The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_bus.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997,1998,2003 Doug Rabson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: src/sys/kern/subr_bus.c,v 1.156.2.7 2005/05/06 02:50:00 cperciva Exp $");
   29 
   30 #include "opt_bus.h"
   31 
   32 #define __RMAN_RESOURCE_VISIBLE
   33 #include <sys/param.h>
   34 #include <sys/conf.h>
   35 #include <sys/filio.h>
   36 #include <sys/lock.h>
   37 #include <sys/kernel.h>
   38 #include <sys/kobj.h>
   39 #include <sys/malloc.h>
   40 #include <sys/module.h>
   41 #include <sys/mutex.h>
   42 #include <sys/poll.h>
   43 #include <sys/proc.h>
   44 #include <sys/condvar.h>
   45 #include <sys/queue.h>
   46 #include <machine/bus.h>
   47 #include <sys/rman.h>
   48 #include <sys/selinfo.h>
   49 #include <sys/signalvar.h>
   50 #include <sys/sysctl.h>
   51 #include <sys/systm.h>
   52 #include <sys/uio.h>
   53 #include <sys/bus.h>
   54 
   55 #include <machine/stdarg.h>
   56 
   57 #include <vm/uma.h>
   58 
   59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
   60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
   61 
   62 /*
   63  * Used to attach drivers to devclasses.
   64  */
   65 typedef struct driverlink *driverlink_t;
   66 struct driverlink {
   67         kobj_class_t    driver;
   68         TAILQ_ENTRY(driverlink) link;   /* list of drivers in devclass */
   69 };
   70 
   71 /*
   72  * Forward declarations
   73  */
   74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
   75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
   76 typedef TAILQ_HEAD(device_list, device) device_list_t;
   77 
   78 struct devclass {
   79         TAILQ_ENTRY(devclass) link;
   80         devclass_t      parent;         /* parent in devclass hierarchy */
   81         driver_list_t   drivers;     /* bus devclasses store drivers for bus */
   82         char            *name;
   83         device_t        *devices;       /* array of devices indexed by unit */
   84         int             maxunit;        /* size of devices array */
   85 
   86         struct sysctl_ctx_list sysctl_ctx;
   87         struct sysctl_oid *sysctl_tree;
   88 };
   89 
   90 /**
   91  * @brief Implementation of device.
   92  */
   93 struct device {
   94         /*
   95          * A device is a kernel object. The first field must be the
   96          * current ops table for the object.
   97          */
   98         KOBJ_FIELDS;
   99 
  100         /*
  101          * Device hierarchy.
  102          */
  103         TAILQ_ENTRY(device)     link;   /**< list of devices in parent */
  104         TAILQ_ENTRY(device)     devlink; /**< global device list membership */
  105         device_t        parent;         /**< parent of this device  */
  106         device_list_t   children;       /**< list of child devices */
  107 
  108         /*
  109          * Details of this device.
  110          */
  111         driver_t        *driver;        /**< current driver */
  112         devclass_t      devclass;       /**< current device class */
  113         int             unit;           /**< current unit number */
  114         char*           nameunit;       /**< name+unit e.g. foodev0 */
  115         char*           desc;           /**< driver specific description */
  116         int             busy;           /**< count of calls to device_busy() */
  117         device_state_t  state;          /**< current device state  */
  118         u_int32_t       devflags;       /**< api level flags for device_get_flags() */
  119         u_short         flags;          /**< internal device flags  */
  120 #define DF_ENABLED      1               /* device should be probed/attached */
  121 #define DF_FIXEDCLASS   2               /* devclass specified at create time */
  122 #define DF_WILDCARD     4               /* unit was originally wildcard */
  123 #define DF_DESCMALLOCED 8               /* description was malloced */
  124 #define DF_QUIET        16              /* don't print verbose attach message */
  125 #define DF_DONENOMATCH  32              /* don't execute DEVICE_NOMATCH again */
  126 #define DF_EXTERNALSOFTC 64             /* softc not allocated by us */
  127         u_char  order;                  /**< order from device_add_child_ordered() */
  128         u_char  pad;
  129         void    *ivars;                 /**< instance variables  */
  130         void    *softc;                 /**< current driver's variables  */
  131 
  132         struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
  133         struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
  134 };
  135 
  136 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
  137 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
  138 
  139 #ifdef BUS_DEBUG
  140 
  141 static int bus_debug = 1;
  142 TUNABLE_INT("bus.debug", &bus_debug);
  143 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
  144     "Debug bus code");
  145 
  146 #define PDEBUG(a)       if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
  147 #define DEVICENAME(d)   ((d)? device_get_name(d): "no device")
  148 #define DRIVERNAME(d)   ((d)? d->name : "no driver")
  149 #define DEVCLANAME(d)   ((d)? d->name : "no devclass")
  150 
  151 /**
  152  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
  153  * prevent syslog from deleting initial spaces
  154  */
  155 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
  156 
  157 static void print_device_short(device_t dev, int indent);
  158 static void print_device(device_t dev, int indent);
  159 void print_device_tree_short(device_t dev, int indent);
  160 void print_device_tree(device_t dev, int indent);
  161 static void print_driver_short(driver_t *driver, int indent);
  162 static void print_driver(driver_t *driver, int indent);
  163 static void print_driver_list(driver_list_t drivers, int indent);
  164 static void print_devclass_short(devclass_t dc, int indent);
  165 static void print_devclass(devclass_t dc, int indent);
  166 void print_devclass_list_short(void);
  167 void print_devclass_list(void);
  168 
  169 #else
  170 /* Make the compiler ignore the function calls */
  171 #define PDEBUG(a)                       /* nop */
  172 #define DEVICENAME(d)                   /* nop */
  173 #define DRIVERNAME(d)                   /* nop */
  174 #define DEVCLANAME(d)                   /* nop */
  175 
  176 #define print_device_short(d,i)         /* nop */
  177 #define print_device(d,i)               /* nop */
  178 #define print_device_tree_short(d,i)    /* nop */
  179 #define print_device_tree(d,i)          /* nop */
  180 #define print_driver_short(d,i)         /* nop */
  181 #define print_driver(d,i)               /* nop */
  182 #define print_driver_list(d,i)          /* nop */
  183 #define print_devclass_short(d,i)       /* nop */
  184 #define print_devclass(d,i)             /* nop */
  185 #define print_devclass_list_short()     /* nop */
  186 #define print_devclass_list()           /* nop */
  187 #endif
  188 
  189 /*
  190  * dev sysctl tree
  191  */
  192 
  193 enum {
  194         DEVCLASS_SYSCTL_PARENT,
  195 };
  196 
  197 static int
  198 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
  199 {
  200         devclass_t dc = (devclass_t)arg1;
  201         const char *value;
  202         char *buf;
  203         int error;
  204 
  205         buf = NULL;
  206         switch (arg2) {
  207         case DEVCLASS_SYSCTL_PARENT:
  208                 value = dc->parent ? dc->parent->name : "";
  209                 break;
  210         default:
  211                 return (EINVAL);
  212         }
  213         error = SYSCTL_OUT(req, value, strlen(value));
  214         if (buf != NULL)
  215                 free(buf, M_BUS);
  216         return (error);
  217 }
  218 
  219 static void
  220 devclass_sysctl_init(devclass_t dc)
  221 {
  222 
  223         if (dc->sysctl_tree != NULL)
  224                 return;
  225         sysctl_ctx_init(&dc->sysctl_ctx);
  226         dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
  227             SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
  228             CTLFLAG_RD, 0, "");
  229         SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
  230             OID_AUTO, "%parent", CTLFLAG_RD,
  231             dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
  232             "parent class");
  233 }
  234 
  235 enum {
  236         DEVICE_SYSCTL_DESC,
  237         DEVICE_SYSCTL_DRIVER,
  238         DEVICE_SYSCTL_LOCATION,
  239         DEVICE_SYSCTL_PNPINFO,
  240         DEVICE_SYSCTL_PARENT,
  241 };
  242 
  243 static int
  244 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
  245 {
  246         device_t dev = (device_t)arg1;
  247         const char *value;
  248         char *buf;
  249         int error;
  250 
  251         buf = NULL;
  252         switch (arg2) {
  253         case DEVICE_SYSCTL_DESC:
  254                 value = dev->desc ? dev->desc : "";
  255                 break;
  256         case DEVICE_SYSCTL_DRIVER:
  257                 value = dev->driver ? dev->driver->name : "";
  258                 break;
  259         case DEVICE_SYSCTL_LOCATION:
  260                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  261                 bus_child_location_str(dev, buf, 1024);
  262                 break;
  263         case DEVICE_SYSCTL_PNPINFO:
  264                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  265                 bus_child_pnpinfo_str(dev, buf, 1024);
  266                 break;
  267         case DEVICE_SYSCTL_PARENT:
  268                 value = dev->parent ? dev->parent->nameunit : "";
  269                 break;
  270         default:
  271                 return (EINVAL);
  272         }
  273         error = SYSCTL_OUT(req, value, strlen(value));
  274         if (buf != NULL)
  275                 free(buf, M_BUS);
  276         return (error);
  277 }
  278 
  279 static void
  280 device_sysctl_init(device_t dev)
  281 {
  282         devclass_t dc = dev->devclass;
  283 
  284         if (dev->sysctl_tree != NULL)
  285                 return;
  286         devclass_sysctl_init(dc);
  287         sysctl_ctx_init(&dev->sysctl_ctx);
  288         dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
  289             SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
  290             dev->nameunit + strlen(dc->name),
  291             CTLFLAG_RD, 0, "");
  292         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  293             OID_AUTO, "%desc", CTLFLAG_RD,
  294             dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
  295             "device description");
  296         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  297             OID_AUTO, "%driver", CTLFLAG_RD,
  298             dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
  299             "device driver name");
  300         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  301             OID_AUTO, "%location", CTLFLAG_RD,
  302             dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
  303             "device location relative to parent");
  304         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  305             OID_AUTO, "%pnpinfo", CTLFLAG_RD,
  306             dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
  307             "device identification");
  308         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  309             OID_AUTO, "%parent", CTLFLAG_RD,
  310             dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
  311             "parent device");
  312 }
  313 
  314 static void
  315 device_sysctl_fini(device_t dev)
  316 {
  317         if (dev->sysctl_tree == NULL)
  318                 return;
  319         sysctl_ctx_free(&dev->sysctl_ctx);
  320         dev->sysctl_tree = NULL;
  321 }
  322 
  323 /*
  324  * /dev/devctl implementation
  325  */
  326 
  327 /*
  328  * This design allows only one reader for /dev/devctl.  This is not desirable
  329  * in the long run, but will get a lot of hair out of this implementation.
  330  * Maybe we should make this device a clonable device.
  331  *
  332  * Also note: we specifically do not attach a device to the device_t tree
  333  * to avoid potential chicken and egg problems.  One could argue that all
  334  * of this belongs to the root node.  One could also further argue that the
  335  * sysctl interface that we have not might more properly be an ioctl
  336  * interface, but at this stage of the game, I'm not inclined to rock that
  337  * boat.
  338  *
  339  * I'm also not sure that the SIGIO support is done correctly or not, as
  340  * I copied it from a driver that had SIGIO support that likely hasn't been
  341  * tested since 3.4 or 2.2.8!
  342  */
  343 
  344 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
  345 static int devctl_disable = 0;
  346 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
  347 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
  348     sysctl_devctl_disable, "I", "devctl disable");
  349 
  350 static d_open_t         devopen;
  351 static d_close_t        devclose;
  352 static d_read_t         devread;
  353 static d_ioctl_t        devioctl;
  354 static d_poll_t         devpoll;
  355 
  356 #define CDEV_MAJOR 173
  357 static struct cdevsw dev_cdevsw = {
  358         .d_version =    D_VERSION,
  359         .d_flags =      D_NEEDGIANT,
  360         .d_open =       devopen,
  361         .d_close =      devclose,
  362         .d_read =       devread,
  363         .d_ioctl =      devioctl,
  364         .d_poll =       devpoll,
  365         .d_name =       "devctl",
  366         .d_maj =        CDEV_MAJOR,
  367 };
  368 
  369 struct dev_event_info
  370 {
  371         char *dei_data;
  372         TAILQ_ENTRY(dev_event_info) dei_link;
  373 };
  374 
  375 TAILQ_HEAD(devq, dev_event_info);
  376 
  377 static struct dev_softc
  378 {
  379         int     inuse;
  380         int     nonblock;
  381         struct mtx mtx;
  382         struct cv cv;
  383         struct selinfo sel;
  384         struct devq devq;
  385         struct proc *async_proc;
  386 } devsoftc;
  387 
  388 static struct cdev *devctl_dev;
  389 
  390 static void
  391 devinit(void)
  392 {
  393         devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
  394             "devctl");
  395         mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
  396         cv_init(&devsoftc.cv, "dev cv");
  397         TAILQ_INIT(&devsoftc.devq);
  398 }
  399 
  400 static int
  401 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
  402 {
  403         if (devsoftc.inuse)
  404                 return (EBUSY);
  405         /* move to init */
  406         devsoftc.inuse = 1;
  407         devsoftc.nonblock = 0;
  408         devsoftc.async_proc = NULL;
  409         return (0);
  410 }
  411 
  412 static int
  413 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
  414 {
  415         devsoftc.inuse = 0;
  416         mtx_lock(&devsoftc.mtx);
  417         cv_broadcast(&devsoftc.cv);
  418         mtx_unlock(&devsoftc.mtx);
  419 
  420         return (0);
  421 }
  422 
  423 /*
  424  * The read channel for this device is used to report changes to
  425  * userland in realtime.  We are required to free the data as well as
  426  * the n1 object because we allocate them separately.  Also note that
  427  * we return one record at a time.  If you try to read this device a
  428  * character at a time, you will loose the rest of the data.  Listening
  429  * programs are expected to cope.
  430  */
  431 static int
  432 devread(struct cdev *dev, struct uio *uio, int ioflag)
  433 {
  434         struct dev_event_info *n1;
  435         int rv;
  436 
  437         mtx_lock(&devsoftc.mtx);
  438         while (TAILQ_EMPTY(&devsoftc.devq)) {
  439                 if (devsoftc.nonblock) {
  440                         mtx_unlock(&devsoftc.mtx);
  441                         return (EAGAIN);
  442                 }
  443                 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
  444                 if (rv) {
  445                         /*
  446                          * Need to translate ERESTART to EINTR here? -- jake
  447                          */
  448                         mtx_unlock(&devsoftc.mtx);
  449                         return (rv);
  450                 }
  451         }
  452         n1 = TAILQ_FIRST(&devsoftc.devq);
  453         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  454         mtx_unlock(&devsoftc.mtx);
  455         rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
  456         free(n1->dei_data, M_BUS);
  457         free(n1, M_BUS);
  458         return (rv);
  459 }
  460 
  461 static  int
  462 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
  463 {
  464         switch (cmd) {
  465 
  466         case FIONBIO:
  467                 if (*(int*)data)
  468                         devsoftc.nonblock = 1;
  469                 else
  470                         devsoftc.nonblock = 0;
  471                 return (0);
  472         case FIOASYNC:
  473                 if (*(int*)data)
  474                         devsoftc.async_proc = td->td_proc;
  475                 else
  476                         devsoftc.async_proc = NULL;
  477                 return (0);
  478 
  479                 /* (un)Support for other fcntl() calls. */
  480         case FIOCLEX:
  481         case FIONCLEX:
  482         case FIONREAD:
  483         case FIOSETOWN:
  484         case FIOGETOWN:
  485         default:
  486                 break;
  487         }
  488         return (ENOTTY);
  489 }
  490 
  491 static  int
  492 devpoll(struct cdev *dev, int events, d_thread_t *td)
  493 {
  494         int     revents = 0;
  495 
  496         mtx_lock(&devsoftc.mtx);
  497         if (events & (POLLIN | POLLRDNORM)) {
  498                 if (!TAILQ_EMPTY(&devsoftc.devq))
  499                         revents = events & (POLLIN | POLLRDNORM);
  500                 else
  501                         selrecord(td, &devsoftc.sel);
  502         }
  503         mtx_unlock(&devsoftc.mtx);
  504 
  505         return (revents);
  506 }
  507 
  508 /**
  509  * @brief Queue data to be read from the devctl device
  510  *
  511  * Generic interface to queue data to the devctl device.  It is
  512  * assumed that @p data is properly formatted.  It is further assumed
  513  * that @p data is allocated using the M_BUS malloc type.
  514  */
  515 void
  516 devctl_queue_data(char *data)
  517 {
  518         struct dev_event_info *n1 = NULL;
  519         struct proc *p;
  520 
  521         n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
  522         if (n1 == NULL)
  523                 return;
  524         n1->dei_data = data;
  525         mtx_lock(&devsoftc.mtx);
  526         TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
  527         cv_broadcast(&devsoftc.cv);
  528         mtx_unlock(&devsoftc.mtx);
  529         selwakeup(&devsoftc.sel);
  530         p = devsoftc.async_proc;
  531         if (p != NULL) {
  532                 PROC_LOCK(p);
  533                 psignal(p, SIGIO);
  534                 PROC_UNLOCK(p);
  535         }
  536 }
  537 
  538 /**
  539  * @brief Send a 'notification' to userland, using standard ways
  540  */
  541 void
  542 devctl_notify(const char *system, const char *subsystem, const char *type,
  543     const char *data)
  544 {
  545         int len = 0;
  546         char *msg;
  547 
  548         if (system == NULL)
  549                 return;         /* BOGUS!  Must specify system. */
  550         if (subsystem == NULL)
  551                 return;         /* BOGUS!  Must specify subsystem. */
  552         if (type == NULL)
  553                 return;         /* BOGUS!  Must specify type. */
  554         len += strlen(" system=") + strlen(system);
  555         len += strlen(" subsystem=") + strlen(subsystem);
  556         len += strlen(" type=") + strlen(type);
  557         /* add in the data message plus newline. */
  558         if (data != NULL)
  559                 len += strlen(data);
  560         len += 3;       /* '!', '\n', and NUL */
  561         msg = malloc(len, M_BUS, M_NOWAIT);
  562         if (msg == NULL)
  563                 return;         /* Drop it on the floor */
  564         snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", system,
  565             subsystem, type, data);
  566         devctl_queue_data(msg);
  567 }
  568 
  569 /*
  570  * Common routine that tries to make sending messages as easy as possible.
  571  * We allocate memory for the data, copy strings into that, but do not
  572  * free it unless there's an error.  The dequeue part of the driver should
  573  * free the data.  We don't send data when the device is disabled.  We do
  574  * send data, even when we have no listeners, because we wish to avoid
  575  * races relating to startup and restart of listening applications.
  576  */
  577 static void
  578 devaddq(const char *type, const char *what, device_t dev)
  579 {
  580         char *data = NULL;
  581         char *loc;
  582         const char *parstr;
  583 
  584         if (devctl_disable)
  585                 return;
  586         data = malloc(1024, M_BUS, M_NOWAIT);
  587         if (data == NULL)
  588                 goto bad;
  589         loc = malloc(1024, M_BUS, M_NOWAIT);
  590         if (loc == NULL)
  591                 goto bad;
  592         *loc = '\0';
  593         bus_child_location_str(dev, loc, 1024);
  594         if (device_get_parent(dev) == NULL)
  595                 parstr = ".";   /* Or '/' ? */
  596         else
  597                 parstr = device_get_nameunit(device_get_parent(dev));
  598         snprintf(data, 1024, "%s%s at %s on %s\n", type, what, loc, parstr);
  599         free(loc, M_BUS);
  600         devctl_queue_data(data);
  601         return;
  602 bad:
  603         free(data, M_BUS);
  604         return;
  605 }
  606 
  607 /*
  608  * A device was added to the tree.  We are called just after it successfully
  609  * attaches (that is, probe and attach success for this device).  No call
  610  * is made if a device is merely parented into the tree.  See devnomatch
  611  * if probe fails.  If attach fails, no notification is sent (but maybe
  612  * we should have a different message for this).
  613  */
  614 static void
  615 devadded(device_t dev)
  616 {
  617         char *pnp = NULL;
  618         char *tmp = NULL;
  619 
  620         pnp = malloc(1024, M_BUS, M_NOWAIT);
  621         if (pnp == NULL)
  622                 goto fail;
  623         tmp = malloc(1024, M_BUS, M_NOWAIT);
  624         if (tmp == NULL)
  625                 goto fail;
  626         *pnp = '\0';
  627         bus_child_pnpinfo_str(dev, pnp, 1024);
  628         snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
  629         devaddq("+", tmp, dev);
  630 fail:
  631         if (pnp != NULL)
  632                 free(pnp, M_BUS);
  633         if (tmp != NULL)
  634                 free(tmp, M_BUS);
  635         return;
  636 }
  637 
  638 /*
  639  * A device was removed from the tree.  We are called just before this
  640  * happens.
  641  */
  642 static void
  643 devremoved(device_t dev)
  644 {
  645         char *pnp = NULL;
  646         char *tmp = NULL;
  647 
  648         pnp = malloc(1024, M_BUS, M_NOWAIT);
  649         if (pnp == NULL)
  650                 goto fail;
  651         tmp = malloc(1024, M_BUS, M_NOWAIT);
  652         if (tmp == NULL)
  653                 goto fail;
  654         *pnp = '\0';
  655         bus_child_pnpinfo_str(dev, pnp, 1024);
  656         snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
  657         devaddq("-", tmp, dev);
  658 fail:
  659         if (pnp != NULL)
  660                 free(pnp, M_BUS);
  661         if (tmp != NULL)
  662                 free(tmp, M_BUS);
  663         return;
  664 }
  665 
  666 /*
  667  * Called when there's no match for this device.  This is only called
  668  * the first time that no match happens, so we don't keep getitng this
  669  * message.  Should that prove to be undesirable, we can change it.
  670  * This is called when all drivers that can attach to a given bus
  671  * decline to accept this device.  Other errrors may not be detected.
  672  */
  673 static void
  674 devnomatch(device_t dev)
  675 {
  676         char *pnp = NULL;
  677 
  678         pnp = malloc(1024, M_BUS, M_NOWAIT);
  679         if (pnp == NULL)
  680                 return;
  681         *pnp = '\0';
  682         bus_child_pnpinfo_str(dev, pnp, 1024);
  683         devaddq("?", pnp, dev);
  684         free(pnp, M_BUS);
  685         return;
  686 }
  687 
  688 static int
  689 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
  690 {
  691         struct dev_event_info *n1;
  692         int dis, error;
  693 
  694         dis = devctl_disable;
  695         error = sysctl_handle_int(oidp, &dis, 0, req);
  696         if (error || !req->newptr)
  697                 return (error);
  698         mtx_lock(&devsoftc.mtx);
  699         devctl_disable = dis;
  700         if (dis) {
  701                 while (!TAILQ_EMPTY(&devsoftc.devq)) {
  702                         n1 = TAILQ_FIRST(&devsoftc.devq);
  703                         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  704                         free(n1->dei_data, M_BUS);
  705                         free(n1, M_BUS);
  706                 }
  707         }
  708         mtx_unlock(&devsoftc.mtx);
  709         return (0);
  710 }
  711 
  712 /* End of /dev/devctl code */
  713 
  714 TAILQ_HEAD(,device)     bus_data_devices;
  715 static int bus_data_generation = 1;
  716 
  717 kobj_method_t null_methods[] = {
  718         { 0, 0 }
  719 };
  720 
  721 DEFINE_CLASS(null, null_methods, 0);
  722 
  723 /*
  724  * Devclass implementation
  725  */
  726 
  727 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
  728 
  729 
  730 /**
  731  * @internal
  732  * @brief Find or create a device class
  733  *
  734  * If a device class with the name @p classname exists, return it,
  735  * otherwise if @p create is non-zero create and return a new device
  736  * class.
  737  *
  738  * If @p parentname is non-NULL, the parent of the devclass is set to
  739  * the devclass of that name.
  740  *
  741  * @param classname     the devclass name to find or create
  742  * @param parentname    the parent devclass name or @c NULL
  743  * @param create        non-zero to create a devclass
  744  */
  745 static devclass_t
  746 devclass_find_internal(const char *classname, const char *parentname,
  747                        int create)
  748 {
  749         devclass_t dc;
  750 
  751         PDEBUG(("looking for %s", classname));
  752         if (!classname)
  753                 return (NULL);
  754 
  755         TAILQ_FOREACH(dc, &devclasses, link) {
  756                 if (!strcmp(dc->name, classname))
  757                         break;
  758         }
  759 
  760         if (create && !dc) {
  761                 PDEBUG(("creating %s", classname));
  762                 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
  763                     M_BUS, M_NOWAIT|M_ZERO);
  764                 if (!dc)
  765                         return (NULL);
  766                 dc->parent = NULL;
  767                 dc->name = (char*) (dc + 1);
  768                 strcpy(dc->name, classname);
  769                 TAILQ_INIT(&dc->drivers);
  770                 TAILQ_INSERT_TAIL(&devclasses, dc, link);
  771 
  772                 bus_data_generation_update();
  773         }
  774         if (parentname && dc && !dc->parent) {
  775                 dc->parent = devclass_find_internal(parentname, 0, FALSE);
  776         }
  777 
  778         return (dc);
  779 }
  780 
  781 /**
  782  * @brief Create a device class
  783  *
  784  * If a device class with the name @p classname exists, return it,
  785  * otherwise create and return a new device class.
  786  *
  787  * @param classname     the devclass name to find or create
  788  */
  789 devclass_t
  790 devclass_create(const char *classname)
  791 {
  792         return (devclass_find_internal(classname, 0, TRUE));
  793 }
  794 
  795 /**
  796  * @brief Find a device class
  797  *
  798  * If a device class with the name @p classname exists, return it,
  799  * otherwise return @c NULL.
  800  *
  801  * @param classname     the devclass name to find
  802  */
  803 devclass_t
  804 devclass_find(const char *classname)
  805 {
  806         return (devclass_find_internal(classname, 0, FALSE));
  807 }
  808 
  809 /**
  810  * @brief Add a device driver to a device class
  811  *
  812  * Add a device driver to a devclass. This is normally called
  813  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
  814  * all devices in the devclass will be called to allow them to attempt
  815  * to re-probe any unmatched children.
  816  *
  817  * @param dc            the devclass to edit
  818  * @param driver        the driver to register
  819  */
  820 int
  821 devclass_add_driver(devclass_t dc, driver_t *driver)
  822 {
  823         driverlink_t dl;
  824         int i;
  825 
  826         PDEBUG(("%s", DRIVERNAME(driver)));
  827 
  828         dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
  829         if (!dl)
  830                 return (ENOMEM);
  831 
  832         /*
  833          * Compile the driver's methods. Also increase the reference count
  834          * so that the class doesn't get freed when the last instance
  835          * goes. This means we can safely use static methods and avoids a
  836          * double-free in devclass_delete_driver.
  837          */
  838         kobj_class_compile((kobj_class_t) driver);
  839 
  840         /*
  841          * Make sure the devclass which the driver is implementing exists.
  842          */
  843         devclass_find_internal(driver->name, 0, TRUE);
  844 
  845         dl->driver = driver;
  846         TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
  847         driver->refs++;
  848 
  849         /*
  850          * Call BUS_DRIVER_ADDED for any existing busses in this class.
  851          */
  852         for (i = 0; i < dc->maxunit; i++)
  853                 if (dc->devices[i])
  854                         BUS_DRIVER_ADDED(dc->devices[i], driver);
  855 
  856         bus_data_generation_update();
  857         return (0);
  858 }
  859 
  860 /**
  861  * @brief Delete a device driver from a device class
  862  *
  863  * Delete a device driver from a devclass. This is normally called
  864  * automatically by DRIVER_MODULE().
  865  *
  866  * If the driver is currently attached to any devices,
  867  * devclass_delete_driver() will first attempt to detach from each
  868  * device. If one of the detach calls fails, the driver will not be
  869  * deleted.
  870  *
  871  * @param dc            the devclass to edit
  872  * @param driver        the driver to unregister
  873  */
  874 int
  875 devclass_delete_driver(devclass_t busclass, driver_t *driver)
  876 {
  877         devclass_t dc = devclass_find(driver->name);
  878         driverlink_t dl;
  879         device_t dev;
  880         int i;
  881         int error;
  882 
  883         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
  884 
  885         if (!dc)
  886                 return (0);
  887 
  888         /*
  889          * Find the link structure in the bus' list of drivers.
  890          */
  891         TAILQ_FOREACH(dl, &busclass->drivers, link) {
  892                 if (dl->driver == driver)
  893                         break;
  894         }
  895 
  896         if (!dl) {
  897                 PDEBUG(("%s not found in %s list", driver->name,
  898                     busclass->name));
  899                 return (ENOENT);
  900         }
  901 
  902         /*
  903          * Disassociate from any devices.  We iterate through all the
  904          * devices in the devclass of the driver and detach any which are
  905          * using the driver and which have a parent in the devclass which
  906          * we are deleting from.
  907          *
  908          * Note that since a driver can be in multiple devclasses, we
  909          * should not detach devices which are not children of devices in
  910          * the affected devclass.
  911          */
  912         for (i = 0; i < dc->maxunit; i++) {
  913                 if (dc->devices[i]) {
  914                         dev = dc->devices[i];
  915                         if (dev->driver == driver && dev->parent &&
  916                             dev->parent->devclass == busclass) {
  917                                 if ((error = device_detach(dev)) != 0)
  918                                         return (error);
  919                                 device_set_driver(dev, NULL);
  920                         }
  921                 }
  922         }
  923 
  924         TAILQ_REMOVE(&busclass->drivers, dl, link);
  925         free(dl, M_BUS);
  926 
  927         driver->refs--;
  928         if (driver->refs == 0)
  929                 kobj_class_free((kobj_class_t) driver);
  930 
  931         bus_data_generation_update();
  932         return (0);
  933 }
  934 
  935 /**
  936  * @internal
  937  */
  938 static driverlink_t
  939 devclass_find_driver_internal(devclass_t dc, const char *classname)
  940 {
  941         driverlink_t dl;
  942 
  943         PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
  944 
  945         TAILQ_FOREACH(dl, &dc->drivers, link) {
  946                 if (!strcmp(dl->driver->name, classname))
  947                         return (dl);
  948         }
  949 
  950         PDEBUG(("not found"));
  951         return (NULL);
  952 }
  953 
  954 /**
  955  * @brief Search a devclass for a driver
  956  *
  957  * This function searches the devclass's list of drivers and returns
  958  * the first driver whose name is @p classname or @c NULL if there is
  959  * no driver of that name.
  960  *
  961  * @param dc            the devclass to search
  962  * @param classname     the driver name to search for
  963  */
  964 kobj_class_t
  965 devclass_find_driver(devclass_t dc, const char *classname)
  966 {
  967         driverlink_t dl;
  968 
  969         dl = devclass_find_driver_internal(dc, classname);
  970         if (dl)
  971                 return (dl->driver);
  972         return (NULL);
  973 }
  974 
  975 /**
  976  * @brief Return the name of the devclass
  977  */
  978 const char *
  979 devclass_get_name(devclass_t dc)
  980 {
  981         return (dc->name);
  982 }
  983 
  984 /**
  985  * @brief Find a device given a unit number
  986  *
  987  * @param dc            the devclass to search
  988  * @param unit          the unit number to search for
  989  * 
  990  * @returns             the device with the given unit number or @c
  991  *                      NULL if there is no such device
  992  */
  993 device_t
  994 devclass_get_device(devclass_t dc, int unit)
  995 {
  996         if (dc == NULL || unit < 0 || unit >= dc->maxunit)
  997                 return (NULL);
  998         return (dc->devices[unit]);
  999 }
 1000 
 1001 /**
 1002  * @brief Find the softc field of a device given a unit number
 1003  *
 1004  * @param dc            the devclass to search
 1005  * @param unit          the unit number to search for
 1006  * 
 1007  * @returns             the softc field of the device with the given
 1008  *                      unit number or @c NULL if there is no such
 1009  *                      device
 1010  */
 1011 void *
 1012 devclass_get_softc(devclass_t dc, int unit)
 1013 {
 1014         device_t dev;
 1015 
 1016         dev = devclass_get_device(dc, unit);
 1017         if (!dev)
 1018                 return (NULL);
 1019 
 1020         return (device_get_softc(dev));
 1021 }
 1022 
 1023 /**
 1024  * @brief Get a list of devices in the devclass
 1025  *
 1026  * An array containing a list of all the devices in the given devclass
 1027  * is allocated and returned in @p *devlistp. The number of devices
 1028  * in the array is returned in @p *devcountp. The caller should free
 1029  * the array using @c free(p, M_TEMP).
 1030  *
 1031  * @param dc            the devclass to examine
 1032  * @param devlistp      points at location for array pointer return
 1033  *                      value
 1034  * @param devcountp     points at location for array size return value
 1035  *
 1036  * @retval 0            success
 1037  * @retval ENOMEM       the array allocation failed
 1038  */
 1039 int
 1040 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
 1041 {
 1042         int count, i;
 1043         device_t *list;
 1044 
 1045         count = devclass_get_count(dc);
 1046         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 1047         if (!list)
 1048                 return (ENOMEM);
 1049 
 1050         count = 0;
 1051         for (i = 0; i < dc->maxunit; i++) {
 1052                 if (dc->devices[i]) {
 1053                         list[count] = dc->devices[i];
 1054                         count++;
 1055                 }
 1056         }
 1057 
 1058         *devlistp = list;
 1059         *devcountp = count;
 1060 
 1061         return (0);
 1062 }
 1063 
 1064 /**
 1065  * @brief Get a list of drivers in the devclass
 1066  *
 1067  * An array containing a list of pointers to all the drivers in the
 1068  * given devclass is allocated and returned in @p *listp.  The number
 1069  * of drivers in the array is returned in @p *countp. The caller should
 1070  * free the array using @c free(p, M_TEMP).
 1071  *
 1072  * @param dc            the devclass to examine
 1073  * @param listp         gives location for array pointer return value
 1074  * @param countp        gives location for number of array elements
 1075  *                      return value
 1076  *
 1077  * @retval 0            success
 1078  * @retval ENOMEM       the array allocation failed
 1079  */
 1080 int
 1081 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
 1082 {
 1083         driverlink_t dl;
 1084         driver_t **list;
 1085         int count;
 1086 
 1087         count = 0;
 1088         TAILQ_FOREACH(dl, &dc->drivers, link)
 1089                 count++;
 1090         list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
 1091         if (list == NULL)
 1092                 return (ENOMEM);
 1093 
 1094         count = 0;
 1095         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1096                 list[count] = dl->driver;
 1097                 count++;
 1098         }
 1099         *listp = list;
 1100         *countp = count;
 1101 
 1102         return (0);
 1103 }
 1104 
 1105 /**
 1106  * @brief Get the number of devices in a devclass
 1107  *
 1108  * @param dc            the devclass to examine
 1109  */
 1110 int
 1111 devclass_get_count(devclass_t dc)
 1112 {
 1113         int count, i;
 1114 
 1115         count = 0;
 1116         for (i = 0; i < dc->maxunit; i++)
 1117                 if (dc->devices[i])
 1118                         count++;
 1119         return (count);
 1120 }
 1121 
 1122 /**
 1123  * @brief Get the maximum unit number used in a devclass
 1124  *
 1125  * Note that this is one greater than the highest currently-allocated
 1126  * unit.
 1127  *
 1128  * @param dc            the devclass to examine
 1129  */
 1130 int
 1131 devclass_get_maxunit(devclass_t dc)
 1132 {
 1133         return (dc->maxunit);
 1134 }
 1135 
 1136 /**
 1137  * @brief Find a free unit number in a devclass
 1138  *
 1139  * This function searches for the first unused unit number greater
 1140  * that or equal to @p unit.
 1141  *
 1142  * @param dc            the devclass to examine
 1143  * @param unit          the first unit number to check
 1144  */
 1145 int
 1146 devclass_find_free_unit(devclass_t dc, int unit)
 1147 {
 1148         if (dc == NULL)
 1149                 return (unit);
 1150         while (unit < dc->maxunit && dc->devices[unit] != NULL)
 1151                 unit++;
 1152         return (unit);
 1153 }
 1154 
 1155 /**
 1156  * @brief Set the parent of a devclass
 1157  *
 1158  * The parent class is normally initialised automatically by
 1159  * DRIVER_MODULE().
 1160  *
 1161  * @param dc            the devclass to edit
 1162  * @param pdc           the new parent devclass
 1163  */
 1164 void
 1165 devclass_set_parent(devclass_t dc, devclass_t pdc)
 1166 {
 1167         dc->parent = pdc;
 1168 }
 1169 
 1170 /**
 1171  * @brief Get the parent of a devclass
 1172  *
 1173  * @param dc            the devclass to examine
 1174  */
 1175 devclass_t
 1176 devclass_get_parent(devclass_t dc)
 1177 {
 1178         return (dc->parent);
 1179 }
 1180 
 1181 struct sysctl_ctx_list *
 1182 devclass_get_sysctl_ctx(devclass_t dc)
 1183 {
 1184         return (&dc->sysctl_ctx);
 1185 }
 1186 
 1187 struct sysctl_oid *
 1188 devclass_get_sysctl_tree(devclass_t dc)
 1189 {
 1190         return (dc->sysctl_tree);
 1191 }
 1192 
 1193 /**
 1194  * @internal
 1195  * @brief Allocate a unit number
 1196  *
 1197  * On entry, @p *unitp is the desired unit number (or @c -1 if any
 1198  * will do). The allocated unit number is returned in @p *unitp.
 1199 
 1200  * @param dc            the devclass to allocate from
 1201  * @param unitp         points at the location for the allocated unit
 1202  *                      number
 1203  *
 1204  * @retval 0            success
 1205  * @retval EEXIST       the requested unit number is already allocated
 1206  * @retval ENOMEM       memory allocation failure
 1207  */
 1208 static int
 1209 devclass_alloc_unit(devclass_t dc, int *unitp)
 1210 {
 1211         int unit = *unitp;
 1212 
 1213         PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1214 
 1215         /* If we were given a wired unit number, check for existing device */
 1216         /* XXX imp XXX */
 1217         if (unit != -1) {
 1218                 if (unit >= 0 && unit < dc->maxunit &&
 1219                     dc->devices[unit] != NULL) {
 1220                         if (bootverbose)
 1221                                 printf("%s: %s%d already exists; skipping it\n",
 1222                                     dc->name, dc->name, *unitp);
 1223                         return (EEXIST);
 1224                 }
 1225         } else {
 1226                 /* Unwired device, find the next available slot for it */
 1227                 unit = 0;
 1228                 while (unit < dc->maxunit && dc->devices[unit] != NULL)
 1229                         unit++;
 1230         }
 1231 
 1232         /*
 1233          * We've selected a unit beyond the length of the table, so let's
 1234          * extend the table to make room for all units up to and including
 1235          * this one.
 1236          */
 1237         if (unit >= dc->maxunit) {
 1238                 device_t *newlist;
 1239                 int newsize;
 1240 
 1241                 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
 1242                 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
 1243                 if (!newlist)
 1244                         return (ENOMEM);
 1245                 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
 1246                 bzero(newlist + dc->maxunit,
 1247                     sizeof(device_t) * (newsize - dc->maxunit));
 1248                 if (dc->devices)
 1249                         free(dc->devices, M_BUS);
 1250                 dc->devices = newlist;
 1251                 dc->maxunit = newsize;
 1252         }
 1253         PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1254 
 1255         *unitp = unit;
 1256         return (0);
 1257 }
 1258 
 1259 /**
 1260  * @internal
 1261  * @brief Add a device to a devclass
 1262  *
 1263  * A unit number is allocated for the device (using the device's
 1264  * preferred unit number if any) and the device is registered in the
 1265  * devclass. This allows the device to be looked up by its unit
 1266  * number, e.g. by decoding a dev_t minor number.
 1267  *
 1268  * @param dc            the devclass to add to
 1269  * @param dev           the device to add
 1270  *
 1271  * @retval 0            success
 1272  * @retval EEXIST       the requested unit number is already allocated
 1273  * @retval ENOMEM       memory allocation failure
 1274  */
 1275 static int
 1276 devclass_add_device(devclass_t dc, device_t dev)
 1277 {
 1278         int buflen, error;
 1279 
 1280         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1281 
 1282         buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
 1283         if (buflen < 0)
 1284                 return (ENOMEM);
 1285         dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
 1286         if (!dev->nameunit)
 1287                 return (ENOMEM);
 1288 
 1289         if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
 1290                 free(dev->nameunit, M_BUS);
 1291                 dev->nameunit = NULL;
 1292                 return (error);
 1293         }
 1294         dc->devices[dev->unit] = dev;
 1295         dev->devclass = dc;
 1296         snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
 1297 
 1298         return (0);
 1299 }
 1300 
 1301 /**
 1302  * @internal
 1303  * @brief Delete a device from a devclass
 1304  *
 1305  * The device is removed from the devclass's device list and its unit
 1306  * number is freed.
 1307 
 1308  * @param dc            the devclass to delete from
 1309  * @param dev           the device to delete
 1310  *
 1311  * @retval 0            success
 1312  */
 1313 static int
 1314 devclass_delete_device(devclass_t dc, device_t dev)
 1315 {
 1316         if (!dc || !dev)
 1317                 return (0);
 1318 
 1319         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1320 
 1321         if (dev->devclass != dc || dc->devices[dev->unit] != dev)
 1322                 panic("devclass_delete_device: inconsistent device class");
 1323         dc->devices[dev->unit] = NULL;
 1324         if (dev->flags & DF_WILDCARD)
 1325                 dev->unit = -1;
 1326         dev->devclass = NULL;
 1327         free(dev->nameunit, M_BUS);
 1328         dev->nameunit = NULL;
 1329 
 1330         return (0);
 1331 }
 1332 
 1333 /**
 1334  * @internal
 1335  * @brief Make a new device and add it as a child of @p parent
 1336  *
 1337  * @param parent        the parent of the new device
 1338  * @param name          the devclass name of the new device or @c NULL
 1339  *                      to leave the devclass unspecified
 1340  * @parem unit          the unit number of the new device of @c -1 to
 1341  *                      leave the unit number unspecified
 1342  *
 1343  * @returns the new device
 1344  */
 1345 static device_t
 1346 make_device(device_t parent, const char *name, int unit)
 1347 {
 1348         device_t dev;
 1349         devclass_t dc;
 1350 
 1351         PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
 1352 
 1353         if (name) {
 1354                 dc = devclass_find_internal(name, 0, TRUE);
 1355                 if (!dc) {
 1356                         printf("make_device: can't find device class %s\n",
 1357                             name);
 1358                         return (NULL);
 1359                 }
 1360         } else {
 1361                 dc = NULL;
 1362         }
 1363 
 1364         dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
 1365         if (!dev)
 1366                 return (NULL);
 1367 
 1368         dev->parent = parent;
 1369         TAILQ_INIT(&dev->children);
 1370         kobj_init((kobj_t) dev, &null_class);
 1371         dev->driver = NULL;
 1372         dev->devclass = NULL;
 1373         dev->unit = unit;
 1374         dev->nameunit = NULL;
 1375         dev->desc = NULL;
 1376         dev->busy = 0;
 1377         dev->devflags = 0;
 1378         dev->flags = DF_ENABLED;
 1379         dev->order = 0;
 1380         if (unit == -1)
 1381                 dev->flags |= DF_WILDCARD;
 1382         if (name) {
 1383                 dev->flags |= DF_FIXEDCLASS;
 1384                 if (devclass_add_device(dc, dev)) {
 1385                         kobj_delete((kobj_t) dev, M_BUS);
 1386                         return (NULL);
 1387                 }
 1388         }
 1389         dev->ivars = NULL;
 1390         dev->softc = NULL;
 1391 
 1392         dev->state = DS_NOTPRESENT;
 1393 
 1394         TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
 1395         bus_data_generation_update();
 1396 
 1397         return (dev);
 1398 }
 1399 
 1400 /**
 1401  * @internal
 1402  * @brief Print a description of a device.
 1403  */
 1404 static int
 1405 device_print_child(device_t dev, device_t child)
 1406 {
 1407         int retval = 0;
 1408 
 1409         if (device_is_alive(child))
 1410                 retval += BUS_PRINT_CHILD(dev, child);
 1411         else
 1412                 retval += device_printf(child, " not found\n");
 1413 
 1414         return (retval);
 1415 }
 1416 
 1417 /**
 1418  * @brief Create a new device
 1419  *
 1420  * This creates a new device and adds it as a child of an existing
 1421  * parent device. The new device will be added after the last existing
 1422  * child with order zero.
 1423  * 
 1424  * @param dev           the device which will be the parent of the
 1425  *                      new child device
 1426  * @param name          devclass name for new device or @c NULL if not
 1427  *                      specified
 1428  * @param unit          unit number for new device or @c -1 if not
 1429  *                      specified
 1430  * 
 1431  * @returns             the new device
 1432  */
 1433 device_t
 1434 device_add_child(device_t dev, const char *name, int unit)
 1435 {
 1436         return (device_add_child_ordered(dev, 0, name, unit));
 1437 }
 1438 
 1439 /**
 1440  * @brief Create a new device
 1441  *
 1442  * This creates a new device and adds it as a child of an existing
 1443  * parent device. The new device will be added after the last existing
 1444  * child with the same order.
 1445  * 
 1446  * @param dev           the device which will be the parent of the
 1447  *                      new child device
 1448  * @param order         a value which is used to partially sort the
 1449  *                      children of @p dev - devices created using
 1450  *                      lower values of @p order appear first in @p
 1451  *                      dev's list of children
 1452  * @param name          devclass name for new device or @c NULL if not
 1453  *                      specified
 1454  * @param unit          unit number for new device or @c -1 if not
 1455  *                      specified
 1456  * 
 1457  * @returns             the new device
 1458  */
 1459 device_t
 1460 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
 1461 {
 1462         device_t child;
 1463         device_t place;
 1464 
 1465         PDEBUG(("%s at %s with order %d as unit %d",
 1466             name, DEVICENAME(dev), order, unit));
 1467 
 1468         child = make_device(dev, name, unit);
 1469         if (child == NULL)
 1470                 return (child);
 1471         child->order = order;
 1472 
 1473         TAILQ_FOREACH(place, &dev->children, link) {
 1474                 if (place->order > order)
 1475                         break;
 1476         }
 1477 
 1478         if (place) {
 1479                 /*
 1480                  * The device 'place' is the first device whose order is
 1481                  * greater than the new child.
 1482                  */
 1483                 TAILQ_INSERT_BEFORE(place, child, link);
 1484         } else {
 1485                 /*
 1486                  * The new child's order is greater or equal to the order of
 1487                  * any existing device. Add the child to the tail of the list.
 1488                  */
 1489                 TAILQ_INSERT_TAIL(&dev->children, child, link);
 1490         }
 1491 
 1492         bus_data_generation_update();
 1493         return (child);
 1494 }
 1495 
 1496 /**
 1497  * @brief Delete a device
 1498  *
 1499  * This function deletes a device along with all of its children. If
 1500  * the device currently has a driver attached to it, the device is
 1501  * detached first using device_detach().
 1502  * 
 1503  * @param dev           the parent device
 1504  * @param child         the device to delete
 1505  *
 1506  * @retval 0            success
 1507  * @retval non-zero     a unit error code describing the error
 1508  */
 1509 int
 1510 device_delete_child(device_t dev, device_t child)
 1511 {
 1512         int error;
 1513         device_t grandchild;
 1514 
 1515         PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
 1516 
 1517         /* remove children first */
 1518         while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
 1519                 error = device_delete_child(child, grandchild);
 1520                 if (error)
 1521                         return (error);
 1522         }
 1523 
 1524         if ((error = device_detach(child)) != 0)
 1525                 return (error);
 1526         if (child->devclass)
 1527                 devclass_delete_device(child->devclass, child);
 1528         TAILQ_REMOVE(&dev->children, child, link);
 1529         TAILQ_REMOVE(&bus_data_devices, child, devlink);
 1530         kobj_delete((kobj_t) child, M_BUS);
 1531 
 1532         bus_data_generation_update();
 1533         return (0);
 1534 }
 1535 
 1536 /**
 1537  * @brief Find a device given a unit number
 1538  *
 1539  * This is similar to devclass_get_devices() but only searches for
 1540  * devices which have @p dev as a parent.
 1541  *
 1542  * @param dev           the parent device to search
 1543  * @param unit          the unit number to search for.  If the unit is -1,
 1544  *                      return the first child of @p dev which has name
 1545  *                      @p classname (that is, the one with the lowest unit.)
 1546  *
 1547  * @returns             the device with the given unit number or @c
 1548  *                      NULL if there is no such device
 1549  */
 1550 device_t
 1551 device_find_child(device_t dev, const char *classname, int unit)
 1552 {
 1553         devclass_t dc;
 1554         device_t child;
 1555 
 1556         dc = devclass_find(classname);
 1557         if (!dc)
 1558                 return (NULL);
 1559 
 1560         if (unit != -1) {
 1561                 child = devclass_get_device(dc, unit);
 1562                 if (child && child->parent == dev)
 1563                         return (child);
 1564         } else {
 1565                 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
 1566                         child = devclass_get_device(dc, unit);
 1567                         if (child && child->parent == dev)
 1568                                 return (child);
 1569                 }
 1570         }
 1571         return (NULL);
 1572 }
 1573 
 1574 /**
 1575  * @internal
 1576  */
 1577 static driverlink_t
 1578 first_matching_driver(devclass_t dc, device_t dev)
 1579 {
 1580         if (dev->devclass)
 1581                 return (devclass_find_driver_internal(dc, dev->devclass->name));
 1582         return (TAILQ_FIRST(&dc->drivers));
 1583 }
 1584 
 1585 /**
 1586  * @internal
 1587  */
 1588 static driverlink_t
 1589 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
 1590 {
 1591         if (dev->devclass) {
 1592                 driverlink_t dl;
 1593                 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
 1594                         if (!strcmp(dev->devclass->name, dl->driver->name))
 1595                                 return (dl);
 1596                 return (NULL);
 1597         }
 1598         return (TAILQ_NEXT(last, link));
 1599 }
 1600 
 1601 /**
 1602  * @internal
 1603  */
 1604 static int
 1605 device_probe_child(device_t dev, device_t child)
 1606 {
 1607         devclass_t dc;
 1608         driverlink_t best = 0;
 1609         driverlink_t dl;
 1610         int result, pri = 0;
 1611         int hasclass = (child->devclass != 0);
 1612 
 1613         dc = dev->devclass;
 1614         if (!dc)
 1615                 panic("device_probe_child: parent device has no devclass");
 1616 
 1617         if (child->state == DS_ALIVE)
 1618                 return (0);
 1619 
 1620         for (; dc; dc = dc->parent) {
 1621                 for (dl = first_matching_driver(dc, child);
 1622                      dl;
 1623                      dl = next_matching_driver(dc, child, dl)) {
 1624                         PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
 1625                         device_set_driver(child, dl->driver);
 1626                         if (!hasclass)
 1627                                 device_set_devclass(child, dl->driver->name);
 1628 
 1629                         /* Fetch any flags for the device before probing. */
 1630                         resource_int_value(dl->driver->name, child->unit,
 1631                             "flags", &child->devflags);
 1632 
 1633                         result = DEVICE_PROBE(child);
 1634 
 1635                         /* Reset flags and devclass before the next probe. */
 1636                         child->devflags = 0;
 1637                         if (!hasclass)
 1638                                 device_set_devclass(child, 0);
 1639 
 1640                         /*
 1641                          * If the driver returns SUCCESS, there can be
 1642                          * no higher match for this device.
 1643                          */
 1644                         if (result == 0) {
 1645                                 best = dl;
 1646                                 pri = 0;
 1647                                 break;
 1648                         }
 1649 
 1650                         /*
 1651                          * The driver returned an error so it
 1652                          * certainly doesn't match.
 1653                          */
 1654                         if (result > 0) {
 1655                                 device_set_driver(child, 0);
 1656                                 continue;
 1657                         }
 1658 
 1659                         /*
 1660                          * A priority lower than SUCCESS, remember the
 1661                          * best matching driver. Initialise the value
 1662                          * of pri for the first match.
 1663                          */
 1664                         if (best == 0 || result > pri) {
 1665                                 best = dl;
 1666                                 pri = result;
 1667                                 continue;
 1668                         }
 1669                 }
 1670                 /*
 1671                  * If we have an unambiguous match in this devclass,
 1672                  * don't look in the parent.
 1673                  */
 1674                 if (best && pri == 0)
 1675                         break;
 1676         }
 1677 
 1678         /*
 1679          * If we found a driver, change state and initialise the devclass.
 1680          */
 1681         if (best) {
 1682                 /* Set the winning driver, devclass, and flags. */
 1683                 if (!child->devclass)
 1684                         device_set_devclass(child, best->driver->name);
 1685                 device_set_driver(child, best->driver);
 1686                 resource_int_value(best->driver->name, child->unit,
 1687                     "flags", &child->devflags);
 1688 
 1689                 if (pri < 0) {
 1690                         /*
 1691                          * A bit bogus. Call the probe method again to make
 1692                          * sure that we have the right description.
 1693                          */
 1694                         DEVICE_PROBE(child);
 1695                 }
 1696                 child->state = DS_ALIVE;
 1697 
 1698                 bus_data_generation_update();
 1699                 return (0);
 1700         }
 1701 
 1702         return (ENXIO);
 1703 }
 1704 
 1705 /**
 1706  * @brief Return the parent of a device
 1707  */
 1708 device_t
 1709 device_get_parent(device_t dev)
 1710 {
 1711         return (dev->parent);
 1712 }
 1713 
 1714 /**
 1715  * @brief Get a list of children of a device
 1716  *
 1717  * An array containing a list of all the children of the given device
 1718  * is allocated and returned in @p *devlistp. The number of devices
 1719  * in the array is returned in @p *devcountp. The caller should free
 1720  * the array using @c free(p, M_TEMP).
 1721  *
 1722  * @param dev           the device to examine
 1723  * @param devlistp      points at location for array pointer return
 1724  *                      value
 1725  * @param devcountp     points at location for array size return value
 1726  *
 1727  * @retval 0            success
 1728  * @retval ENOMEM       the array allocation failed
 1729  */
 1730 int
 1731 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
 1732 {
 1733         int count;
 1734         device_t child;
 1735         device_t *list;
 1736 
 1737         count = 0;
 1738         TAILQ_FOREACH(child, &dev->children, link) {
 1739                 count++;
 1740         }
 1741 
 1742         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 1743         if (!list)
 1744                 return (ENOMEM);
 1745 
 1746         count = 0;
 1747         TAILQ_FOREACH(child, &dev->children, link) {
 1748                 list[count] = child;
 1749                 count++;
 1750         }
 1751 
 1752         *devlistp = list;
 1753         *devcountp = count;
 1754 
 1755         return (0);
 1756 }
 1757 
 1758 /**
 1759  * @brief Return the current driver for the device or @c NULL if there
 1760  * is no driver currently attached
 1761  */
 1762 driver_t *
 1763 device_get_driver(device_t dev)
 1764 {
 1765         return (dev->driver);
 1766 }
 1767 
 1768 /**
 1769  * @brief Return the current devclass for the device or @c NULL if
 1770  * there is none.
 1771  */
 1772 devclass_t
 1773 device_get_devclass(device_t dev)
 1774 {
 1775         return (dev->devclass);
 1776 }
 1777 
 1778 /**
 1779  * @brief Return the name of the device's devclass or @c NULL if there
 1780  * is none.
 1781  */
 1782 const char *
 1783 device_get_name(device_t dev)
 1784 {
 1785         if (dev != NULL && dev->devclass)
 1786                 return (devclass_get_name(dev->devclass));
 1787         return (NULL);
 1788 }
 1789 
 1790 /**
 1791  * @brief Return a string containing the device's devclass name
 1792  * followed by an ascii representation of the device's unit number
 1793  * (e.g. @c "foo2").
 1794  */
 1795 const char *
 1796 device_get_nameunit(device_t dev)
 1797 {
 1798         return (dev->nameunit);
 1799 }
 1800 
 1801 /**
 1802  * @brief Return the device's unit number.
 1803  */
 1804 int
 1805 device_get_unit(device_t dev)
 1806 {
 1807         return (dev->unit);
 1808 }
 1809 
 1810 /**
 1811  * @brief Return the device's description string
 1812  */
 1813 const char *
 1814 device_get_desc(device_t dev)
 1815 {
 1816         return (dev->desc);
 1817 }
 1818 
 1819 /**
 1820  * @brief Return the device's flags
 1821  */
 1822 u_int32_t
 1823 device_get_flags(device_t dev)
 1824 {
 1825         return (dev->devflags);
 1826 }
 1827 
 1828 struct sysctl_ctx_list *
 1829 device_get_sysctl_ctx(device_t dev)
 1830 {
 1831         return (&dev->sysctl_ctx);
 1832 }
 1833 
 1834 struct sysctl_oid *
 1835 device_get_sysctl_tree(device_t dev)
 1836 {
 1837         return (dev->sysctl_tree);
 1838 }
 1839 
 1840 /**
 1841  * @brief Print the name of the device followed by a colon and a space
 1842  *
 1843  * @returns the number of characters printed
 1844  */
 1845 int
 1846 device_print_prettyname(device_t dev)
 1847 {
 1848         const char *name = device_get_name(dev);
 1849 
 1850         if (name == 0)
 1851                 return (printf("unknown: "));
 1852         return (printf("%s%d: ", name, device_get_unit(dev)));
 1853 }
 1854 
 1855 /**
 1856  * @brief Print the name of the device followed by a colon, a space
 1857  * and the result of calling vprintf() with the value of @p fmt and
 1858  * the following arguments.
 1859  *
 1860  * @returns the number of characters printed
 1861  */
 1862 int
 1863 device_printf(device_t dev, const char * fmt, ...)
 1864 {
 1865         va_list ap;
 1866         int retval;
 1867 
 1868         retval = device_print_prettyname(dev);
 1869         va_start(ap, fmt);
 1870         retval += vprintf(fmt, ap);
 1871         va_end(ap);
 1872         return (retval);
 1873 }
 1874 
 1875 /**
 1876  * @internal
 1877  */
 1878 static void
 1879 device_set_desc_internal(device_t dev, const char* desc, int copy)
 1880 {
 1881         if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
 1882                 free(dev->desc, M_BUS);
 1883                 dev->flags &= ~DF_DESCMALLOCED;
 1884                 dev->desc = NULL;
 1885         }
 1886 
 1887         if (copy && desc) {
 1888                 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
 1889                 if (dev->desc) {
 1890                         strcpy(dev->desc, desc);
 1891                         dev->flags |= DF_DESCMALLOCED;
 1892                 }
 1893         } else {
 1894                 /* Avoid a -Wcast-qual warning */
 1895                 dev->desc = (char *)(uintptr_t) desc;
 1896         }
 1897 
 1898         bus_data_generation_update();
 1899 }
 1900 
 1901 /**
 1902  * @brief Set the device's description
 1903  *
 1904  * The value of @c desc should be a string constant that will not
 1905  * change (at least until the description is changed in a subsequent
 1906  * call to device_set_desc() or device_set_desc_copy()).
 1907  */
 1908 void
 1909 device_set_desc(device_t dev, const char* desc)
 1910 {
 1911         device_set_desc_internal(dev, desc, FALSE);
 1912 }
 1913 
 1914 /**
 1915  * @brief Set the device's description
 1916  *
 1917  * The string pointed to by @c desc is copied. Use this function if
 1918  * the device description is generated, (e.g. with sprintf()).
 1919  */
 1920 void
 1921 device_set_desc_copy(device_t dev, const char* desc)
 1922 {
 1923         device_set_desc_internal(dev, desc, TRUE);
 1924 }
 1925 
 1926 /**
 1927  * @brief Set the device's flags
 1928  */
 1929 void
 1930 device_set_flags(device_t dev, u_int32_t flags)
 1931 {
 1932         dev->devflags = flags;
 1933 }
 1934 
 1935 /**
 1936  * @brief Return the device's softc field
 1937  *
 1938  * The softc is allocated and zeroed when a driver is attached, based
 1939  * on the size field of the driver.
 1940  */
 1941 void *
 1942 device_get_softc(device_t dev)
 1943 {
 1944         return (dev->softc);
 1945 }
 1946 
 1947 /**
 1948  * @brief Set the device's softc field
 1949  *
 1950  * Most drivers do not need to use this since the softc is allocated
 1951  * automatically when the driver is attached.
 1952  */
 1953 void
 1954 device_set_softc(device_t dev, void *softc)
 1955 {
 1956         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
 1957                 free(dev->softc, M_BUS_SC);
 1958         dev->softc = softc;
 1959         if (dev->softc)
 1960                 dev->flags |= DF_EXTERNALSOFTC;
 1961         else
 1962                 dev->flags &= ~DF_EXTERNALSOFTC;
 1963 }
 1964 
 1965 /**
 1966  * @brief Get the device's ivars field
 1967  *
 1968  * The ivars field is used by the parent device to store per-device
 1969  * state (e.g. the physical location of the device or a list of
 1970  * resources).
 1971  */
 1972 void *
 1973 device_get_ivars(device_t dev)
 1974 {
 1975 
 1976         KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
 1977         return (dev->ivars);
 1978 }
 1979 
 1980 /**
 1981  * @brief Set the device's ivars field
 1982  */
 1983 void
 1984 device_set_ivars(device_t dev, void * ivars)
 1985 {
 1986 
 1987         KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
 1988         dev->ivars = ivars;
 1989 }
 1990 
 1991 /**
 1992  * @brief Return the device's state
 1993  */
 1994 device_state_t
 1995 device_get_state(device_t dev)
 1996 {
 1997         return (dev->state);
 1998 }
 1999 
 2000 /**
 2001  * @brief Set the DF_ENABLED flag for the device
 2002  */
 2003 void
 2004 device_enable(device_t dev)
 2005 {
 2006         dev->flags |= DF_ENABLED;
 2007 }
 2008 
 2009 /**
 2010  * @brief Clear the DF_ENABLED flag for the device
 2011  */
 2012 void
 2013 device_disable(device_t dev)
 2014 {
 2015         dev->flags &= ~DF_ENABLED;
 2016 }
 2017 
 2018 /**
 2019  * @brief Increment the busy counter for the device
 2020  */
 2021 void
 2022 device_busy(device_t dev)
 2023 {
 2024         if (dev->state < DS_ATTACHED)
 2025                 panic("device_busy: called for unattached device");
 2026         if (dev->busy == 0 && dev->parent)
 2027                 device_busy(dev->parent);
 2028         dev->busy++;
 2029         dev->state = DS_BUSY;
 2030 }
 2031 
 2032 /**
 2033  * @brief Decrement the busy counter for the device
 2034  */
 2035 void
 2036 device_unbusy(device_t dev)
 2037 {
 2038         if (dev->state != DS_BUSY)
 2039                 panic("device_unbusy: called for non-busy device");
 2040         dev->busy--;
 2041         if (dev->busy == 0) {
 2042                 if (dev->parent)
 2043                         device_unbusy(dev->parent);
 2044                 dev->state = DS_ATTACHED;
 2045         }
 2046 }
 2047 
 2048 /**
 2049  * @brief Set the DF_QUIET flag for the device
 2050  */
 2051 void
 2052 device_quiet(device_t dev)
 2053 {
 2054         dev->flags |= DF_QUIET;
 2055 }
 2056 
 2057 /**
 2058  * @brief Clear the DF_QUIET flag for the device
 2059  */
 2060 void
 2061 device_verbose(device_t dev)
 2062 {
 2063         dev->flags &= ~DF_QUIET;
 2064 }
 2065 
 2066 /**
 2067  * @brief Return non-zero if the DF_QUIET flag is set on the device
 2068  */
 2069 int
 2070 device_is_quiet(device_t dev)
 2071 {
 2072         return ((dev->flags & DF_QUIET) != 0);
 2073 }
 2074 
 2075 /**
 2076  * @brief Return non-zero if the DF_ENABLED flag is set on the device
 2077  */
 2078 int
 2079 device_is_enabled(device_t dev)
 2080 {
 2081         return ((dev->flags & DF_ENABLED) != 0);
 2082 }
 2083 
 2084 /**
 2085  * @brief Return non-zero if the device was successfully probed
 2086  */
 2087 int
 2088 device_is_alive(device_t dev)
 2089 {
 2090         return (dev->state >= DS_ALIVE);
 2091 }
 2092 
 2093 /**
 2094  * @brief Return non-zero if the device currently has a driver
 2095  * attached to it
 2096  */
 2097 int
 2098 device_is_attached(device_t dev)
 2099 {
 2100         return (dev->state >= DS_ATTACHED);
 2101 }
 2102 
 2103 /**
 2104  * @brief Set the devclass of a device
 2105  * @see devclass_add_device().
 2106  */
 2107 int
 2108 device_set_devclass(device_t dev, const char *classname)
 2109 {
 2110         devclass_t dc;
 2111         int error;
 2112 
 2113         if (!classname) {
 2114                 if (dev->devclass)
 2115                         devclass_delete_device(dev->devclass, dev);
 2116                 return (0);
 2117         }
 2118 
 2119         if (dev->devclass) {
 2120                 printf("device_set_devclass: device class already set\n");
 2121                 return (EINVAL);
 2122         }
 2123 
 2124         dc = devclass_find_internal(classname, 0, TRUE);
 2125         if (!dc)
 2126                 return (ENOMEM);
 2127 
 2128         error = devclass_add_device(dc, dev);
 2129 
 2130         bus_data_generation_update();
 2131         return (error);
 2132 }
 2133 
 2134 /**
 2135  * @brief Set the driver of a device
 2136  *
 2137  * @retval 0            success
 2138  * @retval EBUSY        the device already has a driver attached
 2139  * @retval ENOMEM       a memory allocation failure occurred
 2140  */
 2141 int
 2142 device_set_driver(device_t dev, driver_t *driver)
 2143 {
 2144         if (dev->state >= DS_ATTACHED)
 2145                 return (EBUSY);
 2146 
 2147         if (dev->driver == driver)
 2148                 return (0);
 2149 
 2150         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
 2151                 free(dev->softc, M_BUS_SC);
 2152                 dev->softc = NULL;
 2153         }
 2154         kobj_delete((kobj_t) dev, 0);
 2155         dev->driver = driver;
 2156         if (driver) {
 2157                 kobj_init((kobj_t) dev, (kobj_class_t) driver);
 2158                 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
 2159                         dev->softc = malloc(driver->size, M_BUS_SC,
 2160                             M_NOWAIT | M_ZERO);
 2161                         if (!dev->softc) {
 2162                                 kobj_delete((kobj_t) dev, 0);
 2163                                 kobj_init((kobj_t) dev, &null_class);
 2164                                 dev->driver = NULL;
 2165                                 return (ENOMEM);
 2166                         }
 2167                 }
 2168         } else {
 2169                 kobj_init((kobj_t) dev, &null_class);
 2170         }
 2171 
 2172         bus_data_generation_update();
 2173         return (0);
 2174 }
 2175 
 2176 /**
 2177  * @brief Probe a device and attach a driver if possible
 2178  *
 2179  * This function is the core of the device autoconfiguration
 2180  * system. Its purpose is to select a suitable driver for a device and
 2181  * then call that driver to initialise the hardware appropriately. The
 2182  * driver is selected by calling the DEVICE_PROBE() method of a set of
 2183  * candidate drivers and then choosing the driver which returned the
 2184  * best value. This driver is then attached to the device using
 2185  * device_attach().
 2186  *
 2187  * The set of suitable drivers is taken from the list of drivers in
 2188  * the parent device's devclass. If the device was originally created
 2189  * with a specific class name (see device_add_child()), only drivers
 2190  * with that name are probed, otherwise all drivers in the devclass
 2191  * are probed. If no drivers return successful probe values in the
 2192  * parent devclass, the search continues in the parent of that
 2193  * devclass (see devclass_get_parent()) if any.
 2194  *
 2195  * @param dev           the device to initialise
 2196  *
 2197  * @retval 0            success
 2198  * @retval ENXIO        no driver was found
 2199  * @retval ENOMEM       memory allocation failure
 2200  * @retval non-zero     some other unix error code
 2201  */
 2202 int
 2203 device_probe_and_attach(device_t dev)
 2204 {
 2205         int error;
 2206 
 2207         if (dev->state >= DS_ALIVE)
 2208                 return (0);
 2209 
 2210         if (!(dev->flags & DF_ENABLED)) {
 2211                 if (bootverbose) {
 2212                         device_print_prettyname(dev);
 2213                         printf("not probed (disabled)\n");
 2214                 }
 2215                 return (0);
 2216         }
 2217         if ((error = device_probe_child(dev->parent, dev)) != 0) {
 2218                 if (!(dev->flags & DF_DONENOMATCH)) {
 2219                         BUS_PROBE_NOMATCH(dev->parent, dev);
 2220                         devnomatch(dev);
 2221                         dev->flags |= DF_DONENOMATCH;
 2222                 }
 2223                 return (error);
 2224         }
 2225         error = device_attach(dev);
 2226 
 2227         return (error);
 2228 }
 2229 
 2230 /**
 2231  * @brief Attach a device driver to a device
 2232  *
 2233  * This function is a wrapper around the DEVICE_ATTACH() driver
 2234  * method. In addition to calling DEVICE_ATTACH(), it initialises the
 2235  * device's sysctl tree, optionally prints a description of the device
 2236  * and queues a notification event for user-based device management
 2237  * services.
 2238  *
 2239  * Normally this function is only called internally from
 2240  * device_probe_and_attach().
 2241  *
 2242  * @param dev           the device to initialise
 2243  *
 2244  * @retval 0            success
 2245  * @retval ENXIO        no driver was found
 2246  * @retval ENOMEM       memory allocation failure
 2247  * @retval non-zero     some other unix error code
 2248  */
 2249 int
 2250 device_attach(device_t dev)
 2251 {
 2252         int error;
 2253 
 2254         device_sysctl_init(dev);
 2255         if (!device_is_quiet(dev))
 2256                 device_print_child(dev->parent, dev);
 2257         if ((error = DEVICE_ATTACH(dev)) != 0) {
 2258                 printf("device_attach: %s%d attach returned %d\n",
 2259                     dev->driver->name, dev->unit, error);
 2260                 /* Unset the class; set in device_probe_child */
 2261                 if (dev->devclass == 0)
 2262                         device_set_devclass(dev, 0);
 2263                 device_set_driver(dev, NULL);
 2264                 device_sysctl_fini(dev);
 2265                 dev->state = DS_NOTPRESENT;
 2266                 return (error);
 2267         }
 2268         dev->state = DS_ATTACHED;
 2269         devadded(dev);
 2270         return (0);
 2271 }
 2272 
 2273 /**
 2274  * @brief Detach a driver from a device
 2275  *
 2276  * This function is a wrapper around the DEVICE_DETACH() driver
 2277  * method. If the call to DEVICE_DETACH() succeeds, it calls
 2278  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
 2279  * notification event for user-based device management services and
 2280  * cleans up the device's sysctl tree.
 2281  *
 2282  * @param dev           the device to un-initialise
 2283  *
 2284  * @retval 0            success
 2285  * @retval ENXIO        no driver was found
 2286  * @retval ENOMEM       memory allocation failure
 2287  * @retval non-zero     some other unix error code
 2288  */
 2289 int
 2290 device_detach(device_t dev)
 2291 {
 2292         int error;
 2293 
 2294         PDEBUG(("%s", DEVICENAME(dev)));
 2295         if (dev->state == DS_BUSY)
 2296                 return (EBUSY);
 2297         if (dev->state != DS_ATTACHED)
 2298                 return (0);
 2299 
 2300         if ((error = DEVICE_DETACH(dev)) != 0)
 2301                 return (error);
 2302         devremoved(dev);
 2303         device_printf(dev, "detached\n");
 2304         if (dev->parent)
 2305                 BUS_CHILD_DETACHED(dev->parent, dev);
 2306 
 2307         if (!(dev->flags & DF_FIXEDCLASS))
 2308                 devclass_delete_device(dev->devclass, dev);
 2309 
 2310         dev->state = DS_NOTPRESENT;
 2311         device_set_driver(dev, NULL);
 2312         device_set_desc(dev, NULL);
 2313         device_sysctl_fini(dev);
 2314 
 2315         return (0);
 2316 }
 2317 
 2318 /**
 2319  * @brief Notify a device of system shutdown
 2320  *
 2321  * This function calls the DEVICE_SHUTDOWN() driver method if the
 2322  * device currently has an attached driver.
 2323  *
 2324  * @returns the value returned by DEVICE_SHUTDOWN()
 2325  */
 2326 int
 2327 device_shutdown(device_t dev)
 2328 {
 2329         if (dev->state < DS_ATTACHED)
 2330                 return (0);
 2331         return (DEVICE_SHUTDOWN(dev));
 2332 }
 2333 
 2334 /**
 2335  * @brief Set the unit number of a device
 2336  *
 2337  * This function can be used to override the unit number used for a
 2338  * device (e.g. to wire a device to a pre-configured unit number).
 2339  */
 2340 int
 2341 device_set_unit(device_t dev, int unit)
 2342 {
 2343         devclass_t dc;
 2344         int err;
 2345 
 2346         dc = device_get_devclass(dev);
 2347         if (unit < dc->maxunit && dc->devices[unit])
 2348                 return (EBUSY);
 2349         err = devclass_delete_device(dc, dev);
 2350         if (err)
 2351                 return (err);
 2352         dev->unit = unit;
 2353         err = devclass_add_device(dc, dev);
 2354         if (err)
 2355                 return (err);
 2356 
 2357         bus_data_generation_update();
 2358         return (0);
 2359 }
 2360 
 2361 /*======================================*/
 2362 /*
 2363  * Some useful method implementations to make life easier for bus drivers.
 2364  */
 2365 
 2366 /**
 2367  * @brief Initialise a resource list.
 2368  *
 2369  * @param rl            the resource list to initialise
 2370  */
 2371 void
 2372 resource_list_init(struct resource_list *rl)
 2373 {
 2374         SLIST_INIT(rl);
 2375 }
 2376 
 2377 /**
 2378  * @brief Reclaim memory used by a resource list.
 2379  *
 2380  * This function frees the memory for all resource entries on the list
 2381  * (if any).
 2382  *
 2383  * @param rl            the resource list to free               
 2384  */
 2385 void
 2386 resource_list_free(struct resource_list *rl)
 2387 {
 2388         struct resource_list_entry *rle;
 2389 
 2390         while ((rle = SLIST_FIRST(rl)) != NULL) {
 2391                 if (rle->res)
 2392                         panic("resource_list_free: resource entry is busy");
 2393                 SLIST_REMOVE_HEAD(rl, link);
 2394                 free(rle, M_BUS);
 2395         }
 2396 }
 2397 
 2398 /**
 2399  * @brief Add a resource entry.
 2400  *
 2401  * This function adds a resource entry using the given @p type, @p
 2402  * start, @p end and @p count values. A rid value is chosen by
 2403  * searching sequentially for the first unused rid starting at zero.
 2404  *
 2405  * @param rl            the resource list to edit
 2406  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2407  * @param start         the start address of the resource
 2408  * @param end           the end address of the resource
 2409  * @param count         XXX end-start+1
 2410  */
 2411 int
 2412 resource_list_add_next(struct resource_list *rl, int type, u_long start,
 2413     u_long end, u_long count)
 2414 {
 2415         int rid;
 2416 
 2417         rid = 0;
 2418         while (resource_list_find(rl, type, rid) != NULL)
 2419                 rid++;
 2420         resource_list_add(rl, type, rid, start, end, count);
 2421         return (rid);
 2422 }
 2423 
 2424 /**
 2425  * @brief Add or modify a resource entry.
 2426  *
 2427  * If an existing entry exists with the same type and rid, it will be
 2428  * modified using the given values of @p start, @p end and @p
 2429  * count. If no entry exists, a new one will be created using the
 2430  * given values.
 2431  *
 2432  * @param rl            the resource list to edit
 2433  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2434  * @param rid           the resource identifier
 2435  * @param start         the start address of the resource
 2436  * @param end           the end address of the resource
 2437  * @param count         XXX end-start+1
 2438  */
 2439 void
 2440 resource_list_add(struct resource_list *rl, int type, int rid,
 2441     u_long start, u_long end, u_long count)
 2442 {
 2443         struct resource_list_entry *rle;
 2444 
 2445         rle = resource_list_find(rl, type, rid);
 2446         if (!rle) {
 2447                 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
 2448                     M_NOWAIT);
 2449                 if (!rle)
 2450                         panic("resource_list_add: can't record entry");
 2451                 SLIST_INSERT_HEAD(rl, rle, link);
 2452                 rle->type = type;
 2453                 rle->rid = rid;
 2454                 rle->res = NULL;
 2455         }
 2456 
 2457         if (rle->res)
 2458                 panic("resource_list_add: resource entry is busy");
 2459 
 2460         rle->start = start;
 2461         rle->end = end;
 2462         rle->count = count;
 2463 }
 2464 
 2465 /**
 2466  * @brief Find a resource entry by type and rid.
 2467  *
 2468  * @param rl            the resource list to search
 2469  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2470  * @param rid           the resource identifier
 2471  *
 2472  * @returns the resource entry pointer or NULL if there is no such
 2473  * entry.
 2474  */
 2475 struct resource_list_entry *
 2476 resource_list_find(struct resource_list *rl, int type, int rid)
 2477 {
 2478         struct resource_list_entry *rle;
 2479 
 2480         SLIST_FOREACH(rle, rl, link) {
 2481                 if (rle->type == type && rle->rid == rid)
 2482                         return (rle);
 2483         }
 2484         return (NULL);
 2485 }
 2486 
 2487 /**
 2488  * @brief Delete a resource entry.
 2489  *
 2490  * @param rl            the resource list to edit
 2491  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2492  * @param rid           the resource identifier
 2493  */
 2494 void
 2495 resource_list_delete(struct resource_list *rl, int type, int rid)
 2496 {
 2497         struct resource_list_entry *rle = resource_list_find(rl, type, rid);
 2498 
 2499         if (rle) {
 2500                 if (rle->res != NULL)
 2501                         panic("resource_list_delete: resource has not been released");
 2502                 SLIST_REMOVE(rl, rle, resource_list_entry, link);
 2503                 free(rle, M_BUS);
 2504         }
 2505 }
 2506 
 2507 /**
 2508  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
 2509  *
 2510  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
 2511  * and passing the allocation up to the parent of @p bus. This assumes
 2512  * that the first entry of @c device_get_ivars(child) is a struct
 2513  * resource_list. This also handles 'passthrough' allocations where a
 2514  * child is a remote descendant of bus by passing the allocation up to
 2515  * the parent of bus.
 2516  *
 2517  * Typically, a bus driver would store a list of child resources
 2518  * somewhere in the child device's ivars (see device_get_ivars()) and
 2519  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
 2520  * then call resource_list_alloc() to perform the allocation.
 2521  *
 2522  * @param rl            the resource list to allocate from
 2523  * @param bus           the parent device of @p child
 2524  * @param child         the device which is requesting an allocation
 2525  * @param type          the type of resource to allocate
 2526  * @param rid           a pointer to the resource identifier
 2527  * @param start         hint at the start of the resource range - pass
 2528  *                      @c 0UL for any start address
 2529  * @param end           hint at the end of the resource range - pass
 2530  *                      @c ~0UL for any end address
 2531  * @param count         hint at the size of range required - pass @c 1
 2532  *                      for any size
 2533  * @param flags         any extra flags to control the resource
 2534  *                      allocation - see @c RF_XXX flags in
 2535  *                      <sys/rman.h> for details
 2536  * 
 2537  * @returns             the resource which was allocated or @c NULL if no
 2538  *                      resource could be allocated
 2539  */
 2540 struct resource *
 2541 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
 2542     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
 2543 {
 2544         struct resource_list_entry *rle = 0;
 2545         int passthrough = (device_get_parent(child) != bus);
 2546         int isdefault = (start == 0UL && end == ~0UL);
 2547 
 2548         if (passthrough) {
 2549                 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 2550                     type, rid, start, end, count, flags));
 2551         }
 2552 
 2553         rle = resource_list_find(rl, type, *rid);
 2554 
 2555         if (!rle)
 2556                 return (NULL);          /* no resource of that type/rid */
 2557 
 2558         if (rle->res)
 2559                 panic("resource_list_alloc: resource entry is busy");
 2560 
 2561         if (isdefault) {
 2562                 start = rle->start;
 2563                 count = ulmax(count, rle->count);
 2564                 end = ulmax(rle->end, start + count - 1);
 2565         }
 2566 
 2567         rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 2568             type, rid, start, end, count, flags);
 2569 
 2570         /*
 2571          * Record the new range.
 2572          */
 2573         if (rle->res) {
 2574                 rle->start = rman_get_start(rle->res);
 2575                 rle->end = rman_get_end(rle->res);
 2576                 rle->count = count;
 2577         }
 2578 
 2579         return (rle->res);
 2580 }
 2581 
 2582 /**
 2583  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
 2584  * 
 2585  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
 2586  * used with resource_list_alloc().
 2587  * 
 2588  * @param rl            the resource list which was allocated from
 2589  * @param bus           the parent device of @p child
 2590  * @param child         the device which is requesting a release
 2591  * @param type          the type of resource to allocate
 2592  * @param rid           the resource identifier
 2593  * @param res           the resource to release
 2594  * 
 2595  * @retval 0            success
 2596  * @retval non-zero     a standard unix error code indicating what
 2597  *                      error condition prevented the operation
 2598  */
 2599 int
 2600 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
 2601     int type, int rid, struct resource *res)
 2602 {
 2603         struct resource_list_entry *rle = 0;
 2604         int passthrough = (device_get_parent(child) != bus);
 2605         int error;
 2606 
 2607         if (passthrough) {
 2608                 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 2609                     type, rid, res));
 2610         }
 2611 
 2612         rle = resource_list_find(rl, type, rid);
 2613 
 2614         if (!rle)
 2615                 panic("resource_list_release: can't find resource");
 2616         if (!rle->res)
 2617                 panic("resource_list_release: resource entry is not busy");
 2618 
 2619         error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 2620             type, rid, res);
 2621         if (error)
 2622                 return (error);
 2623 
 2624         rle->res = NULL;
 2625         return (0);
 2626 }
 2627 
 2628 /**
 2629  * @brief Print a description of resources in a resource list
 2630  *
 2631  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
 2632  * The name is printed if at least one resource of the given type is available.
 2633  * The format is used to print resource start and end.
 2634  *
 2635  * @param rl            the resource list to print
 2636  * @param name          the name of @p type, e.g. @c "memory"
 2637  * @param type          type type of resource entry to print
 2638  * @param format        printf(9) format string to print resource
 2639  *                      start and end values
 2640  * 
 2641  * @returns             the number of characters printed
 2642  */
 2643 int
 2644 resource_list_print_type(struct resource_list *rl, const char *name, int type,
 2645     const char *format)
 2646 {
 2647         struct resource_list_entry *rle;
 2648         int printed, retval;
 2649 
 2650         printed = 0;
 2651         retval = 0;
 2652         /* Yes, this is kinda cheating */
 2653         SLIST_FOREACH(rle, rl, link) {
 2654                 if (rle->type == type) {
 2655                         if (printed == 0)
 2656                                 retval += printf(" %s ", name);
 2657                         else
 2658                                 retval += printf(",");
 2659                         printed++;
 2660                         retval += printf(format, rle->start);
 2661                         if (rle->count > 1) {
 2662                                 retval += printf("-");
 2663                                 retval += printf(format, rle->start +
 2664                                                  rle->count - 1);
 2665                         }
 2666                 }
 2667         }
 2668         return (retval);
 2669 }
 2670 
 2671 /**
 2672  * @brief Helper function for implementing DEVICE_PROBE()
 2673  *
 2674  * This function can be used to help implement the DEVICE_PROBE() for
 2675  * a bus (i.e. a device which has other devices attached to it). It
 2676  * calls the DEVICE_IDENTIFY() method of each driver in the device's
 2677  * devclass.
 2678  */
 2679 int
 2680 bus_generic_probe(device_t dev)
 2681 {
 2682         devclass_t dc = dev->devclass;
 2683         driverlink_t dl;
 2684 
 2685         TAILQ_FOREACH(dl, &dc->drivers, link) {
 2686                 DEVICE_IDENTIFY(dl->driver, dev);
 2687         }
 2688 
 2689         return (0);
 2690 }
 2691 
 2692 /**
 2693  * @brief Helper function for implementing DEVICE_ATTACH()
 2694  *
 2695  * This function can be used to help implement the DEVICE_ATTACH() for
 2696  * a bus. It calls device_probe_and_attach() for each of the device's
 2697  * children.
 2698  */
 2699 int
 2700 bus_generic_attach(device_t dev)
 2701 {
 2702         device_t child;
 2703 
 2704         TAILQ_FOREACH(child, &dev->children, link) {
 2705                 device_probe_and_attach(child);
 2706         }
 2707 
 2708         return (0);
 2709 }
 2710 
 2711 /**
 2712  * @brief Helper function for implementing DEVICE_DETACH()
 2713  *
 2714  * This function can be used to help implement the DEVICE_DETACH() for
 2715  * a bus. It calls device_detach() for each of the device's
 2716  * children.
 2717  */
 2718 int
 2719 bus_generic_detach(device_t dev)
 2720 {
 2721         device_t child;
 2722         int error;
 2723 
 2724         if (dev->state != DS_ATTACHED)
 2725                 return (EBUSY);
 2726 
 2727         TAILQ_FOREACH(child, &dev->children, link) {
 2728                 if ((error = device_detach(child)) != 0)
 2729                         return (error);
 2730         }
 2731 
 2732         return (0);
 2733 }
 2734 
 2735 /**
 2736  * @brief Helper function for implementing DEVICE_SHUTDOWN()
 2737  *
 2738  * This function can be used to help implement the DEVICE_SHUTDOWN()
 2739  * for a bus. It calls device_shutdown() for each of the device's
 2740  * children.
 2741  */
 2742 int
 2743 bus_generic_shutdown(device_t dev)
 2744 {
 2745         device_t child;
 2746 
 2747         TAILQ_FOREACH(child, &dev->children, link) {
 2748                 device_shutdown(child);
 2749         }
 2750 
 2751         return (0);
 2752 }
 2753 
 2754 /**
 2755  * @brief Helper function for implementing DEVICE_SUSPEND()
 2756  *
 2757  * This function can be used to help implement the DEVICE_SUSPEND()
 2758  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
 2759  * children. If any call to DEVICE_SUSPEND() fails, the suspend
 2760  * operation is aborted and any devices which were suspended are
 2761  * resumed immediately by calling their DEVICE_RESUME() methods.
 2762  */
 2763 int
 2764 bus_generic_suspend(device_t dev)
 2765 {
 2766         int             error;
 2767         device_t        child, child2;
 2768 
 2769         TAILQ_FOREACH(child, &dev->children, link) {
 2770                 error = DEVICE_SUSPEND(child);
 2771                 if (error) {
 2772                         for (child2 = TAILQ_FIRST(&dev->children);
 2773                              child2 && child2 != child;
 2774                              child2 = TAILQ_NEXT(child2, link))
 2775                                 DEVICE_RESUME(child2);
 2776                         return (error);
 2777                 }
 2778         }
 2779         return (0);
 2780 }
 2781 
 2782 /**
 2783  * @brief Helper function for implementing DEVICE_RESUME()
 2784  *
 2785  * This function can be used to help implement the DEVICE_RESUME() for
 2786  * a bus. It calls DEVICE_RESUME() on each of the device's children.
 2787  */
 2788 int
 2789 bus_generic_resume(device_t dev)
 2790 {
 2791         device_t        child;
 2792 
 2793         TAILQ_FOREACH(child, &dev->children, link) {
 2794                 DEVICE_RESUME(child);
 2795                 /* if resume fails, there's nothing we can usefully do... */
 2796         }
 2797         return (0);
 2798 }
 2799 
 2800 /**
 2801  * @brief Helper function for implementing BUS_PRINT_CHILD().
 2802  *
 2803  * This function prints the first part of the ascii representation of
 2804  * @p child, including its name, unit and description (if any - see
 2805  * device_set_desc()).
 2806  *
 2807  * @returns the number of characters printed
 2808  */
 2809 int
 2810 bus_print_child_header(device_t dev, device_t child)
 2811 {
 2812         int     retval = 0;
 2813 
 2814         if (device_get_desc(child)) {
 2815                 retval += device_printf(child, "<%s>", device_get_desc(child));
 2816         } else {
 2817                 retval += printf("%s", device_get_nameunit(child));
 2818         }
 2819 
 2820         return (retval);
 2821 }
 2822 
 2823 /**
 2824  * @brief Helper function for implementing BUS_PRINT_CHILD().
 2825  *
 2826  * This function prints the last part of the ascii representation of
 2827  * @p child, which consists of the string @c " on " followed by the
 2828  * name and unit of the @p dev.
 2829  *
 2830  * @returns the number of characters printed
 2831  */
 2832 int
 2833 bus_print_child_footer(device_t dev, device_t child)
 2834 {
 2835         return (printf(" on %s\n", device_get_nameunit(dev)));
 2836 }
 2837 
 2838 /**
 2839  * @brief Helper function for implementing BUS_PRINT_CHILD().
 2840  *
 2841  * This function simply calls bus_print_child_header() followed by
 2842  * bus_print_child_footer().
 2843  *
 2844  * @returns the number of characters printed
 2845  */
 2846 int
 2847 bus_generic_print_child(device_t dev, device_t child)
 2848 {
 2849         int     retval = 0;
 2850 
 2851         retval += bus_print_child_header(dev, child);
 2852         retval += bus_print_child_footer(dev, child);
 2853 
 2854         return (retval);
 2855 }
 2856 
 2857 /**
 2858  * @brief Stub function for implementing BUS_READ_IVAR().
 2859  * 
 2860  * @returns ENOENT
 2861  */
 2862 int
 2863 bus_generic_read_ivar(device_t dev, device_t child, int index,
 2864     uintptr_t * result)
 2865 {
 2866         return (ENOENT);
 2867 }
 2868 
 2869 /**
 2870  * @brief Stub function for implementing BUS_WRITE_IVAR().
 2871  * 
 2872  * @returns ENOENT
 2873  */
 2874 int
 2875 bus_generic_write_ivar(device_t dev, device_t child, int index,
 2876     uintptr_t value)
 2877 {
 2878         return (ENOENT);
 2879 }
 2880 
 2881 /**
 2882  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
 2883  * 
 2884  * @returns NULL
 2885  */
 2886 struct resource_list *
 2887 bus_generic_get_resource_list(device_t dev, device_t child)
 2888 {
 2889         return (NULL);
 2890 }
 2891 
 2892 /**
 2893  * @brief Helper function for implementing BUS_DRIVER_ADDED().
 2894  *
 2895  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
 2896  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
 2897  * and then calls device_probe_and_attach() for each unattached child.
 2898  */
 2899 void
 2900 bus_generic_driver_added(device_t dev, driver_t *driver)
 2901 {
 2902         device_t child;
 2903 
 2904         DEVICE_IDENTIFY(driver, dev);
 2905         TAILQ_FOREACH(child, &dev->children, link) {
 2906                 if (child->state == DS_NOTPRESENT)
 2907                         device_probe_and_attach(child);
 2908         }
 2909 }
 2910 
 2911 /**
 2912  * @brief Helper function for implementing BUS_SETUP_INTR().
 2913  *
 2914  * This simple implementation of BUS_SETUP_INTR() simply calls the
 2915  * BUS_SETUP_INTR() method of the parent of @p dev.
 2916  */
 2917 int
 2918 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
 2919     int flags, driver_intr_t *intr, void *arg, void **cookiep)
 2920 {
 2921         /* Propagate up the bus hierarchy until someone handles it. */
 2922         if (dev->parent)
 2923                 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
 2924                     intr, arg, cookiep));
 2925         return (EINVAL);
 2926 }
 2927 
 2928 /**
 2929  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
 2930  *
 2931  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
 2932  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
 2933  */
 2934 int
 2935 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
 2936     void *cookie)
 2937 {
 2938         /* Propagate up the bus hierarchy until someone handles it. */
 2939         if (dev->parent)
 2940                 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
 2941         return (EINVAL);
 2942 }
 2943 
 2944 /**
 2945  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 2946  *
 2947  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
 2948  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
 2949  */
 2950 struct resource *
 2951 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
 2952     u_long start, u_long end, u_long count, u_int flags)
 2953 {
 2954         /* Propagate up the bus hierarchy until someone handles it. */
 2955         if (dev->parent)
 2956                 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
 2957                     start, end, count, flags));
 2958         return (NULL);
 2959 }
 2960 
 2961 /**
 2962  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 2963  *
 2964  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
 2965  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
 2966  */
 2967 int
 2968 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
 2969     struct resource *r)
 2970 {
 2971         /* Propagate up the bus hierarchy until someone handles it. */
 2972         if (dev->parent)
 2973                 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
 2974                     r));
 2975         return (EINVAL);
 2976 }
 2977 
 2978 /**
 2979  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
 2980  *
 2981  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
 2982  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
 2983  */
 2984 int
 2985 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
 2986     struct resource *r)
 2987 {
 2988         /* Propagate up the bus hierarchy until someone handles it. */
 2989         if (dev->parent)
 2990                 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
 2991                     r));
 2992         return (EINVAL);
 2993 }
 2994 
 2995 /**
 2996  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
 2997  *
 2998  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
 2999  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
 3000  */
 3001 int
 3002 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
 3003     int rid, struct resource *r)
 3004 {
 3005         /* Propagate up the bus hierarchy until someone handles it. */
 3006         if (dev->parent)
 3007                 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3008                     r));
 3009         return (EINVAL);
 3010 }
 3011 
 3012 /**
 3013  * @brief Helper function for implementing BUS_CONFIG_INTR().
 3014  *
 3015  * This simple implementation of BUS_CONFIG_INTR() simply calls the
 3016  * BUS_CONFIG_INTR() method of the parent of @p dev.
 3017  */
 3018 int
 3019 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
 3020     enum intr_polarity pol)
 3021 {
 3022 
 3023         /* Propagate up the bus hierarchy until someone handles it. */
 3024         if (dev->parent)
 3025                 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
 3026         return (EINVAL);
 3027 }
 3028 
 3029 /**
 3030  * @brief Helper function for implementing BUS_GET_RESOURCE().
 3031  *
 3032  * This implementation of BUS_GET_RESOURCE() uses the
 3033  * resource_list_find() function to do most of the work. It calls
 3034  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3035  * search.
 3036  */
 3037 int
 3038 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
 3039     u_long *startp, u_long *countp)
 3040 {
 3041         struct resource_list *          rl = NULL;
 3042         struct resource_list_entry *    rle = NULL;
 3043 
 3044         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3045         if (!rl)
 3046                 return (EINVAL);
 3047 
 3048         rle = resource_list_find(rl, type, rid);
 3049         if (!rle)
 3050                 return (ENOENT);
 3051 
 3052         if (startp)
 3053                 *startp = rle->start;
 3054         if (countp)
 3055                 *countp = rle->count;
 3056 
 3057         return (0);
 3058 }
 3059 
 3060 /**
 3061  * @brief Helper function for implementing BUS_SET_RESOURCE().
 3062  *
 3063  * This implementation of BUS_SET_RESOURCE() uses the
 3064  * resource_list_add() function to do most of the work. It calls
 3065  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3066  * edit.
 3067  */
 3068 int
 3069 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
 3070     u_long start, u_long count)
 3071 {
 3072         struct resource_list *          rl = NULL;
 3073 
 3074         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3075         if (!rl)
 3076                 return (EINVAL);
 3077 
 3078         resource_list_add(rl, type, rid, start, (start + count - 1), count);
 3079 
 3080         return (0);
 3081 }
 3082 
 3083 /**
 3084  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
 3085  *
 3086  * This implementation of BUS_DELETE_RESOURCE() uses the
 3087  * resource_list_delete() function to do most of the work. It calls
 3088  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3089  * edit.
 3090  */
 3091 void
 3092 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
 3093 {
 3094         struct resource_list *          rl = NULL;
 3095 
 3096         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3097         if (!rl)
 3098                 return;
 3099 
 3100         resource_list_delete(rl, type, rid);
 3101 
 3102         return;
 3103 }
 3104 
 3105 /**
 3106  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3107  *
 3108  * This implementation of BUS_RELEASE_RESOURCE() uses the
 3109  * resource_list_release() function to do most of the work. It calls
 3110  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3111  */
 3112 int
 3113 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
 3114     int rid, struct resource *r)
 3115 {
 3116         struct resource_list *          rl = NULL;
 3117 
 3118         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3119         if (!rl)
 3120                 return (EINVAL);
 3121 
 3122         return (resource_list_release(rl, dev, child, type, rid, r));
 3123 }
 3124 
 3125 /**
 3126  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3127  *
 3128  * This implementation of BUS_ALLOC_RESOURCE() uses the
 3129  * resource_list_alloc() function to do most of the work. It calls
 3130  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3131  */
 3132 struct resource *
 3133 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
 3134     int *rid, u_long start, u_long end, u_long count, u_int flags)
 3135 {
 3136         struct resource_list *          rl = NULL;
 3137 
 3138         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3139         if (!rl)
 3140                 return (NULL);
 3141 
 3142         return (resource_list_alloc(rl, dev, child, type, rid,
 3143             start, end, count, flags));
 3144 }
 3145 
 3146 /**
 3147  * @brief Helper function for implementing BUS_CHILD_PRESENT().
 3148  *
 3149  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
 3150  * BUS_CHILD_PRESENT() method of the parent of @p dev.
 3151  */
 3152 int
 3153 bus_generic_child_present(device_t dev, device_t child)
 3154 {
 3155         return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
 3156 }
 3157 
 3158 /*
 3159  * Some convenience functions to make it easier for drivers to use the
 3160  * resource-management functions.  All these really do is hide the
 3161  * indirection through the parent's method table, making for slightly
 3162  * less-wordy code.  In the future, it might make sense for this code
 3163  * to maintain some sort of a list of resources allocated by each device.
 3164  */
 3165 
 3166 /**
 3167  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
 3168  *
 3169  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
 3170  * parent of @p dev.
 3171  */
 3172 struct resource *
 3173 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
 3174     u_long count, u_int flags)
 3175 {
 3176         if (dev->parent == 0)
 3177                 return (0);
 3178         return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
 3179             count, flags));
 3180 }
 3181 
 3182 /**
 3183  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
 3184  *
 3185  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
 3186  * parent of @p dev.
 3187  */
 3188 int
 3189 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
 3190 {
 3191         if (dev->parent == 0)
 3192                 return (EINVAL);
 3193         return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 3194 }
 3195 
 3196 /**
 3197  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
 3198  *
 3199  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
 3200  * parent of @p dev.
 3201  */
 3202 int
 3203 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
 3204 {
 3205         if (dev->parent == 0)
 3206                 return (EINVAL);
 3207         return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 3208 }
 3209 
 3210 /**
 3211  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
 3212  *
 3213  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
 3214  * parent of @p dev.
 3215  */
 3216 int
 3217 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
 3218 {
 3219         if (dev->parent == 0)
 3220                 return (EINVAL);
 3221         return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
 3222 }
 3223 
 3224 /**
 3225  * @brief Wrapper function for BUS_SETUP_INTR().
 3226  *
 3227  * This function simply calls the BUS_SETUP_INTR() method of the
 3228  * parent of @p dev.
 3229  */
 3230 int
 3231 bus_setup_intr(device_t dev, struct resource *r, int flags,
 3232     driver_intr_t handler, void *arg, void **cookiep)
 3233 {
 3234         int error;
 3235 
 3236         if (dev->parent != 0) {
 3237                 if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) &&
 3238                     !debug_mpsafenet)
 3239                         flags &= ~INTR_MPSAFE;
 3240                 error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
 3241                     handler, arg, cookiep);
 3242                 if (error == 0) {
 3243                         if (bootverbose && !(flags & (INTR_MPSAFE | INTR_FAST)))
 3244                                 device_printf(dev, "[GIANT-LOCKED]\n");
 3245                         if (bootverbose && (flags & INTR_MPSAFE))
 3246                                 device_printf(dev, "[MPSAFE]\n");
 3247                         if (bootverbose && (flags & INTR_FAST))
 3248                                 device_printf(dev, "[FAST]\n");
 3249                 }
 3250         } else
 3251                 error = EINVAL;
 3252         return (error);
 3253 }
 3254 
 3255 /**
 3256  * @brief Wrapper function for BUS_TEARDOWN_INTR().
 3257  *
 3258  * This function simply calls the BUS_TEARDOWN_INTR() method of the
 3259  * parent of @p dev.
 3260  */
 3261 int
 3262 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
 3263 {
 3264         if (dev->parent == 0)
 3265                 return (EINVAL);
 3266         return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
 3267 }
 3268 
 3269 /**
 3270  * @brief Wrapper function for BUS_SET_RESOURCE().
 3271  *
 3272  * This function simply calls the BUS_SET_RESOURCE() method of the
 3273  * parent of @p dev.
 3274  */
 3275 int
 3276 bus_set_resource(device_t dev, int type, int rid,
 3277     u_long start, u_long count)
 3278 {
 3279         return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3280             start, count));
 3281 }
 3282 
 3283 /**
 3284  * @brief Wrapper function for BUS_GET_RESOURCE().
 3285  *
 3286  * This function simply calls the BUS_GET_RESOURCE() method of the
 3287  * parent of @p dev.
 3288  */
 3289 int
 3290 bus_get_resource(device_t dev, int type, int rid,
 3291     u_long *startp, u_long *countp)
 3292 {
 3293         return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3294             startp, countp));
 3295 }
 3296 
 3297 /**
 3298  * @brief Wrapper function for BUS_GET_RESOURCE().
 3299  *
 3300  * This function simply calls the BUS_GET_RESOURCE() method of the
 3301  * parent of @p dev and returns the start value.
 3302  */
 3303 u_long
 3304 bus_get_resource_start(device_t dev, int type, int rid)
 3305 {
 3306         u_long start, count;
 3307         int error;
 3308 
 3309         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3310             &start, &count);
 3311         if (error)
 3312                 return (0);
 3313         return (start);
 3314 }
 3315 
 3316 /**
 3317  * @brief Wrapper function for BUS_GET_RESOURCE().
 3318  *
 3319  * This function simply calls the BUS_GET_RESOURCE() method of the
 3320  * parent of @p dev and returns the count value.
 3321  */
 3322 u_long
 3323 bus_get_resource_count(device_t dev, int type, int rid)
 3324 {
 3325         u_long start, count;
 3326         int error;
 3327 
 3328         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3329             &start, &count);
 3330         if (error)
 3331                 return (0);
 3332         return (count);
 3333 }
 3334 
 3335 /**
 3336  * @brief Wrapper function for BUS_DELETE_RESOURCE().
 3337  *
 3338  * This function simply calls the BUS_DELETE_RESOURCE() method of the
 3339  * parent of @p dev.
 3340  */
 3341 void
 3342 bus_delete_resource(device_t dev, int type, int rid)
 3343 {
 3344         BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
 3345 }
 3346 
 3347 /**
 3348  * @brief Wrapper function for BUS_CHILD_PRESENT().
 3349  *
 3350  * This function simply calls the BUS_CHILD_PRESENT() method of the
 3351  * parent of @p dev.
 3352  */
 3353 int
 3354 bus_child_present(device_t child)
 3355 {
 3356         return (BUS_CHILD_PRESENT(device_get_parent(child), child));
 3357 }
 3358 
 3359 /**
 3360  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
 3361  *
 3362  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
 3363  * parent of @p dev.
 3364  */
 3365 int
 3366 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
 3367 {
 3368         device_t parent;
 3369 
 3370         parent = device_get_parent(child);
 3371         if (parent == NULL) {
 3372                 *buf = '\0';
 3373                 return (0);
 3374         }
 3375         return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
 3376 }
 3377 
 3378 /**
 3379  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
 3380  *
 3381  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
 3382  * parent of @p dev.
 3383  */
 3384 int
 3385 bus_child_location_str(device_t child, char *buf, size_t buflen)
 3386 {
 3387         device_t parent;
 3388 
 3389         parent = device_get_parent(child);
 3390         if (parent == NULL) {
 3391                 *buf = '\0';
 3392                 return (0);
 3393         }
 3394         return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
 3395 }
 3396 
 3397 static int
 3398 root_print_child(device_t dev, device_t child)
 3399 {
 3400         int     retval = 0;
 3401 
 3402         retval += bus_print_child_header(dev, child);
 3403         retval += printf("\n");
 3404 
 3405         return (retval);
 3406 }
 3407 
 3408 static int
 3409 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
 3410     void **cookiep)
 3411 {
 3412         /*
 3413          * If an interrupt mapping gets to here something bad has happened.
 3414          */
 3415         panic("root_setup_intr");
 3416 }
 3417 
 3418 /*
 3419  * If we get here, assume that the device is permanant and really is
 3420  * present in the system.  Removable bus drivers are expected to intercept
 3421  * this call long before it gets here.  We return -1 so that drivers that
 3422  * really care can check vs -1 or some ERRNO returned higher in the food
 3423  * chain.
 3424  */
 3425 static int
 3426 root_child_present(device_t dev, device_t child)
 3427 {
 3428         return (-1);
 3429 }
 3430 
 3431 static kobj_method_t root_methods[] = {
 3432         /* Device interface */
 3433         KOBJMETHOD(device_shutdown,     bus_generic_shutdown),
 3434         KOBJMETHOD(device_suspend,      bus_generic_suspend),
 3435         KOBJMETHOD(device_resume,       bus_generic_resume),
 3436 
 3437         /* Bus interface */
 3438         KOBJMETHOD(bus_print_child,     root_print_child),
 3439         KOBJMETHOD(bus_read_ivar,       bus_generic_read_ivar),
 3440         KOBJMETHOD(bus_write_ivar,      bus_generic_write_ivar),
 3441         KOBJMETHOD(bus_setup_intr,      root_setup_intr),
 3442         KOBJMETHOD(bus_child_present,   root_child_present),
 3443 
 3444         { 0, 0 }
 3445 };
 3446 
 3447 static driver_t root_driver = {
 3448         "root",
 3449         root_methods,
 3450         1,                      /* no softc */
 3451 };
 3452 
 3453 device_t        root_bus;
 3454 devclass_t      root_devclass;
 3455 
 3456 static int
 3457 root_bus_module_handler(module_t mod, int what, void* arg)
 3458 {
 3459         switch (what) {
 3460         case MOD_LOAD:
 3461                 TAILQ_INIT(&bus_data_devices);
 3462                 kobj_class_compile((kobj_class_t) &root_driver);
 3463                 root_bus = make_device(NULL, "root", 0);
 3464                 root_bus->desc = "System root bus";
 3465                 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
 3466                 root_bus->driver = &root_driver;
 3467                 root_bus->state = DS_ATTACHED;
 3468                 root_devclass = devclass_find_internal("root", 0, FALSE);
 3469                 devinit();
 3470                 return (0);
 3471 
 3472         case MOD_SHUTDOWN:
 3473                 device_shutdown(root_bus);
 3474                 return (0);
 3475         default:
 3476                 return (EOPNOTSUPP);
 3477         }
 3478 
 3479         return (0);
 3480 }
 3481 
 3482 static moduledata_t root_bus_mod = {
 3483         "rootbus",
 3484         root_bus_module_handler,
 3485         0
 3486 };
 3487 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
 3488 
 3489 /**
 3490  * @brief Automatically configure devices
 3491  *
 3492  * This function begins the autoconfiguration process by calling
 3493  * device_probe_and_attach() for each child of the @c root0 device.
 3494  */ 
 3495 void
 3496 root_bus_configure(void)
 3497 {
 3498         device_t dev;
 3499 
 3500         PDEBUG(("."));
 3501 
 3502         TAILQ_FOREACH(dev, &root_bus->children, link) {
 3503                 device_probe_and_attach(dev);
 3504         }
 3505 }
 3506 
 3507 /**
 3508  * @brief Module handler for registering device drivers
 3509  *
 3510  * This module handler is used to automatically register device
 3511  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
 3512  * devclass_add_driver() for the driver described by the
 3513  * driver_module_data structure pointed to by @p arg
 3514  */
 3515 int
 3516 driver_module_handler(module_t mod, int what, void *arg)
 3517 {
 3518         int error;
 3519         struct driver_module_data *dmd;
 3520         devclass_t bus_devclass;
 3521         kobj_class_t driver;
 3522 
 3523         dmd = (struct driver_module_data *)arg;
 3524         bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE);
 3525         error = 0;
 3526 
 3527         switch (what) {
 3528         case MOD_LOAD:
 3529                 if (dmd->dmd_chainevh)
 3530                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 3531 
 3532                 driver = dmd->dmd_driver;
 3533                 PDEBUG(("Loading module: driver %s on bus %s",
 3534                     DRIVERNAME(driver), dmd->dmd_busname));
 3535                 error = devclass_add_driver(bus_devclass, driver);
 3536                 if (error)
 3537                         break;
 3538 
 3539                 /*
 3540                  * If the driver has any base classes, make the
 3541                  * devclass inherit from the devclass of the driver's
 3542                  * first base class. This will allow the system to
 3543                  * search for drivers in both devclasses for children
 3544                  * of a device using this driver.
 3545                  */
 3546                 if (driver->baseclasses) {
 3547                         const char *parentname;
 3548                         parentname = driver->baseclasses[0]->name;
 3549                         *dmd->dmd_devclass =
 3550                                 devclass_find_internal(driver->name,
 3551                                     parentname, TRUE);
 3552                 } else {
 3553                         *dmd->dmd_devclass =
 3554                                 devclass_find_internal(driver->name, 0, TRUE);
 3555                 }
 3556                 break;
 3557 
 3558         case MOD_UNLOAD:
 3559                 PDEBUG(("Unloading module: driver %s from bus %s",
 3560                     DRIVERNAME(dmd->dmd_driver),
 3561                     dmd->dmd_busname));
 3562                 error = devclass_delete_driver(bus_devclass,
 3563                     dmd->dmd_driver);
 3564 
 3565                 if (!error && dmd->dmd_chainevh)
 3566                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 3567                 break;
 3568         default:
 3569                 error = EOPNOTSUPP;
 3570                 break;
 3571         }
 3572 
 3573         return (error);
 3574 }
 3575 
 3576 #ifdef BUS_DEBUG
 3577 
 3578 /* the _short versions avoid iteration by not calling anything that prints
 3579  * more than oneliners. I love oneliners.
 3580  */
 3581 
 3582 static void
 3583 print_device_short(device_t dev, int indent)
 3584 {
 3585         if (!dev)
 3586                 return;
 3587 
 3588         indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
 3589             dev->unit, dev->desc,
 3590             (dev->parent? "":"no "),
 3591             (TAILQ_EMPTY(&dev->children)? "no ":""),
 3592             (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
 3593             (dev->flags&DF_FIXEDCLASS? "fixed,":""),
 3594             (dev->flags&DF_WILDCARD? "wildcard,":""),
 3595             (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
 3596             (dev->ivars? "":"no "),
 3597             (dev->softc? "":"no "),
 3598             dev->busy));
 3599 }
 3600 
 3601 static void
 3602 print_device(device_t dev, int indent)
 3603 {
 3604         if (!dev)
 3605                 return;
 3606 
 3607         print_device_short(dev, indent);
 3608 
 3609         indentprintf(("Parent:\n"));
 3610         print_device_short(dev->parent, indent+1);
 3611         indentprintf(("Driver:\n"));
 3612         print_driver_short(dev->driver, indent+1);
 3613         indentprintf(("Devclass:\n"));
 3614         print_devclass_short(dev->devclass, indent+1);
 3615 }
 3616 
 3617 void
 3618 print_device_tree_short(device_t dev, int indent)
 3619 /* print the device and all its children (indented) */
 3620 {
 3621         device_t child;
 3622 
 3623         if (!dev)
 3624                 return;
 3625 
 3626         print_device_short(dev, indent);
 3627 
 3628         TAILQ_FOREACH(child, &dev->children, link) {
 3629                 print_device_tree_short(child, indent+1);
 3630         }
 3631 }
 3632 
 3633 void
 3634 print_device_tree(device_t dev, int indent)
 3635 /* print the device and all its children (indented) */
 3636 {
 3637         device_t child;
 3638 
 3639         if (!dev)
 3640                 return;
 3641 
 3642         print_device(dev, indent);
 3643 
 3644         TAILQ_FOREACH(child, &dev->children, link) {
 3645                 print_device_tree(child, indent+1);
 3646         }
 3647 }
 3648 
 3649 static void
 3650 print_driver_short(driver_t *driver, int indent)
 3651 {
 3652         if (!driver)
 3653                 return;
 3654 
 3655         indentprintf(("driver %s: softc size = %zd\n",
 3656             driver->name, driver->size));
 3657 }
 3658 
 3659 static void
 3660 print_driver(driver_t *driver, int indent)
 3661 {
 3662         if (!driver)
 3663                 return;
 3664 
 3665         print_driver_short(driver, indent);
 3666 }
 3667 
 3668 
 3669 static void
 3670 print_driver_list(driver_list_t drivers, int indent)
 3671 {
 3672         driverlink_t driver;
 3673 
 3674         TAILQ_FOREACH(driver, &drivers, link) {
 3675                 print_driver(driver->driver, indent);
 3676         }
 3677 }
 3678 
 3679 static void
 3680 print_devclass_short(devclass_t dc, int indent)
 3681 {
 3682         if ( !dc )
 3683                 return;
 3684 
 3685         indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
 3686 }
 3687 
 3688 static void
 3689 print_devclass(devclass_t dc, int indent)
 3690 {
 3691         int i;
 3692 
 3693         if ( !dc )
 3694                 return;
 3695 
 3696         print_devclass_short(dc, indent);
 3697         indentprintf(("Drivers:\n"));
 3698         print_driver_list(dc->drivers, indent+1);
 3699 
 3700         indentprintf(("Devices:\n"));
 3701         for (i = 0; i < dc->maxunit; i++)
 3702                 if (dc->devices[i])
 3703                         print_device(dc->devices[i], indent+1);
 3704 }
 3705 
 3706 void
 3707 print_devclass_list_short(void)
 3708 {
 3709         devclass_t dc;
 3710 
 3711         printf("Short listing of devclasses, drivers & devices:\n");
 3712         TAILQ_FOREACH(dc, &devclasses, link) {
 3713                 print_devclass_short(dc, 0);
 3714         }
 3715 }
 3716 
 3717 void
 3718 print_devclass_list(void)
 3719 {
 3720         devclass_t dc;
 3721 
 3722         printf("Full listing of devclasses, drivers & devices:\n");
 3723         TAILQ_FOREACH(dc, &devclasses, link) {
 3724                 print_devclass(dc, 0);
 3725         }
 3726 }
 3727 
 3728 #endif
 3729 
 3730 /*
 3731  * User-space access to the device tree.
 3732  *
 3733  * We implement a small set of nodes:
 3734  *
 3735  * hw.bus                       Single integer read method to obtain the
 3736  *                              current generation count.
 3737  * hw.bus.devices               Reads the entire device tree in flat space.
 3738  * hw.bus.rman                  Resource manager interface
 3739  *
 3740  * We might like to add the ability to scan devclasses and/or drivers to
 3741  * determine what else is currently loaded/available.
 3742  */
 3743 
 3744 static int
 3745 sysctl_bus(SYSCTL_HANDLER_ARGS)
 3746 {
 3747         struct u_businfo        ubus;
 3748 
 3749         ubus.ub_version = BUS_USER_VERSION;
 3750         ubus.ub_generation = bus_data_generation;
 3751 
 3752         return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
 3753 }
 3754 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
 3755     "bus-related data");
 3756 
 3757 static int
 3758 sysctl_devices(SYSCTL_HANDLER_ARGS)
 3759 {
 3760         int                     *name = (int *)arg1;
 3761         u_int                   namelen = arg2;
 3762         int                     index;
 3763         struct device           *dev;
 3764         struct u_device         udev;   /* XXX this is a bit big */
 3765         int                     error;
 3766 
 3767         if (namelen != 2)
 3768                 return (EINVAL);
 3769 
 3770         if (bus_data_generation_check(name[0]))
 3771                 return (EINVAL);
 3772 
 3773         index = name[1];
 3774 
 3775         /*
 3776          * Scan the list of devices, looking for the requested index.
 3777          */
 3778         TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 3779                 if (index-- == 0)
 3780                         break;
 3781         }
 3782         if (dev == NULL)
 3783                 return (ENOENT);
 3784 
 3785         /*
 3786          * Populate the return array.
 3787          */
 3788         bzero(&udev, sizeof(udev));
 3789         udev.dv_handle = (uintptr_t)dev;
 3790         udev.dv_parent = (uintptr_t)dev->parent;
 3791         if (dev->nameunit == NULL)
 3792                 udev.dv_name[0] = '\0';
 3793         else
 3794                 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
 3795 
 3796         if (dev->desc == NULL)
 3797                 udev.dv_desc[0] = '\0';
 3798         else
 3799                 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
 3800         if (dev->driver == NULL || dev->driver->name == NULL)
 3801                 udev.dv_drivername[0] = '\0';
 3802         else
 3803                 strlcpy(udev.dv_drivername, dev->driver->name,
 3804                     sizeof(udev.dv_drivername));
 3805         udev.dv_pnpinfo[0] = '\0';
 3806         udev.dv_location[0] = '\0';
 3807         bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
 3808         bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
 3809         udev.dv_devflags = dev->devflags;
 3810         udev.dv_flags = dev->flags;
 3811         udev.dv_state = dev->state;
 3812         error = SYSCTL_OUT(req, &udev, sizeof(udev));
 3813         return (error);
 3814 }
 3815 
 3816 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
 3817     "system device tree");
 3818 
 3819 /*
 3820  * Sysctl interface for scanning the resource lists.
 3821  *
 3822  * We take two input parameters; the index into the list of resource
 3823  * managers, and the resource offset into the list.
 3824  */
 3825 static int
 3826 sysctl_rman(SYSCTL_HANDLER_ARGS)
 3827 {
 3828         int                     *name = (int *)arg1;
 3829         u_int                   namelen = arg2;
 3830         int                     rman_idx, res_idx;
 3831         struct rman             *rm;
 3832         struct resource         *res;
 3833         struct u_rman           urm;
 3834         struct u_resource       ures;
 3835         int                     error;
 3836 
 3837         if (namelen != 3)
 3838                 return (EINVAL);
 3839 
 3840         if (bus_data_generation_check(name[0]))
 3841                 return (EINVAL);
 3842         rman_idx = name[1];
 3843         res_idx = name[2];
 3844 
 3845         /*
 3846          * Find the indexed resource manager
 3847          */
 3848         TAILQ_FOREACH(rm, &rman_head, rm_link) {
 3849                 if (rman_idx-- == 0)
 3850                         break;
 3851         }
 3852         if (rm == NULL)
 3853                 return (ENOENT);
 3854 
 3855         /*
 3856          * If the resource index is -1, we want details on the
 3857          * resource manager.
 3858          */
 3859         if (res_idx == -1) {
 3860                 bzero(&urm, sizeof(urm));
 3861                 urm.rm_handle = (uintptr_t)rm;
 3862                 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
 3863                 urm.rm_start = rm->rm_start;
 3864                 urm.rm_size = rm->rm_end - rm->rm_start + 1;
 3865                 urm.rm_type = rm->rm_type;
 3866 
 3867                 error = SYSCTL_OUT(req, &urm, sizeof(urm));
 3868                 return (error);
 3869         }
 3870 
 3871         /*
 3872          * Find the indexed resource and return it.
 3873          */
 3874         TAILQ_FOREACH(res, &rm->rm_list, r_link) {
 3875                 if (res_idx-- == 0) {
 3876                         bzero(&ures, sizeof(ures));
 3877                         ures.r_handle = (uintptr_t)res;
 3878                         ures.r_parent = (uintptr_t)res->r_rm;
 3879                         ures.r_device = (uintptr_t)res->r_dev;
 3880                         if (res->r_dev != NULL) {
 3881                                 if (device_get_name(res->r_dev) != NULL) {
 3882                                         snprintf(ures.r_devname, RM_TEXTLEN,
 3883                                             "%s%d",
 3884                                             device_get_name(res->r_dev),
 3885                                             device_get_unit(res->r_dev));
 3886                                 } else {
 3887                                         strlcpy(ures.r_devname, "nomatch",
 3888                                             RM_TEXTLEN);
 3889                                 }
 3890                         } else {
 3891                                 ures.r_devname[0] = '\0';
 3892                         }
 3893                         ures.r_start = res->r_start;
 3894                         ures.r_size = res->r_end - res->r_start + 1;
 3895                         ures.r_flags = res->r_flags;
 3896 
 3897                         error = SYSCTL_OUT(req, &ures, sizeof(ures));
 3898                         return (error);
 3899                 }
 3900         }
 3901         return (ENOENT);
 3902 }
 3903 
 3904 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
 3905     "kernel resource manager");
 3906 
 3907 int
 3908 bus_data_generation_check(int generation)
 3909 {
 3910         if (generation != bus_data_generation)
 3911                 return (1);
 3912 
 3913         /* XXX generate optimised lists here? */
 3914         return (0);
 3915 }
 3916 
 3917 void
 3918 bus_data_generation_update(void)
 3919 {
 3920         bus_data_generation++;
 3921 }

Cache object: 5a769e2e4d3096b21da14e01e4a3479f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.