The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_bus.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997,1998,2003 Doug Rabson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/6.2/sys/kern/subr_bus.c 164286 2006-11-14 20:42:41Z cvs2svn $");
   29 
   30 #include "opt_bus.h"
   31 
   32 #include <sys/param.h>
   33 #include <sys/conf.h>
   34 #include <sys/filio.h>
   35 #include <sys/lock.h>
   36 #include <sys/kernel.h>
   37 #include <sys/kobj.h>
   38 #include <sys/malloc.h>
   39 #include <sys/module.h>
   40 #include <sys/mutex.h>
   41 #include <sys/poll.h>
   42 #include <sys/proc.h>
   43 #include <sys/condvar.h>
   44 #include <sys/queue.h>
   45 #include <machine/bus.h>
   46 #include <sys/rman.h>
   47 #include <sys/selinfo.h>
   48 #include <sys/signalvar.h>
   49 #include <sys/sysctl.h>
   50 #include <sys/systm.h>
   51 #include <sys/uio.h>
   52 #include <sys/bus.h>
   53 
   54 #include <machine/stdarg.h>
   55 
   56 #include <vm/uma.h>
   57 
   58 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
   59 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
   60 
   61 /*
   62  * Used to attach drivers to devclasses.
   63  */
   64 typedef struct driverlink *driverlink_t;
   65 struct driverlink {
   66         kobj_class_t    driver;
   67         TAILQ_ENTRY(driverlink) link;   /* list of drivers in devclass */
   68 };
   69 
   70 /*
   71  * Forward declarations
   72  */
   73 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
   74 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
   75 typedef TAILQ_HEAD(device_list, device) device_list_t;
   76 
   77 struct devclass {
   78         TAILQ_ENTRY(devclass) link;
   79         devclass_t      parent;         /* parent in devclass hierarchy */
   80         driver_list_t   drivers;     /* bus devclasses store drivers for bus */
   81         char            *name;
   82         device_t        *devices;       /* array of devices indexed by unit */
   83         int             maxunit;        /* size of devices array */
   84 
   85         struct sysctl_ctx_list sysctl_ctx;
   86         struct sysctl_oid *sysctl_tree;
   87 };
   88 
   89 /**
   90  * @brief Implementation of device.
   91  */
   92 struct device {
   93         /*
   94          * A device is a kernel object. The first field must be the
   95          * current ops table for the object.
   96          */
   97         KOBJ_FIELDS;
   98 
   99         /*
  100          * Device hierarchy.
  101          */
  102         TAILQ_ENTRY(device)     link;   /**< list of devices in parent */
  103         TAILQ_ENTRY(device)     devlink; /**< global device list membership */
  104         device_t        parent;         /**< parent of this device  */
  105         device_list_t   children;       /**< list of child devices */
  106 
  107         /*
  108          * Details of this device.
  109          */
  110         driver_t        *driver;        /**< current driver */
  111         devclass_t      devclass;       /**< current device class */
  112         int             unit;           /**< current unit number */
  113         char*           nameunit;       /**< name+unit e.g. foodev0 */
  114         char*           desc;           /**< driver specific description */
  115         int             busy;           /**< count of calls to device_busy() */
  116         device_state_t  state;          /**< current device state  */
  117         u_int32_t       devflags;       /**< api level flags for device_get_flags() */
  118         u_short         flags;          /**< internal device flags  */
  119 #define DF_ENABLED      1               /* device should be probed/attached */
  120 #define DF_FIXEDCLASS   2               /* devclass specified at create time */
  121 #define DF_WILDCARD     4               /* unit was originally wildcard */
  122 #define DF_DESCMALLOCED 8               /* description was malloced */
  123 #define DF_QUIET        16              /* don't print verbose attach message */
  124 #define DF_DONENOMATCH  32              /* don't execute DEVICE_NOMATCH again */
  125 #define DF_EXTERNALSOFTC 64             /* softc not allocated by us */
  126 #define DF_REBID        128             /* Can rebid after attach */
  127         u_char  order;                  /**< order from device_add_child_ordered() */
  128         u_char  pad;
  129         void    *ivars;                 /**< instance variables  */
  130         void    *softc;                 /**< current driver's variables  */
  131 
  132         struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
  133         struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
  134 };
  135 
  136 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
  137 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
  138 
  139 #ifdef BUS_DEBUG
  140 
  141 static int bus_debug = 1;
  142 TUNABLE_INT("bus.debug", &bus_debug);
  143 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
  144     "Debug bus code");
  145 
  146 #define PDEBUG(a)       if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
  147 #define DEVICENAME(d)   ((d)? device_get_name(d): "no device")
  148 #define DRIVERNAME(d)   ((d)? d->name : "no driver")
  149 #define DEVCLANAME(d)   ((d)? d->name : "no devclass")
  150 
  151 /**
  152  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
  153  * prevent syslog from deleting initial spaces
  154  */
  155 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
  156 
  157 static void print_device_short(device_t dev, int indent);
  158 static void print_device(device_t dev, int indent);
  159 void print_device_tree_short(device_t dev, int indent);
  160 void print_device_tree(device_t dev, int indent);
  161 static void print_driver_short(driver_t *driver, int indent);
  162 static void print_driver(driver_t *driver, int indent);
  163 static void print_driver_list(driver_list_t drivers, int indent);
  164 static void print_devclass_short(devclass_t dc, int indent);
  165 static void print_devclass(devclass_t dc, int indent);
  166 void print_devclass_list_short(void);
  167 void print_devclass_list(void);
  168 
  169 #else
  170 /* Make the compiler ignore the function calls */
  171 #define PDEBUG(a)                       /* nop */
  172 #define DEVICENAME(d)                   /* nop */
  173 #define DRIVERNAME(d)                   /* nop */
  174 #define DEVCLANAME(d)                   /* nop */
  175 
  176 #define print_device_short(d,i)         /* nop */
  177 #define print_device(d,i)               /* nop */
  178 #define print_device_tree_short(d,i)    /* nop */
  179 #define print_device_tree(d,i)          /* nop */
  180 #define print_driver_short(d,i)         /* nop */
  181 #define print_driver(d,i)               /* nop */
  182 #define print_driver_list(d,i)          /* nop */
  183 #define print_devclass_short(d,i)       /* nop */
  184 #define print_devclass(d,i)             /* nop */
  185 #define print_devclass_list_short()     /* nop */
  186 #define print_devclass_list()           /* nop */
  187 #endif
  188 
  189 /*
  190  * dev sysctl tree
  191  */
  192 
  193 enum {
  194         DEVCLASS_SYSCTL_PARENT,
  195 };
  196 
  197 static int
  198 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
  199 {
  200         devclass_t dc = (devclass_t)arg1;
  201         const char *value;
  202 
  203         switch (arg2) {
  204         case DEVCLASS_SYSCTL_PARENT:
  205                 value = dc->parent ? dc->parent->name : "";
  206                 break;
  207         default:
  208                 return (EINVAL);
  209         }
  210         return (SYSCTL_OUT(req, value, strlen(value)));
  211 }
  212 
  213 static void
  214 devclass_sysctl_init(devclass_t dc)
  215 {
  216 
  217         if (dc->sysctl_tree != NULL)
  218                 return;
  219         sysctl_ctx_init(&dc->sysctl_ctx);
  220         dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
  221             SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
  222             CTLFLAG_RD, 0, "");
  223         SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
  224             OID_AUTO, "%parent", CTLFLAG_RD,
  225             dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
  226             "parent class");
  227 }
  228 
  229 enum {
  230         DEVICE_SYSCTL_DESC,
  231         DEVICE_SYSCTL_DRIVER,
  232         DEVICE_SYSCTL_LOCATION,
  233         DEVICE_SYSCTL_PNPINFO,
  234         DEVICE_SYSCTL_PARENT,
  235 };
  236 
  237 static int
  238 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
  239 {
  240         device_t dev = (device_t)arg1;
  241         const char *value;
  242         char *buf;
  243         int error;
  244 
  245         buf = NULL;
  246         switch (arg2) {
  247         case DEVICE_SYSCTL_DESC:
  248                 value = dev->desc ? dev->desc : "";
  249                 break;
  250         case DEVICE_SYSCTL_DRIVER:
  251                 value = dev->driver ? dev->driver->name : "";
  252                 break;
  253         case DEVICE_SYSCTL_LOCATION:
  254                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  255                 bus_child_location_str(dev, buf, 1024);
  256                 break;
  257         case DEVICE_SYSCTL_PNPINFO:
  258                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  259                 bus_child_pnpinfo_str(dev, buf, 1024);
  260                 break;
  261         case DEVICE_SYSCTL_PARENT:
  262                 value = dev->parent ? dev->parent->nameunit : "";
  263                 break;
  264         default:
  265                 return (EINVAL);
  266         }
  267         error = SYSCTL_OUT(req, value, strlen(value));
  268         if (buf != NULL)
  269                 free(buf, M_BUS);
  270         return (error);
  271 }
  272 
  273 static void
  274 device_sysctl_init(device_t dev)
  275 {
  276         devclass_t dc = dev->devclass;
  277 
  278         if (dev->sysctl_tree != NULL)
  279                 return;
  280         devclass_sysctl_init(dc);
  281         sysctl_ctx_init(&dev->sysctl_ctx);
  282         dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
  283             SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
  284             dev->nameunit + strlen(dc->name),
  285             CTLFLAG_RD, 0, "");
  286         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  287             OID_AUTO, "%desc", CTLFLAG_RD,
  288             dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
  289             "device description");
  290         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  291             OID_AUTO, "%driver", CTLFLAG_RD,
  292             dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
  293             "device driver name");
  294         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  295             OID_AUTO, "%location", CTLFLAG_RD,
  296             dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
  297             "device location relative to parent");
  298         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  299             OID_AUTO, "%pnpinfo", CTLFLAG_RD,
  300             dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
  301             "device identification");
  302         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  303             OID_AUTO, "%parent", CTLFLAG_RD,
  304             dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
  305             "parent device");
  306 }
  307 
  308 static void
  309 device_sysctl_fini(device_t dev)
  310 {
  311         if (dev->sysctl_tree == NULL)
  312                 return;
  313         sysctl_ctx_free(&dev->sysctl_ctx);
  314         dev->sysctl_tree = NULL;
  315 }
  316 
  317 /*
  318  * /dev/devctl implementation
  319  */
  320 
  321 /*
  322  * This design allows only one reader for /dev/devctl.  This is not desirable
  323  * in the long run, but will get a lot of hair out of this implementation.
  324  * Maybe we should make this device a clonable device.
  325  *
  326  * Also note: we specifically do not attach a device to the device_t tree
  327  * to avoid potential chicken and egg problems.  One could argue that all
  328  * of this belongs to the root node.  One could also further argue that the
  329  * sysctl interface that we have not might more properly be an ioctl
  330  * interface, but at this stage of the game, I'm not inclined to rock that
  331  * boat.
  332  *
  333  * I'm also not sure that the SIGIO support is done correctly or not, as
  334  * I copied it from a driver that had SIGIO support that likely hasn't been
  335  * tested since 3.4 or 2.2.8!
  336  */
  337 
  338 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
  339 static int devctl_disable = 0;
  340 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
  341 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
  342     sysctl_devctl_disable, "I", "devctl disable");
  343 
  344 static d_open_t         devopen;
  345 static d_close_t        devclose;
  346 static d_read_t         devread;
  347 static d_ioctl_t        devioctl;
  348 static d_poll_t         devpoll;
  349 
  350 static struct cdevsw dev_cdevsw = {
  351         .d_version =    D_VERSION,
  352         .d_flags =      D_NEEDGIANT,
  353         .d_open =       devopen,
  354         .d_close =      devclose,
  355         .d_read =       devread,
  356         .d_ioctl =      devioctl,
  357         .d_poll =       devpoll,
  358         .d_name =       "devctl",
  359 };
  360 
  361 struct dev_event_info
  362 {
  363         char *dei_data;
  364         TAILQ_ENTRY(dev_event_info) dei_link;
  365 };
  366 
  367 TAILQ_HEAD(devq, dev_event_info);
  368 
  369 static struct dev_softc
  370 {
  371         int     inuse;
  372         int     nonblock;
  373         struct mtx mtx;
  374         struct cv cv;
  375         struct selinfo sel;
  376         struct devq devq;
  377         struct proc *async_proc;
  378 } devsoftc;
  379 
  380 static struct cdev *devctl_dev;
  381 
  382 static void
  383 devinit(void)
  384 {
  385         devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
  386             "devctl");
  387         mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
  388         cv_init(&devsoftc.cv, "dev cv");
  389         TAILQ_INIT(&devsoftc.devq);
  390 }
  391 
  392 static int
  393 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
  394 {
  395         if (devsoftc.inuse)
  396                 return (EBUSY);
  397         /* move to init */
  398         devsoftc.inuse = 1;
  399         devsoftc.nonblock = 0;
  400         devsoftc.async_proc = NULL;
  401         return (0);
  402 }
  403 
  404 static int
  405 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
  406 {
  407         devsoftc.inuse = 0;
  408         mtx_lock(&devsoftc.mtx);
  409         cv_broadcast(&devsoftc.cv);
  410         mtx_unlock(&devsoftc.mtx);
  411 
  412         return (0);
  413 }
  414 
  415 /*
  416  * The read channel for this device is used to report changes to
  417  * userland in realtime.  We are required to free the data as well as
  418  * the n1 object because we allocate them separately.  Also note that
  419  * we return one record at a time.  If you try to read this device a
  420  * character at a time, you will loose the rest of the data.  Listening
  421  * programs are expected to cope.
  422  */
  423 static int
  424 devread(struct cdev *dev, struct uio *uio, int ioflag)
  425 {
  426         struct dev_event_info *n1;
  427         int rv;
  428 
  429         mtx_lock(&devsoftc.mtx);
  430         while (TAILQ_EMPTY(&devsoftc.devq)) {
  431                 if (devsoftc.nonblock) {
  432                         mtx_unlock(&devsoftc.mtx);
  433                         return (EAGAIN);
  434                 }
  435                 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
  436                 if (rv) {
  437                         /*
  438                          * Need to translate ERESTART to EINTR here? -- jake
  439                          */
  440                         mtx_unlock(&devsoftc.mtx);
  441                         return (rv);
  442                 }
  443         }
  444         n1 = TAILQ_FIRST(&devsoftc.devq);
  445         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  446         mtx_unlock(&devsoftc.mtx);
  447         rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
  448         free(n1->dei_data, M_BUS);
  449         free(n1, M_BUS);
  450         return (rv);
  451 }
  452 
  453 static  int
  454 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
  455 {
  456         switch (cmd) {
  457 
  458         case FIONBIO:
  459                 if (*(int*)data)
  460                         devsoftc.nonblock = 1;
  461                 else
  462                         devsoftc.nonblock = 0;
  463                 return (0);
  464         case FIOASYNC:
  465                 if (*(int*)data)
  466                         devsoftc.async_proc = td->td_proc;
  467                 else
  468                         devsoftc.async_proc = NULL;
  469                 return (0);
  470 
  471                 /* (un)Support for other fcntl() calls. */
  472         case FIOCLEX:
  473         case FIONCLEX:
  474         case FIONREAD:
  475         case FIOSETOWN:
  476         case FIOGETOWN:
  477         default:
  478                 break;
  479         }
  480         return (ENOTTY);
  481 }
  482 
  483 static  int
  484 devpoll(struct cdev *dev, int events, d_thread_t *td)
  485 {
  486         int     revents = 0;
  487 
  488         mtx_lock(&devsoftc.mtx);
  489         if (events & (POLLIN | POLLRDNORM)) {
  490                 if (!TAILQ_EMPTY(&devsoftc.devq))
  491                         revents = events & (POLLIN | POLLRDNORM);
  492                 else
  493                         selrecord(td, &devsoftc.sel);
  494         }
  495         mtx_unlock(&devsoftc.mtx);
  496 
  497         return (revents);
  498 }
  499 
  500 /**
  501  * @brief Queue data to be read from the devctl device
  502  *
  503  * Generic interface to queue data to the devctl device.  It is
  504  * assumed that @p data is properly formatted.  It is further assumed
  505  * that @p data is allocated using the M_BUS malloc type.
  506  */
  507 void
  508 devctl_queue_data(char *data)
  509 {
  510         struct dev_event_info *n1 = NULL;
  511         struct proc *p;
  512 
  513         n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
  514         if (n1 == NULL)
  515                 return;
  516         n1->dei_data = data;
  517         mtx_lock(&devsoftc.mtx);
  518         TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
  519         cv_broadcast(&devsoftc.cv);
  520         mtx_unlock(&devsoftc.mtx);
  521         selwakeup(&devsoftc.sel);
  522         p = devsoftc.async_proc;
  523         if (p != NULL) {
  524                 PROC_LOCK(p);
  525                 psignal(p, SIGIO);
  526                 PROC_UNLOCK(p);
  527         }
  528 }
  529 
  530 /**
  531  * @brief Send a 'notification' to userland, using standard ways
  532  */
  533 void
  534 devctl_notify(const char *system, const char *subsystem, const char *type,
  535     const char *data)
  536 {
  537         int len = 0;
  538         char *msg;
  539 
  540         if (system == NULL)
  541                 return;         /* BOGUS!  Must specify system. */
  542         if (subsystem == NULL)
  543                 return;         /* BOGUS!  Must specify subsystem. */
  544         if (type == NULL)
  545                 return;         /* BOGUS!  Must specify type. */
  546         len += strlen(" system=") + strlen(system);
  547         len += strlen(" subsystem=") + strlen(subsystem);
  548         len += strlen(" type=") + strlen(type);
  549         /* add in the data message plus newline. */
  550         if (data != NULL)
  551                 len += strlen(data);
  552         len += 3;       /* '!', '\n', and NUL */
  553         msg = malloc(len, M_BUS, M_NOWAIT);
  554         if (msg == NULL)
  555                 return;         /* Drop it on the floor */
  556         if (data != NULL)
  557                 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
  558                     system, subsystem, type, data);
  559         else
  560                 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
  561                     system, subsystem, type);
  562         devctl_queue_data(msg);
  563 }
  564 
  565 /*
  566  * Common routine that tries to make sending messages as easy as possible.
  567  * We allocate memory for the data, copy strings into that, but do not
  568  * free it unless there's an error.  The dequeue part of the driver should
  569  * free the data.  We don't send data when the device is disabled.  We do
  570  * send data, even when we have no listeners, because we wish to avoid
  571  * races relating to startup and restart of listening applications.
  572  *
  573  * devaddq is designed to string together the type of event, with the
  574  * object of that event, plus the plug and play info and location info
  575  * for that event.  This is likely most useful for devices, but less
  576  * useful for other consumers of this interface.  Those should use
  577  * the devctl_queue_data() interface instead.
  578  */
  579 static void
  580 devaddq(const char *type, const char *what, device_t dev)
  581 {
  582         char *data = NULL;
  583         char *loc = NULL;
  584         char *pnp = NULL;
  585         const char *parstr;
  586 
  587         if (devctl_disable)
  588                 return;
  589         data = malloc(1024, M_BUS, M_NOWAIT);
  590         if (data == NULL)
  591                 goto bad;
  592 
  593         /* get the bus specific location of this device */
  594         loc = malloc(1024, M_BUS, M_NOWAIT);
  595         if (loc == NULL)
  596                 goto bad;
  597         *loc = '\0';
  598         bus_child_location_str(dev, loc, 1024);
  599 
  600         /* Get the bus specific pnp info of this device */
  601         pnp = malloc(1024, M_BUS, M_NOWAIT);
  602         if (pnp == NULL)
  603                 goto bad;
  604         *pnp = '\0';
  605         bus_child_pnpinfo_str(dev, pnp, 1024);
  606 
  607         /* Get the parent of this device, or / if high enough in the tree. */
  608         if (device_get_parent(dev) == NULL)
  609                 parstr = ".";   /* Or '/' ? */
  610         else
  611                 parstr = device_get_nameunit(device_get_parent(dev));
  612         /* String it all together. */
  613         snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
  614           parstr);
  615         free(loc, M_BUS);
  616         free(pnp, M_BUS);
  617         devctl_queue_data(data);
  618         return;
  619 bad:
  620         free(pnp, M_BUS);
  621         free(loc, M_BUS);
  622         free(data, M_BUS);
  623         return;
  624 }
  625 
  626 /*
  627  * A device was added to the tree.  We are called just after it successfully
  628  * attaches (that is, probe and attach success for this device).  No call
  629  * is made if a device is merely parented into the tree.  See devnomatch
  630  * if probe fails.  If attach fails, no notification is sent (but maybe
  631  * we should have a different message for this).
  632  */
  633 static void
  634 devadded(device_t dev)
  635 {
  636         char *pnp = NULL;
  637         char *tmp = NULL;
  638 
  639         pnp = malloc(1024, M_BUS, M_NOWAIT);
  640         if (pnp == NULL)
  641                 goto fail;
  642         tmp = malloc(1024, M_BUS, M_NOWAIT);
  643         if (tmp == NULL)
  644                 goto fail;
  645         *pnp = '\0';
  646         bus_child_pnpinfo_str(dev, pnp, 1024);
  647         snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
  648         devaddq("+", tmp, dev);
  649 fail:
  650         if (pnp != NULL)
  651                 free(pnp, M_BUS);
  652         if (tmp != NULL)
  653                 free(tmp, M_BUS);
  654         return;
  655 }
  656 
  657 /*
  658  * A device was removed from the tree.  We are called just before this
  659  * happens.
  660  */
  661 static void
  662 devremoved(device_t dev)
  663 {
  664         char *pnp = NULL;
  665         char *tmp = NULL;
  666 
  667         pnp = malloc(1024, M_BUS, M_NOWAIT);
  668         if (pnp == NULL)
  669                 goto fail;
  670         tmp = malloc(1024, M_BUS, M_NOWAIT);
  671         if (tmp == NULL)
  672                 goto fail;
  673         *pnp = '\0';
  674         bus_child_pnpinfo_str(dev, pnp, 1024);
  675         snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
  676         devaddq("-", tmp, dev);
  677 fail:
  678         if (pnp != NULL)
  679                 free(pnp, M_BUS);
  680         if (tmp != NULL)
  681                 free(tmp, M_BUS);
  682         return;
  683 }
  684 
  685 /*
  686  * Called when there's no match for this device.  This is only called
  687  * the first time that no match happens, so we don't keep getitng this
  688  * message.  Should that prove to be undesirable, we can change it.
  689  * This is called when all drivers that can attach to a given bus
  690  * decline to accept this device.  Other errrors may not be detected.
  691  */
  692 static void
  693 devnomatch(device_t dev)
  694 {
  695         devaddq("?", "", dev);
  696 }
  697 
  698 static int
  699 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
  700 {
  701         struct dev_event_info *n1;
  702         int dis, error;
  703 
  704         dis = devctl_disable;
  705         error = sysctl_handle_int(oidp, &dis, 0, req);
  706         if (error || !req->newptr)
  707                 return (error);
  708         mtx_lock(&devsoftc.mtx);
  709         devctl_disable = dis;
  710         if (dis) {
  711                 while (!TAILQ_EMPTY(&devsoftc.devq)) {
  712                         n1 = TAILQ_FIRST(&devsoftc.devq);
  713                         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  714                         free(n1->dei_data, M_BUS);
  715                         free(n1, M_BUS);
  716                 }
  717         }
  718         mtx_unlock(&devsoftc.mtx);
  719         return (0);
  720 }
  721 
  722 /* End of /dev/devctl code */
  723 
  724 TAILQ_HEAD(,device)     bus_data_devices;
  725 static int bus_data_generation = 1;
  726 
  727 kobj_method_t null_methods[] = {
  728         { 0, 0 }
  729 };
  730 
  731 DEFINE_CLASS(null, null_methods, 0);
  732 
  733 /*
  734  * Devclass implementation
  735  */
  736 
  737 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
  738 
  739 
  740 /**
  741  * @internal
  742  * @brief Find or create a device class
  743  *
  744  * If a device class with the name @p classname exists, return it,
  745  * otherwise if @p create is non-zero create and return a new device
  746  * class.
  747  *
  748  * If @p parentname is non-NULL, the parent of the devclass is set to
  749  * the devclass of that name.
  750  *
  751  * @param classname     the devclass name to find or create
  752  * @param parentname    the parent devclass name or @c NULL
  753  * @param create        non-zero to create a devclass
  754  */
  755 static devclass_t
  756 devclass_find_internal(const char *classname, const char *parentname,
  757                        int create)
  758 {
  759         devclass_t dc;
  760 
  761         PDEBUG(("looking for %s", classname));
  762         if (!classname)
  763                 return (NULL);
  764 
  765         TAILQ_FOREACH(dc, &devclasses, link) {
  766                 if (!strcmp(dc->name, classname))
  767                         break;
  768         }
  769 
  770         if (create && !dc) {
  771                 PDEBUG(("creating %s", classname));
  772                 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
  773                     M_BUS, M_NOWAIT|M_ZERO);
  774                 if (!dc)
  775                         return (NULL);
  776                 dc->parent = NULL;
  777                 dc->name = (char*) (dc + 1);
  778                 strcpy(dc->name, classname);
  779                 TAILQ_INIT(&dc->drivers);
  780                 TAILQ_INSERT_TAIL(&devclasses, dc, link);
  781 
  782                 bus_data_generation_update();
  783         }
  784         if (parentname && dc && !dc->parent) {
  785                 dc->parent = devclass_find_internal(parentname, 0, FALSE);
  786         }
  787 
  788         return (dc);
  789 }
  790 
  791 /**
  792  * @brief Create a device class
  793  *
  794  * If a device class with the name @p classname exists, return it,
  795  * otherwise create and return a new device class.
  796  *
  797  * @param classname     the devclass name to find or create
  798  */
  799 devclass_t
  800 devclass_create(const char *classname)
  801 {
  802         return (devclass_find_internal(classname, 0, TRUE));
  803 }
  804 
  805 /**
  806  * @brief Find a device class
  807  *
  808  * If a device class with the name @p classname exists, return it,
  809  * otherwise return @c NULL.
  810  *
  811  * @param classname     the devclass name to find
  812  */
  813 devclass_t
  814 devclass_find(const char *classname)
  815 {
  816         return (devclass_find_internal(classname, 0, FALSE));
  817 }
  818 
  819 /**
  820  * @brief Add a device driver to a device class
  821  *
  822  * Add a device driver to a devclass. This is normally called
  823  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
  824  * all devices in the devclass will be called to allow them to attempt
  825  * to re-probe any unmatched children.
  826  *
  827  * @param dc            the devclass to edit
  828  * @param driver        the driver to register
  829  */
  830 int
  831 devclass_add_driver(devclass_t dc, driver_t *driver)
  832 {
  833         driverlink_t dl;
  834         int i;
  835 
  836         PDEBUG(("%s", DRIVERNAME(driver)));
  837 
  838         dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
  839         if (!dl)
  840                 return (ENOMEM);
  841 
  842         /*
  843          * Compile the driver's methods. Also increase the reference count
  844          * so that the class doesn't get freed when the last instance
  845          * goes. This means we can safely use static methods and avoids a
  846          * double-free in devclass_delete_driver.
  847          */
  848         kobj_class_compile((kobj_class_t) driver);
  849 
  850         /*
  851          * Make sure the devclass which the driver is implementing exists.
  852          */
  853         devclass_find_internal(driver->name, 0, TRUE);
  854 
  855         dl->driver = driver;
  856         TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
  857         driver->refs++;         /* XXX: kobj_mtx */
  858 
  859         /*
  860          * Call BUS_DRIVER_ADDED for any existing busses in this class.
  861          */
  862         for (i = 0; i < dc->maxunit; i++)
  863                 if (dc->devices[i])
  864                         BUS_DRIVER_ADDED(dc->devices[i], driver);
  865 
  866         bus_data_generation_update();
  867         return (0);
  868 }
  869 
  870 /**
  871  * @brief Delete a device driver from a device class
  872  *
  873  * Delete a device driver from a devclass. This is normally called
  874  * automatically by DRIVER_MODULE().
  875  *
  876  * If the driver is currently attached to any devices,
  877  * devclass_delete_driver() will first attempt to detach from each
  878  * device. If one of the detach calls fails, the driver will not be
  879  * deleted.
  880  *
  881  * @param dc            the devclass to edit
  882  * @param driver        the driver to unregister
  883  */
  884 int
  885 devclass_delete_driver(devclass_t busclass, driver_t *driver)
  886 {
  887         devclass_t dc = devclass_find(driver->name);
  888         driverlink_t dl;
  889         device_t dev;
  890         int i;
  891         int error;
  892 
  893         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
  894 
  895         if (!dc)
  896                 return (0);
  897 
  898         /*
  899          * Find the link structure in the bus' list of drivers.
  900          */
  901         TAILQ_FOREACH(dl, &busclass->drivers, link) {
  902                 if (dl->driver == driver)
  903                         break;
  904         }
  905 
  906         if (!dl) {
  907                 PDEBUG(("%s not found in %s list", driver->name,
  908                     busclass->name));
  909                 return (ENOENT);
  910         }
  911 
  912         /*
  913          * Disassociate from any devices.  We iterate through all the
  914          * devices in the devclass of the driver and detach any which are
  915          * using the driver and which have a parent in the devclass which
  916          * we are deleting from.
  917          *
  918          * Note that since a driver can be in multiple devclasses, we
  919          * should not detach devices which are not children of devices in
  920          * the affected devclass.
  921          */
  922         for (i = 0; i < dc->maxunit; i++) {
  923                 if (dc->devices[i]) {
  924                         dev = dc->devices[i];
  925                         if (dev->driver == driver && dev->parent &&
  926                             dev->parent->devclass == busclass) {
  927                                 if ((error = device_detach(dev)) != 0)
  928                                         return (error);
  929                                 device_set_driver(dev, NULL);
  930                         }
  931                 }
  932         }
  933 
  934         TAILQ_REMOVE(&busclass->drivers, dl, link);
  935         free(dl, M_BUS);
  936 
  937         /* XXX: kobj_mtx */
  938         driver->refs--;
  939         if (driver->refs == 0)
  940                 kobj_class_free((kobj_class_t) driver);
  941 
  942         bus_data_generation_update();
  943         return (0);
  944 }
  945 
  946 /**
  947  * @brief Quiesces a set of device drivers from a device class
  948  *
  949  * Quiesce a device driver from a devclass. This is normally called
  950  * automatically by DRIVER_MODULE().
  951  *
  952  * If the driver is currently attached to any devices,
  953  * devclass_quiesece_driver() will first attempt to quiesce each
  954  * device.
  955  *
  956  * @param dc            the devclass to edit
  957  * @param driver        the driver to unregister
  958  */
  959 int
  960 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
  961 {
  962         devclass_t dc = devclass_find(driver->name);
  963         driverlink_t dl;
  964         device_t dev;
  965         int i;
  966         int error;
  967 
  968         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
  969 
  970         if (!dc)
  971                 return (0);
  972 
  973         /*
  974          * Find the link structure in the bus' list of drivers.
  975          */
  976         TAILQ_FOREACH(dl, &busclass->drivers, link) {
  977                 if (dl->driver == driver)
  978                         break;
  979         }
  980 
  981         if (!dl) {
  982                 PDEBUG(("%s not found in %s list", driver->name,
  983                     busclass->name));
  984                 return (ENOENT);
  985         }
  986 
  987         /*
  988          * Quiesce all devices.  We iterate through all the devices in
  989          * the devclass of the driver and quiesce any which are using
  990          * the driver and which have a parent in the devclass which we
  991          * are quiescing.
  992          *
  993          * Note that since a driver can be in multiple devclasses, we
  994          * should not quiesce devices which are not children of
  995          * devices in the affected devclass.
  996          */
  997         for (i = 0; i < dc->maxunit; i++) {
  998                 if (dc->devices[i]) {
  999                         dev = dc->devices[i];
 1000                         if (dev->driver == driver && dev->parent &&
 1001                             dev->parent->devclass == busclass) {
 1002                                 if ((error = device_quiesce(dev)) != 0)
 1003                                         return (error);
 1004                         }
 1005                 }
 1006         }
 1007 
 1008         return (0);
 1009 }
 1010 
 1011 /**
 1012  * @internal
 1013  */
 1014 static driverlink_t
 1015 devclass_find_driver_internal(devclass_t dc, const char *classname)
 1016 {
 1017         driverlink_t dl;
 1018 
 1019         PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
 1020 
 1021         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1022                 if (!strcmp(dl->driver->name, classname))
 1023                         return (dl);
 1024         }
 1025 
 1026         PDEBUG(("not found"));
 1027         return (NULL);
 1028 }
 1029 
 1030 /**
 1031  * @brief Search a devclass for a driver
 1032  *
 1033  * This function searches the devclass's list of drivers and returns
 1034  * the first driver whose name is @p classname or @c NULL if there is
 1035  * no driver of that name.
 1036  *
 1037  * @param dc            the devclass to search
 1038  * @param classname     the driver name to search for
 1039  */
 1040 kobj_class_t
 1041 devclass_find_driver(devclass_t dc, const char *classname)
 1042 {
 1043         driverlink_t dl;
 1044 
 1045         dl = devclass_find_driver_internal(dc, classname);
 1046         if (dl)
 1047                 return (dl->driver);
 1048         return (NULL);
 1049 }
 1050 
 1051 /**
 1052  * @brief Return the name of the devclass
 1053  */
 1054 const char *
 1055 devclass_get_name(devclass_t dc)
 1056 {
 1057         return (dc->name);
 1058 }
 1059 
 1060 /**
 1061  * @brief Find a device given a unit number
 1062  *
 1063  * @param dc            the devclass to search
 1064  * @param unit          the unit number to search for
 1065  * 
 1066  * @returns             the device with the given unit number or @c
 1067  *                      NULL if there is no such device
 1068  */
 1069 device_t
 1070 devclass_get_device(devclass_t dc, int unit)
 1071 {
 1072         if (dc == NULL || unit < 0 || unit >= dc->maxunit)
 1073                 return (NULL);
 1074         return (dc->devices[unit]);
 1075 }
 1076 
 1077 /**
 1078  * @brief Find the softc field of a device given a unit number
 1079  *
 1080  * @param dc            the devclass to search
 1081  * @param unit          the unit number to search for
 1082  * 
 1083  * @returns             the softc field of the device with the given
 1084  *                      unit number or @c NULL if there is no such
 1085  *                      device
 1086  */
 1087 void *
 1088 devclass_get_softc(devclass_t dc, int unit)
 1089 {
 1090         device_t dev;
 1091 
 1092         dev = devclass_get_device(dc, unit);
 1093         if (!dev)
 1094                 return (NULL);
 1095 
 1096         return (device_get_softc(dev));
 1097 }
 1098 
 1099 /**
 1100  * @brief Get a list of devices in the devclass
 1101  *
 1102  * An array containing a list of all the devices in the given devclass
 1103  * is allocated and returned in @p *devlistp. The number of devices
 1104  * in the array is returned in @p *devcountp. The caller should free
 1105  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
 1106  *
 1107  * @param dc            the devclass to examine
 1108  * @param devlistp      points at location for array pointer return
 1109  *                      value
 1110  * @param devcountp     points at location for array size return value
 1111  *
 1112  * @retval 0            success
 1113  * @retval ENOMEM       the array allocation failed
 1114  */
 1115 int
 1116 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
 1117 {
 1118         int count, i;
 1119         device_t *list;
 1120 
 1121         count = devclass_get_count(dc);
 1122         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 1123         if (!list)
 1124                 return (ENOMEM);
 1125 
 1126         count = 0;
 1127         for (i = 0; i < dc->maxunit; i++) {
 1128                 if (dc->devices[i]) {
 1129                         list[count] = dc->devices[i];
 1130                         count++;
 1131                 }
 1132         }
 1133 
 1134         *devlistp = list;
 1135         *devcountp = count;
 1136 
 1137         return (0);
 1138 }
 1139 
 1140 /**
 1141  * @brief Get a list of drivers in the devclass
 1142  *
 1143  * An array containing a list of pointers to all the drivers in the
 1144  * given devclass is allocated and returned in @p *listp.  The number
 1145  * of drivers in the array is returned in @p *countp. The caller should
 1146  * free the array using @c free(p, M_TEMP).
 1147  *
 1148  * @param dc            the devclass to examine
 1149  * @param listp         gives location for array pointer return value
 1150  * @param countp        gives location for number of array elements
 1151  *                      return value
 1152  *
 1153  * @retval 0            success
 1154  * @retval ENOMEM       the array allocation failed
 1155  */
 1156 int
 1157 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
 1158 {
 1159         driverlink_t dl;
 1160         driver_t **list;
 1161         int count;
 1162 
 1163         count = 0;
 1164         TAILQ_FOREACH(dl, &dc->drivers, link)
 1165                 count++;
 1166         list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
 1167         if (list == NULL)
 1168                 return (ENOMEM);
 1169 
 1170         count = 0;
 1171         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1172                 list[count] = dl->driver;
 1173                 count++;
 1174         }
 1175         *listp = list;
 1176         *countp = count;
 1177 
 1178         return (0);
 1179 }
 1180 
 1181 /**
 1182  * @brief Get the number of devices in a devclass
 1183  *
 1184  * @param dc            the devclass to examine
 1185  */
 1186 int
 1187 devclass_get_count(devclass_t dc)
 1188 {
 1189         int count, i;
 1190 
 1191         count = 0;
 1192         for (i = 0; i < dc->maxunit; i++)
 1193                 if (dc->devices[i])
 1194                         count++;
 1195         return (count);
 1196 }
 1197 
 1198 /**
 1199  * @brief Get the maximum unit number used in a devclass
 1200  *
 1201  * Note that this is one greater than the highest currently-allocated
 1202  * unit.
 1203  *
 1204  * @param dc            the devclass to examine
 1205  */
 1206 int
 1207 devclass_get_maxunit(devclass_t dc)
 1208 {
 1209         return (dc->maxunit);
 1210 }
 1211 
 1212 /**
 1213  * @brief Find a free unit number in a devclass
 1214  *
 1215  * This function searches for the first unused unit number greater
 1216  * that or equal to @p unit.
 1217  *
 1218  * @param dc            the devclass to examine
 1219  * @param unit          the first unit number to check
 1220  */
 1221 int
 1222 devclass_find_free_unit(devclass_t dc, int unit)
 1223 {
 1224         if (dc == NULL)
 1225                 return (unit);
 1226         while (unit < dc->maxunit && dc->devices[unit] != NULL)
 1227                 unit++;
 1228         return (unit);
 1229 }
 1230 
 1231 /**
 1232  * @brief Set the parent of a devclass
 1233  *
 1234  * The parent class is normally initialised automatically by
 1235  * DRIVER_MODULE().
 1236  *
 1237  * @param dc            the devclass to edit
 1238  * @param pdc           the new parent devclass
 1239  */
 1240 void
 1241 devclass_set_parent(devclass_t dc, devclass_t pdc)
 1242 {
 1243         dc->parent = pdc;
 1244 }
 1245 
 1246 /**
 1247  * @brief Get the parent of a devclass
 1248  *
 1249  * @param dc            the devclass to examine
 1250  */
 1251 devclass_t
 1252 devclass_get_parent(devclass_t dc)
 1253 {
 1254         return (dc->parent);
 1255 }
 1256 
 1257 struct sysctl_ctx_list *
 1258 devclass_get_sysctl_ctx(devclass_t dc)
 1259 {
 1260         return (&dc->sysctl_ctx);
 1261 }
 1262 
 1263 struct sysctl_oid *
 1264 devclass_get_sysctl_tree(devclass_t dc)
 1265 {
 1266         return (dc->sysctl_tree);
 1267 }
 1268 
 1269 /**
 1270  * @internal
 1271  * @brief Allocate a unit number
 1272  *
 1273  * On entry, @p *unitp is the desired unit number (or @c -1 if any
 1274  * will do). The allocated unit number is returned in @p *unitp.
 1275 
 1276  * @param dc            the devclass to allocate from
 1277  * @param unitp         points at the location for the allocated unit
 1278  *                      number
 1279  *
 1280  * @retval 0            success
 1281  * @retval EEXIST       the requested unit number is already allocated
 1282  * @retval ENOMEM       memory allocation failure
 1283  */
 1284 static int
 1285 devclass_alloc_unit(devclass_t dc, int *unitp)
 1286 {
 1287         int unit = *unitp;
 1288 
 1289         PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1290 
 1291         /* If we were given a wired unit number, check for existing device */
 1292         /* XXX imp XXX */
 1293         if (unit != -1) {
 1294                 if (unit >= 0 && unit < dc->maxunit &&
 1295                     dc->devices[unit] != NULL) {
 1296                         if (bootverbose)
 1297                                 printf("%s: %s%d already exists; skipping it\n",
 1298                                     dc->name, dc->name, *unitp);
 1299                         return (EEXIST);
 1300                 }
 1301         } else {
 1302                 /* Unwired device, find the next available slot for it */
 1303                 unit = 0;
 1304                 while (unit < dc->maxunit && dc->devices[unit] != NULL)
 1305                         unit++;
 1306         }
 1307 
 1308         /*
 1309          * We've selected a unit beyond the length of the table, so let's
 1310          * extend the table to make room for all units up to and including
 1311          * this one.
 1312          */
 1313         if (unit >= dc->maxunit) {
 1314                 device_t *newlist;
 1315                 int newsize;
 1316 
 1317                 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
 1318                 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
 1319                 if (!newlist)
 1320                         return (ENOMEM);
 1321                 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
 1322                 bzero(newlist + dc->maxunit,
 1323                     sizeof(device_t) * (newsize - dc->maxunit));
 1324                 if (dc->devices)
 1325                         free(dc->devices, M_BUS);
 1326                 dc->devices = newlist;
 1327                 dc->maxunit = newsize;
 1328         }
 1329         PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1330 
 1331         *unitp = unit;
 1332         return (0);
 1333 }
 1334 
 1335 /**
 1336  * @internal
 1337  * @brief Add a device to a devclass
 1338  *
 1339  * A unit number is allocated for the device (using the device's
 1340  * preferred unit number if any) and the device is registered in the
 1341  * devclass. This allows the device to be looked up by its unit
 1342  * number, e.g. by decoding a dev_t minor number.
 1343  *
 1344  * @param dc            the devclass to add to
 1345  * @param dev           the device to add
 1346  *
 1347  * @retval 0            success
 1348  * @retval EEXIST       the requested unit number is already allocated
 1349  * @retval ENOMEM       memory allocation failure
 1350  */
 1351 static int
 1352 devclass_add_device(devclass_t dc, device_t dev)
 1353 {
 1354         int buflen, error;
 1355 
 1356         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1357 
 1358         buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
 1359         if (buflen < 0)
 1360                 return (ENOMEM);
 1361         dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
 1362         if (!dev->nameunit)
 1363                 return (ENOMEM);
 1364 
 1365         if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
 1366                 free(dev->nameunit, M_BUS);
 1367                 dev->nameunit = NULL;
 1368                 return (error);
 1369         }
 1370         dc->devices[dev->unit] = dev;
 1371         dev->devclass = dc;
 1372         snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
 1373 
 1374         return (0);
 1375 }
 1376 
 1377 /**
 1378  * @internal
 1379  * @brief Delete a device from a devclass
 1380  *
 1381  * The device is removed from the devclass's device list and its unit
 1382  * number is freed.
 1383 
 1384  * @param dc            the devclass to delete from
 1385  * @param dev           the device to delete
 1386  *
 1387  * @retval 0            success
 1388  */
 1389 static int
 1390 devclass_delete_device(devclass_t dc, device_t dev)
 1391 {
 1392         if (!dc || !dev)
 1393                 return (0);
 1394 
 1395         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1396 
 1397         if (dev->devclass != dc || dc->devices[dev->unit] != dev)
 1398                 panic("devclass_delete_device: inconsistent device class");
 1399         dc->devices[dev->unit] = NULL;
 1400         if (dev->flags & DF_WILDCARD)
 1401                 dev->unit = -1;
 1402         dev->devclass = NULL;
 1403         free(dev->nameunit, M_BUS);
 1404         dev->nameunit = NULL;
 1405 
 1406         return (0);
 1407 }
 1408 
 1409 /**
 1410  * @internal
 1411  * @brief Make a new device and add it as a child of @p parent
 1412  *
 1413  * @param parent        the parent of the new device
 1414  * @param name          the devclass name of the new device or @c NULL
 1415  *                      to leave the devclass unspecified
 1416  * @parem unit          the unit number of the new device of @c -1 to
 1417  *                      leave the unit number unspecified
 1418  *
 1419  * @returns the new device
 1420  */
 1421 static device_t
 1422 make_device(device_t parent, const char *name, int unit)
 1423 {
 1424         device_t dev;
 1425         devclass_t dc;
 1426 
 1427         PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
 1428 
 1429         if (name) {
 1430                 dc = devclass_find_internal(name, 0, TRUE);
 1431                 if (!dc) {
 1432                         printf("make_device: can't find device class %s\n",
 1433                             name);
 1434                         return (NULL);
 1435                 }
 1436         } else {
 1437                 dc = NULL;
 1438         }
 1439 
 1440         dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
 1441         if (!dev)
 1442                 return (NULL);
 1443 
 1444         dev->parent = parent;
 1445         TAILQ_INIT(&dev->children);
 1446         kobj_init((kobj_t) dev, &null_class);
 1447         dev->driver = NULL;
 1448         dev->devclass = NULL;
 1449         dev->unit = unit;
 1450         dev->nameunit = NULL;
 1451         dev->desc = NULL;
 1452         dev->busy = 0;
 1453         dev->devflags = 0;
 1454         dev->flags = DF_ENABLED;
 1455         dev->order = 0;
 1456         if (unit == -1)
 1457                 dev->flags |= DF_WILDCARD;
 1458         if (name) {
 1459                 dev->flags |= DF_FIXEDCLASS;
 1460                 if (devclass_add_device(dc, dev)) {
 1461                         kobj_delete((kobj_t) dev, M_BUS);
 1462                         return (NULL);
 1463                 }
 1464         }
 1465         dev->ivars = NULL;
 1466         dev->softc = NULL;
 1467 
 1468         dev->state = DS_NOTPRESENT;
 1469 
 1470         TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
 1471         bus_data_generation_update();
 1472 
 1473         return (dev);
 1474 }
 1475 
 1476 /**
 1477  * @internal
 1478  * @brief Print a description of a device.
 1479  */
 1480 static int
 1481 device_print_child(device_t dev, device_t child)
 1482 {
 1483         int retval = 0;
 1484 
 1485         if (device_is_alive(child))
 1486                 retval += BUS_PRINT_CHILD(dev, child);
 1487         else
 1488                 retval += device_printf(child, " not found\n");
 1489 
 1490         return (retval);
 1491 }
 1492 
 1493 /**
 1494  * @brief Create a new device
 1495  *
 1496  * This creates a new device and adds it as a child of an existing
 1497  * parent device. The new device will be added after the last existing
 1498  * child with order zero.
 1499  * 
 1500  * @param dev           the device which will be the parent of the
 1501  *                      new child device
 1502  * @param name          devclass name for new device or @c NULL if not
 1503  *                      specified
 1504  * @param unit          unit number for new device or @c -1 if not
 1505  *                      specified
 1506  * 
 1507  * @returns             the new device
 1508  */
 1509 device_t
 1510 device_add_child(device_t dev, const char *name, int unit)
 1511 {
 1512         return (device_add_child_ordered(dev, 0, name, unit));
 1513 }
 1514 
 1515 /**
 1516  * @brief Create a new device
 1517  *
 1518  * This creates a new device and adds it as a child of an existing
 1519  * parent device. The new device will be added after the last existing
 1520  * child with the same order.
 1521  * 
 1522  * @param dev           the device which will be the parent of the
 1523  *                      new child device
 1524  * @param order         a value which is used to partially sort the
 1525  *                      children of @p dev - devices created using
 1526  *                      lower values of @p order appear first in @p
 1527  *                      dev's list of children
 1528  * @param name          devclass name for new device or @c NULL if not
 1529  *                      specified
 1530  * @param unit          unit number for new device or @c -1 if not
 1531  *                      specified
 1532  * 
 1533  * @returns             the new device
 1534  */
 1535 device_t
 1536 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
 1537 {
 1538         device_t child;
 1539         device_t place;
 1540 
 1541         PDEBUG(("%s at %s with order %d as unit %d",
 1542             name, DEVICENAME(dev), order, unit));
 1543 
 1544         child = make_device(dev, name, unit);
 1545         if (child == NULL)
 1546                 return (child);
 1547         child->order = order;
 1548 
 1549         TAILQ_FOREACH(place, &dev->children, link) {
 1550                 if (place->order > order)
 1551                         break;
 1552         }
 1553 
 1554         if (place) {
 1555                 /*
 1556                  * The device 'place' is the first device whose order is
 1557                  * greater than the new child.
 1558                  */
 1559                 TAILQ_INSERT_BEFORE(place, child, link);
 1560         } else {
 1561                 /*
 1562                  * The new child's order is greater or equal to the order of
 1563                  * any existing device. Add the child to the tail of the list.
 1564                  */
 1565                 TAILQ_INSERT_TAIL(&dev->children, child, link);
 1566         }
 1567 
 1568         bus_data_generation_update();
 1569         return (child);
 1570 }
 1571 
 1572 /**
 1573  * @brief Delete a device
 1574  *
 1575  * This function deletes a device along with all of its children. If
 1576  * the device currently has a driver attached to it, the device is
 1577  * detached first using device_detach().
 1578  * 
 1579  * @param dev           the parent device
 1580  * @param child         the device to delete
 1581  *
 1582  * @retval 0            success
 1583  * @retval non-zero     a unit error code describing the error
 1584  */
 1585 int
 1586 device_delete_child(device_t dev, device_t child)
 1587 {
 1588         int error;
 1589         device_t grandchild;
 1590 
 1591         PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
 1592 
 1593         /* remove children first */
 1594         while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
 1595                 error = device_delete_child(child, grandchild);
 1596                 if (error)
 1597                         return (error);
 1598         }
 1599 
 1600         if ((error = device_detach(child)) != 0)
 1601                 return (error);
 1602         if (child->devclass)
 1603                 devclass_delete_device(child->devclass, child);
 1604         TAILQ_REMOVE(&dev->children, child, link);
 1605         TAILQ_REMOVE(&bus_data_devices, child, devlink);
 1606         kobj_delete((kobj_t) child, M_BUS);
 1607 
 1608         bus_data_generation_update();
 1609         return (0);
 1610 }
 1611 
 1612 /**
 1613  * @brief Find a device given a unit number
 1614  *
 1615  * This is similar to devclass_get_devices() but only searches for
 1616  * devices which have @p dev as a parent.
 1617  *
 1618  * @param dev           the parent device to search
 1619  * @param unit          the unit number to search for.  If the unit is -1,
 1620  *                      return the first child of @p dev which has name
 1621  *                      @p classname (that is, the one with the lowest unit.)
 1622  *
 1623  * @returns             the device with the given unit number or @c
 1624  *                      NULL if there is no such device
 1625  */
 1626 device_t
 1627 device_find_child(device_t dev, const char *classname, int unit)
 1628 {
 1629         devclass_t dc;
 1630         device_t child;
 1631 
 1632         dc = devclass_find(classname);
 1633         if (!dc)
 1634                 return (NULL);
 1635 
 1636         if (unit != -1) {
 1637                 child = devclass_get_device(dc, unit);
 1638                 if (child && child->parent == dev)
 1639                         return (child);
 1640         } else {
 1641                 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
 1642                         child = devclass_get_device(dc, unit);
 1643                         if (child && child->parent == dev)
 1644                                 return (child);
 1645                 }
 1646         }
 1647         return (NULL);
 1648 }
 1649 
 1650 /**
 1651  * @internal
 1652  */
 1653 static driverlink_t
 1654 first_matching_driver(devclass_t dc, device_t dev)
 1655 {
 1656         if (dev->devclass)
 1657                 return (devclass_find_driver_internal(dc, dev->devclass->name));
 1658         return (TAILQ_FIRST(&dc->drivers));
 1659 }
 1660 
 1661 /**
 1662  * @internal
 1663  */
 1664 static driverlink_t
 1665 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
 1666 {
 1667         if (dev->devclass) {
 1668                 driverlink_t dl;
 1669                 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
 1670                         if (!strcmp(dev->devclass->name, dl->driver->name))
 1671                                 return (dl);
 1672                 return (NULL);
 1673         }
 1674         return (TAILQ_NEXT(last, link));
 1675 }
 1676 
 1677 /**
 1678  * @internal
 1679  */
 1680 static int
 1681 device_probe_child(device_t dev, device_t child)
 1682 {
 1683         devclass_t dc;
 1684         driverlink_t best = 0;
 1685         driverlink_t dl;
 1686         int result, pri = 0;
 1687         int hasclass = (child->devclass != 0);
 1688 
 1689         GIANT_REQUIRED;
 1690 
 1691         dc = dev->devclass;
 1692         if (!dc)
 1693                 panic("device_probe_child: parent device has no devclass");
 1694 
 1695         /*
 1696          * If the state is already probed, then return.  However, don't
 1697          * return if we can rebid this object.
 1698          */
 1699         if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
 1700                 return (0);
 1701 
 1702         for (; dc; dc = dc->parent) {
 1703                 for (dl = first_matching_driver(dc, child);
 1704                      dl;
 1705                      dl = next_matching_driver(dc, child, dl)) {
 1706                         PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
 1707                         device_set_driver(child, dl->driver);
 1708                         if (!hasclass)
 1709                                 device_set_devclass(child, dl->driver->name);
 1710 
 1711                         /* Fetch any flags for the device before probing. */
 1712                         resource_int_value(dl->driver->name, child->unit,
 1713                             "flags", &child->devflags);
 1714 
 1715                         result = DEVICE_PROBE(child);
 1716 
 1717                         /* Reset flags and devclass before the next probe. */
 1718                         child->devflags = 0;
 1719                         if (!hasclass)
 1720                                 device_set_devclass(child, 0);
 1721 
 1722                         /*
 1723                          * If the driver returns SUCCESS, there can be
 1724                          * no higher match for this device.
 1725                          */
 1726                         if (result == 0) {
 1727                                 best = dl;
 1728                                 pri = 0;
 1729                                 break;
 1730                         }
 1731 
 1732                         /*
 1733                          * The driver returned an error so it
 1734                          * certainly doesn't match.
 1735                          */
 1736                         if (result > 0) {
 1737                                 device_set_driver(child, 0);
 1738                                 continue;
 1739                         }
 1740 
 1741                         /*
 1742                          * A priority lower than SUCCESS, remember the
 1743                          * best matching driver. Initialise the value
 1744                          * of pri for the first match.
 1745                          */
 1746                         if (best == 0 || result > pri) {
 1747                                 best = dl;
 1748                                 pri = result;
 1749                                 continue;
 1750                         }
 1751                 }
 1752                 /*
 1753                  * If we have an unambiguous match in this devclass,
 1754                  * don't look in the parent.
 1755                  */
 1756                 if (best && pri == 0)
 1757                         break;
 1758         }
 1759 
 1760         /*
 1761          * If we found a driver, change state and initialise the devclass.
 1762          */
 1763         /* XXX What happens if we rebid and got no best? */
 1764         if (best) {
 1765                 /*
 1766                  * If this device was atached, and we were asked to
 1767                  * rescan, and it is a different driver, then we have
 1768                  * to detach the old driver and reattach this new one.
 1769                  * Note, we don't have to check for DF_REBID here
 1770                  * because if the state is > DS_ALIVE, we know it must
 1771                  * be.
 1772                  *
 1773                  * This assumes that all DF_REBID drivers can have
 1774                  * their probe routine called at any time and that
 1775                  * they are idempotent as well as completely benign in
 1776                  * normal operations.
 1777                  *
 1778                  * We also have to make sure that the detach
 1779                  * succeeded, otherwise we fail the operation (or
 1780                  * maybe it should just fail silently?  I'm torn).
 1781                  */
 1782                 if (child->state > DS_ALIVE && best->driver != child->driver)
 1783                         if ((result = device_detach(dev)) != 0)
 1784                                 return (result);
 1785 
 1786                 /* Set the winning driver, devclass, and flags. */
 1787                 if (!child->devclass)
 1788                         device_set_devclass(child, best->driver->name);
 1789                 device_set_driver(child, best->driver);
 1790                 resource_int_value(best->driver->name, child->unit,
 1791                     "flags", &child->devflags);
 1792 
 1793                 if (pri < 0) {
 1794                         /*
 1795                          * A bit bogus. Call the probe method again to make
 1796                          * sure that we have the right description.
 1797                          */
 1798                         DEVICE_PROBE(child);
 1799 #if 0
 1800                         child->flags |= DF_REBID;
 1801 #endif
 1802                 } else
 1803                         child->flags &= ~DF_REBID;
 1804                 child->state = DS_ALIVE;
 1805 
 1806                 bus_data_generation_update();
 1807                 return (0);
 1808         }
 1809 
 1810         return (ENXIO);
 1811 }
 1812 
 1813 /**
 1814  * @brief Return the parent of a device
 1815  */
 1816 device_t
 1817 device_get_parent(device_t dev)
 1818 {
 1819         return (dev->parent);
 1820 }
 1821 
 1822 /**
 1823  * @brief Get a list of children of a device
 1824  *
 1825  * An array containing a list of all the children of the given device
 1826  * is allocated and returned in @p *devlistp. The number of devices
 1827  * in the array is returned in @p *devcountp. The caller should free
 1828  * the array using @c free(p, M_TEMP).
 1829  *
 1830  * @param dev           the device to examine
 1831  * @param devlistp      points at location for array pointer return
 1832  *                      value
 1833  * @param devcountp     points at location for array size return value
 1834  *
 1835  * @retval 0            success
 1836  * @retval ENOMEM       the array allocation failed
 1837  */
 1838 int
 1839 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
 1840 {
 1841         int count;
 1842         device_t child;
 1843         device_t *list;
 1844 
 1845         count = 0;
 1846         TAILQ_FOREACH(child, &dev->children, link) {
 1847                 count++;
 1848         }
 1849 
 1850         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 1851         if (!list)
 1852                 return (ENOMEM);
 1853 
 1854         count = 0;
 1855         TAILQ_FOREACH(child, &dev->children, link) {
 1856                 list[count] = child;
 1857                 count++;
 1858         }
 1859 
 1860         *devlistp = list;
 1861         *devcountp = count;
 1862 
 1863         return (0);
 1864 }
 1865 
 1866 /**
 1867  * @brief Return the current driver for the device or @c NULL if there
 1868  * is no driver currently attached
 1869  */
 1870 driver_t *
 1871 device_get_driver(device_t dev)
 1872 {
 1873         return (dev->driver);
 1874 }
 1875 
 1876 /**
 1877  * @brief Return the current devclass for the device or @c NULL if
 1878  * there is none.
 1879  */
 1880 devclass_t
 1881 device_get_devclass(device_t dev)
 1882 {
 1883         return (dev->devclass);
 1884 }
 1885 
 1886 /**
 1887  * @brief Return the name of the device's devclass or @c NULL if there
 1888  * is none.
 1889  */
 1890 const char *
 1891 device_get_name(device_t dev)
 1892 {
 1893         if (dev != NULL && dev->devclass)
 1894                 return (devclass_get_name(dev->devclass));
 1895         return (NULL);
 1896 }
 1897 
 1898 /**
 1899  * @brief Return a string containing the device's devclass name
 1900  * followed by an ascii representation of the device's unit number
 1901  * (e.g. @c "foo2").
 1902  */
 1903 const char *
 1904 device_get_nameunit(device_t dev)
 1905 {
 1906         return (dev->nameunit);
 1907 }
 1908 
 1909 /**
 1910  * @brief Return the device's unit number.
 1911  */
 1912 int
 1913 device_get_unit(device_t dev)
 1914 {
 1915         return (dev->unit);
 1916 }
 1917 
 1918 /**
 1919  * @brief Return the device's description string
 1920  */
 1921 const char *
 1922 device_get_desc(device_t dev)
 1923 {
 1924         return (dev->desc);
 1925 }
 1926 
 1927 /**
 1928  * @brief Return the device's flags
 1929  */
 1930 u_int32_t
 1931 device_get_flags(device_t dev)
 1932 {
 1933         return (dev->devflags);
 1934 }
 1935 
 1936 struct sysctl_ctx_list *
 1937 device_get_sysctl_ctx(device_t dev)
 1938 {
 1939         return (&dev->sysctl_ctx);
 1940 }
 1941 
 1942 struct sysctl_oid *
 1943 device_get_sysctl_tree(device_t dev)
 1944 {
 1945         return (dev->sysctl_tree);
 1946 }
 1947 
 1948 /**
 1949  * @brief Print the name of the device followed by a colon and a space
 1950  *
 1951  * @returns the number of characters printed
 1952  */
 1953 int
 1954 device_print_prettyname(device_t dev)
 1955 {
 1956         const char *name = device_get_name(dev);
 1957 
 1958         if (name == 0)
 1959                 return (printf("unknown: "));
 1960         return (printf("%s%d: ", name, device_get_unit(dev)));
 1961 }
 1962 
 1963 /**
 1964  * @brief Print the name of the device followed by a colon, a space
 1965  * and the result of calling vprintf() with the value of @p fmt and
 1966  * the following arguments.
 1967  *
 1968  * @returns the number of characters printed
 1969  */
 1970 int
 1971 device_printf(device_t dev, const char * fmt, ...)
 1972 {
 1973         va_list ap;
 1974         int retval;
 1975 
 1976         retval = device_print_prettyname(dev);
 1977         va_start(ap, fmt);
 1978         retval += vprintf(fmt, ap);
 1979         va_end(ap);
 1980         return (retval);
 1981 }
 1982 
 1983 /**
 1984  * @internal
 1985  */
 1986 static void
 1987 device_set_desc_internal(device_t dev, const char* desc, int copy)
 1988 {
 1989         if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
 1990                 free(dev->desc, M_BUS);
 1991                 dev->flags &= ~DF_DESCMALLOCED;
 1992                 dev->desc = NULL;
 1993         }
 1994 
 1995         if (copy && desc) {
 1996                 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
 1997                 if (dev->desc) {
 1998                         strcpy(dev->desc, desc);
 1999                         dev->flags |= DF_DESCMALLOCED;
 2000                 }
 2001         } else {
 2002                 /* Avoid a -Wcast-qual warning */
 2003                 dev->desc = (char *)(uintptr_t) desc;
 2004         }
 2005 
 2006         bus_data_generation_update();
 2007 }
 2008 
 2009 /**
 2010  * @brief Set the device's description
 2011  *
 2012  * The value of @c desc should be a string constant that will not
 2013  * change (at least until the description is changed in a subsequent
 2014  * call to device_set_desc() or device_set_desc_copy()).
 2015  */
 2016 void
 2017 device_set_desc(device_t dev, const char* desc)
 2018 {
 2019         device_set_desc_internal(dev, desc, FALSE);
 2020 }
 2021 
 2022 /**
 2023  * @brief Set the device's description
 2024  *
 2025  * The string pointed to by @c desc is copied. Use this function if
 2026  * the device description is generated, (e.g. with sprintf()).
 2027  */
 2028 void
 2029 device_set_desc_copy(device_t dev, const char* desc)
 2030 {
 2031         device_set_desc_internal(dev, desc, TRUE);
 2032 }
 2033 
 2034 /**
 2035  * @brief Set the device's flags
 2036  */
 2037 void
 2038 device_set_flags(device_t dev, u_int32_t flags)
 2039 {
 2040         dev->devflags = flags;
 2041 }
 2042 
 2043 /**
 2044  * @brief Return the device's softc field
 2045  *
 2046  * The softc is allocated and zeroed when a driver is attached, based
 2047  * on the size field of the driver.
 2048  */
 2049 void *
 2050 device_get_softc(device_t dev)
 2051 {
 2052         return (dev->softc);
 2053 }
 2054 
 2055 /**
 2056  * @brief Set the device's softc field
 2057  *
 2058  * Most drivers do not need to use this since the softc is allocated
 2059  * automatically when the driver is attached.
 2060  */
 2061 void
 2062 device_set_softc(device_t dev, void *softc)
 2063 {
 2064         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
 2065                 free(dev->softc, M_BUS_SC);
 2066         dev->softc = softc;
 2067         if (dev->softc)
 2068                 dev->flags |= DF_EXTERNALSOFTC;
 2069         else
 2070                 dev->flags &= ~DF_EXTERNALSOFTC;
 2071 }
 2072 
 2073 /**
 2074  * @brief Get the device's ivars field
 2075  *
 2076  * The ivars field is used by the parent device to store per-device
 2077  * state (e.g. the physical location of the device or a list of
 2078  * resources).
 2079  */
 2080 void *
 2081 device_get_ivars(device_t dev)
 2082 {
 2083 
 2084         KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
 2085         return (dev->ivars);
 2086 }
 2087 
 2088 /**
 2089  * @brief Set the device's ivars field
 2090  */
 2091 void
 2092 device_set_ivars(device_t dev, void * ivars)
 2093 {
 2094 
 2095         KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
 2096         dev->ivars = ivars;
 2097 }
 2098 
 2099 /**
 2100  * @brief Return the device's state
 2101  */
 2102 device_state_t
 2103 device_get_state(device_t dev)
 2104 {
 2105         return (dev->state);
 2106 }
 2107 
 2108 /**
 2109  * @brief Set the DF_ENABLED flag for the device
 2110  */
 2111 void
 2112 device_enable(device_t dev)
 2113 {
 2114         dev->flags |= DF_ENABLED;
 2115 }
 2116 
 2117 /**
 2118  * @brief Clear the DF_ENABLED flag for the device
 2119  */
 2120 void
 2121 device_disable(device_t dev)
 2122 {
 2123         dev->flags &= ~DF_ENABLED;
 2124 }
 2125 
 2126 /**
 2127  * @brief Increment the busy counter for the device
 2128  */
 2129 void
 2130 device_busy(device_t dev)
 2131 {
 2132         if (dev->state < DS_ATTACHED)
 2133                 panic("device_busy: called for unattached device");
 2134         if (dev->busy == 0 && dev->parent)
 2135                 device_busy(dev->parent);
 2136         dev->busy++;
 2137         dev->state = DS_BUSY;
 2138 }
 2139 
 2140 /**
 2141  * @brief Decrement the busy counter for the device
 2142  */
 2143 void
 2144 device_unbusy(device_t dev)
 2145 {
 2146         if (dev->state != DS_BUSY)
 2147                 panic("device_unbusy: called for non-busy device %s",
 2148                     device_get_nameunit(dev));
 2149         dev->busy--;
 2150         if (dev->busy == 0) {
 2151                 if (dev->parent)
 2152                         device_unbusy(dev->parent);
 2153                 dev->state = DS_ATTACHED;
 2154         }
 2155 }
 2156 
 2157 /**
 2158  * @brief Set the DF_QUIET flag for the device
 2159  */
 2160 void
 2161 device_quiet(device_t dev)
 2162 {
 2163         dev->flags |= DF_QUIET;
 2164 }
 2165 
 2166 /**
 2167  * @brief Clear the DF_QUIET flag for the device
 2168  */
 2169 void
 2170 device_verbose(device_t dev)
 2171 {
 2172         dev->flags &= ~DF_QUIET;
 2173 }
 2174 
 2175 /**
 2176  * @brief Return non-zero if the DF_QUIET flag is set on the device
 2177  */
 2178 int
 2179 device_is_quiet(device_t dev)
 2180 {
 2181         return ((dev->flags & DF_QUIET) != 0);
 2182 }
 2183 
 2184 /**
 2185  * @brief Return non-zero if the DF_ENABLED flag is set on the device
 2186  */
 2187 int
 2188 device_is_enabled(device_t dev)
 2189 {
 2190         return ((dev->flags & DF_ENABLED) != 0);
 2191 }
 2192 
 2193 /**
 2194  * @brief Return non-zero if the device was successfully probed
 2195  */
 2196 int
 2197 device_is_alive(device_t dev)
 2198 {
 2199         return (dev->state >= DS_ALIVE);
 2200 }
 2201 
 2202 /**
 2203  * @brief Return non-zero if the device currently has a driver
 2204  * attached to it
 2205  */
 2206 int
 2207 device_is_attached(device_t dev)
 2208 {
 2209         return (dev->state >= DS_ATTACHED);
 2210 }
 2211 
 2212 /**
 2213  * @brief Set the devclass of a device
 2214  * @see devclass_add_device().
 2215  */
 2216 int
 2217 device_set_devclass(device_t dev, const char *classname)
 2218 {
 2219         devclass_t dc;
 2220         int error;
 2221 
 2222         if (!classname) {
 2223                 if (dev->devclass)
 2224                         devclass_delete_device(dev->devclass, dev);
 2225                 return (0);
 2226         }
 2227 
 2228         if (dev->devclass) {
 2229                 printf("device_set_devclass: device class already set\n");
 2230                 return (EINVAL);
 2231         }
 2232 
 2233         dc = devclass_find_internal(classname, 0, TRUE);
 2234         if (!dc)
 2235                 return (ENOMEM);
 2236 
 2237         error = devclass_add_device(dc, dev);
 2238 
 2239         bus_data_generation_update();
 2240         return (error);
 2241 }
 2242 
 2243 /**
 2244  * @brief Set the driver of a device
 2245  *
 2246  * @retval 0            success
 2247  * @retval EBUSY        the device already has a driver attached
 2248  * @retval ENOMEM       a memory allocation failure occurred
 2249  */
 2250 int
 2251 device_set_driver(device_t dev, driver_t *driver)
 2252 {
 2253         if (dev->state >= DS_ATTACHED)
 2254                 return (EBUSY);
 2255 
 2256         if (dev->driver == driver)
 2257                 return (0);
 2258 
 2259         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
 2260                 free(dev->softc, M_BUS_SC);
 2261                 dev->softc = NULL;
 2262         }
 2263         kobj_delete((kobj_t) dev, 0);
 2264         dev->driver = driver;
 2265         if (driver) {
 2266                 kobj_init((kobj_t) dev, (kobj_class_t) driver);
 2267                 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
 2268                         dev->softc = malloc(driver->size, M_BUS_SC,
 2269                             M_NOWAIT | M_ZERO);
 2270                         if (!dev->softc) {
 2271                                 kobj_delete((kobj_t) dev, 0);
 2272                                 kobj_init((kobj_t) dev, &null_class);
 2273                                 dev->driver = NULL;
 2274                                 return (ENOMEM);
 2275                         }
 2276                 }
 2277         } else {
 2278                 kobj_init((kobj_t) dev, &null_class);
 2279         }
 2280 
 2281         bus_data_generation_update();
 2282         return (0);
 2283 }
 2284 
 2285 /**
 2286  * @brief Probe a device and attach a driver if possible
 2287  *
 2288  * This function is the core of the device autoconfiguration
 2289  * system. Its purpose is to select a suitable driver for a device and
 2290  * then call that driver to initialise the hardware appropriately. The
 2291  * driver is selected by calling the DEVICE_PROBE() method of a set of
 2292  * candidate drivers and then choosing the driver which returned the
 2293  * best value. This driver is then attached to the device using
 2294  * device_attach().
 2295  *
 2296  * The set of suitable drivers is taken from the list of drivers in
 2297  * the parent device's devclass. If the device was originally created
 2298  * with a specific class name (see device_add_child()), only drivers
 2299  * with that name are probed, otherwise all drivers in the devclass
 2300  * are probed. If no drivers return successful probe values in the
 2301  * parent devclass, the search continues in the parent of that
 2302  * devclass (see devclass_get_parent()) if any.
 2303  *
 2304  * @param dev           the device to initialise
 2305  *
 2306  * @retval 0            success
 2307  * @retval ENXIO        no driver was found
 2308  * @retval ENOMEM       memory allocation failure
 2309  * @retval non-zero     some other unix error code
 2310  */
 2311 int
 2312 device_probe_and_attach(device_t dev)
 2313 {
 2314         int error;
 2315 
 2316         GIANT_REQUIRED;
 2317 
 2318         if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
 2319                 return (0);
 2320 
 2321         if (!(dev->flags & DF_ENABLED)) {
 2322                 if (bootverbose && device_get_name(dev) != NULL) {
 2323                         device_print_prettyname(dev);
 2324                         printf("not probed (disabled)\n");
 2325                 }
 2326                 return (0);
 2327         }
 2328         if ((error = device_probe_child(dev->parent, dev)) != 0) {
 2329                 if (!(dev->flags & DF_DONENOMATCH)) {
 2330                         BUS_PROBE_NOMATCH(dev->parent, dev);
 2331                         devnomatch(dev);
 2332                         dev->flags |= DF_DONENOMATCH;
 2333                 }
 2334                 return (error);
 2335         }
 2336         error = device_attach(dev);
 2337 
 2338         return (error);
 2339 }
 2340 
 2341 /**
 2342  * @brief Attach a device driver to a device
 2343  *
 2344  * This function is a wrapper around the DEVICE_ATTACH() driver
 2345  * method. In addition to calling DEVICE_ATTACH(), it initialises the
 2346  * device's sysctl tree, optionally prints a description of the device
 2347  * and queues a notification event for user-based device management
 2348  * services.
 2349  *
 2350  * Normally this function is only called internally from
 2351  * device_probe_and_attach().
 2352  *
 2353  * @param dev           the device to initialise
 2354  *
 2355  * @retval 0            success
 2356  * @retval ENXIO        no driver was found
 2357  * @retval ENOMEM       memory allocation failure
 2358  * @retval non-zero     some other unix error code
 2359  */
 2360 int
 2361 device_attach(device_t dev)
 2362 {
 2363         int error;
 2364 
 2365         device_sysctl_init(dev);
 2366         if (!device_is_quiet(dev))
 2367                 device_print_child(dev->parent, dev);
 2368         if ((error = DEVICE_ATTACH(dev)) != 0) {
 2369                 printf("device_attach: %s%d attach returned %d\n",
 2370                     dev->driver->name, dev->unit, error);
 2371                 /* Unset the class; set in device_probe_child */
 2372                 if (dev->devclass == 0)
 2373                         device_set_devclass(dev, 0);
 2374                 device_set_driver(dev, NULL);
 2375                 device_sysctl_fini(dev);
 2376                 dev->state = DS_NOTPRESENT;
 2377                 return (error);
 2378         }
 2379         dev->state = DS_ATTACHED;
 2380         devadded(dev);
 2381         return (0);
 2382 }
 2383 
 2384 /**
 2385  * @brief Detach a driver from a device
 2386  *
 2387  * This function is a wrapper around the DEVICE_DETACH() driver
 2388  * method. If the call to DEVICE_DETACH() succeeds, it calls
 2389  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
 2390  * notification event for user-based device management services and
 2391  * cleans up the device's sysctl tree.
 2392  *
 2393  * @param dev           the device to un-initialise
 2394  *
 2395  * @retval 0            success
 2396  * @retval ENXIO        no driver was found
 2397  * @retval ENOMEM       memory allocation failure
 2398  * @retval non-zero     some other unix error code
 2399  */
 2400 int
 2401 device_detach(device_t dev)
 2402 {
 2403         int error;
 2404 
 2405         GIANT_REQUIRED;
 2406 
 2407         PDEBUG(("%s", DEVICENAME(dev)));
 2408         if (dev->state == DS_BUSY)
 2409                 return (EBUSY);
 2410         if (dev->state != DS_ATTACHED)
 2411                 return (0);
 2412 
 2413         if ((error = DEVICE_DETACH(dev)) != 0)
 2414                 return (error);
 2415         devremoved(dev);
 2416         device_printf(dev, "detached\n");
 2417         if (dev->parent)
 2418                 BUS_CHILD_DETACHED(dev->parent, dev);
 2419 
 2420         if (!(dev->flags & DF_FIXEDCLASS))
 2421                 devclass_delete_device(dev->devclass, dev);
 2422 
 2423         dev->state = DS_NOTPRESENT;
 2424         device_set_driver(dev, NULL);
 2425         device_set_desc(dev, NULL);
 2426         device_sysctl_fini(dev);
 2427 
 2428         return (0);
 2429 }
 2430 
 2431 /**
 2432  * @brief Tells a driver to quiesce itself.
 2433  *
 2434  * This function is a wrapper around the DEVICE_QUIESCE() driver
 2435  * method. If the call to DEVICE_QUIESCE() succeeds.
 2436  *
 2437  * @param dev           the device to quiesce
 2438  *
 2439  * @retval 0            success
 2440  * @retval ENXIO        no driver was found
 2441  * @retval ENOMEM       memory allocation failure
 2442  * @retval non-zero     some other unix error code
 2443  */
 2444 int
 2445 device_quiesce(device_t dev)
 2446 {
 2447 
 2448         PDEBUG(("%s", DEVICENAME(dev)));
 2449         if (dev->state == DS_BUSY)
 2450                 return (EBUSY);
 2451         if (dev->state != DS_ATTACHED)
 2452                 return (0);
 2453 
 2454         return (DEVICE_QUIESCE(dev));
 2455 }
 2456 
 2457 /**
 2458  * @brief Notify a device of system shutdown
 2459  *
 2460  * This function calls the DEVICE_SHUTDOWN() driver method if the
 2461  * device currently has an attached driver.
 2462  *
 2463  * @returns the value returned by DEVICE_SHUTDOWN()
 2464  */
 2465 int
 2466 device_shutdown(device_t dev)
 2467 {
 2468         if (dev->state < DS_ATTACHED)
 2469                 return (0);
 2470         return (DEVICE_SHUTDOWN(dev));
 2471 }
 2472 
 2473 /**
 2474  * @brief Set the unit number of a device
 2475  *
 2476  * This function can be used to override the unit number used for a
 2477  * device (e.g. to wire a device to a pre-configured unit number).
 2478  */
 2479 int
 2480 device_set_unit(device_t dev, int unit)
 2481 {
 2482         devclass_t dc;
 2483         int err;
 2484 
 2485         dc = device_get_devclass(dev);
 2486         if (unit < dc->maxunit && dc->devices[unit])
 2487                 return (EBUSY);
 2488         err = devclass_delete_device(dc, dev);
 2489         if (err)
 2490                 return (err);
 2491         dev->unit = unit;
 2492         err = devclass_add_device(dc, dev);
 2493         if (err)
 2494                 return (err);
 2495 
 2496         bus_data_generation_update();
 2497         return (0);
 2498 }
 2499 
 2500 /*======================================*/
 2501 /*
 2502  * Some useful method implementations to make life easier for bus drivers.
 2503  */
 2504 
 2505 /**
 2506  * @brief Initialise a resource list.
 2507  *
 2508  * @param rl            the resource list to initialise
 2509  */
 2510 void
 2511 resource_list_init(struct resource_list *rl)
 2512 {
 2513         STAILQ_INIT(rl);
 2514 }
 2515 
 2516 /**
 2517  * @brief Reclaim memory used by a resource list.
 2518  *
 2519  * This function frees the memory for all resource entries on the list
 2520  * (if any).
 2521  *
 2522  * @param rl            the resource list to free               
 2523  */
 2524 void
 2525 resource_list_free(struct resource_list *rl)
 2526 {
 2527         struct resource_list_entry *rle;
 2528 
 2529         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 2530                 if (rle->res)
 2531                         panic("resource_list_free: resource entry is busy");
 2532                 STAILQ_REMOVE_HEAD(rl, link);
 2533                 free(rle, M_BUS);
 2534         }
 2535 }
 2536 
 2537 /**
 2538  * @brief Add a resource entry.
 2539  *
 2540  * This function adds a resource entry using the given @p type, @p
 2541  * start, @p end and @p count values. A rid value is chosen by
 2542  * searching sequentially for the first unused rid starting at zero.
 2543  *
 2544  * @param rl            the resource list to edit
 2545  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2546  * @param start         the start address of the resource
 2547  * @param end           the end address of the resource
 2548  * @param count         XXX end-start+1
 2549  */
 2550 int
 2551 resource_list_add_next(struct resource_list *rl, int type, u_long start,
 2552     u_long end, u_long count)
 2553 {
 2554         int rid;
 2555 
 2556         rid = 0;
 2557         while (resource_list_find(rl, type, rid) != NULL)
 2558                 rid++;
 2559         resource_list_add(rl, type, rid, start, end, count);
 2560         return (rid);
 2561 }
 2562 
 2563 /**
 2564  * @brief Add or modify a resource entry.
 2565  *
 2566  * If an existing entry exists with the same type and rid, it will be
 2567  * modified using the given values of @p start, @p end and @p
 2568  * count. If no entry exists, a new one will be created using the
 2569  * given values.  The resource list entry that matches is then returned.
 2570  *
 2571  * @param rl            the resource list to edit
 2572  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2573  * @param rid           the resource identifier
 2574  * @param start         the start address of the resource
 2575  * @param end           the end address of the resource
 2576  * @param count         XXX end-start+1
 2577  */
 2578 struct resource_list_entry *
 2579 resource_list_add(struct resource_list *rl, int type, int rid,
 2580     u_long start, u_long end, u_long count)
 2581 {
 2582         struct resource_list_entry *rle;
 2583 
 2584         rle = resource_list_find(rl, type, rid);
 2585         if (!rle) {
 2586                 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
 2587                     M_NOWAIT);
 2588                 if (!rle)
 2589                         panic("resource_list_add: can't record entry");
 2590                 STAILQ_INSERT_TAIL(rl, rle, link);
 2591                 rle->type = type;
 2592                 rle->rid = rid;
 2593                 rle->res = NULL;
 2594         }
 2595 
 2596         if (rle->res)
 2597                 panic("resource_list_add: resource entry is busy");
 2598 
 2599         rle->start = start;
 2600         rle->end = end;
 2601         rle->count = count;
 2602         return (rle);
 2603 }
 2604 
 2605 /**
 2606  * @brief Find a resource entry by type and rid.
 2607  *
 2608  * @param rl            the resource list to search
 2609  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2610  * @param rid           the resource identifier
 2611  *
 2612  * @returns the resource entry pointer or NULL if there is no such
 2613  * entry.
 2614  */
 2615 struct resource_list_entry *
 2616 resource_list_find(struct resource_list *rl, int type, int rid)
 2617 {
 2618         struct resource_list_entry *rle;
 2619 
 2620         STAILQ_FOREACH(rle, rl, link) {
 2621                 if (rle->type == type && rle->rid == rid)
 2622                         return (rle);
 2623         }
 2624         return (NULL);
 2625 }
 2626 
 2627 /**
 2628  * @brief Delete a resource entry.
 2629  *
 2630  * @param rl            the resource list to edit
 2631  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2632  * @param rid           the resource identifier
 2633  */
 2634 void
 2635 resource_list_delete(struct resource_list *rl, int type, int rid)
 2636 {
 2637         struct resource_list_entry *rle = resource_list_find(rl, type, rid);
 2638 
 2639         if (rle) {
 2640                 if (rle->res != NULL)
 2641                         panic("resource_list_delete: resource has not been released");
 2642                 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
 2643                 free(rle, M_BUS);
 2644         }
 2645 }
 2646 
 2647 /**
 2648  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
 2649  *
 2650  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
 2651  * and passing the allocation up to the parent of @p bus. This assumes
 2652  * that the first entry of @c device_get_ivars(child) is a struct
 2653  * resource_list. This also handles 'passthrough' allocations where a
 2654  * child is a remote descendant of bus by passing the allocation up to
 2655  * the parent of bus.
 2656  *
 2657  * Typically, a bus driver would store a list of child resources
 2658  * somewhere in the child device's ivars (see device_get_ivars()) and
 2659  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
 2660  * then call resource_list_alloc() to perform the allocation.
 2661  *
 2662  * @param rl            the resource list to allocate from
 2663  * @param bus           the parent device of @p child
 2664  * @param child         the device which is requesting an allocation
 2665  * @param type          the type of resource to allocate
 2666  * @param rid           a pointer to the resource identifier
 2667  * @param start         hint at the start of the resource range - pass
 2668  *                      @c 0UL for any start address
 2669  * @param end           hint at the end of the resource range - pass
 2670  *                      @c ~0UL for any end address
 2671  * @param count         hint at the size of range required - pass @c 1
 2672  *                      for any size
 2673  * @param flags         any extra flags to control the resource
 2674  *                      allocation - see @c RF_XXX flags in
 2675  *                      <sys/rman.h> for details
 2676  * 
 2677  * @returns             the resource which was allocated or @c NULL if no
 2678  *                      resource could be allocated
 2679  */
 2680 struct resource *
 2681 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
 2682     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
 2683 {
 2684         struct resource_list_entry *rle = 0;
 2685         int passthrough = (device_get_parent(child) != bus);
 2686         int isdefault = (start == 0UL && end == ~0UL);
 2687 
 2688         if (passthrough) {
 2689                 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 2690                     type, rid, start, end, count, flags));
 2691         }
 2692 
 2693         rle = resource_list_find(rl, type, *rid);
 2694 
 2695         if (!rle)
 2696                 return (NULL);          /* no resource of that type/rid */
 2697 
 2698         if (rle->res)
 2699                 panic("resource_list_alloc: resource entry is busy");
 2700 
 2701         if (isdefault) {
 2702                 start = rle->start;
 2703                 count = ulmax(count, rle->count);
 2704                 end = ulmax(rle->end, start + count - 1);
 2705         }
 2706 
 2707         rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 2708             type, rid, start, end, count, flags);
 2709 
 2710         /*
 2711          * Record the new range.
 2712          */
 2713         if (rle->res) {
 2714                 rle->start = rman_get_start(rle->res);
 2715                 rle->end = rman_get_end(rle->res);
 2716                 rle->count = count;
 2717         }
 2718 
 2719         return (rle->res);
 2720 }
 2721 
 2722 /**
 2723  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
 2724  * 
 2725  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
 2726  * used with resource_list_alloc().
 2727  * 
 2728  * @param rl            the resource list which was allocated from
 2729  * @param bus           the parent device of @p child
 2730  * @param child         the device which is requesting a release
 2731  * @param type          the type of resource to allocate
 2732  * @param rid           the resource identifier
 2733  * @param res           the resource to release
 2734  * 
 2735  * @retval 0            success
 2736  * @retval non-zero     a standard unix error code indicating what
 2737  *                      error condition prevented the operation
 2738  */
 2739 int
 2740 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
 2741     int type, int rid, struct resource *res)
 2742 {
 2743         struct resource_list_entry *rle = 0;
 2744         int passthrough = (device_get_parent(child) != bus);
 2745         int error;
 2746 
 2747         if (passthrough) {
 2748                 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 2749                     type, rid, res));
 2750         }
 2751 
 2752         rle = resource_list_find(rl, type, rid);
 2753 
 2754         if (!rle)
 2755                 panic("resource_list_release: can't find resource");
 2756         if (!rle->res)
 2757                 panic("resource_list_release: resource entry is not busy");
 2758 
 2759         error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 2760             type, rid, res);
 2761         if (error)
 2762                 return (error);
 2763 
 2764         rle->res = NULL;
 2765         return (0);
 2766 }
 2767 
 2768 /**
 2769  * @brief Print a description of resources in a resource list
 2770  *
 2771  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
 2772  * The name is printed if at least one resource of the given type is available.
 2773  * The format is used to print resource start and end.
 2774  *
 2775  * @param rl            the resource list to print
 2776  * @param name          the name of @p type, e.g. @c "memory"
 2777  * @param type          type type of resource entry to print
 2778  * @param format        printf(9) format string to print resource
 2779  *                      start and end values
 2780  * 
 2781  * @returns             the number of characters printed
 2782  */
 2783 int
 2784 resource_list_print_type(struct resource_list *rl, const char *name, int type,
 2785     const char *format)
 2786 {
 2787         struct resource_list_entry *rle;
 2788         int printed, retval;
 2789 
 2790         printed = 0;
 2791         retval = 0;
 2792         /* Yes, this is kinda cheating */
 2793         STAILQ_FOREACH(rle, rl, link) {
 2794                 if (rle->type == type) {
 2795                         if (printed == 0)
 2796                                 retval += printf(" %s ", name);
 2797                         else
 2798                                 retval += printf(",");
 2799                         printed++;
 2800                         retval += printf(format, rle->start);
 2801                         if (rle->count > 1) {
 2802                                 retval += printf("-");
 2803                                 retval += printf(format, rle->start +
 2804                                                  rle->count - 1);
 2805                         }
 2806                 }
 2807         }
 2808         return (retval);
 2809 }
 2810 
 2811 /**
 2812  * @brief Releases all the resources in a list.
 2813  *
 2814  * @param rl            The resource list to purge.
 2815  * 
 2816  * @returns             nothing
 2817  */
 2818 void
 2819 resource_list_purge(struct resource_list *rl)
 2820 {
 2821         struct resource_list_entry *rle;
 2822 
 2823         STAILQ_FOREACH(rle, rl, link) {
 2824                 if (rle->res)
 2825                         bus_release_resource(rman_get_device(rle->res),
 2826                             rle->type, rle->rid, rle->res);
 2827                 STAILQ_REMOVE_HEAD(rl, link);
 2828                 free(rle, M_BUS);
 2829         }
 2830 }
 2831 
 2832 device_t
 2833 bus_generic_add_child(device_t dev, int order, const char *name, int unit)
 2834 {
 2835 
 2836         return (device_add_child_ordered(dev, order, name, unit));
 2837 }
 2838 
 2839 /**
 2840  * @brief Helper function for implementing DEVICE_PROBE()
 2841  *
 2842  * This function can be used to help implement the DEVICE_PROBE() for
 2843  * a bus (i.e. a device which has other devices attached to it). It
 2844  * calls the DEVICE_IDENTIFY() method of each driver in the device's
 2845  * devclass.
 2846  */
 2847 int
 2848 bus_generic_probe(device_t dev)
 2849 {
 2850         devclass_t dc = dev->devclass;
 2851         driverlink_t dl;
 2852 
 2853         TAILQ_FOREACH(dl, &dc->drivers, link) {
 2854                 DEVICE_IDENTIFY(dl->driver, dev);
 2855         }
 2856 
 2857         return (0);
 2858 }
 2859 
 2860 /**
 2861  * @brief Helper function for implementing DEVICE_ATTACH()
 2862  *
 2863  * This function can be used to help implement the DEVICE_ATTACH() for
 2864  * a bus. It calls device_probe_and_attach() for each of the device's
 2865  * children.
 2866  */
 2867 int
 2868 bus_generic_attach(device_t dev)
 2869 {
 2870         device_t child;
 2871 
 2872         TAILQ_FOREACH(child, &dev->children, link) {
 2873                 device_probe_and_attach(child);
 2874         }
 2875 
 2876         return (0);
 2877 }
 2878 
 2879 /**
 2880  * @brief Helper function for implementing DEVICE_DETACH()
 2881  *
 2882  * This function can be used to help implement the DEVICE_DETACH() for
 2883  * a bus. It calls device_detach() for each of the device's
 2884  * children.
 2885  */
 2886 int
 2887 bus_generic_detach(device_t dev)
 2888 {
 2889         device_t child;
 2890         int error;
 2891 
 2892         if (dev->state != DS_ATTACHED)
 2893                 return (EBUSY);
 2894 
 2895         TAILQ_FOREACH(child, &dev->children, link) {
 2896                 if ((error = device_detach(child)) != 0)
 2897                         return (error);
 2898         }
 2899 
 2900         return (0);
 2901 }
 2902 
 2903 /**
 2904  * @brief Helper function for implementing DEVICE_SHUTDOWN()
 2905  *
 2906  * This function can be used to help implement the DEVICE_SHUTDOWN()
 2907  * for a bus. It calls device_shutdown() for each of the device's
 2908  * children.
 2909  */
 2910 int
 2911 bus_generic_shutdown(device_t dev)
 2912 {
 2913         device_t child;
 2914 
 2915         TAILQ_FOREACH(child, &dev->children, link) {
 2916                 device_shutdown(child);
 2917         }
 2918 
 2919         return (0);
 2920 }
 2921 
 2922 /**
 2923  * @brief Helper function for implementing DEVICE_SUSPEND()
 2924  *
 2925  * This function can be used to help implement the DEVICE_SUSPEND()
 2926  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
 2927  * children. If any call to DEVICE_SUSPEND() fails, the suspend
 2928  * operation is aborted and any devices which were suspended are
 2929  * resumed immediately by calling their DEVICE_RESUME() methods.
 2930  */
 2931 int
 2932 bus_generic_suspend(device_t dev)
 2933 {
 2934         int             error;
 2935         device_t        child, child2;
 2936 
 2937         TAILQ_FOREACH(child, &dev->children, link) {
 2938                 error = DEVICE_SUSPEND(child);
 2939                 if (error) {
 2940                         for (child2 = TAILQ_FIRST(&dev->children);
 2941                              child2 && child2 != child;
 2942                              child2 = TAILQ_NEXT(child2, link))
 2943                                 DEVICE_RESUME(child2);
 2944                         return (error);
 2945                 }
 2946         }
 2947         return (0);
 2948 }
 2949 
 2950 /**
 2951  * @brief Helper function for implementing DEVICE_RESUME()
 2952  *
 2953  * This function can be used to help implement the DEVICE_RESUME() for
 2954  * a bus. It calls DEVICE_RESUME() on each of the device's children.
 2955  */
 2956 int
 2957 bus_generic_resume(device_t dev)
 2958 {
 2959         device_t        child;
 2960 
 2961         TAILQ_FOREACH(child, &dev->children, link) {
 2962                 DEVICE_RESUME(child);
 2963                 /* if resume fails, there's nothing we can usefully do... */
 2964         }
 2965         return (0);
 2966 }
 2967 
 2968 /**
 2969  * @brief Helper function for implementing BUS_PRINT_CHILD().
 2970  *
 2971  * This function prints the first part of the ascii representation of
 2972  * @p child, including its name, unit and description (if any - see
 2973  * device_set_desc()).
 2974  *
 2975  * @returns the number of characters printed
 2976  */
 2977 int
 2978 bus_print_child_header(device_t dev, device_t child)
 2979 {
 2980         int     retval = 0;
 2981 
 2982         if (device_get_desc(child)) {
 2983                 retval += device_printf(child, "<%s>", device_get_desc(child));
 2984         } else {
 2985                 retval += printf("%s", device_get_nameunit(child));
 2986         }
 2987 
 2988         return (retval);
 2989 }
 2990 
 2991 /**
 2992  * @brief Helper function for implementing BUS_PRINT_CHILD().
 2993  *
 2994  * This function prints the last part of the ascii representation of
 2995  * @p child, which consists of the string @c " on " followed by the
 2996  * name and unit of the @p dev.
 2997  *
 2998  * @returns the number of characters printed
 2999  */
 3000 int
 3001 bus_print_child_footer(device_t dev, device_t child)
 3002 {
 3003         return (printf(" on %s\n", device_get_nameunit(dev)));
 3004 }
 3005 
 3006 /**
 3007  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3008  *
 3009  * This function simply calls bus_print_child_header() followed by
 3010  * bus_print_child_footer().
 3011  *
 3012  * @returns the number of characters printed
 3013  */
 3014 int
 3015 bus_generic_print_child(device_t dev, device_t child)
 3016 {
 3017         int     retval = 0;
 3018 
 3019         retval += bus_print_child_header(dev, child);
 3020         retval += bus_print_child_footer(dev, child);
 3021 
 3022         return (retval);
 3023 }
 3024 
 3025 /**
 3026  * @brief Stub function for implementing BUS_READ_IVAR().
 3027  * 
 3028  * @returns ENOENT
 3029  */
 3030 int
 3031 bus_generic_read_ivar(device_t dev, device_t child, int index,
 3032     uintptr_t * result)
 3033 {
 3034         return (ENOENT);
 3035 }
 3036 
 3037 /**
 3038  * @brief Stub function for implementing BUS_WRITE_IVAR().
 3039  * 
 3040  * @returns ENOENT
 3041  */
 3042 int
 3043 bus_generic_write_ivar(device_t dev, device_t child, int index,
 3044     uintptr_t value)
 3045 {
 3046         return (ENOENT);
 3047 }
 3048 
 3049 /**
 3050  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
 3051  * 
 3052  * @returns NULL
 3053  */
 3054 struct resource_list *
 3055 bus_generic_get_resource_list(device_t dev, device_t child)
 3056 {
 3057         return (NULL);
 3058 }
 3059 
 3060 /**
 3061  * @brief Helper function for implementing BUS_DRIVER_ADDED().
 3062  *
 3063  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
 3064  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
 3065  * and then calls device_probe_and_attach() for each unattached child.
 3066  */
 3067 void
 3068 bus_generic_driver_added(device_t dev, driver_t *driver)
 3069 {
 3070         device_t child;
 3071 
 3072         DEVICE_IDENTIFY(driver, dev);
 3073         TAILQ_FOREACH(child, &dev->children, link) {
 3074                 if (child->state == DS_NOTPRESENT ||
 3075                     (child->flags & DF_REBID))
 3076                         device_probe_and_attach(child);
 3077         }
 3078 }
 3079 
 3080 /**
 3081  * @brief Helper function for implementing BUS_SETUP_INTR().
 3082  *
 3083  * This simple implementation of BUS_SETUP_INTR() simply calls the
 3084  * BUS_SETUP_INTR() method of the parent of @p dev.
 3085  */
 3086 int
 3087 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
 3088     int flags, driver_intr_t *intr, void *arg, void **cookiep)
 3089 {
 3090         /* Propagate up the bus hierarchy until someone handles it. */
 3091         if (dev->parent)
 3092                 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
 3093                     intr, arg, cookiep));
 3094         return (EINVAL);
 3095 }
 3096 
 3097 /**
 3098  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
 3099  *
 3100  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
 3101  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
 3102  */
 3103 int
 3104 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
 3105     void *cookie)
 3106 {
 3107         /* Propagate up the bus hierarchy until someone handles it. */
 3108         if (dev->parent)
 3109                 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
 3110         return (EINVAL);
 3111 }
 3112 
 3113 /**
 3114  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3115  *
 3116  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
 3117  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
 3118  */
 3119 struct resource *
 3120 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
 3121     u_long start, u_long end, u_long count, u_int flags)
 3122 {
 3123         /* Propagate up the bus hierarchy until someone handles it. */
 3124         if (dev->parent)
 3125                 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
 3126                     start, end, count, flags));
 3127         return (NULL);
 3128 }
 3129 
 3130 /**
 3131  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3132  *
 3133  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
 3134  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
 3135  */
 3136 int
 3137 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
 3138     struct resource *r)
 3139 {
 3140         /* Propagate up the bus hierarchy until someone handles it. */
 3141         if (dev->parent)
 3142                 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
 3143                     r));
 3144         return (EINVAL);
 3145 }
 3146 
 3147 /**
 3148  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
 3149  *
 3150  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
 3151  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
 3152  */
 3153 int
 3154 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
 3155     struct resource *r)
 3156 {
 3157         /* Propagate up the bus hierarchy until someone handles it. */
 3158         if (dev->parent)
 3159                 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3160                     r));
 3161         return (EINVAL);
 3162 }
 3163 
 3164 /**
 3165  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
 3166  *
 3167  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
 3168  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
 3169  */
 3170 int
 3171 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
 3172     int rid, struct resource *r)
 3173 {
 3174         /* Propagate up the bus hierarchy until someone handles it. */
 3175         if (dev->parent)
 3176                 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3177                     r));
 3178         return (EINVAL);
 3179 }
 3180 
 3181 /**
 3182  * @brief Helper function for implementing BUS_CONFIG_INTR().
 3183  *
 3184  * This simple implementation of BUS_CONFIG_INTR() simply calls the
 3185  * BUS_CONFIG_INTR() method of the parent of @p dev.
 3186  */
 3187 int
 3188 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
 3189     enum intr_polarity pol)
 3190 {
 3191 
 3192         /* Propagate up the bus hierarchy until someone handles it. */
 3193         if (dev->parent)
 3194                 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
 3195         return (EINVAL);
 3196 }
 3197 
 3198 /**
 3199  * @brief Helper function for implementing BUS_GET_RESOURCE().
 3200  *
 3201  * This implementation of BUS_GET_RESOURCE() uses the
 3202  * resource_list_find() function to do most of the work. It calls
 3203  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3204  * search.
 3205  */
 3206 int
 3207 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
 3208     u_long *startp, u_long *countp)
 3209 {
 3210         struct resource_list *          rl = NULL;
 3211         struct resource_list_entry *    rle = NULL;
 3212 
 3213         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3214         if (!rl)
 3215                 return (EINVAL);
 3216 
 3217         rle = resource_list_find(rl, type, rid);
 3218         if (!rle)
 3219                 return (ENOENT);
 3220 
 3221         if (startp)
 3222                 *startp = rle->start;
 3223         if (countp)
 3224                 *countp = rle->count;
 3225 
 3226         return (0);
 3227 }
 3228 
 3229 /**
 3230  * @brief Helper function for implementing BUS_SET_RESOURCE().
 3231  *
 3232  * This implementation of BUS_SET_RESOURCE() uses the
 3233  * resource_list_add() function to do most of the work. It calls
 3234  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3235  * edit.
 3236  */
 3237 int
 3238 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
 3239     u_long start, u_long count)
 3240 {
 3241         struct resource_list *          rl = NULL;
 3242 
 3243         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3244         if (!rl)
 3245                 return (EINVAL);
 3246 
 3247         resource_list_add(rl, type, rid, start, (start + count - 1), count);
 3248 
 3249         return (0);
 3250 }
 3251 
 3252 /**
 3253  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
 3254  *
 3255  * This implementation of BUS_DELETE_RESOURCE() uses the
 3256  * resource_list_delete() function to do most of the work. It calls
 3257  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3258  * edit.
 3259  */
 3260 void
 3261 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
 3262 {
 3263         struct resource_list *          rl = NULL;
 3264 
 3265         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3266         if (!rl)
 3267                 return;
 3268 
 3269         resource_list_delete(rl, type, rid);
 3270 
 3271         return;
 3272 }
 3273 
 3274 /**
 3275  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3276  *
 3277  * This implementation of BUS_RELEASE_RESOURCE() uses the
 3278  * resource_list_release() function to do most of the work. It calls
 3279  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3280  */
 3281 int
 3282 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
 3283     int rid, struct resource *r)
 3284 {
 3285         struct resource_list *          rl = NULL;
 3286 
 3287         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3288         if (!rl)
 3289                 return (EINVAL);
 3290 
 3291         return (resource_list_release(rl, dev, child, type, rid, r));
 3292 }
 3293 
 3294 /**
 3295  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3296  *
 3297  * This implementation of BUS_ALLOC_RESOURCE() uses the
 3298  * resource_list_alloc() function to do most of the work. It calls
 3299  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3300  */
 3301 struct resource *
 3302 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
 3303     int *rid, u_long start, u_long end, u_long count, u_int flags)
 3304 {
 3305         struct resource_list *          rl = NULL;
 3306 
 3307         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3308         if (!rl)
 3309                 return (NULL);
 3310 
 3311         return (resource_list_alloc(rl, dev, child, type, rid,
 3312             start, end, count, flags));
 3313 }
 3314 
 3315 /**
 3316  * @brief Helper function for implementing BUS_CHILD_PRESENT().
 3317  *
 3318  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
 3319  * BUS_CHILD_PRESENT() method of the parent of @p dev.
 3320  */
 3321 int
 3322 bus_generic_child_present(device_t dev, device_t child)
 3323 {
 3324         return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
 3325 }
 3326 
 3327 /*
 3328  * Some convenience functions to make it easier for drivers to use the
 3329  * resource-management functions.  All these really do is hide the
 3330  * indirection through the parent's method table, making for slightly
 3331  * less-wordy code.  In the future, it might make sense for this code
 3332  * to maintain some sort of a list of resources allocated by each device.
 3333  */
 3334 
 3335 /**
 3336  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
 3337  *
 3338  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
 3339  * parent of @p dev.
 3340  */
 3341 struct resource *
 3342 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
 3343     u_long count, u_int flags)
 3344 {
 3345         if (dev->parent == 0)
 3346                 return (0);
 3347         return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
 3348             count, flags));
 3349 }
 3350 
 3351 /**
 3352  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
 3353  *
 3354  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
 3355  * parent of @p dev.
 3356  */
 3357 int
 3358 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
 3359 {
 3360         if (dev->parent == 0)
 3361                 return (EINVAL);
 3362         return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 3363 }
 3364 
 3365 /**
 3366  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
 3367  *
 3368  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
 3369  * parent of @p dev.
 3370  */
 3371 int
 3372 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
 3373 {
 3374         if (dev->parent == 0)
 3375                 return (EINVAL);
 3376         return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 3377 }
 3378 
 3379 /**
 3380  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
 3381  *
 3382  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
 3383  * parent of @p dev.
 3384  */
 3385 int
 3386 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
 3387 {
 3388         if (dev->parent == 0)
 3389                 return (EINVAL);
 3390         return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
 3391 }
 3392 
 3393 /**
 3394  * @brief Wrapper function for BUS_SETUP_INTR().
 3395  *
 3396  * This function simply calls the BUS_SETUP_INTR() method of the
 3397  * parent of @p dev.
 3398  */
 3399 int
 3400 bus_setup_intr(device_t dev, struct resource *r, int flags,
 3401     driver_intr_t handler, void *arg, void **cookiep)
 3402 {
 3403         int error;
 3404 
 3405         if (dev->parent != 0) {
 3406                 if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) &&
 3407                     !debug_mpsafenet)
 3408                         flags &= ~INTR_MPSAFE;
 3409                 error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
 3410                     handler, arg, cookiep);
 3411                 if (error == 0) {
 3412                         if (!(flags & (INTR_MPSAFE | INTR_FAST)))
 3413                                 device_printf(dev, "[GIANT-LOCKED]\n");
 3414                         if (bootverbose && (flags & INTR_MPSAFE))
 3415                                 device_printf(dev, "[MPSAFE]\n");
 3416                         if (flags & INTR_FAST)
 3417                                 device_printf(dev, "[FAST]\n");
 3418                 }
 3419         } else
 3420                 error = EINVAL;
 3421         return (error);
 3422 }
 3423 
 3424 /**
 3425  * @brief Wrapper function for BUS_TEARDOWN_INTR().
 3426  *
 3427  * This function simply calls the BUS_TEARDOWN_INTR() method of the
 3428  * parent of @p dev.
 3429  */
 3430 int
 3431 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
 3432 {
 3433         if (dev->parent == 0)
 3434                 return (EINVAL);
 3435         return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
 3436 }
 3437 
 3438 /**
 3439  * @brief Wrapper function for BUS_SET_RESOURCE().
 3440  *
 3441  * This function simply calls the BUS_SET_RESOURCE() method of the
 3442  * parent of @p dev.
 3443  */
 3444 int
 3445 bus_set_resource(device_t dev, int type, int rid,
 3446     u_long start, u_long count)
 3447 {
 3448         return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3449             start, count));
 3450 }
 3451 
 3452 /**
 3453  * @brief Wrapper function for BUS_GET_RESOURCE().
 3454  *
 3455  * This function simply calls the BUS_GET_RESOURCE() method of the
 3456  * parent of @p dev.
 3457  */
 3458 int
 3459 bus_get_resource(device_t dev, int type, int rid,
 3460     u_long *startp, u_long *countp)
 3461 {
 3462         return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3463             startp, countp));
 3464 }
 3465 
 3466 /**
 3467  * @brief Wrapper function for BUS_GET_RESOURCE().
 3468  *
 3469  * This function simply calls the BUS_GET_RESOURCE() method of the
 3470  * parent of @p dev and returns the start value.
 3471  */
 3472 u_long
 3473 bus_get_resource_start(device_t dev, int type, int rid)
 3474 {
 3475         u_long start, count;
 3476         int error;
 3477 
 3478         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3479             &start, &count);
 3480         if (error)
 3481                 return (0);
 3482         return (start);
 3483 }
 3484 
 3485 /**
 3486  * @brief Wrapper function for BUS_GET_RESOURCE().
 3487  *
 3488  * This function simply calls the BUS_GET_RESOURCE() method of the
 3489  * parent of @p dev and returns the count value.
 3490  */
 3491 u_long
 3492 bus_get_resource_count(device_t dev, int type, int rid)
 3493 {
 3494         u_long start, count;
 3495         int error;
 3496 
 3497         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3498             &start, &count);
 3499         if (error)
 3500                 return (0);
 3501         return (count);
 3502 }
 3503 
 3504 /**
 3505  * @brief Wrapper function for BUS_DELETE_RESOURCE().
 3506  *
 3507  * This function simply calls the BUS_DELETE_RESOURCE() method of the
 3508  * parent of @p dev.
 3509  */
 3510 void
 3511 bus_delete_resource(device_t dev, int type, int rid)
 3512 {
 3513         BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
 3514 }
 3515 
 3516 /**
 3517  * @brief Wrapper function for BUS_CHILD_PRESENT().
 3518  *
 3519  * This function simply calls the BUS_CHILD_PRESENT() method of the
 3520  * parent of @p dev.
 3521  */
 3522 int
 3523 bus_child_present(device_t child)
 3524 {
 3525         return (BUS_CHILD_PRESENT(device_get_parent(child), child));
 3526 }
 3527 
 3528 /**
 3529  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
 3530  *
 3531  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
 3532  * parent of @p dev.
 3533  */
 3534 int
 3535 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
 3536 {
 3537         device_t parent;
 3538 
 3539         parent = device_get_parent(child);
 3540         if (parent == NULL) {
 3541                 *buf = '\0';
 3542                 return (0);
 3543         }
 3544         return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
 3545 }
 3546 
 3547 /**
 3548  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
 3549  *
 3550  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
 3551  * parent of @p dev.
 3552  */
 3553 int
 3554 bus_child_location_str(device_t child, char *buf, size_t buflen)
 3555 {
 3556         device_t parent;
 3557 
 3558         parent = device_get_parent(child);
 3559         if (parent == NULL) {
 3560                 *buf = '\0';
 3561                 return (0);
 3562         }
 3563         return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
 3564 }
 3565 
 3566 /* Resume all devices and then notify userland that we're up again. */
 3567 static int
 3568 root_resume(device_t dev)
 3569 {
 3570         int error;
 3571 
 3572         error = bus_generic_resume(dev);
 3573         if (error == 0)
 3574                 devctl_notify("kern", "power", "resume", NULL);
 3575         return (error);
 3576 }
 3577 
 3578 static int
 3579 root_print_child(device_t dev, device_t child)
 3580 {
 3581         int     retval = 0;
 3582 
 3583         retval += bus_print_child_header(dev, child);
 3584         retval += printf("\n");
 3585 
 3586         return (retval);
 3587 }
 3588 
 3589 static int
 3590 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
 3591     void **cookiep)
 3592 {
 3593         /*
 3594          * If an interrupt mapping gets to here something bad has happened.
 3595          */
 3596         panic("root_setup_intr");
 3597 }
 3598 
 3599 /*
 3600  * If we get here, assume that the device is permanant and really is
 3601  * present in the system.  Removable bus drivers are expected to intercept
 3602  * this call long before it gets here.  We return -1 so that drivers that
 3603  * really care can check vs -1 or some ERRNO returned higher in the food
 3604  * chain.
 3605  */
 3606 static int
 3607 root_child_present(device_t dev, device_t child)
 3608 {
 3609         return (-1);
 3610 }
 3611 
 3612 static kobj_method_t root_methods[] = {
 3613         /* Device interface */
 3614         KOBJMETHOD(device_shutdown,     bus_generic_shutdown),
 3615         KOBJMETHOD(device_suspend,      bus_generic_suspend),
 3616         KOBJMETHOD(device_resume,       root_resume),
 3617 
 3618         /* Bus interface */
 3619         KOBJMETHOD(bus_print_child,     root_print_child),
 3620         KOBJMETHOD(bus_read_ivar,       bus_generic_read_ivar),
 3621         KOBJMETHOD(bus_write_ivar,      bus_generic_write_ivar),
 3622         KOBJMETHOD(bus_setup_intr,      root_setup_intr),
 3623         KOBJMETHOD(bus_child_present,   root_child_present),
 3624 
 3625         { 0, 0 }
 3626 };
 3627 
 3628 static driver_t root_driver = {
 3629         "root",
 3630         root_methods,
 3631         1,                      /* no softc */
 3632 };
 3633 
 3634 device_t        root_bus;
 3635 devclass_t      root_devclass;
 3636 
 3637 static int
 3638 root_bus_module_handler(module_t mod, int what, void* arg)
 3639 {
 3640         switch (what) {
 3641         case MOD_LOAD:
 3642                 TAILQ_INIT(&bus_data_devices);
 3643                 kobj_class_compile((kobj_class_t) &root_driver);
 3644                 root_bus = make_device(NULL, "root", 0);
 3645                 root_bus->desc = "System root bus";
 3646                 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
 3647                 root_bus->driver = &root_driver;
 3648                 root_bus->state = DS_ATTACHED;
 3649                 root_devclass = devclass_find_internal("root", 0, FALSE);
 3650                 devinit();
 3651                 return (0);
 3652 
 3653         case MOD_SHUTDOWN:
 3654                 device_shutdown(root_bus);
 3655                 return (0);
 3656         default:
 3657                 return (EOPNOTSUPP);
 3658         }
 3659 
 3660         return (0);
 3661 }
 3662 
 3663 static moduledata_t root_bus_mod = {
 3664         "rootbus",
 3665         root_bus_module_handler,
 3666         0
 3667 };
 3668 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
 3669 
 3670 /**
 3671  * @brief Automatically configure devices
 3672  *
 3673  * This function begins the autoconfiguration process by calling
 3674  * device_probe_and_attach() for each child of the @c root0 device.
 3675  */ 
 3676 void
 3677 root_bus_configure(void)
 3678 {
 3679         device_t dev;
 3680 
 3681         PDEBUG(("."));
 3682 
 3683         TAILQ_FOREACH(dev, &root_bus->children, link) {
 3684                 device_probe_and_attach(dev);
 3685         }
 3686 }
 3687 
 3688 /**
 3689  * @brief Module handler for registering device drivers
 3690  *
 3691  * This module handler is used to automatically register device
 3692  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
 3693  * devclass_add_driver() for the driver described by the
 3694  * driver_module_data structure pointed to by @p arg
 3695  */
 3696 int
 3697 driver_module_handler(module_t mod, int what, void *arg)
 3698 {
 3699         int error;
 3700         struct driver_module_data *dmd;
 3701         devclass_t bus_devclass;
 3702         kobj_class_t driver;
 3703 
 3704         dmd = (struct driver_module_data *)arg;
 3705         bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE);
 3706         error = 0;
 3707 
 3708         switch (what) {
 3709         case MOD_LOAD:
 3710                 if (dmd->dmd_chainevh)
 3711                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 3712 
 3713                 driver = dmd->dmd_driver;
 3714                 PDEBUG(("Loading module: driver %s on bus %s",
 3715                     DRIVERNAME(driver), dmd->dmd_busname));
 3716                 error = devclass_add_driver(bus_devclass, driver);
 3717                 if (error)
 3718                         break;
 3719 
 3720                 /*
 3721                  * If the driver has any base classes, make the
 3722                  * devclass inherit from the devclass of the driver's
 3723                  * first base class. This will allow the system to
 3724                  * search for drivers in both devclasses for children
 3725                  * of a device using this driver.
 3726                  */
 3727                 if (driver->baseclasses) {
 3728                         const char *parentname;
 3729                         parentname = driver->baseclasses[0]->name;
 3730                         *dmd->dmd_devclass =
 3731                                 devclass_find_internal(driver->name,
 3732                                     parentname, TRUE);
 3733                 } else {
 3734                         *dmd->dmd_devclass =
 3735                                 devclass_find_internal(driver->name, 0, TRUE);
 3736                 }
 3737                 break;
 3738 
 3739         case MOD_UNLOAD:
 3740                 PDEBUG(("Unloading module: driver %s from bus %s",
 3741                     DRIVERNAME(dmd->dmd_driver),
 3742                     dmd->dmd_busname));
 3743                 error = devclass_delete_driver(bus_devclass,
 3744                     dmd->dmd_driver);
 3745 
 3746                 if (!error && dmd->dmd_chainevh)
 3747                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 3748                 break;
 3749         case MOD_QUIESCE:
 3750                 PDEBUG(("Quiesce module: driver %s from bus %s",
 3751                     DRIVERNAME(dmd->dmd_driver),
 3752                     dmd->dmd_busname));
 3753                 error = devclass_quiesce_driver(bus_devclass,
 3754                     dmd->dmd_driver);
 3755 
 3756                 if (!error && dmd->dmd_chainevh)
 3757                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 3758                 break;
 3759         default:
 3760                 error = EOPNOTSUPP;
 3761                 break;
 3762         }
 3763 
 3764         return (error);
 3765 }
 3766 
 3767 /**
 3768  * @brief Enumerate all hinted devices for this bus.
 3769  *
 3770  * Walks throught he hints for this bus and calls the bus_hinted_child
 3771  * routine for each one it fines.  It searches first for the specific
 3772  * bus that's being probed for hinted children (eg isa0), and then for
 3773  * generic children (eg isa).
 3774  *
 3775  * @param       dev     bus device to enumerate
 3776  */
 3777 void
 3778 bus_enumerate_hinted_children(device_t bus)
 3779 {
 3780         int i;
 3781         const char *dname, *busname;
 3782         int dunit;
 3783 
 3784         /*
 3785          * enumerate all devices on the specific bus
 3786          */
 3787         busname = device_get_nameunit(bus);
 3788         i = 0;
 3789         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 3790                 BUS_HINTED_CHILD(bus, dname, dunit);
 3791 
 3792         /*
 3793          * and all the generic ones.
 3794          */
 3795         busname = device_get_name(bus);
 3796         i = 0;
 3797         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 3798                 BUS_HINTED_CHILD(bus, dname, dunit);
 3799 }
 3800 
 3801 #ifdef BUS_DEBUG
 3802 
 3803 /* the _short versions avoid iteration by not calling anything that prints
 3804  * more than oneliners. I love oneliners.
 3805  */
 3806 
 3807 static void
 3808 print_device_short(device_t dev, int indent)
 3809 {
 3810         if (!dev)
 3811                 return;
 3812 
 3813         indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
 3814             dev->unit, dev->desc,
 3815             (dev->parent? "":"no "),
 3816             (TAILQ_EMPTY(&dev->children)? "no ":""),
 3817             (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
 3818             (dev->flags&DF_FIXEDCLASS? "fixed,":""),
 3819             (dev->flags&DF_WILDCARD? "wildcard,":""),
 3820             (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
 3821             (dev->flags&DF_REBID? "rebiddable,":""),
 3822             (dev->ivars? "":"no "),
 3823             (dev->softc? "":"no "),
 3824             dev->busy));
 3825 }
 3826 
 3827 static void
 3828 print_device(device_t dev, int indent)
 3829 {
 3830         if (!dev)
 3831                 return;
 3832 
 3833         print_device_short(dev, indent);
 3834 
 3835         indentprintf(("Parent:\n"));
 3836         print_device_short(dev->parent, indent+1);
 3837         indentprintf(("Driver:\n"));
 3838         print_driver_short(dev->driver, indent+1);
 3839         indentprintf(("Devclass:\n"));
 3840         print_devclass_short(dev->devclass, indent+1);
 3841 }
 3842 
 3843 void
 3844 print_device_tree_short(device_t dev, int indent)
 3845 /* print the device and all its children (indented) */
 3846 {
 3847         device_t child;
 3848 
 3849         if (!dev)
 3850                 return;
 3851 
 3852         print_device_short(dev, indent);
 3853 
 3854         TAILQ_FOREACH(child, &dev->children, link) {
 3855                 print_device_tree_short(child, indent+1);
 3856         }
 3857 }
 3858 
 3859 void
 3860 print_device_tree(device_t dev, int indent)
 3861 /* print the device and all its children (indented) */
 3862 {
 3863         device_t child;
 3864 
 3865         if (!dev)
 3866                 return;
 3867 
 3868         print_device(dev, indent);
 3869 
 3870         TAILQ_FOREACH(child, &dev->children, link) {
 3871                 print_device_tree(child, indent+1);
 3872         }
 3873 }
 3874 
 3875 static void
 3876 print_driver_short(driver_t *driver, int indent)
 3877 {
 3878         if (!driver)
 3879                 return;
 3880 
 3881         indentprintf(("driver %s: softc size = %zd\n",
 3882             driver->name, driver->size));
 3883 }
 3884 
 3885 static void
 3886 print_driver(driver_t *driver, int indent)
 3887 {
 3888         if (!driver)
 3889                 return;
 3890 
 3891         print_driver_short(driver, indent);
 3892 }
 3893 
 3894 
 3895 static void
 3896 print_driver_list(driver_list_t drivers, int indent)
 3897 {
 3898         driverlink_t driver;
 3899 
 3900         TAILQ_FOREACH(driver, &drivers, link) {
 3901                 print_driver(driver->driver, indent);
 3902         }
 3903 }
 3904 
 3905 static void
 3906 print_devclass_short(devclass_t dc, int indent)
 3907 {
 3908         if ( !dc )
 3909                 return;
 3910 
 3911         indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
 3912 }
 3913 
 3914 static void
 3915 print_devclass(devclass_t dc, int indent)
 3916 {
 3917         int i;
 3918 
 3919         if ( !dc )
 3920                 return;
 3921 
 3922         print_devclass_short(dc, indent);
 3923         indentprintf(("Drivers:\n"));
 3924         print_driver_list(dc->drivers, indent+1);
 3925 
 3926         indentprintf(("Devices:\n"));
 3927         for (i = 0; i < dc->maxunit; i++)
 3928                 if (dc->devices[i])
 3929                         print_device(dc->devices[i], indent+1);
 3930 }
 3931 
 3932 void
 3933 print_devclass_list_short(void)
 3934 {
 3935         devclass_t dc;
 3936 
 3937         printf("Short listing of devclasses, drivers & devices:\n");
 3938         TAILQ_FOREACH(dc, &devclasses, link) {
 3939                 print_devclass_short(dc, 0);
 3940         }
 3941 }
 3942 
 3943 void
 3944 print_devclass_list(void)
 3945 {
 3946         devclass_t dc;
 3947 
 3948         printf("Full listing of devclasses, drivers & devices:\n");
 3949         TAILQ_FOREACH(dc, &devclasses, link) {
 3950                 print_devclass(dc, 0);
 3951         }
 3952 }
 3953 
 3954 #endif
 3955 
 3956 /*
 3957  * User-space access to the device tree.
 3958  *
 3959  * We implement a small set of nodes:
 3960  *
 3961  * hw.bus                       Single integer read method to obtain the
 3962  *                              current generation count.
 3963  * hw.bus.devices               Reads the entire device tree in flat space.
 3964  * hw.bus.rman                  Resource manager interface
 3965  *
 3966  * We might like to add the ability to scan devclasses and/or drivers to
 3967  * determine what else is currently loaded/available.
 3968  */
 3969 
 3970 static int
 3971 sysctl_bus(SYSCTL_HANDLER_ARGS)
 3972 {
 3973         struct u_businfo        ubus;
 3974 
 3975         ubus.ub_version = BUS_USER_VERSION;
 3976         ubus.ub_generation = bus_data_generation;
 3977 
 3978         return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
 3979 }
 3980 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
 3981     "bus-related data");
 3982 
 3983 static int
 3984 sysctl_devices(SYSCTL_HANDLER_ARGS)
 3985 {
 3986         int                     *name = (int *)arg1;
 3987         u_int                   namelen = arg2;
 3988         int                     index;
 3989         struct device           *dev;
 3990         struct u_device         udev;   /* XXX this is a bit big */
 3991         int                     error;
 3992 
 3993         if (namelen != 2)
 3994                 return (EINVAL);
 3995 
 3996         if (bus_data_generation_check(name[0]))
 3997                 return (EINVAL);
 3998 
 3999         index = name[1];
 4000 
 4001         /*
 4002          * Scan the list of devices, looking for the requested index.
 4003          */
 4004         TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 4005                 if (index-- == 0)
 4006                         break;
 4007         }
 4008         if (dev == NULL)
 4009                 return (ENOENT);
 4010 
 4011         /*
 4012          * Populate the return array.
 4013          */
 4014         bzero(&udev, sizeof(udev));
 4015         udev.dv_handle = (uintptr_t)dev;
 4016         udev.dv_parent = (uintptr_t)dev->parent;
 4017         if (dev->nameunit != NULL)
 4018                 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
 4019         if (dev->desc != NULL)
 4020                 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
 4021         if (dev->driver != NULL && dev->driver->name != NULL)
 4022                 strlcpy(udev.dv_drivername, dev->driver->name,
 4023                     sizeof(udev.dv_drivername));
 4024         bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
 4025         bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
 4026         udev.dv_devflags = dev->devflags;
 4027         udev.dv_flags = dev->flags;
 4028         udev.dv_state = dev->state;
 4029         error = SYSCTL_OUT(req, &udev, sizeof(udev));
 4030         return (error);
 4031 }
 4032 
 4033 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
 4034     "system device tree");
 4035 
 4036 int
 4037 bus_data_generation_check(int generation)
 4038 {
 4039         if (generation != bus_data_generation)
 4040                 return (1);
 4041 
 4042         /* XXX generate optimised lists here? */
 4043         return (0);
 4044 }
 4045 
 4046 void
 4047 bus_data_generation_update(void)
 4048 {
 4049         bus_data_generation++;
 4050 }
 4051 
 4052 int
 4053 bus_free_resource(device_t dev, int type, struct resource *r)
 4054 {
 4055         if (r == NULL)
 4056                 return (0);
 4057         return (bus_release_resource(dev, type, rman_get_rid(r), r));
 4058 }

Cache object: 9063758b2bb4273dd6b5883d3781ce52


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.