The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_bus.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997,1998,2003 Doug Rabson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/10.2/sys/kern/subr_bus.c 284899 2015-06-28 01:21:55Z neel $");
   29 
   30 #include "opt_bus.h"
   31 #include "opt_random.h"
   32 
   33 #include <sys/param.h>
   34 #include <sys/conf.h>
   35 #include <sys/filio.h>
   36 #include <sys/lock.h>
   37 #include <sys/kernel.h>
   38 #include <sys/kobj.h>
   39 #include <sys/limits.h>
   40 #include <sys/malloc.h>
   41 #include <sys/module.h>
   42 #include <sys/mutex.h>
   43 #include <sys/poll.h>
   44 #include <sys/proc.h>
   45 #include <sys/condvar.h>
   46 #include <sys/queue.h>
   47 #include <machine/bus.h>
   48 #include <sys/random.h>
   49 #include <sys/rman.h>
   50 #include <sys/selinfo.h>
   51 #include <sys/signalvar.h>
   52 #include <sys/sysctl.h>
   53 #include <sys/systm.h>
   54 #include <sys/uio.h>
   55 #include <sys/bus.h>
   56 #include <sys/interrupt.h>
   57 #include <sys/cpuset.h>
   58 
   59 #include <net/vnet.h>
   60 
   61 #include <machine/cpu.h>
   62 #include <machine/stdarg.h>
   63 
   64 #include <vm/uma.h>
   65 
   66 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
   67 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
   68 
   69 /*
   70  * Used to attach drivers to devclasses.
   71  */
   72 typedef struct driverlink *driverlink_t;
   73 struct driverlink {
   74         kobj_class_t    driver;
   75         TAILQ_ENTRY(driverlink) link;   /* list of drivers in devclass */
   76         int             pass;
   77         TAILQ_ENTRY(driverlink) passlink;
   78 };
   79 
   80 /*
   81  * Forward declarations
   82  */
   83 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
   84 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
   85 typedef TAILQ_HEAD(device_list, device) device_list_t;
   86 
   87 struct devclass {
   88         TAILQ_ENTRY(devclass) link;
   89         devclass_t      parent;         /* parent in devclass hierarchy */
   90         driver_list_t   drivers;     /* bus devclasses store drivers for bus */
   91         char            *name;
   92         device_t        *devices;       /* array of devices indexed by unit */
   93         int             maxunit;        /* size of devices array */
   94         int             flags;
   95 #define DC_HAS_CHILDREN         1
   96 
   97         struct sysctl_ctx_list sysctl_ctx;
   98         struct sysctl_oid *sysctl_tree;
   99 };
  100 
  101 /**
  102  * @brief Implementation of device.
  103  */
  104 struct device {
  105         /*
  106          * A device is a kernel object. The first field must be the
  107          * current ops table for the object.
  108          */
  109         KOBJ_FIELDS;
  110 
  111         /*
  112          * Device hierarchy.
  113          */
  114         TAILQ_ENTRY(device)     link;   /**< list of devices in parent */
  115         TAILQ_ENTRY(device)     devlink; /**< global device list membership */
  116         device_t        parent;         /**< parent of this device  */
  117         device_list_t   children;       /**< list of child devices */
  118 
  119         /*
  120          * Details of this device.
  121          */
  122         driver_t        *driver;        /**< current driver */
  123         devclass_t      devclass;       /**< current device class */
  124         int             unit;           /**< current unit number */
  125         char*           nameunit;       /**< name+unit e.g. foodev0 */
  126         char*           desc;           /**< driver specific description */
  127         int             busy;           /**< count of calls to device_busy() */
  128         device_state_t  state;          /**< current device state  */
  129         uint32_t        devflags;       /**< api level flags for device_get_flags() */
  130         u_int           flags;          /**< internal device flags  */
  131 #define DF_ENABLED      0x01            /* device should be probed/attached */
  132 #define DF_FIXEDCLASS   0x02            /* devclass specified at create time */
  133 #define DF_WILDCARD     0x04            /* unit was originally wildcard */
  134 #define DF_DESCMALLOCED 0x08            /* description was malloced */
  135 #define DF_QUIET        0x10            /* don't print verbose attach message */
  136 #define DF_DONENOMATCH  0x20            /* don't execute DEVICE_NOMATCH again */
  137 #define DF_EXTERNALSOFTC 0x40           /* softc not allocated by us */
  138 #define DF_REBID        0x80            /* Can rebid after attach */
  139         u_int   order;                  /**< order from device_add_child_ordered() */
  140         void    *ivars;                 /**< instance variables  */
  141         void    *softc;                 /**< current driver's variables  */
  142 
  143         struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
  144         struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
  145 };
  146 
  147 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
  148 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
  149 
  150 #ifdef BUS_DEBUG
  151 
  152 static int bus_debug = 1;
  153 TUNABLE_INT("bus.debug", &bus_debug);
  154 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
  155     "Debug bus code");
  156 
  157 #define PDEBUG(a)       if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
  158 #define DEVICENAME(d)   ((d)? device_get_name(d): "no device")
  159 #define DRIVERNAME(d)   ((d)? d->name : "no driver")
  160 #define DEVCLANAME(d)   ((d)? d->name : "no devclass")
  161 
  162 /**
  163  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
  164  * prevent syslog from deleting initial spaces
  165  */
  166 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
  167 
  168 static void print_device_short(device_t dev, int indent);
  169 static void print_device(device_t dev, int indent);
  170 void print_device_tree_short(device_t dev, int indent);
  171 void print_device_tree(device_t dev, int indent);
  172 static void print_driver_short(driver_t *driver, int indent);
  173 static void print_driver(driver_t *driver, int indent);
  174 static void print_driver_list(driver_list_t drivers, int indent);
  175 static void print_devclass_short(devclass_t dc, int indent);
  176 static void print_devclass(devclass_t dc, int indent);
  177 void print_devclass_list_short(void);
  178 void print_devclass_list(void);
  179 
  180 #else
  181 /* Make the compiler ignore the function calls */
  182 #define PDEBUG(a)                       /* nop */
  183 #define DEVICENAME(d)                   /* nop */
  184 #define DRIVERNAME(d)                   /* nop */
  185 #define DEVCLANAME(d)                   /* nop */
  186 
  187 #define print_device_short(d,i)         /* nop */
  188 #define print_device(d,i)               /* nop */
  189 #define print_device_tree_short(d,i)    /* nop */
  190 #define print_device_tree(d,i)          /* nop */
  191 #define print_driver_short(d,i)         /* nop */
  192 #define print_driver(d,i)               /* nop */
  193 #define print_driver_list(d,i)          /* nop */
  194 #define print_devclass_short(d,i)       /* nop */
  195 #define print_devclass(d,i)             /* nop */
  196 #define print_devclass_list_short()     /* nop */
  197 #define print_devclass_list()           /* nop */
  198 #endif
  199 
  200 /*
  201  * dev sysctl tree
  202  */
  203 
  204 enum {
  205         DEVCLASS_SYSCTL_PARENT,
  206 };
  207 
  208 static int
  209 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
  210 {
  211         devclass_t dc = (devclass_t)arg1;
  212         const char *value;
  213 
  214         switch (arg2) {
  215         case DEVCLASS_SYSCTL_PARENT:
  216                 value = dc->parent ? dc->parent->name : "";
  217                 break;
  218         default:
  219                 return (EINVAL);
  220         }
  221         return (SYSCTL_OUT(req, value, strlen(value)));
  222 }
  223 
  224 static void
  225 devclass_sysctl_init(devclass_t dc)
  226 {
  227 
  228         if (dc->sysctl_tree != NULL)
  229                 return;
  230         sysctl_ctx_init(&dc->sysctl_ctx);
  231         dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
  232             SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
  233             CTLFLAG_RD, NULL, "");
  234         SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
  235             OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
  236             dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
  237             "parent class");
  238 }
  239 
  240 enum {
  241         DEVICE_SYSCTL_DESC,
  242         DEVICE_SYSCTL_DRIVER,
  243         DEVICE_SYSCTL_LOCATION,
  244         DEVICE_SYSCTL_PNPINFO,
  245         DEVICE_SYSCTL_PARENT,
  246 };
  247 
  248 static int
  249 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
  250 {
  251         device_t dev = (device_t)arg1;
  252         const char *value;
  253         char *buf;
  254         int error;
  255 
  256         buf = NULL;
  257         switch (arg2) {
  258         case DEVICE_SYSCTL_DESC:
  259                 value = dev->desc ? dev->desc : "";
  260                 break;
  261         case DEVICE_SYSCTL_DRIVER:
  262                 value = dev->driver ? dev->driver->name : "";
  263                 break;
  264         case DEVICE_SYSCTL_LOCATION:
  265                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  266                 bus_child_location_str(dev, buf, 1024);
  267                 break;
  268         case DEVICE_SYSCTL_PNPINFO:
  269                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  270                 bus_child_pnpinfo_str(dev, buf, 1024);
  271                 break;
  272         case DEVICE_SYSCTL_PARENT:
  273                 value = dev->parent ? dev->parent->nameunit : "";
  274                 break;
  275         default:
  276                 return (EINVAL);
  277         }
  278         error = SYSCTL_OUT(req, value, strlen(value));
  279         if (buf != NULL)
  280                 free(buf, M_BUS);
  281         return (error);
  282 }
  283 
  284 static void
  285 device_sysctl_init(device_t dev)
  286 {
  287         devclass_t dc = dev->devclass;
  288         int domain;
  289 
  290         if (dev->sysctl_tree != NULL)
  291                 return;
  292         devclass_sysctl_init(dc);
  293         sysctl_ctx_init(&dev->sysctl_ctx);
  294         dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
  295             SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
  296             dev->nameunit + strlen(dc->name),
  297             CTLFLAG_RD, NULL, "");
  298         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  299             OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
  300             dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
  301             "device description");
  302         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  303             OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
  304             dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
  305             "device driver name");
  306         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  307             OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
  308             dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
  309             "device location relative to parent");
  310         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  311             OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
  312             dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
  313             "device identification");
  314         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  315             OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
  316             dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
  317             "parent device");
  318         if (bus_get_domain(dev, &domain) == 0)
  319                 SYSCTL_ADD_INT(&dev->sysctl_ctx,
  320                     SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
  321                     CTLFLAG_RD, NULL, domain, "NUMA domain");
  322 }
  323 
  324 static void
  325 device_sysctl_update(device_t dev)
  326 {
  327         devclass_t dc = dev->devclass;
  328 
  329         if (dev->sysctl_tree == NULL)
  330                 return;
  331         sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
  332 }
  333 
  334 static void
  335 device_sysctl_fini(device_t dev)
  336 {
  337         if (dev->sysctl_tree == NULL)
  338                 return;
  339         sysctl_ctx_free(&dev->sysctl_ctx);
  340         dev->sysctl_tree = NULL;
  341 }
  342 
  343 /*
  344  * /dev/devctl implementation
  345  */
  346 
  347 /*
  348  * This design allows only one reader for /dev/devctl.  This is not desirable
  349  * in the long run, but will get a lot of hair out of this implementation.
  350  * Maybe we should make this device a clonable device.
  351  *
  352  * Also note: we specifically do not attach a device to the device_t tree
  353  * to avoid potential chicken and egg problems.  One could argue that all
  354  * of this belongs to the root node.  One could also further argue that the
  355  * sysctl interface that we have not might more properly be an ioctl
  356  * interface, but at this stage of the game, I'm not inclined to rock that
  357  * boat.
  358  *
  359  * I'm also not sure that the SIGIO support is done correctly or not, as
  360  * I copied it from a driver that had SIGIO support that likely hasn't been
  361  * tested since 3.4 or 2.2.8!
  362  */
  363 
  364 /* Deprecated way to adjust queue length */
  365 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
  366 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
  367 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW |
  368     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
  369     "devctl disable -- deprecated");
  370 
  371 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
  372 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
  373 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  374 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
  375 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW |
  376     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
  377 
  378 static d_open_t         devopen;
  379 static d_close_t        devclose;
  380 static d_read_t         devread;
  381 static d_ioctl_t        devioctl;
  382 static d_poll_t         devpoll;
  383 static d_kqfilter_t     devkqfilter;
  384 
  385 static struct cdevsw dev_cdevsw = {
  386         .d_version =    D_VERSION,
  387         .d_open =       devopen,
  388         .d_close =      devclose,
  389         .d_read =       devread,
  390         .d_ioctl =      devioctl,
  391         .d_poll =       devpoll,
  392         .d_kqfilter =   devkqfilter,
  393         .d_name =       "devctl",
  394 };
  395 
  396 struct dev_event_info
  397 {
  398         char *dei_data;
  399         TAILQ_ENTRY(dev_event_info) dei_link;
  400 };
  401 
  402 TAILQ_HEAD(devq, dev_event_info);
  403 
  404 static struct dev_softc
  405 {
  406         int     inuse;
  407         int     nonblock;
  408         int     queued;
  409         int     async;
  410         struct mtx mtx;
  411         struct cv cv;
  412         struct selinfo sel;
  413         struct devq devq;
  414         struct sigio *sigio;
  415 } devsoftc;
  416 
  417 static void     filt_devctl_detach(struct knote *kn);
  418 static int      filt_devctl_read(struct knote *kn, long hint);
  419 
  420 struct filterops devctl_rfiltops = {
  421         .f_isfd = 1,
  422         .f_detach = filt_devctl_detach,
  423         .f_event = filt_devctl_read,
  424 };
  425 
  426 static struct cdev *devctl_dev;
  427 
  428 static void
  429 devinit(void)
  430 {
  431         devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
  432             UID_ROOT, GID_WHEEL, 0600, "devctl");
  433         mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
  434         cv_init(&devsoftc.cv, "dev cv");
  435         TAILQ_INIT(&devsoftc.devq);
  436         knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
  437 }
  438 
  439 static int
  440 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
  441 {
  442 
  443         mtx_lock(&devsoftc.mtx);
  444         if (devsoftc.inuse) {
  445                 mtx_unlock(&devsoftc.mtx);
  446                 return (EBUSY);
  447         }
  448         /* move to init */
  449         devsoftc.inuse = 1;
  450         mtx_unlock(&devsoftc.mtx);
  451         return (0);
  452 }
  453 
  454 static int
  455 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
  456 {
  457 
  458         mtx_lock(&devsoftc.mtx);
  459         devsoftc.inuse = 0;
  460         devsoftc.nonblock = 0;
  461         devsoftc.async = 0;
  462         cv_broadcast(&devsoftc.cv);
  463         funsetown(&devsoftc.sigio);
  464         mtx_unlock(&devsoftc.mtx);
  465         return (0);
  466 }
  467 
  468 /*
  469  * The read channel for this device is used to report changes to
  470  * userland in realtime.  We are required to free the data as well as
  471  * the n1 object because we allocate them separately.  Also note that
  472  * we return one record at a time.  If you try to read this device a
  473  * character at a time, you will lose the rest of the data.  Listening
  474  * programs are expected to cope.
  475  */
  476 static int
  477 devread(struct cdev *dev, struct uio *uio, int ioflag)
  478 {
  479         struct dev_event_info *n1;
  480         int rv;
  481 
  482         mtx_lock(&devsoftc.mtx);
  483         while (TAILQ_EMPTY(&devsoftc.devq)) {
  484                 if (devsoftc.nonblock) {
  485                         mtx_unlock(&devsoftc.mtx);
  486                         return (EAGAIN);
  487                 }
  488                 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
  489                 if (rv) {
  490                         /*
  491                          * Need to translate ERESTART to EINTR here? -- jake
  492                          */
  493                         mtx_unlock(&devsoftc.mtx);
  494                         return (rv);
  495                 }
  496         }
  497         n1 = TAILQ_FIRST(&devsoftc.devq);
  498         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  499         devsoftc.queued--;
  500         mtx_unlock(&devsoftc.mtx);
  501         rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
  502         free(n1->dei_data, M_BUS);
  503         free(n1, M_BUS);
  504         return (rv);
  505 }
  506 
  507 static  int
  508 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
  509 {
  510         switch (cmd) {
  511 
  512         case FIONBIO:
  513                 if (*(int*)data)
  514                         devsoftc.nonblock = 1;
  515                 else
  516                         devsoftc.nonblock = 0;
  517                 return (0);
  518         case FIOASYNC:
  519                 if (*(int*)data)
  520                         devsoftc.async = 1;
  521                 else
  522                         devsoftc.async = 0;
  523                 return (0);
  524         case FIOSETOWN:
  525                 return fsetown(*(int *)data, &devsoftc.sigio);
  526         case FIOGETOWN:
  527                 *(int *)data = fgetown(&devsoftc.sigio);
  528                 return (0);
  529 
  530                 /* (un)Support for other fcntl() calls. */
  531         case FIOCLEX:
  532         case FIONCLEX:
  533         case FIONREAD:
  534         default:
  535                 break;
  536         }
  537         return (ENOTTY);
  538 }
  539 
  540 static  int
  541 devpoll(struct cdev *dev, int events, struct thread *td)
  542 {
  543         int     revents = 0;
  544 
  545         mtx_lock(&devsoftc.mtx);
  546         if (events & (POLLIN | POLLRDNORM)) {
  547                 if (!TAILQ_EMPTY(&devsoftc.devq))
  548                         revents = events & (POLLIN | POLLRDNORM);
  549                 else
  550                         selrecord(td, &devsoftc.sel);
  551         }
  552         mtx_unlock(&devsoftc.mtx);
  553 
  554         return (revents);
  555 }
  556 
  557 static int
  558 devkqfilter(struct cdev *dev, struct knote *kn)
  559 {
  560         int error;
  561 
  562         if (kn->kn_filter == EVFILT_READ) {
  563                 kn->kn_fop = &devctl_rfiltops;
  564                 knlist_add(&devsoftc.sel.si_note, kn, 0);
  565                 error = 0;
  566         } else
  567                 error = EINVAL;
  568         return (error);
  569 }
  570 
  571 static void
  572 filt_devctl_detach(struct knote *kn)
  573 {
  574 
  575         knlist_remove(&devsoftc.sel.si_note, kn, 0);
  576 }
  577 
  578 static int
  579 filt_devctl_read(struct knote *kn, long hint)
  580 {
  581         kn->kn_data = devsoftc.queued;
  582         return (kn->kn_data != 0);
  583 }
  584 
  585 /**
  586  * @brief Return whether the userland process is running
  587  */
  588 boolean_t
  589 devctl_process_running(void)
  590 {
  591         return (devsoftc.inuse == 1);
  592 }
  593 
  594 /**
  595  * @brief Queue data to be read from the devctl device
  596  *
  597  * Generic interface to queue data to the devctl device.  It is
  598  * assumed that @p data is properly formatted.  It is further assumed
  599  * that @p data is allocated using the M_BUS malloc type.
  600  */
  601 void
  602 devctl_queue_data_f(char *data, int flags)
  603 {
  604         struct dev_event_info *n1 = NULL, *n2 = NULL;
  605 
  606         if (strlen(data) == 0)
  607                 goto out;
  608         if (devctl_queue_length == 0)
  609                 goto out;
  610         n1 = malloc(sizeof(*n1), M_BUS, flags);
  611         if (n1 == NULL)
  612                 goto out;
  613         n1->dei_data = data;
  614         mtx_lock(&devsoftc.mtx);
  615         if (devctl_queue_length == 0) {
  616                 mtx_unlock(&devsoftc.mtx);
  617                 free(n1->dei_data, M_BUS);
  618                 free(n1, M_BUS);
  619                 return;
  620         }
  621         /* Leave at least one spot in the queue... */
  622         while (devsoftc.queued > devctl_queue_length - 1) {
  623                 n2 = TAILQ_FIRST(&devsoftc.devq);
  624                 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
  625                 free(n2->dei_data, M_BUS);
  626                 free(n2, M_BUS);
  627                 devsoftc.queued--;
  628         }
  629         TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
  630         devsoftc.queued++;
  631         cv_broadcast(&devsoftc.cv);
  632         KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
  633         mtx_unlock(&devsoftc.mtx);
  634         selwakeup(&devsoftc.sel);
  635         if (devsoftc.async && devsoftc.sigio != NULL)
  636                 pgsigio(&devsoftc.sigio, SIGIO, 0);
  637         return;
  638 out:
  639         /*
  640          * We have to free data on all error paths since the caller
  641          * assumes it will be free'd when this item is dequeued.
  642          */
  643         free(data, M_BUS);
  644         return;
  645 }
  646 
  647 void
  648 devctl_queue_data(char *data)
  649 {
  650 
  651         devctl_queue_data_f(data, M_NOWAIT);
  652 }
  653 
  654 /**
  655  * @brief Send a 'notification' to userland, using standard ways
  656  */
  657 void
  658 devctl_notify_f(const char *system, const char *subsystem, const char *type,
  659     const char *data, int flags)
  660 {
  661         int len = 0;
  662         char *msg;
  663 
  664         if (system == NULL)
  665                 return;         /* BOGUS!  Must specify system. */
  666         if (subsystem == NULL)
  667                 return;         /* BOGUS!  Must specify subsystem. */
  668         if (type == NULL)
  669                 return;         /* BOGUS!  Must specify type. */
  670         len += strlen(" system=") + strlen(system);
  671         len += strlen(" subsystem=") + strlen(subsystem);
  672         len += strlen(" type=") + strlen(type);
  673         /* add in the data message plus newline. */
  674         if (data != NULL)
  675                 len += strlen(data);
  676         len += 3;       /* '!', '\n', and NUL */
  677         msg = malloc(len, M_BUS, flags);
  678         if (msg == NULL)
  679                 return;         /* Drop it on the floor */
  680         if (data != NULL)
  681                 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
  682                     system, subsystem, type, data);
  683         else
  684                 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
  685                     system, subsystem, type);
  686         devctl_queue_data_f(msg, flags);
  687 }
  688 
  689 void
  690 devctl_notify(const char *system, const char *subsystem, const char *type,
  691     const char *data)
  692 {
  693 
  694         devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
  695 }
  696 
  697 /*
  698  * Common routine that tries to make sending messages as easy as possible.
  699  * We allocate memory for the data, copy strings into that, but do not
  700  * free it unless there's an error.  The dequeue part of the driver should
  701  * free the data.  We don't send data when the device is disabled.  We do
  702  * send data, even when we have no listeners, because we wish to avoid
  703  * races relating to startup and restart of listening applications.
  704  *
  705  * devaddq is designed to string together the type of event, with the
  706  * object of that event, plus the plug and play info and location info
  707  * for that event.  This is likely most useful for devices, but less
  708  * useful for other consumers of this interface.  Those should use
  709  * the devctl_queue_data() interface instead.
  710  */
  711 static void
  712 devaddq(const char *type, const char *what, device_t dev)
  713 {
  714         char *data = NULL;
  715         char *loc = NULL;
  716         char *pnp = NULL;
  717         const char *parstr;
  718 
  719         if (!devctl_queue_length)/* Rare race, but lost races safely discard */
  720                 return;
  721         data = malloc(1024, M_BUS, M_NOWAIT);
  722         if (data == NULL)
  723                 goto bad;
  724 
  725         /* get the bus specific location of this device */
  726         loc = malloc(1024, M_BUS, M_NOWAIT);
  727         if (loc == NULL)
  728                 goto bad;
  729         *loc = '\0';
  730         bus_child_location_str(dev, loc, 1024);
  731 
  732         /* Get the bus specific pnp info of this device */
  733         pnp = malloc(1024, M_BUS, M_NOWAIT);
  734         if (pnp == NULL)
  735                 goto bad;
  736         *pnp = '\0';
  737         bus_child_pnpinfo_str(dev, pnp, 1024);
  738 
  739         /* Get the parent of this device, or / if high enough in the tree. */
  740         if (device_get_parent(dev) == NULL)
  741                 parstr = ".";   /* Or '/' ? */
  742         else
  743                 parstr = device_get_nameunit(device_get_parent(dev));
  744         /* String it all together. */
  745         snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
  746           parstr);
  747         free(loc, M_BUS);
  748         free(pnp, M_BUS);
  749         devctl_queue_data(data);
  750         return;
  751 bad:
  752         free(pnp, M_BUS);
  753         free(loc, M_BUS);
  754         free(data, M_BUS);
  755         return;
  756 }
  757 
  758 /*
  759  * A device was added to the tree.  We are called just after it successfully
  760  * attaches (that is, probe and attach success for this device).  No call
  761  * is made if a device is merely parented into the tree.  See devnomatch
  762  * if probe fails.  If attach fails, no notification is sent (but maybe
  763  * we should have a different message for this).
  764  */
  765 static void
  766 devadded(device_t dev)
  767 {
  768         devaddq("+", device_get_nameunit(dev), dev);
  769 }
  770 
  771 /*
  772  * A device was removed from the tree.  We are called just before this
  773  * happens.
  774  */
  775 static void
  776 devremoved(device_t dev)
  777 {
  778         devaddq("-", device_get_nameunit(dev), dev);
  779 }
  780 
  781 /*
  782  * Called when there's no match for this device.  This is only called
  783  * the first time that no match happens, so we don't keep getting this
  784  * message.  Should that prove to be undesirable, we can change it.
  785  * This is called when all drivers that can attach to a given bus
  786  * decline to accept this device.  Other errors may not be detected.
  787  */
  788 static void
  789 devnomatch(device_t dev)
  790 {
  791         devaddq("?", "", dev);
  792 }
  793 
  794 static int
  795 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
  796 {
  797         struct dev_event_info *n1;
  798         int dis, error;
  799 
  800         dis = devctl_queue_length == 0;
  801         error = sysctl_handle_int(oidp, &dis, 0, req);
  802         if (error || !req->newptr)
  803                 return (error);
  804         mtx_lock(&devsoftc.mtx);
  805         if (dis) {
  806                 while (!TAILQ_EMPTY(&devsoftc.devq)) {
  807                         n1 = TAILQ_FIRST(&devsoftc.devq);
  808                         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  809                         free(n1->dei_data, M_BUS);
  810                         free(n1, M_BUS);
  811                 }
  812                 devsoftc.queued = 0;
  813                 devctl_queue_length = 0;
  814         } else {
  815                 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  816         }
  817         mtx_unlock(&devsoftc.mtx);
  818         return (0);
  819 }
  820 
  821 static int
  822 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
  823 {
  824         struct dev_event_info *n1;
  825         int q, error;
  826 
  827         q = devctl_queue_length;
  828         error = sysctl_handle_int(oidp, &q, 0, req);
  829         if (error || !req->newptr)
  830                 return (error);
  831         if (q < 0)
  832                 return (EINVAL);
  833         mtx_lock(&devsoftc.mtx);
  834         devctl_queue_length = q;
  835         while (devsoftc.queued > devctl_queue_length) {
  836                 n1 = TAILQ_FIRST(&devsoftc.devq);
  837                 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  838                 free(n1->dei_data, M_BUS);
  839                 free(n1, M_BUS);
  840                 devsoftc.queued--;
  841         }
  842         mtx_unlock(&devsoftc.mtx);
  843         return (0);
  844 }
  845 
  846 /* End of /dev/devctl code */
  847 
  848 static TAILQ_HEAD(,device)      bus_data_devices;
  849 static int bus_data_generation = 1;
  850 
  851 static kobj_method_t null_methods[] = {
  852         KOBJMETHOD_END
  853 };
  854 
  855 DEFINE_CLASS(null, null_methods, 0);
  856 
  857 /*
  858  * Bus pass implementation
  859  */
  860 
  861 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
  862 int bus_current_pass = BUS_PASS_ROOT;
  863 
  864 /**
  865  * @internal
  866  * @brief Register the pass level of a new driver attachment
  867  *
  868  * Register a new driver attachment's pass level.  If no driver
  869  * attachment with the same pass level has been added, then @p new
  870  * will be added to the global passes list.
  871  *
  872  * @param new           the new driver attachment
  873  */
  874 static void
  875 driver_register_pass(struct driverlink *new)
  876 {
  877         struct driverlink *dl;
  878 
  879         /* We only consider pass numbers during boot. */
  880         if (bus_current_pass == BUS_PASS_DEFAULT)
  881                 return;
  882 
  883         /*
  884          * Walk the passes list.  If we already know about this pass
  885          * then there is nothing to do.  If we don't, then insert this
  886          * driver link into the list.
  887          */
  888         TAILQ_FOREACH(dl, &passes, passlink) {
  889                 if (dl->pass < new->pass)
  890                         continue;
  891                 if (dl->pass == new->pass)
  892                         return;
  893                 TAILQ_INSERT_BEFORE(dl, new, passlink);
  894                 return;
  895         }
  896         TAILQ_INSERT_TAIL(&passes, new, passlink);
  897 }
  898 
  899 /**
  900  * @brief Raise the current bus pass
  901  *
  902  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
  903  * method on the root bus to kick off a new device tree scan for each
  904  * new pass level that has at least one driver.
  905  */
  906 void
  907 bus_set_pass(int pass)
  908 {
  909         struct driverlink *dl;
  910 
  911         if (bus_current_pass > pass)
  912                 panic("Attempt to lower bus pass level");
  913 
  914         TAILQ_FOREACH(dl, &passes, passlink) {
  915                 /* Skip pass values below the current pass level. */
  916                 if (dl->pass <= bus_current_pass)
  917                         continue;
  918 
  919                 /*
  920                  * Bail once we hit a driver with a pass level that is
  921                  * too high.
  922                  */
  923                 if (dl->pass > pass)
  924                         break;
  925 
  926                 /*
  927                  * Raise the pass level to the next level and rescan
  928                  * the tree.
  929                  */
  930                 bus_current_pass = dl->pass;
  931                 BUS_NEW_PASS(root_bus);
  932         }
  933 
  934         /*
  935          * If there isn't a driver registered for the requested pass,
  936          * then bus_current_pass might still be less than 'pass'.  Set
  937          * it to 'pass' in that case.
  938          */
  939         if (bus_current_pass < pass)
  940                 bus_current_pass = pass;
  941         KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
  942 }
  943 
  944 /*
  945  * Devclass implementation
  946  */
  947 
  948 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
  949 
  950 /**
  951  * @internal
  952  * @brief Find or create a device class
  953  *
  954  * If a device class with the name @p classname exists, return it,
  955  * otherwise if @p create is non-zero create and return a new device
  956  * class.
  957  *
  958  * If @p parentname is non-NULL, the parent of the devclass is set to
  959  * the devclass of that name.
  960  *
  961  * @param classname     the devclass name to find or create
  962  * @param parentname    the parent devclass name or @c NULL
  963  * @param create        non-zero to create a devclass
  964  */
  965 static devclass_t
  966 devclass_find_internal(const char *classname, const char *parentname,
  967                        int create)
  968 {
  969         devclass_t dc;
  970 
  971         PDEBUG(("looking for %s", classname));
  972         if (!classname)
  973                 return (NULL);
  974 
  975         TAILQ_FOREACH(dc, &devclasses, link) {
  976                 if (!strcmp(dc->name, classname))
  977                         break;
  978         }
  979 
  980         if (create && !dc) {
  981                 PDEBUG(("creating %s", classname));
  982                 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
  983                     M_BUS, M_NOWAIT | M_ZERO);
  984                 if (!dc)
  985                         return (NULL);
  986                 dc->parent = NULL;
  987                 dc->name = (char*) (dc + 1);
  988                 strcpy(dc->name, classname);
  989                 TAILQ_INIT(&dc->drivers);
  990                 TAILQ_INSERT_TAIL(&devclasses, dc, link);
  991 
  992                 bus_data_generation_update();
  993         }
  994 
  995         /*
  996          * If a parent class is specified, then set that as our parent so
  997          * that this devclass will support drivers for the parent class as
  998          * well.  If the parent class has the same name don't do this though
  999          * as it creates a cycle that can trigger an infinite loop in
 1000          * device_probe_child() if a device exists for which there is no
 1001          * suitable driver.
 1002          */
 1003         if (parentname && dc && !dc->parent &&
 1004             strcmp(classname, parentname) != 0) {
 1005                 dc->parent = devclass_find_internal(parentname, NULL, TRUE);
 1006                 dc->parent->flags |= DC_HAS_CHILDREN;
 1007         }
 1008 
 1009         return (dc);
 1010 }
 1011 
 1012 /**
 1013  * @brief Create a device class
 1014  *
 1015  * If a device class with the name @p classname exists, return it,
 1016  * otherwise create and return a new device class.
 1017  *
 1018  * @param classname     the devclass name to find or create
 1019  */
 1020 devclass_t
 1021 devclass_create(const char *classname)
 1022 {
 1023         return (devclass_find_internal(classname, NULL, TRUE));
 1024 }
 1025 
 1026 /**
 1027  * @brief Find a device class
 1028  *
 1029  * If a device class with the name @p classname exists, return it,
 1030  * otherwise return @c NULL.
 1031  *
 1032  * @param classname     the devclass name to find
 1033  */
 1034 devclass_t
 1035 devclass_find(const char *classname)
 1036 {
 1037         return (devclass_find_internal(classname, NULL, FALSE));
 1038 }
 1039 
 1040 /**
 1041  * @brief Register that a device driver has been added to a devclass
 1042  *
 1043  * Register that a device driver has been added to a devclass.  This
 1044  * is called by devclass_add_driver to accomplish the recursive
 1045  * notification of all the children classes of dc, as well as dc.
 1046  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
 1047  * the devclass.
 1048  *
 1049  * We do a full search here of the devclass list at each iteration
 1050  * level to save storing children-lists in the devclass structure.  If
 1051  * we ever move beyond a few dozen devices doing this, we may need to
 1052  * reevaluate...
 1053  *
 1054  * @param dc            the devclass to edit
 1055  * @param driver        the driver that was just added
 1056  */
 1057 static void
 1058 devclass_driver_added(devclass_t dc, driver_t *driver)
 1059 {
 1060         devclass_t parent;
 1061         int i;
 1062 
 1063         /*
 1064          * Call BUS_DRIVER_ADDED for any existing busses in this class.
 1065          */
 1066         for (i = 0; i < dc->maxunit; i++)
 1067                 if (dc->devices[i] && device_is_attached(dc->devices[i]))
 1068                         BUS_DRIVER_ADDED(dc->devices[i], driver);
 1069 
 1070         /*
 1071          * Walk through the children classes.  Since we only keep a
 1072          * single parent pointer around, we walk the entire list of
 1073          * devclasses looking for children.  We set the
 1074          * DC_HAS_CHILDREN flag when a child devclass is created on
 1075          * the parent, so we only walk the list for those devclasses
 1076          * that have children.
 1077          */
 1078         if (!(dc->flags & DC_HAS_CHILDREN))
 1079                 return;
 1080         parent = dc;
 1081         TAILQ_FOREACH(dc, &devclasses, link) {
 1082                 if (dc->parent == parent)
 1083                         devclass_driver_added(dc, driver);
 1084         }
 1085 }
 1086 
 1087 /**
 1088  * @brief Add a device driver to a device class
 1089  *
 1090  * Add a device driver to a devclass. This is normally called
 1091  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
 1092  * all devices in the devclass will be called to allow them to attempt
 1093  * to re-probe any unmatched children.
 1094  *
 1095  * @param dc            the devclass to edit
 1096  * @param driver        the driver to register
 1097  */
 1098 int
 1099 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
 1100 {
 1101         driverlink_t dl;
 1102         const char *parentname;
 1103 
 1104         PDEBUG(("%s", DRIVERNAME(driver)));
 1105 
 1106         /* Don't allow invalid pass values. */
 1107         if (pass <= BUS_PASS_ROOT)
 1108                 return (EINVAL);
 1109 
 1110         dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
 1111         if (!dl)
 1112                 return (ENOMEM);
 1113 
 1114         /*
 1115          * Compile the driver's methods. Also increase the reference count
 1116          * so that the class doesn't get freed when the last instance
 1117          * goes. This means we can safely use static methods and avoids a
 1118          * double-free in devclass_delete_driver.
 1119          */
 1120         kobj_class_compile((kobj_class_t) driver);
 1121 
 1122         /*
 1123          * If the driver has any base classes, make the
 1124          * devclass inherit from the devclass of the driver's
 1125          * first base class. This will allow the system to
 1126          * search for drivers in both devclasses for children
 1127          * of a device using this driver.
 1128          */
 1129         if (driver->baseclasses)
 1130                 parentname = driver->baseclasses[0]->name;
 1131         else
 1132                 parentname = NULL;
 1133         *dcp = devclass_find_internal(driver->name, parentname, TRUE);
 1134 
 1135         dl->driver = driver;
 1136         TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
 1137         driver->refs++;         /* XXX: kobj_mtx */
 1138         dl->pass = pass;
 1139         driver_register_pass(dl);
 1140 
 1141         devclass_driver_added(dc, driver);
 1142         bus_data_generation_update();
 1143         return (0);
 1144 }
 1145 
 1146 /**
 1147  * @brief Register that a device driver has been deleted from a devclass
 1148  *
 1149  * Register that a device driver has been removed from a devclass.
 1150  * This is called by devclass_delete_driver to accomplish the
 1151  * recursive notification of all the children classes of busclass, as
 1152  * well as busclass.  Each layer will attempt to detach the driver
 1153  * from any devices that are children of the bus's devclass.  The function
 1154  * will return an error if a device fails to detach.
 1155  * 
 1156  * We do a full search here of the devclass list at each iteration
 1157  * level to save storing children-lists in the devclass structure.  If
 1158  * we ever move beyond a few dozen devices doing this, we may need to
 1159  * reevaluate...
 1160  *
 1161  * @param busclass      the devclass of the parent bus
 1162  * @param dc            the devclass of the driver being deleted
 1163  * @param driver        the driver being deleted
 1164  */
 1165 static int
 1166 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
 1167 {
 1168         devclass_t parent;
 1169         device_t dev;
 1170         int error, i;
 1171 
 1172         /*
 1173          * Disassociate from any devices.  We iterate through all the
 1174          * devices in the devclass of the driver and detach any which are
 1175          * using the driver and which have a parent in the devclass which
 1176          * we are deleting from.
 1177          *
 1178          * Note that since a driver can be in multiple devclasses, we
 1179          * should not detach devices which are not children of devices in
 1180          * the affected devclass.
 1181          */
 1182         for (i = 0; i < dc->maxunit; i++) {
 1183                 if (dc->devices[i]) {
 1184                         dev = dc->devices[i];
 1185                         if (dev->driver == driver && dev->parent &&
 1186                             dev->parent->devclass == busclass) {
 1187                                 if ((error = device_detach(dev)) != 0)
 1188                                         return (error);
 1189                                 BUS_PROBE_NOMATCH(dev->parent, dev);
 1190                                 devnomatch(dev);
 1191                                 dev->flags |= DF_DONENOMATCH;
 1192                         }
 1193                 }
 1194         }
 1195 
 1196         /*
 1197          * Walk through the children classes.  Since we only keep a
 1198          * single parent pointer around, we walk the entire list of
 1199          * devclasses looking for children.  We set the
 1200          * DC_HAS_CHILDREN flag when a child devclass is created on
 1201          * the parent, so we only walk the list for those devclasses
 1202          * that have children.
 1203          */
 1204         if (!(busclass->flags & DC_HAS_CHILDREN))
 1205                 return (0);
 1206         parent = busclass;
 1207         TAILQ_FOREACH(busclass, &devclasses, link) {
 1208                 if (busclass->parent == parent) {
 1209                         error = devclass_driver_deleted(busclass, dc, driver);
 1210                         if (error)
 1211                                 return (error);
 1212                 }
 1213         }
 1214         return (0);
 1215 }
 1216 
 1217 /**
 1218  * @brief Delete a device driver from a device class
 1219  *
 1220  * Delete a device driver from a devclass. This is normally called
 1221  * automatically by DRIVER_MODULE().
 1222  *
 1223  * If the driver is currently attached to any devices,
 1224  * devclass_delete_driver() will first attempt to detach from each
 1225  * device. If one of the detach calls fails, the driver will not be
 1226  * deleted.
 1227  *
 1228  * @param dc            the devclass to edit
 1229  * @param driver        the driver to unregister
 1230  */
 1231 int
 1232 devclass_delete_driver(devclass_t busclass, driver_t *driver)
 1233 {
 1234         devclass_t dc = devclass_find(driver->name);
 1235         driverlink_t dl;
 1236         int error;
 1237 
 1238         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1239 
 1240         if (!dc)
 1241                 return (0);
 1242 
 1243         /*
 1244          * Find the link structure in the bus' list of drivers.
 1245          */
 1246         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1247                 if (dl->driver == driver)
 1248                         break;
 1249         }
 1250 
 1251         if (!dl) {
 1252                 PDEBUG(("%s not found in %s list", driver->name,
 1253                     busclass->name));
 1254                 return (ENOENT);
 1255         }
 1256 
 1257         error = devclass_driver_deleted(busclass, dc, driver);
 1258         if (error != 0)
 1259                 return (error);
 1260 
 1261         TAILQ_REMOVE(&busclass->drivers, dl, link);
 1262         free(dl, M_BUS);
 1263 
 1264         /* XXX: kobj_mtx */
 1265         driver->refs--;
 1266         if (driver->refs == 0)
 1267                 kobj_class_free((kobj_class_t) driver);
 1268 
 1269         bus_data_generation_update();
 1270         return (0);
 1271 }
 1272 
 1273 /**
 1274  * @brief Quiesces a set of device drivers from a device class
 1275  *
 1276  * Quiesce a device driver from a devclass. This is normally called
 1277  * automatically by DRIVER_MODULE().
 1278  *
 1279  * If the driver is currently attached to any devices,
 1280  * devclass_quiesece_driver() will first attempt to quiesce each
 1281  * device.
 1282  *
 1283  * @param dc            the devclass to edit
 1284  * @param driver        the driver to unregister
 1285  */
 1286 static int
 1287 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
 1288 {
 1289         devclass_t dc = devclass_find(driver->name);
 1290         driverlink_t dl;
 1291         device_t dev;
 1292         int i;
 1293         int error;
 1294 
 1295         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1296 
 1297         if (!dc)
 1298                 return (0);
 1299 
 1300         /*
 1301          * Find the link structure in the bus' list of drivers.
 1302          */
 1303         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1304                 if (dl->driver == driver)
 1305                         break;
 1306         }
 1307 
 1308         if (!dl) {
 1309                 PDEBUG(("%s not found in %s list", driver->name,
 1310                     busclass->name));
 1311                 return (ENOENT);
 1312         }
 1313 
 1314         /*
 1315          * Quiesce all devices.  We iterate through all the devices in
 1316          * the devclass of the driver and quiesce any which are using
 1317          * the driver and which have a parent in the devclass which we
 1318          * are quiescing.
 1319          *
 1320          * Note that since a driver can be in multiple devclasses, we
 1321          * should not quiesce devices which are not children of
 1322          * devices in the affected devclass.
 1323          */
 1324         for (i = 0; i < dc->maxunit; i++) {
 1325                 if (dc->devices[i]) {
 1326                         dev = dc->devices[i];
 1327                         if (dev->driver == driver && dev->parent &&
 1328                             dev->parent->devclass == busclass) {
 1329                                 if ((error = device_quiesce(dev)) != 0)
 1330                                         return (error);
 1331                         }
 1332                 }
 1333         }
 1334 
 1335         return (0);
 1336 }
 1337 
 1338 /**
 1339  * @internal
 1340  */
 1341 static driverlink_t
 1342 devclass_find_driver_internal(devclass_t dc, const char *classname)
 1343 {
 1344         driverlink_t dl;
 1345 
 1346         PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
 1347 
 1348         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1349                 if (!strcmp(dl->driver->name, classname))
 1350                         return (dl);
 1351         }
 1352 
 1353         PDEBUG(("not found"));
 1354         return (NULL);
 1355 }
 1356 
 1357 /**
 1358  * @brief Return the name of the devclass
 1359  */
 1360 const char *
 1361 devclass_get_name(devclass_t dc)
 1362 {
 1363         return (dc->name);
 1364 }
 1365 
 1366 /**
 1367  * @brief Find a device given a unit number
 1368  *
 1369  * @param dc            the devclass to search
 1370  * @param unit          the unit number to search for
 1371  * 
 1372  * @returns             the device with the given unit number or @c
 1373  *                      NULL if there is no such device
 1374  */
 1375 device_t
 1376 devclass_get_device(devclass_t dc, int unit)
 1377 {
 1378         if (dc == NULL || unit < 0 || unit >= dc->maxunit)
 1379                 return (NULL);
 1380         return (dc->devices[unit]);
 1381 }
 1382 
 1383 /**
 1384  * @brief Find the softc field of a device given a unit number
 1385  *
 1386  * @param dc            the devclass to search
 1387  * @param unit          the unit number to search for
 1388  * 
 1389  * @returns             the softc field of the device with the given
 1390  *                      unit number or @c NULL if there is no such
 1391  *                      device
 1392  */
 1393 void *
 1394 devclass_get_softc(devclass_t dc, int unit)
 1395 {
 1396         device_t dev;
 1397 
 1398         dev = devclass_get_device(dc, unit);
 1399         if (!dev)
 1400                 return (NULL);
 1401 
 1402         return (device_get_softc(dev));
 1403 }
 1404 
 1405 /**
 1406  * @brief Get a list of devices in the devclass
 1407  *
 1408  * An array containing a list of all the devices in the given devclass
 1409  * is allocated and returned in @p *devlistp. The number of devices
 1410  * in the array is returned in @p *devcountp. The caller should free
 1411  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
 1412  *
 1413  * @param dc            the devclass to examine
 1414  * @param devlistp      points at location for array pointer return
 1415  *                      value
 1416  * @param devcountp     points at location for array size return value
 1417  *
 1418  * @retval 0            success
 1419  * @retval ENOMEM       the array allocation failed
 1420  */
 1421 int
 1422 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
 1423 {
 1424         int count, i;
 1425         device_t *list;
 1426 
 1427         count = devclass_get_count(dc);
 1428         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 1429         if (!list)
 1430                 return (ENOMEM);
 1431 
 1432         count = 0;
 1433         for (i = 0; i < dc->maxunit; i++) {
 1434                 if (dc->devices[i]) {
 1435                         list[count] = dc->devices[i];
 1436                         count++;
 1437                 }
 1438         }
 1439 
 1440         *devlistp = list;
 1441         *devcountp = count;
 1442 
 1443         return (0);
 1444 }
 1445 
 1446 /**
 1447  * @brief Get a list of drivers in the devclass
 1448  *
 1449  * An array containing a list of pointers to all the drivers in the
 1450  * given devclass is allocated and returned in @p *listp.  The number
 1451  * of drivers in the array is returned in @p *countp. The caller should
 1452  * free the array using @c free(p, M_TEMP).
 1453  *
 1454  * @param dc            the devclass to examine
 1455  * @param listp         gives location for array pointer return value
 1456  * @param countp        gives location for number of array elements
 1457  *                      return value
 1458  *
 1459  * @retval 0            success
 1460  * @retval ENOMEM       the array allocation failed
 1461  */
 1462 int
 1463 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
 1464 {
 1465         driverlink_t dl;
 1466         driver_t **list;
 1467         int count;
 1468 
 1469         count = 0;
 1470         TAILQ_FOREACH(dl, &dc->drivers, link)
 1471                 count++;
 1472         list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
 1473         if (list == NULL)
 1474                 return (ENOMEM);
 1475 
 1476         count = 0;
 1477         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1478                 list[count] = dl->driver;
 1479                 count++;
 1480         }
 1481         *listp = list;
 1482         *countp = count;
 1483 
 1484         return (0);
 1485 }
 1486 
 1487 /**
 1488  * @brief Get the number of devices in a devclass
 1489  *
 1490  * @param dc            the devclass to examine
 1491  */
 1492 int
 1493 devclass_get_count(devclass_t dc)
 1494 {
 1495         int count, i;
 1496 
 1497         count = 0;
 1498         for (i = 0; i < dc->maxunit; i++)
 1499                 if (dc->devices[i])
 1500                         count++;
 1501         return (count);
 1502 }
 1503 
 1504 /**
 1505  * @brief Get the maximum unit number used in a devclass
 1506  *
 1507  * Note that this is one greater than the highest currently-allocated
 1508  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
 1509  * that not even the devclass has been allocated yet.
 1510  *
 1511  * @param dc            the devclass to examine
 1512  */
 1513 int
 1514 devclass_get_maxunit(devclass_t dc)
 1515 {
 1516         if (dc == NULL)
 1517                 return (-1);
 1518         return (dc->maxunit);
 1519 }
 1520 
 1521 /**
 1522  * @brief Find a free unit number in a devclass
 1523  *
 1524  * This function searches for the first unused unit number greater
 1525  * that or equal to @p unit.
 1526  *
 1527  * @param dc            the devclass to examine
 1528  * @param unit          the first unit number to check
 1529  */
 1530 int
 1531 devclass_find_free_unit(devclass_t dc, int unit)
 1532 {
 1533         if (dc == NULL)
 1534                 return (unit);
 1535         while (unit < dc->maxunit && dc->devices[unit] != NULL)
 1536                 unit++;
 1537         return (unit);
 1538 }
 1539 
 1540 /**
 1541  * @brief Set the parent of a devclass
 1542  *
 1543  * The parent class is normally initialised automatically by
 1544  * DRIVER_MODULE().
 1545  *
 1546  * @param dc            the devclass to edit
 1547  * @param pdc           the new parent devclass
 1548  */
 1549 void
 1550 devclass_set_parent(devclass_t dc, devclass_t pdc)
 1551 {
 1552         dc->parent = pdc;
 1553 }
 1554 
 1555 /**
 1556  * @brief Get the parent of a devclass
 1557  *
 1558  * @param dc            the devclass to examine
 1559  */
 1560 devclass_t
 1561 devclass_get_parent(devclass_t dc)
 1562 {
 1563         return (dc->parent);
 1564 }
 1565 
 1566 struct sysctl_ctx_list *
 1567 devclass_get_sysctl_ctx(devclass_t dc)
 1568 {
 1569         return (&dc->sysctl_ctx);
 1570 }
 1571 
 1572 struct sysctl_oid *
 1573 devclass_get_sysctl_tree(devclass_t dc)
 1574 {
 1575         return (dc->sysctl_tree);
 1576 }
 1577 
 1578 /**
 1579  * @internal
 1580  * @brief Allocate a unit number
 1581  *
 1582  * On entry, @p *unitp is the desired unit number (or @c -1 if any
 1583  * will do). The allocated unit number is returned in @p *unitp.
 1584 
 1585  * @param dc            the devclass to allocate from
 1586  * @param unitp         points at the location for the allocated unit
 1587  *                      number
 1588  *
 1589  * @retval 0            success
 1590  * @retval EEXIST       the requested unit number is already allocated
 1591  * @retval ENOMEM       memory allocation failure
 1592  */
 1593 static int
 1594 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
 1595 {
 1596         const char *s;
 1597         int unit = *unitp;
 1598 
 1599         PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1600 
 1601         /* Ask the parent bus if it wants to wire this device. */
 1602         if (unit == -1)
 1603                 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
 1604                     &unit);
 1605 
 1606         /* If we were given a wired unit number, check for existing device */
 1607         /* XXX imp XXX */
 1608         if (unit != -1) {
 1609                 if (unit >= 0 && unit < dc->maxunit &&
 1610                     dc->devices[unit] != NULL) {
 1611                         if (bootverbose)
 1612                                 printf("%s: %s%d already exists; skipping it\n",
 1613                                     dc->name, dc->name, *unitp);
 1614                         return (EEXIST);
 1615                 }
 1616         } else {
 1617                 /* Unwired device, find the next available slot for it */
 1618                 unit = 0;
 1619                 for (unit = 0;; unit++) {
 1620                         /* If there is an "at" hint for a unit then skip it. */
 1621                         if (resource_string_value(dc->name, unit, "at", &s) ==
 1622                             0)
 1623                                 continue;
 1624 
 1625                         /* If this device slot is already in use, skip it. */
 1626                         if (unit < dc->maxunit && dc->devices[unit] != NULL)
 1627                                 continue;
 1628 
 1629                         break;
 1630                 }
 1631         }
 1632 
 1633         /*
 1634          * We've selected a unit beyond the length of the table, so let's
 1635          * extend the table to make room for all units up to and including
 1636          * this one.
 1637          */
 1638         if (unit >= dc->maxunit) {
 1639                 device_t *newlist, *oldlist;
 1640                 int newsize;
 1641 
 1642                 oldlist = dc->devices;
 1643                 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
 1644                 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
 1645                 if (!newlist)
 1646                         return (ENOMEM);
 1647                 if (oldlist != NULL)
 1648                         bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
 1649                 bzero(newlist + dc->maxunit,
 1650                     sizeof(device_t) * (newsize - dc->maxunit));
 1651                 dc->devices = newlist;
 1652                 dc->maxunit = newsize;
 1653                 if (oldlist != NULL)
 1654                         free(oldlist, M_BUS);
 1655         }
 1656         PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1657 
 1658         *unitp = unit;
 1659         return (0);
 1660 }
 1661 
 1662 /**
 1663  * @internal
 1664  * @brief Add a device to a devclass
 1665  *
 1666  * A unit number is allocated for the device (using the device's
 1667  * preferred unit number if any) and the device is registered in the
 1668  * devclass. This allows the device to be looked up by its unit
 1669  * number, e.g. by decoding a dev_t minor number.
 1670  *
 1671  * @param dc            the devclass to add to
 1672  * @param dev           the device to add
 1673  *
 1674  * @retval 0            success
 1675  * @retval EEXIST       the requested unit number is already allocated
 1676  * @retval ENOMEM       memory allocation failure
 1677  */
 1678 static int
 1679 devclass_add_device(devclass_t dc, device_t dev)
 1680 {
 1681         int buflen, error;
 1682 
 1683         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1684 
 1685         buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
 1686         if (buflen < 0)
 1687                 return (ENOMEM);
 1688         dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
 1689         if (!dev->nameunit)
 1690                 return (ENOMEM);
 1691 
 1692         if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
 1693                 free(dev->nameunit, M_BUS);
 1694                 dev->nameunit = NULL;
 1695                 return (error);
 1696         }
 1697         dc->devices[dev->unit] = dev;
 1698         dev->devclass = dc;
 1699         snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
 1700 
 1701         return (0);
 1702 }
 1703 
 1704 /**
 1705  * @internal
 1706  * @brief Delete a device from a devclass
 1707  *
 1708  * The device is removed from the devclass's device list and its unit
 1709  * number is freed.
 1710 
 1711  * @param dc            the devclass to delete from
 1712  * @param dev           the device to delete
 1713  *
 1714  * @retval 0            success
 1715  */
 1716 static int
 1717 devclass_delete_device(devclass_t dc, device_t dev)
 1718 {
 1719         if (!dc || !dev)
 1720                 return (0);
 1721 
 1722         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1723 
 1724         if (dev->devclass != dc || dc->devices[dev->unit] != dev)
 1725                 panic("devclass_delete_device: inconsistent device class");
 1726         dc->devices[dev->unit] = NULL;
 1727         if (dev->flags & DF_WILDCARD)
 1728                 dev->unit = -1;
 1729         dev->devclass = NULL;
 1730         free(dev->nameunit, M_BUS);
 1731         dev->nameunit = NULL;
 1732 
 1733         return (0);
 1734 }
 1735 
 1736 /**
 1737  * @internal
 1738  * @brief Make a new device and add it as a child of @p parent
 1739  *
 1740  * @param parent        the parent of the new device
 1741  * @param name          the devclass name of the new device or @c NULL
 1742  *                      to leave the devclass unspecified
 1743  * @parem unit          the unit number of the new device of @c -1 to
 1744  *                      leave the unit number unspecified
 1745  *
 1746  * @returns the new device
 1747  */
 1748 static device_t
 1749 make_device(device_t parent, const char *name, int unit)
 1750 {
 1751         device_t dev;
 1752         devclass_t dc;
 1753 
 1754         PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
 1755 
 1756         if (name) {
 1757                 dc = devclass_find_internal(name, NULL, TRUE);
 1758                 if (!dc) {
 1759                         printf("make_device: can't find device class %s\n",
 1760                             name);
 1761                         return (NULL);
 1762                 }
 1763         } else {
 1764                 dc = NULL;
 1765         }
 1766 
 1767         dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
 1768         if (!dev)
 1769                 return (NULL);
 1770 
 1771         dev->parent = parent;
 1772         TAILQ_INIT(&dev->children);
 1773         kobj_init((kobj_t) dev, &null_class);
 1774         dev->driver = NULL;
 1775         dev->devclass = NULL;
 1776         dev->unit = unit;
 1777         dev->nameunit = NULL;
 1778         dev->desc = NULL;
 1779         dev->busy = 0;
 1780         dev->devflags = 0;
 1781         dev->flags = DF_ENABLED;
 1782         dev->order = 0;
 1783         if (unit == -1)
 1784                 dev->flags |= DF_WILDCARD;
 1785         if (name) {
 1786                 dev->flags |= DF_FIXEDCLASS;
 1787                 if (devclass_add_device(dc, dev)) {
 1788                         kobj_delete((kobj_t) dev, M_BUS);
 1789                         return (NULL);
 1790                 }
 1791         }
 1792         dev->ivars = NULL;
 1793         dev->softc = NULL;
 1794 
 1795         dev->state = DS_NOTPRESENT;
 1796 
 1797         TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
 1798         bus_data_generation_update();
 1799 
 1800         return (dev);
 1801 }
 1802 
 1803 /**
 1804  * @internal
 1805  * @brief Print a description of a device.
 1806  */
 1807 static int
 1808 device_print_child(device_t dev, device_t child)
 1809 {
 1810         int retval = 0;
 1811 
 1812         if (device_is_alive(child))
 1813                 retval += BUS_PRINT_CHILD(dev, child);
 1814         else
 1815                 retval += device_printf(child, " not found\n");
 1816 
 1817         return (retval);
 1818 }
 1819 
 1820 /**
 1821  * @brief Create a new device
 1822  *
 1823  * This creates a new device and adds it as a child of an existing
 1824  * parent device. The new device will be added after the last existing
 1825  * child with order zero.
 1826  * 
 1827  * @param dev           the device which will be the parent of the
 1828  *                      new child device
 1829  * @param name          devclass name for new device or @c NULL if not
 1830  *                      specified
 1831  * @param unit          unit number for new device or @c -1 if not
 1832  *                      specified
 1833  * 
 1834  * @returns             the new device
 1835  */
 1836 device_t
 1837 device_add_child(device_t dev, const char *name, int unit)
 1838 {
 1839         return (device_add_child_ordered(dev, 0, name, unit));
 1840 }
 1841 
 1842 /**
 1843  * @brief Create a new device
 1844  *
 1845  * This creates a new device and adds it as a child of an existing
 1846  * parent device. The new device will be added after the last existing
 1847  * child with the same order.
 1848  * 
 1849  * @param dev           the device which will be the parent of the
 1850  *                      new child device
 1851  * @param order         a value which is used to partially sort the
 1852  *                      children of @p dev - devices created using
 1853  *                      lower values of @p order appear first in @p
 1854  *                      dev's list of children
 1855  * @param name          devclass name for new device or @c NULL if not
 1856  *                      specified
 1857  * @param unit          unit number for new device or @c -1 if not
 1858  *                      specified
 1859  * 
 1860  * @returns             the new device
 1861  */
 1862 device_t
 1863 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
 1864 {
 1865         device_t child;
 1866         device_t place;
 1867 
 1868         PDEBUG(("%s at %s with order %u as unit %d",
 1869             name, DEVICENAME(dev), order, unit));
 1870         KASSERT(name != NULL || unit == -1,
 1871             ("child device with wildcard name and specific unit number"));
 1872 
 1873         child = make_device(dev, name, unit);
 1874         if (child == NULL)
 1875                 return (child);
 1876         child->order = order;
 1877 
 1878         TAILQ_FOREACH(place, &dev->children, link) {
 1879                 if (place->order > order)
 1880                         break;
 1881         }
 1882 
 1883         if (place) {
 1884                 /*
 1885                  * The device 'place' is the first device whose order is
 1886                  * greater than the new child.
 1887                  */
 1888                 TAILQ_INSERT_BEFORE(place, child, link);
 1889         } else {
 1890                 /*
 1891                  * The new child's order is greater or equal to the order of
 1892                  * any existing device. Add the child to the tail of the list.
 1893                  */
 1894                 TAILQ_INSERT_TAIL(&dev->children, child, link);
 1895         }
 1896 
 1897         bus_data_generation_update();
 1898         return (child);
 1899 }
 1900 
 1901 /**
 1902  * @brief Delete a device
 1903  *
 1904  * This function deletes a device along with all of its children. If
 1905  * the device currently has a driver attached to it, the device is
 1906  * detached first using device_detach().
 1907  * 
 1908  * @param dev           the parent device
 1909  * @param child         the device to delete
 1910  *
 1911  * @retval 0            success
 1912  * @retval non-zero     a unit error code describing the error
 1913  */
 1914 int
 1915 device_delete_child(device_t dev, device_t child)
 1916 {
 1917         int error;
 1918         device_t grandchild;
 1919 
 1920         PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
 1921 
 1922         /* remove children first */
 1923         while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
 1924                 error = device_delete_child(child, grandchild);
 1925                 if (error)
 1926                         return (error);
 1927         }
 1928 
 1929         if ((error = device_detach(child)) != 0)
 1930                 return (error);
 1931         if (child->devclass)
 1932                 devclass_delete_device(child->devclass, child);
 1933         if (child->parent)
 1934                 BUS_CHILD_DELETED(dev, child);
 1935         TAILQ_REMOVE(&dev->children, child, link);
 1936         TAILQ_REMOVE(&bus_data_devices, child, devlink);
 1937         kobj_delete((kobj_t) child, M_BUS);
 1938 
 1939         bus_data_generation_update();
 1940         return (0);
 1941 }
 1942 
 1943 /**
 1944  * @brief Delete all children devices of the given device, if any.
 1945  *
 1946  * This function deletes all children devices of the given device, if
 1947  * any, using the device_delete_child() function for each device it
 1948  * finds. If a child device cannot be deleted, this function will
 1949  * return an error code.
 1950  * 
 1951  * @param dev           the parent device
 1952  *
 1953  * @retval 0            success
 1954  * @retval non-zero     a device would not detach
 1955  */
 1956 int
 1957 device_delete_children(device_t dev)
 1958 {
 1959         device_t child;
 1960         int error;
 1961 
 1962         PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
 1963 
 1964         error = 0;
 1965 
 1966         while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
 1967                 error = device_delete_child(dev, child);
 1968                 if (error) {
 1969                         PDEBUG(("Failed deleting %s", DEVICENAME(child)));
 1970                         break;
 1971                 }
 1972         }
 1973         return (error);
 1974 }
 1975 
 1976 /**
 1977  * @brief Find a device given a unit number
 1978  *
 1979  * This is similar to devclass_get_devices() but only searches for
 1980  * devices which have @p dev as a parent.
 1981  *
 1982  * @param dev           the parent device to search
 1983  * @param unit          the unit number to search for.  If the unit is -1,
 1984  *                      return the first child of @p dev which has name
 1985  *                      @p classname (that is, the one with the lowest unit.)
 1986  *
 1987  * @returns             the device with the given unit number or @c
 1988  *                      NULL if there is no such device
 1989  */
 1990 device_t
 1991 device_find_child(device_t dev, const char *classname, int unit)
 1992 {
 1993         devclass_t dc;
 1994         device_t child;
 1995 
 1996         dc = devclass_find(classname);
 1997         if (!dc)
 1998                 return (NULL);
 1999 
 2000         if (unit != -1) {
 2001                 child = devclass_get_device(dc, unit);
 2002                 if (child && child->parent == dev)
 2003                         return (child);
 2004         } else {
 2005                 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
 2006                         child = devclass_get_device(dc, unit);
 2007                         if (child && child->parent == dev)
 2008                                 return (child);
 2009                 }
 2010         }
 2011         return (NULL);
 2012 }
 2013 
 2014 /**
 2015  * @internal
 2016  */
 2017 static driverlink_t
 2018 first_matching_driver(devclass_t dc, device_t dev)
 2019 {
 2020         if (dev->devclass)
 2021                 return (devclass_find_driver_internal(dc, dev->devclass->name));
 2022         return (TAILQ_FIRST(&dc->drivers));
 2023 }
 2024 
 2025 /**
 2026  * @internal
 2027  */
 2028 static driverlink_t
 2029 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
 2030 {
 2031         if (dev->devclass) {
 2032                 driverlink_t dl;
 2033                 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
 2034                         if (!strcmp(dev->devclass->name, dl->driver->name))
 2035                                 return (dl);
 2036                 return (NULL);
 2037         }
 2038         return (TAILQ_NEXT(last, link));
 2039 }
 2040 
 2041 /**
 2042  * @internal
 2043  */
 2044 int
 2045 device_probe_child(device_t dev, device_t child)
 2046 {
 2047         devclass_t dc;
 2048         driverlink_t best = NULL;
 2049         driverlink_t dl;
 2050         int result, pri = 0;
 2051         int hasclass = (child->devclass != NULL);
 2052 
 2053         GIANT_REQUIRED;
 2054 
 2055         dc = dev->devclass;
 2056         if (!dc)
 2057                 panic("device_probe_child: parent device has no devclass");
 2058 
 2059         /*
 2060          * If the state is already probed, then return.  However, don't
 2061          * return if we can rebid this object.
 2062          */
 2063         if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
 2064                 return (0);
 2065 
 2066         for (; dc; dc = dc->parent) {
 2067                 for (dl = first_matching_driver(dc, child);
 2068                      dl;
 2069                      dl = next_matching_driver(dc, child, dl)) {
 2070                         /* If this driver's pass is too high, then ignore it. */
 2071                         if (dl->pass > bus_current_pass)
 2072                                 continue;
 2073 
 2074                         PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
 2075                         result = device_set_driver(child, dl->driver);
 2076                         if (result == ENOMEM)
 2077                                 return (result);
 2078                         else if (result != 0)
 2079                                 continue;
 2080                         if (!hasclass) {
 2081                                 if (device_set_devclass(child,
 2082                                     dl->driver->name) != 0) {
 2083                                         char const * devname =
 2084                                             device_get_name(child);
 2085                                         if (devname == NULL)
 2086                                                 devname = "(unknown)";
 2087                                         printf("driver bug: Unable to set "
 2088                                             "devclass (class: %s "
 2089                                             "devname: %s)\n",
 2090                                             dl->driver->name,
 2091                                             devname);
 2092                                         (void)device_set_driver(child, NULL);
 2093                                         continue;
 2094                                 }
 2095                         }
 2096 
 2097                         /* Fetch any flags for the device before probing. */
 2098                         resource_int_value(dl->driver->name, child->unit,
 2099                             "flags", &child->devflags);
 2100 
 2101                         result = DEVICE_PROBE(child);
 2102 
 2103                         /* Reset flags and devclass before the next probe. */
 2104                         child->devflags = 0;
 2105                         if (!hasclass)
 2106                                 (void)device_set_devclass(child, NULL);
 2107 
 2108                         /*
 2109                          * If the driver returns SUCCESS, there can be
 2110                          * no higher match for this device.
 2111                          */
 2112                         if (result == 0) {
 2113                                 best = dl;
 2114                                 pri = 0;
 2115                                 break;
 2116                         }
 2117 
 2118                         /*
 2119                          * Probes that return BUS_PROBE_NOWILDCARD or lower
 2120                          * only match on devices whose driver was explicitly
 2121                          * specified.
 2122                          */
 2123                         if (result <= BUS_PROBE_NOWILDCARD &&
 2124                             !(child->flags & DF_FIXEDCLASS)) {
 2125                                 result = ENXIO;
 2126                         }
 2127 
 2128                         /*
 2129                          * The driver returned an error so it
 2130                          * certainly doesn't match.
 2131                          */
 2132                         if (result > 0) {
 2133                                 (void)device_set_driver(child, NULL);
 2134                                 continue;
 2135                         }
 2136 
 2137                         /*
 2138                          * A priority lower than SUCCESS, remember the
 2139                          * best matching driver. Initialise the value
 2140                          * of pri for the first match.
 2141                          */
 2142                         if (best == NULL || result > pri) {
 2143                                 best = dl;
 2144                                 pri = result;
 2145                                 continue;
 2146                         }
 2147                 }
 2148                 /*
 2149                  * If we have an unambiguous match in this devclass,
 2150                  * don't look in the parent.
 2151                  */
 2152                 if (best && pri == 0)
 2153                         break;
 2154         }
 2155 
 2156         /*
 2157          * If we found a driver, change state and initialise the devclass.
 2158          */
 2159         /* XXX What happens if we rebid and got no best? */
 2160         if (best) {
 2161                 /*
 2162                  * If this device was attached, and we were asked to
 2163                  * rescan, and it is a different driver, then we have
 2164                  * to detach the old driver and reattach this new one.
 2165                  * Note, we don't have to check for DF_REBID here
 2166                  * because if the state is > DS_ALIVE, we know it must
 2167                  * be.
 2168                  *
 2169                  * This assumes that all DF_REBID drivers can have
 2170                  * their probe routine called at any time and that
 2171                  * they are idempotent as well as completely benign in
 2172                  * normal operations.
 2173                  *
 2174                  * We also have to make sure that the detach
 2175                  * succeeded, otherwise we fail the operation (or
 2176                  * maybe it should just fail silently?  I'm torn).
 2177                  */
 2178                 if (child->state > DS_ALIVE && best->driver != child->driver)
 2179                         if ((result = device_detach(dev)) != 0)
 2180                                 return (result);
 2181 
 2182                 /* Set the winning driver, devclass, and flags. */
 2183                 if (!child->devclass) {
 2184                         result = device_set_devclass(child, best->driver->name);
 2185                         if (result != 0)
 2186                                 return (result);
 2187                 }
 2188                 result = device_set_driver(child, best->driver);
 2189                 if (result != 0)
 2190                         return (result);
 2191                 resource_int_value(best->driver->name, child->unit,
 2192                     "flags", &child->devflags);
 2193 
 2194                 if (pri < 0) {
 2195                         /*
 2196                          * A bit bogus. Call the probe method again to make
 2197                          * sure that we have the right description.
 2198                          */
 2199                         DEVICE_PROBE(child);
 2200 #if 0
 2201                         child->flags |= DF_REBID;
 2202 #endif
 2203                 } else
 2204                         child->flags &= ~DF_REBID;
 2205                 child->state = DS_ALIVE;
 2206 
 2207                 bus_data_generation_update();
 2208                 return (0);
 2209         }
 2210 
 2211         return (ENXIO);
 2212 }
 2213 
 2214 /**
 2215  * @brief Return the parent of a device
 2216  */
 2217 device_t
 2218 device_get_parent(device_t dev)
 2219 {
 2220         return (dev->parent);
 2221 }
 2222 
 2223 /**
 2224  * @brief Get a list of children of a device
 2225  *
 2226  * An array containing a list of all the children of the given device
 2227  * is allocated and returned in @p *devlistp. The number of devices
 2228  * in the array is returned in @p *devcountp. The caller should free
 2229  * the array using @c free(p, M_TEMP).
 2230  *
 2231  * @param dev           the device to examine
 2232  * @param devlistp      points at location for array pointer return
 2233  *                      value
 2234  * @param devcountp     points at location for array size return value
 2235  *
 2236  * @retval 0            success
 2237  * @retval ENOMEM       the array allocation failed
 2238  */
 2239 int
 2240 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
 2241 {
 2242         int count;
 2243         device_t child;
 2244         device_t *list;
 2245 
 2246         count = 0;
 2247         TAILQ_FOREACH(child, &dev->children, link) {
 2248                 count++;
 2249         }
 2250         if (count == 0) {
 2251                 *devlistp = NULL;
 2252                 *devcountp = 0;
 2253                 return (0);
 2254         }
 2255 
 2256         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 2257         if (!list)
 2258                 return (ENOMEM);
 2259 
 2260         count = 0;
 2261         TAILQ_FOREACH(child, &dev->children, link) {
 2262                 list[count] = child;
 2263                 count++;
 2264         }
 2265 
 2266         *devlistp = list;
 2267         *devcountp = count;
 2268 
 2269         return (0);
 2270 }
 2271 
 2272 /**
 2273  * @brief Return the current driver for the device or @c NULL if there
 2274  * is no driver currently attached
 2275  */
 2276 driver_t *
 2277 device_get_driver(device_t dev)
 2278 {
 2279         return (dev->driver);
 2280 }
 2281 
 2282 /**
 2283  * @brief Return the current devclass for the device or @c NULL if
 2284  * there is none.
 2285  */
 2286 devclass_t
 2287 device_get_devclass(device_t dev)
 2288 {
 2289         return (dev->devclass);
 2290 }
 2291 
 2292 /**
 2293  * @brief Return the name of the device's devclass or @c NULL if there
 2294  * is none.
 2295  */
 2296 const char *
 2297 device_get_name(device_t dev)
 2298 {
 2299         if (dev != NULL && dev->devclass)
 2300                 return (devclass_get_name(dev->devclass));
 2301         return (NULL);
 2302 }
 2303 
 2304 /**
 2305  * @brief Return a string containing the device's devclass name
 2306  * followed by an ascii representation of the device's unit number
 2307  * (e.g. @c "foo2").
 2308  */
 2309 const char *
 2310 device_get_nameunit(device_t dev)
 2311 {
 2312         return (dev->nameunit);
 2313 }
 2314 
 2315 /**
 2316  * @brief Return the device's unit number.
 2317  */
 2318 int
 2319 device_get_unit(device_t dev)
 2320 {
 2321         return (dev->unit);
 2322 }
 2323 
 2324 /**
 2325  * @brief Return the device's description string
 2326  */
 2327 const char *
 2328 device_get_desc(device_t dev)
 2329 {
 2330         return (dev->desc);
 2331 }
 2332 
 2333 /**
 2334  * @brief Return the device's flags
 2335  */
 2336 uint32_t
 2337 device_get_flags(device_t dev)
 2338 {
 2339         return (dev->devflags);
 2340 }
 2341 
 2342 struct sysctl_ctx_list *
 2343 device_get_sysctl_ctx(device_t dev)
 2344 {
 2345         return (&dev->sysctl_ctx);
 2346 }
 2347 
 2348 struct sysctl_oid *
 2349 device_get_sysctl_tree(device_t dev)
 2350 {
 2351         return (dev->sysctl_tree);
 2352 }
 2353 
 2354 /**
 2355  * @brief Print the name of the device followed by a colon and a space
 2356  *
 2357  * @returns the number of characters printed
 2358  */
 2359 int
 2360 device_print_prettyname(device_t dev)
 2361 {
 2362         const char *name = device_get_name(dev);
 2363 
 2364         if (name == NULL)
 2365                 return (printf("unknown: "));
 2366         return (printf("%s%d: ", name, device_get_unit(dev)));
 2367 }
 2368 
 2369 /**
 2370  * @brief Print the name of the device followed by a colon, a space
 2371  * and the result of calling vprintf() with the value of @p fmt and
 2372  * the following arguments.
 2373  *
 2374  * @returns the number of characters printed
 2375  */
 2376 int
 2377 device_printf(device_t dev, const char * fmt, ...)
 2378 {
 2379         va_list ap;
 2380         int retval;
 2381 
 2382         retval = device_print_prettyname(dev);
 2383         va_start(ap, fmt);
 2384         retval += vprintf(fmt, ap);
 2385         va_end(ap);
 2386         return (retval);
 2387 }
 2388 
 2389 /**
 2390  * @internal
 2391  */
 2392 static void
 2393 device_set_desc_internal(device_t dev, const char* desc, int copy)
 2394 {
 2395         if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
 2396                 free(dev->desc, M_BUS);
 2397                 dev->flags &= ~DF_DESCMALLOCED;
 2398                 dev->desc = NULL;
 2399         }
 2400 
 2401         if (copy && desc) {
 2402                 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
 2403                 if (dev->desc) {
 2404                         strcpy(dev->desc, desc);
 2405                         dev->flags |= DF_DESCMALLOCED;
 2406                 }
 2407         } else {
 2408                 /* Avoid a -Wcast-qual warning */
 2409                 dev->desc = (char *)(uintptr_t) desc;
 2410         }
 2411 
 2412         bus_data_generation_update();
 2413 }
 2414 
 2415 /**
 2416  * @brief Set the device's description
 2417  *
 2418  * The value of @c desc should be a string constant that will not
 2419  * change (at least until the description is changed in a subsequent
 2420  * call to device_set_desc() or device_set_desc_copy()).
 2421  */
 2422 void
 2423 device_set_desc(device_t dev, const char* desc)
 2424 {
 2425         device_set_desc_internal(dev, desc, FALSE);
 2426 }
 2427 
 2428 /**
 2429  * @brief Set the device's description
 2430  *
 2431  * The string pointed to by @c desc is copied. Use this function if
 2432  * the device description is generated, (e.g. with sprintf()).
 2433  */
 2434 void
 2435 device_set_desc_copy(device_t dev, const char* desc)
 2436 {
 2437         device_set_desc_internal(dev, desc, TRUE);
 2438 }
 2439 
 2440 /**
 2441  * @brief Set the device's flags
 2442  */
 2443 void
 2444 device_set_flags(device_t dev, uint32_t flags)
 2445 {
 2446         dev->devflags = flags;
 2447 }
 2448 
 2449 /**
 2450  * @brief Return the device's softc field
 2451  *
 2452  * The softc is allocated and zeroed when a driver is attached, based
 2453  * on the size field of the driver.
 2454  */
 2455 void *
 2456 device_get_softc(device_t dev)
 2457 {
 2458         return (dev->softc);
 2459 }
 2460 
 2461 /**
 2462  * @brief Set the device's softc field
 2463  *
 2464  * Most drivers do not need to use this since the softc is allocated
 2465  * automatically when the driver is attached.
 2466  */
 2467 void
 2468 device_set_softc(device_t dev, void *softc)
 2469 {
 2470         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
 2471                 free(dev->softc, M_BUS_SC);
 2472         dev->softc = softc;
 2473         if (dev->softc)
 2474                 dev->flags |= DF_EXTERNALSOFTC;
 2475         else
 2476                 dev->flags &= ~DF_EXTERNALSOFTC;
 2477 }
 2478 
 2479 /**
 2480  * @brief Free claimed softc
 2481  *
 2482  * Most drivers do not need to use this since the softc is freed
 2483  * automatically when the driver is detached.
 2484  */
 2485 void
 2486 device_free_softc(void *softc)
 2487 {
 2488         free(softc, M_BUS_SC);
 2489 }
 2490 
 2491 /**
 2492  * @brief Claim softc
 2493  *
 2494  * This function can be used to let the driver free the automatically
 2495  * allocated softc using "device_free_softc()". This function is
 2496  * useful when the driver is refcounting the softc and the softc
 2497  * cannot be freed when the "device_detach" method is called.
 2498  */
 2499 void
 2500 device_claim_softc(device_t dev)
 2501 {
 2502         if (dev->softc)
 2503                 dev->flags |= DF_EXTERNALSOFTC;
 2504         else
 2505                 dev->flags &= ~DF_EXTERNALSOFTC;
 2506 }
 2507 
 2508 /**
 2509  * @brief Get the device's ivars field
 2510  *
 2511  * The ivars field is used by the parent device to store per-device
 2512  * state (e.g. the physical location of the device or a list of
 2513  * resources).
 2514  */
 2515 void *
 2516 device_get_ivars(device_t dev)
 2517 {
 2518 
 2519         KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
 2520         return (dev->ivars);
 2521 }
 2522 
 2523 /**
 2524  * @brief Set the device's ivars field
 2525  */
 2526 void
 2527 device_set_ivars(device_t dev, void * ivars)
 2528 {
 2529 
 2530         KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
 2531         dev->ivars = ivars;
 2532 }
 2533 
 2534 /**
 2535  * @brief Return the device's state
 2536  */
 2537 device_state_t
 2538 device_get_state(device_t dev)
 2539 {
 2540         return (dev->state);
 2541 }
 2542 
 2543 /**
 2544  * @brief Set the DF_ENABLED flag for the device
 2545  */
 2546 void
 2547 device_enable(device_t dev)
 2548 {
 2549         dev->flags |= DF_ENABLED;
 2550 }
 2551 
 2552 /**
 2553  * @brief Clear the DF_ENABLED flag for the device
 2554  */
 2555 void
 2556 device_disable(device_t dev)
 2557 {
 2558         dev->flags &= ~DF_ENABLED;
 2559 }
 2560 
 2561 /**
 2562  * @brief Increment the busy counter for the device
 2563  */
 2564 void
 2565 device_busy(device_t dev)
 2566 {
 2567         if (dev->state < DS_ATTACHING)
 2568                 panic("device_busy: called for unattached device");
 2569         if (dev->busy == 0 && dev->parent)
 2570                 device_busy(dev->parent);
 2571         dev->busy++;
 2572         if (dev->state == DS_ATTACHED)
 2573                 dev->state = DS_BUSY;
 2574 }
 2575 
 2576 /**
 2577  * @brief Decrement the busy counter for the device
 2578  */
 2579 void
 2580 device_unbusy(device_t dev)
 2581 {
 2582         if (dev->busy != 0 && dev->state != DS_BUSY &&
 2583             dev->state != DS_ATTACHING)
 2584                 panic("device_unbusy: called for non-busy device %s",
 2585                     device_get_nameunit(dev));
 2586         dev->busy--;
 2587         if (dev->busy == 0) {
 2588                 if (dev->parent)
 2589                         device_unbusy(dev->parent);
 2590                 if (dev->state == DS_BUSY)
 2591                         dev->state = DS_ATTACHED;
 2592         }
 2593 }
 2594 
 2595 /**
 2596  * @brief Set the DF_QUIET flag for the device
 2597  */
 2598 void
 2599 device_quiet(device_t dev)
 2600 {
 2601         dev->flags |= DF_QUIET;
 2602 }
 2603 
 2604 /**
 2605  * @brief Clear the DF_QUIET flag for the device
 2606  */
 2607 void
 2608 device_verbose(device_t dev)
 2609 {
 2610         dev->flags &= ~DF_QUIET;
 2611 }
 2612 
 2613 /**
 2614  * @brief Return non-zero if the DF_QUIET flag is set on the device
 2615  */
 2616 int
 2617 device_is_quiet(device_t dev)
 2618 {
 2619         return ((dev->flags & DF_QUIET) != 0);
 2620 }
 2621 
 2622 /**
 2623  * @brief Return non-zero if the DF_ENABLED flag is set on the device
 2624  */
 2625 int
 2626 device_is_enabled(device_t dev)
 2627 {
 2628         return ((dev->flags & DF_ENABLED) != 0);
 2629 }
 2630 
 2631 /**
 2632  * @brief Return non-zero if the device was successfully probed
 2633  */
 2634 int
 2635 device_is_alive(device_t dev)
 2636 {
 2637         return (dev->state >= DS_ALIVE);
 2638 }
 2639 
 2640 /**
 2641  * @brief Return non-zero if the device currently has a driver
 2642  * attached to it
 2643  */
 2644 int
 2645 device_is_attached(device_t dev)
 2646 {
 2647         return (dev->state >= DS_ATTACHED);
 2648 }
 2649 
 2650 /**
 2651  * @brief Set the devclass of a device
 2652  * @see devclass_add_device().
 2653  */
 2654 int
 2655 device_set_devclass(device_t dev, const char *classname)
 2656 {
 2657         devclass_t dc;
 2658         int error;
 2659 
 2660         if (!classname) {
 2661                 if (dev->devclass)
 2662                         devclass_delete_device(dev->devclass, dev);
 2663                 return (0);
 2664         }
 2665 
 2666         if (dev->devclass) {
 2667                 printf("device_set_devclass: device class already set\n");
 2668                 return (EINVAL);
 2669         }
 2670 
 2671         dc = devclass_find_internal(classname, NULL, TRUE);
 2672         if (!dc)
 2673                 return (ENOMEM);
 2674 
 2675         error = devclass_add_device(dc, dev);
 2676 
 2677         bus_data_generation_update();
 2678         return (error);
 2679 }
 2680 
 2681 /**
 2682  * @brief Set the driver of a device
 2683  *
 2684  * @retval 0            success
 2685  * @retval EBUSY        the device already has a driver attached
 2686  * @retval ENOMEM       a memory allocation failure occurred
 2687  */
 2688 int
 2689 device_set_driver(device_t dev, driver_t *driver)
 2690 {
 2691         if (dev->state >= DS_ATTACHED)
 2692                 return (EBUSY);
 2693 
 2694         if (dev->driver == driver)
 2695                 return (0);
 2696 
 2697         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
 2698                 free(dev->softc, M_BUS_SC);
 2699                 dev->softc = NULL;
 2700         }
 2701         device_set_desc(dev, NULL);
 2702         kobj_delete((kobj_t) dev, NULL);
 2703         dev->driver = driver;
 2704         if (driver) {
 2705                 kobj_init((kobj_t) dev, (kobj_class_t) driver);
 2706                 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
 2707                         dev->softc = malloc(driver->size, M_BUS_SC,
 2708                             M_NOWAIT | M_ZERO);
 2709                         if (!dev->softc) {
 2710                                 kobj_delete((kobj_t) dev, NULL);
 2711                                 kobj_init((kobj_t) dev, &null_class);
 2712                                 dev->driver = NULL;
 2713                                 return (ENOMEM);
 2714                         }
 2715                 }
 2716         } else {
 2717                 kobj_init((kobj_t) dev, &null_class);
 2718         }
 2719 
 2720         bus_data_generation_update();
 2721         return (0);
 2722 }
 2723 
 2724 /**
 2725  * @brief Probe a device, and return this status.
 2726  *
 2727  * This function is the core of the device autoconfiguration
 2728  * system. Its purpose is to select a suitable driver for a device and
 2729  * then call that driver to initialise the hardware appropriately. The
 2730  * driver is selected by calling the DEVICE_PROBE() method of a set of
 2731  * candidate drivers and then choosing the driver which returned the
 2732  * best value. This driver is then attached to the device using
 2733  * device_attach().
 2734  *
 2735  * The set of suitable drivers is taken from the list of drivers in
 2736  * the parent device's devclass. If the device was originally created
 2737  * with a specific class name (see device_add_child()), only drivers
 2738  * with that name are probed, otherwise all drivers in the devclass
 2739  * are probed. If no drivers return successful probe values in the
 2740  * parent devclass, the search continues in the parent of that
 2741  * devclass (see devclass_get_parent()) if any.
 2742  *
 2743  * @param dev           the device to initialise
 2744  *
 2745  * @retval 0            success
 2746  * @retval ENXIO        no driver was found
 2747  * @retval ENOMEM       memory allocation failure
 2748  * @retval non-zero     some other unix error code
 2749  * @retval -1           Device already attached
 2750  */
 2751 int
 2752 device_probe(device_t dev)
 2753 {
 2754         int error;
 2755 
 2756         GIANT_REQUIRED;
 2757 
 2758         if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
 2759                 return (-1);
 2760 
 2761         if (!(dev->flags & DF_ENABLED)) {
 2762                 if (bootverbose && device_get_name(dev) != NULL) {
 2763                         device_print_prettyname(dev);
 2764                         printf("not probed (disabled)\n");
 2765                 }
 2766                 return (-1);
 2767         }
 2768         if ((error = device_probe_child(dev->parent, dev)) != 0) {              
 2769                 if (bus_current_pass == BUS_PASS_DEFAULT &&
 2770                     !(dev->flags & DF_DONENOMATCH)) {
 2771                         BUS_PROBE_NOMATCH(dev->parent, dev);
 2772                         devnomatch(dev);
 2773                         dev->flags |= DF_DONENOMATCH;
 2774                 }
 2775                 return (error);
 2776         }
 2777         return (0);
 2778 }
 2779 
 2780 /**
 2781  * @brief Probe a device and attach a driver if possible
 2782  *
 2783  * calls device_probe() and attaches if that was successful.
 2784  */
 2785 int
 2786 device_probe_and_attach(device_t dev)
 2787 {
 2788         int error;
 2789 
 2790         GIANT_REQUIRED;
 2791 
 2792         error = device_probe(dev);
 2793         if (error == -1)
 2794                 return (0);
 2795         else if (error != 0)
 2796                 return (error);
 2797 
 2798         CURVNET_SET_QUIET(vnet0);
 2799         error = device_attach(dev);
 2800         CURVNET_RESTORE();
 2801         return error;
 2802 }
 2803 
 2804 /**
 2805  * @brief Attach a device driver to a device
 2806  *
 2807  * This function is a wrapper around the DEVICE_ATTACH() driver
 2808  * method. In addition to calling DEVICE_ATTACH(), it initialises the
 2809  * device's sysctl tree, optionally prints a description of the device
 2810  * and queues a notification event for user-based device management
 2811  * services.
 2812  *
 2813  * Normally this function is only called internally from
 2814  * device_probe_and_attach().
 2815  *
 2816  * @param dev           the device to initialise
 2817  *
 2818  * @retval 0            success
 2819  * @retval ENXIO        no driver was found
 2820  * @retval ENOMEM       memory allocation failure
 2821  * @retval non-zero     some other unix error code
 2822  */
 2823 int
 2824 device_attach(device_t dev)
 2825 {
 2826         uint64_t attachtime;
 2827         int error;
 2828 
 2829         if (resource_disabled(dev->driver->name, dev->unit)) {
 2830                 device_disable(dev);
 2831                 if (bootverbose)
 2832                          device_printf(dev, "disabled via hints entry\n");
 2833                 return (ENXIO);
 2834         }
 2835 
 2836         device_sysctl_init(dev);
 2837         if (!device_is_quiet(dev))
 2838                 device_print_child(dev->parent, dev);
 2839         attachtime = get_cyclecount();
 2840         dev->state = DS_ATTACHING;
 2841         if ((error = DEVICE_ATTACH(dev)) != 0) {
 2842                 printf("device_attach: %s%d attach returned %d\n",
 2843                     dev->driver->name, dev->unit, error);
 2844                 if (!(dev->flags & DF_FIXEDCLASS))
 2845                         devclass_delete_device(dev->devclass, dev);
 2846                 (void)device_set_driver(dev, NULL);
 2847                 device_sysctl_fini(dev);
 2848                 KASSERT(dev->busy == 0, ("attach failed but busy"));
 2849                 dev->state = DS_NOTPRESENT;
 2850                 return (error);
 2851         }
 2852         attachtime = get_cyclecount() - attachtime;
 2853         /*
 2854          * 4 bits per device is a reasonable value for desktop and server
 2855          * hardware with good get_cyclecount() implementations, but may
 2856          * need to be adjusted on other platforms.
 2857          */
 2858 #ifdef RANDOM_DEBUG
 2859         printf("%s(): feeding %d bit(s) of entropy from %s%d\n",
 2860             __func__, 4, dev->driver->name, dev->unit);
 2861 #endif
 2862         random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH);
 2863         device_sysctl_update(dev);
 2864         if (dev->busy)
 2865                 dev->state = DS_BUSY;
 2866         else
 2867                 dev->state = DS_ATTACHED;
 2868         dev->flags &= ~DF_DONENOMATCH;
 2869         devadded(dev);
 2870         return (0);
 2871 }
 2872 
 2873 /**
 2874  * @brief Detach a driver from a device
 2875  *
 2876  * This function is a wrapper around the DEVICE_DETACH() driver
 2877  * method. If the call to DEVICE_DETACH() succeeds, it calls
 2878  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
 2879  * notification event for user-based device management services and
 2880  * cleans up the device's sysctl tree.
 2881  *
 2882  * @param dev           the device to un-initialise
 2883  *
 2884  * @retval 0            success
 2885  * @retval ENXIO        no driver was found
 2886  * @retval ENOMEM       memory allocation failure
 2887  * @retval non-zero     some other unix error code
 2888  */
 2889 int
 2890 device_detach(device_t dev)
 2891 {
 2892         int error;
 2893 
 2894         GIANT_REQUIRED;
 2895 
 2896         PDEBUG(("%s", DEVICENAME(dev)));
 2897         if (dev->state == DS_BUSY)
 2898                 return (EBUSY);
 2899         if (dev->state != DS_ATTACHED)
 2900                 return (0);
 2901 
 2902         if ((error = DEVICE_DETACH(dev)) != 0)
 2903                 return (error);
 2904         devremoved(dev);
 2905         if (!device_is_quiet(dev))
 2906                 device_printf(dev, "detached\n");
 2907         if (dev->parent)
 2908                 BUS_CHILD_DETACHED(dev->parent, dev);
 2909 
 2910         if (!(dev->flags & DF_FIXEDCLASS))
 2911                 devclass_delete_device(dev->devclass, dev);
 2912 
 2913         dev->state = DS_NOTPRESENT;
 2914         (void)device_set_driver(dev, NULL);
 2915         device_sysctl_fini(dev);
 2916 
 2917         return (0);
 2918 }
 2919 
 2920 /**
 2921  * @brief Tells a driver to quiesce itself.
 2922  *
 2923  * This function is a wrapper around the DEVICE_QUIESCE() driver
 2924  * method. If the call to DEVICE_QUIESCE() succeeds.
 2925  *
 2926  * @param dev           the device to quiesce
 2927  *
 2928  * @retval 0            success
 2929  * @retval ENXIO        no driver was found
 2930  * @retval ENOMEM       memory allocation failure
 2931  * @retval non-zero     some other unix error code
 2932  */
 2933 int
 2934 device_quiesce(device_t dev)
 2935 {
 2936 
 2937         PDEBUG(("%s", DEVICENAME(dev)));
 2938         if (dev->state == DS_BUSY)
 2939                 return (EBUSY);
 2940         if (dev->state != DS_ATTACHED)
 2941                 return (0);
 2942 
 2943         return (DEVICE_QUIESCE(dev));
 2944 }
 2945 
 2946 /**
 2947  * @brief Notify a device of system shutdown
 2948  *
 2949  * This function calls the DEVICE_SHUTDOWN() driver method if the
 2950  * device currently has an attached driver.
 2951  *
 2952  * @returns the value returned by DEVICE_SHUTDOWN()
 2953  */
 2954 int
 2955 device_shutdown(device_t dev)
 2956 {
 2957         if (dev->state < DS_ATTACHED)
 2958                 return (0);
 2959         return (DEVICE_SHUTDOWN(dev));
 2960 }
 2961 
 2962 /**
 2963  * @brief Set the unit number of a device
 2964  *
 2965  * This function can be used to override the unit number used for a
 2966  * device (e.g. to wire a device to a pre-configured unit number).
 2967  */
 2968 int
 2969 device_set_unit(device_t dev, int unit)
 2970 {
 2971         devclass_t dc;
 2972         int err;
 2973 
 2974         dc = device_get_devclass(dev);
 2975         if (unit < dc->maxunit && dc->devices[unit])
 2976                 return (EBUSY);
 2977         err = devclass_delete_device(dc, dev);
 2978         if (err)
 2979                 return (err);
 2980         dev->unit = unit;
 2981         err = devclass_add_device(dc, dev);
 2982         if (err)
 2983                 return (err);
 2984 
 2985         bus_data_generation_update();
 2986         return (0);
 2987 }
 2988 
 2989 /*======================================*/
 2990 /*
 2991  * Some useful method implementations to make life easier for bus drivers.
 2992  */
 2993 
 2994 /**
 2995  * @brief Initialise a resource list.
 2996  *
 2997  * @param rl            the resource list to initialise
 2998  */
 2999 void
 3000 resource_list_init(struct resource_list *rl)
 3001 {
 3002         STAILQ_INIT(rl);
 3003 }
 3004 
 3005 /**
 3006  * @brief Reclaim memory used by a resource list.
 3007  *
 3008  * This function frees the memory for all resource entries on the list
 3009  * (if any).
 3010  *
 3011  * @param rl            the resource list to free               
 3012  */
 3013 void
 3014 resource_list_free(struct resource_list *rl)
 3015 {
 3016         struct resource_list_entry *rle;
 3017 
 3018         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 3019                 if (rle->res)
 3020                         panic("resource_list_free: resource entry is busy");
 3021                 STAILQ_REMOVE_HEAD(rl, link);
 3022                 free(rle, M_BUS);
 3023         }
 3024 }
 3025 
 3026 /**
 3027  * @brief Add a resource entry.
 3028  *
 3029  * This function adds a resource entry using the given @p type, @p
 3030  * start, @p end and @p count values. A rid value is chosen by
 3031  * searching sequentially for the first unused rid starting at zero.
 3032  *
 3033  * @param rl            the resource list to edit
 3034  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3035  * @param start         the start address of the resource
 3036  * @param end           the end address of the resource
 3037  * @param count         XXX end-start+1
 3038  */
 3039 int
 3040 resource_list_add_next(struct resource_list *rl, int type, u_long start,
 3041     u_long end, u_long count)
 3042 {
 3043         int rid;
 3044 
 3045         rid = 0;
 3046         while (resource_list_find(rl, type, rid) != NULL)
 3047                 rid++;
 3048         resource_list_add(rl, type, rid, start, end, count);
 3049         return (rid);
 3050 }
 3051 
 3052 /**
 3053  * @brief Add or modify a resource entry.
 3054  *
 3055  * If an existing entry exists with the same type and rid, it will be
 3056  * modified using the given values of @p start, @p end and @p
 3057  * count. If no entry exists, a new one will be created using the
 3058  * given values.  The resource list entry that matches is then returned.
 3059  *
 3060  * @param rl            the resource list to edit
 3061  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3062  * @param rid           the resource identifier
 3063  * @param start         the start address of the resource
 3064  * @param end           the end address of the resource
 3065  * @param count         XXX end-start+1
 3066  */
 3067 struct resource_list_entry *
 3068 resource_list_add(struct resource_list *rl, int type, int rid,
 3069     u_long start, u_long end, u_long count)
 3070 {
 3071         struct resource_list_entry *rle;
 3072 
 3073         rle = resource_list_find(rl, type, rid);
 3074         if (!rle) {
 3075                 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
 3076                     M_NOWAIT);
 3077                 if (!rle)
 3078                         panic("resource_list_add: can't record entry");
 3079                 STAILQ_INSERT_TAIL(rl, rle, link);
 3080                 rle->type = type;
 3081                 rle->rid = rid;
 3082                 rle->res = NULL;
 3083                 rle->flags = 0;
 3084         }
 3085 
 3086         if (rle->res)
 3087                 panic("resource_list_add: resource entry is busy");
 3088 
 3089         rle->start = start;
 3090         rle->end = end;
 3091         rle->count = count;
 3092         return (rle);
 3093 }
 3094 
 3095 /**
 3096  * @brief Determine if a resource entry is busy.
 3097  *
 3098  * Returns true if a resource entry is busy meaning that it has an
 3099  * associated resource that is not an unallocated "reserved" resource.
 3100  *
 3101  * @param rl            the resource list to search
 3102  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3103  * @param rid           the resource identifier
 3104  *
 3105  * @returns Non-zero if the entry is busy, zero otherwise.
 3106  */
 3107 int
 3108 resource_list_busy(struct resource_list *rl, int type, int rid)
 3109 {
 3110         struct resource_list_entry *rle;
 3111 
 3112         rle = resource_list_find(rl, type, rid);
 3113         if (rle == NULL || rle->res == NULL)
 3114                 return (0);
 3115         if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
 3116                 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
 3117                     ("reserved resource is active"));
 3118                 return (0);
 3119         }
 3120         return (1);
 3121 }
 3122 
 3123 /**
 3124  * @brief Determine if a resource entry is reserved.
 3125  *
 3126  * Returns true if a resource entry is reserved meaning that it has an
 3127  * associated "reserved" resource.  The resource can either be
 3128  * allocated or unallocated.
 3129  *
 3130  * @param rl            the resource list to search
 3131  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3132  * @param rid           the resource identifier
 3133  *
 3134  * @returns Non-zero if the entry is reserved, zero otherwise.
 3135  */
 3136 int
 3137 resource_list_reserved(struct resource_list *rl, int type, int rid)
 3138 {
 3139         struct resource_list_entry *rle;
 3140 
 3141         rle = resource_list_find(rl, type, rid);
 3142         if (rle != NULL && rle->flags & RLE_RESERVED)
 3143                 return (1);
 3144         return (0);
 3145 }
 3146 
 3147 /**
 3148  * @brief Find a resource entry by type and rid.
 3149  *
 3150  * @param rl            the resource list to search
 3151  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3152  * @param rid           the resource identifier
 3153  *
 3154  * @returns the resource entry pointer or NULL if there is no such
 3155  * entry.
 3156  */
 3157 struct resource_list_entry *
 3158 resource_list_find(struct resource_list *rl, int type, int rid)
 3159 {
 3160         struct resource_list_entry *rle;
 3161 
 3162         STAILQ_FOREACH(rle, rl, link) {
 3163                 if (rle->type == type && rle->rid == rid)
 3164                         return (rle);
 3165         }
 3166         return (NULL);
 3167 }
 3168 
 3169 /**
 3170  * @brief Delete a resource entry.
 3171  *
 3172  * @param rl            the resource list to edit
 3173  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3174  * @param rid           the resource identifier
 3175  */
 3176 void
 3177 resource_list_delete(struct resource_list *rl, int type, int rid)
 3178 {
 3179         struct resource_list_entry *rle = resource_list_find(rl, type, rid);
 3180 
 3181         if (rle) {
 3182                 if (rle->res != NULL)
 3183                         panic("resource_list_delete: resource has not been released");
 3184                 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
 3185                 free(rle, M_BUS);
 3186         }
 3187 }
 3188 
 3189 /**
 3190  * @brief Allocate a reserved resource
 3191  *
 3192  * This can be used by busses to force the allocation of resources
 3193  * that are always active in the system even if they are not allocated
 3194  * by a driver (e.g. PCI BARs).  This function is usually called when
 3195  * adding a new child to the bus.  The resource is allocated from the
 3196  * parent bus when it is reserved.  The resource list entry is marked
 3197  * with RLE_RESERVED to note that it is a reserved resource.
 3198  *
 3199  * Subsequent attempts to allocate the resource with
 3200  * resource_list_alloc() will succeed the first time and will set
 3201  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
 3202  * resource that has been allocated is released with
 3203  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
 3204  * the actual resource remains allocated.  The resource can be released to
 3205  * the parent bus by calling resource_list_unreserve().
 3206  *
 3207  * @param rl            the resource list to allocate from
 3208  * @param bus           the parent device of @p child
 3209  * @param child         the device for which the resource is being reserved
 3210  * @param type          the type of resource to allocate
 3211  * @param rid           a pointer to the resource identifier
 3212  * @param start         hint at the start of the resource range - pass
 3213  *                      @c 0UL for any start address
 3214  * @param end           hint at the end of the resource range - pass
 3215  *                      @c ~0UL for any end address
 3216  * @param count         hint at the size of range required - pass @c 1
 3217  *                      for any size
 3218  * @param flags         any extra flags to control the resource
 3219  *                      allocation - see @c RF_XXX flags in
 3220  *                      <sys/rman.h> for details
 3221  * 
 3222  * @returns             the resource which was allocated or @c NULL if no
 3223  *                      resource could be allocated
 3224  */
 3225 struct resource *
 3226 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
 3227     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
 3228 {
 3229         struct resource_list_entry *rle = NULL;
 3230         int passthrough = (device_get_parent(child) != bus);
 3231         struct resource *r;
 3232 
 3233         if (passthrough)
 3234                 panic(
 3235     "resource_list_reserve() should only be called for direct children");
 3236         if (flags & RF_ACTIVE)
 3237                 panic(
 3238     "resource_list_reserve() should only reserve inactive resources");
 3239 
 3240         r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
 3241             flags);
 3242         if (r != NULL) {
 3243                 rle = resource_list_find(rl, type, *rid);
 3244                 rle->flags |= RLE_RESERVED;
 3245         }
 3246         return (r);
 3247 }
 3248 
 3249 /**
 3250  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
 3251  *
 3252  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
 3253  * and passing the allocation up to the parent of @p bus. This assumes
 3254  * that the first entry of @c device_get_ivars(child) is a struct
 3255  * resource_list. This also handles 'passthrough' allocations where a
 3256  * child is a remote descendant of bus by passing the allocation up to
 3257  * the parent of bus.
 3258  *
 3259  * Typically, a bus driver would store a list of child resources
 3260  * somewhere in the child device's ivars (see device_get_ivars()) and
 3261  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
 3262  * then call resource_list_alloc() to perform the allocation.
 3263  *
 3264  * @param rl            the resource list to allocate from
 3265  * @param bus           the parent device of @p child
 3266  * @param child         the device which is requesting an allocation
 3267  * @param type          the type of resource to allocate
 3268  * @param rid           a pointer to the resource identifier
 3269  * @param start         hint at the start of the resource range - pass
 3270  *                      @c 0UL for any start address
 3271  * @param end           hint at the end of the resource range - pass
 3272  *                      @c ~0UL for any end address
 3273  * @param count         hint at the size of range required - pass @c 1
 3274  *                      for any size
 3275  * @param flags         any extra flags to control the resource
 3276  *                      allocation - see @c RF_XXX flags in
 3277  *                      <sys/rman.h> for details
 3278  * 
 3279  * @returns             the resource which was allocated or @c NULL if no
 3280  *                      resource could be allocated
 3281  */
 3282 struct resource *
 3283 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
 3284     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
 3285 {
 3286         struct resource_list_entry *rle = NULL;
 3287         int passthrough = (device_get_parent(child) != bus);
 3288         int isdefault = (start == 0UL && end == ~0UL);
 3289 
 3290         if (passthrough) {
 3291                 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 3292                     type, rid, start, end, count, flags));
 3293         }
 3294 
 3295         rle = resource_list_find(rl, type, *rid);
 3296 
 3297         if (!rle)
 3298                 return (NULL);          /* no resource of that type/rid */
 3299 
 3300         if (rle->res) {
 3301                 if (rle->flags & RLE_RESERVED) {
 3302                         if (rle->flags & RLE_ALLOCATED)
 3303                                 return (NULL);
 3304                         if ((flags & RF_ACTIVE) &&
 3305                             bus_activate_resource(child, type, *rid,
 3306                             rle->res) != 0)
 3307                                 return (NULL);
 3308                         rle->flags |= RLE_ALLOCATED;
 3309                         return (rle->res);
 3310                 }
 3311                 device_printf(bus,
 3312                     "resource entry %#x type %d for child %s is busy\n", *rid,
 3313                     type, device_get_nameunit(child));
 3314                 return (NULL);
 3315         }
 3316 
 3317         if (isdefault) {
 3318                 start = rle->start;
 3319                 count = ulmax(count, rle->count);
 3320                 end = ulmax(rle->end, start + count - 1);
 3321         }
 3322 
 3323         rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 3324             type, rid, start, end, count, flags);
 3325 
 3326         /*
 3327          * Record the new range.
 3328          */
 3329         if (rle->res) {
 3330                 rle->start = rman_get_start(rle->res);
 3331                 rle->end = rman_get_end(rle->res);
 3332                 rle->count = count;
 3333         }
 3334 
 3335         return (rle->res);
 3336 }
 3337 
 3338 /**
 3339  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
 3340  * 
 3341  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
 3342  * used with resource_list_alloc().
 3343  * 
 3344  * @param rl            the resource list which was allocated from
 3345  * @param bus           the parent device of @p child
 3346  * @param child         the device which is requesting a release
 3347  * @param type          the type of resource to release
 3348  * @param rid           the resource identifier
 3349  * @param res           the resource to release
 3350  * 
 3351  * @retval 0            success
 3352  * @retval non-zero     a standard unix error code indicating what
 3353  *                      error condition prevented the operation
 3354  */
 3355 int
 3356 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
 3357     int type, int rid, struct resource *res)
 3358 {
 3359         struct resource_list_entry *rle = NULL;
 3360         int passthrough = (device_get_parent(child) != bus);
 3361         int error;
 3362 
 3363         if (passthrough) {
 3364                 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3365                     type, rid, res));
 3366         }
 3367 
 3368         rle = resource_list_find(rl, type, rid);
 3369 
 3370         if (!rle)
 3371                 panic("resource_list_release: can't find resource");
 3372         if (!rle->res)
 3373                 panic("resource_list_release: resource entry is not busy");
 3374         if (rle->flags & RLE_RESERVED) {
 3375                 if (rle->flags & RLE_ALLOCATED) {
 3376                         if (rman_get_flags(res) & RF_ACTIVE) {
 3377                                 error = bus_deactivate_resource(child, type,
 3378                                     rid, res);
 3379                                 if (error)
 3380                                         return (error);
 3381                         }
 3382                         rle->flags &= ~RLE_ALLOCATED;
 3383                         return (0);
 3384                 }
 3385                 return (EINVAL);
 3386         }
 3387 
 3388         error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3389             type, rid, res);
 3390         if (error)
 3391                 return (error);
 3392 
 3393         rle->res = NULL;
 3394         return (0);
 3395 }
 3396 
 3397 /**
 3398  * @brief Release all active resources of a given type
 3399  *
 3400  * Release all active resources of a specified type.  This is intended
 3401  * to be used to cleanup resources leaked by a driver after detach or
 3402  * a failed attach.
 3403  *
 3404  * @param rl            the resource list which was allocated from
 3405  * @param bus           the parent device of @p child
 3406  * @param child         the device whose active resources are being released
 3407  * @param type          the type of resources to release
 3408  * 
 3409  * @retval 0            success
 3410  * @retval EBUSY        at least one resource was active
 3411  */
 3412 int
 3413 resource_list_release_active(struct resource_list *rl, device_t bus,
 3414     device_t child, int type)
 3415 {
 3416         struct resource_list_entry *rle;
 3417         int error, retval;
 3418 
 3419         retval = 0;
 3420         STAILQ_FOREACH(rle, rl, link) {
 3421                 if (rle->type != type)
 3422                         continue;
 3423                 if (rle->res == NULL)
 3424                         continue;
 3425                 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
 3426                     RLE_RESERVED)
 3427                         continue;
 3428                 retval = EBUSY;
 3429                 error = resource_list_release(rl, bus, child, type,
 3430                     rman_get_rid(rle->res), rle->res);
 3431                 if (error != 0)
 3432                         device_printf(bus,
 3433                             "Failed to release active resource: %d\n", error);
 3434         }
 3435         return (retval);
 3436 }
 3437 
 3438 
 3439 /**
 3440  * @brief Fully release a reserved resource
 3441  *
 3442  * Fully releases a resource reserved via resource_list_reserve().
 3443  *
 3444  * @param rl            the resource list which was allocated from
 3445  * @param bus           the parent device of @p child
 3446  * @param child         the device whose reserved resource is being released
 3447  * @param type          the type of resource to release
 3448  * @param rid           the resource identifier
 3449  * @param res           the resource to release
 3450  * 
 3451  * @retval 0            success
 3452  * @retval non-zero     a standard unix error code indicating what
 3453  *                      error condition prevented the operation
 3454  */
 3455 int
 3456 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
 3457     int type, int rid)
 3458 {
 3459         struct resource_list_entry *rle = NULL;
 3460         int passthrough = (device_get_parent(child) != bus);
 3461 
 3462         if (passthrough)
 3463                 panic(
 3464     "resource_list_unreserve() should only be called for direct children");
 3465 
 3466         rle = resource_list_find(rl, type, rid);
 3467 
 3468         if (!rle)
 3469                 panic("resource_list_unreserve: can't find resource");
 3470         if (!(rle->flags & RLE_RESERVED))
 3471                 return (EINVAL);
 3472         if (rle->flags & RLE_ALLOCATED)
 3473                 return (EBUSY);
 3474         rle->flags &= ~RLE_RESERVED;
 3475         return (resource_list_release(rl, bus, child, type, rid, rle->res));
 3476 }
 3477 
 3478 /**
 3479  * @brief Print a description of resources in a resource list
 3480  *
 3481  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
 3482  * The name is printed if at least one resource of the given type is available.
 3483  * The format is used to print resource start and end.
 3484  *
 3485  * @param rl            the resource list to print
 3486  * @param name          the name of @p type, e.g. @c "memory"
 3487  * @param type          type type of resource entry to print
 3488  * @param format        printf(9) format string to print resource
 3489  *                      start and end values
 3490  * 
 3491  * @returns             the number of characters printed
 3492  */
 3493 int
 3494 resource_list_print_type(struct resource_list *rl, const char *name, int type,
 3495     const char *format)
 3496 {
 3497         struct resource_list_entry *rle;
 3498         int printed, retval;
 3499 
 3500         printed = 0;
 3501         retval = 0;
 3502         /* Yes, this is kinda cheating */
 3503         STAILQ_FOREACH(rle, rl, link) {
 3504                 if (rle->type == type) {
 3505                         if (printed == 0)
 3506                                 retval += printf(" %s ", name);
 3507                         else
 3508                                 retval += printf(",");
 3509                         printed++;
 3510                         retval += printf(format, rle->start);
 3511                         if (rle->count > 1) {
 3512                                 retval += printf("-");
 3513                                 retval += printf(format, rle->start +
 3514                                                  rle->count - 1);
 3515                         }
 3516                 }
 3517         }
 3518         return (retval);
 3519 }
 3520 
 3521 /**
 3522  * @brief Releases all the resources in a list.
 3523  *
 3524  * @param rl            The resource list to purge.
 3525  * 
 3526  * @returns             nothing
 3527  */
 3528 void
 3529 resource_list_purge(struct resource_list *rl)
 3530 {
 3531         struct resource_list_entry *rle;
 3532 
 3533         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 3534                 if (rle->res)
 3535                         bus_release_resource(rman_get_device(rle->res),
 3536                             rle->type, rle->rid, rle->res);
 3537                 STAILQ_REMOVE_HEAD(rl, link);
 3538                 free(rle, M_BUS);
 3539         }
 3540 }
 3541 
 3542 device_t
 3543 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
 3544 {
 3545 
 3546         return (device_add_child_ordered(dev, order, name, unit));
 3547 }
 3548 
 3549 /**
 3550  * @brief Helper function for implementing DEVICE_PROBE()
 3551  *
 3552  * This function can be used to help implement the DEVICE_PROBE() for
 3553  * a bus (i.e. a device which has other devices attached to it). It
 3554  * calls the DEVICE_IDENTIFY() method of each driver in the device's
 3555  * devclass.
 3556  */
 3557 int
 3558 bus_generic_probe(device_t dev)
 3559 {
 3560         devclass_t dc = dev->devclass;
 3561         driverlink_t dl;
 3562 
 3563         TAILQ_FOREACH(dl, &dc->drivers, link) {
 3564                 /*
 3565                  * If this driver's pass is too high, then ignore it.
 3566                  * For most drivers in the default pass, this will
 3567                  * never be true.  For early-pass drivers they will
 3568                  * only call the identify routines of eligible drivers
 3569                  * when this routine is called.  Drivers for later
 3570                  * passes should have their identify routines called
 3571                  * on early-pass busses during BUS_NEW_PASS().
 3572                  */
 3573                 if (dl->pass > bus_current_pass)
 3574                         continue;
 3575                 DEVICE_IDENTIFY(dl->driver, dev);
 3576         }
 3577 
 3578         return (0);
 3579 }
 3580 
 3581 /**
 3582  * @brief Helper function for implementing DEVICE_ATTACH()
 3583  *
 3584  * This function can be used to help implement the DEVICE_ATTACH() for
 3585  * a bus. It calls device_probe_and_attach() for each of the device's
 3586  * children.
 3587  */
 3588 int
 3589 bus_generic_attach(device_t dev)
 3590 {
 3591         device_t child;
 3592 
 3593         TAILQ_FOREACH(child, &dev->children, link) {
 3594                 device_probe_and_attach(child);
 3595         }
 3596 
 3597         return (0);
 3598 }
 3599 
 3600 /**
 3601  * @brief Helper function for implementing DEVICE_DETACH()
 3602  *
 3603  * This function can be used to help implement the DEVICE_DETACH() for
 3604  * a bus. It calls device_detach() for each of the device's
 3605  * children.
 3606  */
 3607 int
 3608 bus_generic_detach(device_t dev)
 3609 {
 3610         device_t child;
 3611         int error;
 3612 
 3613         if (dev->state != DS_ATTACHED)
 3614                 return (EBUSY);
 3615 
 3616         TAILQ_FOREACH(child, &dev->children, link) {
 3617                 if ((error = device_detach(child)) != 0)
 3618                         return (error);
 3619         }
 3620 
 3621         return (0);
 3622 }
 3623 
 3624 /**
 3625  * @brief Helper function for implementing DEVICE_SHUTDOWN()
 3626  *
 3627  * This function can be used to help implement the DEVICE_SHUTDOWN()
 3628  * for a bus. It calls device_shutdown() for each of the device's
 3629  * children.
 3630  */
 3631 int
 3632 bus_generic_shutdown(device_t dev)
 3633 {
 3634         device_t child;
 3635 
 3636         TAILQ_FOREACH(child, &dev->children, link) {
 3637                 device_shutdown(child);
 3638         }
 3639 
 3640         return (0);
 3641 }
 3642 
 3643 /**
 3644  * @brief Helper function for implementing DEVICE_SUSPEND()
 3645  *
 3646  * This function can be used to help implement the DEVICE_SUSPEND()
 3647  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
 3648  * children. If any call to DEVICE_SUSPEND() fails, the suspend
 3649  * operation is aborted and any devices which were suspended are
 3650  * resumed immediately by calling their DEVICE_RESUME() methods.
 3651  */
 3652 int
 3653 bus_generic_suspend(device_t dev)
 3654 {
 3655         int             error;
 3656         device_t        child, child2;
 3657 
 3658         TAILQ_FOREACH(child, &dev->children, link) {
 3659                 error = DEVICE_SUSPEND(child);
 3660                 if (error) {
 3661                         for (child2 = TAILQ_FIRST(&dev->children);
 3662                              child2 && child2 != child;
 3663                              child2 = TAILQ_NEXT(child2, link))
 3664                                 DEVICE_RESUME(child2);
 3665                         return (error);
 3666                 }
 3667         }
 3668         return (0);
 3669 }
 3670 
 3671 /**
 3672  * @brief Helper function for implementing DEVICE_RESUME()
 3673  *
 3674  * This function can be used to help implement the DEVICE_RESUME() for
 3675  * a bus. It calls DEVICE_RESUME() on each of the device's children.
 3676  */
 3677 int
 3678 bus_generic_resume(device_t dev)
 3679 {
 3680         device_t        child;
 3681 
 3682         TAILQ_FOREACH(child, &dev->children, link) {
 3683                 DEVICE_RESUME(child);
 3684                 /* if resume fails, there's nothing we can usefully do... */
 3685         }
 3686         return (0);
 3687 }
 3688 
 3689 /**
 3690  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3691  *
 3692  * This function prints the first part of the ascii representation of
 3693  * @p child, including its name, unit and description (if any - see
 3694  * device_set_desc()).
 3695  *
 3696  * @returns the number of characters printed
 3697  */
 3698 int
 3699 bus_print_child_header(device_t dev, device_t child)
 3700 {
 3701         int     retval = 0;
 3702 
 3703         if (device_get_desc(child)) {
 3704                 retval += device_printf(child, "<%s>", device_get_desc(child));
 3705         } else {
 3706                 retval += printf("%s", device_get_nameunit(child));
 3707         }
 3708 
 3709         return (retval);
 3710 }
 3711 
 3712 /**
 3713  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3714  *
 3715  * This function prints the last part of the ascii representation of
 3716  * @p child, which consists of the string @c " on " followed by the
 3717  * name and unit of the @p dev.
 3718  *
 3719  * @returns the number of characters printed
 3720  */
 3721 int
 3722 bus_print_child_footer(device_t dev, device_t child)
 3723 {
 3724         return (printf(" on %s\n", device_get_nameunit(dev)));
 3725 }
 3726 
 3727 /**
 3728  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3729  *
 3730  * This function prints out the VM domain for the given device.
 3731  *
 3732  * @returns the number of characters printed
 3733  */
 3734 int
 3735 bus_print_child_domain(device_t dev, device_t child)
 3736 {
 3737         int domain;
 3738 
 3739         /* No domain? Don't print anything */
 3740         if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
 3741                 return (0);
 3742 
 3743         return (printf(" numa-domain %d", domain));
 3744 }
 3745 
 3746 /**
 3747  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3748  *
 3749  * This function simply calls bus_print_child_header() followed by
 3750  * bus_print_child_footer().
 3751  *
 3752  * @returns the number of characters printed
 3753  */
 3754 int
 3755 bus_generic_print_child(device_t dev, device_t child)
 3756 {
 3757         int     retval = 0;
 3758 
 3759         retval += bus_print_child_header(dev, child);
 3760         retval += bus_print_child_domain(dev, child);
 3761         retval += bus_print_child_footer(dev, child);
 3762 
 3763         return (retval);
 3764 }
 3765 
 3766 /**
 3767  * @brief Stub function for implementing BUS_READ_IVAR().
 3768  * 
 3769  * @returns ENOENT
 3770  */
 3771 int
 3772 bus_generic_read_ivar(device_t dev, device_t child, int index,
 3773     uintptr_t * result)
 3774 {
 3775         return (ENOENT);
 3776 }
 3777 
 3778 /**
 3779  * @brief Stub function for implementing BUS_WRITE_IVAR().
 3780  * 
 3781  * @returns ENOENT
 3782  */
 3783 int
 3784 bus_generic_write_ivar(device_t dev, device_t child, int index,
 3785     uintptr_t value)
 3786 {
 3787         return (ENOENT);
 3788 }
 3789 
 3790 /**
 3791  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
 3792  * 
 3793  * @returns NULL
 3794  */
 3795 struct resource_list *
 3796 bus_generic_get_resource_list(device_t dev, device_t child)
 3797 {
 3798         return (NULL);
 3799 }
 3800 
 3801 /**
 3802  * @brief Helper function for implementing BUS_DRIVER_ADDED().
 3803  *
 3804  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
 3805  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
 3806  * and then calls device_probe_and_attach() for each unattached child.
 3807  */
 3808 void
 3809 bus_generic_driver_added(device_t dev, driver_t *driver)
 3810 {
 3811         device_t child;
 3812 
 3813         DEVICE_IDENTIFY(driver, dev);
 3814         TAILQ_FOREACH(child, &dev->children, link) {
 3815                 if (child->state == DS_NOTPRESENT ||
 3816                     (child->flags & DF_REBID))
 3817                         device_probe_and_attach(child);
 3818         }
 3819 }
 3820 
 3821 /**
 3822  * @brief Helper function for implementing BUS_NEW_PASS().
 3823  *
 3824  * This implementing of BUS_NEW_PASS() first calls the identify
 3825  * routines for any drivers that probe at the current pass.  Then it
 3826  * walks the list of devices for this bus.  If a device is already
 3827  * attached, then it calls BUS_NEW_PASS() on that device.  If the
 3828  * device is not already attached, it attempts to attach a driver to
 3829  * it.
 3830  */
 3831 void
 3832 bus_generic_new_pass(device_t dev)
 3833 {
 3834         driverlink_t dl;
 3835         devclass_t dc;
 3836         device_t child;
 3837 
 3838         dc = dev->devclass;
 3839         TAILQ_FOREACH(dl, &dc->drivers, link) {
 3840                 if (dl->pass == bus_current_pass)
 3841                         DEVICE_IDENTIFY(dl->driver, dev);
 3842         }
 3843         TAILQ_FOREACH(child, &dev->children, link) {
 3844                 if (child->state >= DS_ATTACHED)
 3845                         BUS_NEW_PASS(child);
 3846                 else if (child->state == DS_NOTPRESENT)
 3847                         device_probe_and_attach(child);
 3848         }
 3849 }
 3850 
 3851 /**
 3852  * @brief Helper function for implementing BUS_SETUP_INTR().
 3853  *
 3854  * This simple implementation of BUS_SETUP_INTR() simply calls the
 3855  * BUS_SETUP_INTR() method of the parent of @p dev.
 3856  */
 3857 int
 3858 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
 3859     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 
 3860     void **cookiep)
 3861 {
 3862         /* Propagate up the bus hierarchy until someone handles it. */
 3863         if (dev->parent)
 3864                 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
 3865                     filter, intr, arg, cookiep));
 3866         return (EINVAL);
 3867 }
 3868 
 3869 /**
 3870  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
 3871  *
 3872  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
 3873  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
 3874  */
 3875 int
 3876 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
 3877     void *cookie)
 3878 {
 3879         /* Propagate up the bus hierarchy until someone handles it. */
 3880         if (dev->parent)
 3881                 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
 3882         return (EINVAL);
 3883 }
 3884 
 3885 /**
 3886  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
 3887  *
 3888  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
 3889  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
 3890  */
 3891 int
 3892 bus_generic_adjust_resource(device_t dev, device_t child, int type,
 3893     struct resource *r, u_long start, u_long end)
 3894 {
 3895         /* Propagate up the bus hierarchy until someone handles it. */
 3896         if (dev->parent)
 3897                 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
 3898                     end));
 3899         return (EINVAL);
 3900 }
 3901 
 3902 /**
 3903  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3904  *
 3905  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
 3906  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
 3907  */
 3908 struct resource *
 3909 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
 3910     u_long start, u_long end, u_long count, u_int flags)
 3911 {
 3912         /* Propagate up the bus hierarchy until someone handles it. */
 3913         if (dev->parent)
 3914                 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
 3915                     start, end, count, flags));
 3916         return (NULL);
 3917 }
 3918 
 3919 /**
 3920  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3921  *
 3922  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
 3923  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
 3924  */
 3925 int
 3926 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
 3927     struct resource *r)
 3928 {
 3929         /* Propagate up the bus hierarchy until someone handles it. */
 3930         if (dev->parent)
 3931                 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
 3932                     r));
 3933         return (EINVAL);
 3934 }
 3935 
 3936 /**
 3937  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
 3938  *
 3939  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
 3940  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
 3941  */
 3942 int
 3943 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
 3944     struct resource *r)
 3945 {
 3946         /* Propagate up the bus hierarchy until someone handles it. */
 3947         if (dev->parent)
 3948                 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3949                     r));
 3950         return (EINVAL);
 3951 }
 3952 
 3953 /**
 3954  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
 3955  *
 3956  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
 3957  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
 3958  */
 3959 int
 3960 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
 3961     int rid, struct resource *r)
 3962 {
 3963         /* Propagate up the bus hierarchy until someone handles it. */
 3964         if (dev->parent)
 3965                 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3966                     r));
 3967         return (EINVAL);
 3968 }
 3969 
 3970 /**
 3971  * @brief Helper function for implementing BUS_BIND_INTR().
 3972  *
 3973  * This simple implementation of BUS_BIND_INTR() simply calls the
 3974  * BUS_BIND_INTR() method of the parent of @p dev.
 3975  */
 3976 int
 3977 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
 3978     int cpu)
 3979 {
 3980 
 3981         /* Propagate up the bus hierarchy until someone handles it. */
 3982         if (dev->parent)
 3983                 return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
 3984         return (EINVAL);
 3985 }
 3986 
 3987 /**
 3988  * @brief Helper function for implementing BUS_CONFIG_INTR().
 3989  *
 3990  * This simple implementation of BUS_CONFIG_INTR() simply calls the
 3991  * BUS_CONFIG_INTR() method of the parent of @p dev.
 3992  */
 3993 int
 3994 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
 3995     enum intr_polarity pol)
 3996 {
 3997 
 3998         /* Propagate up the bus hierarchy until someone handles it. */
 3999         if (dev->parent)
 4000                 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
 4001         return (EINVAL);
 4002 }
 4003 
 4004 /**
 4005  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
 4006  *
 4007  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
 4008  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
 4009  */
 4010 int
 4011 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
 4012     void *cookie, const char *descr)
 4013 {
 4014 
 4015         /* Propagate up the bus hierarchy until someone handles it. */
 4016         if (dev->parent)
 4017                 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
 4018                     descr));
 4019         return (EINVAL);
 4020 }
 4021 
 4022 /**
 4023  * @brief Helper function for implementing BUS_GET_DMA_TAG().
 4024  *
 4025  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
 4026  * BUS_GET_DMA_TAG() method of the parent of @p dev.
 4027  */
 4028 bus_dma_tag_t
 4029 bus_generic_get_dma_tag(device_t dev, device_t child)
 4030 {
 4031 
 4032         /* Propagate up the bus hierarchy until someone handles it. */
 4033         if (dev->parent != NULL)
 4034                 return (BUS_GET_DMA_TAG(dev->parent, child));
 4035         return (NULL);
 4036 }
 4037 
 4038 /**
 4039  * @brief Helper function for implementing BUS_GET_RESOURCE().
 4040  *
 4041  * This implementation of BUS_GET_RESOURCE() uses the
 4042  * resource_list_find() function to do most of the work. It calls
 4043  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 4044  * search.
 4045  */
 4046 int
 4047 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
 4048     u_long *startp, u_long *countp)
 4049 {
 4050         struct resource_list *          rl = NULL;
 4051         struct resource_list_entry *    rle = NULL;
 4052 
 4053         rl = BUS_GET_RESOURCE_LIST(dev, child);
 4054         if (!rl)
 4055                 return (EINVAL);
 4056 
 4057         rle = resource_list_find(rl, type, rid);
 4058         if (!rle)
 4059                 return (ENOENT);
 4060 
 4061         if (startp)
 4062                 *startp = rle->start;
 4063         if (countp)
 4064                 *countp = rle->count;
 4065 
 4066         return (0);
 4067 }
 4068 
 4069 /**
 4070  * @brief Helper function for implementing BUS_SET_RESOURCE().
 4071  *
 4072  * This implementation of BUS_SET_RESOURCE() uses the
 4073  * resource_list_add() function to do most of the work. It calls
 4074  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 4075  * edit.
 4076  */
 4077 int
 4078 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
 4079     u_long start, u_long count)
 4080 {
 4081         struct resource_list *          rl = NULL;
 4082 
 4083         rl = BUS_GET_RESOURCE_LIST(dev, child);
 4084         if (!rl)
 4085                 return (EINVAL);
 4086 
 4087         resource_list_add(rl, type, rid, start, (start + count - 1), count);
 4088 
 4089         return (0);
 4090 }
 4091 
 4092 /**
 4093  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
 4094  *
 4095  * This implementation of BUS_DELETE_RESOURCE() uses the
 4096  * resource_list_delete() function to do most of the work. It calls
 4097  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 4098  * edit.
 4099  */
 4100 void
 4101 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
 4102 {
 4103         struct resource_list *          rl = NULL;
 4104 
 4105         rl = BUS_GET_RESOURCE_LIST(dev, child);
 4106         if (!rl)
 4107                 return;
 4108 
 4109         resource_list_delete(rl, type, rid);
 4110 
 4111         return;
 4112 }
 4113 
 4114 /**
 4115  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 4116  *
 4117  * This implementation of BUS_RELEASE_RESOURCE() uses the
 4118  * resource_list_release() function to do most of the work. It calls
 4119  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 4120  */
 4121 int
 4122 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
 4123     int rid, struct resource *r)
 4124 {
 4125         struct resource_list *          rl = NULL;
 4126 
 4127         if (device_get_parent(child) != dev)
 4128                 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
 4129                     type, rid, r));
 4130 
 4131         rl = BUS_GET_RESOURCE_LIST(dev, child);
 4132         if (!rl)
 4133                 return (EINVAL);
 4134 
 4135         return (resource_list_release(rl, dev, child, type, rid, r));
 4136 }
 4137 
 4138 /**
 4139  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 4140  *
 4141  * This implementation of BUS_ALLOC_RESOURCE() uses the
 4142  * resource_list_alloc() function to do most of the work. It calls
 4143  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 4144  */
 4145 struct resource *
 4146 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
 4147     int *rid, u_long start, u_long end, u_long count, u_int flags)
 4148 {
 4149         struct resource_list *          rl = NULL;
 4150 
 4151         if (device_get_parent(child) != dev)
 4152                 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
 4153                     type, rid, start, end, count, flags));
 4154 
 4155         rl = BUS_GET_RESOURCE_LIST(dev, child);
 4156         if (!rl)
 4157                 return (NULL);
 4158 
 4159         return (resource_list_alloc(rl, dev, child, type, rid,
 4160             start, end, count, flags));
 4161 }
 4162 
 4163 /**
 4164  * @brief Helper function for implementing BUS_CHILD_PRESENT().
 4165  *
 4166  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
 4167  * BUS_CHILD_PRESENT() method of the parent of @p dev.
 4168  */
 4169 int
 4170 bus_generic_child_present(device_t dev, device_t child)
 4171 {
 4172         return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
 4173 }
 4174 
 4175 int
 4176 bus_generic_get_domain(device_t dev, device_t child, int *domain)
 4177 {
 4178 
 4179         if (dev->parent)
 4180                 return (BUS_GET_DOMAIN(dev->parent, dev, domain));
 4181 
 4182         return (ENOENT);
 4183 }
 4184 
 4185 /*
 4186  * Some convenience functions to make it easier for drivers to use the
 4187  * resource-management functions.  All these really do is hide the
 4188  * indirection through the parent's method table, making for slightly
 4189  * less-wordy code.  In the future, it might make sense for this code
 4190  * to maintain some sort of a list of resources allocated by each device.
 4191  */
 4192 
 4193 int
 4194 bus_alloc_resources(device_t dev, struct resource_spec *rs,
 4195     struct resource **res)
 4196 {
 4197         int i;
 4198 
 4199         for (i = 0; rs[i].type != -1; i++)
 4200                 res[i] = NULL;
 4201         for (i = 0; rs[i].type != -1; i++) {
 4202                 res[i] = bus_alloc_resource_any(dev,
 4203                     rs[i].type, &rs[i].rid, rs[i].flags);
 4204                 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
 4205                         bus_release_resources(dev, rs, res);
 4206                         return (ENXIO);
 4207                 }
 4208         }
 4209         return (0);
 4210 }
 4211 
 4212 void
 4213 bus_release_resources(device_t dev, const struct resource_spec *rs,
 4214     struct resource **res)
 4215 {
 4216         int i;
 4217 
 4218         for (i = 0; rs[i].type != -1; i++)
 4219                 if (res[i] != NULL) {
 4220                         bus_release_resource(
 4221                             dev, rs[i].type, rs[i].rid, res[i]);
 4222                         res[i] = NULL;
 4223                 }
 4224 }
 4225 
 4226 /**
 4227  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
 4228  *
 4229  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
 4230  * parent of @p dev.
 4231  */
 4232 struct resource *
 4233 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
 4234     u_long count, u_int flags)
 4235 {
 4236         if (dev->parent == NULL)
 4237                 return (NULL);
 4238         return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
 4239             count, flags));
 4240 }
 4241 
 4242 /**
 4243  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
 4244  *
 4245  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
 4246  * parent of @p dev.
 4247  */
 4248 int
 4249 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
 4250     u_long end)
 4251 {
 4252         if (dev->parent == NULL)
 4253                 return (EINVAL);
 4254         return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
 4255 }
 4256 
 4257 /**
 4258  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
 4259  *
 4260  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
 4261  * parent of @p dev.
 4262  */
 4263 int
 4264 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
 4265 {
 4266         if (dev->parent == NULL)
 4267                 return (EINVAL);
 4268         return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 4269 }
 4270 
 4271 /**
 4272  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
 4273  *
 4274  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
 4275  * parent of @p dev.
 4276  */
 4277 int
 4278 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
 4279 {
 4280         if (dev->parent == NULL)
 4281                 return (EINVAL);
 4282         return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 4283 }
 4284 
 4285 /**
 4286  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
 4287  *
 4288  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
 4289  * parent of @p dev.
 4290  */
 4291 int
 4292 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
 4293 {
 4294         if (dev->parent == NULL)
 4295                 return (EINVAL);
 4296         return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
 4297 }
 4298 
 4299 /**
 4300  * @brief Wrapper function for BUS_SETUP_INTR().
 4301  *
 4302  * This function simply calls the BUS_SETUP_INTR() method of the
 4303  * parent of @p dev.
 4304  */
 4305 int
 4306 bus_setup_intr(device_t dev, struct resource *r, int flags,
 4307     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
 4308 {
 4309         int error;
 4310 
 4311         if (dev->parent == NULL)
 4312                 return (EINVAL);
 4313         error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
 4314             arg, cookiep);
 4315         if (error != 0)
 4316                 return (error);
 4317         if (handler != NULL && !(flags & INTR_MPSAFE))
 4318                 device_printf(dev, "[GIANT-LOCKED]\n");
 4319         return (0);
 4320 }
 4321 
 4322 /**
 4323  * @brief Wrapper function for BUS_TEARDOWN_INTR().
 4324  *
 4325  * This function simply calls the BUS_TEARDOWN_INTR() method of the
 4326  * parent of @p dev.
 4327  */
 4328 int
 4329 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
 4330 {
 4331         if (dev->parent == NULL)
 4332                 return (EINVAL);
 4333         return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
 4334 }
 4335 
 4336 /**
 4337  * @brief Wrapper function for BUS_BIND_INTR().
 4338  *
 4339  * This function simply calls the BUS_BIND_INTR() method of the
 4340  * parent of @p dev.
 4341  */
 4342 int
 4343 bus_bind_intr(device_t dev, struct resource *r, int cpu)
 4344 {
 4345         if (dev->parent == NULL)
 4346                 return (EINVAL);
 4347         return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
 4348 }
 4349 
 4350 /**
 4351  * @brief Wrapper function for BUS_DESCRIBE_INTR().
 4352  *
 4353  * This function first formats the requested description into a
 4354  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
 4355  * the parent of @p dev.
 4356  */
 4357 int
 4358 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
 4359     const char *fmt, ...)
 4360 {
 4361         va_list ap;
 4362         char descr[MAXCOMLEN + 1];
 4363 
 4364         if (dev->parent == NULL)
 4365                 return (EINVAL);
 4366         va_start(ap, fmt);
 4367         vsnprintf(descr, sizeof(descr), fmt, ap);
 4368         va_end(ap);
 4369         return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
 4370 }
 4371 
 4372 /**
 4373  * @brief Wrapper function for BUS_SET_RESOURCE().
 4374  *
 4375  * This function simply calls the BUS_SET_RESOURCE() method of the
 4376  * parent of @p dev.
 4377  */
 4378 int
 4379 bus_set_resource(device_t dev, int type, int rid,
 4380     u_long start, u_long count)
 4381 {
 4382         return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4383             start, count));
 4384 }
 4385 
 4386 /**
 4387  * @brief Wrapper function for BUS_GET_RESOURCE().
 4388  *
 4389  * This function simply calls the BUS_GET_RESOURCE() method of the
 4390  * parent of @p dev.
 4391  */
 4392 int
 4393 bus_get_resource(device_t dev, int type, int rid,
 4394     u_long *startp, u_long *countp)
 4395 {
 4396         return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4397             startp, countp));
 4398 }
 4399 
 4400 /**
 4401  * @brief Wrapper function for BUS_GET_RESOURCE().
 4402  *
 4403  * This function simply calls the BUS_GET_RESOURCE() method of the
 4404  * parent of @p dev and returns the start value.
 4405  */
 4406 u_long
 4407 bus_get_resource_start(device_t dev, int type, int rid)
 4408 {
 4409         u_long start, count;
 4410         int error;
 4411 
 4412         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4413             &start, &count);
 4414         if (error)
 4415                 return (0);
 4416         return (start);
 4417 }
 4418 
 4419 /**
 4420  * @brief Wrapper function for BUS_GET_RESOURCE().
 4421  *
 4422  * This function simply calls the BUS_GET_RESOURCE() method of the
 4423  * parent of @p dev and returns the count value.
 4424  */
 4425 u_long
 4426 bus_get_resource_count(device_t dev, int type, int rid)
 4427 {
 4428         u_long start, count;
 4429         int error;
 4430 
 4431         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4432             &start, &count);
 4433         if (error)
 4434                 return (0);
 4435         return (count);
 4436 }
 4437 
 4438 /**
 4439  * @brief Wrapper function for BUS_DELETE_RESOURCE().
 4440  *
 4441  * This function simply calls the BUS_DELETE_RESOURCE() method of the
 4442  * parent of @p dev.
 4443  */
 4444 void
 4445 bus_delete_resource(device_t dev, int type, int rid)
 4446 {
 4447         BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
 4448 }
 4449 
 4450 /**
 4451  * @brief Wrapper function for BUS_CHILD_PRESENT().
 4452  *
 4453  * This function simply calls the BUS_CHILD_PRESENT() method of the
 4454  * parent of @p dev.
 4455  */
 4456 int
 4457 bus_child_present(device_t child)
 4458 {
 4459         return (BUS_CHILD_PRESENT(device_get_parent(child), child));
 4460 }
 4461 
 4462 /**
 4463  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
 4464  *
 4465  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
 4466  * parent of @p dev.
 4467  */
 4468 int
 4469 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
 4470 {
 4471         device_t parent;
 4472 
 4473         parent = device_get_parent(child);
 4474         if (parent == NULL) {
 4475                 *buf = '\0';
 4476                 return (0);
 4477         }
 4478         return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
 4479 }
 4480 
 4481 /**
 4482  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
 4483  *
 4484  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
 4485  * parent of @p dev.
 4486  */
 4487 int
 4488 bus_child_location_str(device_t child, char *buf, size_t buflen)
 4489 {
 4490         device_t parent;
 4491 
 4492         parent = device_get_parent(child);
 4493         if (parent == NULL) {
 4494                 *buf = '\0';
 4495                 return (0);
 4496         }
 4497         return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
 4498 }
 4499 
 4500 /**
 4501  * @brief Wrapper function for BUS_GET_DMA_TAG().
 4502  *
 4503  * This function simply calls the BUS_GET_DMA_TAG() method of the
 4504  * parent of @p dev.
 4505  */
 4506 bus_dma_tag_t
 4507 bus_get_dma_tag(device_t dev)
 4508 {
 4509         device_t parent;
 4510 
 4511         parent = device_get_parent(dev);
 4512         if (parent == NULL)
 4513                 return (NULL);
 4514         return (BUS_GET_DMA_TAG(parent, dev));
 4515 }
 4516 
 4517 /**
 4518  * @brief Wrapper function for BUS_GET_DOMAIN().
 4519  *
 4520  * This function simply calls the BUS_GET_DOMAIN() method of the
 4521  * parent of @p dev.
 4522  */
 4523 int
 4524 bus_get_domain(device_t dev, int *domain)
 4525 {
 4526         return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
 4527 }
 4528 
 4529 /* Resume all devices and then notify userland that we're up again. */
 4530 static int
 4531 root_resume(device_t dev)
 4532 {
 4533         int error;
 4534 
 4535         error = bus_generic_resume(dev);
 4536         if (error == 0)
 4537                 devctl_notify("kern", "power", "resume", NULL);
 4538         return (error);
 4539 }
 4540 
 4541 static int
 4542 root_print_child(device_t dev, device_t child)
 4543 {
 4544         int     retval = 0;
 4545 
 4546         retval += bus_print_child_header(dev, child);
 4547         retval += printf("\n");
 4548 
 4549         return (retval);
 4550 }
 4551 
 4552 static int
 4553 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
 4554     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
 4555 {
 4556         /*
 4557          * If an interrupt mapping gets to here something bad has happened.
 4558          */
 4559         panic("root_setup_intr");
 4560 }
 4561 
 4562 /*
 4563  * If we get here, assume that the device is permanant and really is
 4564  * present in the system.  Removable bus drivers are expected to intercept
 4565  * this call long before it gets here.  We return -1 so that drivers that
 4566  * really care can check vs -1 or some ERRNO returned higher in the food
 4567  * chain.
 4568  */
 4569 static int
 4570 root_child_present(device_t dev, device_t child)
 4571 {
 4572         return (-1);
 4573 }
 4574 
 4575 static kobj_method_t root_methods[] = {
 4576         /* Device interface */
 4577         KOBJMETHOD(device_shutdown,     bus_generic_shutdown),
 4578         KOBJMETHOD(device_suspend,      bus_generic_suspend),
 4579         KOBJMETHOD(device_resume,       root_resume),
 4580 
 4581         /* Bus interface */
 4582         KOBJMETHOD(bus_print_child,     root_print_child),
 4583         KOBJMETHOD(bus_read_ivar,       bus_generic_read_ivar),
 4584         KOBJMETHOD(bus_write_ivar,      bus_generic_write_ivar),
 4585         KOBJMETHOD(bus_setup_intr,      root_setup_intr),
 4586         KOBJMETHOD(bus_child_present,   root_child_present),
 4587 
 4588         KOBJMETHOD_END
 4589 };
 4590 
 4591 static driver_t root_driver = {
 4592         "root",
 4593         root_methods,
 4594         1,                      /* no softc */
 4595 };
 4596 
 4597 device_t        root_bus;
 4598 devclass_t      root_devclass;
 4599 
 4600 static int
 4601 root_bus_module_handler(module_t mod, int what, void* arg)
 4602 {
 4603         switch (what) {
 4604         case MOD_LOAD:
 4605                 TAILQ_INIT(&bus_data_devices);
 4606                 kobj_class_compile((kobj_class_t) &root_driver);
 4607                 root_bus = make_device(NULL, "root", 0);
 4608                 root_bus->desc = "System root bus";
 4609                 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
 4610                 root_bus->driver = &root_driver;
 4611                 root_bus->state = DS_ATTACHED;
 4612                 root_devclass = devclass_find_internal("root", NULL, FALSE);
 4613                 devinit();
 4614                 return (0);
 4615 
 4616         case MOD_SHUTDOWN:
 4617                 device_shutdown(root_bus);
 4618                 return (0);
 4619         default:
 4620                 return (EOPNOTSUPP);
 4621         }
 4622 
 4623         return (0);
 4624 }
 4625 
 4626 static moduledata_t root_bus_mod = {
 4627         "rootbus",
 4628         root_bus_module_handler,
 4629         NULL
 4630 };
 4631 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
 4632 
 4633 /**
 4634  * @brief Automatically configure devices
 4635  *
 4636  * This function begins the autoconfiguration process by calling
 4637  * device_probe_and_attach() for each child of the @c root0 device.
 4638  */ 
 4639 void
 4640 root_bus_configure(void)
 4641 {
 4642 
 4643         PDEBUG(("."));
 4644 
 4645         /* Eventually this will be split up, but this is sufficient for now. */
 4646         bus_set_pass(BUS_PASS_DEFAULT);
 4647 }
 4648 
 4649 /**
 4650  * @brief Module handler for registering device drivers
 4651  *
 4652  * This module handler is used to automatically register device
 4653  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
 4654  * devclass_add_driver() for the driver described by the
 4655  * driver_module_data structure pointed to by @p arg
 4656  */
 4657 int
 4658 driver_module_handler(module_t mod, int what, void *arg)
 4659 {
 4660         struct driver_module_data *dmd;
 4661         devclass_t bus_devclass;
 4662         kobj_class_t driver;
 4663         int error, pass;
 4664 
 4665         dmd = (struct driver_module_data *)arg;
 4666         bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
 4667         error = 0;
 4668 
 4669         switch (what) {
 4670         case MOD_LOAD:
 4671                 if (dmd->dmd_chainevh)
 4672                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4673 
 4674                 pass = dmd->dmd_pass;
 4675                 driver = dmd->dmd_driver;
 4676                 PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
 4677                     DRIVERNAME(driver), dmd->dmd_busname, pass));
 4678                 error = devclass_add_driver(bus_devclass, driver, pass,
 4679                     dmd->dmd_devclass);
 4680                 break;
 4681 
 4682         case MOD_UNLOAD:
 4683                 PDEBUG(("Unloading module: driver %s from bus %s",
 4684                     DRIVERNAME(dmd->dmd_driver),
 4685                     dmd->dmd_busname));
 4686                 error = devclass_delete_driver(bus_devclass,
 4687                     dmd->dmd_driver);
 4688 
 4689                 if (!error && dmd->dmd_chainevh)
 4690                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4691                 break;
 4692         case MOD_QUIESCE:
 4693                 PDEBUG(("Quiesce module: driver %s from bus %s",
 4694                     DRIVERNAME(dmd->dmd_driver),
 4695                     dmd->dmd_busname));
 4696                 error = devclass_quiesce_driver(bus_devclass,
 4697                     dmd->dmd_driver);
 4698 
 4699                 if (!error && dmd->dmd_chainevh)
 4700                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4701                 break;
 4702         default:
 4703                 error = EOPNOTSUPP;
 4704                 break;
 4705         }
 4706 
 4707         return (error);
 4708 }
 4709 
 4710 /**
 4711  * @brief Enumerate all hinted devices for this bus.
 4712  *
 4713  * Walks through the hints for this bus and calls the bus_hinted_child
 4714  * routine for each one it fines.  It searches first for the specific
 4715  * bus that's being probed for hinted children (eg isa0), and then for
 4716  * generic children (eg isa).
 4717  *
 4718  * @param       dev     bus device to enumerate
 4719  */
 4720 void
 4721 bus_enumerate_hinted_children(device_t bus)
 4722 {
 4723         int i;
 4724         const char *dname, *busname;
 4725         int dunit;
 4726 
 4727         /*
 4728          * enumerate all devices on the specific bus
 4729          */
 4730         busname = device_get_nameunit(bus);
 4731         i = 0;
 4732         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 4733                 BUS_HINTED_CHILD(bus, dname, dunit);
 4734 
 4735         /*
 4736          * and all the generic ones.
 4737          */
 4738         busname = device_get_name(bus);
 4739         i = 0;
 4740         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 4741                 BUS_HINTED_CHILD(bus, dname, dunit);
 4742 }
 4743 
 4744 #ifdef BUS_DEBUG
 4745 
 4746 /* the _short versions avoid iteration by not calling anything that prints
 4747  * more than oneliners. I love oneliners.
 4748  */
 4749 
 4750 static void
 4751 print_device_short(device_t dev, int indent)
 4752 {
 4753         if (!dev)
 4754                 return;
 4755 
 4756         indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
 4757             dev->unit, dev->desc,
 4758             (dev->parent? "":"no "),
 4759             (TAILQ_EMPTY(&dev->children)? "no ":""),
 4760             (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
 4761             (dev->flags&DF_FIXEDCLASS? "fixed,":""),
 4762             (dev->flags&DF_WILDCARD? "wildcard,":""),
 4763             (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
 4764             (dev->flags&DF_REBID? "rebiddable,":""),
 4765             (dev->ivars? "":"no "),
 4766             (dev->softc? "":"no "),
 4767             dev->busy));
 4768 }
 4769 
 4770 static void
 4771 print_device(device_t dev, int indent)
 4772 {
 4773         if (!dev)
 4774                 return;
 4775 
 4776         print_device_short(dev, indent);
 4777 
 4778         indentprintf(("Parent:\n"));
 4779         print_device_short(dev->parent, indent+1);
 4780         indentprintf(("Driver:\n"));
 4781         print_driver_short(dev->driver, indent+1);
 4782         indentprintf(("Devclass:\n"));
 4783         print_devclass_short(dev->devclass, indent+1);
 4784 }
 4785 
 4786 void
 4787 print_device_tree_short(device_t dev, int indent)
 4788 /* print the device and all its children (indented) */
 4789 {
 4790         device_t child;
 4791 
 4792         if (!dev)
 4793                 return;
 4794 
 4795         print_device_short(dev, indent);
 4796 
 4797         TAILQ_FOREACH(child, &dev->children, link) {
 4798                 print_device_tree_short(child, indent+1);
 4799         }
 4800 }
 4801 
 4802 void
 4803 print_device_tree(device_t dev, int indent)
 4804 /* print the device and all its children (indented) */
 4805 {
 4806         device_t child;
 4807 
 4808         if (!dev)
 4809                 return;
 4810 
 4811         print_device(dev, indent);
 4812 
 4813         TAILQ_FOREACH(child, &dev->children, link) {
 4814                 print_device_tree(child, indent+1);
 4815         }
 4816 }
 4817 
 4818 static void
 4819 print_driver_short(driver_t *driver, int indent)
 4820 {
 4821         if (!driver)
 4822                 return;
 4823 
 4824         indentprintf(("driver %s: softc size = %zd\n",
 4825             driver->name, driver->size));
 4826 }
 4827 
 4828 static void
 4829 print_driver(driver_t *driver, int indent)
 4830 {
 4831         if (!driver)
 4832                 return;
 4833 
 4834         print_driver_short(driver, indent);
 4835 }
 4836 
 4837 static void
 4838 print_driver_list(driver_list_t drivers, int indent)
 4839 {
 4840         driverlink_t driver;
 4841 
 4842         TAILQ_FOREACH(driver, &drivers, link) {
 4843                 print_driver(driver->driver, indent);
 4844         }
 4845 }
 4846 
 4847 static void
 4848 print_devclass_short(devclass_t dc, int indent)
 4849 {
 4850         if ( !dc )
 4851                 return;
 4852 
 4853         indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
 4854 }
 4855 
 4856 static void
 4857 print_devclass(devclass_t dc, int indent)
 4858 {
 4859         int i;
 4860 
 4861         if ( !dc )
 4862                 return;
 4863 
 4864         print_devclass_short(dc, indent);
 4865         indentprintf(("Drivers:\n"));
 4866         print_driver_list(dc->drivers, indent+1);
 4867 
 4868         indentprintf(("Devices:\n"));
 4869         for (i = 0; i < dc->maxunit; i++)
 4870                 if (dc->devices[i])
 4871                         print_device(dc->devices[i], indent+1);
 4872 }
 4873 
 4874 void
 4875 print_devclass_list_short(void)
 4876 {
 4877         devclass_t dc;
 4878 
 4879         printf("Short listing of devclasses, drivers & devices:\n");
 4880         TAILQ_FOREACH(dc, &devclasses, link) {
 4881                 print_devclass_short(dc, 0);
 4882         }
 4883 }
 4884 
 4885 void
 4886 print_devclass_list(void)
 4887 {
 4888         devclass_t dc;
 4889 
 4890         printf("Full listing of devclasses, drivers & devices:\n");
 4891         TAILQ_FOREACH(dc, &devclasses, link) {
 4892                 print_devclass(dc, 0);
 4893         }
 4894 }
 4895 
 4896 #endif
 4897 
 4898 /*
 4899  * User-space access to the device tree.
 4900  *
 4901  * We implement a small set of nodes:
 4902  *
 4903  * hw.bus                       Single integer read method to obtain the
 4904  *                              current generation count.
 4905  * hw.bus.devices               Reads the entire device tree in flat space.
 4906  * hw.bus.rman                  Resource manager interface
 4907  *
 4908  * We might like to add the ability to scan devclasses and/or drivers to
 4909  * determine what else is currently loaded/available.
 4910  */
 4911 
 4912 static int
 4913 sysctl_bus(SYSCTL_HANDLER_ARGS)
 4914 {
 4915         struct u_businfo        ubus;
 4916 
 4917         ubus.ub_version = BUS_USER_VERSION;
 4918         ubus.ub_generation = bus_data_generation;
 4919 
 4920         return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
 4921 }
 4922 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
 4923     "bus-related data");
 4924 
 4925 static int
 4926 sysctl_devices(SYSCTL_HANDLER_ARGS)
 4927 {
 4928         int                     *name = (int *)arg1;
 4929         u_int                   namelen = arg2;
 4930         int                     index;
 4931         struct device           *dev;
 4932         struct u_device         udev;   /* XXX this is a bit big */
 4933         int                     error;
 4934 
 4935         if (namelen != 2)
 4936                 return (EINVAL);
 4937 
 4938         if (bus_data_generation_check(name[0]))
 4939                 return (EINVAL);
 4940 
 4941         index = name[1];
 4942 
 4943         /*
 4944          * Scan the list of devices, looking for the requested index.
 4945          */
 4946         TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 4947                 if (index-- == 0)
 4948                         break;
 4949         }
 4950         if (dev == NULL)
 4951                 return (ENOENT);
 4952 
 4953         /*
 4954          * Populate the return array.
 4955          */
 4956         bzero(&udev, sizeof(udev));
 4957         udev.dv_handle = (uintptr_t)dev;
 4958         udev.dv_parent = (uintptr_t)dev->parent;
 4959         if (dev->nameunit != NULL)
 4960                 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
 4961         if (dev->desc != NULL)
 4962                 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
 4963         if (dev->driver != NULL && dev->driver->name != NULL)
 4964                 strlcpy(udev.dv_drivername, dev->driver->name,
 4965                     sizeof(udev.dv_drivername));
 4966         bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
 4967         bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
 4968         udev.dv_devflags = dev->devflags;
 4969         udev.dv_flags = dev->flags;
 4970         udev.dv_state = dev->state;
 4971         error = SYSCTL_OUT(req, &udev, sizeof(udev));
 4972         return (error);
 4973 }
 4974 
 4975 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
 4976     "system device tree");
 4977 
 4978 int
 4979 bus_data_generation_check(int generation)
 4980 {
 4981         if (generation != bus_data_generation)
 4982                 return (1);
 4983 
 4984         /* XXX generate optimised lists here? */
 4985         return (0);
 4986 }
 4987 
 4988 void
 4989 bus_data_generation_update(void)
 4990 {
 4991         bus_data_generation++;
 4992 }
 4993 
 4994 int
 4995 bus_free_resource(device_t dev, int type, struct resource *r)
 4996 {
 4997         if (r == NULL)
 4998                 return (0);
 4999         return (bus_release_resource(dev, type, rman_get_rid(r), r));
 5000 }

Cache object: 30b967eb38a3509185d95ba807e014bb


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.