The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_bus.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997,1998,2003 Doug Rabson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD$");
   29 
   30 #include "opt_bus.h"
   31 
   32 #include <sys/param.h>
   33 #include <sys/conf.h>
   34 #include <sys/filio.h>
   35 #include <sys/lock.h>
   36 #include <sys/kernel.h>
   37 #include <sys/kobj.h>
   38 #include <sys/malloc.h>
   39 #include <sys/module.h>
   40 #include <sys/mutex.h>
   41 #include <sys/poll.h>
   42 #include <sys/proc.h>
   43 #include <sys/condvar.h>
   44 #include <sys/queue.h>
   45 #include <machine/bus.h>
   46 #include <sys/rman.h>
   47 #include <sys/selinfo.h>
   48 #include <sys/signalvar.h>
   49 #include <sys/sysctl.h>
   50 #include <sys/systm.h>
   51 #include <sys/uio.h>
   52 #include <sys/bus.h>
   53 #include <sys/interrupt.h>
   54 
   55 #include <machine/stdarg.h>
   56 
   57 #include <vm/uma.h>
   58 
   59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
   60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
   61 
   62 /*
   63  * Used to attach drivers to devclasses.
   64  */
   65 typedef struct driverlink *driverlink_t;
   66 struct driverlink {
   67         kobj_class_t    driver;
   68         TAILQ_ENTRY(driverlink) link;   /* list of drivers in devclass */
   69 };
   70 
   71 /*
   72  * Forward declarations
   73  */
   74 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
   75 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
   76 typedef TAILQ_HEAD(device_list, device) device_list_t;
   77 
   78 struct devclass {
   79         TAILQ_ENTRY(devclass) link;
   80         devclass_t      parent;         /* parent in devclass hierarchy */
   81         driver_list_t   drivers;     /* bus devclasses store drivers for bus */
   82         char            *name;
   83         device_t        *devices;       /* array of devices indexed by unit */
   84         int             maxunit;        /* size of devices array */
   85 
   86         struct sysctl_ctx_list sysctl_ctx;
   87         struct sysctl_oid *sysctl_tree;
   88 };
   89 
   90 /**
   91  * @brief Implementation of device.
   92  */
   93 struct device {
   94         /*
   95          * A device is a kernel object. The first field must be the
   96          * current ops table for the object.
   97          */
   98         KOBJ_FIELDS;
   99 
  100         /*
  101          * Device hierarchy.
  102          */
  103         TAILQ_ENTRY(device)     link;   /**< list of devices in parent */
  104         TAILQ_ENTRY(device)     devlink; /**< global device list membership */
  105         device_t        parent;         /**< parent of this device  */
  106         device_list_t   children;       /**< list of child devices */
  107 
  108         /*
  109          * Details of this device.
  110          */
  111         driver_t        *driver;        /**< current driver */
  112         devclass_t      devclass;       /**< current device class */
  113         int             unit;           /**< current unit number */
  114         char*           nameunit;       /**< name+unit e.g. foodev0 */
  115         char*           desc;           /**< driver specific description */
  116         int             busy;           /**< count of calls to device_busy() */
  117         device_state_t  state;          /**< current device state  */
  118         u_int32_t       devflags;       /**< api level flags for device_get_flags() */
  119         u_short         flags;          /**< internal device flags  */
  120 #define DF_ENABLED      1               /* device should be probed/attached */
  121 #define DF_FIXEDCLASS   2               /* devclass specified at create time */
  122 #define DF_WILDCARD     4               /* unit was originally wildcard */
  123 #define DF_DESCMALLOCED 8               /* description was malloced */
  124 #define DF_QUIET        16              /* don't print verbose attach message */
  125 #define DF_DONENOMATCH  32              /* don't execute DEVICE_NOMATCH again */
  126 #define DF_EXTERNALSOFTC 64             /* softc not allocated by us */
  127 #define DF_REBID        128             /* Can rebid after attach */
  128         u_char  order;                  /**< order from device_add_child_ordered() */
  129         u_char  pad;
  130         void    *ivars;                 /**< instance variables  */
  131         void    *softc;                 /**< current driver's variables  */
  132 
  133         struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
  134         struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
  135 };
  136 
  137 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
  138 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
  139 
  140 #ifdef BUS_DEBUG
  141 
  142 static int bus_debug = 1;
  143 TUNABLE_INT("bus.debug", &bus_debug);
  144 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
  145     "Debug bus code");
  146 
  147 #define PDEBUG(a)       if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
  148 #define DEVICENAME(d)   ((d)? device_get_name(d): "no device")
  149 #define DRIVERNAME(d)   ((d)? d->name : "no driver")
  150 #define DEVCLANAME(d)   ((d)? d->name : "no devclass")
  151 
  152 /**
  153  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
  154  * prevent syslog from deleting initial spaces
  155  */
  156 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
  157 
  158 static void print_device_short(device_t dev, int indent);
  159 static void print_device(device_t dev, int indent);
  160 void print_device_tree_short(device_t dev, int indent);
  161 void print_device_tree(device_t dev, int indent);
  162 static void print_driver_short(driver_t *driver, int indent);
  163 static void print_driver(driver_t *driver, int indent);
  164 static void print_driver_list(driver_list_t drivers, int indent);
  165 static void print_devclass_short(devclass_t dc, int indent);
  166 static void print_devclass(devclass_t dc, int indent);
  167 void print_devclass_list_short(void);
  168 void print_devclass_list(void);
  169 
  170 #else
  171 /* Make the compiler ignore the function calls */
  172 #define PDEBUG(a)                       /* nop */
  173 #define DEVICENAME(d)                   /* nop */
  174 #define DRIVERNAME(d)                   /* nop */
  175 #define DEVCLANAME(d)                   /* nop */
  176 
  177 #define print_device_short(d,i)         /* nop */
  178 #define print_device(d,i)               /* nop */
  179 #define print_device_tree_short(d,i)    /* nop */
  180 #define print_device_tree(d,i)          /* nop */
  181 #define print_driver_short(d,i)         /* nop */
  182 #define print_driver(d,i)               /* nop */
  183 #define print_driver_list(d,i)          /* nop */
  184 #define print_devclass_short(d,i)       /* nop */
  185 #define print_devclass(d,i)             /* nop */
  186 #define print_devclass_list_short()     /* nop */
  187 #define print_devclass_list()           /* nop */
  188 #endif
  189 
  190 /*
  191  * dev sysctl tree
  192  */
  193 
  194 enum {
  195         DEVCLASS_SYSCTL_PARENT,
  196 };
  197 
  198 static int
  199 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
  200 {
  201         devclass_t dc = (devclass_t)arg1;
  202         const char *value;
  203 
  204         switch (arg2) {
  205         case DEVCLASS_SYSCTL_PARENT:
  206                 value = dc->parent ? dc->parent->name : "";
  207                 break;
  208         default:
  209                 return (EINVAL);
  210         }
  211         return (SYSCTL_OUT(req, value, strlen(value)));
  212 }
  213 
  214 static void
  215 devclass_sysctl_init(devclass_t dc)
  216 {
  217 
  218         if (dc->sysctl_tree != NULL)
  219                 return;
  220         sysctl_ctx_init(&dc->sysctl_ctx);
  221         dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
  222             SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
  223             CTLFLAG_RD, 0, "");
  224         SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
  225             OID_AUTO, "%parent", CTLFLAG_RD,
  226             dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
  227             "parent class");
  228 }
  229 
  230 enum {
  231         DEVICE_SYSCTL_DESC,
  232         DEVICE_SYSCTL_DRIVER,
  233         DEVICE_SYSCTL_LOCATION,
  234         DEVICE_SYSCTL_PNPINFO,
  235         DEVICE_SYSCTL_PARENT,
  236 };
  237 
  238 static int
  239 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
  240 {
  241         device_t dev = (device_t)arg1;
  242         const char *value;
  243         char *buf;
  244         int error;
  245 
  246         buf = NULL;
  247         switch (arg2) {
  248         case DEVICE_SYSCTL_DESC:
  249                 value = dev->desc ? dev->desc : "";
  250                 break;
  251         case DEVICE_SYSCTL_DRIVER:
  252                 value = dev->driver ? dev->driver->name : "";
  253                 break;
  254         case DEVICE_SYSCTL_LOCATION:
  255                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  256                 bus_child_location_str(dev, buf, 1024);
  257                 break;
  258         case DEVICE_SYSCTL_PNPINFO:
  259                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  260                 bus_child_pnpinfo_str(dev, buf, 1024);
  261                 break;
  262         case DEVICE_SYSCTL_PARENT:
  263                 value = dev->parent ? dev->parent->nameunit : "";
  264                 break;
  265         default:
  266                 return (EINVAL);
  267         }
  268         error = SYSCTL_OUT(req, value, strlen(value));
  269         if (buf != NULL)
  270                 free(buf, M_BUS);
  271         return (error);
  272 }
  273 
  274 static void
  275 device_sysctl_init(device_t dev)
  276 {
  277         devclass_t dc = dev->devclass;
  278 
  279         if (dev->sysctl_tree != NULL)
  280                 return;
  281         devclass_sysctl_init(dc);
  282         sysctl_ctx_init(&dev->sysctl_ctx);
  283         dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
  284             SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
  285             dev->nameunit + strlen(dc->name),
  286             CTLFLAG_RD, 0, "");
  287         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  288             OID_AUTO, "%desc", CTLFLAG_RD,
  289             dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
  290             "device description");
  291         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  292             OID_AUTO, "%driver", CTLFLAG_RD,
  293             dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
  294             "device driver name");
  295         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  296             OID_AUTO, "%location", CTLFLAG_RD,
  297             dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
  298             "device location relative to parent");
  299         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  300             OID_AUTO, "%pnpinfo", CTLFLAG_RD,
  301             dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
  302             "device identification");
  303         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  304             OID_AUTO, "%parent", CTLFLAG_RD,
  305             dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
  306             "parent device");
  307 }
  308 
  309 static void
  310 device_sysctl_update(device_t dev)
  311 {
  312         devclass_t dc = dev->devclass;
  313 
  314         if (dev->sysctl_tree == NULL)
  315                 return;
  316         sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
  317 }
  318 
  319 static void
  320 device_sysctl_fini(device_t dev)
  321 {
  322         if (dev->sysctl_tree == NULL)
  323                 return;
  324         sysctl_ctx_free(&dev->sysctl_ctx);
  325         dev->sysctl_tree = NULL;
  326 }
  327 
  328 /*
  329  * /dev/devctl implementation
  330  */
  331 
  332 /*
  333  * This design allows only one reader for /dev/devctl.  This is not desirable
  334  * in the long run, but will get a lot of hair out of this implementation.
  335  * Maybe we should make this device a clonable device.
  336  *
  337  * Also note: we specifically do not attach a device to the device_t tree
  338  * to avoid potential chicken and egg problems.  One could argue that all
  339  * of this belongs to the root node.  One could also further argue that the
  340  * sysctl interface that we have not might more properly be an ioctl
  341  * interface, but at this stage of the game, I'm not inclined to rock that
  342  * boat.
  343  *
  344  * I'm also not sure that the SIGIO support is done correctly or not, as
  345  * I copied it from a driver that had SIGIO support that likely hasn't been
  346  * tested since 3.4 or 2.2.8!
  347  */
  348 
  349 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
  350 static int devctl_disable = 0;
  351 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
  352 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
  353     sysctl_devctl_disable, "I", "devctl disable");
  354 
  355 static d_open_t         devopen;
  356 static d_close_t        devclose;
  357 static d_read_t         devread;
  358 static d_ioctl_t        devioctl;
  359 static d_poll_t         devpoll;
  360 
  361 static struct cdevsw dev_cdevsw = {
  362         .d_version =    D_VERSION,
  363         .d_flags =      D_NEEDGIANT,
  364         .d_open =       devopen,
  365         .d_close =      devclose,
  366         .d_read =       devread,
  367         .d_ioctl =      devioctl,
  368         .d_poll =       devpoll,
  369         .d_name =       "devctl",
  370 };
  371 
  372 struct dev_event_info
  373 {
  374         char *dei_data;
  375         TAILQ_ENTRY(dev_event_info) dei_link;
  376 };
  377 
  378 TAILQ_HEAD(devq, dev_event_info);
  379 
  380 static struct dev_softc
  381 {
  382         int     inuse;
  383         int     nonblock;
  384         struct mtx mtx;
  385         struct cv cv;
  386         struct selinfo sel;
  387         struct devq devq;
  388         struct proc *async_proc;
  389 } devsoftc;
  390 
  391 static struct cdev *devctl_dev;
  392 
  393 static void
  394 devinit(void)
  395 {
  396         devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
  397             "devctl");
  398         mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
  399         cv_init(&devsoftc.cv, "dev cv");
  400         TAILQ_INIT(&devsoftc.devq);
  401 }
  402 
  403 static int
  404 devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
  405 {
  406         if (devsoftc.inuse)
  407                 return (EBUSY);
  408         /* move to init */
  409         devsoftc.inuse = 1;
  410         devsoftc.nonblock = 0;
  411         devsoftc.async_proc = NULL;
  412         return (0);
  413 }
  414 
  415 static int
  416 devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
  417 {
  418         devsoftc.inuse = 0;
  419         mtx_lock(&devsoftc.mtx);
  420         cv_broadcast(&devsoftc.cv);
  421         mtx_unlock(&devsoftc.mtx);
  422 
  423         return (0);
  424 }
  425 
  426 /*
  427  * The read channel for this device is used to report changes to
  428  * userland in realtime.  We are required to free the data as well as
  429  * the n1 object because we allocate them separately.  Also note that
  430  * we return one record at a time.  If you try to read this device a
  431  * character at a time, you will lose the rest of the data.  Listening
  432  * programs are expected to cope.
  433  */
  434 static int
  435 devread(struct cdev *dev, struct uio *uio, int ioflag)
  436 {
  437         struct dev_event_info *n1;
  438         int rv;
  439 
  440         mtx_lock(&devsoftc.mtx);
  441         while (TAILQ_EMPTY(&devsoftc.devq)) {
  442                 if (devsoftc.nonblock) {
  443                         mtx_unlock(&devsoftc.mtx);
  444                         return (EAGAIN);
  445                 }
  446                 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
  447                 if (rv) {
  448                         /*
  449                          * Need to translate ERESTART to EINTR here? -- jake
  450                          */
  451                         mtx_unlock(&devsoftc.mtx);
  452                         return (rv);
  453                 }
  454         }
  455         n1 = TAILQ_FIRST(&devsoftc.devq);
  456         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  457         mtx_unlock(&devsoftc.mtx);
  458         rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
  459         free(n1->dei_data, M_BUS);
  460         free(n1, M_BUS);
  461         return (rv);
  462 }
  463 
  464 static  int
  465 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
  466 {
  467         switch (cmd) {
  468 
  469         case FIONBIO:
  470                 if (*(int*)data)
  471                         devsoftc.nonblock = 1;
  472                 else
  473                         devsoftc.nonblock = 0;
  474                 return (0);
  475         case FIOASYNC:
  476                 if (*(int*)data)
  477                         devsoftc.async_proc = td->td_proc;
  478                 else
  479                         devsoftc.async_proc = NULL;
  480                 return (0);
  481 
  482                 /* (un)Support for other fcntl() calls. */
  483         case FIOCLEX:
  484         case FIONCLEX:
  485         case FIONREAD:
  486         case FIOSETOWN:
  487         case FIOGETOWN:
  488         default:
  489                 break;
  490         }
  491         return (ENOTTY);
  492 }
  493 
  494 static  int
  495 devpoll(struct cdev *dev, int events, d_thread_t *td)
  496 {
  497         int     revents = 0;
  498 
  499         mtx_lock(&devsoftc.mtx);
  500         if (events & (POLLIN | POLLRDNORM)) {
  501                 if (!TAILQ_EMPTY(&devsoftc.devq))
  502                         revents = events & (POLLIN | POLLRDNORM);
  503                 else
  504                         selrecord(td, &devsoftc.sel);
  505         }
  506         mtx_unlock(&devsoftc.mtx);
  507 
  508         return (revents);
  509 }
  510 
  511 /**
  512  * @brief Return whether the userland process is running
  513  */
  514 boolean_t
  515 devctl_process_running(void)
  516 {
  517         return (devsoftc.inuse == 1);
  518 }
  519 
  520 /**
  521  * @brief Queue data to be read from the devctl device
  522  *
  523  * Generic interface to queue data to the devctl device.  It is
  524  * assumed that @p data is properly formatted.  It is further assumed
  525  * that @p data is allocated using the M_BUS malloc type.
  526  */
  527 void
  528 devctl_queue_data(char *data)
  529 {
  530         struct dev_event_info *n1 = NULL;
  531         struct proc *p;
  532 
  533         n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
  534         if (n1 == NULL)
  535                 return;
  536         n1->dei_data = data;
  537         mtx_lock(&devsoftc.mtx);
  538         TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
  539         cv_broadcast(&devsoftc.cv);
  540         mtx_unlock(&devsoftc.mtx);
  541         selwakeup(&devsoftc.sel);
  542         p = devsoftc.async_proc;
  543         if (p != NULL) {
  544                 PROC_LOCK(p);
  545                 psignal(p, SIGIO);
  546                 PROC_UNLOCK(p);
  547         }
  548 }
  549 
  550 /**
  551  * @brief Send a 'notification' to userland, using standard ways
  552  */
  553 void
  554 devctl_notify(const char *system, const char *subsystem, const char *type,
  555     const char *data)
  556 {
  557         int len = 0;
  558         char *msg;
  559 
  560         if (system == NULL)
  561                 return;         /* BOGUS!  Must specify system. */
  562         if (subsystem == NULL)
  563                 return;         /* BOGUS!  Must specify subsystem. */
  564         if (type == NULL)
  565                 return;         /* BOGUS!  Must specify type. */
  566         len += strlen(" system=") + strlen(system);
  567         len += strlen(" subsystem=") + strlen(subsystem);
  568         len += strlen(" type=") + strlen(type);
  569         /* add in the data message plus newline. */
  570         if (data != NULL)
  571                 len += strlen(data);
  572         len += 3;       /* '!', '\n', and NUL */
  573         msg = malloc(len, M_BUS, M_NOWAIT);
  574         if (msg == NULL)
  575                 return;         /* Drop it on the floor */
  576         if (data != NULL)
  577                 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
  578                     system, subsystem, type, data);
  579         else
  580                 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
  581                     system, subsystem, type);
  582         devctl_queue_data(msg);
  583 }
  584 
  585 /*
  586  * Common routine that tries to make sending messages as easy as possible.
  587  * We allocate memory for the data, copy strings into that, but do not
  588  * free it unless there's an error.  The dequeue part of the driver should
  589  * free the data.  We don't send data when the device is disabled.  We do
  590  * send data, even when we have no listeners, because we wish to avoid
  591  * races relating to startup and restart of listening applications.
  592  *
  593  * devaddq is designed to string together the type of event, with the
  594  * object of that event, plus the plug and play info and location info
  595  * for that event.  This is likely most useful for devices, but less
  596  * useful for other consumers of this interface.  Those should use
  597  * the devctl_queue_data() interface instead.
  598  */
  599 static void
  600 devaddq(const char *type, const char *what, device_t dev)
  601 {
  602         char *data = NULL;
  603         char *loc = NULL;
  604         char *pnp = NULL;
  605         const char *parstr;
  606 
  607         if (devctl_disable)
  608                 return;
  609         data = malloc(1024, M_BUS, M_NOWAIT);
  610         if (data == NULL)
  611                 goto bad;
  612 
  613         /* get the bus specific location of this device */
  614         loc = malloc(1024, M_BUS, M_NOWAIT);
  615         if (loc == NULL)
  616                 goto bad;
  617         *loc = '\0';
  618         bus_child_location_str(dev, loc, 1024);
  619 
  620         /* Get the bus specific pnp info of this device */
  621         pnp = malloc(1024, M_BUS, M_NOWAIT);
  622         if (pnp == NULL)
  623                 goto bad;
  624         *pnp = '\0';
  625         bus_child_pnpinfo_str(dev, pnp, 1024);
  626 
  627         /* Get the parent of this device, or / if high enough in the tree. */
  628         if (device_get_parent(dev) == NULL)
  629                 parstr = ".";   /* Or '/' ? */
  630         else
  631                 parstr = device_get_nameunit(device_get_parent(dev));
  632         /* String it all together. */
  633         snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
  634           parstr);
  635         free(loc, M_BUS);
  636         free(pnp, M_BUS);
  637         devctl_queue_data(data);
  638         return;
  639 bad:
  640         free(pnp, M_BUS);
  641         free(loc, M_BUS);
  642         free(data, M_BUS);
  643         return;
  644 }
  645 
  646 /*
  647  * A device was added to the tree.  We are called just after it successfully
  648  * attaches (that is, probe and attach success for this device).  No call
  649  * is made if a device is merely parented into the tree.  See devnomatch
  650  * if probe fails.  If attach fails, no notification is sent (but maybe
  651  * we should have a different message for this).
  652  */
  653 static void
  654 devadded(device_t dev)
  655 {
  656         char *pnp = NULL;
  657         char *tmp = NULL;
  658 
  659         pnp = malloc(1024, M_BUS, M_NOWAIT);
  660         if (pnp == NULL)
  661                 goto fail;
  662         tmp = malloc(1024, M_BUS, M_NOWAIT);
  663         if (tmp == NULL)
  664                 goto fail;
  665         *pnp = '\0';
  666         bus_child_pnpinfo_str(dev, pnp, 1024);
  667         snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
  668         devaddq("+", tmp, dev);
  669 fail:
  670         if (pnp != NULL)
  671                 free(pnp, M_BUS);
  672         if (tmp != NULL)
  673                 free(tmp, M_BUS);
  674         return;
  675 }
  676 
  677 /*
  678  * A device was removed from the tree.  We are called just before this
  679  * happens.
  680  */
  681 static void
  682 devremoved(device_t dev)
  683 {
  684         char *pnp = NULL;
  685         char *tmp = NULL;
  686 
  687         pnp = malloc(1024, M_BUS, M_NOWAIT);
  688         if (pnp == NULL)
  689                 goto fail;
  690         tmp = malloc(1024, M_BUS, M_NOWAIT);
  691         if (tmp == NULL)
  692                 goto fail;
  693         *pnp = '\0';
  694         bus_child_pnpinfo_str(dev, pnp, 1024);
  695         snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
  696         devaddq("-", tmp, dev);
  697 fail:
  698         if (pnp != NULL)
  699                 free(pnp, M_BUS);
  700         if (tmp != NULL)
  701                 free(tmp, M_BUS);
  702         return;
  703 }
  704 
  705 /*
  706  * Called when there's no match for this device.  This is only called
  707  * the first time that no match happens, so we don't keep getitng this
  708  * message.  Should that prove to be undesirable, we can change it.
  709  * This is called when all drivers that can attach to a given bus
  710  * decline to accept this device.  Other errrors may not be detected.
  711  */
  712 static void
  713 devnomatch(device_t dev)
  714 {
  715         devaddq("?", "", dev);
  716 }
  717 
  718 static int
  719 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
  720 {
  721         struct dev_event_info *n1;
  722         int dis, error;
  723 
  724         dis = devctl_disable;
  725         error = sysctl_handle_int(oidp, &dis, 0, req);
  726         if (error || !req->newptr)
  727                 return (error);
  728         mtx_lock(&devsoftc.mtx);
  729         devctl_disable = dis;
  730         if (dis) {
  731                 while (!TAILQ_EMPTY(&devsoftc.devq)) {
  732                         n1 = TAILQ_FIRST(&devsoftc.devq);
  733                         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  734                         free(n1->dei_data, M_BUS);
  735                         free(n1, M_BUS);
  736                 }
  737         }
  738         mtx_unlock(&devsoftc.mtx);
  739         return (0);
  740 }
  741 
  742 /* End of /dev/devctl code */
  743 
  744 TAILQ_HEAD(,device)     bus_data_devices;
  745 static int bus_data_generation = 1;
  746 
  747 kobj_method_t null_methods[] = {
  748         { 0, 0 }
  749 };
  750 
  751 DEFINE_CLASS(null, null_methods, 0);
  752 
  753 /*
  754  * Devclass implementation
  755  */
  756 
  757 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
  758 
  759 
  760 /**
  761  * @internal
  762  * @brief Find or create a device class
  763  *
  764  * If a device class with the name @p classname exists, return it,
  765  * otherwise if @p create is non-zero create and return a new device
  766  * class.
  767  *
  768  * If @p parentname is non-NULL, the parent of the devclass is set to
  769  * the devclass of that name.
  770  *
  771  * @param classname     the devclass name to find or create
  772  * @param parentname    the parent devclass name or @c NULL
  773  * @param create        non-zero to create a devclass
  774  */
  775 static devclass_t
  776 devclass_find_internal(const char *classname, const char *parentname,
  777                        int create)
  778 {
  779         devclass_t dc;
  780 
  781         PDEBUG(("looking for %s", classname));
  782         if (!classname)
  783                 return (NULL);
  784 
  785         TAILQ_FOREACH(dc, &devclasses, link) {
  786                 if (!strcmp(dc->name, classname))
  787                         break;
  788         }
  789 
  790         if (create && !dc) {
  791                 PDEBUG(("creating %s", classname));
  792                 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
  793                     M_BUS, M_NOWAIT|M_ZERO);
  794                 if (!dc)
  795                         return (NULL);
  796                 dc->parent = NULL;
  797                 dc->name = (char*) (dc + 1);
  798                 strcpy(dc->name, classname);
  799                 TAILQ_INIT(&dc->drivers);
  800                 TAILQ_INSERT_TAIL(&devclasses, dc, link);
  801 
  802                 bus_data_generation_update();
  803         }
  804 
  805         /*
  806          * If a parent class is specified, then set that as our parent so
  807          * that this devclass will support drivers for the parent class as
  808          * well.  If the parent class has the same name don't do this though
  809          * as it creates a cycle that can trigger an infinite loop in
  810          * device_probe_child() if a device exists for which there is no
  811          * suitable driver.
  812          */
  813         if (parentname && dc && !dc->parent &&
  814             strcmp(classname, parentname) != 0) {
  815                 dc->parent = devclass_find_internal(parentname, NULL, FALSE);
  816         }
  817 
  818         return (dc);
  819 }
  820 
  821 /**
  822  * @brief Create a device class
  823  *
  824  * If a device class with the name @p classname exists, return it,
  825  * otherwise create and return a new device class.
  826  *
  827  * @param classname     the devclass name to find or create
  828  */
  829 devclass_t
  830 devclass_create(const char *classname)
  831 {
  832         return (devclass_find_internal(classname, NULL, TRUE));
  833 }
  834 
  835 /**
  836  * @brief Find a device class
  837  *
  838  * If a device class with the name @p classname exists, return it,
  839  * otherwise return @c NULL.
  840  *
  841  * @param classname     the devclass name to find
  842  */
  843 devclass_t
  844 devclass_find(const char *classname)
  845 {
  846         return (devclass_find_internal(classname, NULL, FALSE));
  847 }
  848 
  849 /**
  850  * @brief Add a device driver to a device class
  851  *
  852  * Add a device driver to a devclass. This is normally called
  853  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
  854  * all devices in the devclass will be called to allow them to attempt
  855  * to re-probe any unmatched children.
  856  *
  857  * @param dc            the devclass to edit
  858  * @param driver        the driver to register
  859  */
  860 int
  861 devclass_add_driver(devclass_t dc, driver_t *driver)
  862 {
  863         driverlink_t dl;
  864         int i;
  865 
  866         PDEBUG(("%s", DRIVERNAME(driver)));
  867 
  868         dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
  869         if (!dl)
  870                 return (ENOMEM);
  871 
  872         /*
  873          * Compile the driver's methods. Also increase the reference count
  874          * so that the class doesn't get freed when the last instance
  875          * goes. This means we can safely use static methods and avoids a
  876          * double-free in devclass_delete_driver.
  877          */
  878         kobj_class_compile((kobj_class_t) driver);
  879 
  880         /*
  881          * Make sure the devclass which the driver is implementing exists.
  882          */
  883         devclass_find_internal(driver->name, NULL, TRUE);
  884 
  885         dl->driver = driver;
  886         TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
  887         driver->refs++;         /* XXX: kobj_mtx */
  888 
  889         /*
  890          * Call BUS_DRIVER_ADDED for any existing busses in this class.
  891          */
  892         for (i = 0; i < dc->maxunit; i++)
  893                 if (dc->devices[i])
  894                         BUS_DRIVER_ADDED(dc->devices[i], driver);
  895 
  896         bus_data_generation_update();
  897         return (0);
  898 }
  899 
  900 /**
  901  * @brief Delete a device driver from a device class
  902  *
  903  * Delete a device driver from a devclass. This is normally called
  904  * automatically by DRIVER_MODULE().
  905  *
  906  * If the driver is currently attached to any devices,
  907  * devclass_delete_driver() will first attempt to detach from each
  908  * device. If one of the detach calls fails, the driver will not be
  909  * deleted.
  910  *
  911  * @param dc            the devclass to edit
  912  * @param driver        the driver to unregister
  913  */
  914 int
  915 devclass_delete_driver(devclass_t busclass, driver_t *driver)
  916 {
  917         devclass_t dc = devclass_find(driver->name);
  918         driverlink_t dl;
  919         device_t dev;
  920         int i;
  921         int error;
  922 
  923         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
  924 
  925         if (!dc)
  926                 return (0);
  927 
  928         /*
  929          * Find the link structure in the bus' list of drivers.
  930          */
  931         TAILQ_FOREACH(dl, &busclass->drivers, link) {
  932                 if (dl->driver == driver)
  933                         break;
  934         }
  935 
  936         if (!dl) {
  937                 PDEBUG(("%s not found in %s list", driver->name,
  938                     busclass->name));
  939                 return (ENOENT);
  940         }
  941 
  942         /*
  943          * Disassociate from any devices.  We iterate through all the
  944          * devices in the devclass of the driver and detach any which are
  945          * using the driver and which have a parent in the devclass which
  946          * we are deleting from.
  947          *
  948          * Note that since a driver can be in multiple devclasses, we
  949          * should not detach devices which are not children of devices in
  950          * the affected devclass.
  951          */
  952         for (i = 0; i < dc->maxunit; i++) {
  953                 if (dc->devices[i]) {
  954                         dev = dc->devices[i];
  955                         if (dev->driver == driver && dev->parent &&
  956                             dev->parent->devclass == busclass) {
  957                                 if ((error = device_detach(dev)) != 0)
  958                                         return (error);
  959                                 device_set_driver(dev, NULL);
  960                         }
  961                 }
  962         }
  963 
  964         TAILQ_REMOVE(&busclass->drivers, dl, link);
  965         free(dl, M_BUS);
  966 
  967         /* XXX: kobj_mtx */
  968         driver->refs--;
  969         if (driver->refs == 0)
  970                 kobj_class_free((kobj_class_t) driver);
  971 
  972         bus_data_generation_update();
  973         return (0);
  974 }
  975 
  976 /**
  977  * @brief Quiesces a set of device drivers from a device class
  978  *
  979  * Quiesce a device driver from a devclass. This is normally called
  980  * automatically by DRIVER_MODULE().
  981  *
  982  * If the driver is currently attached to any devices,
  983  * devclass_quiesece_driver() will first attempt to quiesce each
  984  * device.
  985  *
  986  * @param dc            the devclass to edit
  987  * @param driver        the driver to unregister
  988  */
  989 int
  990 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
  991 {
  992         devclass_t dc = devclass_find(driver->name);
  993         driverlink_t dl;
  994         device_t dev;
  995         int i;
  996         int error;
  997 
  998         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
  999 
 1000         if (!dc)
 1001                 return (0);
 1002 
 1003         /*
 1004          * Find the link structure in the bus' list of drivers.
 1005          */
 1006         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1007                 if (dl->driver == driver)
 1008                         break;
 1009         }
 1010 
 1011         if (!dl) {
 1012                 PDEBUG(("%s not found in %s list", driver->name,
 1013                     busclass->name));
 1014                 return (ENOENT);
 1015         }
 1016 
 1017         /*
 1018          * Quiesce all devices.  We iterate through all the devices in
 1019          * the devclass of the driver and quiesce any which are using
 1020          * the driver and which have a parent in the devclass which we
 1021          * are quiescing.
 1022          *
 1023          * Note that since a driver can be in multiple devclasses, we
 1024          * should not quiesce devices which are not children of
 1025          * devices in the affected devclass.
 1026          */
 1027         for (i = 0; i < dc->maxunit; i++) {
 1028                 if (dc->devices[i]) {
 1029                         dev = dc->devices[i];
 1030                         if (dev->driver == driver && dev->parent &&
 1031                             dev->parent->devclass == busclass) {
 1032                                 if ((error = device_quiesce(dev)) != 0)
 1033                                         return (error);
 1034                         }
 1035                 }
 1036         }
 1037 
 1038         return (0);
 1039 }
 1040 
 1041 /**
 1042  * @internal
 1043  */
 1044 static driverlink_t
 1045 devclass_find_driver_internal(devclass_t dc, const char *classname)
 1046 {
 1047         driverlink_t dl;
 1048 
 1049         PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
 1050 
 1051         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1052                 if (!strcmp(dl->driver->name, classname))
 1053                         return (dl);
 1054         }
 1055 
 1056         PDEBUG(("not found"));
 1057         return (NULL);
 1058 }
 1059 
 1060 /**
 1061  * @brief Search a devclass for a driver
 1062  *
 1063  * This function searches the devclass's list of drivers and returns
 1064  * the first driver whose name is @p classname or @c NULL if there is
 1065  * no driver of that name.
 1066  *
 1067  * @param dc            the devclass to search
 1068  * @param classname     the driver name to search for
 1069  */
 1070 kobj_class_t
 1071 devclass_find_driver(devclass_t dc, const char *classname)
 1072 {
 1073         driverlink_t dl;
 1074 
 1075         dl = devclass_find_driver_internal(dc, classname);
 1076         if (dl)
 1077                 return (dl->driver);
 1078         return (NULL);
 1079 }
 1080 
 1081 /**
 1082  * @brief Return the name of the devclass
 1083  */
 1084 const char *
 1085 devclass_get_name(devclass_t dc)
 1086 {
 1087         return (dc->name);
 1088 }
 1089 
 1090 /**
 1091  * @brief Find a device given a unit number
 1092  *
 1093  * @param dc            the devclass to search
 1094  * @param unit          the unit number to search for
 1095  * 
 1096  * @returns             the device with the given unit number or @c
 1097  *                      NULL if there is no such device
 1098  */
 1099 device_t
 1100 devclass_get_device(devclass_t dc, int unit)
 1101 {
 1102         if (dc == NULL || unit < 0 || unit >= dc->maxunit)
 1103                 return (NULL);
 1104         return (dc->devices[unit]);
 1105 }
 1106 
 1107 /**
 1108  * @brief Find the softc field of a device given a unit number
 1109  *
 1110  * @param dc            the devclass to search
 1111  * @param unit          the unit number to search for
 1112  * 
 1113  * @returns             the softc field of the device with the given
 1114  *                      unit number or @c NULL if there is no such
 1115  *                      device
 1116  */
 1117 void *
 1118 devclass_get_softc(devclass_t dc, int unit)
 1119 {
 1120         device_t dev;
 1121 
 1122         dev = devclass_get_device(dc, unit);
 1123         if (!dev)
 1124                 return (NULL);
 1125 
 1126         return (device_get_softc(dev));
 1127 }
 1128 
 1129 /**
 1130  * @brief Get a list of devices in the devclass
 1131  *
 1132  * An array containing a list of all the devices in the given devclass
 1133  * is allocated and returned in @p *devlistp. The number of devices
 1134  * in the array is returned in @p *devcountp. The caller should free
 1135  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
 1136  *
 1137  * @param dc            the devclass to examine
 1138  * @param devlistp      points at location for array pointer return
 1139  *                      value
 1140  * @param devcountp     points at location for array size return value
 1141  *
 1142  * @retval 0            success
 1143  * @retval ENOMEM       the array allocation failed
 1144  */
 1145 int
 1146 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
 1147 {
 1148         int count, i;
 1149         device_t *list;
 1150 
 1151         count = devclass_get_count(dc);
 1152         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 1153         if (!list)
 1154                 return (ENOMEM);
 1155 
 1156         count = 0;
 1157         for (i = 0; i < dc->maxunit; i++) {
 1158                 if (dc->devices[i]) {
 1159                         list[count] = dc->devices[i];
 1160                         count++;
 1161                 }
 1162         }
 1163 
 1164         *devlistp = list;
 1165         *devcountp = count;
 1166 
 1167         return (0);
 1168 }
 1169 
 1170 /**
 1171  * @brief Get a list of drivers in the devclass
 1172  *
 1173  * An array containing a list of pointers to all the drivers in the
 1174  * given devclass is allocated and returned in @p *listp.  The number
 1175  * of drivers in the array is returned in @p *countp. The caller should
 1176  * free the array using @c free(p, M_TEMP).
 1177  *
 1178  * @param dc            the devclass to examine
 1179  * @param listp         gives location for array pointer return value
 1180  * @param countp        gives location for number of array elements
 1181  *                      return value
 1182  *
 1183  * @retval 0            success
 1184  * @retval ENOMEM       the array allocation failed
 1185  */
 1186 int
 1187 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
 1188 {
 1189         driverlink_t dl;
 1190         driver_t **list;
 1191         int count;
 1192 
 1193         count = 0;
 1194         TAILQ_FOREACH(dl, &dc->drivers, link)
 1195                 count++;
 1196         list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
 1197         if (list == NULL)
 1198                 return (ENOMEM);
 1199 
 1200         count = 0;
 1201         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1202                 list[count] = dl->driver;
 1203                 count++;
 1204         }
 1205         *listp = list;
 1206         *countp = count;
 1207 
 1208         return (0);
 1209 }
 1210 
 1211 /**
 1212  * @brief Get the number of devices in a devclass
 1213  *
 1214  * @param dc            the devclass to examine
 1215  */
 1216 int
 1217 devclass_get_count(devclass_t dc)
 1218 {
 1219         int count, i;
 1220 
 1221         count = 0;
 1222         for (i = 0; i < dc->maxunit; i++)
 1223                 if (dc->devices[i])
 1224                         count++;
 1225         return (count);
 1226 }
 1227 
 1228 /**
 1229  * @brief Get the maximum unit number used in a devclass
 1230  *
 1231  * Note that this is one greater than the highest currently-allocated
 1232  * unit.
 1233  *
 1234  * @param dc            the devclass to examine
 1235  */
 1236 int
 1237 devclass_get_maxunit(devclass_t dc)
 1238 {
 1239         return (dc->maxunit);
 1240 }
 1241 
 1242 /**
 1243  * @brief Find a free unit number in a devclass
 1244  *
 1245  * This function searches for the first unused unit number greater
 1246  * that or equal to @p unit.
 1247  *
 1248  * @param dc            the devclass to examine
 1249  * @param unit          the first unit number to check
 1250  */
 1251 int
 1252 devclass_find_free_unit(devclass_t dc, int unit)
 1253 {
 1254         if (dc == NULL)
 1255                 return (unit);
 1256         while (unit < dc->maxunit && dc->devices[unit] != NULL)
 1257                 unit++;
 1258         return (unit);
 1259 }
 1260 
 1261 /**
 1262  * @brief Set the parent of a devclass
 1263  *
 1264  * The parent class is normally initialised automatically by
 1265  * DRIVER_MODULE().
 1266  *
 1267  * @param dc            the devclass to edit
 1268  * @param pdc           the new parent devclass
 1269  */
 1270 void
 1271 devclass_set_parent(devclass_t dc, devclass_t pdc)
 1272 {
 1273         dc->parent = pdc;
 1274 }
 1275 
 1276 /**
 1277  * @brief Get the parent of a devclass
 1278  *
 1279  * @param dc            the devclass to examine
 1280  */
 1281 devclass_t
 1282 devclass_get_parent(devclass_t dc)
 1283 {
 1284         return (dc->parent);
 1285 }
 1286 
 1287 struct sysctl_ctx_list *
 1288 devclass_get_sysctl_ctx(devclass_t dc)
 1289 {
 1290         return (&dc->sysctl_ctx);
 1291 }
 1292 
 1293 struct sysctl_oid *
 1294 devclass_get_sysctl_tree(devclass_t dc)
 1295 {
 1296         return (dc->sysctl_tree);
 1297 }
 1298 
 1299 /**
 1300  * @internal
 1301  * @brief Allocate a unit number
 1302  *
 1303  * On entry, @p *unitp is the desired unit number (or @c -1 if any
 1304  * will do). The allocated unit number is returned in @p *unitp.
 1305 
 1306  * @param dc            the devclass to allocate from
 1307  * @param unitp         points at the location for the allocated unit
 1308  *                      number
 1309  *
 1310  * @retval 0            success
 1311  * @retval EEXIST       the requested unit number is already allocated
 1312  * @retval ENOMEM       memory allocation failure
 1313  */
 1314 static int
 1315 devclass_alloc_unit(devclass_t dc, int *unitp)
 1316 {
 1317         int unit = *unitp;
 1318 
 1319         PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1320 
 1321         /* If we were given a wired unit number, check for existing device */
 1322         /* XXX imp XXX */
 1323         if (unit != -1) {
 1324                 if (unit >= 0 && unit < dc->maxunit &&
 1325                     dc->devices[unit] != NULL) {
 1326                         if (bootverbose)
 1327                                 printf("%s: %s%d already exists; skipping it\n",
 1328                                     dc->name, dc->name, *unitp);
 1329                         return (EEXIST);
 1330                 }
 1331         } else {
 1332                 /* Unwired device, find the next available slot for it */
 1333                 unit = 0;
 1334                 while (unit < dc->maxunit && dc->devices[unit] != NULL)
 1335                         unit++;
 1336         }
 1337 
 1338         /*
 1339          * We've selected a unit beyond the length of the table, so let's
 1340          * extend the table to make room for all units up to and including
 1341          * this one.
 1342          */
 1343         if (unit >= dc->maxunit) {
 1344                 device_t *newlist;
 1345                 int newsize;
 1346 
 1347                 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
 1348                 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
 1349                 if (!newlist)
 1350                         return (ENOMEM);
 1351                 bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
 1352                 bzero(newlist + dc->maxunit,
 1353                     sizeof(device_t) * (newsize - dc->maxunit));
 1354                 if (dc->devices)
 1355                         free(dc->devices, M_BUS);
 1356                 dc->devices = newlist;
 1357                 dc->maxunit = newsize;
 1358         }
 1359         PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1360 
 1361         *unitp = unit;
 1362         return (0);
 1363 }
 1364 
 1365 /**
 1366  * @internal
 1367  * @brief Add a device to a devclass
 1368  *
 1369  * A unit number is allocated for the device (using the device's
 1370  * preferred unit number if any) and the device is registered in the
 1371  * devclass. This allows the device to be looked up by its unit
 1372  * number, e.g. by decoding a dev_t minor number.
 1373  *
 1374  * @param dc            the devclass to add to
 1375  * @param dev           the device to add
 1376  *
 1377  * @retval 0            success
 1378  * @retval EEXIST       the requested unit number is already allocated
 1379  * @retval ENOMEM       memory allocation failure
 1380  */
 1381 static int
 1382 devclass_add_device(devclass_t dc, device_t dev)
 1383 {
 1384         int buflen, error;
 1385 
 1386         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1387 
 1388         buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
 1389         if (buflen < 0)
 1390                 return (ENOMEM);
 1391         dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
 1392         if (!dev->nameunit)
 1393                 return (ENOMEM);
 1394 
 1395         if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
 1396                 free(dev->nameunit, M_BUS);
 1397                 dev->nameunit = NULL;
 1398                 return (error);
 1399         }
 1400         dc->devices[dev->unit] = dev;
 1401         dev->devclass = dc;
 1402         snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
 1403 
 1404         return (0);
 1405 }
 1406 
 1407 /**
 1408  * @internal
 1409  * @brief Delete a device from a devclass
 1410  *
 1411  * The device is removed from the devclass's device list and its unit
 1412  * number is freed.
 1413 
 1414  * @param dc            the devclass to delete from
 1415  * @param dev           the device to delete
 1416  *
 1417  * @retval 0            success
 1418  */
 1419 static int
 1420 devclass_delete_device(devclass_t dc, device_t dev)
 1421 {
 1422         if (!dc || !dev)
 1423                 return (0);
 1424 
 1425         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1426 
 1427         if (dev->devclass != dc || dc->devices[dev->unit] != dev)
 1428                 panic("devclass_delete_device: inconsistent device class");
 1429         dc->devices[dev->unit] = NULL;
 1430         if (dev->flags & DF_WILDCARD)
 1431                 dev->unit = -1;
 1432         dev->devclass = NULL;
 1433         free(dev->nameunit, M_BUS);
 1434         dev->nameunit = NULL;
 1435 
 1436         return (0);
 1437 }
 1438 
 1439 /**
 1440  * @internal
 1441  * @brief Make a new device and add it as a child of @p parent
 1442  *
 1443  * @param parent        the parent of the new device
 1444  * @param name          the devclass name of the new device or @c NULL
 1445  *                      to leave the devclass unspecified
 1446  * @parem unit          the unit number of the new device of @c -1 to
 1447  *                      leave the unit number unspecified
 1448  *
 1449  * @returns the new device
 1450  */
 1451 static device_t
 1452 make_device(device_t parent, const char *name, int unit)
 1453 {
 1454         device_t dev;
 1455         devclass_t dc;
 1456 
 1457         PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
 1458 
 1459         if (name) {
 1460                 dc = devclass_find_internal(name, NULL, TRUE);
 1461                 if (!dc) {
 1462                         printf("make_device: can't find device class %s\n",
 1463                             name);
 1464                         return (NULL);
 1465                 }
 1466         } else {
 1467                 dc = NULL;
 1468         }
 1469 
 1470         dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
 1471         if (!dev)
 1472                 return (NULL);
 1473 
 1474         dev->parent = parent;
 1475         TAILQ_INIT(&dev->children);
 1476         kobj_init((kobj_t) dev, &null_class);
 1477         dev->driver = NULL;
 1478         dev->devclass = NULL;
 1479         dev->unit = unit;
 1480         dev->nameunit = NULL;
 1481         dev->desc = NULL;
 1482         dev->busy = 0;
 1483         dev->devflags = 0;
 1484         dev->flags = DF_ENABLED;
 1485         dev->order = 0;
 1486         if (unit == -1)
 1487                 dev->flags |= DF_WILDCARD;
 1488         if (name) {
 1489                 dev->flags |= DF_FIXEDCLASS;
 1490                 if (devclass_add_device(dc, dev)) {
 1491                         kobj_delete((kobj_t) dev, M_BUS);
 1492                         return (NULL);
 1493                 }
 1494         }
 1495         dev->ivars = NULL;
 1496         dev->softc = NULL;
 1497 
 1498         dev->state = DS_NOTPRESENT;
 1499 
 1500         TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
 1501         bus_data_generation_update();
 1502 
 1503         return (dev);
 1504 }
 1505 
 1506 /**
 1507  * @internal
 1508  * @brief Print a description of a device.
 1509  */
 1510 static int
 1511 device_print_child(device_t dev, device_t child)
 1512 {
 1513         int retval = 0;
 1514 
 1515         if (device_is_alive(child))
 1516                 retval += BUS_PRINT_CHILD(dev, child);
 1517         else
 1518                 retval += device_printf(child, " not found\n");
 1519 
 1520         return (retval);
 1521 }
 1522 
 1523 /**
 1524  * @brief Create a new device
 1525  *
 1526  * This creates a new device and adds it as a child of an existing
 1527  * parent device. The new device will be added after the last existing
 1528  * child with order zero.
 1529  * 
 1530  * @param dev           the device which will be the parent of the
 1531  *                      new child device
 1532  * @param name          devclass name for new device or @c NULL if not
 1533  *                      specified
 1534  * @param unit          unit number for new device or @c -1 if not
 1535  *                      specified
 1536  * 
 1537  * @returns             the new device
 1538  */
 1539 device_t
 1540 device_add_child(device_t dev, const char *name, int unit)
 1541 {
 1542         return (device_add_child_ordered(dev, 0, name, unit));
 1543 }
 1544 
 1545 /**
 1546  * @brief Create a new device
 1547  *
 1548  * This creates a new device and adds it as a child of an existing
 1549  * parent device. The new device will be added after the last existing
 1550  * child with the same order.
 1551  * 
 1552  * @param dev           the device which will be the parent of the
 1553  *                      new child device
 1554  * @param order         a value which is used to partially sort the
 1555  *                      children of @p dev - devices created using
 1556  *                      lower values of @p order appear first in @p
 1557  *                      dev's list of children
 1558  * @param name          devclass name for new device or @c NULL if not
 1559  *                      specified
 1560  * @param unit          unit number for new device or @c -1 if not
 1561  *                      specified
 1562  * 
 1563  * @returns             the new device
 1564  */
 1565 device_t
 1566 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
 1567 {
 1568         device_t child;
 1569         device_t place;
 1570 
 1571         PDEBUG(("%s at %s with order %d as unit %d",
 1572             name, DEVICENAME(dev), order, unit));
 1573 
 1574         child = make_device(dev, name, unit);
 1575         if (child == NULL)
 1576                 return (child);
 1577         child->order = order;
 1578 
 1579         TAILQ_FOREACH(place, &dev->children, link) {
 1580                 if (place->order > order)
 1581                         break;
 1582         }
 1583 
 1584         if (place) {
 1585                 /*
 1586                  * The device 'place' is the first device whose order is
 1587                  * greater than the new child.
 1588                  */
 1589                 TAILQ_INSERT_BEFORE(place, child, link);
 1590         } else {
 1591                 /*
 1592                  * The new child's order is greater or equal to the order of
 1593                  * any existing device. Add the child to the tail of the list.
 1594                  */
 1595                 TAILQ_INSERT_TAIL(&dev->children, child, link);
 1596         }
 1597 
 1598         bus_data_generation_update();
 1599         return (child);
 1600 }
 1601 
 1602 /**
 1603  * @brief Delete a device
 1604  *
 1605  * This function deletes a device along with all of its children. If
 1606  * the device currently has a driver attached to it, the device is
 1607  * detached first using device_detach().
 1608  * 
 1609  * @param dev           the parent device
 1610  * @param child         the device to delete
 1611  *
 1612  * @retval 0            success
 1613  * @retval non-zero     a unit error code describing the error
 1614  */
 1615 int
 1616 device_delete_child(device_t dev, device_t child)
 1617 {
 1618         int error;
 1619         device_t grandchild;
 1620 
 1621         PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
 1622 
 1623         /* remove children first */
 1624         while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
 1625                 error = device_delete_child(child, grandchild);
 1626                 if (error)
 1627                         return (error);
 1628         }
 1629 
 1630         if ((error = device_detach(child)) != 0)
 1631                 return (error);
 1632         if (child->devclass)
 1633                 devclass_delete_device(child->devclass, child);
 1634         TAILQ_REMOVE(&dev->children, child, link);
 1635         TAILQ_REMOVE(&bus_data_devices, child, devlink);
 1636         kobj_delete((kobj_t) child, M_BUS);
 1637 
 1638         bus_data_generation_update();
 1639         return (0);
 1640 }
 1641 
 1642 /**
 1643  * @brief Find a device given a unit number
 1644  *
 1645  * This is similar to devclass_get_devices() but only searches for
 1646  * devices which have @p dev as a parent.
 1647  *
 1648  * @param dev           the parent device to search
 1649  * @param unit          the unit number to search for.  If the unit is -1,
 1650  *                      return the first child of @p dev which has name
 1651  *                      @p classname (that is, the one with the lowest unit.)
 1652  *
 1653  * @returns             the device with the given unit number or @c
 1654  *                      NULL if there is no such device
 1655  */
 1656 device_t
 1657 device_find_child(device_t dev, const char *classname, int unit)
 1658 {
 1659         devclass_t dc;
 1660         device_t child;
 1661 
 1662         dc = devclass_find(classname);
 1663         if (!dc)
 1664                 return (NULL);
 1665 
 1666         if (unit != -1) {
 1667                 child = devclass_get_device(dc, unit);
 1668                 if (child && child->parent == dev)
 1669                         return (child);
 1670         } else {
 1671                 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
 1672                         child = devclass_get_device(dc, unit);
 1673                         if (child && child->parent == dev)
 1674                                 return (child);
 1675                 }
 1676         }
 1677         return (NULL);
 1678 }
 1679 
 1680 /**
 1681  * @internal
 1682  */
 1683 static driverlink_t
 1684 first_matching_driver(devclass_t dc, device_t dev)
 1685 {
 1686         if (dev->devclass)
 1687                 return (devclass_find_driver_internal(dc, dev->devclass->name));
 1688         return (TAILQ_FIRST(&dc->drivers));
 1689 }
 1690 
 1691 /**
 1692  * @internal
 1693  */
 1694 static driverlink_t
 1695 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
 1696 {
 1697         if (dev->devclass) {
 1698                 driverlink_t dl;
 1699                 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
 1700                         if (!strcmp(dev->devclass->name, dl->driver->name))
 1701                                 return (dl);
 1702                 return (NULL);
 1703         }
 1704         return (TAILQ_NEXT(last, link));
 1705 }
 1706 
 1707 /**
 1708  * @internal
 1709  */
 1710 int
 1711 device_probe_child(device_t dev, device_t child)
 1712 {
 1713         devclass_t dc;
 1714         driverlink_t best = NULL;
 1715         driverlink_t dl;
 1716         int result, pri = 0;
 1717         int hasclass = (child->devclass != 0);
 1718 
 1719         GIANT_REQUIRED;
 1720 
 1721         dc = dev->devclass;
 1722         if (!dc)
 1723                 panic("device_probe_child: parent device has no devclass");
 1724 
 1725         /*
 1726          * If the state is already probed, then return.  However, don't
 1727          * return if we can rebid this object.
 1728          */
 1729         if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
 1730                 return (0);
 1731 
 1732         for (; dc; dc = dc->parent) {
 1733                 for (dl = first_matching_driver(dc, child);
 1734                      dl;
 1735                      dl = next_matching_driver(dc, child, dl)) {
 1736                         PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
 1737                         device_set_driver(child, dl->driver);
 1738                         if (!hasclass) {
 1739                                 if (device_set_devclass(child, dl->driver->name)) {
 1740                                         PDEBUG(("Unable to set device class"));
 1741                                         device_set_driver(child, NULL);
 1742                                         continue;
 1743                                 }
 1744                         }
 1745 
 1746                         /* Fetch any flags for the device before probing. */
 1747                         resource_int_value(dl->driver->name, child->unit,
 1748                             "flags", &child->devflags);
 1749 
 1750                         result = DEVICE_PROBE(child);
 1751 
 1752                         /* Reset flags and devclass before the next probe. */
 1753                         child->devflags = 0;
 1754                         if (!hasclass)
 1755                                 device_set_devclass(child, NULL);
 1756 
 1757                         /*
 1758                          * If the driver returns SUCCESS, there can be
 1759                          * no higher match for this device.
 1760                          */
 1761                         if (result == 0) {
 1762                                 best = dl;
 1763                                 pri = 0;
 1764                                 break;
 1765                         }
 1766 
 1767                         /*
 1768                          * The driver returned an error so it
 1769                          * certainly doesn't match.
 1770                          */
 1771                         if (result > 0) {
 1772                                 device_set_driver(child, NULL);
 1773                                 continue;
 1774                         }
 1775 
 1776                         /*
 1777                          * A priority lower than SUCCESS, remember the
 1778                          * best matching driver. Initialise the value
 1779                          * of pri for the first match.
 1780                          */
 1781                         if (best == NULL || result > pri) {
 1782                                 best = dl;
 1783                                 pri = result;
 1784                                 continue;
 1785                         }
 1786                 }
 1787                 /*
 1788                  * If we have an unambiguous match in this devclass,
 1789                  * don't look in the parent.
 1790                  */
 1791                 if (best && pri == 0)
 1792                         break;
 1793         }
 1794 
 1795         /*
 1796          * If we found a driver, change state and initialise the devclass.
 1797          */
 1798         /* XXX What happens if we rebid and got no best? */
 1799         if (best) {
 1800                 /*
 1801                  * If this device was atached, and we were asked to
 1802                  * rescan, and it is a different driver, then we have
 1803                  * to detach the old driver and reattach this new one.
 1804                  * Note, we don't have to check for DF_REBID here
 1805                  * because if the state is > DS_ALIVE, we know it must
 1806                  * be.
 1807                  *
 1808                  * This assumes that all DF_REBID drivers can have
 1809                  * their probe routine called at any time and that
 1810                  * they are idempotent as well as completely benign in
 1811                  * normal operations.
 1812                  *
 1813                  * We also have to make sure that the detach
 1814                  * succeeded, otherwise we fail the operation (or
 1815                  * maybe it should just fail silently?  I'm torn).
 1816                  */
 1817                 if (child->state > DS_ALIVE && best->driver != child->driver)
 1818                         if ((result = device_detach(dev)) != 0)
 1819                                 return (result);
 1820 
 1821                 /* Set the winning driver, devclass, and flags. */
 1822                 if (!child->devclass) {
 1823                         result = device_set_devclass(child, best->driver->name);
 1824                         if (result != 0)
 1825                                 return (result);
 1826                 }
 1827                 device_set_driver(child, best->driver);
 1828                 resource_int_value(best->driver->name, child->unit,
 1829                     "flags", &child->devflags);
 1830 
 1831                 if (pri < 0) {
 1832                         /*
 1833                          * A bit bogus. Call the probe method again to make
 1834                          * sure that we have the right description.
 1835                          */
 1836                         DEVICE_PROBE(child);
 1837 #if 0
 1838                         child->flags |= DF_REBID;
 1839 #endif
 1840                 } else
 1841                         child->flags &= ~DF_REBID;
 1842                 child->state = DS_ALIVE;
 1843 
 1844                 bus_data_generation_update();
 1845                 return (0);
 1846         }
 1847 
 1848         return (ENXIO);
 1849 }
 1850 
 1851 /**
 1852  * @brief Return the parent of a device
 1853  */
 1854 device_t
 1855 device_get_parent(device_t dev)
 1856 {
 1857         return (dev->parent);
 1858 }
 1859 
 1860 /**
 1861  * @brief Get a list of children of a device
 1862  *
 1863  * An array containing a list of all the children of the given device
 1864  * is allocated and returned in @p *devlistp. The number of devices
 1865  * in the array is returned in @p *devcountp. The caller should free
 1866  * the array using @c free(p, M_TEMP).
 1867  *
 1868  * @param dev           the device to examine
 1869  * @param devlistp      points at location for array pointer return
 1870  *                      value
 1871  * @param devcountp     points at location for array size return value
 1872  *
 1873  * @retval 0            success
 1874  * @retval ENOMEM       the array allocation failed
 1875  */
 1876 int
 1877 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
 1878 {
 1879         int count;
 1880         device_t child;
 1881         device_t *list;
 1882 
 1883         count = 0;
 1884         TAILQ_FOREACH(child, &dev->children, link) {
 1885                 count++;
 1886         }
 1887 
 1888         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 1889         if (!list)
 1890                 return (ENOMEM);
 1891 
 1892         count = 0;
 1893         TAILQ_FOREACH(child, &dev->children, link) {
 1894                 list[count] = child;
 1895                 count++;
 1896         }
 1897 
 1898         *devlistp = list;
 1899         *devcountp = count;
 1900 
 1901         return (0);
 1902 }
 1903 
 1904 /**
 1905  * @brief Return the current driver for the device or @c NULL if there
 1906  * is no driver currently attached
 1907  */
 1908 driver_t *
 1909 device_get_driver(device_t dev)
 1910 {
 1911         return (dev->driver);
 1912 }
 1913 
 1914 /**
 1915  * @brief Return the current devclass for the device or @c NULL if
 1916  * there is none.
 1917  */
 1918 devclass_t
 1919 device_get_devclass(device_t dev)
 1920 {
 1921         return (dev->devclass);
 1922 }
 1923 
 1924 /**
 1925  * @brief Return the name of the device's devclass or @c NULL if there
 1926  * is none.
 1927  */
 1928 const char *
 1929 device_get_name(device_t dev)
 1930 {
 1931         if (dev != NULL && dev->devclass)
 1932                 return (devclass_get_name(dev->devclass));
 1933         return (NULL);
 1934 }
 1935 
 1936 /**
 1937  * @brief Return a string containing the device's devclass name
 1938  * followed by an ascii representation of the device's unit number
 1939  * (e.g. @c "foo2").
 1940  */
 1941 const char *
 1942 device_get_nameunit(device_t dev)
 1943 {
 1944         return (dev->nameunit);
 1945 }
 1946 
 1947 /**
 1948  * @brief Return the device's unit number.
 1949  */
 1950 int
 1951 device_get_unit(device_t dev)
 1952 {
 1953         return (dev->unit);
 1954 }
 1955 
 1956 /**
 1957  * @brief Return the device's description string
 1958  */
 1959 const char *
 1960 device_get_desc(device_t dev)
 1961 {
 1962         return (dev->desc);
 1963 }
 1964 
 1965 /**
 1966  * @brief Return the device's flags
 1967  */
 1968 u_int32_t
 1969 device_get_flags(device_t dev)
 1970 {
 1971         return (dev->devflags);
 1972 }
 1973 
 1974 struct sysctl_ctx_list *
 1975 device_get_sysctl_ctx(device_t dev)
 1976 {
 1977         return (&dev->sysctl_ctx);
 1978 }
 1979 
 1980 struct sysctl_oid *
 1981 device_get_sysctl_tree(device_t dev)
 1982 {
 1983         return (dev->sysctl_tree);
 1984 }
 1985 
 1986 /**
 1987  * @brief Print the name of the device followed by a colon and a space
 1988  *
 1989  * @returns the number of characters printed
 1990  */
 1991 int
 1992 device_print_prettyname(device_t dev)
 1993 {
 1994         const char *name = device_get_name(dev);
 1995 
 1996         if (name == 0)
 1997                 return (printf("unknown: "));
 1998         return (printf("%s%d: ", name, device_get_unit(dev)));
 1999 }
 2000 
 2001 /**
 2002  * @brief Print the name of the device followed by a colon, a space
 2003  * and the result of calling vprintf() with the value of @p fmt and
 2004  * the following arguments.
 2005  *
 2006  * @returns the number of characters printed
 2007  */
 2008 int
 2009 device_printf(device_t dev, const char * fmt, ...)
 2010 {
 2011         va_list ap;
 2012         int retval;
 2013 
 2014         retval = device_print_prettyname(dev);
 2015         va_start(ap, fmt);
 2016         retval += vprintf(fmt, ap);
 2017         va_end(ap);
 2018         return (retval);
 2019 }
 2020 
 2021 /**
 2022  * @internal
 2023  */
 2024 static void
 2025 device_set_desc_internal(device_t dev, const char* desc, int copy)
 2026 {
 2027         if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
 2028                 free(dev->desc, M_BUS);
 2029                 dev->flags &= ~DF_DESCMALLOCED;
 2030                 dev->desc = NULL;
 2031         }
 2032 
 2033         if (copy && desc) {
 2034                 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
 2035                 if (dev->desc) {
 2036                         strcpy(dev->desc, desc);
 2037                         dev->flags |= DF_DESCMALLOCED;
 2038                 }
 2039         } else {
 2040                 /* Avoid a -Wcast-qual warning */
 2041                 dev->desc = (char *)(uintptr_t) desc;
 2042         }
 2043 
 2044         bus_data_generation_update();
 2045 }
 2046 
 2047 /**
 2048  * @brief Set the device's description
 2049  *
 2050  * The value of @c desc should be a string constant that will not
 2051  * change (at least until the description is changed in a subsequent
 2052  * call to device_set_desc() or device_set_desc_copy()).
 2053  */
 2054 void
 2055 device_set_desc(device_t dev, const char* desc)
 2056 {
 2057         device_set_desc_internal(dev, desc, FALSE);
 2058 }
 2059 
 2060 /**
 2061  * @brief Set the device's description
 2062  *
 2063  * The string pointed to by @c desc is copied. Use this function if
 2064  * the device description is generated, (e.g. with sprintf()).
 2065  */
 2066 void
 2067 device_set_desc_copy(device_t dev, const char* desc)
 2068 {
 2069         device_set_desc_internal(dev, desc, TRUE);
 2070 }
 2071 
 2072 /**
 2073  * @brief Set the device's flags
 2074  */
 2075 void
 2076 device_set_flags(device_t dev, u_int32_t flags)
 2077 {
 2078         dev->devflags = flags;
 2079 }
 2080 
 2081 /**
 2082  * @brief Return the device's softc field
 2083  *
 2084  * The softc is allocated and zeroed when a driver is attached, based
 2085  * on the size field of the driver.
 2086  */
 2087 void *
 2088 device_get_softc(device_t dev)
 2089 {
 2090         return (dev->softc);
 2091 }
 2092 
 2093 /**
 2094  * @brief Set the device's softc field
 2095  *
 2096  * Most drivers do not need to use this since the softc is allocated
 2097  * automatically when the driver is attached.
 2098  */
 2099 void
 2100 device_set_softc(device_t dev, void *softc)
 2101 {
 2102         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
 2103                 free(dev->softc, M_BUS_SC);
 2104         dev->softc = softc;
 2105         if (dev->softc)
 2106                 dev->flags |= DF_EXTERNALSOFTC;
 2107         else
 2108                 dev->flags &= ~DF_EXTERNALSOFTC;
 2109 }
 2110 
 2111 /**
 2112  * @brief Get the device's ivars field
 2113  *
 2114  * The ivars field is used by the parent device to store per-device
 2115  * state (e.g. the physical location of the device or a list of
 2116  * resources).
 2117  */
 2118 void *
 2119 device_get_ivars(device_t dev)
 2120 {
 2121 
 2122         KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
 2123         return (dev->ivars);
 2124 }
 2125 
 2126 /**
 2127  * @brief Set the device's ivars field
 2128  */
 2129 void
 2130 device_set_ivars(device_t dev, void * ivars)
 2131 {
 2132 
 2133         KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
 2134         dev->ivars = ivars;
 2135 }
 2136 
 2137 /**
 2138  * @brief Return the device's state
 2139  */
 2140 device_state_t
 2141 device_get_state(device_t dev)
 2142 {
 2143         return (dev->state);
 2144 }
 2145 
 2146 /**
 2147  * @brief Set the DF_ENABLED flag for the device
 2148  */
 2149 void
 2150 device_enable(device_t dev)
 2151 {
 2152         dev->flags |= DF_ENABLED;
 2153 }
 2154 
 2155 /**
 2156  * @brief Clear the DF_ENABLED flag for the device
 2157  */
 2158 void
 2159 device_disable(device_t dev)
 2160 {
 2161         dev->flags &= ~DF_ENABLED;
 2162 }
 2163 
 2164 /**
 2165  * @brief Increment the busy counter for the device
 2166  */
 2167 void
 2168 device_busy(device_t dev)
 2169 {
 2170         if (dev->state < DS_ATTACHED)
 2171                 panic("device_busy: called for unattached device");
 2172         if (dev->busy == 0 && dev->parent)
 2173                 device_busy(dev->parent);
 2174         dev->busy++;
 2175         dev->state = DS_BUSY;
 2176 }
 2177 
 2178 /**
 2179  * @brief Decrement the busy counter for the device
 2180  */
 2181 void
 2182 device_unbusy(device_t dev)
 2183 {
 2184         if (dev->state != DS_BUSY)
 2185                 panic("device_unbusy: called for non-busy device %s",
 2186                     device_get_nameunit(dev));
 2187         dev->busy--;
 2188         if (dev->busy == 0) {
 2189                 if (dev->parent)
 2190                         device_unbusy(dev->parent);
 2191                 dev->state = DS_ATTACHED;
 2192         }
 2193 }
 2194 
 2195 /**
 2196  * @brief Set the DF_QUIET flag for the device
 2197  */
 2198 void
 2199 device_quiet(device_t dev)
 2200 {
 2201         dev->flags |= DF_QUIET;
 2202 }
 2203 
 2204 /**
 2205  * @brief Clear the DF_QUIET flag for the device
 2206  */
 2207 void
 2208 device_verbose(device_t dev)
 2209 {
 2210         dev->flags &= ~DF_QUIET;
 2211 }
 2212 
 2213 /**
 2214  * @brief Return non-zero if the DF_QUIET flag is set on the device
 2215  */
 2216 int
 2217 device_is_quiet(device_t dev)
 2218 {
 2219         return ((dev->flags & DF_QUIET) != 0);
 2220 }
 2221 
 2222 /**
 2223  * @brief Return non-zero if the DF_ENABLED flag is set on the device
 2224  */
 2225 int
 2226 device_is_enabled(device_t dev)
 2227 {
 2228         return ((dev->flags & DF_ENABLED) != 0);
 2229 }
 2230 
 2231 /**
 2232  * @brief Return non-zero if the device was successfully probed
 2233  */
 2234 int
 2235 device_is_alive(device_t dev)
 2236 {
 2237         return (dev->state >= DS_ALIVE);
 2238 }
 2239 
 2240 /**
 2241  * @brief Return non-zero if the device currently has a driver
 2242  * attached to it
 2243  */
 2244 int
 2245 device_is_attached(device_t dev)
 2246 {
 2247         return (dev->state >= DS_ATTACHED);
 2248 }
 2249 
 2250 /**
 2251  * @brief Set the devclass of a device
 2252  * @see devclass_add_device().
 2253  */
 2254 int
 2255 device_set_devclass(device_t dev, const char *classname)
 2256 {
 2257         devclass_t dc;
 2258         int error;
 2259 
 2260         if (!classname) {
 2261                 if (dev->devclass)
 2262                         devclass_delete_device(dev->devclass, dev);
 2263                 return (0);
 2264         }
 2265 
 2266         if (dev->devclass) {
 2267                 printf("device_set_devclass: device class already set\n");
 2268                 return (EINVAL);
 2269         }
 2270 
 2271         dc = devclass_find_internal(classname, NULL, TRUE);
 2272         if (!dc)
 2273                 return (ENOMEM);
 2274 
 2275         error = devclass_add_device(dc, dev);
 2276 
 2277         bus_data_generation_update();
 2278         return (error);
 2279 }
 2280 
 2281 /**
 2282  * @brief Set the driver of a device
 2283  *
 2284  * @retval 0            success
 2285  * @retval EBUSY        the device already has a driver attached
 2286  * @retval ENOMEM       a memory allocation failure occurred
 2287  */
 2288 int
 2289 device_set_driver(device_t dev, driver_t *driver)
 2290 {
 2291         if (dev->state >= DS_ATTACHED)
 2292                 return (EBUSY);
 2293 
 2294         if (dev->driver == driver)
 2295                 return (0);
 2296 
 2297         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
 2298                 free(dev->softc, M_BUS_SC);
 2299                 dev->softc = NULL;
 2300         }
 2301         kobj_delete((kobj_t) dev, NULL);
 2302         dev->driver = driver;
 2303         if (driver) {
 2304                 kobj_init((kobj_t) dev, (kobj_class_t) driver);
 2305                 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
 2306                         dev->softc = malloc(driver->size, M_BUS_SC,
 2307                             M_NOWAIT | M_ZERO);
 2308                         if (!dev->softc) {
 2309                                 kobj_delete((kobj_t) dev, NULL);
 2310                                 kobj_init((kobj_t) dev, &null_class);
 2311                                 dev->driver = NULL;
 2312                                 return (ENOMEM);
 2313                         }
 2314                 }
 2315         } else {
 2316                 kobj_init((kobj_t) dev, &null_class);
 2317         }
 2318 
 2319         bus_data_generation_update();
 2320         return (0);
 2321 }
 2322 
 2323 /**
 2324  * @brief Probe a device and attach a driver if possible
 2325  *
 2326  * This function is the core of the device autoconfiguration
 2327  * system. Its purpose is to select a suitable driver for a device and
 2328  * then call that driver to initialise the hardware appropriately. The
 2329  * driver is selected by calling the DEVICE_PROBE() method of a set of
 2330  * candidate drivers and then choosing the driver which returned the
 2331  * best value. This driver is then attached to the device using
 2332  * device_attach().
 2333  *
 2334  * The set of suitable drivers is taken from the list of drivers in
 2335  * the parent device's devclass. If the device was originally created
 2336  * with a specific class name (see device_add_child()), only drivers
 2337  * with that name are probed, otherwise all drivers in the devclass
 2338  * are probed. If no drivers return successful probe values in the
 2339  * parent devclass, the search continues in the parent of that
 2340  * devclass (see devclass_get_parent()) if any.
 2341  *
 2342  * @param dev           the device to initialise
 2343  *
 2344  * @retval 0            success
 2345  * @retval ENXIO        no driver was found
 2346  * @retval ENOMEM       memory allocation failure
 2347  * @retval non-zero     some other unix error code
 2348  */
 2349 int
 2350 device_probe_and_attach(device_t dev)
 2351 {
 2352         int error;
 2353 
 2354         GIANT_REQUIRED;
 2355 
 2356         if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
 2357                 return (0);
 2358 
 2359         if (!(dev->flags & DF_ENABLED)) {
 2360                 if (bootverbose && device_get_name(dev) != NULL) {
 2361                         device_print_prettyname(dev);
 2362                         printf("not probed (disabled)\n");
 2363                 }
 2364                 return (0);
 2365         }
 2366         if ((error = device_probe_child(dev->parent, dev)) != 0) {
 2367                 if (!(dev->flags & DF_DONENOMATCH)) {
 2368                         BUS_PROBE_NOMATCH(dev->parent, dev);
 2369                         devnomatch(dev);
 2370                         dev->flags |= DF_DONENOMATCH;
 2371                 }
 2372                 return (error);
 2373         }
 2374         error = device_attach(dev);
 2375 
 2376         return (error);
 2377 }
 2378 
 2379 /**
 2380  * @brief Attach a device driver to a device
 2381  *
 2382  * This function is a wrapper around the DEVICE_ATTACH() driver
 2383  * method. In addition to calling DEVICE_ATTACH(), it initialises the
 2384  * device's sysctl tree, optionally prints a description of the device
 2385  * and queues a notification event for user-based device management
 2386  * services.
 2387  *
 2388  * Normally this function is only called internally from
 2389  * device_probe_and_attach().
 2390  *
 2391  * @param dev           the device to initialise
 2392  *
 2393  * @retval 0            success
 2394  * @retval ENXIO        no driver was found
 2395  * @retval ENOMEM       memory allocation failure
 2396  * @retval non-zero     some other unix error code
 2397  */
 2398 int
 2399 device_attach(device_t dev)
 2400 {
 2401         int error;
 2402 
 2403         device_sysctl_init(dev);
 2404         if (!device_is_quiet(dev))
 2405                 device_print_child(dev->parent, dev);
 2406         if ((error = DEVICE_ATTACH(dev)) != 0) {
 2407                 printf("device_attach: %s%d attach returned %d\n",
 2408                     dev->driver->name, dev->unit, error);
 2409                 /* Unset the class; set in device_probe_child */
 2410                 if (dev->devclass == NULL)
 2411                         device_set_devclass(dev, NULL);
 2412                 device_set_driver(dev, NULL);
 2413                 device_sysctl_fini(dev);
 2414                 dev->state = DS_NOTPRESENT;
 2415                 return (error);
 2416         }
 2417         device_sysctl_update(dev);
 2418         dev->state = DS_ATTACHED;
 2419         devadded(dev);
 2420         return (0);
 2421 }
 2422 
 2423 /**
 2424  * @brief Detach a driver from a device
 2425  *
 2426  * This function is a wrapper around the DEVICE_DETACH() driver
 2427  * method. If the call to DEVICE_DETACH() succeeds, it calls
 2428  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
 2429  * notification event for user-based device management services and
 2430  * cleans up the device's sysctl tree.
 2431  *
 2432  * @param dev           the device to un-initialise
 2433  *
 2434  * @retval 0            success
 2435  * @retval ENXIO        no driver was found
 2436  * @retval ENOMEM       memory allocation failure
 2437  * @retval non-zero     some other unix error code
 2438  */
 2439 int
 2440 device_detach(device_t dev)
 2441 {
 2442         int error;
 2443 
 2444         GIANT_REQUIRED;
 2445 
 2446         PDEBUG(("%s", DEVICENAME(dev)));
 2447         if (dev->state == DS_BUSY)
 2448                 return (EBUSY);
 2449         if (dev->state != DS_ATTACHED)
 2450                 return (0);
 2451 
 2452         if ((error = DEVICE_DETACH(dev)) != 0)
 2453                 return (error);
 2454         devremoved(dev);
 2455         if (!device_is_quiet(dev))
 2456                 device_printf(dev, "detached\n");
 2457         if (dev->parent)
 2458                 BUS_CHILD_DETACHED(dev->parent, dev);
 2459 
 2460         if (!(dev->flags & DF_FIXEDCLASS))
 2461                 devclass_delete_device(dev->devclass, dev);
 2462 
 2463         dev->state = DS_NOTPRESENT;
 2464         device_set_driver(dev, NULL);
 2465         device_set_desc(dev, NULL);
 2466         device_sysctl_fini(dev);
 2467 
 2468         return (0);
 2469 }
 2470 
 2471 /**
 2472  * @brief Tells a driver to quiesce itself.
 2473  *
 2474  * This function is a wrapper around the DEVICE_QUIESCE() driver
 2475  * method. If the call to DEVICE_QUIESCE() succeeds.
 2476  *
 2477  * @param dev           the device to quiesce
 2478  *
 2479  * @retval 0            success
 2480  * @retval ENXIO        no driver was found
 2481  * @retval ENOMEM       memory allocation failure
 2482  * @retval non-zero     some other unix error code
 2483  */
 2484 int
 2485 device_quiesce(device_t dev)
 2486 {
 2487 
 2488         PDEBUG(("%s", DEVICENAME(dev)));
 2489         if (dev->state == DS_BUSY)
 2490                 return (EBUSY);
 2491         if (dev->state != DS_ATTACHED)
 2492                 return (0);
 2493 
 2494         return (DEVICE_QUIESCE(dev));
 2495 }
 2496 
 2497 /**
 2498  * @brief Notify a device of system shutdown
 2499  *
 2500  * This function calls the DEVICE_SHUTDOWN() driver method if the
 2501  * device currently has an attached driver.
 2502  *
 2503  * @returns the value returned by DEVICE_SHUTDOWN()
 2504  */
 2505 int
 2506 device_shutdown(device_t dev)
 2507 {
 2508         if (dev->state < DS_ATTACHED)
 2509                 return (0);
 2510         return (DEVICE_SHUTDOWN(dev));
 2511 }
 2512 
 2513 /**
 2514  * @brief Set the unit number of a device
 2515  *
 2516  * This function can be used to override the unit number used for a
 2517  * device (e.g. to wire a device to a pre-configured unit number).
 2518  */
 2519 int
 2520 device_set_unit(device_t dev, int unit)
 2521 {
 2522         devclass_t dc;
 2523         int err;
 2524 
 2525         dc = device_get_devclass(dev);
 2526         if (unit < dc->maxunit && dc->devices[unit])
 2527                 return (EBUSY);
 2528         err = devclass_delete_device(dc, dev);
 2529         if (err)
 2530                 return (err);
 2531         dev->unit = unit;
 2532         err = devclass_add_device(dc, dev);
 2533         if (err)
 2534                 return (err);
 2535 
 2536         bus_data_generation_update();
 2537         return (0);
 2538 }
 2539 
 2540 /*======================================*/
 2541 /*
 2542  * Some useful method implementations to make life easier for bus drivers.
 2543  */
 2544 
 2545 /**
 2546  * @brief Initialise a resource list.
 2547  *
 2548  * @param rl            the resource list to initialise
 2549  */
 2550 void
 2551 resource_list_init(struct resource_list *rl)
 2552 {
 2553         STAILQ_INIT(rl);
 2554 }
 2555 
 2556 /**
 2557  * @brief Reclaim memory used by a resource list.
 2558  *
 2559  * This function frees the memory for all resource entries on the list
 2560  * (if any).
 2561  *
 2562  * @param rl            the resource list to free               
 2563  */
 2564 void
 2565 resource_list_free(struct resource_list *rl)
 2566 {
 2567         struct resource_list_entry *rle;
 2568 
 2569         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 2570                 if (rle->res)
 2571                         panic("resource_list_free: resource entry is busy");
 2572                 STAILQ_REMOVE_HEAD(rl, link);
 2573                 free(rle, M_BUS);
 2574         }
 2575 }
 2576 
 2577 /**
 2578  * @brief Add a resource entry.
 2579  *
 2580  * This function adds a resource entry using the given @p type, @p
 2581  * start, @p end and @p count values. A rid value is chosen by
 2582  * searching sequentially for the first unused rid starting at zero.
 2583  *
 2584  * @param rl            the resource list to edit
 2585  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2586  * @param start         the start address of the resource
 2587  * @param end           the end address of the resource
 2588  * @param count         XXX end-start+1
 2589  */
 2590 int
 2591 resource_list_add_next(struct resource_list *rl, int type, u_long start,
 2592     u_long end, u_long count)
 2593 {
 2594         int rid;
 2595 
 2596         rid = 0;
 2597         while (resource_list_find(rl, type, rid) != NULL)
 2598                 rid++;
 2599         resource_list_add(rl, type, rid, start, end, count);
 2600         return (rid);
 2601 }
 2602 
 2603 /**
 2604  * @brief Add or modify a resource entry.
 2605  *
 2606  * If an existing entry exists with the same type and rid, it will be
 2607  * modified using the given values of @p start, @p end and @p
 2608  * count. If no entry exists, a new one will be created using the
 2609  * given values.  The resource list entry that matches is then returned.
 2610  *
 2611  * @param rl            the resource list to edit
 2612  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2613  * @param rid           the resource identifier
 2614  * @param start         the start address of the resource
 2615  * @param end           the end address of the resource
 2616  * @param count         XXX end-start+1
 2617  */
 2618 struct resource_list_entry *
 2619 resource_list_add(struct resource_list *rl, int type, int rid,
 2620     u_long start, u_long end, u_long count)
 2621 {
 2622         struct resource_list_entry *rle;
 2623 
 2624         rle = resource_list_find(rl, type, rid);
 2625         if (!rle) {
 2626                 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
 2627                     M_NOWAIT);
 2628                 if (!rle)
 2629                         panic("resource_list_add: can't record entry");
 2630                 STAILQ_INSERT_TAIL(rl, rle, link);
 2631                 rle->type = type;
 2632                 rle->rid = rid;
 2633                 rle->res = NULL;
 2634         }
 2635 
 2636         if (rle->res)
 2637                 panic("resource_list_add: resource entry is busy");
 2638 
 2639         rle->start = start;
 2640         rle->end = end;
 2641         rle->count = count;
 2642         return (rle);
 2643 }
 2644 
 2645 /**
 2646  * @brief Find a resource entry by type and rid.
 2647  *
 2648  * @param rl            the resource list to search
 2649  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2650  * @param rid           the resource identifier
 2651  *
 2652  * @returns the resource entry pointer or NULL if there is no such
 2653  * entry.
 2654  */
 2655 struct resource_list_entry *
 2656 resource_list_find(struct resource_list *rl, int type, int rid)
 2657 {
 2658         struct resource_list_entry *rle;
 2659 
 2660         STAILQ_FOREACH(rle, rl, link) {
 2661                 if (rle->type == type && rle->rid == rid)
 2662                         return (rle);
 2663         }
 2664         return (NULL);
 2665 }
 2666 
 2667 /**
 2668  * @brief Delete a resource entry.
 2669  *
 2670  * @param rl            the resource list to edit
 2671  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2672  * @param rid           the resource identifier
 2673  */
 2674 void
 2675 resource_list_delete(struct resource_list *rl, int type, int rid)
 2676 {
 2677         struct resource_list_entry *rle = resource_list_find(rl, type, rid);
 2678 
 2679         if (rle) {
 2680                 if (rle->res != NULL)
 2681                         panic("resource_list_delete: resource has not been released");
 2682                 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
 2683                 free(rle, M_BUS);
 2684         }
 2685 }
 2686 
 2687 /**
 2688  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
 2689  *
 2690  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
 2691  * and passing the allocation up to the parent of @p bus. This assumes
 2692  * that the first entry of @c device_get_ivars(child) is a struct
 2693  * resource_list. This also handles 'passthrough' allocations where a
 2694  * child is a remote descendant of bus by passing the allocation up to
 2695  * the parent of bus.
 2696  *
 2697  * Typically, a bus driver would store a list of child resources
 2698  * somewhere in the child device's ivars (see device_get_ivars()) and
 2699  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
 2700  * then call resource_list_alloc() to perform the allocation.
 2701  *
 2702  * @param rl            the resource list to allocate from
 2703  * @param bus           the parent device of @p child
 2704  * @param child         the device which is requesting an allocation
 2705  * @param type          the type of resource to allocate
 2706  * @param rid           a pointer to the resource identifier
 2707  * @param start         hint at the start of the resource range - pass
 2708  *                      @c 0UL for any start address
 2709  * @param end           hint at the end of the resource range - pass
 2710  *                      @c ~0UL for any end address
 2711  * @param count         hint at the size of range required - pass @c 1
 2712  *                      for any size
 2713  * @param flags         any extra flags to control the resource
 2714  *                      allocation - see @c RF_XXX flags in
 2715  *                      <sys/rman.h> for details
 2716  * 
 2717  * @returns             the resource which was allocated or @c NULL if no
 2718  *                      resource could be allocated
 2719  */
 2720 struct resource *
 2721 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
 2722     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
 2723 {
 2724         struct resource_list_entry *rle = NULL;
 2725         int passthrough = (device_get_parent(child) != bus);
 2726         int isdefault = (start == 0UL && end == ~0UL);
 2727 
 2728         if (passthrough) {
 2729                 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 2730                     type, rid, start, end, count, flags));
 2731         }
 2732 
 2733         rle = resource_list_find(rl, type, *rid);
 2734 
 2735         if (!rle)
 2736                 return (NULL);          /* no resource of that type/rid */
 2737 
 2738         if (rle->res)
 2739                 panic("resource_list_alloc: resource entry is busy");
 2740 
 2741         if (isdefault) {
 2742                 start = rle->start;
 2743                 count = ulmax(count, rle->count);
 2744                 end = ulmax(rle->end, start + count - 1);
 2745         }
 2746 
 2747         rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 2748             type, rid, start, end, count, flags);
 2749 
 2750         /*
 2751          * Record the new range.
 2752          */
 2753         if (rle->res) {
 2754                 rle->start = rman_get_start(rle->res);
 2755                 rle->end = rman_get_end(rle->res);
 2756                 rle->count = count;
 2757         }
 2758 
 2759         return (rle->res);
 2760 }
 2761 
 2762 /**
 2763  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
 2764  * 
 2765  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
 2766  * used with resource_list_alloc().
 2767  * 
 2768  * @param rl            the resource list which was allocated from
 2769  * @param bus           the parent device of @p child
 2770  * @param child         the device which is requesting a release
 2771  * @param type          the type of resource to allocate
 2772  * @param rid           the resource identifier
 2773  * @param res           the resource to release
 2774  * 
 2775  * @retval 0            success
 2776  * @retval non-zero     a standard unix error code indicating what
 2777  *                      error condition prevented the operation
 2778  */
 2779 int
 2780 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
 2781     int type, int rid, struct resource *res)
 2782 {
 2783         struct resource_list_entry *rle = NULL;
 2784         int passthrough = (device_get_parent(child) != bus);
 2785         int error;
 2786 
 2787         if (passthrough) {
 2788                 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 2789                     type, rid, res));
 2790         }
 2791 
 2792         rle = resource_list_find(rl, type, rid);
 2793 
 2794         if (!rle)
 2795                 panic("resource_list_release: can't find resource");
 2796         if (!rle->res)
 2797                 panic("resource_list_release: resource entry is not busy");
 2798 
 2799         error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 2800             type, rid, res);
 2801         if (error)
 2802                 return (error);
 2803 
 2804         rle->res = NULL;
 2805         return (0);
 2806 }
 2807 
 2808 /**
 2809  * @brief Print a description of resources in a resource list
 2810  *
 2811  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
 2812  * The name is printed if at least one resource of the given type is available.
 2813  * The format is used to print resource start and end.
 2814  *
 2815  * @param rl            the resource list to print
 2816  * @param name          the name of @p type, e.g. @c "memory"
 2817  * @param type          type type of resource entry to print
 2818  * @param format        printf(9) format string to print resource
 2819  *                      start and end values
 2820  * 
 2821  * @returns             the number of characters printed
 2822  */
 2823 int
 2824 resource_list_print_type(struct resource_list *rl, const char *name, int type,
 2825     const char *format)
 2826 {
 2827         struct resource_list_entry *rle;
 2828         int printed, retval;
 2829 
 2830         printed = 0;
 2831         retval = 0;
 2832         /* Yes, this is kinda cheating */
 2833         STAILQ_FOREACH(rle, rl, link) {
 2834                 if (rle->type == type) {
 2835                         if (printed == 0)
 2836                                 retval += printf(" %s ", name);
 2837                         else
 2838                                 retval += printf(",");
 2839                         printed++;
 2840                         retval += printf(format, rle->start);
 2841                         if (rle->count > 1) {
 2842                                 retval += printf("-");
 2843                                 retval += printf(format, rle->start +
 2844                                                  rle->count - 1);
 2845                         }
 2846                 }
 2847         }
 2848         return (retval);
 2849 }
 2850 
 2851 /**
 2852  * @brief Releases all the resources in a list.
 2853  *
 2854  * @param rl            The resource list to purge.
 2855  * 
 2856  * @returns             nothing
 2857  */
 2858 void
 2859 resource_list_purge(struct resource_list *rl)
 2860 {
 2861         struct resource_list_entry *rle;
 2862 
 2863         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 2864                 if (rle->res)
 2865                         bus_release_resource(rman_get_device(rle->res),
 2866                             rle->type, rle->rid, rle->res);
 2867                 STAILQ_REMOVE_HEAD(rl, link);
 2868                 free(rle, M_BUS);
 2869         }
 2870 }
 2871 
 2872 device_t
 2873 bus_generic_add_child(device_t dev, int order, const char *name, int unit)
 2874 {
 2875 
 2876         return (device_add_child_ordered(dev, order, name, unit));
 2877 }
 2878 
 2879 /**
 2880  * @brief Helper function for implementing DEVICE_PROBE()
 2881  *
 2882  * This function can be used to help implement the DEVICE_PROBE() for
 2883  * a bus (i.e. a device which has other devices attached to it). It
 2884  * calls the DEVICE_IDENTIFY() method of each driver in the device's
 2885  * devclass.
 2886  */
 2887 int
 2888 bus_generic_probe(device_t dev)
 2889 {
 2890         devclass_t dc = dev->devclass;
 2891         driverlink_t dl;
 2892 
 2893         TAILQ_FOREACH(dl, &dc->drivers, link) {
 2894                 DEVICE_IDENTIFY(dl->driver, dev);
 2895         }
 2896 
 2897         return (0);
 2898 }
 2899 
 2900 /**
 2901  * @brief Helper function for implementing DEVICE_ATTACH()
 2902  *
 2903  * This function can be used to help implement the DEVICE_ATTACH() for
 2904  * a bus. It calls device_probe_and_attach() for each of the device's
 2905  * children.
 2906  */
 2907 int
 2908 bus_generic_attach(device_t dev)
 2909 {
 2910         device_t child;
 2911 
 2912         TAILQ_FOREACH(child, &dev->children, link) {
 2913                 device_probe_and_attach(child);
 2914         }
 2915 
 2916         return (0);
 2917 }
 2918 
 2919 /**
 2920  * @brief Helper function for implementing DEVICE_DETACH()
 2921  *
 2922  * This function can be used to help implement the DEVICE_DETACH() for
 2923  * a bus. It calls device_detach() for each of the device's
 2924  * children.
 2925  */
 2926 int
 2927 bus_generic_detach(device_t dev)
 2928 {
 2929         device_t child;
 2930         int error;
 2931 
 2932         if (dev->state != DS_ATTACHED)
 2933                 return (EBUSY);
 2934 
 2935         TAILQ_FOREACH(child, &dev->children, link) {
 2936                 if ((error = device_detach(child)) != 0)
 2937                         return (error);
 2938         }
 2939 
 2940         return (0);
 2941 }
 2942 
 2943 /**
 2944  * @brief Helper function for implementing DEVICE_SHUTDOWN()
 2945  *
 2946  * This function can be used to help implement the DEVICE_SHUTDOWN()
 2947  * for a bus. It calls device_shutdown() for each of the device's
 2948  * children.
 2949  */
 2950 int
 2951 bus_generic_shutdown(device_t dev)
 2952 {
 2953         device_t child;
 2954 
 2955         TAILQ_FOREACH(child, &dev->children, link) {
 2956                 device_shutdown(child);
 2957         }
 2958 
 2959         return (0);
 2960 }
 2961 
 2962 /**
 2963  * @brief Helper function for implementing DEVICE_SUSPEND()
 2964  *
 2965  * This function can be used to help implement the DEVICE_SUSPEND()
 2966  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
 2967  * children. If any call to DEVICE_SUSPEND() fails, the suspend
 2968  * operation is aborted and any devices which were suspended are
 2969  * resumed immediately by calling their DEVICE_RESUME() methods.
 2970  */
 2971 int
 2972 bus_generic_suspend(device_t dev)
 2973 {
 2974         int             error;
 2975         device_t        child, child2;
 2976 
 2977         TAILQ_FOREACH(child, &dev->children, link) {
 2978                 error = DEVICE_SUSPEND(child);
 2979                 if (error) {
 2980                         for (child2 = TAILQ_FIRST(&dev->children);
 2981                              child2 && child2 != child;
 2982                              child2 = TAILQ_NEXT(child2, link))
 2983                                 DEVICE_RESUME(child2);
 2984                         return (error);
 2985                 }
 2986         }
 2987         return (0);
 2988 }
 2989 
 2990 /**
 2991  * @brief Helper function for implementing DEVICE_RESUME()
 2992  *
 2993  * This function can be used to help implement the DEVICE_RESUME() for
 2994  * a bus. It calls DEVICE_RESUME() on each of the device's children.
 2995  */
 2996 int
 2997 bus_generic_resume(device_t dev)
 2998 {
 2999         device_t        child;
 3000 
 3001         TAILQ_FOREACH(child, &dev->children, link) {
 3002                 DEVICE_RESUME(child);
 3003                 /* if resume fails, there's nothing we can usefully do... */
 3004         }
 3005         return (0);
 3006 }
 3007 
 3008 /**
 3009  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3010  *
 3011  * This function prints the first part of the ascii representation of
 3012  * @p child, including its name, unit and description (if any - see
 3013  * device_set_desc()).
 3014  *
 3015  * @returns the number of characters printed
 3016  */
 3017 int
 3018 bus_print_child_header(device_t dev, device_t child)
 3019 {
 3020         int     retval = 0;
 3021 
 3022         if (device_get_desc(child)) {
 3023                 retval += device_printf(child, "<%s>", device_get_desc(child));
 3024         } else {
 3025                 retval += printf("%s", device_get_nameunit(child));
 3026         }
 3027 
 3028         return (retval);
 3029 }
 3030 
 3031 /**
 3032  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3033  *
 3034  * This function prints the last part of the ascii representation of
 3035  * @p child, which consists of the string @c " on " followed by the
 3036  * name and unit of the @p dev.
 3037  *
 3038  * @returns the number of characters printed
 3039  */
 3040 int
 3041 bus_print_child_footer(device_t dev, device_t child)
 3042 {
 3043         return (printf(" on %s\n", device_get_nameunit(dev)));
 3044 }
 3045 
 3046 /**
 3047  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3048  *
 3049  * This function simply calls bus_print_child_header() followed by
 3050  * bus_print_child_footer().
 3051  *
 3052  * @returns the number of characters printed
 3053  */
 3054 int
 3055 bus_generic_print_child(device_t dev, device_t child)
 3056 {
 3057         int     retval = 0;
 3058 
 3059         retval += bus_print_child_header(dev, child);
 3060         retval += bus_print_child_footer(dev, child);
 3061 
 3062         return (retval);
 3063 }
 3064 
 3065 /**
 3066  * @brief Stub function for implementing BUS_READ_IVAR().
 3067  * 
 3068  * @returns ENOENT
 3069  */
 3070 int
 3071 bus_generic_read_ivar(device_t dev, device_t child, int index,
 3072     uintptr_t * result)
 3073 {
 3074         return (ENOENT);
 3075 }
 3076 
 3077 /**
 3078  * @brief Stub function for implementing BUS_WRITE_IVAR().
 3079  * 
 3080  * @returns ENOENT
 3081  */
 3082 int
 3083 bus_generic_write_ivar(device_t dev, device_t child, int index,
 3084     uintptr_t value)
 3085 {
 3086         return (ENOENT);
 3087 }
 3088 
 3089 /**
 3090  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
 3091  * 
 3092  * @returns NULL
 3093  */
 3094 struct resource_list *
 3095 bus_generic_get_resource_list(device_t dev, device_t child)
 3096 {
 3097         return (NULL);
 3098 }
 3099 
 3100 /**
 3101  * @brief Helper function for implementing BUS_DRIVER_ADDED().
 3102  *
 3103  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
 3104  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
 3105  * and then calls device_probe_and_attach() for each unattached child.
 3106  */
 3107 void
 3108 bus_generic_driver_added(device_t dev, driver_t *driver)
 3109 {
 3110         device_t child;
 3111 
 3112         DEVICE_IDENTIFY(driver, dev);
 3113         TAILQ_FOREACH(child, &dev->children, link) {
 3114                 if (child->state == DS_NOTPRESENT ||
 3115                     (child->flags & DF_REBID))
 3116                         device_probe_and_attach(child);
 3117         }
 3118 }
 3119 
 3120 /**
 3121  * @brief Helper function for implementing BUS_SETUP_INTR().
 3122  *
 3123  * This simple implementation of BUS_SETUP_INTR() simply calls the
 3124  * BUS_SETUP_INTR() method of the parent of @p dev.
 3125  */
 3126 int
 3127 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
 3128     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 
 3129     void **cookiep)
 3130 {
 3131         /* Propagate up the bus hierarchy until someone handles it. */
 3132         if (dev->parent)
 3133                 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
 3134                     filter, intr, arg, cookiep));
 3135         return (EINVAL);
 3136 }
 3137 
 3138 /**
 3139  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
 3140  *
 3141  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
 3142  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
 3143  */
 3144 int
 3145 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
 3146     void *cookie)
 3147 {
 3148         /* Propagate up the bus hierarchy until someone handles it. */
 3149         if (dev->parent)
 3150                 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
 3151         return (EINVAL);
 3152 }
 3153 
 3154 /**
 3155  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3156  *
 3157  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
 3158  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
 3159  */
 3160 struct resource *
 3161 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
 3162     u_long start, u_long end, u_long count, u_int flags)
 3163 {
 3164         /* Propagate up the bus hierarchy until someone handles it. */
 3165         if (dev->parent)
 3166                 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
 3167                     start, end, count, flags));
 3168         return (NULL);
 3169 }
 3170 
 3171 /**
 3172  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3173  *
 3174  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
 3175  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
 3176  */
 3177 int
 3178 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
 3179     struct resource *r)
 3180 {
 3181         /* Propagate up the bus hierarchy until someone handles it. */
 3182         if (dev->parent)
 3183                 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
 3184                     r));
 3185         return (EINVAL);
 3186 }
 3187 
 3188 /**
 3189  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
 3190  *
 3191  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
 3192  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
 3193  */
 3194 int
 3195 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
 3196     struct resource *r)
 3197 {
 3198         /* Propagate up the bus hierarchy until someone handles it. */
 3199         if (dev->parent)
 3200                 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3201                     r));
 3202         return (EINVAL);
 3203 }
 3204 
 3205 /**
 3206  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
 3207  *
 3208  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
 3209  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
 3210  */
 3211 int
 3212 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
 3213     int rid, struct resource *r)
 3214 {
 3215         /* Propagate up the bus hierarchy until someone handles it. */
 3216         if (dev->parent)
 3217                 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3218                     r));
 3219         return (EINVAL);
 3220 }
 3221 
 3222 /**
 3223  * @brief Helper function for implementing BUS_BIND_INTR().
 3224  *
 3225  * This simple implementation of BUS_BIND_INTR() simply calls the
 3226  * BUS_BIND_INTR() method of the parent of @p dev.
 3227  */
 3228 int
 3229 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
 3230     int cpu)
 3231 {
 3232 
 3233         /* Propagate up the bus hierarchy until someone handles it. */
 3234         if (dev->parent)
 3235                 return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
 3236         return (EINVAL);
 3237 }
 3238 
 3239 /**
 3240  * @brief Helper function for implementing BUS_CONFIG_INTR().
 3241  *
 3242  * This simple implementation of BUS_CONFIG_INTR() simply calls the
 3243  * BUS_CONFIG_INTR() method of the parent of @p dev.
 3244  */
 3245 int
 3246 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
 3247     enum intr_polarity pol)
 3248 {
 3249 
 3250         /* Propagate up the bus hierarchy until someone handles it. */
 3251         if (dev->parent)
 3252                 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
 3253         return (EINVAL);
 3254 }
 3255 
 3256 /**
 3257  * @brief Helper function for implementing BUS_GET_DMA_TAG().
 3258  *
 3259  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
 3260  * BUS_GET_DMA_TAG() method of the parent of @p dev.
 3261  */
 3262 bus_dma_tag_t
 3263 bus_generic_get_dma_tag(device_t dev, device_t child)
 3264 {
 3265 
 3266         /* Propagate up the bus hierarchy until someone handles it. */
 3267         if (dev->parent != NULL)
 3268                 return (BUS_GET_DMA_TAG(dev->parent, child));
 3269         return (NULL);
 3270 }
 3271 
 3272 /**
 3273  * @brief Helper function for implementing BUS_GET_RESOURCE().
 3274  *
 3275  * This implementation of BUS_GET_RESOURCE() uses the
 3276  * resource_list_find() function to do most of the work. It calls
 3277  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3278  * search.
 3279  */
 3280 int
 3281 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
 3282     u_long *startp, u_long *countp)
 3283 {
 3284         struct resource_list *          rl = NULL;
 3285         struct resource_list_entry *    rle = NULL;
 3286 
 3287         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3288         if (!rl)
 3289                 return (EINVAL);
 3290 
 3291         rle = resource_list_find(rl, type, rid);
 3292         if (!rle)
 3293                 return (ENOENT);
 3294 
 3295         if (startp)
 3296                 *startp = rle->start;
 3297         if (countp)
 3298                 *countp = rle->count;
 3299 
 3300         return (0);
 3301 }
 3302 
 3303 /**
 3304  * @brief Helper function for implementing BUS_SET_RESOURCE().
 3305  *
 3306  * This implementation of BUS_SET_RESOURCE() uses the
 3307  * resource_list_add() function to do most of the work. It calls
 3308  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3309  * edit.
 3310  */
 3311 int
 3312 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
 3313     u_long start, u_long count)
 3314 {
 3315         struct resource_list *          rl = NULL;
 3316 
 3317         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3318         if (!rl)
 3319                 return (EINVAL);
 3320 
 3321         resource_list_add(rl, type, rid, start, (start + count - 1), count);
 3322 
 3323         return (0);
 3324 }
 3325 
 3326 /**
 3327  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
 3328  *
 3329  * This implementation of BUS_DELETE_RESOURCE() uses the
 3330  * resource_list_delete() function to do most of the work. It calls
 3331  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3332  * edit.
 3333  */
 3334 void
 3335 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
 3336 {
 3337         struct resource_list *          rl = NULL;
 3338 
 3339         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3340         if (!rl)
 3341                 return;
 3342 
 3343         resource_list_delete(rl, type, rid);
 3344 
 3345         return;
 3346 }
 3347 
 3348 /**
 3349  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3350  *
 3351  * This implementation of BUS_RELEASE_RESOURCE() uses the
 3352  * resource_list_release() function to do most of the work. It calls
 3353  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3354  */
 3355 int
 3356 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
 3357     int rid, struct resource *r)
 3358 {
 3359         struct resource_list *          rl = NULL;
 3360 
 3361         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3362         if (!rl)
 3363                 return (EINVAL);
 3364 
 3365         return (resource_list_release(rl, dev, child, type, rid, r));
 3366 }
 3367 
 3368 /**
 3369  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3370  *
 3371  * This implementation of BUS_ALLOC_RESOURCE() uses the
 3372  * resource_list_alloc() function to do most of the work. It calls
 3373  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3374  */
 3375 struct resource *
 3376 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
 3377     int *rid, u_long start, u_long end, u_long count, u_int flags)
 3378 {
 3379         struct resource_list *          rl = NULL;
 3380 
 3381         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3382         if (!rl)
 3383                 return (NULL);
 3384 
 3385         return (resource_list_alloc(rl, dev, child, type, rid,
 3386             start, end, count, flags));
 3387 }
 3388 
 3389 /**
 3390  * @brief Helper function for implementing BUS_CHILD_PRESENT().
 3391  *
 3392  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
 3393  * BUS_CHILD_PRESENT() method of the parent of @p dev.
 3394  */
 3395 int
 3396 bus_generic_child_present(device_t dev, device_t child)
 3397 {
 3398         return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
 3399 }
 3400 
 3401 /*
 3402  * Some convenience functions to make it easier for drivers to use the
 3403  * resource-management functions.  All these really do is hide the
 3404  * indirection through the parent's method table, making for slightly
 3405  * less-wordy code.  In the future, it might make sense for this code
 3406  * to maintain some sort of a list of resources allocated by each device.
 3407  */
 3408 
 3409 int
 3410 bus_alloc_resources(device_t dev, struct resource_spec *rs,
 3411     struct resource **res)
 3412 {
 3413         int i;
 3414 
 3415         for (i = 0; rs[i].type != -1; i++)
 3416                 res[i] = NULL;
 3417         for (i = 0; rs[i].type != -1; i++) {
 3418                 res[i] = bus_alloc_resource_any(dev,
 3419                     rs[i].type, &rs[i].rid, rs[i].flags);
 3420                 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
 3421                         bus_release_resources(dev, rs, res);
 3422                         return (ENXIO);
 3423                 }
 3424         }
 3425         return (0);
 3426 }
 3427 
 3428 void
 3429 bus_release_resources(device_t dev, const struct resource_spec *rs,
 3430     struct resource **res)
 3431 {
 3432         int i;
 3433 
 3434         for (i = 0; rs[i].type != -1; i++)
 3435                 if (res[i] != NULL) {
 3436                         bus_release_resource(
 3437                             dev, rs[i].type, rs[i].rid, res[i]);
 3438                         res[i] = NULL;
 3439                 }
 3440 }
 3441 
 3442 /**
 3443  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
 3444  *
 3445  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
 3446  * parent of @p dev.
 3447  */
 3448 struct resource *
 3449 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
 3450     u_long count, u_int flags)
 3451 {
 3452         if (dev->parent == NULL)
 3453                 return (NULL);
 3454         return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
 3455             count, flags));
 3456 }
 3457 
 3458 /**
 3459  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
 3460  *
 3461  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
 3462  * parent of @p dev.
 3463  */
 3464 int
 3465 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
 3466 {
 3467         if (dev->parent == NULL)
 3468                 return (EINVAL);
 3469         return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 3470 }
 3471 
 3472 /**
 3473  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
 3474  *
 3475  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
 3476  * parent of @p dev.
 3477  */
 3478 int
 3479 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
 3480 {
 3481         if (dev->parent == NULL)
 3482                 return (EINVAL);
 3483         return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 3484 }
 3485 
 3486 /**
 3487  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
 3488  *
 3489  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
 3490  * parent of @p dev.
 3491  */
 3492 int
 3493 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
 3494 {
 3495         if (dev->parent == NULL)
 3496                 return (EINVAL);
 3497         return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
 3498 }
 3499 
 3500 /**
 3501  * @brief Wrapper function for BUS_SETUP_INTR().
 3502  *
 3503  * This function simply calls the BUS_SETUP_INTR() method of the
 3504  * parent of @p dev.
 3505  */
 3506 int
 3507 bus_setup_intr(device_t dev, struct resource *r, int flags,
 3508     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
 3509 {
 3510         int error;
 3511 
 3512         if (dev->parent != NULL) {
 3513                 error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
 3514                     filter, handler, arg, cookiep);
 3515                 if (error == 0) {
 3516                         if (handler != NULL && !(flags & INTR_MPSAFE))
 3517                                 device_printf(dev, "[GIANT-LOCKED]\n");
 3518                         if (bootverbose && (flags & INTR_MPSAFE))
 3519                                 device_printf(dev, "[MPSAFE]\n");
 3520                         if (filter != NULL) {
 3521                                 if (handler == NULL)
 3522                                         device_printf(dev, "[FILTER]\n");
 3523                                 else 
 3524                                         device_printf(dev, "[FILTER+ITHREAD]\n");
 3525                         } else 
 3526                                 device_printf(dev, "[ITHREAD]\n");
 3527                 }
 3528         } else
 3529                 error = EINVAL;
 3530         return (error);
 3531 }
 3532 
 3533 /**
 3534  * @brief Wrapper function for BUS_TEARDOWN_INTR().
 3535  *
 3536  * This function simply calls the BUS_TEARDOWN_INTR() method of the
 3537  * parent of @p dev.
 3538  */
 3539 int
 3540 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
 3541 {
 3542         if (dev->parent == NULL)
 3543                 return (EINVAL);
 3544         return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
 3545 }
 3546 
 3547 /**
 3548  * @brief Wrapper function for BUS_BIND_INTR().
 3549  *
 3550  * This function simply calls the BUS_BIND_INTR() method of the
 3551  * parent of @p dev.
 3552  */
 3553 int
 3554 bus_bind_intr(device_t dev, struct resource *r, int cpu)
 3555 {
 3556         if (dev->parent == NULL)
 3557                 return (EINVAL);
 3558         return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
 3559 }
 3560 
 3561 /**
 3562  * @brief Wrapper function for BUS_SET_RESOURCE().
 3563  *
 3564  * This function simply calls the BUS_SET_RESOURCE() method of the
 3565  * parent of @p dev.
 3566  */
 3567 int
 3568 bus_set_resource(device_t dev, int type, int rid,
 3569     u_long start, u_long count)
 3570 {
 3571         return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3572             start, count));
 3573 }
 3574 
 3575 /**
 3576  * @brief Wrapper function for BUS_GET_RESOURCE().
 3577  *
 3578  * This function simply calls the BUS_GET_RESOURCE() method of the
 3579  * parent of @p dev.
 3580  */
 3581 int
 3582 bus_get_resource(device_t dev, int type, int rid,
 3583     u_long *startp, u_long *countp)
 3584 {
 3585         return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3586             startp, countp));
 3587 }
 3588 
 3589 /**
 3590  * @brief Wrapper function for BUS_GET_RESOURCE().
 3591  *
 3592  * This function simply calls the BUS_GET_RESOURCE() method of the
 3593  * parent of @p dev and returns the start value.
 3594  */
 3595 u_long
 3596 bus_get_resource_start(device_t dev, int type, int rid)
 3597 {
 3598         u_long start, count;
 3599         int error;
 3600 
 3601         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3602             &start, &count);
 3603         if (error)
 3604                 return (0);
 3605         return (start);
 3606 }
 3607 
 3608 /**
 3609  * @brief Wrapper function for BUS_GET_RESOURCE().
 3610  *
 3611  * This function simply calls the BUS_GET_RESOURCE() method of the
 3612  * parent of @p dev and returns the count value.
 3613  */
 3614 u_long
 3615 bus_get_resource_count(device_t dev, int type, int rid)
 3616 {
 3617         u_long start, count;
 3618         int error;
 3619 
 3620         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3621             &start, &count);
 3622         if (error)
 3623                 return (0);
 3624         return (count);
 3625 }
 3626 
 3627 /**
 3628  * @brief Wrapper function for BUS_DELETE_RESOURCE().
 3629  *
 3630  * This function simply calls the BUS_DELETE_RESOURCE() method of the
 3631  * parent of @p dev.
 3632  */
 3633 void
 3634 bus_delete_resource(device_t dev, int type, int rid)
 3635 {
 3636         BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
 3637 }
 3638 
 3639 /**
 3640  * @brief Wrapper function for BUS_CHILD_PRESENT().
 3641  *
 3642  * This function simply calls the BUS_CHILD_PRESENT() method of the
 3643  * parent of @p dev.
 3644  */
 3645 int
 3646 bus_child_present(device_t child)
 3647 {
 3648         return (BUS_CHILD_PRESENT(device_get_parent(child), child));
 3649 }
 3650 
 3651 /**
 3652  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
 3653  *
 3654  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
 3655  * parent of @p dev.
 3656  */
 3657 int
 3658 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
 3659 {
 3660         device_t parent;
 3661 
 3662         parent = device_get_parent(child);
 3663         if (parent == NULL) {
 3664                 *buf = '\0';
 3665                 return (0);
 3666         }
 3667         return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
 3668 }
 3669 
 3670 /**
 3671  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
 3672  *
 3673  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
 3674  * parent of @p dev.
 3675  */
 3676 int
 3677 bus_child_location_str(device_t child, char *buf, size_t buflen)
 3678 {
 3679         device_t parent;
 3680 
 3681         parent = device_get_parent(child);
 3682         if (parent == NULL) {
 3683                 *buf = '\0';
 3684                 return (0);
 3685         }
 3686         return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
 3687 }
 3688 
 3689 /**
 3690  * @brief Wrapper function for BUS_GET_DMA_TAG().
 3691  *
 3692  * This function simply calls the BUS_GET_DMA_TAG() method of the
 3693  * parent of @p dev.
 3694  */
 3695 bus_dma_tag_t
 3696 bus_get_dma_tag(device_t dev)
 3697 {
 3698         device_t parent;
 3699 
 3700         parent = device_get_parent(dev);
 3701         if (parent == NULL)
 3702                 return (NULL);
 3703         return (BUS_GET_DMA_TAG(parent, dev));
 3704 }
 3705 
 3706 /* Resume all devices and then notify userland that we're up again. */
 3707 static int
 3708 root_resume(device_t dev)
 3709 {
 3710         int error;
 3711 
 3712         error = bus_generic_resume(dev);
 3713         if (error == 0)
 3714                 devctl_notify("kern", "power", "resume", NULL);
 3715         return (error);
 3716 }
 3717 
 3718 static int
 3719 root_print_child(device_t dev, device_t child)
 3720 {
 3721         int     retval = 0;
 3722 
 3723         retval += bus_print_child_header(dev, child);
 3724         retval += printf("\n");
 3725 
 3726         return (retval);
 3727 }
 3728 
 3729 static int
 3730 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
 3731     void **cookiep)
 3732 {
 3733         /*
 3734          * If an interrupt mapping gets to here something bad has happened.
 3735          */
 3736         panic("root_setup_intr");
 3737 }
 3738 
 3739 /*
 3740  * If we get here, assume that the device is permanant and really is
 3741  * present in the system.  Removable bus drivers are expected to intercept
 3742  * this call long before it gets here.  We return -1 so that drivers that
 3743  * really care can check vs -1 or some ERRNO returned higher in the food
 3744  * chain.
 3745  */
 3746 static int
 3747 root_child_present(device_t dev, device_t child)
 3748 {
 3749         return (-1);
 3750 }
 3751 
 3752 static kobj_method_t root_methods[] = {
 3753         /* Device interface */
 3754         KOBJMETHOD(device_shutdown,     bus_generic_shutdown),
 3755         KOBJMETHOD(device_suspend,      bus_generic_suspend),
 3756         KOBJMETHOD(device_resume,       root_resume),
 3757 
 3758         /* Bus interface */
 3759         KOBJMETHOD(bus_print_child,     root_print_child),
 3760         KOBJMETHOD(bus_read_ivar,       bus_generic_read_ivar),
 3761         KOBJMETHOD(bus_write_ivar,      bus_generic_write_ivar),
 3762         KOBJMETHOD(bus_setup_intr,      root_setup_intr),
 3763         KOBJMETHOD(bus_child_present,   root_child_present),
 3764 
 3765         { 0, 0 }
 3766 };
 3767 
 3768 static driver_t root_driver = {
 3769         "root",
 3770         root_methods,
 3771         1,                      /* no softc */
 3772 };
 3773 
 3774 device_t        root_bus;
 3775 devclass_t      root_devclass;
 3776 
 3777 static int
 3778 root_bus_module_handler(module_t mod, int what, void* arg)
 3779 {
 3780         switch (what) {
 3781         case MOD_LOAD:
 3782                 TAILQ_INIT(&bus_data_devices);
 3783                 kobj_class_compile((kobj_class_t) &root_driver);
 3784                 root_bus = make_device(NULL, "root", 0);
 3785                 root_bus->desc = "System root bus";
 3786                 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
 3787                 root_bus->driver = &root_driver;
 3788                 root_bus->state = DS_ATTACHED;
 3789                 root_devclass = devclass_find_internal("root", NULL, FALSE);
 3790                 devinit();
 3791                 return (0);
 3792 
 3793         case MOD_SHUTDOWN:
 3794                 device_shutdown(root_bus);
 3795                 return (0);
 3796         default:
 3797                 return (EOPNOTSUPP);
 3798         }
 3799 
 3800         return (0);
 3801 }
 3802 
 3803 static moduledata_t root_bus_mod = {
 3804         "rootbus",
 3805         root_bus_module_handler,
 3806         0
 3807 };
 3808 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
 3809 
 3810 /**
 3811  * @brief Automatically configure devices
 3812  *
 3813  * This function begins the autoconfiguration process by calling
 3814  * device_probe_and_attach() for each child of the @c root0 device.
 3815  */ 
 3816 void
 3817 root_bus_configure(void)
 3818 {
 3819         device_t dev;
 3820 
 3821         PDEBUG(("."));
 3822 
 3823         TAILQ_FOREACH(dev, &root_bus->children, link) {
 3824                 device_probe_and_attach(dev);
 3825         }
 3826 }
 3827 
 3828 /**
 3829  * @brief Module handler for registering device drivers
 3830  *
 3831  * This module handler is used to automatically register device
 3832  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
 3833  * devclass_add_driver() for the driver described by the
 3834  * driver_module_data structure pointed to by @p arg
 3835  */
 3836 int
 3837 driver_module_handler(module_t mod, int what, void *arg)
 3838 {
 3839         int error;
 3840         struct driver_module_data *dmd;
 3841         devclass_t bus_devclass;
 3842         kobj_class_t driver;
 3843 
 3844         dmd = (struct driver_module_data *)arg;
 3845         bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
 3846         error = 0;
 3847 
 3848         switch (what) {
 3849         case MOD_LOAD:
 3850                 if (dmd->dmd_chainevh)
 3851                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 3852 
 3853                 driver = dmd->dmd_driver;
 3854                 PDEBUG(("Loading module: driver %s on bus %s",
 3855                     DRIVERNAME(driver), dmd->dmd_busname));
 3856                 error = devclass_add_driver(bus_devclass, driver);
 3857                 if (error)
 3858                         break;
 3859 
 3860                 /*
 3861                  * If the driver has any base classes, make the
 3862                  * devclass inherit from the devclass of the driver's
 3863                  * first base class. This will allow the system to
 3864                  * search for drivers in both devclasses for children
 3865                  * of a device using this driver.
 3866                  */
 3867                 if (driver->baseclasses) {
 3868                         const char *parentname;
 3869                         parentname = driver->baseclasses[0]->name;
 3870                         *dmd->dmd_devclass =
 3871                                 devclass_find_internal(driver->name,
 3872                                     parentname, TRUE);
 3873                 } else {
 3874                         *dmd->dmd_devclass =
 3875                                 devclass_find_internal(driver->name, NULL, TRUE);
 3876                 }
 3877                 break;
 3878 
 3879         case MOD_UNLOAD:
 3880                 PDEBUG(("Unloading module: driver %s from bus %s",
 3881                     DRIVERNAME(dmd->dmd_driver),
 3882                     dmd->dmd_busname));
 3883                 error = devclass_delete_driver(bus_devclass,
 3884                     dmd->dmd_driver);
 3885 
 3886                 if (!error && dmd->dmd_chainevh)
 3887                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 3888                 break;
 3889         case MOD_QUIESCE:
 3890                 PDEBUG(("Quiesce module: driver %s from bus %s",
 3891                     DRIVERNAME(dmd->dmd_driver),
 3892                     dmd->dmd_busname));
 3893                 error = devclass_quiesce_driver(bus_devclass,
 3894                     dmd->dmd_driver);
 3895 
 3896                 if (!error && dmd->dmd_chainevh)
 3897                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 3898                 break;
 3899         default:
 3900                 error = EOPNOTSUPP;
 3901                 break;
 3902         }
 3903 
 3904         return (error);
 3905 }
 3906 
 3907 /**
 3908  * @brief Enumerate all hinted devices for this bus.
 3909  *
 3910  * Walks through the hints for this bus and calls the bus_hinted_child
 3911  * routine for each one it fines.  It searches first for the specific
 3912  * bus that's being probed for hinted children (eg isa0), and then for
 3913  * generic children (eg isa).
 3914  *
 3915  * @param       dev     bus device to enumerate
 3916  */
 3917 void
 3918 bus_enumerate_hinted_children(device_t bus)
 3919 {
 3920         int i;
 3921         const char *dname, *busname;
 3922         int dunit;
 3923 
 3924         /*
 3925          * enumerate all devices on the specific bus
 3926          */
 3927         busname = device_get_nameunit(bus);
 3928         i = 0;
 3929         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 3930                 BUS_HINTED_CHILD(bus, dname, dunit);
 3931 
 3932         /*
 3933          * and all the generic ones.
 3934          */
 3935         busname = device_get_name(bus);
 3936         i = 0;
 3937         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 3938                 BUS_HINTED_CHILD(bus, dname, dunit);
 3939 }
 3940 
 3941 #ifdef BUS_DEBUG
 3942 
 3943 /* the _short versions avoid iteration by not calling anything that prints
 3944  * more than oneliners. I love oneliners.
 3945  */
 3946 
 3947 static void
 3948 print_device_short(device_t dev, int indent)
 3949 {
 3950         if (!dev)
 3951                 return;
 3952 
 3953         indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
 3954             dev->unit, dev->desc,
 3955             (dev->parent? "":"no "),
 3956             (TAILQ_EMPTY(&dev->children)? "no ":""),
 3957             (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
 3958             (dev->flags&DF_FIXEDCLASS? "fixed,":""),
 3959             (dev->flags&DF_WILDCARD? "wildcard,":""),
 3960             (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
 3961             (dev->flags&DF_REBID? "rebiddable,":""),
 3962             (dev->ivars? "":"no "),
 3963             (dev->softc? "":"no "),
 3964             dev->busy));
 3965 }
 3966 
 3967 static void
 3968 print_device(device_t dev, int indent)
 3969 {
 3970         if (!dev)
 3971                 return;
 3972 
 3973         print_device_short(dev, indent);
 3974 
 3975         indentprintf(("Parent:\n"));
 3976         print_device_short(dev->parent, indent+1);
 3977         indentprintf(("Driver:\n"));
 3978         print_driver_short(dev->driver, indent+1);
 3979         indentprintf(("Devclass:\n"));
 3980         print_devclass_short(dev->devclass, indent+1);
 3981 }
 3982 
 3983 void
 3984 print_device_tree_short(device_t dev, int indent)
 3985 /* print the device and all its children (indented) */
 3986 {
 3987         device_t child;
 3988 
 3989         if (!dev)
 3990                 return;
 3991 
 3992         print_device_short(dev, indent);
 3993 
 3994         TAILQ_FOREACH(child, &dev->children, link) {
 3995                 print_device_tree_short(child, indent+1);
 3996         }
 3997 }
 3998 
 3999 void
 4000 print_device_tree(device_t dev, int indent)
 4001 /* print the device and all its children (indented) */
 4002 {
 4003         device_t child;
 4004 
 4005         if (!dev)
 4006                 return;
 4007 
 4008         print_device(dev, indent);
 4009 
 4010         TAILQ_FOREACH(child, &dev->children, link) {
 4011                 print_device_tree(child, indent+1);
 4012         }
 4013 }
 4014 
 4015 static void
 4016 print_driver_short(driver_t *driver, int indent)
 4017 {
 4018         if (!driver)
 4019                 return;
 4020 
 4021         indentprintf(("driver %s: softc size = %zd\n",
 4022             driver->name, driver->size));
 4023 }
 4024 
 4025 static void
 4026 print_driver(driver_t *driver, int indent)
 4027 {
 4028         if (!driver)
 4029                 return;
 4030 
 4031         print_driver_short(driver, indent);
 4032 }
 4033 
 4034 
 4035 static void
 4036 print_driver_list(driver_list_t drivers, int indent)
 4037 {
 4038         driverlink_t driver;
 4039 
 4040         TAILQ_FOREACH(driver, &drivers, link) {
 4041                 print_driver(driver->driver, indent);
 4042         }
 4043 }
 4044 
 4045 static void
 4046 print_devclass_short(devclass_t dc, int indent)
 4047 {
 4048         if ( !dc )
 4049                 return;
 4050 
 4051         indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
 4052 }
 4053 
 4054 static void
 4055 print_devclass(devclass_t dc, int indent)
 4056 {
 4057         int i;
 4058 
 4059         if ( !dc )
 4060                 return;
 4061 
 4062         print_devclass_short(dc, indent);
 4063         indentprintf(("Drivers:\n"));
 4064         print_driver_list(dc->drivers, indent+1);
 4065 
 4066         indentprintf(("Devices:\n"));
 4067         for (i = 0; i < dc->maxunit; i++)
 4068                 if (dc->devices[i])
 4069                         print_device(dc->devices[i], indent+1);
 4070 }
 4071 
 4072 void
 4073 print_devclass_list_short(void)
 4074 {
 4075         devclass_t dc;
 4076 
 4077         printf("Short listing of devclasses, drivers & devices:\n");
 4078         TAILQ_FOREACH(dc, &devclasses, link) {
 4079                 print_devclass_short(dc, 0);
 4080         }
 4081 }
 4082 
 4083 void
 4084 print_devclass_list(void)
 4085 {
 4086         devclass_t dc;
 4087 
 4088         printf("Full listing of devclasses, drivers & devices:\n");
 4089         TAILQ_FOREACH(dc, &devclasses, link) {
 4090                 print_devclass(dc, 0);
 4091         }
 4092 }
 4093 
 4094 #endif
 4095 
 4096 /*
 4097  * User-space access to the device tree.
 4098  *
 4099  * We implement a small set of nodes:
 4100  *
 4101  * hw.bus                       Single integer read method to obtain the
 4102  *                              current generation count.
 4103  * hw.bus.devices               Reads the entire device tree in flat space.
 4104  * hw.bus.rman                  Resource manager interface
 4105  *
 4106  * We might like to add the ability to scan devclasses and/or drivers to
 4107  * determine what else is currently loaded/available.
 4108  */
 4109 
 4110 static int
 4111 sysctl_bus(SYSCTL_HANDLER_ARGS)
 4112 {
 4113         struct u_businfo        ubus;
 4114 
 4115         ubus.ub_version = BUS_USER_VERSION;
 4116         ubus.ub_generation = bus_data_generation;
 4117 
 4118         return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
 4119 }
 4120 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
 4121     "bus-related data");
 4122 
 4123 static int
 4124 sysctl_devices(SYSCTL_HANDLER_ARGS)
 4125 {
 4126         int                     *name = (int *)arg1;
 4127         u_int                   namelen = arg2;
 4128         int                     index;
 4129         struct device           *dev;
 4130         struct u_device         udev;   /* XXX this is a bit big */
 4131         int                     error;
 4132 
 4133         if (namelen != 2)
 4134                 return (EINVAL);
 4135 
 4136         if (bus_data_generation_check(name[0]))
 4137                 return (EINVAL);
 4138 
 4139         index = name[1];
 4140 
 4141         /*
 4142          * Scan the list of devices, looking for the requested index.
 4143          */
 4144         TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 4145                 if (index-- == 0)
 4146                         break;
 4147         }
 4148         if (dev == NULL)
 4149                 return (ENOENT);
 4150 
 4151         /*
 4152          * Populate the return array.
 4153          */
 4154         bzero(&udev, sizeof(udev));
 4155         udev.dv_handle = (uintptr_t)dev;
 4156         udev.dv_parent = (uintptr_t)dev->parent;
 4157         if (dev->nameunit != NULL)
 4158                 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
 4159         if (dev->desc != NULL)
 4160                 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
 4161         if (dev->driver != NULL && dev->driver->name != NULL)
 4162                 strlcpy(udev.dv_drivername, dev->driver->name,
 4163                     sizeof(udev.dv_drivername));
 4164         bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
 4165         bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
 4166         udev.dv_devflags = dev->devflags;
 4167         udev.dv_flags = dev->flags;
 4168         udev.dv_state = dev->state;
 4169         error = SYSCTL_OUT(req, &udev, sizeof(udev));
 4170         return (error);
 4171 }
 4172 
 4173 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
 4174     "system device tree");
 4175 
 4176 int
 4177 bus_data_generation_check(int generation)
 4178 {
 4179         if (generation != bus_data_generation)
 4180                 return (1);
 4181 
 4182         /* XXX generate optimised lists here? */
 4183         return (0);
 4184 }
 4185 
 4186 void
 4187 bus_data_generation_update(void)
 4188 {
 4189         bus_data_generation++;
 4190 }
 4191 
 4192 int
 4193 bus_free_resource(device_t dev, int type, struct resource *r)
 4194 {
 4195         if (r == NULL)
 4196                 return (0);
 4197         return (bus_release_resource(dev, type, rman_get_rid(r), r));
 4198 }

Cache object: 39b32ea52d4e035e70585175311c95b6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.