS_CHILD_PRESENT().
 4088  *
 4089  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
 4090  * BUS_CHILD_PRESENT() method of the parent of @p dev.
 4091  */
 4092 int
 4093 bus_generic_child_present(device_t dev, device_t child)
 4094 {
 4095         return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
 4096 }
 4097 
 4098 /*
 4099  * Some convenience functions to make it easier for drivers to use the
 4100  * resource-management functions.  All these really do is hide the
 4101  * indirection through the parent's method table, making for slightly
 4102  * less-wordy code.  In the future, it might make sense for this code
 4103  * to maintain some sort of a list of resources allocated by each device.
 4104  */
 4105 
 4106 int
 4107 bus_alloc_resources(device_t dev, struct resource_spec *rs,
 4108     struct resource **res)
 4109 {
 4110         int i;
 4111 
 4112         for (i = 0; rs[i].type != -1; i++)
 4113                 res[i] = NULL;
 4114         for (i = 0; rs[i].type != -1; i++) {
 4115                 res[i] = bus_alloc_resource_any(dev,
 4116                     rs[i].type, &rs[i].rid, rs[i].flags);
 4117                 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
 4118                         bus_release_resources(dev, rs, res);
 4119                         return (ENXIO);
 4120                 }
 4121         }
 4122         return (0);
 4123 }
 4124 
 4125 void
 4126 bus_release_resources(device_t dev, const struct resource_spec *rs,
 4127     struct resource **res)
 4128 {
 4129         int i;
 4130 
 4131         for (i = 0; rs[i].type != -1; i++)
 4132                 if (res[i] != NULL) {
 4133                         bus_release_resource(
 4134                             dev, rs[i].type, rs[i].rid, res[i]);
 4135                         res[i] = NULL;
 4136                 }
 4137 }
 4138 
 4139 /**
 4140  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
 4141  *
 4142  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
 4143  * parent of @p dev.
 4144  */
 4145 struct resource *
 4146 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
 4147     u_long count, u_int flags)
 4148 {
 4149         if (dev->parent == NULL)
 4150                 return (NULL);
 4151         return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
 4152             count, flags));
 4153 }
 4154 
 4155 /**
 4156  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
 4157  *
 4158  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
 4159  * parent of @p dev.
 4160  */
 4161 int
 4162 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
 4163     u_long end)
 4164 {
 4165         if (dev->parent == NULL)
 4166                 return (EINVAL);
 4167         return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
 4168 }
 4169 
 4170 /**
 4171  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
 4172  *
 4173  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
 4174  * parent of @p dev.
 4175  */
 4176 int
 4177 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
 4178 {
 4179         if (dev->parent == NULL)
 4180                 return (EINVAL);
 4181         return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 4182 }
 4183 
 4184 /**
 4185  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
 4186  *
 4187  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
 4188  * parent of @p dev.
 4189  */
 4190 int
 4191 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
 4192 {
 4193         if (dev->parent == NULL)
 4194                 return (EINVAL);
 4195         return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 4196 }
 4197 
 4198 /**
 4199  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
 4200  *
 4201  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
 4202  * parent of @p dev.
 4203  */
 4204 int
 4205 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
 4206 {
 4207         if (dev->parent == NULL)
 4208                 return (EINVAL);
 4209         return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
 4210 }
 4211 
 4212 /**
 4213  * @brief Wrapper function for BUS_SETUP_INTR().
 4214  *
 4215  * This function simply calls the BUS_SETUP_INTR() method of the
 4216  * parent of @p dev.
 4217  */
 4218 int
 4219 bus_setup_intr(device_t dev, struct resource *r, int flags,
 4220     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
 4221 {
 4222         int error;
 4223 
 4224         if (dev->parent == NULL)
 4225                 return (EINVAL);
 4226         error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
 4227             arg, cookiep);
 4228         if (error != 0)
 4229                 return (error);
 4230         if (handler != NULL && !(flags & INTR_MPSAFE))
 4231                 device_printf(dev, "[GIANT-LOCKED]\n");
 4232         return (0);
 4233 }
 4234 
 4235 /**
 4236  * @brief Wrapper function for BUS_TEARDOWN_INTR().
 4237  *
 4238  * This function simply calls the BUS_TEARDOWN_INTR() method of the
 4239  * parent of @p dev.
 4240  */
 4241 int
 4242 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
 4243 {
 4244         if (dev->parent == NULL)
 4245                 return (EINVAL);
 4246         return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
 4247 }
 4248 
 4249 /**
 4250  * @brief Wrapper function for BUS_BIND_INTR().
 4251  *
 4252  * This function simply calls the BUS_BIND_INTR() method of the
 4253  * parent of @p dev.
 4254  */
 4255 int
 4256 bus_bind_intr(device_t dev, struct resource *r, int cpu)
 4257 {
 4258         if (dev->parent == NULL)
 4259                 return (EINVAL);
 4260         return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
 4261 }
 4262 
 4263 /**
 4264  * @brief Wrapper function for BUS_DESCRIBE_INTR().
 4265  *
 4266  * This function first formats the requested description into a
 4267  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
 4268  * the parent of @p dev.
 4269  */
 4270 int
 4271 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
 4272     const char *fmt, ...)
 4273 {
 4274         va_list ap;
 4275         char descr[MAXCOMLEN + 1];
 4276 
 4277         if (dev->parent == NULL)
 4278                 return (EINVAL);
 4279         va_start(ap, fmt);
 4280         vsnprintf(descr, sizeof(descr), fmt, ap);
 4281         va_end(ap);
 4282         return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
 4283 }
 4284 
 4285 /**
 4286  * @brief Wrapper function for BUS_SET_RESOURCE().
 4287  *
 4288  * This function simply calls the BUS_SET_RESOURCE() method of the
 4289  * parent of @p dev.
 4290  */
 4291 int
 4292 bus_set_resource(device_t dev, int type, int rid,
 4293     u_long start, u_long count)
 4294 {
 4295         return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4296             start, count));
 4297 }
 4298 
 4299 /**
 4300  * @brief Wrapper function for BUS_GET_RESOURCE().
 4301  *
 4302  * This function simply calls the BUS_GET_RESOURCE() method of the
 4303  * parent of @p dev.
 4304  */
 4305 int
 4306 bus_get_resource(device_t dev, int type, int rid,
 4307     u_long *startp, u_long *countp)
 4308 {
 4309         return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4310             startp, countp));
 4311 }
 4312 
 4313 /**
 4314  * @brief Wrapper function for BUS_GET_RESOURCE().
 4315  *
 4316  * This function simply calls the BUS_GET_RESOURCE() method of the
 4317  * parent of @p dev and returns the start value.
 4318  */
 4319 u_long
 4320 bus_get_resource_start(device_t dev, int type, int rid)
 4321 {
 4322         u_long start, count;
 4323         int error;
 4324 
 4325         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4326             &start, &count);
 4327         if (error)
 4328                 return (0);
 4329         return (start);
 4330 }
 4331 
 4332 /**
 4333  * @brief Wrapper function for BUS_GET_RESOURCE().
 4334  *
 4335  * This function simply calls the BUS_GET_RESOURCE() method of the
 4336  * parent of @p dev and returns the count value.
 4337  */
 4338 u_long
 4339 bus_get_resource_count(device_t dev, int type, int rid)
 4340 {
 4341         u_long start, count;
 4342         int error;
 4343 
 4344         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4345             &start, &count);
 4346         if (error)
 4347                 return (0);
 4348         return (count);
 4349 }
 4350 
 4351 /**
 4352  * @brief Wrapper function for BUS_DELETE_RESOURCE().
 4353  *
 4354  * This function simply calls the BUS_DELETE_RESOURCE() method of the
 4355  * parent of @p dev.
 4356  */
 4357 void
 4358 bus_delete_resource(device_t dev, int type, int rid)
 4359 {
 4360         BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
 4361 }
 4362 
 4363 /**
 4364  * @brief Wrapper function for BUS_CHILD_PRESENT().
 4365  *
 4366  * This function simply calls the BUS_CHILD_PRESENT() method of the
 4367  * parent of @p dev.
 4368  */
 4369 int
 4370 bus_child_present(device_t child)
 4371 {
 4372         return (BUS_CHILD_PRESENT(device_get_parent(child), child));
 4373 }
 4374 
 4375 /**
 4376  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
 4377  *
 4378  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
 4379  * parent of @p dev.
 4380  */
 4381 int
 4382 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
 4383 {
 4384         device_t parent;
 4385 
 4386         parent = device_get_parent(child);
 4387         if (parent == NULL) {
 4388                 *buf = '\0';
 4389                 return (0);
 4390         }
 4391         return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
 4392 }
 4393 
 4394 /**
 4395  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
 4396  *
 4397  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
 4398  * parent of @p dev.
 4399  */
 4400 int
 4401 bus_child_location_str(device_t child, char *buf, size_t buflen)
 4402 {
 4403         device_t parent;
 4404 
 4405         parent = device_get_parent(child);
 4406         if (parent == NULL) {
 4407                 *buf = '\0';
 4408                 return (0);
 4409         }
 4410         return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
 4411 }
 4412 
 4413 /**
 4414  * @brief Wrapper function for BUS_GET_DMA_TAG().
 4415  *
 4416  * This function simply calls the BUS_GET_DMA_TAG() method of the
 4417  * parent of @p dev.
 4418  */
 4419 bus_dma_tag_t
 4420 bus_get_dma_tag(device_t dev)
 4421 {
 4422         device_t parent;
 4423 
 4424         parent = device_get_parent(dev);
 4425         if (parent == NULL)
 4426                 return (NULL);
 4427         return (BUS_GET_DMA_TAG(parent, dev));
 4428 }
 4429 
 4430 /* Resume all devices and then notify userland that we're up again. */
 4431 static int
 4432 root_resume(device_t dev)
 4433 {
 4434         int error;
 4435 
 4436         error = bus_generic_resume(dev);
 4437         if (error == 0)
 4438                 devctl_notify("kern", "power", "resume", NULL);
 4439         return (error);
 4440 }
 4441 
 4442 static int
 4443 root_print_child(device_t dev, device_t child)
 4444 {
 4445         int     retval = 0;
 4446 
 4447         retval += bus_print_child_header(dev, child);
 4448         retval += printf("\n");
 4449 
 4450         return (retval);
 4451 }
 4452 
 4453 static int
 4454 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
 4455     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
 4456 {
 4457         /*
 4458          * If an interrupt mapping gets to here something bad has happened.
 4459          */
 4460         panic("root_setup_intr");
 4461 }
 4462 
 4463 /*
 4464  * If we get here, assume that the device is permanant and really is
 4465  * present in the system.  Removable bus drivers are expected to intercept
 4466  * this call long before it gets here.  We return -1 so that drivers that
 4467  * really care can check vs -1 or some ERRNO returned higher in the food
 4468  * chain.
 4469  */
 4470 static int
 4471 root_child_present(device_t dev, device_t child)
 4472 {
 4473         return (-1);
 4474 }
 4475 
 4476 static kobj_method_t root_methods[] = {
 4477         /* Device interface */
 4478         KOBJMETHOD(device_shutdown,     bus_generic_shutdown),
 4479         KOBJMETHOD(device_suspend,      bus_generic_suspend),
 4480         KOBJMETHOD(device_resume,       root_resume),
 4481 
 4482         /* Bus interface */
 4483         KOBJMETHOD(bus_print_child,     root_print_child),
 4484         KOBJMETHOD(bus_read_ivar,       bus_generic_read_ivar),
 4485         KOBJMETHOD(bus_write_ivar,      bus_generic_write_ivar),
 4486         KOBJMETHOD(bus_setup_intr,      root_setup_intr),
 4487         KOBJMETHOD(bus_child_present,   root_child_present),
 4488 
 4489         KOBJMETHOD_END
 4490 };
 4491 
 4492 static driver_t root_driver = {
 4493         "root",
 4494         root_methods,
 4495         1,                      /* no softc */
 4496 };
 4497 
 4498 device_t        root_bus;
 4499 devclass_t      root_devclass;
 4500 
 4501 static int
 4502 root_bus_module_handler(module_t mod, int what, void* arg)
 4503 {
 4504         switch (what) {
 4505         case MOD_LOAD:
 4506                 TAILQ_INIT(&bus_data_devices);
 4507                 kobj_class_compile((kobj_class_t) &root_driver);
 4508                 root_bus = make_device(NULL, "root", 0);
 4509                 root_bus->desc = "System root bus";
 4510                 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
 4511                 root_bus->driver = &root_driver;
 4512                 root_bus->state = DS_ATTACHED;
 4513                 root_devclass = devclass_find_internal("root", NULL, FALSE);
 4514                 devinit();
 4515                 return (0);
 4516 
 4517         case MOD_SHUTDOWN:
 4518                 device_shutdown(root_bus);
 4519                 return (0);
 4520         default:
 4521                 return (EOPNOTSUPP);
 4522         }
 4523 
 4524         return (0);
 4525 }
 4526 
 4527 static moduledata_t root_bus_mod = {
 4528         "rootbus",
 4529         root_bus_module_handler,
 4530         NULL
 4531 };
 4532 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
 4533 
 4534 /**
 4535  * @brief Automatically configure devices
 4536  *
 4537  * This function begins the autoconfiguration process by calling
 4538  * device_probe_and_attach() for each child of the @c root0 device.
 4539  */ 
 4540 void
 4541 root_bus_configure(void)
 4542 {
 4543 
 4544         PDEBUG(("."));
 4545 
 4546         /* Eventually this will be split up, but this is sufficient for now. */
 4547         bus_set_pass(BUS_PASS_DEFAULT);
 4548 }
 4549 
 4550 /**
 4551  * @brief Module handler for registering device drivers
 4552  *
 4553  * This module handler is used to automatically register device
 4554  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
 4555  * devclass_add_driver() for the driver described by the
 4556  * driver_module_data structure pointed to by @p arg
 4557  */
 4558 int
 4559 driver_module_handler(module_t mod, int what, void *arg)
 4560 {
 4561         struct driver_module_data *dmd;
 4562         devclass_t bus_devclass;
 4563         kobj_class_t driver;
 4564         int error, pass;
 4565 
 4566         dmd = (struct driver_module_data *)arg;
 4567         bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
 4568         error = 0;
 4569 
 4570         switch (what) {
 4571         case MOD_LOAD:
 4572                 if (dmd->dmd_chainevh)
 4573                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4574 
 4575                 pass = dmd->dmd_pass;
 4576                 driver = dmd->dmd_driver;
 4577                 PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
 4578                     DRIVERNAME(driver), dmd->dmd_busname, pass));
 4579                 error = devclass_add_driver(bus_devclass, driver, pass,
 4580                     dmd->dmd_devclass);
 4581                 break;
 4582 
 4583         case MOD_UNLOAD:
 4584                 PDEBUG(("Unloading module: driver %s from bus %s",
 4585                     DRIVERNAME(dmd->dmd_driver),
 4586                     dmd->dmd_busname));
 4587                 error = devclass_delete_driver(bus_devclass,
 4588                     dmd->dmd_driver);
 4589 
 4590                 if (!error && dmd->dmd_chainevh)
 4591                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4592                 break;
 4593         case MOD_QUIESCE:
 4594                 PDEBUG(("Quiesce module: driver %s from bus %s",
 4595                     DRIVERNAME(dmd->dmd_driver),
 4596                     dmd->dmd_busname));
 4597                 error = devclass_quiesce_driver(bus_devclass,
 4598                     dmd->dmd_driver);
 4599 
 4600                 if (!error && dmd->dmd_chainevh)
 4601                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4602                 break;
 4603         default:
 4604                 error = EOPNOTSUPP;
 4605                 break;
 4606         }
 4607 
 4608         return (error);
 4609 }
 4610 
 4611 /**
 4612  * @brief Enumerate all hinted devices for this bus.
 4613  *
 4614  * Walks through the hints for this bus and calls the bus_hinted_child
 4615  * routine for each one it fines.  It searches first for the specific
 4616  * bus that's being probed for hinted children (eg isa0), and then for
 4617  * generic children (eg isa).
 4618  *
 4619  * @param       dev     bus device to enumerate
 4620  */
 4621 void
 4622 bus_enumerate_hinted_children(device_t bus)
 4623 {
 4624         int i;
 4625         const char *dname, *busname;
 4626         int dunit;
 4627 
 4628         /*
 4629          * enumerate all devices on the specific bus
 4630          */
 4631         busname = device_get_nameunit(bus);
 4632         i = 0;
 4633         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 4634                 BUS_HINTED_CHILD(bus, dname, dunit);
 4635 
 4636         /*
 4637          * and all the generic ones.
 4638          */
 4639         busname = device_get_name(bus);
 4640         i = 0;
 4641         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 4642                 BUS_HINTED_CHILD(bus, dname, dunit);
 4643 }
 4644 
 4645 #ifdef BUS_DEBUG
 4646 
 4647 /* the _short versions avoid iteration by not calling anything that prints
 4648  * more than oneliners. I love oneliners.
 4649  */
 4650 
 4651 static void
 4652 print_device_short(device_t dev, int indent)
 4653 {
 4654         if (!dev)
 4655                 return;
 4656 
 4657         indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
 4658             dev->unit, dev->desc,
 4659             (dev->parent? "":"no "),
 4660             (TAILQ_EMPTY(&dev->children)? "no ":""),
 4661             (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
 4662             (dev->flags&DF_FIXEDCLASS? "fixed,":""),
 4663             (dev->flags&DF_WILDCARD? "wildcard,":""),
 4664             (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
 4665             (dev->flags&DF_REBID? "rebiddable,":""),
 4666             (dev->ivars? "":"no "),
 4667             (dev->softc? "":"no "),
 4668             dev->busy));
 4669 }
 4670 
 4671 static void
 4672 print_device(device_t dev, int indent)
 4673 {
 4674         if (!dev)
 4675                 return;
 4676 
 4677         print_device_short(dev, indent);
 4678 
 4679         indentprintf(("Parent:\n"));
 4680         print_device_short(dev->parent, indent+1);
 4681         indentprintf(("Driver:\n"));
 4682         print_driver_short(dev->driver, indent+1);
 4683         indentprintf(("Devclass:\n"));
 4684         print_devclass_short(dev->devclass, indent+1);
 4685 }
 4686 
 4687 void
 4688 print_device_tree_short(device_t dev, int indent)
 4689 /* print the device and all its children (indented) */
 4690 {
 4691         device_t child;
 4692 
 4693         if (!dev)
 4694                 return;
 4695 
 4696         print_device_short(dev, indent);
 4697 
 4698         TAILQ_FOREACH(child, &dev->children, link) {
 4699                 print_device_tree_short(child, indent+1);
 4700         }
 4701 }
 4702 
 4703 void
 4704 print_device_tree(device_t dev, int indent)
 4705 /* print the device and all its children (indented) */
 4706 {
 4707         device_t child;
 4708 
 4709         if (!dev)
 4710                 return;
 4711 
 4712         print_device(dev, indent);
 4713 
 4714         TAILQ_FOREACH(child, &dev->children, link) {
 4715                 print_device_tree(child, indent+1);
 4716         }
 4717 }
 4718 
 4719 static void
 4720 print_driver_short(driver_t *driver, int indent)
 4721 {
 4722         if (!driver)
 4723                 return;
 4724 
 4725         indentprintf(("driver %s: softc size = %zd\n",
 4726             driver->name, driver->size));
 4727 }
 4728 
 4729 static void
 4730 print_driver(driver_t *driver, int indent)
 4731 {
 4732         if (!driver)
 4733                 return;
 4734 
 4735         print_driver_short(driver, indent);
 4736 }
 4737 
 4738 static void
 4739 print_driver_list(driver_list_t drivers, int indent)
 4740 {
 4741         driverlink_t driver;
 4742 
 4743         TAILQ_FOREACH(driver, &drivers, link) {
 4744                 print_driver(driver->driver, indent);
 4745         }
 4746 }
 4747 
 4748 static void
 4749 print_devclass_short(devclass_t dc, int indent)
 4750 {
 4751         if ( !dc )
 4752                 return;
 4753 
 4754         indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
 4755 }
 4756 
 4757 static void
 4758 print_devclass(devclass_t dc, int indent)
 4759 {
 4760         int i;
 4761 
 4762         if ( !dc )
 4763                 return;
 4764 
 4765         print_devclass_short(dc, indent);
 4766         indentprintf(("Drivers:\n"));
 4767         print_driver_list(dc->drivers, indent+1);
 4768 
 4769         indentprintf(("Devices:\n"));
 4770         for (i = 0; i < dc->maxunit; i++)
 4771                 if (dc->devices[i])
 4772                         print_device(dc->devices[i], indent+1);
 4773 }
 4774 
 4775 void
 4776 print_devclass_list_short(void)
 4777 {
 4778         devclass_t dc;
 4779 
 4780         printf("Short listing of devclasses, drivers & devices:\n");
 4781         TAILQ_FOREACH(dc, &devclasses, link) {
 4782                 print_devclass_short(dc, 0);
 4783         }
 4784 }
 4785 
 4786 void
 4787 print_devclass_list(void)
 4788 {
 4789         devclass_t dc;
 4790 
 4791         printf("Full listing of devclasses, drivers & devices:\n");
 4792         TAILQ_FOREACH(dc, &devclasses, link) {
 4793                 print_devclass(dc, 0);
 4794         }
 4795 }
 4796 
 4797 #endif
 4798 
 4799 /*
 4800  * User-space access to the device tree.
 4801  *
 4802  * We implement a small set of nodes:
 4803  *
 4804  * hw.bus                       Single integer read method to obtain the
 4805  *                              current generation count.
 4806  * hw.bus.devices               Reads the entire device tree in flat space.
 4807  * hw.bus.rman                  Resource manager interface
 4808  *
 4809  * We might like to add the ability to scan devclasses and/or drivers to
 4810  * determine what else is currently loaded/available.
 4811  */
 4812 
 4813 static int
 4814 sysctl_bus(SYSCTL_HANDLER_ARGS)
 4815 {
 4816         struct u_businfo        ubus;
 4817 
 4818         ubus.ub_version = BUS_USER_VERSION;
 4819         ubus.ub_generation = bus_data_generation;
 4820 
 4821         return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
 4822 }
 4823 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
 4824     "bus-related data");
 4825 
 4826 static int
 4827 sysctl_devices(SYSCTL_HANDLER_ARGS)
 4828 {
 4829         int                     *name = (int *)arg1;
 4830         u_int                   namelen = arg2;
 4831         int                     index;
 4832         struct device           *dev;
 4833         struct u_device         udev;   /* XXX this is a bit big */
 4834         int                     error;
 4835 
 4836         if (namelen != 2)
 4837                 return (EINVAL);
 4838 
 4839         if (bus_data_generation_check(name[0]))
 4840                 return (EINVAL);
 4841 
 4842         index = name[1];
 4843 
 4844         /*
 4845          * Scan the list of devices, looking for the requested index.
 4846          */
 4847         TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 4848                 if (index-- == 0)
 4849                         break;
 4850         }
 4851         if (dev == NULL)
 4852                 return (ENOENT);
 4853 
 4854         /*
 4855          * Populate the return array.
 4856          */
 4857         bzero(&udev, sizeof(udev));
 4858         udev.dv_handle = (uintptr_t)dev;
 4859         udev.dv_parent = (uintptr_t)dev->parent;
 4860         if (dev->nameunit != NULL)
 4861                 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
 4862         if (dev->desc != NULL)
 4863                 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
 4864         if (dev->driver != NULL && dev->driver->name != NULL)
 4865                 strlcpy(udev.dv_drivername, dev->driver->name,
 4866                     sizeof(udev.dv_drivername));
 4867         bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
 4868         bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
 4869         udev.dv_devflags = dev->devflags;
 4870         udev.dv_flags = dev->flags;
 4871         udev.dv_state = dev->state;
 4872         error = SYSCTL_OUT(req, &udev, sizeof(udev));
 4873         return (error);
 4874 }
 4875 
 4876 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
 4877     "system device tree");
 4878 
 4879 int
 4880 bus_data_generation_check(int generation)
 4881 {
 4882         if (generation != bus_data_generation)
 4883                 return (1);
 4884 
 4885         /* XXX generate optimised lists here? */
 4886         return (0);
 4887 }
 4888 
 4889 void
 4890 bus_data_generation_update(void)
 4891 {
 4892         bus_data_generation++;
 4893 }
 4894 
 4895 int
 4896 bus_free_resource(device_t dev, int type, struct resource *r)
 4897 {
 4898         if (r == NULL)
 4899                 return (0);
 4900         return (bus_release_resource(dev, type, rman_get_rid(r), r));
 4901 }

Cache object: 180f551c26dd3d58c987dacf545d9b39


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.