The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_bus.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 1997,1998,2003 Doug Rabson
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD: releng/12.0/sys/kern/subr_bus.c 338324 2018-08-26 12:51:46Z markm $");
   31 
   32 #include "opt_bus.h"
   33 #include "opt_ddb.h"
   34 
   35 #include <sys/param.h>
   36 #include <sys/conf.h>
   37 #include <sys/eventhandler.h>
   38 #include <sys/filio.h>
   39 #include <sys/lock.h>
   40 #include <sys/kernel.h>
   41 #include <sys/kobj.h>
   42 #include <sys/limits.h>
   43 #include <sys/malloc.h>
   44 #include <sys/module.h>
   45 #include <sys/mutex.h>
   46 #include <sys/poll.h>
   47 #include <sys/priv.h>
   48 #include <sys/proc.h>
   49 #include <sys/condvar.h>
   50 #include <sys/queue.h>
   51 #include <machine/bus.h>
   52 #include <sys/random.h>
   53 #include <sys/rman.h>
   54 #include <sys/sbuf.h>
   55 #include <sys/selinfo.h>
   56 #include <sys/signalvar.h>
   57 #include <sys/smp.h>
   58 #include <sys/sysctl.h>
   59 #include <sys/systm.h>
   60 #include <sys/uio.h>
   61 #include <sys/bus.h>
   62 #include <sys/cpuset.h>
   63 
   64 #include <net/vnet.h>
   65 
   66 #include <machine/cpu.h>
   67 #include <machine/stdarg.h>
   68 
   69 #include <vm/uma.h>
   70 #include <vm/vm.h>
   71 
   72 #include <ddb/ddb.h>
   73 
   74 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
   75 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
   76 
   77 /*
   78  * Used to attach drivers to devclasses.
   79  */
   80 typedef struct driverlink *driverlink_t;
   81 struct driverlink {
   82         kobj_class_t    driver;
   83         TAILQ_ENTRY(driverlink) link;   /* list of drivers in devclass */
   84         int             pass;
   85         int             flags;
   86 #define DL_DEFERRED_PROBE       1       /* Probe deferred on this */
   87         TAILQ_ENTRY(driverlink) passlink;
   88 };
   89 
   90 /*
   91  * Forward declarations
   92  */
   93 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
   94 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
   95 typedef TAILQ_HEAD(device_list, device) device_list_t;
   96 
   97 struct devclass {
   98         TAILQ_ENTRY(devclass) link;
   99         devclass_t      parent;         /* parent in devclass hierarchy */
  100         driver_list_t   drivers;     /* bus devclasses store drivers for bus */
  101         char            *name;
  102         device_t        *devices;       /* array of devices indexed by unit */
  103         int             maxunit;        /* size of devices array */
  104         int             flags;
  105 #define DC_HAS_CHILDREN         1
  106 
  107         struct sysctl_ctx_list sysctl_ctx;
  108         struct sysctl_oid *sysctl_tree;
  109 };
  110 
  111 /**
  112  * @brief Implementation of device.
  113  */
  114 struct device {
  115         /*
  116          * A device is a kernel object. The first field must be the
  117          * current ops table for the object.
  118          */
  119         KOBJ_FIELDS;
  120 
  121         /*
  122          * Device hierarchy.
  123          */
  124         TAILQ_ENTRY(device)     link;   /**< list of devices in parent */
  125         TAILQ_ENTRY(device)     devlink; /**< global device list membership */
  126         device_t        parent;         /**< parent of this device  */
  127         device_list_t   children;       /**< list of child devices */
  128 
  129         /*
  130          * Details of this device.
  131          */
  132         driver_t        *driver;        /**< current driver */
  133         devclass_t      devclass;       /**< current device class */
  134         int             unit;           /**< current unit number */
  135         char*           nameunit;       /**< name+unit e.g. foodev0 */
  136         char*           desc;           /**< driver specific description */
  137         int             busy;           /**< count of calls to device_busy() */
  138         device_state_t  state;          /**< current device state  */
  139         uint32_t        devflags;       /**< api level flags for device_get_flags() */
  140         u_int           flags;          /**< internal device flags  */
  141         u_int   order;                  /**< order from device_add_child_ordered() */
  142         void    *ivars;                 /**< instance variables  */
  143         void    *softc;                 /**< current driver's variables  */
  144 
  145         struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
  146         struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
  147 };
  148 
  149 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
  150 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
  151 
  152 EVENTHANDLER_LIST_DEFINE(device_attach);
  153 EVENTHANDLER_LIST_DEFINE(device_detach);
  154 EVENTHANDLER_LIST_DEFINE(dev_lookup);
  155 
  156 static void devctl2_init(void);
  157 static bool device_frozen;
  158 
  159 #define DRIVERNAME(d)   ((d)? d->name : "no driver")
  160 #define DEVCLANAME(d)   ((d)? d->name : "no devclass")
  161 
  162 #ifdef BUS_DEBUG
  163 
  164 static int bus_debug = 1;
  165 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
  166     "Bus debug level");
  167 
  168 #define PDEBUG(a)       if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
  169 #define DEVICENAME(d)   ((d)? device_get_name(d): "no device")
  170 
  171 /**
  172  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
  173  * prevent syslog from deleting initial spaces
  174  */
  175 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
  176 
  177 static void print_device_short(device_t dev, int indent);
  178 static void print_device(device_t dev, int indent);
  179 void print_device_tree_short(device_t dev, int indent);
  180 void print_device_tree(device_t dev, int indent);
  181 static void print_driver_short(driver_t *driver, int indent);
  182 static void print_driver(driver_t *driver, int indent);
  183 static void print_driver_list(driver_list_t drivers, int indent);
  184 static void print_devclass_short(devclass_t dc, int indent);
  185 static void print_devclass(devclass_t dc, int indent);
  186 void print_devclass_list_short(void);
  187 void print_devclass_list(void);
  188 
  189 #else
  190 /* Make the compiler ignore the function calls */
  191 #define PDEBUG(a)                       /* nop */
  192 #define DEVICENAME(d)                   /* nop */
  193 
  194 #define print_device_short(d,i)         /* nop */
  195 #define print_device(d,i)               /* nop */
  196 #define print_device_tree_short(d,i)    /* nop */
  197 #define print_device_tree(d,i)          /* nop */
  198 #define print_driver_short(d,i)         /* nop */
  199 #define print_driver(d,i)               /* nop */
  200 #define print_driver_list(d,i)          /* nop */
  201 #define print_devclass_short(d,i)       /* nop */
  202 #define print_devclass(d,i)             /* nop */
  203 #define print_devclass_list_short()     /* nop */
  204 #define print_devclass_list()           /* nop */
  205 #endif
  206 
  207 /*
  208  * dev sysctl tree
  209  */
  210 
  211 enum {
  212         DEVCLASS_SYSCTL_PARENT,
  213 };
  214 
  215 static int
  216 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
  217 {
  218         devclass_t dc = (devclass_t)arg1;
  219         const char *value;
  220 
  221         switch (arg2) {
  222         case DEVCLASS_SYSCTL_PARENT:
  223                 value = dc->parent ? dc->parent->name : "";
  224                 break;
  225         default:
  226                 return (EINVAL);
  227         }
  228         return (SYSCTL_OUT_STR(req, value));
  229 }
  230 
  231 static void
  232 devclass_sysctl_init(devclass_t dc)
  233 {
  234 
  235         if (dc->sysctl_tree != NULL)
  236                 return;
  237         sysctl_ctx_init(&dc->sysctl_ctx);
  238         dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
  239             SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
  240             CTLFLAG_RD, NULL, "");
  241         SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
  242             OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
  243             dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
  244             "parent class");
  245 }
  246 
  247 enum {
  248         DEVICE_SYSCTL_DESC,
  249         DEVICE_SYSCTL_DRIVER,
  250         DEVICE_SYSCTL_LOCATION,
  251         DEVICE_SYSCTL_PNPINFO,
  252         DEVICE_SYSCTL_PARENT,
  253 };
  254 
  255 static int
  256 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
  257 {
  258         device_t dev = (device_t)arg1;
  259         const char *value;
  260         char *buf;
  261         int error;
  262 
  263         buf = NULL;
  264         switch (arg2) {
  265         case DEVICE_SYSCTL_DESC:
  266                 value = dev->desc ? dev->desc : "";
  267                 break;
  268         case DEVICE_SYSCTL_DRIVER:
  269                 value = dev->driver ? dev->driver->name : "";
  270                 break;
  271         case DEVICE_SYSCTL_LOCATION:
  272                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  273                 bus_child_location_str(dev, buf, 1024);
  274                 break;
  275         case DEVICE_SYSCTL_PNPINFO:
  276                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  277                 bus_child_pnpinfo_str(dev, buf, 1024);
  278                 break;
  279         case DEVICE_SYSCTL_PARENT:
  280                 value = dev->parent ? dev->parent->nameunit : "";
  281                 break;
  282         default:
  283                 return (EINVAL);
  284         }
  285         error = SYSCTL_OUT_STR(req, value);
  286         if (buf != NULL)
  287                 free(buf, M_BUS);
  288         return (error);
  289 }
  290 
  291 static void
  292 device_sysctl_init(device_t dev)
  293 {
  294         devclass_t dc = dev->devclass;
  295         int domain;
  296 
  297         if (dev->sysctl_tree != NULL)
  298                 return;
  299         devclass_sysctl_init(dc);
  300         sysctl_ctx_init(&dev->sysctl_ctx);
  301         dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
  302             SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
  303             dev->nameunit + strlen(dc->name),
  304             CTLFLAG_RD, NULL, "", "device_index");
  305         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  306             OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
  307             dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
  308             "device description");
  309         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  310             OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
  311             dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
  312             "device driver name");
  313         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  314             OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
  315             dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
  316             "device location relative to parent");
  317         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  318             OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
  319             dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
  320             "device identification");
  321         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  322             OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
  323             dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
  324             "parent device");
  325         if (bus_get_domain(dev, &domain) == 0)
  326                 SYSCTL_ADD_INT(&dev->sysctl_ctx,
  327                     SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
  328                     CTLFLAG_RD, NULL, domain, "NUMA domain");
  329 }
  330 
  331 static void
  332 device_sysctl_update(device_t dev)
  333 {
  334         devclass_t dc = dev->devclass;
  335 
  336         if (dev->sysctl_tree == NULL)
  337                 return;
  338         sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
  339 }
  340 
  341 static void
  342 device_sysctl_fini(device_t dev)
  343 {
  344         if (dev->sysctl_tree == NULL)
  345                 return;
  346         sysctl_ctx_free(&dev->sysctl_ctx);
  347         dev->sysctl_tree = NULL;
  348 }
  349 
  350 /*
  351  * /dev/devctl implementation
  352  */
  353 
  354 /*
  355  * This design allows only one reader for /dev/devctl.  This is not desirable
  356  * in the long run, but will get a lot of hair out of this implementation.
  357  * Maybe we should make this device a clonable device.
  358  *
  359  * Also note: we specifically do not attach a device to the device_t tree
  360  * to avoid potential chicken and egg problems.  One could argue that all
  361  * of this belongs to the root node.  One could also further argue that the
  362  * sysctl interface that we have not might more properly be an ioctl
  363  * interface, but at this stage of the game, I'm not inclined to rock that
  364  * boat.
  365  *
  366  * I'm also not sure that the SIGIO support is done correctly or not, as
  367  * I copied it from a driver that had SIGIO support that likely hasn't been
  368  * tested since 3.4 or 2.2.8!
  369  */
  370 
  371 /* Deprecated way to adjust queue length */
  372 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
  373 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
  374     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
  375     "devctl disable -- deprecated");
  376 
  377 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
  378 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
  379 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  380 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
  381     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
  382 
  383 static d_open_t         devopen;
  384 static d_close_t        devclose;
  385 static d_read_t         devread;
  386 static d_ioctl_t        devioctl;
  387 static d_poll_t         devpoll;
  388 static d_kqfilter_t     devkqfilter;
  389 
  390 static struct cdevsw dev_cdevsw = {
  391         .d_version =    D_VERSION,
  392         .d_open =       devopen,
  393         .d_close =      devclose,
  394         .d_read =       devread,
  395         .d_ioctl =      devioctl,
  396         .d_poll =       devpoll,
  397         .d_kqfilter =   devkqfilter,
  398         .d_name =       "devctl",
  399 };
  400 
  401 struct dev_event_info
  402 {
  403         char *dei_data;
  404         TAILQ_ENTRY(dev_event_info) dei_link;
  405 };
  406 
  407 TAILQ_HEAD(devq, dev_event_info);
  408 
  409 static struct dev_softc
  410 {
  411         int     inuse;
  412         int     nonblock;
  413         int     queued;
  414         int     async;
  415         struct mtx mtx;
  416         struct cv cv;
  417         struct selinfo sel;
  418         struct devq devq;
  419         struct sigio *sigio;
  420 } devsoftc;
  421 
  422 static void     filt_devctl_detach(struct knote *kn);
  423 static int      filt_devctl_read(struct knote *kn, long hint);
  424 
  425 struct filterops devctl_rfiltops = {
  426         .f_isfd = 1,
  427         .f_detach = filt_devctl_detach,
  428         .f_event = filt_devctl_read,
  429 };
  430 
  431 static struct cdev *devctl_dev;
  432 
  433 static void
  434 devinit(void)
  435 {
  436         devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
  437             UID_ROOT, GID_WHEEL, 0600, "devctl");
  438         mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
  439         cv_init(&devsoftc.cv, "dev cv");
  440         TAILQ_INIT(&devsoftc.devq);
  441         knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
  442         devctl2_init();
  443 }
  444 
  445 static int
  446 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
  447 {
  448 
  449         mtx_lock(&devsoftc.mtx);
  450         if (devsoftc.inuse) {
  451                 mtx_unlock(&devsoftc.mtx);
  452                 return (EBUSY);
  453         }
  454         /* move to init */
  455         devsoftc.inuse = 1;
  456         mtx_unlock(&devsoftc.mtx);
  457         return (0);
  458 }
  459 
  460 static int
  461 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
  462 {
  463 
  464         mtx_lock(&devsoftc.mtx);
  465         devsoftc.inuse = 0;
  466         devsoftc.nonblock = 0;
  467         devsoftc.async = 0;
  468         cv_broadcast(&devsoftc.cv);
  469         funsetown(&devsoftc.sigio);
  470         mtx_unlock(&devsoftc.mtx);
  471         return (0);
  472 }
  473 
  474 /*
  475  * The read channel for this device is used to report changes to
  476  * userland in realtime.  We are required to free the data as well as
  477  * the n1 object because we allocate them separately.  Also note that
  478  * we return one record at a time.  If you try to read this device a
  479  * character at a time, you will lose the rest of the data.  Listening
  480  * programs are expected to cope.
  481  */
  482 static int
  483 devread(struct cdev *dev, struct uio *uio, int ioflag)
  484 {
  485         struct dev_event_info *n1;
  486         int rv;
  487 
  488         mtx_lock(&devsoftc.mtx);
  489         while (TAILQ_EMPTY(&devsoftc.devq)) {
  490                 if (devsoftc.nonblock) {
  491                         mtx_unlock(&devsoftc.mtx);
  492                         return (EAGAIN);
  493                 }
  494                 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
  495                 if (rv) {
  496                         /*
  497                          * Need to translate ERESTART to EINTR here? -- jake
  498                          */
  499                         mtx_unlock(&devsoftc.mtx);
  500                         return (rv);
  501                 }
  502         }
  503         n1 = TAILQ_FIRST(&devsoftc.devq);
  504         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  505         devsoftc.queued--;
  506         mtx_unlock(&devsoftc.mtx);
  507         rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
  508         free(n1->dei_data, M_BUS);
  509         free(n1, M_BUS);
  510         return (rv);
  511 }
  512 
  513 static  int
  514 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
  515 {
  516         switch (cmd) {
  517 
  518         case FIONBIO:
  519                 if (*(int*)data)
  520                         devsoftc.nonblock = 1;
  521                 else
  522                         devsoftc.nonblock = 0;
  523                 return (0);
  524         case FIOASYNC:
  525                 if (*(int*)data)
  526                         devsoftc.async = 1;
  527                 else
  528                         devsoftc.async = 0;
  529                 return (0);
  530         case FIOSETOWN:
  531                 return fsetown(*(int *)data, &devsoftc.sigio);
  532         case FIOGETOWN:
  533                 *(int *)data = fgetown(&devsoftc.sigio);
  534                 return (0);
  535 
  536                 /* (un)Support for other fcntl() calls. */
  537         case FIOCLEX:
  538         case FIONCLEX:
  539         case FIONREAD:
  540         default:
  541                 break;
  542         }
  543         return (ENOTTY);
  544 }
  545 
  546 static  int
  547 devpoll(struct cdev *dev, int events, struct thread *td)
  548 {
  549         int     revents = 0;
  550 
  551         mtx_lock(&devsoftc.mtx);
  552         if (events & (POLLIN | POLLRDNORM)) {
  553                 if (!TAILQ_EMPTY(&devsoftc.devq))
  554                         revents = events & (POLLIN | POLLRDNORM);
  555                 else
  556                         selrecord(td, &devsoftc.sel);
  557         }
  558         mtx_unlock(&devsoftc.mtx);
  559 
  560         return (revents);
  561 }
  562 
  563 static int
  564 devkqfilter(struct cdev *dev, struct knote *kn)
  565 {
  566         int error;
  567 
  568         if (kn->kn_filter == EVFILT_READ) {
  569                 kn->kn_fop = &devctl_rfiltops;
  570                 knlist_add(&devsoftc.sel.si_note, kn, 0);
  571                 error = 0;
  572         } else
  573                 error = EINVAL;
  574         return (error);
  575 }
  576 
  577 static void
  578 filt_devctl_detach(struct knote *kn)
  579 {
  580 
  581         knlist_remove(&devsoftc.sel.si_note, kn, 0);
  582 }
  583 
  584 static int
  585 filt_devctl_read(struct knote *kn, long hint)
  586 {
  587         kn->kn_data = devsoftc.queued;
  588         return (kn->kn_data != 0);
  589 }
  590 
  591 /**
  592  * @brief Return whether the userland process is running
  593  */
  594 boolean_t
  595 devctl_process_running(void)
  596 {
  597         return (devsoftc.inuse == 1);
  598 }
  599 
  600 /**
  601  * @brief Queue data to be read from the devctl device
  602  *
  603  * Generic interface to queue data to the devctl device.  It is
  604  * assumed that @p data is properly formatted.  It is further assumed
  605  * that @p data is allocated using the M_BUS malloc type.
  606  */
  607 void
  608 devctl_queue_data_f(char *data, int flags)
  609 {
  610         struct dev_event_info *n1 = NULL, *n2 = NULL;
  611 
  612         if (strlen(data) == 0)
  613                 goto out;
  614         if (devctl_queue_length == 0)
  615                 goto out;
  616         n1 = malloc(sizeof(*n1), M_BUS, flags);
  617         if (n1 == NULL)
  618                 goto out;
  619         n1->dei_data = data;
  620         mtx_lock(&devsoftc.mtx);
  621         if (devctl_queue_length == 0) {
  622                 mtx_unlock(&devsoftc.mtx);
  623                 free(n1->dei_data, M_BUS);
  624                 free(n1, M_BUS);
  625                 return;
  626         }
  627         /* Leave at least one spot in the queue... */
  628         while (devsoftc.queued > devctl_queue_length - 1) {
  629                 n2 = TAILQ_FIRST(&devsoftc.devq);
  630                 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
  631                 free(n2->dei_data, M_BUS);
  632                 free(n2, M_BUS);
  633                 devsoftc.queued--;
  634         }
  635         TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
  636         devsoftc.queued++;
  637         cv_broadcast(&devsoftc.cv);
  638         KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
  639         mtx_unlock(&devsoftc.mtx);
  640         selwakeup(&devsoftc.sel);
  641         if (devsoftc.async && devsoftc.sigio != NULL)
  642                 pgsigio(&devsoftc.sigio, SIGIO, 0);
  643         return;
  644 out:
  645         /*
  646          * We have to free data on all error paths since the caller
  647          * assumes it will be free'd when this item is dequeued.
  648          */
  649         free(data, M_BUS);
  650         return;
  651 }
  652 
  653 void
  654 devctl_queue_data(char *data)
  655 {
  656 
  657         devctl_queue_data_f(data, M_NOWAIT);
  658 }
  659 
  660 /**
  661  * @brief Send a 'notification' to userland, using standard ways
  662  */
  663 void
  664 devctl_notify_f(const char *system, const char *subsystem, const char *type,
  665     const char *data, int flags)
  666 {
  667         int len = 0;
  668         char *msg;
  669 
  670         if (system == NULL)
  671                 return;         /* BOGUS!  Must specify system. */
  672         if (subsystem == NULL)
  673                 return;         /* BOGUS!  Must specify subsystem. */
  674         if (type == NULL)
  675                 return;         /* BOGUS!  Must specify type. */
  676         len += strlen(" system=") + strlen(system);
  677         len += strlen(" subsystem=") + strlen(subsystem);
  678         len += strlen(" type=") + strlen(type);
  679         /* add in the data message plus newline. */
  680         if (data != NULL)
  681                 len += strlen(data);
  682         len += 3;       /* '!', '\n', and NUL */
  683         msg = malloc(len, M_BUS, flags);
  684         if (msg == NULL)
  685                 return;         /* Drop it on the floor */
  686         if (data != NULL)
  687                 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
  688                     system, subsystem, type, data);
  689         else
  690                 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
  691                     system, subsystem, type);
  692         devctl_queue_data_f(msg, flags);
  693 }
  694 
  695 void
  696 devctl_notify(const char *system, const char *subsystem, const char *type,
  697     const char *data)
  698 {
  699 
  700         devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
  701 }
  702 
  703 /*
  704  * Common routine that tries to make sending messages as easy as possible.
  705  * We allocate memory for the data, copy strings into that, but do not
  706  * free it unless there's an error.  The dequeue part of the driver should
  707  * free the data.  We don't send data when the device is disabled.  We do
  708  * send data, even when we have no listeners, because we wish to avoid
  709  * races relating to startup and restart of listening applications.
  710  *
  711  * devaddq is designed to string together the type of event, with the
  712  * object of that event, plus the plug and play info and location info
  713  * for that event.  This is likely most useful for devices, but less
  714  * useful for other consumers of this interface.  Those should use
  715  * the devctl_queue_data() interface instead.
  716  */
  717 static void
  718 devaddq(const char *type, const char *what, device_t dev)
  719 {
  720         char *data = NULL;
  721         char *loc = NULL;
  722         char *pnp = NULL;
  723         const char *parstr;
  724 
  725         if (!devctl_queue_length)/* Rare race, but lost races safely discard */
  726                 return;
  727         data = malloc(1024, M_BUS, M_NOWAIT);
  728         if (data == NULL)
  729                 goto bad;
  730 
  731         /* get the bus specific location of this device */
  732         loc = malloc(1024, M_BUS, M_NOWAIT);
  733         if (loc == NULL)
  734                 goto bad;
  735         *loc = '\0';
  736         bus_child_location_str(dev, loc, 1024);
  737 
  738         /* Get the bus specific pnp info of this device */
  739         pnp = malloc(1024, M_BUS, M_NOWAIT);
  740         if (pnp == NULL)
  741                 goto bad;
  742         *pnp = '\0';
  743         bus_child_pnpinfo_str(dev, pnp, 1024);
  744 
  745         /* Get the parent of this device, or / if high enough in the tree. */
  746         if (device_get_parent(dev) == NULL)
  747                 parstr = ".";   /* Or '/' ? */
  748         else
  749                 parstr = device_get_nameunit(device_get_parent(dev));
  750         /* String it all together. */
  751         snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
  752           parstr);
  753         free(loc, M_BUS);
  754         free(pnp, M_BUS);
  755         devctl_queue_data(data);
  756         return;
  757 bad:
  758         free(pnp, M_BUS);
  759         free(loc, M_BUS);
  760         free(data, M_BUS);
  761         return;
  762 }
  763 
  764 /*
  765  * A device was added to the tree.  We are called just after it successfully
  766  * attaches (that is, probe and attach success for this device).  No call
  767  * is made if a device is merely parented into the tree.  See devnomatch
  768  * if probe fails.  If attach fails, no notification is sent (but maybe
  769  * we should have a different message for this).
  770  */
  771 static void
  772 devadded(device_t dev)
  773 {
  774         devaddq("+", device_get_nameunit(dev), dev);
  775 }
  776 
  777 /*
  778  * A device was removed from the tree.  We are called just before this
  779  * happens.
  780  */
  781 static void
  782 devremoved(device_t dev)
  783 {
  784         devaddq("-", device_get_nameunit(dev), dev);
  785 }
  786 
  787 /*
  788  * Called when there's no match for this device.  This is only called
  789  * the first time that no match happens, so we don't keep getting this
  790  * message.  Should that prove to be undesirable, we can change it.
  791  * This is called when all drivers that can attach to a given bus
  792  * decline to accept this device.  Other errors may not be detected.
  793  */
  794 static void
  795 devnomatch(device_t dev)
  796 {
  797         devaddq("?", "", dev);
  798 }
  799 
  800 static int
  801 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
  802 {
  803         struct dev_event_info *n1;
  804         int dis, error;
  805 
  806         dis = (devctl_queue_length == 0);
  807         error = sysctl_handle_int(oidp, &dis, 0, req);
  808         if (error || !req->newptr)
  809                 return (error);
  810         if (mtx_initialized(&devsoftc.mtx))
  811                 mtx_lock(&devsoftc.mtx);
  812         if (dis) {
  813                 while (!TAILQ_EMPTY(&devsoftc.devq)) {
  814                         n1 = TAILQ_FIRST(&devsoftc.devq);
  815                         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  816                         free(n1->dei_data, M_BUS);
  817                         free(n1, M_BUS);
  818                 }
  819                 devsoftc.queued = 0;
  820                 devctl_queue_length = 0;
  821         } else {
  822                 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  823         }
  824         if (mtx_initialized(&devsoftc.mtx))
  825                 mtx_unlock(&devsoftc.mtx);
  826         return (0);
  827 }
  828 
  829 static int
  830 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
  831 {
  832         struct dev_event_info *n1;
  833         int q, error;
  834 
  835         q = devctl_queue_length;
  836         error = sysctl_handle_int(oidp, &q, 0, req);
  837         if (error || !req->newptr)
  838                 return (error);
  839         if (q < 0)
  840                 return (EINVAL);
  841         if (mtx_initialized(&devsoftc.mtx))
  842                 mtx_lock(&devsoftc.mtx);
  843         devctl_queue_length = q;
  844         while (devsoftc.queued > devctl_queue_length) {
  845                 n1 = TAILQ_FIRST(&devsoftc.devq);
  846                 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  847                 free(n1->dei_data, M_BUS);
  848                 free(n1, M_BUS);
  849                 devsoftc.queued--;
  850         }
  851         if (mtx_initialized(&devsoftc.mtx))
  852                 mtx_unlock(&devsoftc.mtx);
  853         return (0);
  854 }
  855 
  856 /**
  857  * @brief safely quotes strings that might have double quotes in them.
  858  *
  859  * The devctl protocol relies on quoted strings having matching quotes.
  860  * This routine quotes any internal quotes so the resulting string
  861  * is safe to pass to snprintf to construct, for example pnp info strings.
  862  * Strings are always terminated with a NUL, but may be truncated if longer
  863  * than @p len bytes after quotes.
  864  *
  865  * @param sb    sbuf to place the characters into
  866  * @param src   Original buffer.
  867  */
  868 void
  869 devctl_safe_quote_sb(struct sbuf *sb, const char *src)
  870 {
  871 
  872         while (*src != '\0') {
  873                 if (*src == '"' || *src == '\\')
  874                         sbuf_putc(sb, '\\');
  875                 sbuf_putc(sb, *src++);
  876         }
  877 }
  878 
  879 /* End of /dev/devctl code */
  880 
  881 static TAILQ_HEAD(,device)      bus_data_devices;
  882 static int bus_data_generation = 1;
  883 
  884 static kobj_method_t null_methods[] = {
  885         KOBJMETHOD_END
  886 };
  887 
  888 DEFINE_CLASS(null, null_methods, 0);
  889 
  890 /*
  891  * Bus pass implementation
  892  */
  893 
  894 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
  895 int bus_current_pass = BUS_PASS_ROOT;
  896 
  897 /**
  898  * @internal
  899  * @brief Register the pass level of a new driver attachment
  900  *
  901  * Register a new driver attachment's pass level.  If no driver
  902  * attachment with the same pass level has been added, then @p new
  903  * will be added to the global passes list.
  904  *
  905  * @param new           the new driver attachment
  906  */
  907 static void
  908 driver_register_pass(struct driverlink *new)
  909 {
  910         struct driverlink *dl;
  911 
  912         /* We only consider pass numbers during boot. */
  913         if (bus_current_pass == BUS_PASS_DEFAULT)
  914                 return;
  915 
  916         /*
  917          * Walk the passes list.  If we already know about this pass
  918          * then there is nothing to do.  If we don't, then insert this
  919          * driver link into the list.
  920          */
  921         TAILQ_FOREACH(dl, &passes, passlink) {
  922                 if (dl->pass < new->pass)
  923                         continue;
  924                 if (dl->pass == new->pass)
  925                         return;
  926                 TAILQ_INSERT_BEFORE(dl, new, passlink);
  927                 return;
  928         }
  929         TAILQ_INSERT_TAIL(&passes, new, passlink);
  930 }
  931 
  932 /**
  933  * @brief Raise the current bus pass
  934  *
  935  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
  936  * method on the root bus to kick off a new device tree scan for each
  937  * new pass level that has at least one driver.
  938  */
  939 void
  940 bus_set_pass(int pass)
  941 {
  942         struct driverlink *dl;
  943 
  944         if (bus_current_pass > pass)
  945                 panic("Attempt to lower bus pass level");
  946 
  947         TAILQ_FOREACH(dl, &passes, passlink) {
  948                 /* Skip pass values below the current pass level. */
  949                 if (dl->pass <= bus_current_pass)
  950                         continue;
  951 
  952                 /*
  953                  * Bail once we hit a driver with a pass level that is
  954                  * too high.
  955                  */
  956                 if (dl->pass > pass)
  957                         break;
  958 
  959                 /*
  960                  * Raise the pass level to the next level and rescan
  961                  * the tree.
  962                  */
  963                 bus_current_pass = dl->pass;
  964                 BUS_NEW_PASS(root_bus);
  965         }
  966 
  967         /*
  968          * If there isn't a driver registered for the requested pass,
  969          * then bus_current_pass might still be less than 'pass'.  Set
  970          * it to 'pass' in that case.
  971          */
  972         if (bus_current_pass < pass)
  973                 bus_current_pass = pass;
  974         KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
  975 }
  976 
  977 /*
  978  * Devclass implementation
  979  */
  980 
  981 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
  982 
  983 /**
  984  * @internal
  985  * @brief Find or create a device class
  986  *
  987  * If a device class with the name @p classname exists, return it,
  988  * otherwise if @p create is non-zero create and return a new device
  989  * class.
  990  *
  991  * If @p parentname is non-NULL, the parent of the devclass is set to
  992  * the devclass of that name.
  993  *
  994  * @param classname     the devclass name to find or create
  995  * @param parentname    the parent devclass name or @c NULL
  996  * @param create        non-zero to create a devclass
  997  */
  998 static devclass_t
  999 devclass_find_internal(const char *classname, const char *parentname,
 1000                        int create)
 1001 {
 1002         devclass_t dc;
 1003 
 1004         PDEBUG(("looking for %s", classname));
 1005         if (!classname)
 1006                 return (NULL);
 1007 
 1008         TAILQ_FOREACH(dc, &devclasses, link) {
 1009                 if (!strcmp(dc->name, classname))
 1010                         break;
 1011         }
 1012 
 1013         if (create && !dc) {
 1014                 PDEBUG(("creating %s", classname));
 1015                 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
 1016                     M_BUS, M_NOWAIT | M_ZERO);
 1017                 if (!dc)
 1018                         return (NULL);
 1019                 dc->parent = NULL;
 1020                 dc->name = (char*) (dc + 1);
 1021                 strcpy(dc->name, classname);
 1022                 TAILQ_INIT(&dc->drivers);
 1023                 TAILQ_INSERT_TAIL(&devclasses, dc, link);
 1024 
 1025                 bus_data_generation_update();
 1026         }
 1027 
 1028         /*
 1029          * If a parent class is specified, then set that as our parent so
 1030          * that this devclass will support drivers for the parent class as
 1031          * well.  If the parent class has the same name don't do this though
 1032          * as it creates a cycle that can trigger an infinite loop in
 1033          * device_probe_child() if a device exists for which there is no
 1034          * suitable driver.
 1035          */
 1036         if (parentname && dc && !dc->parent &&
 1037             strcmp(classname, parentname) != 0) {
 1038                 dc->parent = devclass_find_internal(parentname, NULL, TRUE);
 1039                 dc->parent->flags |= DC_HAS_CHILDREN;
 1040         }
 1041 
 1042         return (dc);
 1043 }
 1044 
 1045 /**
 1046  * @brief Create a device class
 1047  *
 1048  * If a device class with the name @p classname exists, return it,
 1049  * otherwise create and return a new device class.
 1050  *
 1051  * @param classname     the devclass name to find or create
 1052  */
 1053 devclass_t
 1054 devclass_create(const char *classname)
 1055 {
 1056         return (devclass_find_internal(classname, NULL, TRUE));
 1057 }
 1058 
 1059 /**
 1060  * @brief Find a device class
 1061  *
 1062  * If a device class with the name @p classname exists, return it,
 1063  * otherwise return @c NULL.
 1064  *
 1065  * @param classname     the devclass name to find
 1066  */
 1067 devclass_t
 1068 devclass_find(const char *classname)
 1069 {
 1070         return (devclass_find_internal(classname, NULL, FALSE));
 1071 }
 1072 
 1073 /**
 1074  * @brief Register that a device driver has been added to a devclass
 1075  *
 1076  * Register that a device driver has been added to a devclass.  This
 1077  * is called by devclass_add_driver to accomplish the recursive
 1078  * notification of all the children classes of dc, as well as dc.
 1079  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
 1080  * the devclass.
 1081  *
 1082  * We do a full search here of the devclass list at each iteration
 1083  * level to save storing children-lists in the devclass structure.  If
 1084  * we ever move beyond a few dozen devices doing this, we may need to
 1085  * reevaluate...
 1086  *
 1087  * @param dc            the devclass to edit
 1088  * @param driver        the driver that was just added
 1089  */
 1090 static void
 1091 devclass_driver_added(devclass_t dc, driver_t *driver)
 1092 {
 1093         devclass_t parent;
 1094         int i;
 1095 
 1096         /*
 1097          * Call BUS_DRIVER_ADDED for any existing buses in this class.
 1098          */
 1099         for (i = 0; i < dc->maxunit; i++)
 1100                 if (dc->devices[i] && device_is_attached(dc->devices[i]))
 1101                         BUS_DRIVER_ADDED(dc->devices[i], driver);
 1102 
 1103         /*
 1104          * Walk through the children classes.  Since we only keep a
 1105          * single parent pointer around, we walk the entire list of
 1106          * devclasses looking for children.  We set the
 1107          * DC_HAS_CHILDREN flag when a child devclass is created on
 1108          * the parent, so we only walk the list for those devclasses
 1109          * that have children.
 1110          */
 1111         if (!(dc->flags & DC_HAS_CHILDREN))
 1112                 return;
 1113         parent = dc;
 1114         TAILQ_FOREACH(dc, &devclasses, link) {
 1115                 if (dc->parent == parent)
 1116                         devclass_driver_added(dc, driver);
 1117         }
 1118 }
 1119 
 1120 /**
 1121  * @brief Add a device driver to a device class
 1122  *
 1123  * Add a device driver to a devclass. This is normally called
 1124  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
 1125  * all devices in the devclass will be called to allow them to attempt
 1126  * to re-probe any unmatched children.
 1127  *
 1128  * @param dc            the devclass to edit
 1129  * @param driver        the driver to register
 1130  */
 1131 int
 1132 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
 1133 {
 1134         driverlink_t dl;
 1135         const char *parentname;
 1136 
 1137         PDEBUG(("%s", DRIVERNAME(driver)));
 1138 
 1139         /* Don't allow invalid pass values. */
 1140         if (pass <= BUS_PASS_ROOT)
 1141                 return (EINVAL);
 1142 
 1143         dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
 1144         if (!dl)
 1145                 return (ENOMEM);
 1146 
 1147         /*
 1148          * Compile the driver's methods. Also increase the reference count
 1149          * so that the class doesn't get freed when the last instance
 1150          * goes. This means we can safely use static methods and avoids a
 1151          * double-free in devclass_delete_driver.
 1152          */
 1153         kobj_class_compile((kobj_class_t) driver);
 1154 
 1155         /*
 1156          * If the driver has any base classes, make the
 1157          * devclass inherit from the devclass of the driver's
 1158          * first base class. This will allow the system to
 1159          * search for drivers in both devclasses for children
 1160          * of a device using this driver.
 1161          */
 1162         if (driver->baseclasses)
 1163                 parentname = driver->baseclasses[0]->name;
 1164         else
 1165                 parentname = NULL;
 1166         *dcp = devclass_find_internal(driver->name, parentname, TRUE);
 1167 
 1168         dl->driver = driver;
 1169         TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
 1170         driver->refs++;         /* XXX: kobj_mtx */
 1171         dl->pass = pass;
 1172         driver_register_pass(dl);
 1173 
 1174         if (device_frozen) {
 1175                 dl->flags |= DL_DEFERRED_PROBE;
 1176         } else {
 1177                 devclass_driver_added(dc, driver);
 1178         }
 1179         bus_data_generation_update();
 1180         return (0);
 1181 }
 1182 
 1183 /**
 1184  * @brief Register that a device driver has been deleted from a devclass
 1185  *
 1186  * Register that a device driver has been removed from a devclass.
 1187  * This is called by devclass_delete_driver to accomplish the
 1188  * recursive notification of all the children classes of busclass, as
 1189  * well as busclass.  Each layer will attempt to detach the driver
 1190  * from any devices that are children of the bus's devclass.  The function
 1191  * will return an error if a device fails to detach.
 1192  *
 1193  * We do a full search here of the devclass list at each iteration
 1194  * level to save storing children-lists in the devclass structure.  If
 1195  * we ever move beyond a few dozen devices doing this, we may need to
 1196  * reevaluate...
 1197  *
 1198  * @param busclass      the devclass of the parent bus
 1199  * @param dc            the devclass of the driver being deleted
 1200  * @param driver        the driver being deleted
 1201  */
 1202 static int
 1203 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
 1204 {
 1205         devclass_t parent;
 1206         device_t dev;
 1207         int error, i;
 1208 
 1209         /*
 1210          * Disassociate from any devices.  We iterate through all the
 1211          * devices in the devclass of the driver and detach any which are
 1212          * using the driver and which have a parent in the devclass which
 1213          * we are deleting from.
 1214          *
 1215          * Note that since a driver can be in multiple devclasses, we
 1216          * should not detach devices which are not children of devices in
 1217          * the affected devclass.
 1218          *
 1219          * If we're frozen, we don't generate NOMATCH events. Mark to
 1220          * generate later.
 1221          */
 1222         for (i = 0; i < dc->maxunit; i++) {
 1223                 if (dc->devices[i]) {
 1224                         dev = dc->devices[i];
 1225                         if (dev->driver == driver && dev->parent &&
 1226                             dev->parent->devclass == busclass) {
 1227                                 if ((error = device_detach(dev)) != 0)
 1228                                         return (error);
 1229                                 if (device_frozen) {
 1230                                         dev->flags &= ~DF_DONENOMATCH;
 1231                                         dev->flags |= DF_NEEDNOMATCH;
 1232                                 } else {
 1233                                         BUS_PROBE_NOMATCH(dev->parent, dev);
 1234                                         devnomatch(dev);
 1235                                         dev->flags |= DF_DONENOMATCH;
 1236                                 }
 1237                         }
 1238                 }
 1239         }
 1240 
 1241         /*
 1242          * Walk through the children classes.  Since we only keep a
 1243          * single parent pointer around, we walk the entire list of
 1244          * devclasses looking for children.  We set the
 1245          * DC_HAS_CHILDREN flag when a child devclass is created on
 1246          * the parent, so we only walk the list for those devclasses
 1247          * that have children.
 1248          */
 1249         if (!(busclass->flags & DC_HAS_CHILDREN))
 1250                 return (0);
 1251         parent = busclass;
 1252         TAILQ_FOREACH(busclass, &devclasses, link) {
 1253                 if (busclass->parent == parent) {
 1254                         error = devclass_driver_deleted(busclass, dc, driver);
 1255                         if (error)
 1256                                 return (error);
 1257                 }
 1258         }
 1259         return (0);
 1260 }
 1261 
 1262 /**
 1263  * @brief Delete a device driver from a device class
 1264  *
 1265  * Delete a device driver from a devclass. This is normally called
 1266  * automatically by DRIVER_MODULE().
 1267  *
 1268  * If the driver is currently attached to any devices,
 1269  * devclass_delete_driver() will first attempt to detach from each
 1270  * device. If one of the detach calls fails, the driver will not be
 1271  * deleted.
 1272  *
 1273  * @param dc            the devclass to edit
 1274  * @param driver        the driver to unregister
 1275  */
 1276 int
 1277 devclass_delete_driver(devclass_t busclass, driver_t *driver)
 1278 {
 1279         devclass_t dc = devclass_find(driver->name);
 1280         driverlink_t dl;
 1281         int error;
 1282 
 1283         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1284 
 1285         if (!dc)
 1286                 return (0);
 1287 
 1288         /*
 1289          * Find the link structure in the bus' list of drivers.
 1290          */
 1291         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1292                 if (dl->driver == driver)
 1293                         break;
 1294         }
 1295 
 1296         if (!dl) {
 1297                 PDEBUG(("%s not found in %s list", driver->name,
 1298                     busclass->name));
 1299                 return (ENOENT);
 1300         }
 1301 
 1302         error = devclass_driver_deleted(busclass, dc, driver);
 1303         if (error != 0)
 1304                 return (error);
 1305 
 1306         TAILQ_REMOVE(&busclass->drivers, dl, link);
 1307         free(dl, M_BUS);
 1308 
 1309         /* XXX: kobj_mtx */
 1310         driver->refs--;
 1311         if (driver->refs == 0)
 1312                 kobj_class_free((kobj_class_t) driver);
 1313 
 1314         bus_data_generation_update();
 1315         return (0);
 1316 }
 1317 
 1318 /**
 1319  * @brief Quiesces a set of device drivers from a device class
 1320  *
 1321  * Quiesce a device driver from a devclass. This is normally called
 1322  * automatically by DRIVER_MODULE().
 1323  *
 1324  * If the driver is currently attached to any devices,
 1325  * devclass_quiesece_driver() will first attempt to quiesce each
 1326  * device.
 1327  *
 1328  * @param dc            the devclass to edit
 1329  * @param driver        the driver to unregister
 1330  */
 1331 static int
 1332 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
 1333 {
 1334         devclass_t dc = devclass_find(driver->name);
 1335         driverlink_t dl;
 1336         device_t dev;
 1337         int i;
 1338         int error;
 1339 
 1340         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1341 
 1342         if (!dc)
 1343                 return (0);
 1344 
 1345         /*
 1346          * Find the link structure in the bus' list of drivers.
 1347          */
 1348         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1349                 if (dl->driver == driver)
 1350                         break;
 1351         }
 1352 
 1353         if (!dl) {
 1354                 PDEBUG(("%s not found in %s list", driver->name,
 1355                     busclass->name));
 1356                 return (ENOENT);
 1357         }
 1358 
 1359         /*
 1360          * Quiesce all devices.  We iterate through all the devices in
 1361          * the devclass of the driver and quiesce any which are using
 1362          * the driver and which have a parent in the devclass which we
 1363          * are quiescing.
 1364          *
 1365          * Note that since a driver can be in multiple devclasses, we
 1366          * should not quiesce devices which are not children of
 1367          * devices in the affected devclass.
 1368          */
 1369         for (i = 0; i < dc->maxunit; i++) {
 1370                 if (dc->devices[i]) {
 1371                         dev = dc->devices[i];
 1372                         if (dev->driver == driver && dev->parent &&
 1373                             dev->parent->devclass == busclass) {
 1374                                 if ((error = device_quiesce(dev)) != 0)
 1375                                         return (error);
 1376                         }
 1377                 }
 1378         }
 1379 
 1380         return (0);
 1381 }
 1382 
 1383 /**
 1384  * @internal
 1385  */
 1386 static driverlink_t
 1387 devclass_find_driver_internal(devclass_t dc, const char *classname)
 1388 {
 1389         driverlink_t dl;
 1390 
 1391         PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
 1392 
 1393         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1394                 if (!strcmp(dl->driver->name, classname))
 1395                         return (dl);
 1396         }
 1397 
 1398         PDEBUG(("not found"));
 1399         return (NULL);
 1400 }
 1401 
 1402 /**
 1403  * @brief Return the name of the devclass
 1404  */
 1405 const char *
 1406 devclass_get_name(devclass_t dc)
 1407 {
 1408         return (dc->name);
 1409 }
 1410 
 1411 /**
 1412  * @brief Find a device given a unit number
 1413  *
 1414  * @param dc            the devclass to search
 1415  * @param unit          the unit number to search for
 1416  *
 1417  * @returns             the device with the given unit number or @c
 1418  *                      NULL if there is no such device
 1419  */
 1420 device_t
 1421 devclass_get_device(devclass_t dc, int unit)
 1422 {
 1423         if (dc == NULL || unit < 0 || unit >= dc->maxunit)
 1424                 return (NULL);
 1425         return (dc->devices[unit]);
 1426 }
 1427 
 1428 /**
 1429  * @brief Find the softc field of a device given a unit number
 1430  *
 1431  * @param dc            the devclass to search
 1432  * @param unit          the unit number to search for
 1433  *
 1434  * @returns             the softc field of the device with the given
 1435  *                      unit number or @c NULL if there is no such
 1436  *                      device
 1437  */
 1438 void *
 1439 devclass_get_softc(devclass_t dc, int unit)
 1440 {
 1441         device_t dev;
 1442 
 1443         dev = devclass_get_device(dc, unit);
 1444         if (!dev)
 1445                 return (NULL);
 1446 
 1447         return (device_get_softc(dev));
 1448 }
 1449 
 1450 /**
 1451  * @brief Get a list of devices in the devclass
 1452  *
 1453  * An array containing a list of all the devices in the given devclass
 1454  * is allocated and returned in @p *devlistp. The number of devices
 1455  * in the array is returned in @p *devcountp. The caller should free
 1456  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
 1457  *
 1458  * @param dc            the devclass to examine
 1459  * @param devlistp      points at location for array pointer return
 1460  *                      value
 1461  * @param devcountp     points at location for array size return value
 1462  *
 1463  * @retval 0            success
 1464  * @retval ENOMEM       the array allocation failed
 1465  */
 1466 int
 1467 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
 1468 {
 1469         int count, i;
 1470         device_t *list;
 1471 
 1472         count = devclass_get_count(dc);
 1473         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 1474         if (!list)
 1475                 return (ENOMEM);
 1476 
 1477         count = 0;
 1478         for (i = 0; i < dc->maxunit; i++) {
 1479                 if (dc->devices[i]) {
 1480                         list[count] = dc->devices[i];
 1481                         count++;
 1482                 }
 1483         }
 1484 
 1485         *devlistp = list;
 1486         *devcountp = count;
 1487 
 1488         return (0);
 1489 }
 1490 
 1491 /**
 1492  * @brief Get a list of drivers in the devclass
 1493  *
 1494  * An array containing a list of pointers to all the drivers in the
 1495  * given devclass is allocated and returned in @p *listp.  The number
 1496  * of drivers in the array is returned in @p *countp. The caller should
 1497  * free the array using @c free(p, M_TEMP).
 1498  *
 1499  * @param dc            the devclass to examine
 1500  * @param listp         gives location for array pointer return value
 1501  * @param countp        gives location for number of array elements
 1502  *                      return value
 1503  *
 1504  * @retval 0            success
 1505  * @retval ENOMEM       the array allocation failed
 1506  */
 1507 int
 1508 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
 1509 {
 1510         driverlink_t dl;
 1511         driver_t **list;
 1512         int count;
 1513 
 1514         count = 0;
 1515         TAILQ_FOREACH(dl, &dc->drivers, link)
 1516                 count++;
 1517         list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
 1518         if (list == NULL)
 1519                 return (ENOMEM);
 1520 
 1521         count = 0;
 1522         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1523                 list[count] = dl->driver;
 1524                 count++;
 1525         }
 1526         *listp = list;
 1527         *countp = count;
 1528 
 1529         return (0);
 1530 }
 1531 
 1532 /**
 1533  * @brief Get the number of devices in a devclass
 1534  *
 1535  * @param dc            the devclass to examine
 1536  */
 1537 int
 1538 devclass_get_count(devclass_t dc)
 1539 {
 1540         int count, i;
 1541 
 1542         count = 0;
 1543         for (i = 0; i < dc->maxunit; i++)
 1544                 if (dc->devices[i])
 1545                         count++;
 1546         return (count);
 1547 }
 1548 
 1549 /**
 1550  * @brief Get the maximum unit number used in a devclass
 1551  *
 1552  * Note that this is one greater than the highest currently-allocated
 1553  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
 1554  * that not even the devclass has been allocated yet.
 1555  *
 1556  * @param dc            the devclass to examine
 1557  */
 1558 int
 1559 devclass_get_maxunit(devclass_t dc)
 1560 {
 1561         if (dc == NULL)
 1562                 return (-1);
 1563         return (dc->maxunit);
 1564 }
 1565 
 1566 /**
 1567  * @brief Find a free unit number in a devclass
 1568  *
 1569  * This function searches for the first unused unit number greater
 1570  * that or equal to @p unit.
 1571  *
 1572  * @param dc            the devclass to examine
 1573  * @param unit          the first unit number to check
 1574  */
 1575 int
 1576 devclass_find_free_unit(devclass_t dc, int unit)
 1577 {
 1578         if (dc == NULL)
 1579                 return (unit);
 1580         while (unit < dc->maxunit && dc->devices[unit] != NULL)
 1581                 unit++;
 1582         return (unit);
 1583 }
 1584 
 1585 /**
 1586  * @brief Set the parent of a devclass
 1587  *
 1588  * The parent class is normally initialised automatically by
 1589  * DRIVER_MODULE().
 1590  *
 1591  * @param dc            the devclass to edit
 1592  * @param pdc           the new parent devclass
 1593  */
 1594 void
 1595 devclass_set_parent(devclass_t dc, devclass_t pdc)
 1596 {
 1597         dc->parent = pdc;
 1598 }
 1599 
 1600 /**
 1601  * @brief Get the parent of a devclass
 1602  *
 1603  * @param dc            the devclass to examine
 1604  */
 1605 devclass_t
 1606 devclass_get_parent(devclass_t dc)
 1607 {
 1608         return (dc->parent);
 1609 }
 1610 
 1611 struct sysctl_ctx_list *
 1612 devclass_get_sysctl_ctx(devclass_t dc)
 1613 {
 1614         return (&dc->sysctl_ctx);
 1615 }
 1616 
 1617 struct sysctl_oid *
 1618 devclass_get_sysctl_tree(devclass_t dc)
 1619 {
 1620         return (dc->sysctl_tree);
 1621 }
 1622 
 1623 /**
 1624  * @internal
 1625  * @brief Allocate a unit number
 1626  *
 1627  * On entry, @p *unitp is the desired unit number (or @c -1 if any
 1628  * will do). The allocated unit number is returned in @p *unitp.
 1629 
 1630  * @param dc            the devclass to allocate from
 1631  * @param unitp         points at the location for the allocated unit
 1632  *                      number
 1633  *
 1634  * @retval 0            success
 1635  * @retval EEXIST       the requested unit number is already allocated
 1636  * @retval ENOMEM       memory allocation failure
 1637  */
 1638 static int
 1639 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
 1640 {
 1641         const char *s;
 1642         int unit = *unitp;
 1643 
 1644         PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1645 
 1646         /* Ask the parent bus if it wants to wire this device. */
 1647         if (unit == -1)
 1648                 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
 1649                     &unit);
 1650 
 1651         /* If we were given a wired unit number, check for existing device */
 1652         /* XXX imp XXX */
 1653         if (unit != -1) {
 1654                 if (unit >= 0 && unit < dc->maxunit &&
 1655                     dc->devices[unit] != NULL) {
 1656                         if (bootverbose)
 1657                                 printf("%s: %s%d already exists; skipping it\n",
 1658                                     dc->name, dc->name, *unitp);
 1659                         return (EEXIST);
 1660                 }
 1661         } else {
 1662                 /* Unwired device, find the next available slot for it */
 1663                 unit = 0;
 1664                 for (unit = 0;; unit++) {
 1665                         /* If there is an "at" hint for a unit then skip it. */
 1666                         if (resource_string_value(dc->name, unit, "at", &s) ==
 1667                             0)
 1668                                 continue;
 1669 
 1670                         /* If this device slot is already in use, skip it. */
 1671                         if (unit < dc->maxunit && dc->devices[unit] != NULL)
 1672                                 continue;
 1673 
 1674                         break;
 1675                 }
 1676         }
 1677 
 1678         /*
 1679          * We've selected a unit beyond the length of the table, so let's
 1680          * extend the table to make room for all units up to and including
 1681          * this one.
 1682          */
 1683         if (unit >= dc->maxunit) {
 1684                 device_t *newlist, *oldlist;
 1685                 int newsize;
 1686 
 1687                 oldlist = dc->devices;
 1688                 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
 1689                 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
 1690                 if (!newlist)
 1691                         return (ENOMEM);
 1692                 if (oldlist != NULL)
 1693                         bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
 1694                 bzero(newlist + dc->maxunit,
 1695                     sizeof(device_t) * (newsize - dc->maxunit));
 1696                 dc->devices = newlist;
 1697                 dc->maxunit = newsize;
 1698                 if (oldlist != NULL)
 1699                         free(oldlist, M_BUS);
 1700         }
 1701         PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1702 
 1703         *unitp = unit;
 1704         return (0);
 1705 }
 1706 
 1707 /**
 1708  * @internal
 1709  * @brief Add a device to a devclass
 1710  *
 1711  * A unit number is allocated for the device (using the device's
 1712  * preferred unit number if any) and the device is registered in the
 1713  * devclass. This allows the device to be looked up by its unit
 1714  * number, e.g. by decoding a dev_t minor number.
 1715  *
 1716  * @param dc            the devclass to add to
 1717  * @param dev           the device to add
 1718  *
 1719  * @retval 0            success
 1720  * @retval EEXIST       the requested unit number is already allocated
 1721  * @retval ENOMEM       memory allocation failure
 1722  */
 1723 static int
 1724 devclass_add_device(devclass_t dc, device_t dev)
 1725 {
 1726         int buflen, error;
 1727 
 1728         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1729 
 1730         buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
 1731         if (buflen < 0)
 1732                 return (ENOMEM);
 1733         dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
 1734         if (!dev->nameunit)
 1735                 return (ENOMEM);
 1736 
 1737         if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
 1738                 free(dev->nameunit, M_BUS);
 1739                 dev->nameunit = NULL;
 1740                 return (error);
 1741         }
 1742         dc->devices[dev->unit] = dev;
 1743         dev->devclass = dc;
 1744         snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
 1745 
 1746         return (0);
 1747 }
 1748 
 1749 /**
 1750  * @internal
 1751  * @brief Delete a device from a devclass
 1752  *
 1753  * The device is removed from the devclass's device list and its unit
 1754  * number is freed.
 1755 
 1756  * @param dc            the devclass to delete from
 1757  * @param dev           the device to delete
 1758  *
 1759  * @retval 0            success
 1760  */
 1761 static int
 1762 devclass_delete_device(devclass_t dc, device_t dev)
 1763 {
 1764         if (!dc || !dev)
 1765                 return (0);
 1766 
 1767         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1768 
 1769         if (dev->devclass != dc || dc->devices[dev->unit] != dev)
 1770                 panic("devclass_delete_device: inconsistent device class");
 1771         dc->devices[dev->unit] = NULL;
 1772         if (dev->flags & DF_WILDCARD)
 1773                 dev->unit = -1;
 1774         dev->devclass = NULL;
 1775         free(dev->nameunit, M_BUS);
 1776         dev->nameunit = NULL;
 1777 
 1778         return (0);
 1779 }
 1780 
 1781 /**
 1782  * @internal
 1783  * @brief Make a new device and add it as a child of @p parent
 1784  *
 1785  * @param parent        the parent of the new device
 1786  * @param name          the devclass name of the new device or @c NULL
 1787  *                      to leave the devclass unspecified
 1788  * @parem unit          the unit number of the new device of @c -1 to
 1789  *                      leave the unit number unspecified
 1790  *
 1791  * @returns the new device
 1792  */
 1793 static device_t
 1794 make_device(device_t parent, const char *name, int unit)
 1795 {
 1796         device_t dev;
 1797         devclass_t dc;
 1798 
 1799         PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
 1800 
 1801         if (name) {
 1802                 dc = devclass_find_internal(name, NULL, TRUE);
 1803                 if (!dc) {
 1804                         printf("make_device: can't find device class %s\n",
 1805                             name);
 1806                         return (NULL);
 1807                 }
 1808         } else {
 1809                 dc = NULL;
 1810         }
 1811 
 1812         dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
 1813         if (!dev)
 1814                 return (NULL);
 1815 
 1816         dev->parent = parent;
 1817         TAILQ_INIT(&dev->children);
 1818         kobj_init((kobj_t) dev, &null_class);
 1819         dev->driver = NULL;
 1820         dev->devclass = NULL;
 1821         dev->unit = unit;
 1822         dev->nameunit = NULL;
 1823         dev->desc = NULL;
 1824         dev->busy = 0;
 1825         dev->devflags = 0;
 1826         dev->flags = DF_ENABLED;
 1827         dev->order = 0;
 1828         if (unit == -1)
 1829                 dev->flags |= DF_WILDCARD;
 1830         if (name) {
 1831                 dev->flags |= DF_FIXEDCLASS;
 1832                 if (devclass_add_device(dc, dev)) {
 1833                         kobj_delete((kobj_t) dev, M_BUS);
 1834                         return (NULL);
 1835                 }
 1836         }
 1837         if (parent != NULL && device_has_quiet_children(parent))
 1838                 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
 1839         dev->ivars = NULL;
 1840         dev->softc = NULL;
 1841 
 1842         dev->state = DS_NOTPRESENT;
 1843 
 1844         TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
 1845         bus_data_generation_update();
 1846 
 1847         return (dev);
 1848 }
 1849 
 1850 /**
 1851  * @internal
 1852  * @brief Print a description of a device.
 1853  */
 1854 static int
 1855 device_print_child(device_t dev, device_t child)
 1856 {
 1857         int retval = 0;
 1858 
 1859         if (device_is_alive(child))
 1860                 retval += BUS_PRINT_CHILD(dev, child);
 1861         else
 1862                 retval += device_printf(child, " not found\n");
 1863 
 1864         return (retval);
 1865 }
 1866 
 1867 /**
 1868  * @brief Create a new device
 1869  *
 1870  * This creates a new device and adds it as a child of an existing
 1871  * parent device. The new device will be added after the last existing
 1872  * child with order zero.
 1873  *
 1874  * @param dev           the device which will be the parent of the
 1875  *                      new child device
 1876  * @param name          devclass name for new device or @c NULL if not
 1877  *                      specified
 1878  * @param unit          unit number for new device or @c -1 if not
 1879  *                      specified
 1880  *
 1881  * @returns             the new device
 1882  */
 1883 device_t
 1884 device_add_child(device_t dev, const char *name, int unit)
 1885 {
 1886         return (device_add_child_ordered(dev, 0, name, unit));
 1887 }
 1888 
 1889 /**
 1890  * @brief Create a new device
 1891  *
 1892  * This creates a new device and adds it as a child of an existing
 1893  * parent device. The new device will be added after the last existing
 1894  * child with the same order.
 1895  *
 1896  * @param dev           the device which will be the parent of the
 1897  *                      new child device
 1898  * @param order         a value which is used to partially sort the
 1899  *                      children of @p dev - devices created using
 1900  *                      lower values of @p order appear first in @p
 1901  *                      dev's list of children
 1902  * @param name          devclass name for new device or @c NULL if not
 1903  *                      specified
 1904  * @param unit          unit number for new device or @c -1 if not
 1905  *                      specified
 1906  *
 1907  * @returns             the new device
 1908  */
 1909 device_t
 1910 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
 1911 {
 1912         device_t child;
 1913         device_t place;
 1914 
 1915         PDEBUG(("%s at %s with order %u as unit %d",
 1916             name, DEVICENAME(dev), order, unit));
 1917         KASSERT(name != NULL || unit == -1,
 1918             ("child device with wildcard name and specific unit number"));
 1919 
 1920         child = make_device(dev, name, unit);
 1921         if (child == NULL)
 1922                 return (child);
 1923         child->order = order;
 1924 
 1925         TAILQ_FOREACH(place, &dev->children, link) {
 1926                 if (place->order > order)
 1927                         break;
 1928         }
 1929 
 1930         if (place) {
 1931                 /*
 1932                  * The device 'place' is the first device whose order is
 1933                  * greater than the new child.
 1934                  */
 1935                 TAILQ_INSERT_BEFORE(place, child, link);
 1936         } else {
 1937                 /*
 1938                  * The new child's order is greater or equal to the order of
 1939                  * any existing device. Add the child to the tail of the list.
 1940                  */
 1941                 TAILQ_INSERT_TAIL(&dev->children, child, link);
 1942         }
 1943 
 1944         bus_data_generation_update();
 1945         return (child);
 1946 }
 1947 
 1948 /**
 1949  * @brief Delete a device
 1950  *
 1951  * This function deletes a device along with all of its children. If
 1952  * the device currently has a driver attached to it, the device is
 1953  * detached first using device_detach().
 1954  *
 1955  * @param dev           the parent device
 1956  * @param child         the device to delete
 1957  *
 1958  * @retval 0            success
 1959  * @retval non-zero     a unit error code describing the error
 1960  */
 1961 int
 1962 device_delete_child(device_t dev, device_t child)
 1963 {
 1964         int error;
 1965         device_t grandchild;
 1966 
 1967         PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
 1968 
 1969         /* detach parent before deleting children, if any */
 1970         if ((error = device_detach(child)) != 0)
 1971                 return (error);
 1972         
 1973         /* remove children second */
 1974         while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
 1975                 error = device_delete_child(child, grandchild);
 1976                 if (error)
 1977                         return (error);
 1978         }
 1979 
 1980         if (child->devclass)
 1981                 devclass_delete_device(child->devclass, child);
 1982         if (child->parent)
 1983                 BUS_CHILD_DELETED(dev, child);
 1984         TAILQ_REMOVE(&dev->children, child, link);
 1985         TAILQ_REMOVE(&bus_data_devices, child, devlink);
 1986         kobj_delete((kobj_t) child, M_BUS);
 1987 
 1988         bus_data_generation_update();
 1989         return (0);
 1990 }
 1991 
 1992 /**
 1993  * @brief Delete all children devices of the given device, if any.
 1994  *
 1995  * This function deletes all children devices of the given device, if
 1996  * any, using the device_delete_child() function for each device it
 1997  * finds. If a child device cannot be deleted, this function will
 1998  * return an error code.
 1999  *
 2000  * @param dev           the parent device
 2001  *
 2002  * @retval 0            success
 2003  * @retval non-zero     a device would not detach
 2004  */
 2005 int
 2006 device_delete_children(device_t dev)
 2007 {
 2008         device_t child;
 2009         int error;
 2010 
 2011         PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
 2012 
 2013         error = 0;
 2014 
 2015         while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
 2016                 error = device_delete_child(dev, child);
 2017                 if (error) {
 2018                         PDEBUG(("Failed deleting %s", DEVICENAME(child)));
 2019                         break;
 2020                 }
 2021         }
 2022         return (error);
 2023 }
 2024 
 2025 /**
 2026  * @brief Find a device given a unit number
 2027  *
 2028  * This is similar to devclass_get_devices() but only searches for
 2029  * devices which have @p dev as a parent.
 2030  *
 2031  * @param dev           the parent device to search
 2032  * @param unit          the unit number to search for.  If the unit is -1,
 2033  *                      return the first child of @p dev which has name
 2034  *                      @p classname (that is, the one with the lowest unit.)
 2035  *
 2036  * @returns             the device with the given unit number or @c
 2037  *                      NULL if there is no such device
 2038  */
 2039 device_t
 2040 device_find_child(device_t dev, const char *classname, int unit)
 2041 {
 2042         devclass_t dc;
 2043         device_t child;
 2044 
 2045         dc = devclass_find(classname);
 2046         if (!dc)
 2047                 return (NULL);
 2048 
 2049         if (unit != -1) {
 2050                 child = devclass_get_device(dc, unit);
 2051                 if (child && child->parent == dev)
 2052                         return (child);
 2053         } else {
 2054                 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
 2055                         child = devclass_get_device(dc, unit);
 2056                         if (child && child->parent == dev)
 2057                                 return (child);
 2058                 }
 2059         }
 2060         return (NULL);
 2061 }
 2062 
 2063 /**
 2064  * @internal
 2065  */
 2066 static driverlink_t
 2067 first_matching_driver(devclass_t dc, device_t dev)
 2068 {
 2069         if (dev->devclass)
 2070                 return (devclass_find_driver_internal(dc, dev->devclass->name));
 2071         return (TAILQ_FIRST(&dc->drivers));
 2072 }
 2073 
 2074 /**
 2075  * @internal
 2076  */
 2077 static driverlink_t
 2078 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
 2079 {
 2080         if (dev->devclass) {
 2081                 driverlink_t dl;
 2082                 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
 2083                         if (!strcmp(dev->devclass->name, dl->driver->name))
 2084                                 return (dl);
 2085                 return (NULL);
 2086         }
 2087         return (TAILQ_NEXT(last, link));
 2088 }
 2089 
 2090 /**
 2091  * @internal
 2092  */
 2093 int
 2094 device_probe_child(device_t dev, device_t child)
 2095 {
 2096         devclass_t dc;
 2097         driverlink_t best = NULL;
 2098         driverlink_t dl;
 2099         int result, pri = 0;
 2100         int hasclass = (child->devclass != NULL);
 2101 
 2102         GIANT_REQUIRED;
 2103 
 2104         dc = dev->devclass;
 2105         if (!dc)
 2106                 panic("device_probe_child: parent device has no devclass");
 2107 
 2108         /*
 2109          * If the state is already probed, then return.  However, don't
 2110          * return if we can rebid this object.
 2111          */
 2112         if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
 2113                 return (0);
 2114 
 2115         for (; dc; dc = dc->parent) {
 2116                 for (dl = first_matching_driver(dc, child);
 2117                      dl;
 2118                      dl = next_matching_driver(dc, child, dl)) {
 2119                         /* If this driver's pass is too high, then ignore it. */
 2120                         if (dl->pass > bus_current_pass)
 2121                                 continue;
 2122 
 2123                         PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
 2124                         result = device_set_driver(child, dl->driver);
 2125                         if (result == ENOMEM)
 2126                                 return (result);
 2127                         else if (result != 0)
 2128                                 continue;
 2129                         if (!hasclass) {
 2130                                 if (device_set_devclass(child,
 2131                                     dl->driver->name) != 0) {
 2132                                         char const * devname =
 2133                                             device_get_name(child);
 2134                                         if (devname == NULL)
 2135                                                 devname = "(unknown)";
 2136                                         printf("driver bug: Unable to set "
 2137                                             "devclass (class: %s "
 2138                                             "devname: %s)\n",
 2139                                             dl->driver->name,
 2140                                             devname);
 2141                                         (void)device_set_driver(child, NULL);
 2142                                         continue;
 2143                                 }
 2144                         }
 2145 
 2146                         /* Fetch any flags for the device before probing. */
 2147                         resource_int_value(dl->driver->name, child->unit,
 2148                             "flags", &child->devflags);
 2149 
 2150                         result = DEVICE_PROBE(child);
 2151 
 2152                         /* Reset flags and devclass before the next probe. */
 2153                         child->devflags = 0;
 2154                         if (!hasclass)
 2155                                 (void)device_set_devclass(child, NULL);
 2156 
 2157                         /*
 2158                          * If the driver returns SUCCESS, there can be
 2159                          * no higher match for this device.
 2160                          */
 2161                         if (result == 0) {
 2162                                 best = dl;
 2163                                 pri = 0;
 2164                                 break;
 2165                         }
 2166 
 2167                         /*
 2168                          * Reset DF_QUIET in case this driver doesn't
 2169                          * end up as the best driver.
 2170                          */
 2171                         device_verbose(child);
 2172 
 2173                         /*
 2174                          * Probes that return BUS_PROBE_NOWILDCARD or lower
 2175                          * only match on devices whose driver was explicitly
 2176                          * specified.
 2177                          */
 2178                         if (result <= BUS_PROBE_NOWILDCARD &&
 2179                             !(child->flags & DF_FIXEDCLASS)) {
 2180                                 result = ENXIO;
 2181                         }
 2182 
 2183                         /*
 2184                          * The driver returned an error so it
 2185                          * certainly doesn't match.
 2186                          */
 2187                         if (result > 0) {
 2188                                 (void)device_set_driver(child, NULL);
 2189                                 continue;
 2190                         }
 2191 
 2192                         /*
 2193                          * A priority lower than SUCCESS, remember the
 2194                          * best matching driver. Initialise the value
 2195                          * of pri for the first match.
 2196                          */
 2197                         if (best == NULL || result > pri) {
 2198                                 best = dl;
 2199                                 pri = result;
 2200                                 continue;
 2201                         }
 2202                 }
 2203                 /*
 2204                  * If we have an unambiguous match in this devclass,
 2205                  * don't look in the parent.
 2206                  */
 2207                 if (best && pri == 0)
 2208                         break;
 2209         }
 2210 
 2211         /*
 2212          * If we found a driver, change state and initialise the devclass.
 2213          */
 2214         /* XXX What happens if we rebid and got no best? */
 2215         if (best) {
 2216                 /*
 2217                  * If this device was attached, and we were asked to
 2218                  * rescan, and it is a different driver, then we have
 2219                  * to detach the old driver and reattach this new one.
 2220                  * Note, we don't have to check for DF_REBID here
 2221                  * because if the state is > DS_ALIVE, we know it must
 2222                  * be.
 2223                  *
 2224                  * This assumes that all DF_REBID drivers can have
 2225                  * their probe routine called at any time and that
 2226                  * they are idempotent as well as completely benign in
 2227                  * normal operations.
 2228                  *
 2229                  * We also have to make sure that the detach
 2230                  * succeeded, otherwise we fail the operation (or
 2231                  * maybe it should just fail silently?  I'm torn).
 2232                  */
 2233                 if (child->state > DS_ALIVE && best->driver != child->driver)
 2234                         if ((result = device_detach(dev)) != 0)
 2235                                 return (result);
 2236 
 2237                 /* Set the winning driver, devclass, and flags. */
 2238                 if (!child->devclass) {
 2239                         result = device_set_devclass(child, best->driver->name);
 2240                         if (result != 0)
 2241                                 return (result);
 2242                 }
 2243                 result = device_set_driver(child, best->driver);
 2244                 if (result != 0)
 2245                         return (result);
 2246                 resource_int_value(best->driver->name, child->unit,
 2247                     "flags", &child->devflags);
 2248 
 2249                 if (pri < 0) {
 2250                         /*
 2251                          * A bit bogus. Call the probe method again to make
 2252                          * sure that we have the right description.
 2253                          */
 2254                         DEVICE_PROBE(child);
 2255 #if 0
 2256                         child->flags |= DF_REBID;
 2257 #endif
 2258                 } else
 2259                         child->flags &= ~DF_REBID;
 2260                 child->state = DS_ALIVE;
 2261 
 2262                 bus_data_generation_update();
 2263                 return (0);
 2264         }
 2265 
 2266         return (ENXIO);
 2267 }
 2268 
 2269 /**
 2270  * @brief Return the parent of a device
 2271  */
 2272 device_t
 2273 device_get_parent(device_t dev)
 2274 {
 2275         return (dev->parent);
 2276 }
 2277 
 2278 /**
 2279  * @brief Get a list of children of a device
 2280  *
 2281  * An array containing a list of all the children of the given device
 2282  * is allocated and returned in @p *devlistp. The number of devices
 2283  * in the array is returned in @p *devcountp. The caller should free
 2284  * the array using @c free(p, M_TEMP).
 2285  *
 2286  * @param dev           the device to examine
 2287  * @param devlistp      points at location for array pointer return
 2288  *                      value
 2289  * @param devcountp     points at location for array size return value
 2290  *
 2291  * @retval 0            success
 2292  * @retval ENOMEM       the array allocation failed
 2293  */
 2294 int
 2295 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
 2296 {
 2297         int count;
 2298         device_t child;
 2299         device_t *list;
 2300 
 2301         count = 0;
 2302         TAILQ_FOREACH(child, &dev->children, link) {
 2303                 count++;
 2304         }
 2305         if (count == 0) {
 2306                 *devlistp = NULL;
 2307                 *devcountp = 0;
 2308                 return (0);
 2309         }
 2310 
 2311         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 2312         if (!list)
 2313                 return (ENOMEM);
 2314 
 2315         count = 0;
 2316         TAILQ_FOREACH(child, &dev->children, link) {
 2317                 list[count] = child;
 2318                 count++;
 2319         }
 2320 
 2321         *devlistp = list;
 2322         *devcountp = count;
 2323 
 2324         return (0);
 2325 }
 2326 
 2327 /**
 2328  * @brief Return the current driver for the device or @c NULL if there
 2329  * is no driver currently attached
 2330  */
 2331 driver_t *
 2332 device_get_driver(device_t dev)
 2333 {
 2334         return (dev->driver);
 2335 }
 2336 
 2337 /**
 2338  * @brief Return the current devclass for the device or @c NULL if
 2339  * there is none.
 2340  */
 2341 devclass_t
 2342 device_get_devclass(device_t dev)
 2343 {
 2344         return (dev->devclass);
 2345 }
 2346 
 2347 /**
 2348  * @brief Return the name of the device's devclass or @c NULL if there
 2349  * is none.
 2350  */
 2351 const char *
 2352 device_get_name(device_t dev)
 2353 {
 2354         if (dev != NULL && dev->devclass)
 2355                 return (devclass_get_name(dev->devclass));
 2356         return (NULL);
 2357 }
 2358 
 2359 /**
 2360  * @brief Return a string containing the device's devclass name
 2361  * followed by an ascii representation of the device's unit number
 2362  * (e.g. @c "foo2").
 2363  */
 2364 const char *
 2365 device_get_nameunit(device_t dev)
 2366 {
 2367         return (dev->nameunit);
 2368 }
 2369 
 2370 /**
 2371  * @brief Return the device's unit number.
 2372  */
 2373 int
 2374 device_get_unit(device_t dev)
 2375 {
 2376         return (dev->unit);
 2377 }
 2378 
 2379 /**
 2380  * @brief Return the device's description string
 2381  */
 2382 const char *
 2383 device_get_desc(device_t dev)
 2384 {
 2385         return (dev->desc);
 2386 }
 2387 
 2388 /**
 2389  * @brief Return the device's flags
 2390  */
 2391 uint32_t
 2392 device_get_flags(device_t dev)
 2393 {
 2394         return (dev->devflags);
 2395 }
 2396 
 2397 struct sysctl_ctx_list *
 2398 device_get_sysctl_ctx(device_t dev)
 2399 {
 2400         return (&dev->sysctl_ctx);
 2401 }
 2402 
 2403 struct sysctl_oid *
 2404 device_get_sysctl_tree(device_t dev)
 2405 {
 2406         return (dev->sysctl_tree);
 2407 }
 2408 
 2409 /**
 2410  * @brief Print the name of the device followed by a colon and a space
 2411  *
 2412  * @returns the number of characters printed
 2413  */
 2414 int
 2415 device_print_prettyname(device_t dev)
 2416 {
 2417         const char *name = device_get_name(dev);
 2418 
 2419         if (name == NULL)
 2420                 return (printf("unknown: "));
 2421         return (printf("%s%d: ", name, device_get_unit(dev)));
 2422 }
 2423 
 2424 /**
 2425  * @brief Print the name of the device followed by a colon, a space
 2426  * and the result of calling vprintf() with the value of @p fmt and
 2427  * the following arguments.
 2428  *
 2429  * @returns the number of characters printed
 2430  */
 2431 int
 2432 device_printf(device_t dev, const char * fmt, ...)
 2433 {
 2434         va_list ap;
 2435         int retval;
 2436 
 2437         retval = device_print_prettyname(dev);
 2438         va_start(ap, fmt);
 2439         retval += vprintf(fmt, ap);
 2440         va_end(ap);
 2441         return (retval);
 2442 }
 2443 
 2444 /**
 2445  * @internal
 2446  */
 2447 static void
 2448 device_set_desc_internal(device_t dev, const char* desc, int copy)
 2449 {
 2450         if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
 2451                 free(dev->desc, M_BUS);
 2452                 dev->flags &= ~DF_DESCMALLOCED;
 2453                 dev->desc = NULL;
 2454         }
 2455 
 2456         if (copy && desc) {
 2457                 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
 2458                 if (dev->desc) {
 2459                         strcpy(dev->desc, desc);
 2460                         dev->flags |= DF_DESCMALLOCED;
 2461                 }
 2462         } else {
 2463                 /* Avoid a -Wcast-qual warning */
 2464                 dev->desc = (char *)(uintptr_t) desc;
 2465         }
 2466 
 2467         bus_data_generation_update();
 2468 }
 2469 
 2470 /**
 2471  * @brief Set the device's description
 2472  *
 2473  * The value of @c desc should be a string constant that will not
 2474  * change (at least until the description is changed in a subsequent
 2475  * call to device_set_desc() or device_set_desc_copy()).
 2476  */
 2477 void
 2478 device_set_desc(device_t dev, const char* desc)
 2479 {
 2480         device_set_desc_internal(dev, desc, FALSE);
 2481 }
 2482 
 2483 /**
 2484  * @brief Set the device's description
 2485  *
 2486  * The string pointed to by @c desc is copied. Use this function if
 2487  * the device description is generated, (e.g. with sprintf()).
 2488  */
 2489 void
 2490 device_set_desc_copy(device_t dev, const char* desc)
 2491 {
 2492         device_set_desc_internal(dev, desc, TRUE);
 2493 }
 2494 
 2495 /**
 2496  * @brief Set the device's flags
 2497  */
 2498 void
 2499 device_set_flags(device_t dev, uint32_t flags)
 2500 {
 2501         dev->devflags = flags;
 2502 }
 2503 
 2504 /**
 2505  * @brief Return the device's softc field
 2506  *
 2507  * The softc is allocated and zeroed when a driver is attached, based
 2508  * on the size field of the driver.
 2509  */
 2510 void *
 2511 device_get_softc(device_t dev)
 2512 {
 2513         return (dev->softc);
 2514 }
 2515 
 2516 /**
 2517  * @brief Set the device's softc field
 2518  *
 2519  * Most drivers do not need to use this since the softc is allocated
 2520  * automatically when the driver is attached.
 2521  */
 2522 void
 2523 device_set_softc(device_t dev, void *softc)
 2524 {
 2525         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
 2526                 free(dev->softc, M_BUS_SC);
 2527         dev->softc = softc;
 2528         if (dev->softc)
 2529                 dev->flags |= DF_EXTERNALSOFTC;
 2530         else
 2531                 dev->flags &= ~DF_EXTERNALSOFTC;
 2532 }
 2533 
 2534 /**
 2535  * @brief Free claimed softc
 2536  *
 2537  * Most drivers do not need to use this since the softc is freed
 2538  * automatically when the driver is detached.
 2539  */
 2540 void
 2541 device_free_softc(void *softc)
 2542 {
 2543         free(softc, M_BUS_SC);
 2544 }
 2545 
 2546 /**
 2547  * @brief Claim softc
 2548  *
 2549  * This function can be used to let the driver free the automatically
 2550  * allocated softc using "device_free_softc()". This function is
 2551  * useful when the driver is refcounting the softc and the softc
 2552  * cannot be freed when the "device_detach" method is called.
 2553  */
 2554 void
 2555 device_claim_softc(device_t dev)
 2556 {
 2557         if (dev->softc)
 2558                 dev->flags |= DF_EXTERNALSOFTC;
 2559         else
 2560                 dev->flags &= ~DF_EXTERNALSOFTC;
 2561 }
 2562 
 2563 /**
 2564  * @brief Get the device's ivars field
 2565  *
 2566  * The ivars field is used by the parent device to store per-device
 2567  * state (e.g. the physical location of the device or a list of
 2568  * resources).
 2569  */
 2570 void *
 2571 device_get_ivars(device_t dev)
 2572 {
 2573 
 2574         KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
 2575         return (dev->ivars);
 2576 }
 2577 
 2578 /**
 2579  * @brief Set the device's ivars field
 2580  */
 2581 void
 2582 device_set_ivars(device_t dev, void * ivars)
 2583 {
 2584 
 2585         KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
 2586         dev->ivars = ivars;
 2587 }
 2588 
 2589 /**
 2590  * @brief Return the device's state
 2591  */
 2592 device_state_t
 2593 device_get_state(device_t dev)
 2594 {
 2595         return (dev->state);
 2596 }
 2597 
 2598 /**
 2599  * @brief Set the DF_ENABLED flag for the device
 2600  */
 2601 void
 2602 device_enable(device_t dev)
 2603 {
 2604         dev->flags |= DF_ENABLED;
 2605 }
 2606 
 2607 /**
 2608  * @brief Clear the DF_ENABLED flag for the device
 2609  */
 2610 void
 2611 device_disable(device_t dev)
 2612 {
 2613         dev->flags &= ~DF_ENABLED;
 2614 }
 2615 
 2616 /**
 2617  * @brief Increment the busy counter for the device
 2618  */
 2619 void
 2620 device_busy(device_t dev)
 2621 {
 2622         if (dev->state < DS_ATTACHING)
 2623                 panic("device_busy: called for unattached device");
 2624         if (dev->busy == 0 && dev->parent)
 2625                 device_busy(dev->parent);
 2626         dev->busy++;
 2627         if (dev->state == DS_ATTACHED)
 2628                 dev->state = DS_BUSY;
 2629 }
 2630 
 2631 /**
 2632  * @brief Decrement the busy counter for the device
 2633  */
 2634 void
 2635 device_unbusy(device_t dev)
 2636 {
 2637         if (dev->busy != 0 && dev->state != DS_BUSY &&
 2638             dev->state != DS_ATTACHING)
 2639                 panic("device_unbusy: called for non-busy device %s",
 2640                     device_get_nameunit(dev));
 2641         dev->busy--;
 2642         if (dev->busy == 0) {
 2643                 if (dev->parent)
 2644                         device_unbusy(dev->parent);
 2645                 if (dev->state == DS_BUSY)
 2646                         dev->state = DS_ATTACHED;
 2647         }
 2648 }
 2649 
 2650 /**
 2651  * @brief Set the DF_QUIET flag for the device
 2652  */
 2653 void
 2654 device_quiet(device_t dev)
 2655 {
 2656         dev->flags |= DF_QUIET;
 2657 }
 2658 
 2659 /**
 2660  * @brief Set the DF_QUIET_CHILDREN flag for the device
 2661  */
 2662 void
 2663 device_quiet_children(device_t dev)
 2664 {
 2665         dev->flags |= DF_QUIET_CHILDREN;
 2666 }
 2667 
 2668 /**
 2669  * @brief Clear the DF_QUIET flag for the device
 2670  */
 2671 void
 2672 device_verbose(device_t dev)
 2673 {
 2674         dev->flags &= ~DF_QUIET;
 2675 }
 2676 
 2677 /**
 2678  * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
 2679  */
 2680 int
 2681 device_has_quiet_children(device_t dev)
 2682 {
 2683         return ((dev->flags & DF_QUIET_CHILDREN) != 0);
 2684 }
 2685 
 2686 /**
 2687  * @brief Return non-zero if the DF_QUIET flag is set on the device
 2688  */
 2689 int
 2690 device_is_quiet(device_t dev)
 2691 {
 2692         return ((dev->flags & DF_QUIET) != 0);
 2693 }
 2694 
 2695 /**
 2696  * @brief Return non-zero if the DF_ENABLED flag is set on the device
 2697  */
 2698 int
 2699 device_is_enabled(device_t dev)
 2700 {
 2701         return ((dev->flags & DF_ENABLED) != 0);
 2702 }
 2703 
 2704 /**
 2705  * @brief Return non-zero if the device was successfully probed
 2706  */
 2707 int
 2708 device_is_alive(device_t dev)
 2709 {
 2710         return (dev->state >= DS_ALIVE);
 2711 }
 2712 
 2713 /**
 2714  * @brief Return non-zero if the device currently has a driver
 2715  * attached to it
 2716  */
 2717 int
 2718 device_is_attached(device_t dev)
 2719 {
 2720         return (dev->state >= DS_ATTACHED);
 2721 }
 2722 
 2723 /**
 2724  * @brief Return non-zero if the device is currently suspended.
 2725  */
 2726 int
 2727 device_is_suspended(device_t dev)
 2728 {
 2729         return ((dev->flags & DF_SUSPENDED) != 0);
 2730 }
 2731 
 2732 /**
 2733  * @brief Set the devclass of a device
 2734  * @see devclass_add_device().
 2735  */
 2736 int
 2737 device_set_devclass(device_t dev, const char *classname)
 2738 {
 2739         devclass_t dc;
 2740         int error;
 2741 
 2742         if (!classname) {
 2743                 if (dev->devclass)
 2744                         devclass_delete_device(dev->devclass, dev);
 2745                 return (0);
 2746         }
 2747 
 2748         if (dev->devclass) {
 2749                 printf("device_set_devclass: device class already set\n");
 2750                 return (EINVAL);
 2751         }
 2752 
 2753         dc = devclass_find_internal(classname, NULL, TRUE);
 2754         if (!dc)
 2755                 return (ENOMEM);
 2756 
 2757         error = devclass_add_device(dc, dev);
 2758 
 2759         bus_data_generation_update();
 2760         return (error);
 2761 }
 2762 
 2763 /**
 2764  * @brief Set the devclass of a device and mark the devclass fixed.
 2765  * @see device_set_devclass()
 2766  */
 2767 int
 2768 device_set_devclass_fixed(device_t dev, const char *classname)
 2769 {
 2770         int error;
 2771 
 2772         if (classname == NULL)
 2773                 return (EINVAL);
 2774 
 2775         error = device_set_devclass(dev, classname);
 2776         if (error)
 2777                 return (error);
 2778         dev->flags |= DF_FIXEDCLASS;
 2779         return (0);
 2780 }
 2781 
 2782 /**
 2783  * @brief Set the driver of a device
 2784  *
 2785  * @retval 0            success
 2786  * @retval EBUSY        the device already has a driver attached
 2787  * @retval ENOMEM       a memory allocation failure occurred
 2788  */
 2789 int
 2790 device_set_driver(device_t dev, driver_t *driver)
 2791 {
 2792         if (dev->state >= DS_ATTACHED)
 2793                 return (EBUSY);
 2794 
 2795         if (dev->driver == driver)
 2796                 return (0);
 2797 
 2798         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
 2799                 free(dev->softc, M_BUS_SC);
 2800                 dev->softc = NULL;
 2801         }
 2802         device_set_desc(dev, NULL);
 2803         kobj_delete((kobj_t) dev, NULL);
 2804         dev->driver = driver;
 2805         if (driver) {
 2806                 kobj_init((kobj_t) dev, (kobj_class_t) driver);
 2807                 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
 2808                         dev->softc = malloc(driver->size, M_BUS_SC,
 2809                             M_NOWAIT | M_ZERO);
 2810                         if (!dev->softc) {
 2811                                 kobj_delete((kobj_t) dev, NULL);
 2812                                 kobj_init((kobj_t) dev, &null_class);
 2813                                 dev->driver = NULL;
 2814                                 return (ENOMEM);
 2815                         }
 2816                 }
 2817         } else {
 2818                 kobj_init((kobj_t) dev, &null_class);
 2819         }
 2820 
 2821         bus_data_generation_update();
 2822         return (0);
 2823 }
 2824 
 2825 /**
 2826  * @brief Probe a device, and return this status.
 2827  *
 2828  * This function is the core of the device autoconfiguration
 2829  * system. Its purpose is to select a suitable driver for a device and
 2830  * then call that driver to initialise the hardware appropriately. The
 2831  * driver is selected by calling the DEVICE_PROBE() method of a set of
 2832  * candidate drivers and then choosing the driver which returned the
 2833  * best value. This driver is then attached to the device using
 2834  * device_attach().
 2835  *
 2836  * The set of suitable drivers is taken from the list of drivers in
 2837  * the parent device's devclass. If the device was originally created
 2838  * with a specific class name (see device_add_child()), only drivers
 2839  * with that name are probed, otherwise all drivers in the devclass
 2840  * are probed. If no drivers return successful probe values in the
 2841  * parent devclass, the search continues in the parent of that
 2842  * devclass (see devclass_get_parent()) if any.
 2843  *
 2844  * @param dev           the device to initialise
 2845  *
 2846  * @retval 0            success
 2847  * @retval ENXIO        no driver was found
 2848  * @retval ENOMEM       memory allocation failure
 2849  * @retval non-zero     some other unix error code
 2850  * @retval -1           Device already attached
 2851  */
 2852 int
 2853 device_probe(device_t dev)
 2854 {
 2855         int error;
 2856 
 2857         GIANT_REQUIRED;
 2858 
 2859         if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
 2860                 return (-1);
 2861 
 2862         if (!(dev->flags & DF_ENABLED)) {
 2863                 if (bootverbose && device_get_name(dev) != NULL) {
 2864                         device_print_prettyname(dev);
 2865                         printf("not probed (disabled)\n");
 2866                 }
 2867                 return (-1);
 2868         }
 2869         if ((error = device_probe_child(dev->parent, dev)) != 0) {
 2870                 if (bus_current_pass == BUS_PASS_DEFAULT &&
 2871                     !(dev->flags & DF_DONENOMATCH)) {
 2872                         BUS_PROBE_NOMATCH(dev->parent, dev);
 2873                         devnomatch(dev);
 2874                         dev->flags |= DF_DONENOMATCH;
 2875                 }
 2876                 return (error);
 2877         }
 2878         return (0);
 2879 }
 2880 
 2881 /**
 2882  * @brief Probe a device and attach a driver if possible
 2883  *
 2884  * calls device_probe() and attaches if that was successful.
 2885  */
 2886 int
 2887 device_probe_and_attach(device_t dev)
 2888 {
 2889         int error;
 2890 
 2891         GIANT_REQUIRED;
 2892 
 2893         error = device_probe(dev);
 2894         if (error == -1)
 2895                 return (0);
 2896         else if (error != 0)
 2897                 return (error);
 2898 
 2899         CURVNET_SET_QUIET(vnet0);
 2900         error = device_attach(dev);
 2901         CURVNET_RESTORE();
 2902         return error;
 2903 }
 2904 
 2905 /**
 2906  * @brief Attach a device driver to a device
 2907  *
 2908  * This function is a wrapper around the DEVICE_ATTACH() driver
 2909  * method. In addition to calling DEVICE_ATTACH(), it initialises the
 2910  * device's sysctl tree, optionally prints a description of the device
 2911  * and queues a notification event for user-based device management
 2912  * services.
 2913  *
 2914  * Normally this function is only called internally from
 2915  * device_probe_and_attach().
 2916  *
 2917  * @param dev           the device to initialise
 2918  *
 2919  * @retval 0            success
 2920  * @retval ENXIO        no driver was found
 2921  * @retval ENOMEM       memory allocation failure
 2922  * @retval non-zero     some other unix error code
 2923  */
 2924 int
 2925 device_attach(device_t dev)
 2926 {
 2927         uint64_t attachtime;
 2928         uint16_t attachentropy;
 2929         int error;
 2930 
 2931         if (resource_disabled(dev->driver->name, dev->unit)) {
 2932                 device_disable(dev);
 2933                 if (bootverbose)
 2934                          device_printf(dev, "disabled via hints entry\n");
 2935                 return (ENXIO);
 2936         }
 2937 
 2938         device_sysctl_init(dev);
 2939         if (!device_is_quiet(dev))
 2940                 device_print_child(dev->parent, dev);
 2941         attachtime = get_cyclecount();
 2942         dev->state = DS_ATTACHING;
 2943         if ((error = DEVICE_ATTACH(dev)) != 0) {
 2944                 printf("device_attach: %s%d attach returned %d\n",
 2945                     dev->driver->name, dev->unit, error);
 2946                 if (!(dev->flags & DF_FIXEDCLASS))
 2947                         devclass_delete_device(dev->devclass, dev);
 2948                 (void)device_set_driver(dev, NULL);
 2949                 device_sysctl_fini(dev);
 2950                 KASSERT(dev->busy == 0, ("attach failed but busy"));
 2951                 dev->state = DS_NOTPRESENT;
 2952                 return (error);
 2953         }
 2954         dev->flags |= DF_ATTACHED_ONCE;
 2955         /* We only need the low bits of this time, but ranges from tens to thousands
 2956          * have been seen, so keep 2 bytes' worth.
 2957          */
 2958         attachentropy = (uint16_t)(get_cyclecount() - attachtime);
 2959         random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
 2960         device_sysctl_update(dev);
 2961         if (dev->busy)
 2962                 dev->state = DS_BUSY;
 2963         else
 2964                 dev->state = DS_ATTACHED;
 2965         dev->flags &= ~DF_DONENOMATCH;
 2966         EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
 2967         devadded(dev);
 2968         return (0);
 2969 }
 2970 
 2971 /**
 2972  * @brief Detach a driver from a device
 2973  *
 2974  * This function is a wrapper around the DEVICE_DETACH() driver
 2975  * method. If the call to DEVICE_DETACH() succeeds, it calls
 2976  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
 2977  * notification event for user-based device management services and
 2978  * cleans up the device's sysctl tree.
 2979  *
 2980  * @param dev           the device to un-initialise
 2981  *
 2982  * @retval 0            success
 2983  * @retval ENXIO        no driver was found
 2984  * @retval ENOMEM       memory allocation failure
 2985  * @retval non-zero     some other unix error code
 2986  */
 2987 int
 2988 device_detach(device_t dev)
 2989 {
 2990         int error;
 2991 
 2992         GIANT_REQUIRED;
 2993 
 2994         PDEBUG(("%s", DEVICENAME(dev)));
 2995         if (dev->state == DS_BUSY)
 2996                 return (EBUSY);
 2997         if (dev->state != DS_ATTACHED)
 2998                 return (0);
 2999 
 3000         EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
 3001         if ((error = DEVICE_DETACH(dev)) != 0) {
 3002                 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
 3003                     EVHDEV_DETACH_FAILED);
 3004                 return (error);
 3005         } else {
 3006                 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
 3007                     EVHDEV_DETACH_COMPLETE);
 3008         }
 3009         devremoved(dev);
 3010         if (!device_is_quiet(dev))
 3011                 device_printf(dev, "detached\n");
 3012         if (dev->parent)
 3013                 BUS_CHILD_DETACHED(dev->parent, dev);
 3014 
 3015         if (!(dev->flags & DF_FIXEDCLASS))
 3016                 devclass_delete_device(dev->devclass, dev);
 3017 
 3018         device_verbose(dev);
 3019         dev->state = DS_NOTPRESENT;
 3020         (void)device_set_driver(dev, NULL);
 3021         device_sysctl_fini(dev);
 3022 
 3023         return (0);
 3024 }
 3025 
 3026 /**
 3027  * @brief Tells a driver to quiesce itself.
 3028  *
 3029  * This function is a wrapper around the DEVICE_QUIESCE() driver
 3030  * method. If the call to DEVICE_QUIESCE() succeeds.
 3031  *
 3032  * @param dev           the device to quiesce
 3033  *
 3034  * @retval 0            success
 3035  * @retval ENXIO        no driver was found
 3036  * @retval ENOMEM       memory allocation failure
 3037  * @retval non-zero     some other unix error code
 3038  */
 3039 int
 3040 device_quiesce(device_t dev)
 3041 {
 3042 
 3043         PDEBUG(("%s", DEVICENAME(dev)));
 3044         if (dev->state == DS_BUSY)
 3045                 return (EBUSY);
 3046         if (dev->state != DS_ATTACHED)
 3047                 return (0);
 3048 
 3049         return (DEVICE_QUIESCE(dev));
 3050 }
 3051 
 3052 /**
 3053  * @brief Notify a device of system shutdown
 3054  *
 3055  * This function calls the DEVICE_SHUTDOWN() driver method if the
 3056  * device currently has an attached driver.
 3057  *
 3058  * @returns the value returned by DEVICE_SHUTDOWN()
 3059  */
 3060 int
 3061 device_shutdown(device_t dev)
 3062 {
 3063         if (dev->state < DS_ATTACHED)
 3064                 return (0);
 3065         return (DEVICE_SHUTDOWN(dev));
 3066 }
 3067 
 3068 /**
 3069  * @brief Set the unit number of a device
 3070  *
 3071  * This function can be used to override the unit number used for a
 3072  * device (e.g. to wire a device to a pre-configured unit number).
 3073  */
 3074 int
 3075 device_set_unit(device_t dev, int unit)
 3076 {
 3077         devclass_t dc;
 3078         int err;
 3079 
 3080         dc = device_get_devclass(dev);
 3081         if (unit < dc->maxunit && dc->devices[unit])
 3082                 return (EBUSY);
 3083         err = devclass_delete_device(dc, dev);
 3084         if (err)
 3085                 return (err);
 3086         dev->unit = unit;
 3087         err = devclass_add_device(dc, dev);
 3088         if (err)
 3089                 return (err);
 3090 
 3091         bus_data_generation_update();
 3092         return (0);
 3093 }
 3094 
 3095 /*======================================*/
 3096 /*
 3097  * Some useful method implementations to make life easier for bus drivers.
 3098  */
 3099 
 3100 void
 3101 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
 3102 {
 3103 
 3104         bzero(args, sz);
 3105         args->size = sz;
 3106         args->memattr = VM_MEMATTR_UNCACHEABLE;
 3107 }
 3108 
 3109 /**
 3110  * @brief Initialise a resource list.
 3111  *
 3112  * @param rl            the resource list to initialise
 3113  */
 3114 void
 3115 resource_list_init(struct resource_list *rl)
 3116 {
 3117         STAILQ_INIT(rl);
 3118 }
 3119 
 3120 /**
 3121  * @brief Reclaim memory used by a resource list.
 3122  *
 3123  * This function frees the memory for all resource entries on the list
 3124  * (if any).
 3125  *
 3126  * @param rl            the resource list to free
 3127  */
 3128 void
 3129 resource_list_free(struct resource_list *rl)
 3130 {
 3131         struct resource_list_entry *rle;
 3132 
 3133         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 3134                 if (rle->res)
 3135                         panic("resource_list_free: resource entry is busy");
 3136                 STAILQ_REMOVE_HEAD(rl, link);
 3137                 free(rle, M_BUS);
 3138         }
 3139 }
 3140 
 3141 /**
 3142  * @brief Add a resource entry.
 3143  *
 3144  * This function adds a resource entry using the given @p type, @p
 3145  * start, @p end and @p count values. A rid value is chosen by
 3146  * searching sequentially for the first unused rid starting at zero.
 3147  *
 3148  * @param rl            the resource list to edit
 3149  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3150  * @param start         the start address of the resource
 3151  * @param end           the end address of the resource
 3152  * @param count         XXX end-start+1
 3153  */
 3154 int
 3155 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
 3156     rman_res_t end, rman_res_t count)
 3157 {
 3158         int rid;
 3159 
 3160         rid = 0;
 3161         while (resource_list_find(rl, type, rid) != NULL)
 3162                 rid++;
 3163         resource_list_add(rl, type, rid, start, end, count);
 3164         return (rid);
 3165 }
 3166 
 3167 /**
 3168  * @brief Add or modify a resource entry.
 3169  *
 3170  * If an existing entry exists with the same type and rid, it will be
 3171  * modified using the given values of @p start, @p end and @p
 3172  * count. If no entry exists, a new one will be created using the
 3173  * given values.  The resource list entry that matches is then returned.
 3174  *
 3175  * @param rl            the resource list to edit
 3176  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3177  * @param rid           the resource identifier
 3178  * @param start         the start address of the resource
 3179  * @param end           the end address of the resource
 3180  * @param count         XXX end-start+1
 3181  */
 3182 struct resource_list_entry *
 3183 resource_list_add(struct resource_list *rl, int type, int rid,
 3184     rman_res_t start, rman_res_t end, rman_res_t count)
 3185 {
 3186         struct resource_list_entry *rle;
 3187 
 3188         rle = resource_list_find(rl, type, rid);
 3189         if (!rle) {
 3190                 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
 3191                     M_NOWAIT);
 3192                 if (!rle)
 3193                         panic("resource_list_add: can't record entry");
 3194                 STAILQ_INSERT_TAIL(rl, rle, link);
 3195                 rle->type = type;
 3196                 rle->rid = rid;
 3197                 rle->res = NULL;
 3198                 rle->flags = 0;
 3199         }
 3200 
 3201         if (rle->res)
 3202                 panic("resource_list_add: resource entry is busy");
 3203 
 3204         rle->start = start;
 3205         rle->end = end;
 3206         rle->count = count;
 3207         return (rle);
 3208 }
 3209 
 3210 /**
 3211  * @brief Determine if a resource entry is busy.
 3212  *
 3213  * Returns true if a resource entry is busy meaning that it has an
 3214  * associated resource that is not an unallocated "reserved" resource.
 3215  *
 3216  * @param rl            the resource list to search
 3217  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3218  * @param rid           the resource identifier
 3219  *
 3220  * @returns Non-zero if the entry is busy, zero otherwise.
 3221  */
 3222 int
 3223 resource_list_busy(struct resource_list *rl, int type, int rid)
 3224 {
 3225         struct resource_list_entry *rle;
 3226 
 3227         rle = resource_list_find(rl, type, rid);
 3228         if (rle == NULL || rle->res == NULL)
 3229                 return (0);
 3230         if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
 3231                 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
 3232                     ("reserved resource is active"));
 3233                 return (0);
 3234         }
 3235         return (1);
 3236 }
 3237 
 3238 /**
 3239  * @brief Determine if a resource entry is reserved.
 3240  *
 3241  * Returns true if a resource entry is reserved meaning that it has an
 3242  * associated "reserved" resource.  The resource can either be
 3243  * allocated or unallocated.
 3244  *
 3245  * @param rl            the resource list to search
 3246  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3247  * @param rid           the resource identifier
 3248  *
 3249  * @returns Non-zero if the entry is reserved, zero otherwise.
 3250  */
 3251 int
 3252 resource_list_reserved(struct resource_list *rl, int type, int rid)
 3253 {
 3254         struct resource_list_entry *rle;
 3255 
 3256         rle = resource_list_find(rl, type, rid);
 3257         if (rle != NULL && rle->flags & RLE_RESERVED)
 3258                 return (1);
 3259         return (0);
 3260 }
 3261 
 3262 /**
 3263  * @brief Find a resource entry by type and rid.
 3264  *
 3265  * @param rl            the resource list to search
 3266  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3267  * @param rid           the resource identifier
 3268  *
 3269  * @returns the resource entry pointer or NULL if there is no such
 3270  * entry.
 3271  */
 3272 struct resource_list_entry *
 3273 resource_list_find(struct resource_list *rl, int type, int rid)
 3274 {
 3275         struct resource_list_entry *rle;
 3276 
 3277         STAILQ_FOREACH(rle, rl, link) {
 3278                 if (rle->type == type && rle->rid == rid)
 3279                         return (rle);
 3280         }
 3281         return (NULL);
 3282 }
 3283 
 3284 /**
 3285  * @brief Delete a resource entry.
 3286  *
 3287  * @param rl            the resource list to edit
 3288  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3289  * @param rid           the resource identifier
 3290  */
 3291 void
 3292 resource_list_delete(struct resource_list *rl, int type, int rid)
 3293 {
 3294         struct resource_list_entry *rle = resource_list_find(rl, type, rid);
 3295 
 3296         if (rle) {
 3297                 if (rle->res != NULL)
 3298                         panic("resource_list_delete: resource has not been released");
 3299                 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
 3300                 free(rle, M_BUS);
 3301         }
 3302 }
 3303 
 3304 /**
 3305  * @brief Allocate a reserved resource
 3306  *
 3307  * This can be used by buses to force the allocation of resources
 3308  * that are always active in the system even if they are not allocated
 3309  * by a driver (e.g. PCI BARs).  This function is usually called when
 3310  * adding a new child to the bus.  The resource is allocated from the
 3311  * parent bus when it is reserved.  The resource list entry is marked
 3312  * with RLE_RESERVED to note that it is a reserved resource.
 3313  *
 3314  * Subsequent attempts to allocate the resource with
 3315  * resource_list_alloc() will succeed the first time and will set
 3316  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
 3317  * resource that has been allocated is released with
 3318  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
 3319  * the actual resource remains allocated.  The resource can be released to
 3320  * the parent bus by calling resource_list_unreserve().
 3321  *
 3322  * @param rl            the resource list to allocate from
 3323  * @param bus           the parent device of @p child
 3324  * @param child         the device for which the resource is being reserved
 3325  * @param type          the type of resource to allocate
 3326  * @param rid           a pointer to the resource identifier
 3327  * @param start         hint at the start of the resource range - pass
 3328  *                      @c 0 for any start address
 3329  * @param end           hint at the end of the resource range - pass
 3330  *                      @c ~0 for any end address
 3331  * @param count         hint at the size of range required - pass @c 1
 3332  *                      for any size
 3333  * @param flags         any extra flags to control the resource
 3334  *                      allocation - see @c RF_XXX flags in
 3335  *                      <sys/rman.h> for details
 3336  *
 3337  * @returns             the resource which was allocated or @c NULL if no
 3338  *                      resource could be allocated
 3339  */
 3340 struct resource *
 3341 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
 3342     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
 3343 {
 3344         struct resource_list_entry *rle = NULL;
 3345         int passthrough = (device_get_parent(child) != bus);
 3346         struct resource *r;
 3347 
 3348         if (passthrough)
 3349                 panic(
 3350     "resource_list_reserve() should only be called for direct children");
 3351         if (flags & RF_ACTIVE)
 3352                 panic(
 3353     "resource_list_reserve() should only reserve inactive resources");
 3354 
 3355         r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
 3356             flags);
 3357         if (r != NULL) {
 3358                 rle = resource_list_find(rl, type, *rid);
 3359                 rle->flags |= RLE_RESERVED;
 3360         }
 3361         return (r);
 3362 }
 3363 
 3364 /**
 3365  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
 3366  *
 3367  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
 3368  * and passing the allocation up to the parent of @p bus. This assumes
 3369  * that the first entry of @c device_get_ivars(child) is a struct
 3370  * resource_list. This also handles 'passthrough' allocations where a
 3371  * child is a remote descendant of bus by passing the allocation up to
 3372  * the parent of bus.
 3373  *
 3374  * Typically, a bus driver would store a list of child resources
 3375  * somewhere in the child device's ivars (see device_get_ivars()) and
 3376  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
 3377  * then call resource_list_alloc() to perform the allocation.
 3378  *
 3379  * @param rl            the resource list to allocate from
 3380  * @param bus           the parent device of @p child
 3381  * @param child         the device which is requesting an allocation
 3382  * @param type          the type of resource to allocate
 3383  * @param rid           a pointer to the resource identifier
 3384  * @param start         hint at the start of the resource range - pass
 3385  *                      @c 0 for any start address
 3386  * @param end           hint at the end of the resource range - pass
 3387  *                      @c ~0 for any end address
 3388  * @param count         hint at the size of range required - pass @c 1
 3389  *                      for any size
 3390  * @param flags         any extra flags to control the resource
 3391  *                      allocation - see @c RF_XXX flags in
 3392  *                      <sys/rman.h> for details
 3393  *
 3394  * @returns             the resource which was allocated or @c NULL if no
 3395  *                      resource could be allocated
 3396  */
 3397 struct resource *
 3398 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
 3399     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
 3400 {
 3401         struct resource_list_entry *rle = NULL;
 3402         int passthrough = (device_get_parent(child) != bus);
 3403         int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
 3404 
 3405         if (passthrough) {
 3406                 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 3407                     type, rid, start, end, count, flags));
 3408         }
 3409 
 3410         rle = resource_list_find(rl, type, *rid);
 3411 
 3412         if (!rle)
 3413                 return (NULL);          /* no resource of that type/rid */
 3414 
 3415         if (rle->res) {
 3416                 if (rle->flags & RLE_RESERVED) {
 3417                         if (rle->flags & RLE_ALLOCATED)
 3418                                 return (NULL);
 3419                         if ((flags & RF_ACTIVE) &&
 3420                             bus_activate_resource(child, type, *rid,
 3421                             rle->res) != 0)
 3422                                 return (NULL);
 3423                         rle->flags |= RLE_ALLOCATED;
 3424                         return (rle->res);
 3425                 }
 3426                 device_printf(bus,
 3427                     "resource entry %#x type %d for child %s is busy\n", *rid,
 3428                     type, device_get_nameunit(child));
 3429                 return (NULL);
 3430         }
 3431 
 3432         if (isdefault) {
 3433                 start = rle->start;
 3434                 count = ulmax(count, rle->count);
 3435                 end = ulmax(rle->end, start + count - 1);
 3436         }
 3437 
 3438         rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 3439             type, rid, start, end, count, flags);
 3440 
 3441         /*
 3442          * Record the new range.
 3443          */
 3444         if (rle->res) {
 3445                 rle->start = rman_get_start(rle->res);
 3446                 rle->end = rman_get_end(rle->res);
 3447                 rle->count = count;
 3448         }
 3449 
 3450         return (rle->res);
 3451 }
 3452 
 3453 /**
 3454  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
 3455  *
 3456  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
 3457  * used with resource_list_alloc().
 3458  *
 3459  * @param rl            the resource list which was allocated from
 3460  * @param bus           the parent device of @p child
 3461  * @param child         the device which is requesting a release
 3462  * @param type          the type of resource to release
 3463  * @param rid           the resource identifier
 3464  * @param res           the resource to release
 3465  *
 3466  * @retval 0            success
 3467  * @retval non-zero     a standard unix error code indicating what
 3468  *                      error condition prevented the operation
 3469  */
 3470 int
 3471 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
 3472     int type, int rid, struct resource *res)
 3473 {
 3474         struct resource_list_entry *rle = NULL;
 3475         int passthrough = (device_get_parent(child) != bus);
 3476         int error;
 3477 
 3478         if (passthrough) {
 3479                 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3480                     type, rid, res));
 3481         }
 3482 
 3483         rle = resource_list_find(rl, type, rid);
 3484 
 3485         if (!rle)
 3486                 panic("resource_list_release: can't find resource");
 3487         if (!rle->res)
 3488                 panic("resource_list_release: resource entry is not busy");
 3489         if (rle->flags & RLE_RESERVED) {
 3490                 if (rle->flags & RLE_ALLOCATED) {
 3491                         if (rman_get_flags(res) & RF_ACTIVE) {
 3492                                 error = bus_deactivate_resource(child, type,
 3493                                     rid, res);
 3494                                 if (error)
 3495                                         return (error);
 3496                         }
 3497                         rle->flags &= ~RLE_ALLOCATED;
 3498                         return (0);
 3499                 }
 3500                 return (EINVAL);
 3501         }
 3502 
 3503         error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3504             type, rid, res);
 3505         if (error)
 3506                 return (error);
 3507 
 3508         rle->res = NULL;
 3509         return (0);
 3510 }
 3511 
 3512 /**
 3513  * @brief Release all active resources of a given type
 3514  *
 3515  * Release all active resources of a specified type.  This is intended
 3516  * to be used to cleanup resources leaked by a driver after detach or
 3517  * a failed attach.
 3518  *
 3519  * @param rl            the resource list which was allocated from
 3520  * @param bus           the parent device of @p child
 3521  * @param child         the device whose active resources are being released
 3522  * @param type          the type of resources to release
 3523  *
 3524  * @retval 0            success
 3525  * @retval EBUSY        at least one resource was active
 3526  */
 3527 int
 3528 resource_list_release_active(struct resource_list *rl, device_t bus,
 3529     device_t child, int type)
 3530 {
 3531         struct resource_list_entry *rle;
 3532         int error, retval;
 3533 
 3534         retval = 0;
 3535         STAILQ_FOREACH(rle, rl, link) {
 3536                 if (rle->type != type)
 3537                         continue;
 3538                 if (rle->res == NULL)
 3539                         continue;
 3540                 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
 3541                     RLE_RESERVED)
 3542                         continue;
 3543                 retval = EBUSY;
 3544                 error = resource_list_release(rl, bus, child, type,
 3545                     rman_get_rid(rle->res), rle->res);
 3546                 if (error != 0)
 3547                         device_printf(bus,
 3548                             "Failed to release active resource: %d\n", error);
 3549         }
 3550         return (retval);
 3551 }
 3552 
 3553 
 3554 /**
 3555  * @brief Fully release a reserved resource
 3556  *
 3557  * Fully releases a resource reserved via resource_list_reserve().
 3558  *
 3559  * @param rl            the resource list which was allocated from
 3560  * @param bus           the parent device of @p child
 3561  * @param child         the device whose reserved resource is being released
 3562  * @param type          the type of resource to release
 3563  * @param rid           the resource identifier
 3564  * @param res           the resource to release
 3565  *
 3566  * @retval 0            success
 3567  * @retval non-zero     a standard unix error code indicating what
 3568  *                      error condition prevented the operation
 3569  */
 3570 int
 3571 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
 3572     int type, int rid)
 3573 {
 3574         struct resource_list_entry *rle = NULL;
 3575         int passthrough = (device_get_parent(child) != bus);
 3576 
 3577         if (passthrough)
 3578                 panic(
 3579     "resource_list_unreserve() should only be called for direct children");
 3580 
 3581         rle = resource_list_find(rl, type, rid);
 3582 
 3583         if (!rle)
 3584                 panic("resource_list_unreserve: can't find resource");
 3585         if (!(rle->flags & RLE_RESERVED))
 3586                 return (EINVAL);
 3587         if (rle->flags & RLE_ALLOCATED)
 3588                 return (EBUSY);
 3589         rle->flags &= ~RLE_RESERVED;
 3590         return (resource_list_release(rl, bus, child, type, rid, rle->res));
 3591 }
 3592 
 3593 /**
 3594  * @brief Print a description of resources in a resource list
 3595  *
 3596  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
 3597  * The name is printed if at least one resource of the given type is available.
 3598  * The format is used to print resource start and end.
 3599  *
 3600  * @param rl            the resource list to print
 3601  * @param name          the name of @p type, e.g. @c "memory"
 3602  * @param type          type type of resource entry to print
 3603  * @param format        printf(9) format string to print resource
 3604  *                      start and end values
 3605  *
 3606  * @returns             the number of characters printed
 3607  */
 3608 int
 3609 resource_list_print_type(struct resource_list *rl, const char *name, int type,
 3610     const char *format)
 3611 {
 3612         struct resource_list_entry *rle;
 3613         int printed, retval;
 3614 
 3615         printed = 0;
 3616         retval = 0;
 3617         /* Yes, this is kinda cheating */
 3618         STAILQ_FOREACH(rle, rl, link) {
 3619                 if (rle->type == type) {
 3620                         if (printed == 0)
 3621                                 retval += printf(" %s ", name);
 3622                         else
 3623                                 retval += printf(",");
 3624                         printed++;
 3625                         retval += printf(format, rle->start);
 3626                         if (rle->count > 1) {
 3627                                 retval += printf("-");
 3628                                 retval += printf(format, rle->start +
 3629                                                  rle->count - 1);
 3630                         }
 3631                 }
 3632         }
 3633         return (retval);
 3634 }
 3635 
 3636 /**
 3637  * @brief Releases all the resources in a list.
 3638  *
 3639  * @param rl            The resource list to purge.
 3640  *
 3641  * @returns             nothing
 3642  */
 3643 void
 3644 resource_list_purge(struct resource_list *rl)
 3645 {
 3646         struct resource_list_entry *rle;
 3647 
 3648         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 3649                 if (rle->res)
 3650                         bus_release_resource(rman_get_device(rle->res),
 3651                             rle->type, rle->rid, rle->res);
 3652                 STAILQ_REMOVE_HEAD(rl, link);
 3653                 free(rle, M_BUS);
 3654         }
 3655 }
 3656 
 3657 device_t
 3658 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
 3659 {
 3660 
 3661         return (device_add_child_ordered(dev, order, name, unit));
 3662 }
 3663 
 3664 /**
 3665  * @brief Helper function for implementing DEVICE_PROBE()
 3666  *
 3667  * This function can be used to help implement the DEVICE_PROBE() for
 3668  * a bus (i.e. a device which has other devices attached to it). It
 3669  * calls the DEVICE_IDENTIFY() method of each driver in the device's
 3670  * devclass.
 3671  */
 3672 int
 3673 bus_generic_probe(device_t dev)
 3674 {
 3675         devclass_t dc = dev->devclass;
 3676         driverlink_t dl;
 3677 
 3678         TAILQ_FOREACH(dl, &dc->drivers, link) {
 3679                 /*
 3680                  * If this driver's pass is too high, then ignore it.
 3681                  * For most drivers in the default pass, this will
 3682                  * never be true.  For early-pass drivers they will
 3683                  * only call the identify routines of eligible drivers
 3684                  * when this routine is called.  Drivers for later
 3685                  * passes should have their identify routines called
 3686                  * on early-pass buses during BUS_NEW_PASS().
 3687                  */
 3688                 if (dl->pass > bus_current_pass)
 3689                         continue;
 3690                 DEVICE_IDENTIFY(dl->driver, dev);
 3691         }
 3692 
 3693         return (0);
 3694 }
 3695 
 3696 /**
 3697  * @brief Helper function for implementing DEVICE_ATTACH()
 3698  *
 3699  * This function can be used to help implement the DEVICE_ATTACH() for
 3700  * a bus. It calls device_probe_and_attach() for each of the device's
 3701  * children.
 3702  */
 3703 int
 3704 bus_generic_attach(device_t dev)
 3705 {
 3706         device_t child;
 3707 
 3708         TAILQ_FOREACH(child, &dev->children, link) {
 3709                 device_probe_and_attach(child);
 3710         }
 3711 
 3712         return (0);
 3713 }
 3714 
 3715 /**
 3716  * @brief Helper function for implementing DEVICE_DETACH()
 3717  *
 3718  * This function can be used to help implement the DEVICE_DETACH() for
 3719  * a bus. It calls device_detach() for each of the device's
 3720  * children.
 3721  */
 3722 int
 3723 bus_generic_detach(device_t dev)
 3724 {
 3725         device_t child;
 3726         int error;
 3727 
 3728         if (dev->state != DS_ATTACHED)
 3729                 return (EBUSY);
 3730 
 3731         /*
 3732          * Detach children in the reverse order.
 3733          * See bus_generic_suspend for details.
 3734          */
 3735         TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
 3736                 if ((error = device_detach(child)) != 0)
 3737                         return (error);
 3738         }
 3739 
 3740         return (0);
 3741 }
 3742 
 3743 /**
 3744  * @brief Helper function for implementing DEVICE_SHUTDOWN()
 3745  *
 3746  * This function can be used to help implement the DEVICE_SHUTDOWN()
 3747  * for a bus. It calls device_shutdown() for each of the device's
 3748  * children.
 3749  */
 3750 int
 3751 bus_generic_shutdown(device_t dev)
 3752 {
 3753         device_t child;
 3754 
 3755         /*
 3756          * Shut down children in the reverse order.
 3757          * See bus_generic_suspend for details.
 3758          */
 3759         TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
 3760                 device_shutdown(child);
 3761         }
 3762 
 3763         return (0);
 3764 }
 3765 
 3766 /**
 3767  * @brief Default function for suspending a child device.
 3768  *
 3769  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
 3770  */
 3771 int
 3772 bus_generic_suspend_child(device_t dev, device_t child)
 3773 {
 3774         int     error;
 3775 
 3776         error = DEVICE_SUSPEND(child);
 3777 
 3778         if (error == 0)
 3779                 child->flags |= DF_SUSPENDED;
 3780 
 3781         return (error);
 3782 }
 3783 
 3784 /**
 3785  * @brief Default function for resuming a child device.
 3786  *
 3787  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
 3788  */
 3789 int
 3790 bus_generic_resume_child(device_t dev, device_t child)
 3791 {
 3792 
 3793         DEVICE_RESUME(child);
 3794         child->flags &= ~DF_SUSPENDED;
 3795 
 3796         return (0);
 3797 }
 3798 
 3799 /**
 3800  * @brief Helper function for implementing DEVICE_SUSPEND()
 3801  *
 3802  * This function can be used to help implement the DEVICE_SUSPEND()
 3803  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
 3804  * children. If any call to DEVICE_SUSPEND() fails, the suspend
 3805  * operation is aborted and any devices which were suspended are
 3806  * resumed immediately by calling their DEVICE_RESUME() methods.
 3807  */
 3808 int
 3809 bus_generic_suspend(device_t dev)
 3810 {
 3811         int             error;
 3812         device_t        child;
 3813 
 3814         /*
 3815          * Suspend children in the reverse order.
 3816          * For most buses all children are equal, so the order does not matter.
 3817          * Other buses, such as acpi, carefully order their child devices to
 3818          * express implicit dependencies between them.  For such buses it is
 3819          * safer to bring down devices in the reverse order.
 3820          */
 3821         TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
 3822                 error = BUS_SUSPEND_CHILD(dev, child);
 3823                 if (error != 0) {
 3824                         child = TAILQ_NEXT(child, link);
 3825                         if (child != NULL) {
 3826                                 TAILQ_FOREACH_FROM(child, &dev->children, link)
 3827                                         BUS_RESUME_CHILD(dev, child);
 3828                         }
 3829                         return (error);
 3830                 }
 3831         }
 3832         return (0);
 3833 }
 3834 
 3835 /**
 3836  * @brief Helper function for implementing DEVICE_RESUME()
 3837  *
 3838  * This function can be used to help implement the DEVICE_RESUME() for
 3839  * a bus. It calls DEVICE_RESUME() on each of the device's children.
 3840  */
 3841 int
 3842 bus_generic_resume(device_t dev)
 3843 {
 3844         device_t        child;
 3845 
 3846         TAILQ_FOREACH(child, &dev->children, link) {
 3847                 BUS_RESUME_CHILD(dev, child);
 3848                 /* if resume fails, there's nothing we can usefully do... */
 3849         }
 3850         return (0);
 3851 }
 3852 
 3853 /**
 3854  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3855  *
 3856  * This function prints the first part of the ascii representation of
 3857  * @p child, including its name, unit and description (if any - see
 3858  * device_set_desc()).
 3859  *
 3860  * @returns the number of characters printed
 3861  */
 3862 int
 3863 bus_print_child_header(device_t dev, device_t child)
 3864 {
 3865         int     retval = 0;
 3866 
 3867         if (device_get_desc(child)) {
 3868                 retval += device_printf(child, "<%s>", device_get_desc(child));
 3869         } else {
 3870                 retval += printf("%s", device_get_nameunit(child));
 3871         }
 3872 
 3873         return (retval);
 3874 }
 3875 
 3876 /**
 3877  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3878  *
 3879  * This function prints the last part of the ascii representation of
 3880  * @p child, which consists of the string @c " on " followed by the
 3881  * name and unit of the @p dev.
 3882  *
 3883  * @returns the number of characters printed
 3884  */
 3885 int
 3886 bus_print_child_footer(device_t dev, device_t child)
 3887 {
 3888         return (printf(" on %s\n", device_get_nameunit(dev)));
 3889 }
 3890 
 3891 /**
 3892  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3893  *
 3894  * This function prints out the VM domain for the given device.
 3895  *
 3896  * @returns the number of characters printed
 3897  */
 3898 int
 3899 bus_print_child_domain(device_t dev, device_t child)
 3900 {
 3901         int domain;
 3902 
 3903         /* No domain? Don't print anything */
 3904         if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
 3905                 return (0);
 3906 
 3907         return (printf(" numa-domain %d", domain));
 3908 }
 3909 
 3910 /**
 3911  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3912  *
 3913  * This function simply calls bus_print_child_header() followed by
 3914  * bus_print_child_footer().
 3915  *
 3916  * @returns the number of characters printed
 3917  */
 3918 int
 3919 bus_generic_print_child(device_t dev, device_t child)
 3920 {
 3921         int     retval = 0;
 3922 
 3923         retval += bus_print_child_header(dev, child);
 3924         retval += bus_print_child_domain(dev, child);
 3925         retval += bus_print_child_footer(dev, child);
 3926 
 3927         return (retval);
 3928 }
 3929 
 3930 /**
 3931  * @brief Stub function for implementing BUS_READ_IVAR().
 3932  *
 3933  * @returns ENOENT
 3934  */
 3935 int
 3936 bus_generic_read_ivar(device_t dev, device_t child, int index,
 3937     uintptr_t * result)
 3938 {
 3939         return (ENOENT);
 3940 }
 3941 
 3942 /**
 3943  * @brief Stub function for implementing BUS_WRITE_IVAR().
 3944  *
 3945  * @returns ENOENT
 3946  */
 3947 int
 3948 bus_generic_write_ivar(device_t dev, device_t child, int index,
 3949     uintptr_t value)
 3950 {
 3951         return (ENOENT);
 3952 }
 3953 
 3954 /**
 3955  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
 3956  *
 3957  * @returns NULL
 3958  */
 3959 struct resource_list *
 3960 bus_generic_get_resource_list(device_t dev, device_t child)
 3961 {
 3962         return (NULL);
 3963 }
 3964 
 3965 /**
 3966  * @brief Helper function for implementing BUS_DRIVER_ADDED().
 3967  *
 3968  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
 3969  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
 3970  * and then calls device_probe_and_attach() for each unattached child.
 3971  */
 3972 void
 3973 bus_generic_driver_added(device_t dev, driver_t *driver)
 3974 {
 3975         device_t child;
 3976 
 3977         DEVICE_IDENTIFY(driver, dev);
 3978         TAILQ_FOREACH(child, &dev->children, link) {
 3979                 if (child->state == DS_NOTPRESENT ||
 3980                     (child->flags & DF_REBID))
 3981                         device_probe_and_attach(child);
 3982         }
 3983 }
 3984 
 3985 /**
 3986  * @brief Helper function for implementing BUS_NEW_PASS().
 3987  *
 3988  * This implementing of BUS_NEW_PASS() first calls the identify
 3989  * routines for any drivers that probe at the current pass.  Then it
 3990  * walks the list of devices for this bus.  If a device is already
 3991  * attached, then it calls BUS_NEW_PASS() on that device.  If the
 3992  * device is not already attached, it attempts to attach a driver to
 3993  * it.
 3994  */
 3995 void
 3996 bus_generic_new_pass(device_t dev)
 3997 {
 3998         driverlink_t dl;
 3999         devclass_t dc;
 4000         device_t child;
 4001 
 4002         dc = dev->devclass;
 4003         TAILQ_FOREACH(dl, &dc->drivers, link) {
 4004                 if (dl->pass == bus_current_pass)
 4005                         DEVICE_IDENTIFY(dl->driver, dev);
 4006         }
 4007         TAILQ_FOREACH(child, &dev->children, link) {
 4008                 if (child->state >= DS_ATTACHED)
 4009                         BUS_NEW_PASS(child);
 4010                 else if (child->state == DS_NOTPRESENT)
 4011                         device_probe_and_attach(child);
 4012         }
 4013 }
 4014 
 4015 /**
 4016  * @brief Helper function for implementing BUS_SETUP_INTR().
 4017  *
 4018  * This simple implementation of BUS_SETUP_INTR() simply calls the
 4019  * BUS_SETUP_INTR() method of the parent of @p dev.
 4020  */
 4021 int
 4022 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
 4023     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
 4024     void **cookiep)
 4025 {
 4026         /* Propagate up the bus hierarchy until someone handles it. */
 4027         if (dev->parent)
 4028                 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
 4029                     filter, intr, arg, cookiep));
 4030         return (EINVAL);
 4031 }
 4032 
 4033 /**
 4034  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
 4035  *
 4036  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
 4037  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
 4038  */
 4039 int
 4040 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
 4041     void *cookie)
 4042 {
 4043         /* Propagate up the bus hierarchy until someone handles it. */
 4044         if (dev->parent)
 4045                 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
 4046         return (EINVAL);
 4047 }
 4048 
 4049 /**
 4050  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
 4051  *
 4052  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
 4053  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
 4054  */
 4055 int
 4056 bus_generic_adjust_resource(device_t dev, device_t child, int type,
 4057     struct resource *r, rman_res_t start, rman_res_t end)
 4058 {
 4059         /* Propagate up the bus hierarchy until someone handles it. */
 4060         if (dev->parent)
 4061                 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
 4062                     end));
 4063         return (EINVAL);
 4064 }
 4065 
 4066 /**
 4067  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 4068  *
 4069  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
 4070  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
 4071  */
 4072 struct resource *
 4073 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
 4074     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
 4075 {
 4076         /* Propagate up the bus hierarchy until someone handles it. */
 4077         if (dev->parent)
 4078                 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
 4079                     start, end, count, flags));
 4080         return (NULL);
 4081 }
 4082 
 4083 /**
 4084  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 4085  *
 4086  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
 4087  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
 4088  */
 4089 int
 4090 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
 4091     struct resource *r)
 4092 {
 4093         /* Propagate up the bus hierarchy until someone handles it. */
 4094         if (dev->parent)
 4095                 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
 4096                     r));
 4097         return (EINVAL);
 4098 }
 4099 
 4100 /**
 4101  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
 4102  *
 4103  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
 4104  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
 4105  */
 4106 int
 4107 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
 4108     struct resource *r)
 4109 {
 4110         /* Propagate up the bus hierarchy until someone handles it. */
 4111         if (dev->parent)
 4112                 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
 4113                     r));
 4114         return (EINVAL);
 4115 }
 4116 
 4117 /**
 4118  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
 4119  *
 4120  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
 4121  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
 4122  */
 4123 int
 4124 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
 4125     int rid, struct resource *r)
 4126 {
 4127         /* Propagate up the bus hierarchy until someone handles it. */
 4128         if (dev->parent)
 4129                 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
 4130                     r));
 4131         return (EINVAL);
 4132 }
 4133 
 4134 /**
 4135  * @brief Helper function for implementing BUS_MAP_RESOURCE().
 4136  *
 4137  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
 4138  * BUS_MAP_RESOURCE() method of the parent of @p dev.
 4139  */
 4140 int
 4141 bus_generic_map_resource(device_t dev, device_t child, int type,
 4142     struct resource *r, struct resource_map_request *args,
 4143     struct resource_map *map)
 4144 {
 4145         /* Propagate up the bus hierarchy until someone handles it. */
 4146         if (dev->parent)
 4147                 return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
 4148                     map));
 4149         return (EINVAL);
 4150 }
 4151 
 4152 /**
 4153  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
 4154  *
 4155  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
 4156  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
 4157  */
 4158 int
 4159 bus_generic_unmap_resource(device_t dev, device_t child, int type,
 4160     struct resource *r, struct resource_map *map)
 4161 {
 4162         /* Propagate up the bus hierarchy until someone handles it. */
 4163         if (dev->parent)
 4164                 return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
 4165         return (EINVAL);
 4166 }
 4167 
 4168 /**
 4169  * @brief Helper function for implementing BUS_BIND_INTR().
 4170  *
 4171  * This simple implementation of BUS_BIND_INTR() simply calls the
 4172  * BUS_BIND_INTR() method of the parent of @p dev.
 4173  */
 4174 int
 4175 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
 4176     int cpu)
 4177 {
 4178 
 4179         /* Propagate up the bus hierarchy until someone handles it. */
 4180         if (dev->parent)
 4181                 return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
 4182         return (EINVAL);
 4183 }
 4184 
 4185 /**
 4186  * @brief Helper function for implementing BUS_CONFIG_INTR().
 4187  *
 4188  * This simple implementation of BUS_CONFIG_INTR() simply calls the
 4189  * BUS_CONFIG_INTR() method of the parent of @p dev.
 4190  */
 4191 int
 4192 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
 4193     enum intr_polarity pol)
 4194 {
 4195 
 4196         /* Propagate up the bus hierarchy until someone handles it. */
 4197         if (dev->parent)
 4198                 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
 4199         return (EINVAL);
 4200 }
 4201 
 4202 /**
 4203  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
 4204  *
 4205  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
 4206  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
 4207  */
 4208 int
 4209 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
 4210     void *cookie, const char *descr)
 4211 {
 4212 
 4213         /* Propagate up the bus hierarchy until someone handles it. */
 4214         if (dev->parent)
 4215                 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
 4216                     descr));
 4217         return (EINVAL);
 4218 }
 4219 
 4220 /**
 4221  * @brief Helper function for implementing BUS_GET_CPUS().
 4222  *
 4223  * This simple implementation of BUS_GET_CPUS() simply calls the
 4224  * BUS_GET_CPUS() method of the parent of @p dev.
 4225  */
 4226 int
 4227 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
 4228     size_t setsize, cpuset_t *cpuset)
 4229 {
 4230 
 4231         /* Propagate up the bus hierarchy until someone handles it. */
 4232         if (dev->parent != NULL)
 4233                 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
 4234         return (EINVAL);
 4235 }
 4236 
 4237 /**
 4238  * @brief Helper function for implementing BUS_GET_DMA_TAG().
 4239  *
 4240  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
 4241  * BUS_GET_DMA_TAG() method of the parent of @p dev.
 4242  */
 4243 bus_dma_tag_t
 4244 bus_generic_get_dma_tag(device_t dev, device_t child)
 4245 {
 4246 
 4247         /* Propagate up the bus hierarchy until someone handles it. */
 4248         if (dev->parent != NULL)
 4249                 return (BUS_GET_DMA_TAG(dev->parent, child));
 4250         return (NULL);
 4251 }
 4252 
 4253 /**
 4254  * @brief Helper function for implementing BUS_GET_BUS_TAG().
 4255  *
 4256  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
 4257  * BUS_GET_BUS_TAG() method of the parent of @p dev.
 4258  */
 4259 bus_space_tag_t
 4260 bus_generic_get_bus_tag(device_t dev, device_t child)
 4261 {
 4262 
 4263         /* Propagate up the bus hierarchy until someone handles it. */
 4264         if (dev->parent != NULL)
 4265                 return (BUS_GET_BUS_TAG(dev->parent, child));
 4266         return ((bus_space_tag_t)0);
 4267 }
 4268 
 4269 /**
 4270  * @brief Helper function for implementing BUS_GET_RESOURCE().
 4271  *
 4272  * This implementation of BUS_GET_RESOURCE() uses the
 4273  * resource_list_find() function to do most of the work. It calls
 4274  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 4275  * search.
 4276  */
 4277 int
 4278 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
 4279     rman_res_t *startp, rman_res_t *countp)
 4280 {
 4281         struct resource_list *          rl = NULL;
 4282         struct resource_list_entry *    rle = NULL;
 4283 
 4284         rl = BUS_GET_RESOURCE_LIST(dev, child);
 4285         if (!rl)
 4286                 return (EINVAL);
 4287 
 4288         rle = resource_list_find(rl, type, rid);
 4289         if (!rle)
 4290                 return (ENOENT);
 4291 
 4292         if (startp)
 4293                 *startp = rle->start;
 4294         if (countp)
 4295                 *countp = rle->count;
 4296 
 4297         return (0);
 4298 }
 4299 
 4300 /**
 4301  * @brief Helper function for implementing BUS_SET_RESOURCE().
 4302  *
 4303  * This implementation of BUS_SET_RESOURCE() uses the
 4304  * resource_list_add() function to do most of the work. It calls
 4305  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 4306  * edit.
 4307  */
 4308 int
 4309 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
 4310     rman_res_t start, rman_res_t count)
 4311 {
 4312         struct resource_list *          rl = NULL;
 4313 
 4314         rl = BUS_GET_RESOURCE_LIST(dev, child);
 4315         if (!rl)
 4316                 return (EINVAL);
 4317 
 4318         resource_list_add(rl, type, rid, start, (start + count - 1), count);
 4319 
 4320         return (0);
 4321 }
 4322 
 4323 /**
 4324  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
 4325  *
 4326  * This implementation of BUS_DELETE_RESOURCE() uses the
 4327  * resource_list_delete() function to do most of the work. It calls
 4328  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 4329  * edit.
 4330  */
 4331 void
 4332 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
 4333 {
 4334         struct resource_list *          rl = NULL;
 4335 
 4336         rl = BUS_GET_RESOURCE_LIST(dev, child);
 4337         if (!rl)
 4338                 return;
 4339 
 4340         resource_list_delete(rl, type, rid);
 4341 
 4342         return;
 4343 }
 4344 
 4345 /**
 4346  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 4347  *
 4348  * This implementation of BUS_RELEASE_RESOURCE() uses the
 4349  * resource_list_release() function to do most of the work. It calls
 4350  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 4351  */
 4352 int
 4353 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
 4354     int rid, struct resource *r)
 4355 {
 4356         struct resource_list *          rl = NULL;
 4357 
 4358         if (device_get_parent(child) != dev)
 4359                 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
 4360                     type, rid, r));
 4361 
 4362         rl = BUS_GET_RESOURCE_LIST(dev, child);
 4363         if (!rl)
 4364                 return (EINVAL);
 4365 
 4366         return (resource_list_release(rl, dev, child, type, rid, r));
 4367 }
 4368 
 4369 /**
 4370  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 4371  *
 4372  * This implementation of BUS_ALLOC_RESOURCE() uses the
 4373  * resource_list_alloc() function to do most of the work. It calls
 4374  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 4375  */
 4376 struct resource *
 4377 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
 4378     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
 4379 {
 4380         struct resource_list *          rl = NULL;
 4381 
 4382         if (device_get_parent(child) != dev)
 4383                 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
 4384                     type, rid, start, end, count, flags));
 4385 
 4386         rl = BUS_GET_RESOURCE_LIST(dev, child);
 4387         if (!rl)
 4388                 return (NULL);
 4389 
 4390         return (resource_list_alloc(rl, dev, child, type, rid,
 4391             start, end, count, flags));
 4392 }
 4393 
 4394 /**
 4395  * @brief Helper function for implementing BUS_CHILD_PRESENT().
 4396  *
 4397  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
 4398  * BUS_CHILD_PRESENT() method of the parent of @p dev.
 4399  */
 4400 int
 4401 bus_generic_child_present(device_t dev, device_t child)
 4402 {
 4403         return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
 4404 }
 4405 
 4406 int
 4407 bus_generic_get_domain(device_t dev, device_t child, int *domain)
 4408 {
 4409 
 4410         if (dev->parent)
 4411                 return (BUS_GET_DOMAIN(dev->parent, dev, domain));
 4412 
 4413         return (ENOENT);
 4414 }
 4415 
 4416 /**
 4417  * @brief Helper function for implementing BUS_RESCAN().
 4418  *
 4419  * This null implementation of BUS_RESCAN() always fails to indicate
 4420  * the bus does not support rescanning.
 4421  */
 4422 int
 4423 bus_null_rescan(device_t dev)
 4424 {
 4425 
 4426         return (ENXIO);
 4427 }
 4428 
 4429 /*
 4430  * Some convenience functions to make it easier for drivers to use the
 4431  * resource-management functions.  All these really do is hide the
 4432  * indirection through the parent's method table, making for slightly
 4433  * less-wordy code.  In the future, it might make sense for this code
 4434  * to maintain some sort of a list of resources allocated by each device.
 4435  */
 4436 
 4437 int
 4438 bus_alloc_resources(device_t dev, struct resource_spec *rs,
 4439     struct resource **res)
 4440 {
 4441         int i;
 4442 
 4443         for (i = 0; rs[i].type != -1; i++)
 4444                 res[i] = NULL;
 4445         for (i = 0; rs[i].type != -1; i++) {
 4446                 res[i] = bus_alloc_resource_any(dev,
 4447                     rs[i].type, &rs[i].rid, rs[i].flags);
 4448                 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
 4449                         bus_release_resources(dev, rs, res);
 4450                         return (ENXIO);
 4451                 }
 4452         }
 4453         return (0);
 4454 }
 4455 
 4456 void
 4457 bus_release_resources(device_t dev, const struct resource_spec *rs,
 4458     struct resource **res)
 4459 {
 4460         int i;
 4461 
 4462         for (i = 0; rs[i].type != -1; i++)
 4463                 if (res[i] != NULL) {
 4464                         bus_release_resource(
 4465                             dev, rs[i].type, rs[i].rid, res[i]);
 4466                         res[i] = NULL;
 4467                 }
 4468 }
 4469 
 4470 /**
 4471  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
 4472  *
 4473  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
 4474  * parent of @p dev.
 4475  */
 4476 struct resource *
 4477 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
 4478     rman_res_t end, rman_res_t count, u_int flags)
 4479 {
 4480         struct resource *res;
 4481 
 4482         if (dev->parent == NULL)
 4483                 return (NULL);
 4484         res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
 4485             count, flags);
 4486         return (res);
 4487 }
 4488 
 4489 /**
 4490  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
 4491  *
 4492  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
 4493  * parent of @p dev.
 4494  */
 4495 int
 4496 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
 4497     rman_res_t end)
 4498 {
 4499         if (dev->parent == NULL)
 4500                 return (EINVAL);
 4501         return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
 4502 }
 4503 
 4504 /**
 4505  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
 4506  *
 4507  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
 4508  * parent of @p dev.
 4509  */
 4510 int
 4511 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
 4512 {
 4513         if (dev->parent == NULL)
 4514                 return (EINVAL);
 4515         return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 4516 }
 4517 
 4518 /**
 4519  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
 4520  *
 4521  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
 4522  * parent of @p dev.
 4523  */
 4524 int
 4525 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
 4526 {
 4527         if (dev->parent == NULL)
 4528                 return (EINVAL);
 4529         return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 4530 }
 4531 
 4532 /**
 4533  * @brief Wrapper function for BUS_MAP_RESOURCE().
 4534  *
 4535  * This function simply calls the BUS_MAP_RESOURCE() method of the
 4536  * parent of @p dev.
 4537  */
 4538 int
 4539 bus_map_resource(device_t dev, int type, struct resource *r,
 4540     struct resource_map_request *args, struct resource_map *map)
 4541 {
 4542         if (dev->parent == NULL)
 4543                 return (EINVAL);
 4544         return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
 4545 }
 4546 
 4547 /**
 4548  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
 4549  *
 4550  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
 4551  * parent of @p dev.
 4552  */
 4553 int
 4554 bus_unmap_resource(device_t dev, int type, struct resource *r,
 4555     struct resource_map *map)
 4556 {
 4557         if (dev->parent == NULL)
 4558                 return (EINVAL);
 4559         return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
 4560 }
 4561 
 4562 /**
 4563  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
 4564  *
 4565  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
 4566  * parent of @p dev.
 4567  */
 4568 int
 4569 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
 4570 {
 4571         int rv;
 4572 
 4573         if (dev->parent == NULL)
 4574                 return (EINVAL);
 4575         rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
 4576         return (rv);
 4577 }
 4578 
 4579 /**
 4580  * @brief Wrapper function for BUS_SETUP_INTR().
 4581  *
 4582  * This function simply calls the BUS_SETUP_INTR() method of the
 4583  * parent of @p dev.
 4584  */
 4585 int
 4586 bus_setup_intr(device_t dev, struct resource *r, int flags,
 4587     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
 4588 {
 4589         int error;
 4590 
 4591         if (dev->parent == NULL)
 4592                 return (EINVAL);
 4593         error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
 4594             arg, cookiep);
 4595         if (error != 0)
 4596                 return (error);
 4597         if (handler != NULL && !(flags & INTR_MPSAFE))
 4598                 device_printf(dev, "[GIANT-LOCKED]\n");
 4599         return (0);
 4600 }
 4601 
 4602 /**
 4603  * @brief Wrapper function for BUS_TEARDOWN_INTR().
 4604  *
 4605  * This function simply calls the BUS_TEARDOWN_INTR() method of the
 4606  * parent of @p dev.
 4607  */
 4608 int
 4609 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
 4610 {
 4611         if (dev->parent == NULL)
 4612                 return (EINVAL);
 4613         return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
 4614 }
 4615 
 4616 /**
 4617  * @brief Wrapper function for BUS_BIND_INTR().
 4618  *
 4619  * This function simply calls the BUS_BIND_INTR() method of the
 4620  * parent of @p dev.
 4621  */
 4622 int
 4623 bus_bind_intr(device_t dev, struct resource *r, int cpu)
 4624 {
 4625         if (dev->parent == NULL)
 4626                 return (EINVAL);
 4627         return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
 4628 }
 4629 
 4630 /**
 4631  * @brief Wrapper function for BUS_DESCRIBE_INTR().
 4632  *
 4633  * This function first formats the requested description into a
 4634  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
 4635  * the parent of @p dev.
 4636  */
 4637 int
 4638 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
 4639     const char *fmt, ...)
 4640 {
 4641         va_list ap;
 4642         char descr[MAXCOMLEN + 1];
 4643 
 4644         if (dev->parent == NULL)
 4645                 return (EINVAL);
 4646         va_start(ap, fmt);
 4647         vsnprintf(descr, sizeof(descr), fmt, ap);
 4648         va_end(ap);
 4649         return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
 4650 }
 4651 
 4652 /**
 4653  * @brief Wrapper function for BUS_SET_RESOURCE().
 4654  *
 4655  * This function simply calls the BUS_SET_RESOURCE() method of the
 4656  * parent of @p dev.
 4657  */
 4658 int
 4659 bus_set_resource(device_t dev, int type, int rid,
 4660     rman_res_t start, rman_res_t count)
 4661 {
 4662         return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4663             start, count));
 4664 }
 4665 
 4666 /**
 4667  * @brief Wrapper function for BUS_GET_RESOURCE().
 4668  *
 4669  * This function simply calls the BUS_GET_RESOURCE() method of the
 4670  * parent of @p dev.
 4671  */
 4672 int
 4673 bus_get_resource(device_t dev, int type, int rid,
 4674     rman_res_t *startp, rman_res_t *countp)
 4675 {
 4676         return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4677             startp, countp));
 4678 }
 4679 
 4680 /**
 4681  * @brief Wrapper function for BUS_GET_RESOURCE().
 4682  *
 4683  * This function simply calls the BUS_GET_RESOURCE() method of the
 4684  * parent of @p dev and returns the start value.
 4685  */
 4686 rman_res_t
 4687 bus_get_resource_start(device_t dev, int type, int rid)
 4688 {
 4689         rman_res_t start;
 4690         rman_res_t count;
 4691         int error;
 4692 
 4693         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4694             &start, &count);
 4695         if (error)
 4696                 return (0);
 4697         return (start);
 4698 }
 4699 
 4700 /**
 4701  * @brief Wrapper function for BUS_GET_RESOURCE().
 4702  *
 4703  * This function simply calls the BUS_GET_RESOURCE() method of the
 4704  * parent of @p dev and returns the count value.
 4705  */
 4706 rman_res_t
 4707 bus_get_resource_count(device_t dev, int type, int rid)
 4708 {
 4709         rman_res_t start;
 4710         rman_res_t count;
 4711         int error;
 4712 
 4713         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4714             &start, &count);
 4715         if (error)
 4716                 return (0);
 4717         return (count);
 4718 }
 4719 
 4720 /**
 4721  * @brief Wrapper function for BUS_DELETE_RESOURCE().
 4722  *
 4723  * This function simply calls the BUS_DELETE_RESOURCE() method of the
 4724  * parent of @p dev.
 4725  */
 4726 void
 4727 bus_delete_resource(device_t dev, int type, int rid)
 4728 {
 4729         BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
 4730 }
 4731 
 4732 /**
 4733  * @brief Wrapper function for BUS_CHILD_PRESENT().
 4734  *
 4735  * This function simply calls the BUS_CHILD_PRESENT() method of the
 4736  * parent of @p dev.
 4737  */
 4738 int
 4739 bus_child_present(device_t child)
 4740 {
 4741         return (BUS_CHILD_PRESENT(device_get_parent(child), child));
 4742 }
 4743 
 4744 /**
 4745  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
 4746  *
 4747  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
 4748  * parent of @p dev.
 4749  */
 4750 int
 4751 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
 4752 {
 4753         device_t parent;
 4754 
 4755         parent = device_get_parent(child);
 4756         if (parent == NULL) {
 4757                 *buf = '\0';
 4758                 return (0);
 4759         }
 4760         return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
 4761 }
 4762 
 4763 /**
 4764  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
 4765  *
 4766  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
 4767  * parent of @p dev.
 4768  */
 4769 int
 4770 bus_child_location_str(device_t child, char *buf, size_t buflen)
 4771 {
 4772         device_t parent;
 4773 
 4774         parent = device_get_parent(child);
 4775         if (parent == NULL) {
 4776                 *buf = '\0';
 4777                 return (0);
 4778         }
 4779         return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
 4780 }
 4781 
 4782 /**
 4783  * @brief Wrapper function for BUS_GET_CPUS().
 4784  *
 4785  * This function simply calls the BUS_GET_CPUS() method of the
 4786  * parent of @p dev.
 4787  */
 4788 int
 4789 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
 4790 {
 4791         device_t parent;
 4792 
 4793         parent = device_get_parent(dev);
 4794         if (parent == NULL)
 4795                 return (EINVAL);
 4796         return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
 4797 }
 4798 
 4799 /**
 4800  * @brief Wrapper function for BUS_GET_DMA_TAG().
 4801  *
 4802  * This function simply calls the BUS_GET_DMA_TAG() method of the
 4803  * parent of @p dev.
 4804  */
 4805 bus_dma_tag_t
 4806 bus_get_dma_tag(device_t dev)
 4807 {
 4808         device_t parent;
 4809 
 4810         parent = device_get_parent(dev);
 4811         if (parent == NULL)
 4812                 return (NULL);
 4813         return (BUS_GET_DMA_TAG(parent, dev));
 4814 }
 4815 
 4816 /**
 4817  * @brief Wrapper function for BUS_GET_BUS_TAG().
 4818  *
 4819  * This function simply calls the BUS_GET_BUS_TAG() method of the
 4820  * parent of @p dev.
 4821  */
 4822 bus_space_tag_t
 4823 bus_get_bus_tag(device_t dev)
 4824 {
 4825         device_t parent;
 4826 
 4827         parent = device_get_parent(dev);
 4828         if (parent == NULL)
 4829                 return ((bus_space_tag_t)0);
 4830         return (BUS_GET_BUS_TAG(parent, dev));
 4831 }
 4832 
 4833 /**
 4834  * @brief Wrapper function for BUS_GET_DOMAIN().
 4835  *
 4836  * This function simply calls the BUS_GET_DOMAIN() method of the
 4837  * parent of @p dev.
 4838  */
 4839 int
 4840 bus_get_domain(device_t dev, int *domain)
 4841 {
 4842         return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
 4843 }
 4844 
 4845 /* Resume all devices and then notify userland that we're up again. */
 4846 static int
 4847 root_resume(device_t dev)
 4848 {
 4849         int error;
 4850 
 4851         error = bus_generic_resume(dev);
 4852         if (error == 0)
 4853                 devctl_notify("kern", "power", "resume", NULL);
 4854         return (error);
 4855 }
 4856 
 4857 static int
 4858 root_print_child(device_t dev, device_t child)
 4859 {
 4860         int     retval = 0;
 4861 
 4862         retval += bus_print_child_header(dev, child);
 4863         retval += printf("\n");
 4864 
 4865         return (retval);
 4866 }
 4867 
 4868 static int
 4869 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
 4870     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
 4871 {
 4872         /*
 4873          * If an interrupt mapping gets to here something bad has happened.
 4874          */
 4875         panic("root_setup_intr");
 4876 }
 4877 
 4878 /*
 4879  * If we get here, assume that the device is permanent and really is
 4880  * present in the system.  Removable bus drivers are expected to intercept
 4881  * this call long before it gets here.  We return -1 so that drivers that
 4882  * really care can check vs -1 or some ERRNO returned higher in the food
 4883  * chain.
 4884  */
 4885 static int
 4886 root_child_present(device_t dev, device_t child)
 4887 {
 4888         return (-1);
 4889 }
 4890 
 4891 static int
 4892 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
 4893     cpuset_t *cpuset)
 4894 {
 4895 
 4896         switch (op) {
 4897         case INTR_CPUS:
 4898                 /* Default to returning the set of all CPUs. */
 4899                 if (setsize != sizeof(cpuset_t))
 4900                         return (EINVAL);
 4901                 *cpuset = all_cpus;
 4902                 return (0);
 4903         default:
 4904                 return (EINVAL);
 4905         }
 4906 }
 4907 
 4908 static kobj_method_t root_methods[] = {
 4909         /* Device interface */
 4910         KOBJMETHOD(device_shutdown,     bus_generic_shutdown),
 4911         KOBJMETHOD(device_suspend,      bus_generic_suspend),
 4912         KOBJMETHOD(device_resume,       root_resume),
 4913 
 4914         /* Bus interface */
 4915         KOBJMETHOD(bus_print_child,     root_print_child),
 4916         KOBJMETHOD(bus_read_ivar,       bus_generic_read_ivar),
 4917         KOBJMETHOD(bus_write_ivar,      bus_generic_write_ivar),
 4918         KOBJMETHOD(bus_setup_intr,      root_setup_intr),
 4919         KOBJMETHOD(bus_child_present,   root_child_present),
 4920         KOBJMETHOD(bus_get_cpus,        root_get_cpus),
 4921 
 4922         KOBJMETHOD_END
 4923 };
 4924 
 4925 static driver_t root_driver = {
 4926         "root",
 4927         root_methods,
 4928         1,                      /* no softc */
 4929 };
 4930 
 4931 device_t        root_bus;
 4932 devclass_t      root_devclass;
 4933 
 4934 static int
 4935 root_bus_module_handler(module_t mod, int what, void* arg)
 4936 {
 4937         switch (what) {
 4938         case MOD_LOAD:
 4939                 TAILQ_INIT(&bus_data_devices);
 4940                 kobj_class_compile((kobj_class_t) &root_driver);
 4941                 root_bus = make_device(NULL, "root", 0);
 4942                 root_bus->desc = "System root bus";
 4943                 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
 4944                 root_bus->driver = &root_driver;
 4945                 root_bus->state = DS_ATTACHED;
 4946                 root_devclass = devclass_find_internal("root", NULL, FALSE);
 4947                 devinit();
 4948                 return (0);
 4949 
 4950         case MOD_SHUTDOWN:
 4951                 device_shutdown(root_bus);
 4952                 return (0);
 4953         default:
 4954                 return (EOPNOTSUPP);
 4955         }
 4956 
 4957         return (0);
 4958 }
 4959 
 4960 static moduledata_t root_bus_mod = {
 4961         "rootbus",
 4962         root_bus_module_handler,
 4963         NULL
 4964 };
 4965 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
 4966 
 4967 /**
 4968  * @brief Automatically configure devices
 4969  *
 4970  * This function begins the autoconfiguration process by calling
 4971  * device_probe_and_attach() for each child of the @c root0 device.
 4972  */
 4973 void
 4974 root_bus_configure(void)
 4975 {
 4976 
 4977         PDEBUG(("."));
 4978 
 4979         /* Eventually this will be split up, but this is sufficient for now. */
 4980         bus_set_pass(BUS_PASS_DEFAULT);
 4981 }
 4982 
 4983 /**
 4984  * @brief Module handler for registering device drivers
 4985  *
 4986  * This module handler is used to automatically register device
 4987  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
 4988  * devclass_add_driver() for the driver described by the
 4989  * driver_module_data structure pointed to by @p arg
 4990  */
 4991 int
 4992 driver_module_handler(module_t mod, int what, void *arg)
 4993 {
 4994         struct driver_module_data *dmd;
 4995         devclass_t bus_devclass;
 4996         kobj_class_t driver;
 4997         int error, pass;
 4998 
 4999         dmd = (struct driver_module_data *)arg;
 5000         bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
 5001         error = 0;
 5002 
 5003         switch (what) {
 5004         case MOD_LOAD:
 5005                 if (dmd->dmd_chainevh)
 5006                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 5007 
 5008                 pass = dmd->dmd_pass;
 5009                 driver = dmd->dmd_driver;
 5010                 PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
 5011                     DRIVERNAME(driver), dmd->dmd_busname, pass));
 5012                 error = devclass_add_driver(bus_devclass, driver, pass,
 5013                     dmd->dmd_devclass);
 5014                 break;
 5015 
 5016         case MOD_UNLOAD:
 5017                 PDEBUG(("Unloading module: driver %s from bus %s",
 5018                     DRIVERNAME(dmd->dmd_driver),
 5019                     dmd->dmd_busname));
 5020                 error = devclass_delete_driver(bus_devclass,
 5021                     dmd->dmd_driver);
 5022 
 5023                 if (!error && dmd->dmd_chainevh)
 5024                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 5025                 break;
 5026         case MOD_QUIESCE:
 5027                 PDEBUG(("Quiesce module: driver %s from bus %s",
 5028                     DRIVERNAME(dmd->dmd_driver),
 5029                     dmd->dmd_busname));
 5030                 error = devclass_quiesce_driver(bus_devclass,
 5031                     dmd->dmd_driver);
 5032 
 5033                 if (!error && dmd->dmd_chainevh)
 5034                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 5035                 break;
 5036         default:
 5037                 error = EOPNOTSUPP;
 5038                 break;
 5039         }
 5040 
 5041         return (error);
 5042 }
 5043 
 5044 /**
 5045  * @brief Enumerate all hinted devices for this bus.
 5046  *
 5047  * Walks through the hints for this bus and calls the bus_hinted_child
 5048  * routine for each one it fines.  It searches first for the specific
 5049  * bus that's being probed for hinted children (eg isa0), and then for
 5050  * generic children (eg isa).
 5051  *
 5052  * @param       dev     bus device to enumerate
 5053  */
 5054 void
 5055 bus_enumerate_hinted_children(device_t bus)
 5056 {
 5057         int i;
 5058         const char *dname, *busname;
 5059         int dunit;
 5060 
 5061         /*
 5062          * enumerate all devices on the specific bus
 5063          */
 5064         busname = device_get_nameunit(bus);
 5065         i = 0;
 5066         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 5067                 BUS_HINTED_CHILD(bus, dname, dunit);
 5068 
 5069         /*
 5070          * and all the generic ones.
 5071          */
 5072         busname = device_get_name(bus);
 5073         i = 0;
 5074         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 5075                 BUS_HINTED_CHILD(bus, dname, dunit);
 5076 }
 5077 
 5078 #ifdef BUS_DEBUG
 5079 
 5080 /* the _short versions avoid iteration by not calling anything that prints
 5081  * more than oneliners. I love oneliners.
 5082  */
 5083 
 5084 static void
 5085 print_device_short(device_t dev, int indent)
 5086 {
 5087         if (!dev)
 5088                 return;
 5089 
 5090         indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
 5091             dev->unit, dev->desc,
 5092             (dev->parent? "":"no "),
 5093             (TAILQ_EMPTY(&dev->children)? "no ":""),
 5094             (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
 5095             (dev->flags&DF_FIXEDCLASS? "fixed,":""),
 5096             (dev->flags&DF_WILDCARD? "wildcard,":""),
 5097             (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
 5098             (dev->flags&DF_REBID? "rebiddable,":""),
 5099             (dev->flags&DF_SUSPENDED? "suspended,":""),
 5100             (dev->ivars? "":"no "),
 5101             (dev->softc? "":"no "),
 5102             dev->busy));
 5103 }
 5104 
 5105 static void
 5106 print_device(device_t dev, int indent)
 5107 {
 5108         if (!dev)
 5109                 return;
 5110 
 5111         print_device_short(dev, indent);
 5112 
 5113         indentprintf(("Parent:\n"));
 5114         print_device_short(dev->parent, indent+1);
 5115         indentprintf(("Driver:\n"));
 5116         print_driver_short(dev->driver, indent+1);
 5117         indentprintf(("Devclass:\n"));
 5118         print_devclass_short(dev->devclass, indent+1);
 5119 }
 5120 
 5121 void
 5122 print_device_tree_short(device_t dev, int indent)
 5123 /* print the device and all its children (indented) */
 5124 {
 5125         device_t child;
 5126 
 5127         if (!dev)
 5128                 return;
 5129 
 5130         print_device_short(dev, indent);
 5131 
 5132         TAILQ_FOREACH(child, &dev->children, link) {
 5133                 print_device_tree_short(child, indent+1);
 5134         }
 5135 }
 5136 
 5137 void
 5138 print_device_tree(device_t dev, int indent)
 5139 /* print the device and all its children (indented) */
 5140 {
 5141         device_t child;
 5142 
 5143         if (!dev)
 5144                 return;
 5145 
 5146         print_device(dev, indent);
 5147 
 5148         TAILQ_FOREACH(child, &dev->children, link) {
 5149                 print_device_tree(child, indent+1);
 5150         }
 5151 }
 5152 
 5153 static void
 5154 print_driver_short(driver_t *driver, int indent)
 5155 {
 5156         if (!driver)
 5157                 return;
 5158 
 5159         indentprintf(("driver %s: softc size = %zd\n",
 5160             driver->name, driver->size));
 5161 }
 5162 
 5163 static void
 5164 print_driver(driver_t *driver, int indent)
 5165 {
 5166         if (!driver)
 5167                 return;
 5168 
 5169         print_driver_short(driver, indent);
 5170 }
 5171 
 5172 static void
 5173 print_driver_list(driver_list_t drivers, int indent)
 5174 {
 5175         driverlink_t driver;
 5176 
 5177         TAILQ_FOREACH(driver, &drivers, link) {
 5178                 print_driver(driver->driver, indent);
 5179         }
 5180 }
 5181 
 5182 static void
 5183 print_devclass_short(devclass_t dc, int indent)
 5184 {
 5185         if ( !dc )
 5186                 return;
 5187 
 5188         indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
 5189 }
 5190 
 5191 static void
 5192 print_devclass(devclass_t dc, int indent)
 5193 {
 5194         int i;
 5195 
 5196         if ( !dc )
 5197                 return;
 5198 
 5199         print_devclass_short(dc, indent);
 5200         indentprintf(("Drivers:\n"));
 5201         print_driver_list(dc->drivers, indent+1);
 5202 
 5203         indentprintf(("Devices:\n"));
 5204         for (i = 0; i < dc->maxunit; i++)
 5205                 if (dc->devices[i])
 5206                         print_device(dc->devices[i], indent+1);
 5207 }
 5208 
 5209 void
 5210 print_devclass_list_short(void)
 5211 {
 5212         devclass_t dc;
 5213 
 5214         printf("Short listing of devclasses, drivers & devices:\n");
 5215         TAILQ_FOREACH(dc, &devclasses, link) {
 5216                 print_devclass_short(dc, 0);
 5217         }
 5218 }
 5219 
 5220 void
 5221 print_devclass_list(void)
 5222 {
 5223         devclass_t dc;
 5224 
 5225         printf("Full listing of devclasses, drivers & devices:\n");
 5226         TAILQ_FOREACH(dc, &devclasses, link) {
 5227                 print_devclass(dc, 0);
 5228         }
 5229 }
 5230 
 5231 #endif
 5232 
 5233 /*
 5234  * User-space access to the device tree.
 5235  *
 5236  * We implement a small set of nodes:
 5237  *
 5238  * hw.bus                       Single integer read method to obtain the
 5239  *                              current generation count.
 5240  * hw.bus.devices               Reads the entire device tree in flat space.
 5241  * hw.bus.rman                  Resource manager interface
 5242  *
 5243  * We might like to add the ability to scan devclasses and/or drivers to
 5244  * determine what else is currently loaded/available.
 5245  */
 5246 
 5247 static int
 5248 sysctl_bus(SYSCTL_HANDLER_ARGS)
 5249 {
 5250         struct u_businfo        ubus;
 5251 
 5252         ubus.ub_version = BUS_USER_VERSION;
 5253         ubus.ub_generation = bus_data_generation;
 5254 
 5255         return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
 5256 }
 5257 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
 5258     "bus-related data");
 5259 
 5260 static int
 5261 sysctl_devices(SYSCTL_HANDLER_ARGS)
 5262 {
 5263         int                     *name = (int *)arg1;
 5264         u_int                   namelen = arg2;
 5265         int                     index;
 5266         device_t                dev;
 5267         struct u_device         *udev;
 5268         int                     error;
 5269         char                    *walker, *ep;
 5270 
 5271         if (namelen != 2)
 5272                 return (EINVAL);
 5273 
 5274         if (bus_data_generation_check(name[0]))
 5275                 return (EINVAL);
 5276 
 5277         index = name[1];
 5278 
 5279         /*
 5280          * Scan the list of devices, looking for the requested index.
 5281          */
 5282         TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 5283                 if (index-- == 0)
 5284                         break;
 5285         }
 5286         if (dev == NULL)
 5287                 return (ENOENT);
 5288 
 5289         /*
 5290          * Populate the return item, careful not to overflow the buffer.
 5291          */
 5292         udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
 5293         if (udev == NULL)
 5294                 return (ENOMEM);
 5295         udev->dv_handle = (uintptr_t)dev;
 5296         udev->dv_parent = (uintptr_t)dev->parent;
 5297         udev->dv_devflags = dev->devflags;
 5298         udev->dv_flags = dev->flags;
 5299         udev->dv_state = dev->state;
 5300         walker = udev->dv_fields;
 5301         ep = walker + sizeof(udev->dv_fields);
 5302 #define CP(src)                                         \
 5303         if ((src) == NULL)                              \
 5304                 *walker++ = '\0';                       \
 5305         else {                                          \
 5306                 strlcpy(walker, (src), ep - walker);    \
 5307                 walker += strlen(walker) + 1;           \
 5308         }                                               \
 5309         if (walker >= ep)                               \
 5310                 break;
 5311 
 5312         do {
 5313                 CP(dev->nameunit);
 5314                 CP(dev->desc);
 5315                 CP(dev->driver != NULL ? dev->driver->name : NULL);
 5316                 bus_child_pnpinfo_str(dev, walker, ep - walker);
 5317                 walker += strlen(walker) + 1;
 5318                 if (walker >= ep)
 5319                         break;
 5320                 bus_child_location_str(dev, walker, ep - walker);
 5321                 walker += strlen(walker) + 1;
 5322                 if (walker >= ep)
 5323                         break;
 5324                 *walker++ = '\0';
 5325         } while (0);
 5326 #undef CP
 5327         error = SYSCTL_OUT(req, udev, sizeof(*udev));
 5328         free(udev, M_BUS);
 5329         return (error);
 5330 }
 5331 
 5332 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
 5333     "system device tree");
 5334 
 5335 int
 5336 bus_data_generation_check(int generation)
 5337 {
 5338         if (generation != bus_data_generation)
 5339                 return (1);
 5340 
 5341         /* XXX generate optimised lists here? */
 5342         return (0);
 5343 }
 5344 
 5345 void
 5346 bus_data_generation_update(void)
 5347 {
 5348         bus_data_generation++;
 5349 }
 5350 
 5351 int
 5352 bus_free_resource(device_t dev, int type, struct resource *r)
 5353 {
 5354         if (r == NULL)
 5355                 return (0);
 5356         return (bus_release_resource(dev, type, rman_get_rid(r), r));
 5357 }
 5358 
 5359 device_t
 5360 device_lookup_by_name(const char *name)
 5361 {
 5362         device_t dev;
 5363 
 5364         TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 5365                 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
 5366                         return (dev);
 5367         }
 5368         return (NULL);
 5369 }
 5370 
 5371 /*
 5372  * /dev/devctl2 implementation.  The existing /dev/devctl device has
 5373  * implicit semantics on open, so it could not be reused for this.
 5374  * Another option would be to call this /dev/bus?
 5375  */
 5376 static int
 5377 find_device(struct devreq *req, device_t *devp)
 5378 {
 5379         device_t dev;
 5380 
 5381         /*
 5382          * First, ensure that the name is nul terminated.
 5383          */
 5384         if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
 5385                 return (EINVAL);
 5386 
 5387         /*
 5388          * Second, try to find an attached device whose name matches
 5389          * 'name'.
 5390          */
 5391         dev = device_lookup_by_name(req->dr_name);
 5392         if (dev != NULL) {
 5393                 *devp = dev;
 5394                 return (0);
 5395         }
 5396 
 5397         /* Finally, give device enumerators a chance. */
 5398         dev = NULL;
 5399         EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
 5400         if (dev == NULL)
 5401                 return (ENOENT);
 5402         *devp = dev;
 5403         return (0);
 5404 }
 5405 
 5406 static bool
 5407 driver_exists(device_t bus, const char *driver)
 5408 {
 5409         devclass_t dc;
 5410 
 5411         for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
 5412                 if (devclass_find_driver_internal(dc, driver) != NULL)
 5413                         return (true);
 5414         }
 5415         return (false);
 5416 }
 5417 
 5418 static void
 5419 device_gen_nomatch(device_t dev)
 5420 {
 5421         device_t child;
 5422 
 5423         if (dev->flags & DF_NEEDNOMATCH &&
 5424             dev->state == DS_NOTPRESENT) {
 5425                 BUS_PROBE_NOMATCH(dev->parent, dev);
 5426                 devnomatch(dev);
 5427                 dev->flags |= DF_DONENOMATCH;
 5428         }
 5429         dev->flags &= ~DF_NEEDNOMATCH;
 5430         TAILQ_FOREACH(child, &dev->children, link) {
 5431                 device_gen_nomatch(child);
 5432         }
 5433 }
 5434 
 5435 static void
 5436 device_do_deferred_actions(void)
 5437 {
 5438         devclass_t dc;
 5439         driverlink_t dl;
 5440 
 5441         /*
 5442          * Walk through the devclasses to find all the drivers we've tagged as
 5443          * deferred during the freeze and call the driver added routines. They
 5444          * have already been added to the lists in the background, so the driver
 5445          * added routines that trigger a probe will have all the right bidders
 5446          * for the probe auction.
 5447          */
 5448         TAILQ_FOREACH(dc, &devclasses, link) {
 5449                 TAILQ_FOREACH(dl, &dc->drivers, link) {
 5450                         if (dl->flags & DL_DEFERRED_PROBE) {
 5451                                 devclass_driver_added(dc, dl->driver);
 5452                                 dl->flags &= ~DL_DEFERRED_PROBE;
 5453                         }
 5454                 }
 5455         }
 5456 
 5457         /*
 5458          * We also defer no-match events during a freeze. Walk the tree and
 5459          * generate all the pent-up events that are still relevant.
 5460          */
 5461         device_gen_nomatch(root_bus);
 5462         bus_data_generation_update();
 5463 }
 5464 
 5465 static int
 5466 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
 5467     struct thread *td)
 5468 {
 5469         struct devreq *req;
 5470         device_t dev;
 5471         int error, old;
 5472 
 5473         /* Locate the device to control. */
 5474         mtx_lock(&Giant);
 5475         req = (struct devreq *)data;
 5476         switch (cmd) {
 5477         case DEV_ATTACH:
 5478         case DEV_DETACH:
 5479         case DEV_ENABLE:
 5480         case DEV_DISABLE:
 5481         case DEV_SUSPEND:
 5482         case DEV_RESUME:
 5483         case DEV_SET_DRIVER:
 5484         case DEV_CLEAR_DRIVER:
 5485         case DEV_RESCAN:
 5486         case DEV_DELETE:
 5487                 error = priv_check(td, PRIV_DRIVER);
 5488                 if (error == 0)
 5489                         error = find_device(req, &dev);
 5490                 break;
 5491         case DEV_FREEZE:
 5492         case DEV_THAW:
 5493                 error = priv_check(td, PRIV_DRIVER);
 5494                 break;
 5495         default:
 5496                 error = ENOTTY;
 5497                 break;
 5498         }
 5499         if (error) {
 5500                 mtx_unlock(&Giant);
 5501                 return (error);
 5502         }
 5503 
 5504         /* Perform the requested operation. */
 5505         switch (cmd) {
 5506         case DEV_ATTACH:
 5507                 if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
 5508                         error = EBUSY;
 5509                 else if (!device_is_enabled(dev))
 5510                         error = ENXIO;
 5511                 else
 5512                         error = device_probe_and_attach(dev);
 5513                 break;
 5514         case DEV_DETACH:
 5515                 if (!device_is_attached(dev)) {
 5516                         error = ENXIO;
 5517                         break;
 5518                 }
 5519                 if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
 5520                         error = device_quiesce(dev);
 5521                         if (error)
 5522                                 break;
 5523                 }
 5524                 error = device_detach(dev);
 5525                 break;
 5526         case DEV_ENABLE:
 5527                 if (device_is_enabled(dev)) {
 5528                         error = EBUSY;
 5529                         break;
 5530                 }
 5531 
 5532                 /*
 5533                  * If the device has been probed but not attached (e.g.
 5534                  * when it has been disabled by a loader hint), just
 5535                  * attach the device rather than doing a full probe.
 5536                  */
 5537                 device_enable(dev);
 5538                 if (device_is_alive(dev)) {
 5539                         /*
 5540                          * If the device was disabled via a hint, clear
 5541                          * the hint.
 5542                          */
 5543                         if (resource_disabled(dev->driver->name, dev->unit))
 5544                                 resource_unset_value(dev->driver->name,
 5545                                     dev->unit, "disabled");
 5546                         error = device_attach(dev);
 5547                 } else
 5548                         error = device_probe_and_attach(dev);
 5549                 break;
 5550         case DEV_DISABLE:
 5551                 if (!device_is_enabled(dev)) {
 5552                         error = ENXIO;
 5553                         break;
 5554                 }
 5555 
 5556                 if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
 5557                         error = device_quiesce(dev);
 5558                         if (error)
 5559                                 break;
 5560                 }
 5561 
 5562                 /*
 5563                  * Force DF_FIXEDCLASS on around detach to preserve
 5564                  * the existing name.
 5565                  */
 5566                 old = dev->flags;
 5567                 dev->flags |= DF_FIXEDCLASS;
 5568                 error = device_detach(dev);
 5569                 if (!(old & DF_FIXEDCLASS))
 5570                         dev->flags &= ~DF_FIXEDCLASS;
 5571                 if (error == 0)
 5572                         device_disable(dev);
 5573                 break;
 5574         case DEV_SUSPEND:
 5575                 if (device_is_suspended(dev)) {
 5576                         error = EBUSY;
 5577                         break;
 5578                 }
 5579                 if (device_get_parent(dev) == NULL) {
 5580                         error = EINVAL;
 5581                         break;
 5582                 }
 5583                 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
 5584                 break;
 5585         case DEV_RESUME:
 5586                 if (!device_is_suspended(dev)) {
 5587                         error = EINVAL;
 5588                         break;
 5589                 }
 5590                 if (device_get_parent(dev) == NULL) {
 5591                         error = EINVAL;
 5592                         break;
 5593                 }
 5594                 error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
 5595                 break;
 5596         case DEV_SET_DRIVER: {
 5597                 devclass_t dc;
 5598                 char driver[128];
 5599 
 5600                 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
 5601                 if (error)
 5602                         break;
 5603                 if (driver[0] == '\0') {
 5604                         error = EINVAL;
 5605                         break;
 5606                 }
 5607                 if (dev->devclass != NULL &&
 5608                     strcmp(driver, dev->devclass->name) == 0)
 5609                         /* XXX: Could possibly force DF_FIXEDCLASS on? */
 5610                         break;
 5611 
 5612                 /*
 5613                  * Scan drivers for this device's bus looking for at
 5614                  * least one matching driver.
 5615                  */
 5616                 if (dev->parent == NULL) {
 5617                         error = EINVAL;
 5618                         break;
 5619                 }
 5620                 if (!driver_exists(dev->parent, driver)) {
 5621                         error = ENOENT;
 5622                         break;
 5623                 }
 5624                 dc = devclass_create(driver);
 5625                 if (dc == NULL) {
 5626                         error = ENOMEM;
 5627                         break;
 5628                 }
 5629 
 5630                 /* Detach device if necessary. */
 5631                 if (device_is_attached(dev)) {
 5632                         if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
 5633                                 error = device_detach(dev);
 5634                         else
 5635                                 error = EBUSY;
 5636                         if (error)
 5637                                 break;
 5638                 }
 5639 
 5640                 /* Clear any previously-fixed device class and unit. */
 5641                 if (dev->flags & DF_FIXEDCLASS)
 5642                         devclass_delete_device(dev->devclass, dev);
 5643                 dev->flags |= DF_WILDCARD;
 5644                 dev->unit = -1;
 5645 
 5646                 /* Force the new device class. */
 5647                 error = devclass_add_device(dc, dev);
 5648                 if (error)
 5649                         break;
 5650                 dev->flags |= DF_FIXEDCLASS;
 5651                 error = device_probe_and_attach(dev);
 5652                 break;
 5653         }
 5654         case DEV_CLEAR_DRIVER:
 5655                 if (!(dev->flags & DF_FIXEDCLASS)) {
 5656                         error = 0;
 5657                         break;
 5658                 }
 5659                 if (device_is_attached(dev)) {
 5660                         if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
 5661                                 error = device_detach(dev);
 5662                         else
 5663                                 error = EBUSY;
 5664                         if (error)
 5665                                 break;
 5666                 }
 5667 
 5668                 dev->flags &= ~DF_FIXEDCLASS;
 5669                 dev->flags |= DF_WILDCARD;
 5670                 devclass_delete_device(dev->devclass, dev);
 5671                 error = device_probe_and_attach(dev);
 5672                 break;
 5673         case DEV_RESCAN:
 5674                 if (!device_is_attached(dev)) {
 5675                         error = ENXIO;
 5676                         break;
 5677                 }
 5678                 error = BUS_RESCAN(dev);
 5679                 break;
 5680         case DEV_DELETE: {
 5681                 device_t parent;
 5682 
 5683                 parent = device_get_parent(dev);
 5684                 if (parent == NULL) {
 5685                         error = EINVAL;
 5686                         break;
 5687                 }
 5688                 if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
 5689                         if (bus_child_present(dev) != 0) {
 5690                                 error = EBUSY;
 5691                                 break;
 5692                         }
 5693                 }
 5694                 
 5695                 error = device_delete_child(parent, dev);
 5696                 break;
 5697         }
 5698         case DEV_FREEZE:
 5699                 if (device_frozen)
 5700                         error = EBUSY;
 5701                 else
 5702                         device_frozen = true;
 5703                 break;
 5704         case DEV_THAW:
 5705                 if (!device_frozen)
 5706                         error = EBUSY;
 5707                 else {
 5708                         device_do_deferred_actions();
 5709                         device_frozen = false;
 5710                 }
 5711                 break;
 5712         }
 5713         mtx_unlock(&Giant);
 5714         return (error);
 5715 }
 5716 
 5717 static struct cdevsw devctl2_cdevsw = {
 5718         .d_version =    D_VERSION,
 5719         .d_ioctl =      devctl2_ioctl,
 5720         .d_name =       "devctl2",
 5721 };
 5722 
 5723 static void
 5724 devctl2_init(void)
 5725 {
 5726 
 5727         make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
 5728             UID_ROOT, GID_WHEEL, 0600, "devctl2");
 5729 }
 5730 
 5731 /*
 5732  * APIs to manage deprecation and obsolescence.
 5733  */
 5734 static int obsolete_panic = 0;
 5735 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
 5736     "Bus debug level");
 5737 /* 0 - don't panic, 1 - panic if already obsolete, 2 - panic if deprecated */
 5738 static void
 5739 gone_panic(int major, int running, const char *msg)
 5740 {
 5741 
 5742         switch (obsolete_panic)
 5743         {
 5744         case 0:
 5745                 return;
 5746         case 1:
 5747                 if (running < major)
 5748                         return;
 5749                 /* FALLTHROUGH */
 5750         default:
 5751                 panic("%s", msg);
 5752         }
 5753 }
 5754 
 5755 void
 5756 _gone_in(int major, const char *msg)
 5757 {
 5758 
 5759         gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
 5760         if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
 5761                 printf("Obsolete code will removed soon: %s\n", msg);
 5762         else if (P_OSREL_MAJOR(__FreeBSD_version) + 1 == major)
 5763                 printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
 5764                     major, msg);
 5765 }
 5766 
 5767 void
 5768 _gone_in_dev(device_t dev, int major, const char *msg)
 5769 {
 5770 
 5771         gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
 5772         if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
 5773                 device_printf(dev,
 5774                     "Obsolete code will removed soon: %s\n", msg);
 5775         else if (P_OSREL_MAJOR(__FreeBSD_version) + 1 == major)
 5776                 device_printf(dev,
 5777                     "Deprecated code (to be removed in FreeBSD %d): %s\n",
 5778                     major, msg);
 5779 }
 5780 
 5781 #ifdef DDB
 5782 DB_SHOW_COMMAND(device, db_show_device)
 5783 {
 5784         device_t dev;
 5785 
 5786         if (!have_addr)
 5787                 return;
 5788 
 5789         dev = (device_t)addr;
 5790 
 5791         db_printf("name:    %s\n", device_get_nameunit(dev));
 5792         db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
 5793         db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
 5794         db_printf("  addr:    %p\n", dev);
 5795         db_printf("  parent:  %p\n", dev->parent);
 5796         db_printf("  softc:   %p\n", dev->softc);
 5797         db_printf("  ivars:   %p\n", dev->ivars);
 5798 }
 5799 
 5800 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
 5801 {
 5802         device_t dev;
 5803 
 5804         TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 5805                 db_show_device((db_expr_t)dev, true, count, modif);
 5806         }
 5807 }
 5808 #endif

Cache object: 43cb6b192c6d683a8d0fb5ac4456f2d7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.