The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_bus.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997,1998,2003 Doug Rabson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD$");
   29 
   30 #include "opt_bus.h"
   31 
   32 #include <sys/param.h>
   33 #include <sys/conf.h>
   34 #include <sys/filio.h>
   35 #include <sys/lock.h>
   36 #include <sys/kernel.h>
   37 #include <sys/kobj.h>
   38 #include <sys/malloc.h>
   39 #include <sys/module.h>
   40 #include <sys/mutex.h>
   41 #include <sys/poll.h>
   42 #include <sys/proc.h>
   43 #include <sys/condvar.h>
   44 #include <sys/queue.h>
   45 #include <machine/bus.h>
   46 #include <sys/rman.h>
   47 #include <sys/selinfo.h>
   48 #include <sys/signalvar.h>
   49 #include <sys/sysctl.h>
   50 #include <sys/systm.h>
   51 #include <sys/uio.h>
   52 #include <sys/bus.h>
   53 #include <sys/interrupt.h>
   54 
   55 #include <machine/stdarg.h>
   56 
   57 #include <vm/uma.h>
   58 
   59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
   60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
   61 
   62 /*
   63  * Used to attach drivers to devclasses.
   64  */
   65 typedef struct driverlink *driverlink_t;
   66 struct driverlink {
   67         kobj_class_t    driver;
   68         TAILQ_ENTRY(driverlink) link;   /* list of drivers in devclass */
   69 };
   70 
   71 /*
   72  * Forward declarations
   73  */
   74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
   75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
   76 typedef TAILQ_HEAD(device_list, device) device_list_t;
   77 
   78 struct devclass {
   79         TAILQ_ENTRY(devclass) link;
   80         devclass_t      parent;         /* parent in devclass hierarchy */
   81         driver_list_t   drivers;     /* bus devclasses store drivers for bus */
   82         char            *name;
   83         device_t        *devices;       /* array of devices indexed by unit */
   84         int             maxunit;        /* size of devices array */
   85 
   86         struct sysctl_ctx_list sysctl_ctx;
   87         struct sysctl_oid *sysctl_tree;
   88 };
   89 
   90 /**
   91  * @brief Implementation of device.
   92  */
   93 struct device {
   94         /*
   95          * A device is a kernel object. The first field must be the
   96          * current ops table for the object.
   97          */
   98         KOBJ_FIELDS;
   99 
  100         /*
  101          * Device hierarchy.
  102          */
  103         TAILQ_ENTRY(device)     link;   /**< list of devices in parent */
  104         TAILQ_ENTRY(device)     devlink; /**< global device list membership */
  105         device_t        parent;         /**< parent of this device  */
  106         device_list_t   children;       /**< list of child devices */
  107 
  108         /*
  109          * Details of this device.
  110          */
  111         driver_t        *driver;        /**< current driver */
  112         devclass_t      devclass;       /**< current device class */
  113         int             unit;           /**< current unit number */
  114         char*           nameunit;       /**< name+unit e.g. foodev0 */
  115         char*           desc;           /**< driver specific description */
  116         int             busy;           /**< count of calls to device_busy() */
  117         device_state_t  state;          /**< current device state  */
  118         u_int32_t       devflags;       /**< api level flags for device_get_flags() */
  119         u_short         flags;          /**< internal device flags  */
  120 #define DF_ENABLED      1               /* device should be probed/attached */
  121 #define DF_FIXEDCLASS   2               /* devclass specified at create time */
  122 #define DF_WILDCARD     4               /* unit was originally wildcard */
  123 #define DF_DESCMALLOCED 8               /* description was malloced */
  124 #define DF_QUIET        16              /* don't print verbose attach message */
  125 #define DF_DONENOMATCH  32              /* don't execute DEVICE_NOMATCH again */
  126 #define DF_EXTERNALSOFTC 64             /* softc not allocated by us */
  127 #define DF_REBID        128             /* Can rebid after attach */
  128         u_char  order;                  /**< order from device_add_child_ordered() */
  129         u_char  pad;
  130         void    *ivars;                 /**< instance variables  */
  131         void    *softc;                 /**< current driver's variables  */
  132 
  133         struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
  134         struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
  135 };
  136 
  137 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
  138 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
  139 
  140 #ifdef BUS_DEBUG
  141 
  142 static int bus_debug = 1;
  143 TUNABLE_INT("bus.debug", &bus_debug);
  144 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
  145     "Debug bus code");
  146 
  147 #define PDEBUG(a)       if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
  148 #define DEVICENAME(d)   ((d)? device_get_name(d): "no device")
  149 #define DRIVERNAME(d)   ((d)? d->name : "no driver")
  150 #define DEVCLANAME(d)   ((d)? d->name : "no devclass")
  151 
  152 /**
  153  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
  154  * prevent syslog from deleting initial spaces
  155  */
  156 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
  157 
  158 static void print_device_short(device_t dev, int indent);
  159 static void print_device(device_t dev, int indent);
  160 void print_device_tree_short(device_t dev, int indent);
  161 void print_device_tree(device_t dev, int indent);
  162 static void print_driver_short(driver_t *driver, int indent);
  163 static void print_driver(driver_t *driver, int indent);
  164 static void print_driver_list(driver_list_t drivers, int indent);
  165 static void print_devclass_short(devclass_t dc, int indent);
  166 static void print_devclass(devclass_t dc, int indent);
  167 void print_devclass_list_short(void);
  168 void print_devclass_list(void);
  169 
  170 #else
  171 /* Make the compiler ignore the function calls */
  172 #define PDEBUG(a)                       /* nop */
  173 #define DEVICENAME(d)                   /* nop */
  174 #define DRIVERNAME(d)                   /* nop */
  175 #define DEVCLANAME(d)                   /* nop */
  176 
  177 #define print_device_short(d,i)         /* nop */
  178 #define print_device(d,i)               /* nop */
  179 #define print_device_tree_short(d,i)    /* nop */
  180 #define print_device_tree(d,i)          /* nop */
  181 #define print_driver_short(d,i)         /* nop */
  182 #define print_driver(d,i)               /* nop */
  183 #define print_driver_list(d,i)          /* nop */
  184 #define print_devclass_short(d,i)       /* nop */
  185 #define print_devclass(d,i)             /* nop */
  186 #define print_devclass_list_short()     /* nop */
  187 #define print_devclass_list()           /* nop */
  188 #endif
  189 
  190 /*
  191  * dev sysctl tree
  192  */
  193 
  194 enum {
  195         DEVCLASS_SYSCTL_PARENT,
  196 };
  197 
  198 static int
  199 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
  200 {
  201         devclass_t dc = (devclass_t)arg1;
  202         const char *value;
  203 
  204         switch (arg2) {
  205         case DEVCLASS_SYSCTL_PARENT:
  206                 value = dc->parent ? dc->parent->name : "";
  207                 break;
  208         default:
  209                 return (EINVAL);
  210         }
  211         return (SYSCTL_OUT(req, value, strlen(value)));
  212 }
  213 
  214 static void
  215 devclass_sysctl_init(devclass_t dc)
  216 {
  217 
  218         if (dc->sysctl_tree != NULL)
  219                 return;
  220         sysctl_ctx_init(&dc->sysctl_ctx);
  221         dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
  222             SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
  223             CTLFLAG_RD, 0, "");
  224         SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
  225             OID_AUTO, "%parent", CTLFLAG_RD,
  226             dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
  227             "parent class");
  228 }
  229 
  230 enum {
  231         DEVICE_SYSCTL_DESC,
  232         DEVICE_SYSCTL_DRIVER,
  233         DEVICE_SYSCTL_LOCATION,
  234         DEVICE_SYSCTL_PNPINFO,
  235         DEVICE_SYSCTL_PARENT,
  236 };
  237 
  238 static int
  239 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
  240 {
  241         device_t dev = (device_t)arg1;
  242         const char *value;
  243         char *buf;
  244         int error;
  245 
  246         buf = NULL;
  247         switch (arg2) {
  248         case DEVICE_SYSCTL_DESC:
  249                 value = dev->desc ? dev->desc : "";
  250                 break;
  251         case DEVICE_SYSCTL_DRIVER:
  252                 value = dev->driver ? dev->driver->name : "";
  253                 break;
  254         case DEVICE_SYSCTL_LOCATION:
  255                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  256                 bus_child_location_str(dev, buf, 1024);
  257                 break;
  258         case DEVICE_SYSCTL_PNPINFO:
  259                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  260                 bus_child_pnpinfo_str(dev, buf, 1024);
  261                 break;
  262         case DEVICE_SYSCTL_PARENT:
  263                 value = dev->parent ? dev->parent->nameunit : "";
  264                 break;
  265         default:
  266                 return (EINVAL);
  267         }
  268         error = SYSCTL_OUT(req, value, strlen(value));
  269         if (buf != NULL)
  270                 free(buf, M_BUS);
  271         return (error);
  272 }
  273 
  274 static void
  275 device_sysctl_init(device_t dev)
  276 {
  277         devclass_t dc = dev->devclass;
  278 
  279         if (dev->sysctl_tree != NULL)
  280                 return;
  281         devclass_sysctl_init(dc);
  282         sysctl_ctx_init(&dev->sysctl_ctx);
  283         dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
  284             SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
  285             dev->nameunit + strlen(dc->name),
  286             CTLFLAG_RD, 0, "");
  287         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  288             OID_AUTO, "%desc", CTLFLAG_RD,
  289             dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
  290             "device description");
  291         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  292             OID_AUTO, "%driver", CTLFLAG_RD,
  293             dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
  294             "device driver name");
  295         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  296             OID_AUTO, "%location", CTLFLAG_RD,
  297             dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
  298             "device location relative to parent");
  299         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  300             OID_AUTO, "%pnpinfo", CTLFLAG_RD,
  301             dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
  302             "device identification");
  303         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  304             OID_AUTO, "%parent", CTLFLAG_RD,
  305             dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
  306             "parent device");
  307 }
  308 
  309 static void
  310 device_sysctl_fini(device_t dev)
  311 {
  312         if (dev->sysctl_tree == NULL)
  313                 return;
  314         sysctl_ctx_free(&dev->sysctl_ctx);
  315         dev->sysctl_tree = NULL;
  316 }
  317 
  318 /*
  319  * /dev/devctl implementation
  320  */
  321 
  322 /*
  323  * This design allows only one reader for /dev/devctl.  This is not desirable
  324  * in the long run, but will get a lot of hair out of this implementation.
  325  * Maybe we should make this device a clonable device.
  326  *
  327  * Also note: we specifically do not attach a device to the device_t tree
  328  * to avoid potential chicken and egg problems.  One could argue that all
  329  * of this belongs to the root node.  One could also further argue that the
  330  * sysctl interface that we have not might more properly be an ioctl
  331  * interface, but at this stage of the game, I'm not inclined to rock that
  332  * boat.
  333  *
  334  * I'm also not sure that the SIGIO support is done correctly or not, as
  335  * I copied it from a driver that had SIGIO support that likely hasn't been
  336  * tested since 3.4 or 2.2.8!
  337  */
  338 
  339 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
  340 static int devctl_disable = 0;
  341 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
  342 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
  343     sysctl_devctl_disable, "I", "devctl disable");
  344 
  345 static d_open_t         devopen;
  346 static d_close_t        devclose;
  347 static d_read_t         devread;
  348 static d_ioctl_t        devioctl;
  349 static d_poll_t         devpoll;
  350 
  351 static struct cdevsw dev_cdevsw = {
  352         .d_version =    D_VERSION,
  353         .d_flags =      D_NEEDGIANT,
  354         .d_open =       devopen,
  355         .d_close =      devclose,
  356         .d_read =       devread,
  357         .d_ioctl =      devioctl,
  358         .d_poll =       devpoll,
  359         .d_name =       "devctl",
  360 };
  361 
  362 struct dev_event_info
  363 {
  364         char *dei_data;
  365         TAILQ_ENTRY(dev_event_info) dei_link;
  366 };
  367 
  368 TAILQ_HEAD(devq, dev_event_info);
  369 
  370 static struct dev_softc
  371 {
  372         int     inuse;
  373         int     nonblock;
  374         struct mtx mtx;
  375         struct cv cv;
  376         struct selinfo sel;
  377         struct devq devq;
  378         struct proc *async_proc;
  379 } devsoftc;
  380 
  381 static struct cdev *devctl_dev;
  382 
  383 static void
  384 devinit(void)
  385 {
  386         devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
  387             "devctl");
  388         mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
  389         cv_init(&devsoftc.cv, "dev cv");
  390         TAILQ_INIT(&devsoftc.devq);
  391 }
  392 
  393 static int
  394 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
  395 {
  396         if (devsoftc.inuse)
  397                 return (EBUSY);
  398         /* move to init */
  399         devsoftc.inuse = 1;
  400         devsoftc.nonblock = 0;
  401         devsoftc.async_proc = NULL;
  402         return (0);
  403 }
  404 
  405 static int
  406 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
  407 {
  408         devsoftc.inuse = 0;
  409         mtx_lock(&devsoftc.mtx);
  410         cv_broadcast(&devsoftc.cv);
  411         mtx_unlock(&devsoftc.mtx);
  412 
  413         return (0);
  414 }
  415 
  416 /*
  417  * The read channel for this device is used to report changes to
  418  * userland in realtime.  We are required to free the data as well as
  419  * the n1 object because we allocate them separately.  Also note that
  420  * we return one record at a time.  If you try to read this device a
  421  * character at a time, you will lose the rest of the data.  Listening
  422  * programs are expected to cope.
  423  */
  424 static int
  425 devread(struct cdev *dev, struct uio *uio, int ioflag)
  426 {
  427         struct dev_event_info *n1;
  428         int rv;
  429 
  430         mtx_lock(&devsoftc.mtx);
  431         while (TAILQ_EMPTY(&devsoftc.devq)) {
  432                 if (devsoftc.nonblock) {
  433                         mtx_unlock(&devsoftc.mtx);
  434                         return (EAGAIN);
  435                 }
  436                 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
  437                 if (rv) {
  438                         /*
  439                          * Need to translate ERESTART to EINTR here? -- jake
  440                          */
  441                         mtx_unlock(&devsoftc.mtx);
  442                         return (rv);
  443                 }
  444         }
  445         n1 = TAILQ_FIRST(&devsoftc.devq);
  446         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  447         mtx_unlock(&devsoftc.mtx);
  448         rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
  449         free(n1->dei_data, M_BUS);
  450         free(n1, M_BUS);
  451         return (rv);
  452 }
  453 
  454 static  int
  455 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
  456 {
  457         switch (cmd) {
  458 
  459         case FIONBIO:
  460                 if (*(int*)data)
  461                         devsoftc.nonblock = 1;
  462                 else
  463                         devsoftc.nonblock = 0;
  464                 return (0);
  465         case FIOASYNC:
  466                 if (*(int*)data)
  467                         devsoftc.async_proc = td->td_proc;
  468                 else
  469                         devsoftc.async_proc = NULL;
  470                 return (0);
  471 
  472                 /* (un)Support for other fcntl() calls. */
  473         case FIOCLEX:
  474         case FIONCLEX:
  475         case FIONREAD:
  476         case FIOSETOWN:
  477         case FIOGETOWN:
  478         default:
  479                 break;
  480         }
  481         return (ENOTTY);
  482 }
  483 
  484 static  int
  485 devpoll(struct cdev *dev, int events, d_thread_t *td)
  486 {
  487         int     revents = 0;
  488 
  489         mtx_lock(&devsoftc.mtx);
  490         if (events & (POLLIN | POLLRDNORM)) {
  491                 if (!TAILQ_EMPTY(&devsoftc.devq))
  492                         revents = events & (POLLIN | POLLRDNORM);
  493                 else
  494                         selrecord(td, &devsoftc.sel);
  495         }
  496         mtx_unlock(&devsoftc.mtx);
  497 
  498         return (revents);
  499 }
  500 
  501 /**
  502  * @brief Return whether the userland process is running
  503  */
  504 boolean_t
  505 devctl_process_running(void)
  506 {
  507         return (devsoftc.inuse == 1);
  508 }
  509 
  510 /**
  511  * @brief Queue data to be read from the devctl device
  512  *
  513  * Generic interface to queue data to the devctl device.  It is
  514  * assumed that @p data is properly formatted.  It is further assumed
  515  * that @p data is allocated using the M_BUS malloc type.
  516  */
  517 void
  518 devctl_queue_data(char *data)
  519 {
  520         struct dev_event_info *n1 = NULL;
  521         struct proc *p;
  522 
  523         n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
  524         if (n1 == NULL)
  525                 return;
  526         n1->dei_data = data;
  527         mtx_lock(&devsoftc.mtx);
  528         TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
  529         cv_broadcast(&devsoftc.cv);
  530         mtx_unlock(&devsoftc.mtx);
  531         selwakeup(&devsoftc.sel);
  532         p = devsoftc.async_proc;
  533         if (p != NULL) {
  534                 PROC_LOCK(p);
  535                 psignal(p, SIGIO);
  536                 PROC_UNLOCK(p);
  537         }
  538 }
  539 
  540 /**
  541  * @brief Send a 'notification' to userland, using standard ways
  542  */
  543 void
  544 devctl_notify(const char *system, const char *subsystem, const char *type,
  545     const char *data)
  546 {
  547         int len = 0;
  548         char *msg;
  549 
  550         if (system == NULL)
  551                 return;         /* BOGUS!  Must specify system. */
  552         if (subsystem == NULL)
  553                 return;         /* BOGUS!  Must specify subsystem. */
  554         if (type == NULL)
  555                 return;         /* BOGUS!  Must specify type. */
  556         len += strlen(" system=") + strlen(system);
  557         len += strlen(" subsystem=") + strlen(subsystem);
  558         len += strlen(" type=") + strlen(type);
  559         /* add in the data message plus newline. */
  560         if (data != NULL)
  561                 len += strlen(data);
  562         len += 3;       /* '!', '\n', and NUL */
  563         msg = malloc(len, M_BUS, M_NOWAIT);
  564         if (msg == NULL)
  565                 return;         /* Drop it on the floor */
  566         if (data != NULL)
  567                 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
  568                     system, subsystem, type, data);
  569         else
  570                 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
  571                     system, subsystem, type);
  572         devctl_queue_data(msg);
  573 }
  574 
  575 /*
  576  * Common routine that tries to make sending messages as easy as possible.
  577  * We allocate memory for the data, copy strings into that, but do not
  578  * free it unless there's an error.  The dequeue part of the driver should
  579  * free the data.  We don't send data when the device is disabled.  We do
  580  * send data, even when we have no listeners, because we wish to avoid
  581  * races relating to startup and restart of listening applications.
  582  *
  583  * devaddq is designed to string together the type of event, with the
  584  * object of that event, plus the plug and play info and location info
  585  * for that event.  This is likely most useful for devices, but less
  586  * useful for other consumers of this interface.  Those should use
  587  * the devctl_queue_data() interface instead.
  588  */
  589 static void
  590 devaddq(const char *type, const char *what, device_t dev)
  591 {
  592         char *data = NULL;
  593         char *loc = NULL;
  594         char *pnp = NULL;
  595         const char *parstr;
  596 
  597         if (devctl_disable)
  598                 return;
  599         data = malloc(1024, M_BUS, M_NOWAIT);
  600         if (data == NULL)
  601                 goto bad;
  602 
  603         /* get the bus specific location of this device */
  604         loc = malloc(1024, M_BUS, M_NOWAIT);
  605         if (loc == NULL)
  606                 goto bad;
  607         *loc = '\0';
  608         bus_child_location_str(dev, loc, 1024);
  609 
  610         /* Get the bus specific pnp info of this device */
  611         pnp = malloc(1024, M_BUS, M_NOWAIT);
  612         if (pnp == NULL)
  613                 goto bad;
  614         *pnp = '\0';
  615         bus_child_pnpinfo_str(dev, pnp, 1024);
  616 
  617         /* Get the parent of this device, or / if high enough in the tree. */
  618         if (device_get_parent(dev) == NULL)
  619                 parstr = ".";   /* Or '/' ? */
  620         else
  621                 parstr = device_get_nameunit(device_get_parent(dev));
  622         /* String it all together. */
  623         snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
  624           parstr);
  625         free(loc, M_BUS);
  626         free(pnp, M_BUS);
  627         devctl_queue_data(data);
  628         return;
  629 bad:
  630         free(pnp, M_BUS);
  631         free(loc, M_BUS);
  632         free(data, M_BUS);
  633         return;
  634 }
  635 
  636 /*
  637  * A device was added to the tree.  We are called just after it successfully
  638  * attaches (that is, probe and attach success for this device).  No call
  639  * is made if a device is merely parented into the tree.  See devnomatch
  640  * if probe fails.  If attach fails, no notification is sent (but maybe
  641  * we should have a different message for this).
  642  */
  643 static void
  644 devadded(device_t dev)
  645 {
  646         char *pnp = NULL;
  647         char *tmp = NULL;
  648 
  649         pnp = malloc(1024, M_BUS, M_NOWAIT);
  650         if (pnp == NULL)
  651                 goto fail;
  652         tmp = malloc(1024, M_BUS, M_NOWAIT);
  653         if (tmp == NULL)
  654                 goto fail;
  655         *pnp = '\0';
  656         bus_child_pnpinfo_str(dev, pnp, 1024);
  657         snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
  658         devaddq("+", tmp, dev);
  659 fail:
  660         if (pnp != NULL)
  661                 free(pnp, M_BUS);
  662         if (tmp != NULL)
  663                 free(tmp, M_BUS);
  664         return;
  665 }
  666 
  667 /*
  668  * A device was removed from the tree.  We are called just before this
  669  * happens.
  670  */
  671 static void
  672 devremoved(device_t dev)
  673 {
  674         char *pnp = NULL;
  675         char *tmp = NULL;
  676 
  677         pnp = malloc(1024, M_BUS, M_NOWAIT);
  678         if (pnp == NULL)
  679                 goto fail;
  680         tmp = malloc(1024, M_BUS, M_NOWAIT);
  681         if (tmp == NULL)
  682                 goto fail;
  683         *pnp = '\0';
  684         bus_child_pnpinfo_str(dev, pnp, 1024);
  685         snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
  686         devaddq("-", tmp, dev);
  687 fail:
  688         if (pnp != NULL)
  689                 free(pnp, M_BUS);
  690         if (tmp != NULL)
  691                 free(tmp, M_BUS);
  692         return;
  693 }
  694 
  695 /*
  696  * Called when there's no match for this device.  This is only called
  697  * the first time that no match happens, so we don't keep getitng this
  698  * message.  Should that prove to be undesirable, we can change it.
  699  * This is called when all drivers that can attach to a given bus
  700  * decline to accept this device.  Other errrors may not be detected.
  701  */
  702 static void
  703 devnomatch(device_t dev)
  704 {
  705         devaddq("?", "", dev);
  706 }
  707 
  708 static int
  709 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
  710 {
  711         struct dev_event_info *n1;
  712         int dis, error;
  713 
  714         dis = devctl_disable;
  715         error = sysctl_handle_int(oidp, &dis, 0, req);
  716         if (error || !req->newptr)
  717                 return (error);
  718         mtx_lock(&devsoftc.mtx);
  719         devctl_disable = dis;
  720         if (dis) {
  721                 while (!TAILQ_EMPTY(&devsoftc.devq)) {
  722                         n1 = TAILQ_FIRST(&devsoftc.devq);
  723                         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  724                         free(n1->dei_data, M_BUS);
  725                         free(n1, M_BUS);
  726                 }
  727         }
  728         mtx_unlock(&devsoftc.mtx);
  729         return (0);
  730 }
  731 
  732 /* End of /dev/devctl code */
  733 
  734 TAILQ_HEAD(,device)     bus_data_devices;
  735 static int bus_data_generation = 1;
  736 
  737 kobj_method_t null_methods[] = {
  738         { 0, 0 }
  739 };
  740 
  741 DEFINE_CLASS(null, null_methods, 0);
  742 
  743 /*
  744  * Devclass implementation
  745  */
  746 
  747 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
  748 
  749 
  750 /**
  751  * @internal
  752  * @brief Find or create a device class
  753  *
  754  * If a device class with the name @p classname exists, return it,
  755  * otherwise if @p create is non-zero create and return a new device
  756  * class.
  757  *
  758  * If @p parentname is non-NULL, the parent of the devclass is set to
  759  * the devclass of that name.
  760  *
  761  * @param classname     the devclass name to find or create
  762  * @param parentname    the parent devclass name or @c NULL
  763  * @param create        non-zero to create a devclass
  764  */
  765 static devclass_t
  766 devclass_find_internal(const char *classname, const char *parentname,
  767                        int create)
  768 {
  769         devclass_t dc;
  770 
  771         PDEBUG(("looking for %s", classname));
  772         if (!classname)
  773                 return (NULL);
  774 
  775         TAILQ_FOREACH(dc, &devclasses, link) {
  776                 if (!strcmp(dc->name, classname))
  777                         break;
  778         }
  779 
  780         if (create && !dc) {
  781                 PDEBUG(("creating %s", classname));
  782                 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
  783                     M_BUS, M_NOWAIT|M_ZERO);
  784                 if (!dc)
  785                         return (NULL);
  786                 dc->parent = NULL;
  787                 dc->name = (char*) (dc + 1);
  788                 strcpy(dc->name, classname);
  789                 TAILQ_INIT(&dc->drivers);
  790                 TAILQ_INSERT_TAIL(&devclasses, dc, link);
  791 
  792                 bus_data_generation_update();
  793         }
  794 
  795         /*
  796          * If a parent class is specified, then set that as our parent so
  797          * that this devclass will support drivers for the parent class as
  798          * well.  If the parent class has the same name don't do this though
  799          * as it creates a cycle that can trigger an infinite loop in
  800          * device_probe_child() if a device exists for which there is no
  801          * suitable driver.
  802          */
  803         if (parentname && dc && !dc->parent &&
  804             strcmp(classname, parentname) != 0) {
  805                 dc->parent = devclass_find_internal(parentname, NULL, FALSE);
  806         }
  807 
  808         return (dc);
  809 }
  810 
  811 /**
  812  * @brief Create a device class
  813  *
  814  * If a device class with the name @p classname exists, return it,
  815  * otherwise create and return a new device class.
  816  *
  817  * @param classname     the devclass name to find or create
  818  */
  819 devclass_t
  820 devclass_create(const char *classname)
  821 {
  822         return (devclass_find_internal(classname, NULL, TRUE));
  823 }
  824 
  825 /**
  826  * @brief Find a device class
  827  *
  828  * If a device class with the name @p classname exists, return it,
  829  * otherwise return @c NULL.
  830  *
  831  * @param classname     the devclass name to find
  832  */
  833 devclass_t
  834 devclass_find(const char *classname)
  835 {
  836         return (devclass_find_internal(classname, NULL, FALSE));
  837 }
  838 
  839 /**
  840  * @brief Add a device driver to a device class
  841  *
  842  * Add a device driver to a devclass. This is normally called
  843  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
  844  * all devices in the devclass will be called to allow them to attempt
  845  * to re-probe any unmatched children.
  846  *
  847  * @param dc            the devclass to edit
  848  * @param driver        the driver to register
  849  */
  850 int
  851 devclass_add_driver(devclass_t dc, driver_t *driver)
  852 {
  853         driverlink_t dl;
  854         int i;
  855 
  856         PDEBUG(("%s", DRIVERNAME(driver)));
  857 
  858         dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
  859         if (!dl)
  860                 return (ENOMEM);
  861 
  862         /*
  863          * Compile the driver's methods. Also increase the reference count
  864          * so that the class doesn't get freed when the last instance
  865          * goes. This means we can safely use static methods and avoids a
  866          * double-free in devclass_delete_driver.
  867          */
  868         kobj_class_compile((kobj_class_t) driver);
  869 
  870         /*
  871          * Make sure the devclass which the driver is implementing exists.
  872          */
  873         devclass_find_internal(driver->name, NULL, TRUE);
  874 
  875         dl->driver = driver;
  876         TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
  877         driver->refs++;         /* XXX: kobj_mtx */
  878 
  879         /*
  880          * Call BUS_DRIVER_ADDED for any existing busses in this class.
  881          */
  882         for (i = 0; i < dc->maxunit; i++)
  883                 if (dc->devices[i])
  884                         BUS_DRIVER_ADDED(dc->devices[i], driver);
  885 
  886         bus_data_generation_update();
  887         return (0);
  888 }
  889 
  890 /**
  891  * @brief Delete a device driver from a device class
  892  *
  893  * Delete a device driver from a devclass. This is normally called
  894  * automatically by DRIVER_MODULE().
  895  *
  896  * If the driver is currently attached to any devices,
  897  * devclass_delete_driver() will first attempt to detach from each
  898  * device. If one of the detach calls fails, the driver will not be
  899  * deleted.
  900  *
  901  * @param dc            the devclass to edit
  902  * @param driver        the driver to unregister
  903  */
  904 int
  905 devclass_delete_driver(devclass_t busclass, driver_t *driver)
  906 {
  907         devclass_t dc = devclass_find(driver->name);
  908         driverlink_t dl;
  909         device_t dev;
  910         int i;
  911         int error;
  912 
  913         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
  914 
  915         if (!dc)
  916                 return (0);
  917 
  918         /*
  919          * Find the link structure in the bus' list of drivers.
  920          */
  921         TAILQ_FOREACH(dl, &busclass->drivers, link) {
  922                 if (dl->driver == driver)
  923                         break;
  924         }
  925 
  926         if (!dl) {
  927                 PDEBUG(("%s not found in %s list", driver->name,
  928                     busclass->name));
  929                 return (ENOENT);
  930         }
  931 
  932         /*
  933          * Disassociate from any devices.  We iterate through all the
  934          * devices in the devclass of the driver and detach any which are
  935          * using the driver and which have a parent in the devclass which
  936          * we are deleting from.
  937          *
  938          * Note that since a driver can be in multiple devclasses, we
  939          * should not detach devices which are not children of devices in
  940          * the affected devclass.
  941          */
  942         for (i = 0; i < dc->maxunit; i++) {
  943                 if (dc->devices[i]) {
  944                         dev = dc->devices[i];
  945                         if (dev->driver == driver && dev->parent &&
  946                             dev->parent->devclass == busclass) {
  947                                 if ((error = device_detach(dev)) != 0)
  948                                         return (error);
  949                                 device_set_driver(dev, NULL);
  950                         }
  951                 }
  952         }
  953 
  954         TAILQ_REMOVE(&busclass->drivers, dl, link);
  955         free(dl, M_BUS);
  956 
  957         /* XXX: kobj_mtx */
  958         driver->refs--;
  959         if (driver->refs == 0)
  960                 kobj_class_free((kobj_class_t) driver);
  961 
  962         bus_data_generation_update();
  963         return (0);
  964 }
  965 
  966 /**
  967  * @brief Quiesces a set of device drivers from a device class
  968  *
  969  * Quiesce a device driver from a devclass. This is normally called
  970  * automatically by DRIVER_MODULE().
  971  *
  972  * If the driver is currently attached to any devices,
  973  * devclass_quiesece_driver() will first attempt to quiesce each
  974  * device.
  975  *
  976  * @param dc            the devclass to edit
  977  * @param driver        the driver to unregister
  978  */
  979 int
  980 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
  981 {
  982         devclass_t dc = devclass_find(driver->name);
  983         driverlink_t dl;
  984         device_t dev;
  985         int i;
  986         int error;
  987 
  988         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
  989 
  990         if (!dc)
  991                 return (0);
  992 
  993         /*
  994          * Find the link structure in the bus' list of drivers.
  995          */
  996         TAILQ_FOREACH(dl, &busclass->drivers, link) {
  997                 if (dl->driver == driver)
  998                         break;
  999         }
 1000 
 1001         if (!dl) {
 1002                 PDEBUG(("%s not found in %s list", driver->name,
 1003                     busclass->name));
 1004                 return (ENOENT);
 1005         }
 1006 
 1007         /*
 1008          * Quiesce all devices.  We iterate through all the devices in
 1009          * the devclass of the driver and quiesce any which are using
 1010          * the driver and which have a parent in the devclass which we
 1011          * are quiescing.
 1012          *
 1013          * Note that since a driver can be in multiple devclasses, we
 1014          * should not quiesce devices which are not children of
 1015          * devices in the affected devclass.
 1016          */
 1017         for (i = 0; i < dc->maxunit; i++) {
 1018                 if (dc->devices[i]) {
 1019                         dev = dc->devices[i];
 1020                         if (dev->driver == driver && dev->parent &&
 1021                             dev->parent->devclass == busclass) {
 1022                                 if ((error = device_quiesce(dev)) != 0)
 1023                                         return (error);
 1024                         }
 1025                 }
 1026         }
 1027 
 1028         return (0);
 1029 }
 1030 
 1031 /**
 1032  * @internal
 1033  */
 1034 static driverlink_t
 1035 devclass_find_driver_internal(devclass_t dc, const char *classname)
 1036 {
 1037         driverlink_t dl;
 1038 
 1039         PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
 1040 
 1041         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1042                 if (!strcmp(dl->driver->name, classname))
 1043                         return (dl);
 1044         }
 1045 
 1046         PDEBUG(("not found"));
 1047         return (NULL);
 1048 }
 1049 
 1050 /**
 1051  * @brief Search a devclass for a driver
 1052  *
 1053  * This function searches the devclass's list of drivers and returns
 1054  * the first driver whose name is @p classname or @c NULL if there is
 1055  * no driver of that name.
 1056  *
 1057  * @param dc            the devclass to search
 1058  * @param classname     the driver name to search for
 1059  */
 1060 kobj_class_t
 1061 devclass_find_driver(devclass_t dc, const char *classname)
 1062 {
 1063         driverlink_t dl;
 1064 
 1065         dl = devclass_find_driver_internal(dc, classname);
 1066         if (dl)
 1067                 return (dl->driver);
 1068         return (NULL);
 1069 }
 1070 
 1071 /**
 1072  * @brief Return the name of the devclass
 1073  */
 1074 const char *
 1075 devclass_get_name(devclass_t dc)
 1076 {
 1077         return (dc->name);
 1078 }
 1079 
 1080 /**
 1081  * @brief Find a device given a unit number
 1082  *
 1083  * @param dc            the devclass to search
 1084  * @param unit          the unit number to search for
 1085  * 
 1086  * @returns             the device with the given unit number or @c
 1087  *                      NULL if there is no such device
 1088  */
 1089 device_t
 1090 devclass_get_device(devclass_t dc, int unit)
 1091 {
 1092         if (dc == NULL || unit < 0 || unit >= dc->maxunit)
 1093                 return (NULL);
 1094         return (dc->devices[unit]);
 1095 }
 1096 
 1097 /**
 1098  * @brief Find the softc field of a device given a unit number
 1099  *
 1100  * @param dc            the devclass to search
 1101  * @param unit          the unit number to search for
 1102  * 
 1103  * @returns             the softc field of the device with the given
 1104  *                      unit number or @c NULL if there is no such
 1105  *                      device
 1106  */
 1107 void *
 1108 devclass_get_softc(devclass_t dc, int unit)
 1109 {
 1110         device_t dev;
 1111 
 1112         dev = devclass_get_device(dc, unit);
 1113         if (!dev)
 1114                 return (NULL);
 1115 
 1116         return (device_get_softc(dev));
 1117 }
 1118 
 1119 /**
 1120  * @brief Get a list of devices in the devclass
 1121  *
 1122  * An array containing a list of all the devices in the given devclass
 1123  * is allocated and returned in @p *devlistp. The number of devices
 1124  * in the array is returned in @p *devcountp. The caller should free
 1125  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
 1126  *
 1127  * @param dc            the devclass to examine
 1128  * @param devlistp      points at location for array pointer return
 1129  *                      value
 1130  * @param devcountp     points at location for array size return value
 1131  *
 1132  * @retval 0            success
 1133  * @retval ENOMEM       the array allocation failed
 1134  */
 1135 int
 1136 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
 1137 {
 1138         int count, i;
 1139         device_t *list;
 1140 
 1141         count = devclass_get_count(dc);
 1142         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 1143         if (!list)
 1144                 return (ENOMEM);
 1145 
 1146         count = 0;
 1147         for (i = 0; i < dc->maxunit; i++) {
 1148                 if (dc->devices[i]) {
 1149                         list[count] = dc->devices[i];
 1150                         count++;
 1151                 }
 1152         }
 1153 
 1154         *devlistp = list;
 1155         *devcountp = count;
 1156 
 1157         return (0);
 1158 }
 1159 
 1160 /**
 1161  * @brief Get a list of drivers in the devclass
 1162  *
 1163  * An array containing a list of pointers to all the drivers in the
 1164  * given devclass is allocated and returned in @p *listp.  The number
 1165  * of drivers in the array is returned in @p *countp. The caller should
 1166  * free the array using @c free(p, M_TEMP).
 1167  *
 1168  * @param dc            the devclass to examine
 1169  * @param listp         gives location for array pointer return value
 1170  * @param countp        gives location for number of array elements
 1171  *                      return value
 1172  *
 1173  * @retval 0            success
 1174  * @retval ENOMEM       the array allocation failed
 1175  */
 1176 int
 1177 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
 1178 {
 1179         driverlink_t dl;
 1180         driver_t **list;
 1181         int count;
 1182 
 1183         count = 0;
 1184         TAILQ_FOREACH(dl, &dc->drivers, link)
 1185                 count++;
 1186         list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
 1187         if (list == NULL)
 1188                 return (ENOMEM);
 1189 
 1190         count = 0;
 1191         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1192                 list[count] = dl->driver;
 1193                 count++;
 1194         }
 1195         *listp = list;
 1196         *countp = count;
 1197 
 1198         return (0);
 1199 }
 1200 
 1201 /**
 1202  * @brief Get the number of devices in a devclass
 1203  *
 1204  * @param dc            the devclass to examine
 1205  */
 1206 int
 1207 devclass_get_count(devclass_t dc)
 1208 {
 1209         int count, i;
 1210 
 1211         count = 0;
 1212         for (i = 0; i < dc->maxunit; i++)
 1213                 if (dc->devices[i])
 1214                         count++;
 1215         return (count);
 1216 }
 1217 
 1218 /**
 1219  * @brief Get the maximum unit number used in a devclass
 1220  *
 1221  * Note that this is one greater than the highest currently-allocated
 1222  * unit.
 1223  *
 1224  * @param dc            the devclass to examine
 1225  */
 1226 int
 1227 devclass_get_maxunit(devclass_t dc)
 1228 {
 1229         return (dc->maxunit);
 1230 }
 1231 
 1232 /**
 1233  * @brief Find a free unit number in a devclass
 1234  *
 1235  * This function searches for the first unused unit number greater
 1236  * that or equal to @p unit.
 1237  *
 1238  * @param dc            the devclass to examine
 1239  * @param unit          the first unit number to check
 1240  */
 1241 int
 1242 devclass_find_free_unit(devclass_t dc, int unit)
 1243 {
 1244         if (dc == NULL)
 1245                 return (unit);
 1246         while (unit < dc->maxunit && dc->devices[unit] != NULL)
 1247                 unit++;
 1248         return (unit);
 1249 }
 1250 
 1251 /**
 1252  * @brief Set the parent of a devclass
 1253  *
 1254  * The parent class is normally initialised automatically by
 1255  * DRIVER_MODULE().
 1256  *
 1257  * @param dc            the devclass to edit
 1258  * @param pdc           the new parent devclass
 1259  */
 1260 void
 1261 devclass_set_parent(devclass_t dc, devclass_t pdc)
 1262 {
 1263         dc->parent = pdc;
 1264 }
 1265 
 1266 /**
 1267  * @brief Get the parent of a devclass
 1268  *
 1269  * @param dc            the devclass to examine
 1270  */
 1271 devclass_t
 1272 devclass_get_parent(devclass_t dc)
 1273 {
 1274         return (dc->parent);
 1275 }
 1276 
 1277 struct sysctl_ctx_list *
 1278 devclass_get_sysctl_ctx(devclass_t dc)
 1279 {
 1280         return (&dc->sysctl_ctx);
 1281 }
 1282 
 1283 struct sysctl_oid *
 1284 devclass_get_sysctl_tree(devclass_t dc)
 1285 {
 1286         return (dc->sysctl_tree);
 1287 }
 1288 
 1289 /**
 1290  * @internal
 1291  * @brief Allocate a unit number
 1292  *
 1293  * On entry, @p *unitp is the desired unit number (or @c -1 if any
 1294  * will do). The allocated unit number is returned in @p *unitp.
 1295 
 1296  * @param dc            the devclass to allocate from
 1297  * @param unitp         points at the location for the allocated unit
 1298  *                      number
 1299  *
 1300  * @retval 0            success
 1301  * @retval EEXIST       the requested unit number is already allocated
 1302  * @retval ENOMEM       memory allocation failure
 1303  */
 1304 static int
 1305 devclass_alloc_unit(devclass_t dc, int *unitp)
 1306 {
 1307         int unit = *unitp;
 1308 
 1309         PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1310 
 1311         /* If we were given a wired unit number, check for existing device */
 1312         /* XXX imp XXX */
 1313         if (unit != -1) {
 1314                 if (unit >= 0 && unit < dc->maxunit &&
 1315                     dc->devices[unit] != NULL) {
 1316                         if (bootverbose)
 1317                                 printf("%s: %s%d already exists; skipping it\n",
 1318                                     dc->name, dc->name, *unitp);
 1319                         return (EEXIST);
 1320                 }
 1321         } else {
 1322                 /* Unwired device, find the next available slot for it */
 1323                 unit = 0;
 1324                 while (unit < dc->maxunit && dc->devices[unit] != NULL)
 1325                         unit++;
 1326         }
 1327 
 1328         /*
 1329          * We've selected a unit beyond the length of the table, so let's
 1330          * extend the table to make room for all units up to and including
 1331          * this one.
 1332          */
 1333         if (unit >= dc->maxunit) {
 1334                 device_t *newlist;
 1335                 int newsize;
 1336 
 1337                 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
 1338                 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
 1339                 if (!newlist)
 1340                         return (ENOMEM);
 1341                 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
 1342                 bzero(newlist + dc->maxunit,
 1343                     sizeof(device_t) * (newsize - dc->maxunit));
 1344                 if (dc->devices)
 1345                         free(dc->devices, M_BUS);
 1346                 dc->devices = newlist;
 1347                 dc->maxunit = newsize;
 1348         }
 1349         PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1350 
 1351         *unitp = unit;
 1352         return (0);
 1353 }
 1354 
 1355 /**
 1356  * @internal
 1357  * @brief Add a device to a devclass
 1358  *
 1359  * A unit number is allocated for the device (using the device's
 1360  * preferred unit number if any) and the device is registered in the
 1361  * devclass. This allows the device to be looked up by its unit
 1362  * number, e.g. by decoding a dev_t minor number.
 1363  *
 1364  * @param dc            the devclass to add to
 1365  * @param dev           the device to add
 1366  *
 1367  * @retval 0            success
 1368  * @retval EEXIST       the requested unit number is already allocated
 1369  * @retval ENOMEM       memory allocation failure
 1370  */
 1371 static int
 1372 devclass_add_device(devclass_t dc, device_t dev)
 1373 {
 1374         int buflen, error;
 1375 
 1376         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1377 
 1378         buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
 1379         if (buflen < 0)
 1380                 return (ENOMEM);
 1381         dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
 1382         if (!dev->nameunit)
 1383                 return (ENOMEM);
 1384 
 1385         if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
 1386                 free(dev->nameunit, M_BUS);
 1387                 dev->nameunit = NULL;
 1388                 return (error);
 1389         }
 1390         dc->devices[dev->unit] = dev;
 1391         dev->devclass = dc;
 1392         snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
 1393 
 1394         return (0);
 1395 }
 1396 
 1397 /**
 1398  * @internal
 1399  * @brief Delete a device from a devclass
 1400  *
 1401  * The device is removed from the devclass's device list and its unit
 1402  * number is freed.
 1403 
 1404  * @param dc            the devclass to delete from
 1405  * @param dev           the device to delete
 1406  *
 1407  * @retval 0            success
 1408  */
 1409 static int
 1410 devclass_delete_device(devclass_t dc, device_t dev)
 1411 {
 1412         if (!dc || !dev)
 1413                 return (0);
 1414 
 1415         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1416 
 1417         if (dev->devclass != dc || dc->devices[dev->unit] != dev)
 1418                 panic("devclass_delete_device: inconsistent device class");
 1419         dc->devices[dev->unit] = NULL;
 1420         if (dev->flags & DF_WILDCARD)
 1421                 dev->unit = -1;
 1422         dev->devclass = NULL;
 1423         free(dev->nameunit, M_BUS);
 1424         dev->nameunit = NULL;
 1425 
 1426         return (0);
 1427 }
 1428 
 1429 /**
 1430  * @internal
 1431  * @brief Make a new device and add it as a child of @p parent
 1432  *
 1433  * @param parent        the parent of the new device
 1434  * @param name          the devclass name of the new device or @c NULL
 1435  *                      to leave the devclass unspecified
 1436  * @parem unit          the unit number of the new device of @c -1 to
 1437  *                      leave the unit number unspecified
 1438  *
 1439  * @returns the new device
 1440  */
 1441 static device_t
 1442 make_device(device_t parent, const char *name, int unit)
 1443 {
 1444         device_t dev;
 1445         devclass_t dc;
 1446 
 1447         PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
 1448 
 1449         if (name) {
 1450                 dc = devclass_find_internal(name, NULL, TRUE);
 1451                 if (!dc) {
 1452                         printf("make_device: can't find device class %s\n",
 1453                             name);
 1454                         return (NULL);
 1455                 }
 1456         } else {
 1457                 dc = NULL;
 1458         }
 1459 
 1460         dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
 1461         if (!dev)
 1462                 return (NULL);
 1463 
 1464         dev->parent = parent;
 1465         TAILQ_INIT(&dev->children);
 1466         kobj_init((kobj_t) dev, &null_class);
 1467         dev->driver = NULL;
 1468         dev->devclass = NULL;
 1469         dev->unit = unit;
 1470         dev->nameunit = NULL;
 1471         dev->desc = NULL;
 1472         dev->busy = 0;
 1473         dev->devflags = 0;
 1474         dev->flags = DF_ENABLED;
 1475         dev->order = 0;
 1476         if (unit == -1)
 1477                 dev->flags |= DF_WILDCARD;
 1478         if (name) {
 1479                 dev->flags |= DF_FIXEDCLASS;
 1480                 if (devclass_add_device(dc, dev)) {
 1481                         kobj_delete((kobj_t) dev, M_BUS);
 1482                         return (NULL);
 1483                 }
 1484         }
 1485         dev->ivars = NULL;
 1486         dev->softc = NULL;
 1487 
 1488         dev->state = DS_NOTPRESENT;
 1489 
 1490         TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
 1491         bus_data_generation_update();
 1492 
 1493         return (dev);
 1494 }
 1495 
 1496 /**
 1497  * @internal
 1498  * @brief Print a description of a device.
 1499  */
 1500 static int
 1501 device_print_child(device_t dev, device_t child)
 1502 {
 1503         int retval = 0;
 1504 
 1505         if (device_is_alive(child))
 1506                 retval += BUS_PRINT_CHILD(dev, child);
 1507         else
 1508                 retval += device_printf(child, " not found\n");
 1509 
 1510         return (retval);
 1511 }
 1512 
 1513 /**
 1514  * @brief Create a new device
 1515  *
 1516  * This creates a new device and adds it as a child of an existing
 1517  * parent device. The new device will be added after the last existing
 1518  * child with order zero.
 1519  * 
 1520  * @param dev           the device which will be the parent of the
 1521  *                      new child device
 1522  * @param name          devclass name for new device or @c NULL if not
 1523  *                      specified
 1524  * @param unit          unit number for new device or @c -1 if not
 1525  *                      specified
 1526  * 
 1527  * @returns             the new device
 1528  */
 1529 device_t
 1530 device_add_child(device_t dev, const char *name, int unit)
 1531 {
 1532         return (device_add_child_ordered(dev, 0, name, unit));
 1533 }
 1534 
 1535 /**
 1536  * @brief Create a new device
 1537  *
 1538  * This creates a new device and adds it as a child of an existing
 1539  * parent device. The new device will be added after the last existing
 1540  * child with the same order.
 1541  * 
 1542  * @param dev           the device which will be the parent of the
 1543  *                      new child device
 1544  * @param order         a value which is used to partially sort the
 1545  *                      children of @p dev - devices created using
 1546  *                      lower values of @p order appear first in @p
 1547  *                      dev's list of children
 1548  * @param name          devclass name for new device or @c NULL if not
 1549  *                      specified
 1550  * @param unit          unit number for new device or @c -1 if not
 1551  *                      specified
 1552  * 
 1553  * @returns             the new device
 1554  */
 1555 device_t
 1556 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
 1557 {
 1558         device_t child;
 1559         device_t place;
 1560 
 1561         PDEBUG(("%s at %s with order %d as unit %d",
 1562             name, DEVICENAME(dev), order, unit));
 1563 
 1564         child = make_device(dev, name, unit);
 1565         if (child == NULL)
 1566                 return (child);
 1567         child->order = order;
 1568 
 1569         TAILQ_FOREACH(place, &dev->children, link) {
 1570                 if (place->order > order)
 1571                         break;
 1572         }
 1573 
 1574         if (place) {
 1575                 /*
 1576                  * The device 'place' is the first device whose order is
 1577                  * greater than the new child.
 1578                  */
 1579                 TAILQ_INSERT_BEFORE(place, child, link);
 1580         } else {
 1581                 /*
 1582                  * The new child's order is greater or equal to the order of
 1583                  * any existing device. Add the child to the tail of the list.
 1584                  */
 1585                 TAILQ_INSERT_TAIL(&dev->children, child, link);
 1586         }
 1587 
 1588         bus_data_generation_update();
 1589         return (child);
 1590 }
 1591 
 1592 /**
 1593  * @brief Delete a device
 1594  *
 1595  * This function deletes a device along with all of its children. If
 1596  * the device currently has a driver attached to it, the device is
 1597  * detached first using device_detach().
 1598  * 
 1599  * @param dev           the parent device
 1600  * @param child         the device to delete
 1601  *
 1602  * @retval 0            success
 1603  * @retval non-zero     a unit error code describing the error
 1604  */
 1605 int
 1606 device_delete_child(device_t dev, device_t child)
 1607 {
 1608         int error;
 1609         device_t grandchild;
 1610 
 1611         PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
 1612 
 1613         /* remove children first */
 1614         while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
 1615                 error = device_delete_child(child, grandchild);
 1616                 if (error)
 1617                         return (error);
 1618         }
 1619 
 1620         if ((error = device_detach(child)) != 0)
 1621                 return (error);
 1622         if (child->devclass)
 1623                 devclass_delete_device(child->devclass, child);
 1624         TAILQ_REMOVE(&dev->children, child, link);
 1625         TAILQ_REMOVE(&bus_data_devices, child, devlink);
 1626         kobj_delete((kobj_t) child, M_BUS);
 1627 
 1628         bus_data_generation_update();
 1629         return (0);
 1630 }
 1631 
 1632 /**
 1633  * @brief Find a device given a unit number
 1634  *
 1635  * This is similar to devclass_get_devices() but only searches for
 1636  * devices which have @p dev as a parent.
 1637  *
 1638  * @param dev           the parent device to search
 1639  * @param unit          the unit number to search for.  If the unit is -1,
 1640  *                      return the first child of @p dev which has name
 1641  *                      @p classname (that is, the one with the lowest unit.)
 1642  *
 1643  * @returns             the device with the given unit number or @c
 1644  *                      NULL if there is no such device
 1645  */
 1646 device_t
 1647 device_find_child(device_t dev, const char *classname, int unit)
 1648 {
 1649         devclass_t dc;
 1650         device_t child;
 1651 
 1652         dc = devclass_find(classname);
 1653         if (!dc)
 1654                 return (NULL);
 1655 
 1656         if (unit != -1) {
 1657                 child = devclass_get_device(dc, unit);
 1658                 if (child && child->parent == dev)
 1659                         return (child);
 1660         } else {
 1661                 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
 1662                         child = devclass_get_device(dc, unit);
 1663                         if (child && child->parent == dev)
 1664                                 return (child);
 1665                 }
 1666         }
 1667         return (NULL);
 1668 }
 1669 
 1670 /**
 1671  * @internal
 1672  */
 1673 static driverlink_t
 1674 first_matching_driver(devclass_t dc, device_t dev)
 1675 {
 1676         if (dev->devclass)
 1677                 return (devclass_find_driver_internal(dc, dev->devclass->name));
 1678         return (TAILQ_FIRST(&dc->drivers));
 1679 }
 1680 
 1681 /**
 1682  * @internal
 1683  */
 1684 static driverlink_t
 1685 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
 1686 {
 1687         if (dev->devclass) {
 1688                 driverlink_t dl;
 1689                 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
 1690                         if (!strcmp(dev->devclass->name, dl->driver->name))
 1691                                 return (dl);
 1692                 return (NULL);
 1693         }
 1694         return (TAILQ_NEXT(last, link));
 1695 }
 1696 
 1697 /**
 1698  * @internal
 1699  */
 1700 int
 1701 device_probe_child(device_t dev, device_t child)
 1702 {
 1703         devclass_t dc;
 1704         driverlink_t best = NULL;
 1705         driverlink_t dl;
 1706         int result, pri = 0;
 1707         int hasclass = (child->devclass != 0);
 1708 
 1709         GIANT_REQUIRED;
 1710 
 1711         dc = dev->devclass;
 1712         if (!dc)
 1713                 panic("device_probe_child: parent device has no devclass");
 1714 
 1715         /*
 1716          * If the state is already probed, then return.  However, don't
 1717          * return if we can rebid this object.
 1718          */
 1719         if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
 1720                 return (0);
 1721 
 1722         for (; dc; dc = dc->parent) {
 1723                 for (dl = first_matching_driver(dc, child);
 1724                      dl;
 1725                      dl = next_matching_driver(dc, child, dl)) {
 1726                         PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
 1727                         device_set_driver(child, dl->driver);
 1728                         if (!hasclass)
 1729                                 device_set_devclass(child, dl->driver->name);
 1730 
 1731                         /* Fetch any flags for the device before probing. */
 1732                         resource_int_value(dl->driver->name, child->unit,
 1733                             "flags", &child->devflags);
 1734 
 1735                         result = DEVICE_PROBE(child);
 1736 
 1737                         /* Reset flags and devclass before the next probe. */
 1738                         child->devflags = 0;
 1739                         if (!hasclass)
 1740                                 device_set_devclass(child, NULL);
 1741 
 1742                         /*
 1743                          * If the driver returns SUCCESS, there can be
 1744                          * no higher match for this device.
 1745                          */
 1746                         if (result == 0) {
 1747                                 best = dl;
 1748                                 pri = 0;
 1749                                 break;
 1750                         }
 1751 
 1752                         /*
 1753                          * The driver returned an error so it
 1754                          * certainly doesn't match.
 1755                          */
 1756                         if (result > 0) {
 1757                                 device_set_driver(child, NULL);
 1758                                 continue;
 1759                         }
 1760 
 1761                         /*
 1762                          * A priority lower than SUCCESS, remember the
 1763                          * best matching driver. Initialise the value
 1764                          * of pri for the first match.
 1765                          */
 1766                         if (best == NULL || result > pri) {
 1767                                 best = dl;
 1768                                 pri = result;
 1769                                 continue;
 1770                         }
 1771                 }
 1772                 /*
 1773                  * If we have an unambiguous match in this devclass,
 1774                  * don't look in the parent.
 1775                  */
 1776                 if (best && pri == 0)
 1777                         break;
 1778         }
 1779 
 1780         /*
 1781          * If we found a driver, change state and initialise the devclass.
 1782          */
 1783         /* XXX What happens if we rebid and got no best? */
 1784         if (best) {
 1785                 /*
 1786                  * If this device was atached, and we were asked to
 1787                  * rescan, and it is a different driver, then we have
 1788                  * to detach the old driver and reattach this new one.
 1789                  * Note, we don't have to check for DF_REBID here
 1790                  * because if the state is > DS_ALIVE, we know it must
 1791                  * be.
 1792                  *
 1793                  * This assumes that all DF_REBID drivers can have
 1794                  * their probe routine called at any time and that
 1795                  * they are idempotent as well as completely benign in
 1796                  * normal operations.
 1797                  *
 1798                  * We also have to make sure that the detach
 1799                  * succeeded, otherwise we fail the operation (or
 1800                  * maybe it should just fail silently?  I'm torn).
 1801                  */
 1802                 if (child->state > DS_ALIVE && best->driver != child->driver)
 1803                         if ((result = device_detach(dev)) != 0)
 1804                                 return (result);
 1805 
 1806                 /* Set the winning driver, devclass, and flags. */
 1807                 if (!child->devclass)
 1808                         device_set_devclass(child, best->driver->name);
 1809                 device_set_driver(child, best->driver);
 1810                 resource_int_value(best->driver->name, child->unit,
 1811                     "flags", &child->devflags);
 1812 
 1813                 if (pri < 0) {
 1814                         /*
 1815                          * A bit bogus. Call the probe method again to make
 1816                          * sure that we have the right description.
 1817                          */
 1818                         DEVICE_PROBE(child);
 1819 #if 0
 1820                         child->flags |= DF_REBID;
 1821 #endif
 1822                 } else
 1823                         child->flags &= ~DF_REBID;
 1824                 child->state = DS_ALIVE;
 1825 
 1826                 bus_data_generation_update();
 1827                 return (0);
 1828         }
 1829 
 1830         return (ENXIO);
 1831 }
 1832 
 1833 /**
 1834  * @brief Return the parent of a device
 1835  */
 1836 device_t
 1837 device_get_parent(device_t dev)
 1838 {
 1839         return (dev->parent);
 1840 }
 1841 
 1842 /**
 1843  * @brief Get a list of children of a device
 1844  *
 1845  * An array containing a list of all the children of the given device
 1846  * is allocated and returned in @p *devlistp. The number of devices
 1847  * in the array is returned in @p *devcountp. The caller should free
 1848  * the array using @c free(p, M_TEMP).
 1849  *
 1850  * @param dev           the device to examine
 1851  * @param devlistp      points at location for array pointer return
 1852  *                      value
 1853  * @param devcountp     points at location for array size return value
 1854  *
 1855  * @retval 0            success
 1856  * @retval ENOMEM       the array allocation failed
 1857  */
 1858 int
 1859 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
 1860 {
 1861         int count;
 1862         device_t child;
 1863         device_t *list;
 1864 
 1865         count = 0;
 1866         TAILQ_FOREACH(child, &dev->children, link) {
 1867                 count++;
 1868         }
 1869 
 1870         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 1871         if (!list)
 1872                 return (ENOMEM);
 1873 
 1874         count = 0;
 1875         TAILQ_FOREACH(child, &dev->children, link) {
 1876                 list[count] = child;
 1877                 count++;
 1878         }
 1879 
 1880         *devlistp = list;
 1881         *devcountp = count;
 1882 
 1883         return (0);
 1884 }
 1885 
 1886 /**
 1887  * @brief Return the current driver for the device or @c NULL if there
 1888  * is no driver currently attached
 1889  */
 1890 driver_t *
 1891 device_get_driver(device_t dev)
 1892 {
 1893         return (dev->driver);
 1894 }
 1895 
 1896 /**
 1897  * @brief Return the current devclass for the device or @c NULL if
 1898  * there is none.
 1899  */
 1900 devclass_t
 1901 device_get_devclass(device_t dev)
 1902 {
 1903         return (dev->devclass);
 1904 }
 1905 
 1906 /**
 1907  * @brief Return the name of the device's devclass or @c NULL if there
 1908  * is none.
 1909  */
 1910 const char *
 1911 device_get_name(device_t dev)
 1912 {
 1913         if (dev != NULL && dev->devclass)
 1914                 return (devclass_get_name(dev->devclass));
 1915         return (NULL);
 1916 }
 1917 
 1918 /**
 1919  * @brief Return a string containing the device's devclass name
 1920  * followed by an ascii representation of the device's unit number
 1921  * (e.g. @c "foo2").
 1922  */
 1923 const char *
 1924 device_get_nameunit(device_t dev)
 1925 {
 1926         return (dev->nameunit);
 1927 }
 1928 
 1929 /**
 1930  * @brief Return the device's unit number.
 1931  */
 1932 int
 1933 device_get_unit(device_t dev)
 1934 {
 1935         return (dev->unit);
 1936 }
 1937 
 1938 /**
 1939  * @brief Return the device's description string
 1940  */
 1941 const char *
 1942 device_get_desc(device_t dev)
 1943 {
 1944         return (dev->desc);
 1945 }
 1946 
 1947 /**
 1948  * @brief Return the device's flags
 1949  */
 1950 u_int32_t
 1951 device_get_flags(device_t dev)
 1952 {
 1953         return (dev->devflags);
 1954 }
 1955 
 1956 struct sysctl_ctx_list *
 1957 device_get_sysctl_ctx(device_t dev)
 1958 {
 1959         return (&dev->sysctl_ctx);
 1960 }
 1961 
 1962 struct sysctl_oid *
 1963 device_get_sysctl_tree(device_t dev)
 1964 {
 1965         return (dev->sysctl_tree);
 1966 }
 1967 
 1968 /**
 1969  * @brief Print the name of the device followed by a colon and a space
 1970  *
 1971  * @returns the number of characters printed
 1972  */
 1973 int
 1974 device_print_prettyname(device_t dev)
 1975 {
 1976         const char *name = device_get_name(dev);
 1977 
 1978         if (name == 0)
 1979                 return (printf("unknown: "));
 1980         return (printf("%s%d: ", name, device_get_unit(dev)));
 1981 }
 1982 
 1983 /**
 1984  * @brief Print the name of the device followed by a colon, a space
 1985  * and the result of calling vprintf() with the value of @p fmt and
 1986  * the following arguments.
 1987  *
 1988  * @returns the number of characters printed
 1989  */
 1990 int
 1991 device_printf(device_t dev, const char * fmt, ...)
 1992 {
 1993         va_list ap;
 1994         int retval;
 1995 
 1996         retval = device_print_prettyname(dev);
 1997         va_start(ap, fmt);
 1998         retval += vprintf(fmt, ap);
 1999         va_end(ap);
 2000         return (retval);
 2001 }
 2002 
 2003 /**
 2004  * @internal
 2005  */
 2006 static void
 2007 device_set_desc_internal(device_t dev, const char* desc, int copy)
 2008 {
 2009         if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
 2010                 free(dev->desc, M_BUS);
 2011                 dev->flags &= ~DF_DESCMALLOCED;
 2012                 dev->desc = NULL;
 2013         }
 2014 
 2015         if (copy && desc) {
 2016                 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
 2017                 if (dev->desc) {
 2018                         strcpy(dev->desc, desc);
 2019                         dev->flags |= DF_DESCMALLOCED;
 2020                 }
 2021         } else {
 2022                 /* Avoid a -Wcast-qual warning */
 2023                 dev->desc = (char *)(uintptr_t) desc;
 2024         }
 2025 
 2026         bus_data_generation_update();
 2027 }
 2028 
 2029 /**
 2030  * @brief Set the device's description
 2031  *
 2032  * The value of @c desc should be a string constant that will not
 2033  * change (at least until the description is changed in a subsequent
 2034  * call to device_set_desc() or device_set_desc_copy()).
 2035  */
 2036 void
 2037 device_set_desc(device_t dev, const char* desc)
 2038 {
 2039         device_set_desc_internal(dev, desc, FALSE);
 2040 }
 2041 
 2042 /**
 2043  * @brief Set the device's description
 2044  *
 2045  * The string pointed to by @c desc is copied. Use this function if
 2046  * the device description is generated, (e.g. with sprintf()).
 2047  */
 2048 void
 2049 device_set_desc_copy(device_t dev, const char* desc)
 2050 {
 2051         device_set_desc_internal(dev, desc, TRUE);
 2052 }
 2053 
 2054 /**
 2055  * @brief Set the device's flags
 2056  */
 2057 void
 2058 device_set_flags(device_t dev, u_int32_t flags)
 2059 {
 2060         dev->devflags = flags;
 2061 }
 2062 
 2063 /**
 2064  * @brief Return the device's softc field
 2065  *
 2066  * The softc is allocated and zeroed when a driver is attached, based
 2067  * on the size field of the driver.
 2068  */
 2069 void *
 2070 device_get_softc(device_t dev)
 2071 {
 2072         return (dev->softc);
 2073 }
 2074 
 2075 /**
 2076  * @brief Set the device's softc field
 2077  *
 2078  * Most drivers do not need to use this since the softc is allocated
 2079  * automatically when the driver is attached.
 2080  */
 2081 void
 2082 device_set_softc(device_t dev, void *softc)
 2083 {
 2084         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
 2085                 free(dev->softc, M_BUS_SC);
 2086         dev->softc = softc;
 2087         if (dev->softc)
 2088                 dev->flags |= DF_EXTERNALSOFTC;
 2089         else
 2090                 dev->flags &= ~DF_EXTERNALSOFTC;
 2091 }
 2092 
 2093 /**
 2094  * @brief Get the device's ivars field
 2095  *
 2096  * The ivars field is used by the parent device to store per-device
 2097  * state (e.g. the physical location of the device or a list of
 2098  * resources).
 2099  */
 2100 void *
 2101 device_get_ivars(device_t dev)
 2102 {
 2103 
 2104         KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
 2105         return (dev->ivars);
 2106 }
 2107 
 2108 /**
 2109  * @brief Set the device's ivars field
 2110  */
 2111 void
 2112 device_set_ivars(device_t dev, void * ivars)
 2113 {
 2114 
 2115         KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
 2116         dev->ivars = ivars;
 2117 }
 2118 
 2119 /**
 2120  * @brief Return the device's state
 2121  */
 2122 device_state_t
 2123 device_get_state(device_t dev)
 2124 {
 2125         return (dev->state);
 2126 }
 2127 
 2128 /**
 2129  * @brief Set the DF_ENABLED flag for the device
 2130  */
 2131 void
 2132 device_enable(device_t dev)
 2133 {
 2134         dev->flags |= DF_ENABLED;
 2135 }
 2136 
 2137 /**
 2138  * @brief Clear the DF_ENABLED flag for the device
 2139  */
 2140 void
 2141 device_disable(device_t dev)
 2142 {
 2143         dev->flags &= ~DF_ENABLED;
 2144 }
 2145 
 2146 /**
 2147  * @brief Increment the busy counter for the device
 2148  */
 2149 void
 2150 device_busy(device_t dev)
 2151 {
 2152         if (dev->state < DS_ATTACHED)
 2153                 panic("device_busy: called for unattached device");
 2154         if (dev->busy == 0 && dev->parent)
 2155                 device_busy(dev->parent);
 2156         dev->busy++;
 2157         dev->state = DS_BUSY;
 2158 }
 2159 
 2160 /**
 2161  * @brief Decrement the busy counter for the device
 2162  */
 2163 void
 2164 device_unbusy(device_t dev)
 2165 {
 2166         if (dev->state != DS_BUSY)
 2167                 panic("device_unbusy: called for non-busy device %s",
 2168                     device_get_nameunit(dev));
 2169         dev->busy--;
 2170         if (dev->busy == 0) {
 2171                 if (dev->parent)
 2172                         device_unbusy(dev->parent);
 2173                 dev->state = DS_ATTACHED;
 2174         }
 2175 }
 2176 
 2177 /**
 2178  * @brief Set the DF_QUIET flag for the device
 2179  */
 2180 void
 2181 device_quiet(device_t dev)
 2182 {
 2183         dev->flags |= DF_QUIET;
 2184 }
 2185 
 2186 /**
 2187  * @brief Clear the DF_QUIET flag for the device
 2188  */
 2189 void
 2190 device_verbose(device_t dev)
 2191 {
 2192         dev->flags &= ~DF_QUIET;
 2193 }
 2194 
 2195 /**
 2196  * @brief Return non-zero if the DF_QUIET flag is set on the device
 2197  */
 2198 int
 2199 device_is_quiet(device_t dev)
 2200 {
 2201         return ((dev->flags & DF_QUIET) != 0);
 2202 }
 2203 
 2204 /**
 2205  * @brief Return non-zero if the DF_ENABLED flag is set on the device
 2206  */
 2207 int
 2208 device_is_enabled(device_t dev)
 2209 {
 2210         return ((dev->flags & DF_ENABLED) != 0);
 2211 }
 2212 
 2213 /**
 2214  * @brief Return non-zero if the device was successfully probed
 2215  */
 2216 int
 2217 device_is_alive(device_t dev)
 2218 {
 2219         return (dev->state >= DS_ALIVE);
 2220 }
 2221 
 2222 /**
 2223  * @brief Return non-zero if the device currently has a driver
 2224  * attached to it
 2225  */
 2226 int
 2227 device_is_attached(device_t dev)
 2228 {
 2229         return (dev->state >= DS_ATTACHED);
 2230 }
 2231 
 2232 /**
 2233  * @brief Set the devclass of a device
 2234  * @see devclass_add_device().
 2235  */
 2236 int
 2237 device_set_devclass(device_t dev, const char *classname)
 2238 {
 2239         devclass_t dc;
 2240         int error;
 2241 
 2242         if (!classname) {
 2243                 if (dev->devclass)
 2244                         devclass_delete_device(dev->devclass, dev);
 2245                 return (0);
 2246         }
 2247 
 2248         if (dev->devclass) {
 2249                 printf("device_set_devclass: device class already set\n");
 2250                 return (EINVAL);
 2251         }
 2252 
 2253         dc = devclass_find_internal(classname, NULL, TRUE);
 2254         if (!dc)
 2255                 return (ENOMEM);
 2256 
 2257         error = devclass_add_device(dc, dev);
 2258 
 2259         bus_data_generation_update();
 2260         return (error);
 2261 }
 2262 
 2263 /**
 2264  * @brief Set the driver of a device
 2265  *
 2266  * @retval 0            success
 2267  * @retval EBUSY        the device already has a driver attached
 2268  * @retval ENOMEM       a memory allocation failure occurred
 2269  */
 2270 int
 2271 device_set_driver(device_t dev, driver_t *driver)
 2272 {
 2273         if (dev->state >= DS_ATTACHED)
 2274                 return (EBUSY);
 2275 
 2276         if (dev->driver == driver)
 2277                 return (0);
 2278 
 2279         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
 2280                 free(dev->softc, M_BUS_SC);
 2281                 dev->softc = NULL;
 2282         }
 2283         kobj_delete((kobj_t) dev, NULL);
 2284         dev->driver = driver;
 2285         if (driver) {
 2286                 kobj_init((kobj_t) dev, (kobj_class_t) driver);
 2287                 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
 2288                         dev->softc = malloc(driver->size, M_BUS_SC,
 2289                             M_NOWAIT | M_ZERO);
 2290                         if (!dev->softc) {
 2291                                 kobj_delete((kobj_t) dev, NULL);
 2292                                 kobj_init((kobj_t) dev, &null_class);
 2293                                 dev->driver = NULL;
 2294                                 return (ENOMEM);
 2295                         }
 2296                 }
 2297         } else {
 2298                 kobj_init((kobj_t) dev, &null_class);
 2299         }
 2300 
 2301         bus_data_generation_update();
 2302         return (0);
 2303 }
 2304 
 2305 /**
 2306  * @brief Probe a device and attach a driver if possible
 2307  *
 2308  * This function is the core of the device autoconfiguration
 2309  * system. Its purpose is to select a suitable driver for a device and
 2310  * then call that driver to initialise the hardware appropriately. The
 2311  * driver is selected by calling the DEVICE_PROBE() method of a set of
 2312  * candidate drivers and then choosing the driver which returned the
 2313  * best value. This driver is then attached to the device using
 2314  * device_attach().
 2315  *
 2316  * The set of suitable drivers is taken from the list of drivers in
 2317  * the parent device's devclass. If the device was originally created
 2318  * with a specific class name (see device_add_child()), only drivers
 2319  * with that name are probed, otherwise all drivers in the devclass
 2320  * are probed. If no drivers return successful probe values in the
 2321  * parent devclass, the search continues in the parent of that
 2322  * devclass (see devclass_get_parent()) if any.
 2323  *
 2324  * @param dev           the device to initialise
 2325  *
 2326  * @retval 0            success
 2327  * @retval ENXIO        no driver was found
 2328  * @retval ENOMEM       memory allocation failure
 2329  * @retval non-zero     some other unix error code
 2330  */
 2331 int
 2332 device_probe_and_attach(device_t dev)
 2333 {
 2334         int error;
 2335 
 2336         GIANT_REQUIRED;
 2337 
 2338         if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
 2339                 return (0);
 2340 
 2341         if (!(dev->flags & DF_ENABLED)) {
 2342                 if (bootverbose && device_get_name(dev) != NULL) {
 2343                         device_print_prettyname(dev);
 2344                         printf("not probed (disabled)\n");
 2345                 }
 2346                 return (0);
 2347         }
 2348         if ((error = device_probe_child(dev->parent, dev)) != 0) {
 2349                 if (!(dev->flags & DF_DONENOMATCH)) {
 2350                         BUS_PROBE_NOMATCH(dev->parent, dev);
 2351                         devnomatch(dev);
 2352                         dev->flags |= DF_DONENOMATCH;
 2353                 }
 2354                 return (error);
 2355         }
 2356         error = device_attach(dev);
 2357 
 2358         return (error);
 2359 }
 2360 
 2361 /**
 2362  * @brief Attach a device driver to a device
 2363  *
 2364  * This function is a wrapper around the DEVICE_ATTACH() driver
 2365  * method. In addition to calling DEVICE_ATTACH(), it initialises the
 2366  * device's sysctl tree, optionally prints a description of the device
 2367  * and queues a notification event for user-based device management
 2368  * services.
 2369  *
 2370  * Normally this function is only called internally from
 2371  * device_probe_and_attach().
 2372  *
 2373  * @param dev           the device to initialise
 2374  *
 2375  * @retval 0            success
 2376  * @retval ENXIO        no driver was found
 2377  * @retval ENOMEM       memory allocation failure
 2378  * @retval non-zero     some other unix error code
 2379  */
 2380 int
 2381 device_attach(device_t dev)
 2382 {
 2383         int error;
 2384 
 2385         device_sysctl_init(dev);
 2386         if (!device_is_quiet(dev))
 2387                 device_print_child(dev->parent, dev);
 2388         if ((error = DEVICE_ATTACH(dev)) != 0) {
 2389                 printf("device_attach: %s%d attach returned %d\n",
 2390                     dev->driver->name, dev->unit, error);
 2391                 /* Unset the class; set in device_probe_child */
 2392                 if (dev->devclass == NULL)
 2393                         device_set_devclass(dev, NULL);
 2394                 device_set_driver(dev, NULL);
 2395                 device_sysctl_fini(dev);
 2396                 dev->state = DS_NOTPRESENT;
 2397                 return (error);
 2398         }
 2399         dev->state = DS_ATTACHED;
 2400         devadded(dev);
 2401         return (0);
 2402 }
 2403 
 2404 /**
 2405  * @brief Detach a driver from a device
 2406  *
 2407  * This function is a wrapper around the DEVICE_DETACH() driver
 2408  * method. If the call to DEVICE_DETACH() succeeds, it calls
 2409  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
 2410  * notification event for user-based device management services and
 2411  * cleans up the device's sysctl tree.
 2412  *
 2413  * @param dev           the device to un-initialise
 2414  *
 2415  * @retval 0            success
 2416  * @retval ENXIO        no driver was found
 2417  * @retval ENOMEM       memory allocation failure
 2418  * @retval non-zero     some other unix error code
 2419  */
 2420 int
 2421 device_detach(device_t dev)
 2422 {
 2423         int error;
 2424 
 2425         GIANT_REQUIRED;
 2426 
 2427         PDEBUG(("%s", DEVICENAME(dev)));
 2428         if (dev->state == DS_BUSY)
 2429                 return (EBUSY);
 2430         if (dev->state != DS_ATTACHED)
 2431                 return (0);
 2432 
 2433         if ((error = DEVICE_DETACH(dev)) != 0)
 2434                 return (error);
 2435         devremoved(dev);
 2436         device_printf(dev, "detached\n");
 2437         if (dev->parent)
 2438                 BUS_CHILD_DETACHED(dev->parent, dev);
 2439 
 2440         if (!(dev->flags & DF_FIXEDCLASS))
 2441                 devclass_delete_device(dev->devclass, dev);
 2442 
 2443         dev->state = DS_NOTPRESENT;
 2444         device_set_driver(dev, NULL);
 2445         device_set_desc(dev, NULL);
 2446         device_sysctl_fini(dev);
 2447 
 2448         return (0);
 2449 }
 2450 
 2451 /**
 2452  * @brief Tells a driver to quiesce itself.
 2453  *
 2454  * This function is a wrapper around the DEVICE_QUIESCE() driver
 2455  * method. If the call to DEVICE_QUIESCE() succeeds.
 2456  *
 2457  * @param dev           the device to quiesce
 2458  *
 2459  * @retval 0            success
 2460  * @retval ENXIO        no driver was found
 2461  * @retval ENOMEM       memory allocation failure
 2462  * @retval non-zero     some other unix error code
 2463  */
 2464 int
 2465 device_quiesce(device_t dev)
 2466 {
 2467 
 2468         PDEBUG(("%s", DEVICENAME(dev)));
 2469         if (dev->state == DS_BUSY)
 2470                 return (EBUSY);
 2471         if (dev->state != DS_ATTACHED)
 2472                 return (0);
 2473 
 2474         return (DEVICE_QUIESCE(dev));
 2475 }
 2476 
 2477 /**
 2478  * @brief Notify a device of system shutdown
 2479  *
 2480  * This function calls the DEVICE_SHUTDOWN() driver method if the
 2481  * device currently has an attached driver.
 2482  *
 2483  * @returns the value returned by DEVICE_SHUTDOWN()
 2484  */
 2485 int
 2486 device_shutdown(device_t dev)
 2487 {
 2488         if (dev->state < DS_ATTACHED)
 2489                 return (0);
 2490         return (DEVICE_SHUTDOWN(dev));
 2491 }
 2492 
 2493 /**
 2494  * @brief Set the unit number of a device
 2495  *
 2496  * This function can be used to override the unit number used for a
 2497  * device (e.g. to wire a device to a pre-configured unit number).
 2498  */
 2499 int
 2500 device_set_unit(device_t dev, int unit)
 2501 {
 2502         devclass_t dc;
 2503         int err;
 2504 
 2505         dc = device_get_devclass(dev);
 2506         if (unit < dc->maxunit && dc->devices[unit])
 2507                 return (EBUSY);
 2508         err = devclass_delete_device(dc, dev);
 2509         if (err)
 2510                 return (err);
 2511         dev->unit = unit;
 2512         err = devclass_add_device(dc, dev);
 2513         if (err)
 2514                 return (err);
 2515 
 2516         bus_data_generation_update();
 2517         return (0);
 2518 }
 2519 
 2520 /*======================================*/
 2521 /*
 2522  * Some useful method implementations to make life easier for bus drivers.
 2523  */
 2524 
 2525 /**
 2526  * @brief Initialise a resource list.
 2527  *
 2528  * @param rl            the resource list to initialise
 2529  */
 2530 void
 2531 resource_list_init(struct resource_list *rl)
 2532 {
 2533         STAILQ_INIT(rl);
 2534 }
 2535 
 2536 /**
 2537  * @brief Reclaim memory used by a resource list.
 2538  *
 2539  * This function frees the memory for all resource entries on the list
 2540  * (if any).
 2541  *
 2542  * @param rl            the resource list to free               
 2543  */
 2544 void
 2545 resource_list_free(struct resource_list *rl)
 2546 {
 2547         struct resource_list_entry *rle;
 2548 
 2549         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 2550                 if (rle->res)
 2551                         panic("resource_list_free: resource entry is busy");
 2552                 STAILQ_REMOVE_HEAD(rl, link);
 2553                 free(rle, M_BUS);
 2554         }
 2555 }
 2556 
 2557 /**
 2558  * @brief Add a resource entry.
 2559  *
 2560  * This function adds a resource entry using the given @p type, @p
 2561  * start, @p end and @p count values. A rid value is chosen by
 2562  * searching sequentially for the first unused rid starting at zero.
 2563  *
 2564  * @param rl            the resource list to edit
 2565  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2566  * @param start         the start address of the resource
 2567  * @param end           the end address of the resource
 2568  * @param count         XXX end-start+1
 2569  */
 2570 int
 2571 resource_list_add_next(struct resource_list *rl, int type, u_long start,
 2572     u_long end, u_long count)
 2573 {
 2574         int rid;
 2575 
 2576         rid = 0;
 2577         while (resource_list_find(rl, type, rid) != NULL)
 2578                 rid++;
 2579         resource_list_add(rl, type, rid, start, end, count);
 2580         return (rid);
 2581 }
 2582 
 2583 /**
 2584  * @brief Add or modify a resource entry.
 2585  *
 2586  * If an existing entry exists with the same type and rid, it will be
 2587  * modified using the given values of @p start, @p end and @p
 2588  * count. If no entry exists, a new one will be created using the
 2589  * given values.  The resource list entry that matches is then returned.
 2590  *
 2591  * @param rl            the resource list to edit
 2592  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2593  * @param rid           the resource identifier
 2594  * @param start         the start address of the resource
 2595  * @param end           the end address of the resource
 2596  * @param count         XXX end-start+1
 2597  */
 2598 struct resource_list_entry *
 2599 resource_list_add(struct resource_list *rl, int type, int rid,
 2600     u_long start, u_long end, u_long count)
 2601 {
 2602         struct resource_list_entry *rle;
 2603 
 2604         rle = resource_list_find(rl, type, rid);
 2605         if (!rle) {
 2606                 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
 2607                     M_NOWAIT);
 2608                 if (!rle)
 2609                         panic("resource_list_add: can't record entry");
 2610                 STAILQ_INSERT_TAIL(rl, rle, link);
 2611                 rle->type = type;
 2612                 rle->rid = rid;
 2613                 rle->res = NULL;
 2614         }
 2615 
 2616         if (rle->res)
 2617                 panic("resource_list_add: resource entry is busy");
 2618 
 2619         rle->start = start;
 2620         rle->end = end;
 2621         rle->count = count;
 2622         return (rle);
 2623 }
 2624 
 2625 /**
 2626  * @brief Find a resource entry by type and rid.
 2627  *
 2628  * @param rl            the resource list to search
 2629  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2630  * @param rid           the resource identifier
 2631  *
 2632  * @returns the resource entry pointer or NULL if there is no such
 2633  * entry.
 2634  */
 2635 struct resource_list_entry *
 2636 resource_list_find(struct resource_list *rl, int type, int rid)
 2637 {
 2638         struct resource_list_entry *rle;
 2639 
 2640         STAILQ_FOREACH(rle, rl, link) {
 2641                 if (rle->type == type && rle->rid == rid)
 2642                         return (rle);
 2643         }
 2644         return (NULL);
 2645 }
 2646 
 2647 /**
 2648  * @brief Delete a resource entry.
 2649  *
 2650  * @param rl            the resource list to edit
 2651  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2652  * @param rid           the resource identifier
 2653  */
 2654 void
 2655 resource_list_delete(struct resource_list *rl, int type, int rid)
 2656 {
 2657         struct resource_list_entry *rle = resource_list_find(rl, type, rid);
 2658 
 2659         if (rle) {
 2660                 if (rle->res != NULL)
 2661                         panic("resource_list_delete: resource has not been released");
 2662                 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
 2663                 free(rle, M_BUS);
 2664         }
 2665 }
 2666 
 2667 /**
 2668  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
 2669  *
 2670  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
 2671  * and passing the allocation up to the parent of @p bus. This assumes
 2672  * that the first entry of @c device_get_ivars(child) is a struct
 2673  * resource_list. This also handles 'passthrough' allocations where a
 2674  * child is a remote descendant of bus by passing the allocation up to
 2675  * the parent of bus.
 2676  *
 2677  * Typically, a bus driver would store a list of child resources
 2678  * somewhere in the child device's ivars (see device_get_ivars()) and
 2679  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
 2680  * then call resource_list_alloc() to perform the allocation.
 2681  *
 2682  * @param rl            the resource list to allocate from
 2683  * @param bus           the parent device of @p child
 2684  * @param child         the device which is requesting an allocation
 2685  * @param type          the type of resource to allocate
 2686  * @param rid           a pointer to the resource identifier
 2687  * @param start         hint at the start of the resource range - pass
 2688  *                      @c 0UL for any start address
 2689  * @param end           hint at the end of the resource range - pass
 2690  *                      @c ~0UL for any end address
 2691  * @param count         hint at the size of range required - pass @c 1
 2692  *                      for any size
 2693  * @param flags         any extra flags to control the resource
 2694  *                      allocation - see @c RF_XXX flags in
 2695  *                      <sys/rman.h> for details
 2696  * 
 2697  * @returns             the resource which was allocated or @c NULL if no
 2698  *                      resource could be allocated
 2699  */
 2700 struct resource *
 2701 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
 2702     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
 2703 {
 2704         struct resource_list_entry *rle = NULL;
 2705         int passthrough = (device_get_parent(child) != bus);
 2706         int isdefault = (start == 0UL && end == ~0UL);
 2707 
 2708         if (passthrough) {
 2709                 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 2710                     type, rid, start, end, count, flags));
 2711         }
 2712 
 2713         rle = resource_list_find(rl, type, *rid);
 2714 
 2715         if (!rle)
 2716                 return (NULL);          /* no resource of that type/rid */
 2717 
 2718         if (rle->res)
 2719                 panic("resource_list_alloc: resource entry is busy");
 2720 
 2721         if (isdefault) {
 2722                 start = rle->start;
 2723                 count = ulmax(count, rle->count);
 2724                 end = ulmax(rle->end, start + count - 1);
 2725         }
 2726 
 2727         rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 2728             type, rid, start, end, count, flags);
 2729 
 2730         /*
 2731          * Record the new range.
 2732          */
 2733         if (rle->res) {
 2734                 rle->start = rman_get_start(rle->res);
 2735                 rle->end = rman_get_end(rle->res);
 2736                 rle->count = count;
 2737         }
 2738 
 2739         return (rle->res);
 2740 }
 2741 
 2742 /**
 2743  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
 2744  * 
 2745  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
 2746  * used with resource_list_alloc().
 2747  * 
 2748  * @param rl            the resource list which was allocated from
 2749  * @param bus           the parent device of @p child
 2750  * @param child         the device which is requesting a release
 2751  * @param type          the type of resource to allocate
 2752  * @param rid           the resource identifier
 2753  * @param res           the resource to release
 2754  * 
 2755  * @retval 0            success
 2756  * @retval non-zero     a standard unix error code indicating what
 2757  *                      error condition prevented the operation
 2758  */
 2759 int
 2760 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
 2761     int type, int rid, struct resource *res)
 2762 {
 2763         struct resource_list_entry *rle = NULL;
 2764         int passthrough = (device_get_parent(child) != bus);
 2765         int error;
 2766 
 2767         if (passthrough) {
 2768                 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 2769                     type, rid, res));
 2770         }
 2771 
 2772         rle = resource_list_find(rl, type, rid);
 2773 
 2774         if (!rle)
 2775                 panic("resource_list_release: can't find resource");
 2776         if (!rle->res)
 2777                 panic("resource_list_release: resource entry is not busy");
 2778 
 2779         error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 2780             type, rid, res);
 2781         if (error)
 2782                 return (error);
 2783 
 2784         rle->res = NULL;
 2785         return (0);
 2786 }
 2787 
 2788 /**
 2789  * @brief Print a description of resources in a resource list
 2790  *
 2791  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
 2792  * The name is printed if at least one resource of the given type is available.
 2793  * The format is used to print resource start and end.
 2794  *
 2795  * @param rl            the resource list to print
 2796  * @param name          the name of @p type, e.g. @c "memory"
 2797  * @param type          type type of resource entry to print
 2798  * @param format        printf(9) format string to print resource
 2799  *                      start and end values
 2800  * 
 2801  * @returns             the number of characters printed
 2802  */
 2803 int
 2804 resource_list_print_type(struct resource_list *rl, const char *name, int type,
 2805     const char *format)
 2806 {
 2807         struct resource_list_entry *rle;
 2808         int printed, retval;
 2809 
 2810         printed = 0;
 2811         retval = 0;
 2812         /* Yes, this is kinda cheating */
 2813         STAILQ_FOREACH(rle, rl, link) {
 2814                 if (rle->type == type) {
 2815                         if (printed == 0)
 2816                                 retval += printf(" %s ", name);
 2817                         else
 2818                                 retval += printf(",");
 2819                         printed++;
 2820                         retval += printf(format, rle->start);
 2821                         if (rle->count > 1) {
 2822                                 retval += printf("-");
 2823                                 retval += printf(format, rle->start +
 2824                                                  rle->count - 1);
 2825                         }
 2826                 }
 2827         }
 2828         return (retval);
 2829 }
 2830 
 2831 /**
 2832  * @brief Releases all the resources in a list.
 2833  *
 2834  * @param rl            The resource list to purge.
 2835  * 
 2836  * @returns             nothing
 2837  */
 2838 void
 2839 resource_list_purge(struct resource_list *rl)
 2840 {
 2841         struct resource_list_entry *rle;
 2842 
 2843         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 2844                 if (rle->res)
 2845                         bus_release_resource(rman_get_device(rle->res),
 2846                             rle->type, rle->rid, rle->res);
 2847                 STAILQ_REMOVE_HEAD(rl, link);
 2848                 free(rle, M_BUS);
 2849         }
 2850 }
 2851 
 2852 device_t
 2853 bus_generic_add_child(device_t dev, int order, const char *name, int unit)
 2854 {
 2855 
 2856         return (device_add_child_ordered(dev, order, name, unit));
 2857 }
 2858 
 2859 /**
 2860  * @brief Helper function for implementing DEVICE_PROBE()
 2861  *
 2862  * This function can be used to help implement the DEVICE_PROBE() for
 2863  * a bus (i.e. a device which has other devices attached to it). It
 2864  * calls the DEVICE_IDENTIFY() method of each driver in the device's
 2865  * devclass.
 2866  */
 2867 int
 2868 bus_generic_probe(device_t dev)
 2869 {
 2870         devclass_t dc = dev->devclass;
 2871         driverlink_t dl;
 2872 
 2873         TAILQ_FOREACH(dl, &dc->drivers, link) {
 2874                 DEVICE_IDENTIFY(dl->driver, dev);
 2875         }
 2876 
 2877         return (0);
 2878 }
 2879 
 2880 /**
 2881  * @brief Helper function for implementing DEVICE_ATTACH()
 2882  *
 2883  * This function can be used to help implement the DEVICE_ATTACH() for
 2884  * a bus. It calls device_probe_and_attach() for each of the device's
 2885  * children.
 2886  */
 2887 int
 2888 bus_generic_attach(device_t dev)
 2889 {
 2890         device_t child;
 2891 
 2892         TAILQ_FOREACH(child, &dev->children, link) {
 2893                 device_probe_and_attach(child);
 2894         }
 2895 
 2896         return (0);
 2897 }
 2898 
 2899 /**
 2900  * @brief Helper function for implementing DEVICE_DETACH()
 2901  *
 2902  * This function can be used to help implement the DEVICE_DETACH() for
 2903  * a bus. It calls device_detach() for each of the device's
 2904  * children.
 2905  */
 2906 int
 2907 bus_generic_detach(device_t dev)
 2908 {
 2909         device_t child;
 2910         int error;
 2911 
 2912         if (dev->state != DS_ATTACHED)
 2913                 return (EBUSY);
 2914 
 2915         TAILQ_FOREACH(child, &dev->children, link) {
 2916                 if ((error = device_detach(child)) != 0)
 2917                         return (error);
 2918         }
 2919 
 2920         return (0);
 2921 }
 2922 
 2923 /**
 2924  * @brief Helper function for implementing DEVICE_SHUTDOWN()
 2925  *
 2926  * This function can be used to help implement the DEVICE_SHUTDOWN()
 2927  * for a bus. It calls device_shutdown() for each of the device's
 2928  * children.
 2929  */
 2930 int
 2931 bus_generic_shutdown(device_t dev)
 2932 {
 2933         device_t child;
 2934 
 2935         TAILQ_FOREACH(child, &dev->children, link) {
 2936                 device_shutdown(child);
 2937         }
 2938 
 2939         return (0);
 2940 }
 2941 
 2942 /**
 2943  * @brief Helper function for implementing DEVICE_SUSPEND()
 2944  *
 2945  * This function can be used to help implement the DEVICE_SUSPEND()
 2946  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
 2947  * children. If any call to DEVICE_SUSPEND() fails, the suspend
 2948  * operation is aborted and any devices which were suspended are
 2949  * resumed immediately by calling their DEVICE_RESUME() methods.
 2950  */
 2951 int
 2952 bus_generic_suspend(device_t dev)
 2953 {
 2954         int             error;
 2955         device_t        child, child2;
 2956 
 2957         TAILQ_FOREACH(child, &dev->children, link) {
 2958                 error = DEVICE_SUSPEND(child);
 2959                 if (error) {
 2960                         for (child2 = TAILQ_FIRST(&dev->children);
 2961                              child2 && child2 != child;
 2962                              child2 = TAILQ_NEXT(child2, link))
 2963                                 DEVICE_RESUME(child2);
 2964                         return (error);
 2965                 }
 2966         }
 2967         return (0);
 2968 }
 2969 
 2970 /**
 2971  * @brief Helper function for implementing DEVICE_RESUME()
 2972  *
 2973  * This function can be used to help implement the DEVICE_RESUME() for
 2974  * a bus. It calls DEVICE_RESUME() on each of the device's children.
 2975  */
 2976 int
 2977 bus_generic_resume(device_t dev)
 2978 {
 2979         device_t        child;
 2980 
 2981         TAILQ_FOREACH(child, &dev->children, link) {
 2982                 DEVICE_RESUME(child);
 2983                 /* if resume fails, there's nothing we can usefully do... */
 2984         }
 2985         return (0);
 2986 }
 2987 
 2988 /**
 2989  * @brief Helper function for implementing BUS_PRINT_CHILD().
 2990  *
 2991  * This function prints the first part of the ascii representation of
 2992  * @p child, including its name, unit and description (if any - see
 2993  * device_set_desc()).
 2994  *
 2995  * @returns the number of characters printed
 2996  */
 2997 int
 2998 bus_print_child_header(device_t dev, device_t child)
 2999 {
 3000         int     retval = 0;
 3001 
 3002         if (device_get_desc(child)) {
 3003                 retval += device_printf(child, "<%s>", device_get_desc(child));
 3004         } else {
 3005                 retval += printf("%s", device_get_nameunit(child));
 3006         }
 3007 
 3008         return (retval);
 3009 }
 3010 
 3011 /**
 3012  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3013  *
 3014  * This function prints the last part of the ascii representation of
 3015  * @p child, which consists of the string @c " on " followed by the
 3016  * name and unit of the @p dev.
 3017  *
 3018  * @returns the number of characters printed
 3019  */
 3020 int
 3021 bus_print_child_footer(device_t dev, device_t child)
 3022 {
 3023         return (printf(" on %s\n", device_get_nameunit(dev)));
 3024 }
 3025 
 3026 /**
 3027  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3028  *
 3029  * This function simply calls bus_print_child_header() followed by
 3030  * bus_print_child_footer().
 3031  *
 3032  * @returns the number of characters printed
 3033  */
 3034 int
 3035 bus_generic_print_child(device_t dev, device_t child)
 3036 {
 3037         int     retval = 0;
 3038 
 3039         retval += bus_print_child_header(dev, child);
 3040         retval += bus_print_child_footer(dev, child);
 3041 
 3042         return (retval);
 3043 }
 3044 
 3045 /**
 3046  * @brief Stub function for implementing BUS_READ_IVAR().
 3047  * 
 3048  * @returns ENOENT
 3049  */
 3050 int
 3051 bus_generic_read_ivar(device_t dev, device_t child, int index,
 3052     uintptr_t * result)
 3053 {
 3054         return (ENOENT);
 3055 }
 3056 
 3057 /**
 3058  * @brief Stub function for implementing BUS_WRITE_IVAR().
 3059  * 
 3060  * @returns ENOENT
 3061  */
 3062 int
 3063 bus_generic_write_ivar(device_t dev, device_t child, int index,
 3064     uintptr_t value)
 3065 {
 3066         return (ENOENT);
 3067 }
 3068 
 3069 /**
 3070  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
 3071  * 
 3072  * @returns NULL
 3073  */
 3074 struct resource_list *
 3075 bus_generic_get_resource_list(device_t dev, device_t child)
 3076 {
 3077         return (NULL);
 3078 }
 3079 
 3080 /**
 3081  * @brief Helper function for implementing BUS_DRIVER_ADDED().
 3082  *
 3083  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
 3084  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
 3085  * and then calls device_probe_and_attach() for each unattached child.
 3086  */
 3087 void
 3088 bus_generic_driver_added(device_t dev, driver_t *driver)
 3089 {
 3090         device_t child;
 3091 
 3092         DEVICE_IDENTIFY(driver, dev);
 3093         TAILQ_FOREACH(child, &dev->children, link) {
 3094                 if (child->state == DS_NOTPRESENT ||
 3095                     (child->flags & DF_REBID))
 3096                         device_probe_and_attach(child);
 3097         }
 3098 }
 3099 
 3100 /**
 3101  * @brief Helper function for implementing BUS_SETUP_INTR().
 3102  *
 3103  * This simple implementation of BUS_SETUP_INTR() simply calls the
 3104  * BUS_SETUP_INTR() method of the parent of @p dev.
 3105  */
 3106 int
 3107 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
 3108     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 
 3109     void **cookiep)
 3110 {
 3111         /* Propagate up the bus hierarchy until someone handles it. */
 3112         if (dev->parent)
 3113                 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
 3114                     filter, intr, arg, cookiep));
 3115         return (EINVAL);
 3116 }
 3117 
 3118 /**
 3119  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
 3120  *
 3121  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
 3122  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
 3123  */
 3124 int
 3125 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
 3126     void *cookie)
 3127 {
 3128         /* Propagate up the bus hierarchy until someone handles it. */
 3129         if (dev->parent)
 3130                 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
 3131         return (EINVAL);
 3132 }
 3133 
 3134 /**
 3135  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3136  *
 3137  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
 3138  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
 3139  */
 3140 struct resource *
 3141 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
 3142     u_long start, u_long end, u_long count, u_int flags)
 3143 {
 3144         /* Propagate up the bus hierarchy until someone handles it. */
 3145         if (dev->parent)
 3146                 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
 3147                     start, end, count, flags));
 3148         return (NULL);
 3149 }
 3150 
 3151 /**
 3152  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3153  *
 3154  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
 3155  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
 3156  */
 3157 int
 3158 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
 3159     struct resource *r)
 3160 {
 3161         /* Propagate up the bus hierarchy until someone handles it. */
 3162         if (dev->parent)
 3163                 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
 3164                     r));
 3165         return (EINVAL);
 3166 }
 3167 
 3168 /**
 3169  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
 3170  *
 3171  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
 3172  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
 3173  */
 3174 int
 3175 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
 3176     struct resource *r)
 3177 {
 3178         /* Propagate up the bus hierarchy until someone handles it. */
 3179         if (dev->parent)
 3180                 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3181                     r));
 3182         return (EINVAL);
 3183 }
 3184 
 3185 /**
 3186  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
 3187  *
 3188  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
 3189  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
 3190  */
 3191 int
 3192 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
 3193     int rid, struct resource *r)
 3194 {
 3195         /* Propagate up the bus hierarchy until someone handles it. */
 3196         if (dev->parent)
 3197                 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3198                     r));
 3199         return (EINVAL);
 3200 }
 3201 
 3202 /**
 3203  * @brief Helper function for implementing BUS_BIND_INTR().
 3204  *
 3205  * This simple implementation of BUS_BIND_INTR() simply calls the
 3206  * BUS_BIND_INTR() method of the parent of @p dev.
 3207  */
 3208 int
 3209 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
 3210     int cpu)
 3211 {
 3212 
 3213         /* Propagate up the bus hierarchy until someone handles it. */
 3214         if (dev->parent)
 3215                 return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
 3216         return (EINVAL);
 3217 }
 3218 
 3219 /**
 3220  * @brief Helper function for implementing BUS_CONFIG_INTR().
 3221  *
 3222  * This simple implementation of BUS_CONFIG_INTR() simply calls the
 3223  * BUS_CONFIG_INTR() method of the parent of @p dev.
 3224  */
 3225 int
 3226 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
 3227     enum intr_polarity pol)
 3228 {
 3229 
 3230         /* Propagate up the bus hierarchy until someone handles it. */
 3231         if (dev->parent)
 3232                 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
 3233         return (EINVAL);
 3234 }
 3235 
 3236 /**
 3237  * @brief Helper function for implementing BUS_GET_DMA_TAG().
 3238  *
 3239  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
 3240  * BUS_GET_DMA_TAG() method of the parent of @p dev.
 3241  */
 3242 bus_dma_tag_t
 3243 bus_generic_get_dma_tag(device_t dev, device_t child)
 3244 {
 3245 
 3246         /* Propagate up the bus hierarchy until someone handles it. */
 3247         if (dev->parent != NULL)
 3248                 return (BUS_GET_DMA_TAG(dev->parent, child));
 3249         return (NULL);
 3250 }
 3251 
 3252 /**
 3253  * @brief Helper function for implementing BUS_GET_RESOURCE().
 3254  *
 3255  * This implementation of BUS_GET_RESOURCE() uses the
 3256  * resource_list_find() function to do most of the work. It calls
 3257  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3258  * search.
 3259  */
 3260 int
 3261 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
 3262     u_long *startp, u_long *countp)
 3263 {
 3264         struct resource_list *          rl = NULL;
 3265         struct resource_list_entry *    rle = NULL;
 3266 
 3267         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3268         if (!rl)
 3269                 return (EINVAL);
 3270 
 3271         rle = resource_list_find(rl, type, rid);
 3272         if (!rle)
 3273                 return (ENOENT);
 3274 
 3275         if (startp)
 3276                 *startp = rle->start;
 3277         if (countp)
 3278                 *countp = rle->count;
 3279 
 3280         return (0);
 3281 }
 3282 
 3283 /**
 3284  * @brief Helper function for implementing BUS_SET_RESOURCE().
 3285  *
 3286  * This implementation of BUS_SET_RESOURCE() uses the
 3287  * resource_list_add() function to do most of the work. It calls
 3288  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3289  * edit.
 3290  */
 3291 int
 3292 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
 3293     u_long start, u_long count)
 3294 {
 3295         struct resource_list *          rl = NULL;
 3296 
 3297         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3298         if (!rl)
 3299                 return (EINVAL);
 3300 
 3301         resource_list_add(rl, type, rid, start, (start + count - 1), count);
 3302 
 3303         return (0);
 3304 }
 3305 
 3306 /**
 3307  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
 3308  *
 3309  * This implementation of BUS_DELETE_RESOURCE() uses the
 3310  * resource_list_delete() function to do most of the work. It calls
 3311  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3312  * edit.
 3313  */
 3314 void
 3315 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
 3316 {
 3317         struct resource_list *          rl = NULL;
 3318 
 3319         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3320         if (!rl)
 3321                 return;
 3322 
 3323         resource_list_delete(rl, type, rid);
 3324 
 3325         return;
 3326 }
 3327 
 3328 /**
 3329  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3330  *
 3331  * This implementation of BUS_RELEASE_RESOURCE() uses the
 3332  * resource_list_release() function to do most of the work. It calls
 3333  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3334  */
 3335 int
 3336 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
 3337     int rid, struct resource *r)
 3338 {
 3339         struct resource_list *          rl = NULL;
 3340 
 3341         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3342         if (!rl)
 3343                 return (EINVAL);
 3344 
 3345         return (resource_list_release(rl, dev, child, type, rid, r));
 3346 }
 3347 
 3348 /**
 3349  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3350  *
 3351  * This implementation of BUS_ALLOC_RESOURCE() uses the
 3352  * resource_list_alloc() function to do most of the work. It calls
 3353  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3354  */
 3355 struct resource *
 3356 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
 3357     int *rid, u_long start, u_long end, u_long count, u_int flags)
 3358 {
 3359         struct resource_list *          rl = NULL;
 3360 
 3361         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3362         if (!rl)
 3363                 return (NULL);
 3364 
 3365         return (resource_list_alloc(rl, dev, child, type, rid,
 3366             start, end, count, flags));
 3367 }
 3368 
 3369 /**
 3370  * @brief Helper function for implementing BUS_CHILD_PRESENT().
 3371  *
 3372  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
 3373  * BUS_CHILD_PRESENT() method of the parent of @p dev.
 3374  */
 3375 int
 3376 bus_generic_child_present(device_t dev, device_t child)
 3377 {
 3378         return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
 3379 }
 3380 
 3381 /*
 3382  * Some convenience functions to make it easier for drivers to use the
 3383  * resource-management functions.  All these really do is hide the
 3384  * indirection through the parent's method table, making for slightly
 3385  * less-wordy code.  In the future, it might make sense for this code
 3386  * to maintain some sort of a list of resources allocated by each device.
 3387  */
 3388 
 3389 int
 3390 bus_alloc_resources(device_t dev, struct resource_spec *rs,
 3391     struct resource **res)
 3392 {
 3393         int i;
 3394 
 3395         for (i = 0; rs[i].type != -1; i++)
 3396                 res[i] = NULL;
 3397         for (i = 0; rs[i].type != -1; i++) {
 3398                 res[i] = bus_alloc_resource_any(dev,
 3399                     rs[i].type, &rs[i].rid, rs[i].flags);
 3400                 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
 3401                         bus_release_resources(dev, rs, res);
 3402                         return (ENXIO);
 3403                 }
 3404         }
 3405         return (0);
 3406 }
 3407 
 3408 void
 3409 bus_release_resources(device_t dev, const struct resource_spec *rs,
 3410     struct resource **res)
 3411 {
 3412         int i;
 3413 
 3414         for (i = 0; rs[i].type != -1; i++)
 3415                 if (res[i] != NULL) {
 3416                         bus_release_resource(
 3417                             dev, rs[i].type, rs[i].rid, res[i]);
 3418                         res[i] = NULL;
 3419                 }
 3420 }
 3421 
 3422 /**
 3423  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
 3424  *
 3425  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
 3426  * parent of @p dev.
 3427  */
 3428 struct resource *
 3429 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
 3430     u_long count, u_int flags)
 3431 {
 3432         if (dev->parent == NULL)
 3433                 return (NULL);
 3434         return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
 3435             count, flags));
 3436 }
 3437 
 3438 /**
 3439  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
 3440  *
 3441  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
 3442  * parent of @p dev.
 3443  */
 3444 int
 3445 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
 3446 {
 3447         if (dev->parent == NULL)
 3448                 return (EINVAL);
 3449         return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 3450 }
 3451 
 3452 /**
 3453  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
 3454  *
 3455  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
 3456  * parent of @p dev.
 3457  */
 3458 int
 3459 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
 3460 {
 3461         if (dev->parent == NULL)
 3462                 return (EINVAL);
 3463         return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 3464 }
 3465 
 3466 /**
 3467  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
 3468  *
 3469  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
 3470  * parent of @p dev.
 3471  */
 3472 int
 3473 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
 3474 {
 3475         if (dev->parent == NULL)
 3476                 return (EINVAL);
 3477         return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
 3478 }
 3479 
 3480 /**
 3481  * @brief Wrapper function for BUS_SETUP_INTR().
 3482  *
 3483  * This function simply calls the BUS_SETUP_INTR() method of the
 3484  * parent of @p dev.
 3485  */
 3486 int
 3487 bus_setup_intr(device_t dev, struct resource *r, int flags,
 3488     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
 3489 {
 3490         int error;
 3491 
 3492         if (dev->parent != NULL) {
 3493                 error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
 3494                     filter, handler, arg, cookiep);
 3495                 if (error == 0) {
 3496                         if (handler != NULL && !(flags & INTR_MPSAFE))
 3497                                 device_printf(dev, "[GIANT-LOCKED]\n");
 3498                         if (bootverbose && (flags & INTR_MPSAFE))
 3499                                 device_printf(dev, "[MPSAFE]\n");
 3500                         if (filter != NULL) {
 3501                                 if (handler == NULL)
 3502                                         device_printf(dev, "[FILTER]\n");
 3503                                 else 
 3504                                         device_printf(dev, "[FILTER+ITHREAD]\n");
 3505                         } else 
 3506                                 device_printf(dev, "[ITHREAD]\n");
 3507                 }
 3508         } else
 3509                 error = EINVAL;
 3510         return (error);
 3511 }
 3512 
 3513 /**
 3514  * @brief Wrapper function for BUS_TEARDOWN_INTR().
 3515  *
 3516  * This function simply calls the BUS_TEARDOWN_INTR() method of the
 3517  * parent of @p dev.
 3518  */
 3519 int
 3520 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
 3521 {
 3522         if (dev->parent == NULL)
 3523                 return (EINVAL);
 3524         return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
 3525 }
 3526 
 3527 /**
 3528  * @brief Wrapper function for BUS_BIND_INTR().
 3529  *
 3530  * This function simply calls the BUS_BIND_INTR() method of the
 3531  * parent of @p dev.
 3532  */
 3533 int
 3534 bus_bind_intr(device_t dev, struct resource *r, int cpu)
 3535 {
 3536         if (dev->parent == NULL)
 3537                 return (EINVAL);
 3538         return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
 3539 }
 3540 
 3541 /**
 3542  * @brief Wrapper function for BUS_SET_RESOURCE().
 3543  *
 3544  * This function simply calls the BUS_SET_RESOURCE() method of the
 3545  * parent of @p dev.
 3546  */
 3547 int
 3548 bus_set_resource(device_t dev, int type, int rid,
 3549     u_long start, u_long count)
 3550 {
 3551         return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3552             start, count));
 3553 }
 3554 
 3555 /**
 3556  * @brief Wrapper function for BUS_GET_RESOURCE().
 3557  *
 3558  * This function simply calls the BUS_GET_RESOURCE() method of the
 3559  * parent of @p dev.
 3560  */
 3561 int
 3562 bus_get_resource(device_t dev, int type, int rid,
 3563     u_long *startp, u_long *countp)
 3564 {
 3565         return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3566             startp, countp));
 3567 }
 3568 
 3569 /**
 3570  * @brief Wrapper function for BUS_GET_RESOURCE().
 3571  *
 3572  * This function simply calls the BUS_GET_RESOURCE() method of the
 3573  * parent of @p dev and returns the start value.
 3574  */
 3575 u_long
 3576 bus_get_resource_start(device_t dev, int type, int rid)
 3577 {
 3578         u_long start, count;
 3579         int error;
 3580 
 3581         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3582             &start, &count);
 3583         if (error)
 3584                 return (0);
 3585         return (start);
 3586 }
 3587 
 3588 /**
 3589  * @brief Wrapper function for BUS_GET_RESOURCE().
 3590  *
 3591  * This function simply calls the BUS_GET_RESOURCE() method of the
 3592  * parent of @p dev and returns the count value.
 3593  */
 3594 u_long
 3595 bus_get_resource_count(device_t dev, int type, int rid)
 3596 {
 3597         u_long start, count;
 3598         int error;
 3599 
 3600         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3601             &start, &count);
 3602         if (error)
 3603                 return (0);
 3604         return (count);
 3605 }
 3606 
 3607 /**
 3608  * @brief Wrapper function for BUS_DELETE_RESOURCE().
 3609  *
 3610  * This function simply calls the BUS_DELETE_RESOURCE() method of the
 3611  * parent of @p dev.
 3612  */
 3613 void
 3614 bus_delete_resource(device_t dev, int type, int rid)
 3615 {
 3616         BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
 3617 }
 3618 
 3619 /**
 3620  * @brief Wrapper function for BUS_CHILD_PRESENT().
 3621  *
 3622  * This function simply calls the BUS_CHILD_PRESENT() method of the
 3623  * parent of @p dev.
 3624  */
 3625 int
 3626 bus_child_present(device_t child)
 3627 {
 3628         return (BUS_CHILD_PRESENT(device_get_parent(child), child));
 3629 }
 3630 
 3631 /**
 3632  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
 3633  *
 3634  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
 3635  * parent of @p dev.
 3636  */
 3637 int
 3638 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
 3639 {
 3640         device_t parent;
 3641 
 3642         parent = device_get_parent(child);
 3643         if (parent == NULL) {
 3644                 *buf = '\0';
 3645                 return (0);
 3646         }
 3647         return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
 3648 }
 3649 
 3650 /**
 3651  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
 3652  *
 3653  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
 3654  * parent of @p dev.
 3655  */
 3656 int
 3657 bus_child_location_str(device_t child, char *buf, size_t buflen)
 3658 {
 3659         device_t parent;
 3660 
 3661         parent = device_get_parent(child);
 3662         if (parent == NULL) {
 3663                 *buf = '\0';
 3664                 return (0);
 3665         }
 3666         return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
 3667 }
 3668 
 3669 /**
 3670  * @brief Wrapper function for BUS_GET_DMA_TAG().
 3671  *
 3672  * This function simply calls the BUS_GET_DMA_TAG() method of the
 3673  * parent of @p dev.
 3674  */
 3675 bus_dma_tag_t
 3676 bus_get_dma_tag(device_t dev)
 3677 {
 3678         device_t parent;
 3679 
 3680         parent = device_get_parent(dev);
 3681         if (parent == NULL)
 3682                 return (NULL);
 3683         return (BUS_GET_DMA_TAG(parent, dev));
 3684 }
 3685 
 3686 /* Resume all devices and then notify userland that we're up again. */
 3687 static int
 3688 root_resume(device_t dev)
 3689 {
 3690         int error;
 3691 
 3692         error = bus_generic_resume(dev);
 3693         if (error == 0)
 3694                 devctl_notify("kern", "power", "resume", NULL);
 3695         return (error);
 3696 }
 3697 
 3698 static int
 3699 root_print_child(device_t dev, device_t child)
 3700 {
 3701         int     retval = 0;
 3702 
 3703         retval += bus_print_child_header(dev, child);
 3704         retval += printf("\n");
 3705 
 3706         return (retval);
 3707 }
 3708 
 3709 static int
 3710 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
 3711     void **cookiep)
 3712 {
 3713         /*
 3714          * If an interrupt mapping gets to here something bad has happened.
 3715          */
 3716         panic("root_setup_intr");
 3717 }
 3718 
 3719 /*
 3720  * If we get here, assume that the device is permanant and really is
 3721  * present in the system.  Removable bus drivers are expected to intercept
 3722  * this call long before it gets here.  We return -1 so that drivers that
 3723  * really care can check vs -1 or some ERRNO returned higher in the food
 3724  * chain.
 3725  */
 3726 static int
 3727 root_child_present(device_t dev, device_t child)
 3728 {
 3729         return (-1);
 3730 }
 3731 
 3732 static kobj_method_t root_methods[] = {
 3733         /* Device interface */
 3734         KOBJMETHOD(device_shutdown,     bus_generic_shutdown),
 3735         KOBJMETHOD(device_suspend,      bus_generic_suspend),
 3736         KOBJMETHOD(device_resume,       root_resume),
 3737 
 3738         /* Bus interface */
 3739         KOBJMETHOD(bus_print_child,     root_print_child),
 3740         KOBJMETHOD(bus_read_ivar,       bus_generic_read_ivar),
 3741         KOBJMETHOD(bus_write_ivar,      bus_generic_write_ivar),
 3742         KOBJMETHOD(bus_setup_intr,      root_setup_intr),
 3743         KOBJMETHOD(bus_child_present,   root_child_present),
 3744 
 3745         { 0, 0 }
 3746 };
 3747 
 3748 static driver_t root_driver = {
 3749         "root",
 3750         root_methods,
 3751         1,                      /* no softc */
 3752 };
 3753 
 3754 device_t        root_bus;
 3755 devclass_t      root_devclass;
 3756 
 3757 static int
 3758 root_bus_module_handler(module_t mod, int what, void* arg)
 3759 {
 3760         switch (what) {
 3761         case MOD_LOAD:
 3762                 TAILQ_INIT(&bus_data_devices);
 3763                 kobj_class_compile((kobj_class_t) &root_driver);
 3764                 root_bus = make_device(NULL, "root", 0);
 3765                 root_bus->desc = "System root bus";
 3766                 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
 3767                 root_bus->driver = &root_driver;
 3768                 root_bus->state = DS_ATTACHED;
 3769                 root_devclass = devclass_find_internal("root", NULL, FALSE);
 3770                 devinit();
 3771                 return (0);
 3772 
 3773         case MOD_SHUTDOWN:
 3774                 device_shutdown(root_bus);
 3775                 return (0);
 3776         default:
 3777                 return (EOPNOTSUPP);
 3778         }
 3779 
 3780         return (0);
 3781 }
 3782 
 3783 static moduledata_t root_bus_mod = {
 3784         "rootbus",
 3785         root_bus_module_handler,
 3786         0
 3787 };
 3788 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
 3789 
 3790 /**
 3791  * @brief Automatically configure devices
 3792  *
 3793  * This function begins the autoconfiguration process by calling
 3794  * device_probe_and_attach() for each child of the @c root0 device.
 3795  */ 
 3796 void
 3797 root_bus_configure(void)
 3798 {
 3799         device_t dev;
 3800 
 3801         PDEBUG(("."));
 3802 
 3803         TAILQ_FOREACH(dev, &root_bus->children, link) {
 3804                 device_probe_and_attach(dev);
 3805         }
 3806 }
 3807 
 3808 /**
 3809  * @brief Module handler for registering device drivers
 3810  *
 3811  * This module handler is used to automatically register device
 3812  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
 3813  * devclass_add_driver() for the driver described by the
 3814  * driver_module_data structure pointed to by @p arg
 3815  */
 3816 int
 3817 driver_module_handler(module_t mod, int what, void *arg)
 3818 {
 3819         int error;
 3820         struct driver_module_data *dmd;
 3821         devclass_t bus_devclass;
 3822         kobj_class_t driver;
 3823 
 3824         dmd = (struct driver_module_data *)arg;
 3825         bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
 3826         error = 0;
 3827 
 3828         switch (what) {
 3829         case MOD_LOAD:
 3830                 if (dmd->dmd_chainevh)
 3831                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 3832 
 3833                 driver = dmd->dmd_driver;
 3834                 PDEBUG(("Loading module: driver %s on bus %s",
 3835                     DRIVERNAME(driver), dmd->dmd_busname));
 3836                 error = devclass_add_driver(bus_devclass, driver);
 3837                 if (error)
 3838                         break;
 3839 
 3840                 /*
 3841                  * If the driver has any base classes, make the
 3842                  * devclass inherit from the devclass of the driver's
 3843                  * first base class. This will allow the system to
 3844                  * search for drivers in both devclasses for children
 3845                  * of a device using this driver.
 3846                  */
 3847                 if (driver->baseclasses) {
 3848                         const char *parentname;
 3849                         parentname = driver->baseclasses[0]->name;
 3850                         *dmd->dmd_devclass =
 3851                                 devclass_find_internal(driver->name,
 3852                                     parentname, TRUE);
 3853                 } else {
 3854                         *dmd->dmd_devclass =
 3855                                 devclass_find_internal(driver->name, NULL, TRUE);
 3856                 }
 3857                 break;
 3858 
 3859         case MOD_UNLOAD:
 3860                 PDEBUG(("Unloading module: driver %s from bus %s",
 3861                     DRIVERNAME(dmd->dmd_driver),
 3862                     dmd->dmd_busname));
 3863                 error = devclass_delete_driver(bus_devclass,
 3864                     dmd->dmd_driver);
 3865 
 3866                 if (!error && dmd->dmd_chainevh)
 3867                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 3868                 break;
 3869         case MOD_QUIESCE:
 3870                 PDEBUG(("Quiesce module: driver %s from bus %s",
 3871                     DRIVERNAME(dmd->dmd_driver),
 3872                     dmd->dmd_busname));
 3873                 error = devclass_quiesce_driver(bus_devclass,
 3874                     dmd->dmd_driver);
 3875 
 3876                 if (!error && dmd->dmd_chainevh)
 3877                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 3878                 break;
 3879         default:
 3880                 error = EOPNOTSUPP;
 3881                 break;
 3882         }
 3883 
 3884         return (error);
 3885 }
 3886 
 3887 /**
 3888  * @brief Enumerate all hinted devices for this bus.
 3889  *
 3890  * Walks through the hints for this bus and calls the bus_hinted_child
 3891  * routine for each one it fines.  It searches first for the specific
 3892  * bus that's being probed for hinted children (eg isa0), and then for
 3893  * generic children (eg isa).
 3894  *
 3895  * @param       dev     bus device to enumerate
 3896  */
 3897 void
 3898 bus_enumerate_hinted_children(device_t bus)
 3899 {
 3900         int i;
 3901         const char *dname, *busname;
 3902         int dunit;
 3903 
 3904         /*
 3905          * enumerate all devices on the specific bus
 3906          */
 3907         busname = device_get_nameunit(bus);
 3908         i = 0;
 3909         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 3910                 BUS_HINTED_CHILD(bus, dname, dunit);
 3911 
 3912         /*
 3913          * and all the generic ones.
 3914          */
 3915         busname = device_get_name(bus);
 3916         i = 0;
 3917         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 3918                 BUS_HINTED_CHILD(bus, dname, dunit);
 3919 }
 3920 
 3921 #ifdef BUS_DEBUG
 3922 
 3923 /* the _short versions avoid iteration by not calling anything that prints
 3924  * more than oneliners. I love oneliners.
 3925  */
 3926 
 3927 static void
 3928 print_device_short(device_t dev, int indent)
 3929 {
 3930         if (!dev)
 3931                 return;
 3932 
 3933         indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
 3934             dev->unit, dev->desc,
 3935             (dev->parent? "":"no "),
 3936             (TAILQ_EMPTY(&dev->children)? "no ":""),
 3937             (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
 3938             (dev->flags&DF_FIXEDCLASS? "fixed,":""),
 3939             (dev->flags&DF_WILDCARD? "wildcard,":""),
 3940             (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
 3941             (dev->flags&DF_REBID? "rebiddable,":""),
 3942             (dev->ivars? "":"no "),
 3943             (dev->softc? "":"no "),
 3944             dev->busy));
 3945 }
 3946 
 3947 static void
 3948 print_device(device_t dev, int indent)
 3949 {
 3950         if (!dev)
 3951                 return;
 3952 
 3953         print_device_short(dev, indent);
 3954 
 3955         indentprintf(("Parent:\n"));
 3956         print_device_short(dev->parent, indent+1);
 3957         indentprintf(("Driver:\n"));
 3958         print_driver_short(dev->driver, indent+1);
 3959         indentprintf(("Devclass:\n"));
 3960         print_devclass_short(dev->devclass, indent+1);
 3961 }
 3962 
 3963 void
 3964 print_device_tree_short(device_t dev, int indent)
 3965 /* print the device and all its children (indented) */
 3966 {
 3967         device_t child;
 3968 
 3969         if (!dev)
 3970                 return;
 3971 
 3972         print_device_short(dev, indent);
 3973 
 3974         TAILQ_FOREACH(child, &dev->children, link) {
 3975                 print_device_tree_short(child, indent+1);
 3976         }
 3977 }
 3978 
 3979 void
 3980 print_device_tree(device_t dev, int indent)
 3981 /* print the device and all its children (indented) */
 3982 {
 3983         device_t child;
 3984 
 3985         if (!dev)
 3986                 return;
 3987 
 3988         print_device(dev, indent);
 3989 
 3990         TAILQ_FOREACH(child, &dev->children, link) {
 3991                 print_device_tree(child, indent+1);
 3992         }
 3993 }
 3994 
 3995 static void
 3996 print_driver_short(driver_t *driver, int indent)
 3997 {
 3998         if (!driver)
 3999                 return;
 4000 
 4001         indentprintf(("driver %s: softc size = %zd\n",
 4002             driver->name, driver->size));
 4003 }
 4004 
 4005 static void
 4006 print_driver(driver_t *driver, int indent)
 4007 {
 4008         if (!driver)
 4009                 return;
 4010 
 4011         print_driver_short(driver, indent);
 4012 }
 4013 
 4014 
 4015 static void
 4016 print_driver_list(driver_list_t drivers, int indent)
 4017 {
 4018         driverlink_t driver;
 4019 
 4020         TAILQ_FOREACH(driver, &drivers, link) {
 4021                 print_driver(driver->driver, indent);
 4022         }
 4023 }
 4024 
 4025 static void
 4026 print_devclass_short(devclass_t dc, int indent)
 4027 {
 4028         if ( !dc )
 4029                 return;
 4030 
 4031         indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
 4032 }
 4033 
 4034 static void
 4035 print_devclass(devclass_t dc, int indent)
 4036 {
 4037         int i;
 4038 
 4039         if ( !dc )
 4040                 return;
 4041 
 4042         print_devclass_short(dc, indent);
 4043         indentprintf(("Drivers:\n"));
 4044         print_driver_list(dc->drivers, indent+1);
 4045 
 4046         indentprintf(("Devices:\n"));
 4047         for (i = 0; i < dc->maxunit; i++)
 4048                 if (dc->devices[i])
 4049                         print_device(dc->devices[i], indent+1);
 4050 }
 4051 
 4052 void
 4053 print_devclass_list_short(void)
 4054 {
 4055         devclass_t dc;
 4056 
 4057         printf("Short listing of devclasses, drivers & devices:\n");
 4058         TAILQ_FOREACH(dc, &devclasses, link) {
 4059                 print_devclass_short(dc, 0);
 4060         }
 4061 }
 4062 
 4063 void
 4064 print_devclass_list(void)
 4065 {
 4066         devclass_t dc;
 4067 
 4068         printf("Full listing of devclasses, drivers & devices:\n");
 4069         TAILQ_FOREACH(dc, &devclasses, link) {
 4070                 print_devclass(dc, 0);
 4071         }
 4072 }
 4073 
 4074 #endif
 4075 
 4076 /*
 4077  * User-space access to the device tree.
 4078  *
 4079  * We implement a small set of nodes:
 4080  *
 4081  * hw.bus                       Single integer read method to obtain the
 4082  *                              current generation count.
 4083  * hw.bus.devices               Reads the entire device tree in flat space.
 4084  * hw.bus.rman                  Resource manager interface
 4085  *
 4086  * We might like to add the ability to scan devclasses and/or drivers to
 4087  * determine what else is currently loaded/available.
 4088  */
 4089 
 4090 static int
 4091 sysctl_bus(SYSCTL_HANDLER_ARGS)
 4092 {
 4093         struct u_businfo        ubus;
 4094 
 4095         ubus.ub_version = BUS_USER_VERSION;
 4096         ubus.ub_generation = bus_data_generation;
 4097 
 4098         return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
 4099 }
 4100 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
 4101     "bus-related data");
 4102 
 4103 static int
 4104 sysctl_devices(SYSCTL_HANDLER_ARGS)
 4105 {
 4106         int                     *name = (int *)arg1;
 4107         u_int                   namelen = arg2;
 4108         int                     index;
 4109         struct device           *dev;
 4110         struct u_device         udev;   /* XXX this is a bit big */
 4111         int                     error;
 4112 
 4113         if (namelen != 2)
 4114                 return (EINVAL);
 4115 
 4116         if (bus_data_generation_check(name[0]))
 4117                 return (EINVAL);
 4118 
 4119         index = name[1];
 4120 
 4121         /*
 4122          * Scan the list of devices, looking for the requested index.
 4123          */
 4124         TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 4125                 if (index-- == 0)
 4126                         break;
 4127         }
 4128         if (dev == NULL)
 4129                 return (ENOENT);
 4130 
 4131         /*
 4132          * Populate the return array.
 4133          */
 4134         bzero(&udev, sizeof(udev));
 4135         udev.dv_handle = (uintptr_t)dev;
 4136         udev.dv_parent = (uintptr_t)dev->parent;
 4137         if (dev->nameunit != NULL)
 4138                 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
 4139         if (dev->desc != NULL)
 4140                 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
 4141         if (dev->driver != NULL && dev->driver->name != NULL)
 4142                 strlcpy(udev.dv_drivername, dev->driver->name,
 4143                     sizeof(udev.dv_drivername));
 4144         bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
 4145         bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
 4146         udev.dv_devflags = dev->devflags;
 4147         udev.dv_flags = dev->flags;
 4148         udev.dv_state = dev->state;
 4149         error = SYSCTL_OUT(req, &udev, sizeof(udev));
 4150         return (error);
 4151 }
 4152 
 4153 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
 4154     "system device tree");
 4155 
 4156 int
 4157 bus_data_generation_check(int generation)
 4158 {
 4159         if (generation != bus_data_generation)
 4160                 return (1);
 4161 
 4162         /* XXX generate optimised lists here? */
 4163         return (0);
 4164 }
 4165 
 4166 void
 4167 bus_data_generation_update(void)
 4168 {
 4169         bus_data_generation++;
 4170 }
 4171 
 4172 int
 4173 bus_free_resource(device_t dev, int type, struct resource *r)
 4174 {
 4175         if (r == NULL)
 4176                 return (0);
 4177         return (bus_release_resource(dev, type, rman_get_rid(r), r));
 4178 }

Cache object: f3a5645d6c625ad86e843dc250f7becd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.