The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_bus.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997,1998,2003 Doug Rabson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/8.0/sys/kern/subr_bus.c 197494 2009-09-25 18:04:55Z mav $");
   29 
   30 #include "opt_bus.h"
   31 
   32 #include <sys/param.h>
   33 #include <sys/conf.h>
   34 #include <sys/filio.h>
   35 #include <sys/lock.h>
   36 #include <sys/kernel.h>
   37 #include <sys/kobj.h>
   38 #include <sys/malloc.h>
   39 #include <sys/module.h>
   40 #include <sys/mutex.h>
   41 #include <sys/poll.h>
   42 #include <sys/proc.h>
   43 #include <sys/condvar.h>
   44 #include <sys/queue.h>
   45 #include <machine/bus.h>
   46 #include <sys/rman.h>
   47 #include <sys/selinfo.h>
   48 #include <sys/signalvar.h>
   49 #include <sys/sysctl.h>
   50 #include <sys/systm.h>
   51 #include <sys/uio.h>
   52 #include <sys/bus.h>
   53 #include <sys/interrupt.h>
   54 
   55 #include <machine/stdarg.h>
   56 
   57 #include <vm/uma.h>
   58 
   59 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
   60 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
   61 
   62 /*
   63  * Used to attach drivers to devclasses.
   64  */
   65 typedef struct driverlink *driverlink_t;
   66 struct driverlink {
   67         kobj_class_t    driver;
   68         TAILQ_ENTRY(driverlink) link;   /* list of drivers in devclass */
   69         int             pass;
   70         TAILQ_ENTRY(driverlink) passlink;
   71 };
   72 
   73 /*
   74  * Forward declarations
   75  */
   76 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
   77 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
   78 typedef TAILQ_HEAD(device_list, device) device_list_t;
   79 
   80 struct devclass {
   81         TAILQ_ENTRY(devclass) link;
   82         devclass_t      parent;         /* parent in devclass hierarchy */
   83         driver_list_t   drivers;     /* bus devclasses store drivers for bus */
   84         char            *name;
   85         device_t        *devices;       /* array of devices indexed by unit */
   86         int             maxunit;        /* size of devices array */
   87         int             flags;
   88 #define DC_HAS_CHILDREN         1
   89 
   90         struct sysctl_ctx_list sysctl_ctx;
   91         struct sysctl_oid *sysctl_tree;
   92 };
   93 
   94 /**
   95  * @brief Implementation of device.
   96  */
   97 struct device {
   98         /*
   99          * A device is a kernel object. The first field must be the
  100          * current ops table for the object.
  101          */
  102         KOBJ_FIELDS;
  103 
  104         /*
  105          * Device hierarchy.
  106          */
  107         TAILQ_ENTRY(device)     link;   /**< list of devices in parent */
  108         TAILQ_ENTRY(device)     devlink; /**< global device list membership */
  109         device_t        parent;         /**< parent of this device  */
  110         device_list_t   children;       /**< list of child devices */
  111 
  112         /*
  113          * Details of this device.
  114          */
  115         driver_t        *driver;        /**< current driver */
  116         devclass_t      devclass;       /**< current device class */
  117         int             unit;           /**< current unit number */
  118         char*           nameunit;       /**< name+unit e.g. foodev0 */
  119         char*           desc;           /**< driver specific description */
  120         int             busy;           /**< count of calls to device_busy() */
  121         device_state_t  state;          /**< current device state  */
  122         u_int32_t       devflags;       /**< api level flags for device_get_flags() */
  123         u_short         flags;          /**< internal device flags  */
  124 #define DF_ENABLED      1               /* device should be probed/attached */
  125 #define DF_FIXEDCLASS   2               /* devclass specified at create time */
  126 #define DF_WILDCARD     4               /* unit was originally wildcard */
  127 #define DF_DESCMALLOCED 8               /* description was malloced */
  128 #define DF_QUIET        16              /* don't print verbose attach message */
  129 #define DF_DONENOMATCH  32              /* don't execute DEVICE_NOMATCH again */
  130 #define DF_EXTERNALSOFTC 64             /* softc not allocated by us */
  131 #define DF_REBID        128             /* Can rebid after attach */
  132         u_char  order;                  /**< order from device_add_child_ordered() */
  133         u_char  pad;
  134         void    *ivars;                 /**< instance variables  */
  135         void    *softc;                 /**< current driver's variables  */
  136 
  137         struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
  138         struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
  139 };
  140 
  141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
  142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
  143 
  144 #ifdef BUS_DEBUG
  145 
  146 static int bus_debug = 1;
  147 TUNABLE_INT("bus.debug", &bus_debug);
  148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
  149     "Debug bus code");
  150 
  151 #define PDEBUG(a)       if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
  152 #define DEVICENAME(d)   ((d)? device_get_name(d): "no device")
  153 #define DRIVERNAME(d)   ((d)? d->name : "no driver")
  154 #define DEVCLANAME(d)   ((d)? d->name : "no devclass")
  155 
  156 /**
  157  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
  158  * prevent syslog from deleting initial spaces
  159  */
  160 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
  161 
  162 static void print_device_short(device_t dev, int indent);
  163 static void print_device(device_t dev, int indent);
  164 void print_device_tree_short(device_t dev, int indent);
  165 void print_device_tree(device_t dev, int indent);
  166 static void print_driver_short(driver_t *driver, int indent);
  167 static void print_driver(driver_t *driver, int indent);
  168 static void print_driver_list(driver_list_t drivers, int indent);
  169 static void print_devclass_short(devclass_t dc, int indent);
  170 static void print_devclass(devclass_t dc, int indent);
  171 void print_devclass_list_short(void);
  172 void print_devclass_list(void);
  173 
  174 #else
  175 /* Make the compiler ignore the function calls */
  176 #define PDEBUG(a)                       /* nop */
  177 #define DEVICENAME(d)                   /* nop */
  178 #define DRIVERNAME(d)                   /* nop */
  179 #define DEVCLANAME(d)                   /* nop */
  180 
  181 #define print_device_short(d,i)         /* nop */
  182 #define print_device(d,i)               /* nop */
  183 #define print_device_tree_short(d,i)    /* nop */
  184 #define print_device_tree(d,i)          /* nop */
  185 #define print_driver_short(d,i)         /* nop */
  186 #define print_driver(d,i)               /* nop */
  187 #define print_driver_list(d,i)          /* nop */
  188 #define print_devclass_short(d,i)       /* nop */
  189 #define print_devclass(d,i)             /* nop */
  190 #define print_devclass_list_short()     /* nop */
  191 #define print_devclass_list()           /* nop */
  192 #endif
  193 
  194 /*
  195  * dev sysctl tree
  196  */
  197 
  198 enum {
  199         DEVCLASS_SYSCTL_PARENT,
  200 };
  201 
  202 static int
  203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
  204 {
  205         devclass_t dc = (devclass_t)arg1;
  206         const char *value;
  207 
  208         switch (arg2) {
  209         case DEVCLASS_SYSCTL_PARENT:
  210                 value = dc->parent ? dc->parent->name : "";
  211                 break;
  212         default:
  213                 return (EINVAL);
  214         }
  215         return (SYSCTL_OUT(req, value, strlen(value)));
  216 }
  217 
  218 static void
  219 devclass_sysctl_init(devclass_t dc)
  220 {
  221 
  222         if (dc->sysctl_tree != NULL)
  223                 return;
  224         sysctl_ctx_init(&dc->sysctl_ctx);
  225         dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
  226             SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
  227             CTLFLAG_RD, NULL, "");
  228         SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
  229             OID_AUTO, "%parent", CTLFLAG_RD,
  230             dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
  231             "parent class");
  232 }
  233 
  234 enum {
  235         DEVICE_SYSCTL_DESC,
  236         DEVICE_SYSCTL_DRIVER,
  237         DEVICE_SYSCTL_LOCATION,
  238         DEVICE_SYSCTL_PNPINFO,
  239         DEVICE_SYSCTL_PARENT,
  240 };
  241 
  242 static int
  243 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
  244 {
  245         device_t dev = (device_t)arg1;
  246         const char *value;
  247         char *buf;
  248         int error;
  249 
  250         buf = NULL;
  251         switch (arg2) {
  252         case DEVICE_SYSCTL_DESC:
  253                 value = dev->desc ? dev->desc : "";
  254                 break;
  255         case DEVICE_SYSCTL_DRIVER:
  256                 value = dev->driver ? dev->driver->name : "";
  257                 break;
  258         case DEVICE_SYSCTL_LOCATION:
  259                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  260                 bus_child_location_str(dev, buf, 1024);
  261                 break;
  262         case DEVICE_SYSCTL_PNPINFO:
  263                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  264                 bus_child_pnpinfo_str(dev, buf, 1024);
  265                 break;
  266         case DEVICE_SYSCTL_PARENT:
  267                 value = dev->parent ? dev->parent->nameunit : "";
  268                 break;
  269         default:
  270                 return (EINVAL);
  271         }
  272         error = SYSCTL_OUT(req, value, strlen(value));
  273         if (buf != NULL)
  274                 free(buf, M_BUS);
  275         return (error);
  276 }
  277 
  278 static void
  279 device_sysctl_init(device_t dev)
  280 {
  281         devclass_t dc = dev->devclass;
  282 
  283         if (dev->sysctl_tree != NULL)
  284                 return;
  285         devclass_sysctl_init(dc);
  286         sysctl_ctx_init(&dev->sysctl_ctx);
  287         dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
  288             SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
  289             dev->nameunit + strlen(dc->name),
  290             CTLFLAG_RD, NULL, "");
  291         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  292             OID_AUTO, "%desc", CTLFLAG_RD,
  293             dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
  294             "device description");
  295         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  296             OID_AUTO, "%driver", CTLFLAG_RD,
  297             dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
  298             "device driver name");
  299         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  300             OID_AUTO, "%location", CTLFLAG_RD,
  301             dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
  302             "device location relative to parent");
  303         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  304             OID_AUTO, "%pnpinfo", CTLFLAG_RD,
  305             dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
  306             "device identification");
  307         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  308             OID_AUTO, "%parent", CTLFLAG_RD,
  309             dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
  310             "parent device");
  311 }
  312 
  313 static void
  314 device_sysctl_update(device_t dev)
  315 {
  316         devclass_t dc = dev->devclass;
  317 
  318         if (dev->sysctl_tree == NULL)
  319                 return;
  320         sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
  321 }
  322 
  323 static void
  324 device_sysctl_fini(device_t dev)
  325 {
  326         if (dev->sysctl_tree == NULL)
  327                 return;
  328         sysctl_ctx_free(&dev->sysctl_ctx);
  329         dev->sysctl_tree = NULL;
  330 }
  331 
  332 /*
  333  * /dev/devctl implementation
  334  */
  335 
  336 /*
  337  * This design allows only one reader for /dev/devctl.  This is not desirable
  338  * in the long run, but will get a lot of hair out of this implementation.
  339  * Maybe we should make this device a clonable device.
  340  *
  341  * Also note: we specifically do not attach a device to the device_t tree
  342  * to avoid potential chicken and egg problems.  One could argue that all
  343  * of this belongs to the root node.  One could also further argue that the
  344  * sysctl interface that we have not might more properly be an ioctl
  345  * interface, but at this stage of the game, I'm not inclined to rock that
  346  * boat.
  347  *
  348  * I'm also not sure that the SIGIO support is done correctly or not, as
  349  * I copied it from a driver that had SIGIO support that likely hasn't been
  350  * tested since 3.4 or 2.2.8!
  351  */
  352 
  353 /* Deprecated way to adjust queue length */
  354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
  355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
  356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
  357     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
  358 
  359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
  360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
  361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
  363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
  364     0, sysctl_devctl_queue, "I", "devctl queue length");
  365 
  366 static d_open_t         devopen;
  367 static d_close_t        devclose;
  368 static d_read_t         devread;
  369 static d_ioctl_t        devioctl;
  370 static d_poll_t         devpoll;
  371 
  372 static struct cdevsw dev_cdevsw = {
  373         .d_version =    D_VERSION,
  374         .d_flags =      D_NEEDGIANT,
  375         .d_open =       devopen,
  376         .d_close =      devclose,
  377         .d_read =       devread,
  378         .d_ioctl =      devioctl,
  379         .d_poll =       devpoll,
  380         .d_name =       "devctl",
  381 };
  382 
  383 struct dev_event_info
  384 {
  385         char *dei_data;
  386         TAILQ_ENTRY(dev_event_info) dei_link;
  387 };
  388 
  389 TAILQ_HEAD(devq, dev_event_info);
  390 
  391 static struct dev_softc
  392 {
  393         int     inuse;
  394         int     nonblock;
  395         int     queued;
  396         struct mtx mtx;
  397         struct cv cv;
  398         struct selinfo sel;
  399         struct devq devq;
  400         struct proc *async_proc;
  401 } devsoftc;
  402 
  403 static struct cdev *devctl_dev;
  404 
  405 static void
  406 devinit(void)
  407 {
  408         devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
  409             "devctl");
  410         mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
  411         cv_init(&devsoftc.cv, "dev cv");
  412         TAILQ_INIT(&devsoftc.devq);
  413 }
  414 
  415 static int
  416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
  417 {
  418         if (devsoftc.inuse)
  419                 return (EBUSY);
  420         /* move to init */
  421         devsoftc.inuse = 1;
  422         devsoftc.nonblock = 0;
  423         devsoftc.async_proc = NULL;
  424         return (0);
  425 }
  426 
  427 static int
  428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
  429 {
  430         devsoftc.inuse = 0;
  431         mtx_lock(&devsoftc.mtx);
  432         cv_broadcast(&devsoftc.cv);
  433         mtx_unlock(&devsoftc.mtx);
  434         devsoftc.async_proc = NULL;
  435         return (0);
  436 }
  437 
  438 /*
  439  * The read channel for this device is used to report changes to
  440  * userland in realtime.  We are required to free the data as well as
  441  * the n1 object because we allocate them separately.  Also note that
  442  * we return one record at a time.  If you try to read this device a
  443  * character at a time, you will lose the rest of the data.  Listening
  444  * programs are expected to cope.
  445  */
  446 static int
  447 devread(struct cdev *dev, struct uio *uio, int ioflag)
  448 {
  449         struct dev_event_info *n1;
  450         int rv;
  451 
  452         mtx_lock(&devsoftc.mtx);
  453         while (TAILQ_EMPTY(&devsoftc.devq)) {
  454                 if (devsoftc.nonblock) {
  455                         mtx_unlock(&devsoftc.mtx);
  456                         return (EAGAIN);
  457                 }
  458                 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
  459                 if (rv) {
  460                         /*
  461                          * Need to translate ERESTART to EINTR here? -- jake
  462                          */
  463                         mtx_unlock(&devsoftc.mtx);
  464                         return (rv);
  465                 }
  466         }
  467         n1 = TAILQ_FIRST(&devsoftc.devq);
  468         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  469         devsoftc.queued--;
  470         mtx_unlock(&devsoftc.mtx);
  471         rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
  472         free(n1->dei_data, M_BUS);
  473         free(n1, M_BUS);
  474         return (rv);
  475 }
  476 
  477 static  int
  478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
  479 {
  480         switch (cmd) {
  481 
  482         case FIONBIO:
  483                 if (*(int*)data)
  484                         devsoftc.nonblock = 1;
  485                 else
  486                         devsoftc.nonblock = 0;
  487                 return (0);
  488         case FIOASYNC:
  489                 if (*(int*)data)
  490                         devsoftc.async_proc = td->td_proc;
  491                 else
  492                         devsoftc.async_proc = NULL;
  493                 return (0);
  494 
  495                 /* (un)Support for other fcntl() calls. */
  496         case FIOCLEX:
  497         case FIONCLEX:
  498         case FIONREAD:
  499         case FIOSETOWN:
  500         case FIOGETOWN:
  501         default:
  502                 break;
  503         }
  504         return (ENOTTY);
  505 }
  506 
  507 static  int
  508 devpoll(struct cdev *dev, int events, struct thread *td)
  509 {
  510         int     revents = 0;
  511 
  512         mtx_lock(&devsoftc.mtx);
  513         if (events & (POLLIN | POLLRDNORM)) {
  514                 if (!TAILQ_EMPTY(&devsoftc.devq))
  515                         revents = events & (POLLIN | POLLRDNORM);
  516                 else
  517                         selrecord(td, &devsoftc.sel);
  518         }
  519         mtx_unlock(&devsoftc.mtx);
  520 
  521         return (revents);
  522 }
  523 
  524 /**
  525  * @brief Return whether the userland process is running
  526  */
  527 boolean_t
  528 devctl_process_running(void)
  529 {
  530         return (devsoftc.inuse == 1);
  531 }
  532 
  533 /**
  534  * @brief Queue data to be read from the devctl device
  535  *
  536  * Generic interface to queue data to the devctl device.  It is
  537  * assumed that @p data is properly formatted.  It is further assumed
  538  * that @p data is allocated using the M_BUS malloc type.
  539  */
  540 void
  541 devctl_queue_data(char *data)
  542 {
  543         struct dev_event_info *n1 = NULL, *n2 = NULL;
  544         struct proc *p;
  545 
  546         if (strlen(data) == 0)
  547                 return;
  548         if (devctl_queue_length == 0)
  549                 return;
  550         n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
  551         if (n1 == NULL)
  552                 return;
  553         n1->dei_data = data;
  554         mtx_lock(&devsoftc.mtx);
  555         if (devctl_queue_length == 0) {
  556                 free(n1->dei_data, M_BUS);
  557                 free(n1, M_BUS);
  558                 return;
  559         }
  560         /* Leave at least one spot in the queue... */
  561         while (devsoftc.queued > devctl_queue_length - 1) {
  562                 n2 = TAILQ_FIRST(&devsoftc.devq);
  563                 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
  564                 free(n2->dei_data, M_BUS);
  565                 free(n2, M_BUS);
  566                 devsoftc.queued--;
  567         }
  568         TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
  569         devsoftc.queued++;
  570         cv_broadcast(&devsoftc.cv);
  571         mtx_unlock(&devsoftc.mtx);
  572         selwakeup(&devsoftc.sel);
  573         p = devsoftc.async_proc;
  574         if (p != NULL) {
  575                 PROC_LOCK(p);
  576                 psignal(p, SIGIO);
  577                 PROC_UNLOCK(p);
  578         }
  579 }
  580 
  581 /**
  582  * @brief Send a 'notification' to userland, using standard ways
  583  */
  584 void
  585 devctl_notify(const char *system, const char *subsystem, const char *type,
  586     const char *data)
  587 {
  588         int len = 0;
  589         char *msg;
  590 
  591         if (system == NULL)
  592                 return;         /* BOGUS!  Must specify system. */
  593         if (subsystem == NULL)
  594                 return;         /* BOGUS!  Must specify subsystem. */
  595         if (type == NULL)
  596                 return;         /* BOGUS!  Must specify type. */
  597         len += strlen(" system=") + strlen(system);
  598         len += strlen(" subsystem=") + strlen(subsystem);
  599         len += strlen(" type=") + strlen(type);
  600         /* add in the data message plus newline. */
  601         if (data != NULL)
  602                 len += strlen(data);
  603         len += 3;       /* '!', '\n', and NUL */
  604         msg = malloc(len, M_BUS, M_NOWAIT);
  605         if (msg == NULL)
  606                 return;         /* Drop it on the floor */
  607         if (data != NULL)
  608                 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
  609                     system, subsystem, type, data);
  610         else
  611                 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
  612                     system, subsystem, type);
  613         devctl_queue_data(msg);
  614 }
  615 
  616 /*
  617  * Common routine that tries to make sending messages as easy as possible.
  618  * We allocate memory for the data, copy strings into that, but do not
  619  * free it unless there's an error.  The dequeue part of the driver should
  620  * free the data.  We don't send data when the device is disabled.  We do
  621  * send data, even when we have no listeners, because we wish to avoid
  622  * races relating to startup and restart of listening applications.
  623  *
  624  * devaddq is designed to string together the type of event, with the
  625  * object of that event, plus the plug and play info and location info
  626  * for that event.  This is likely most useful for devices, but less
  627  * useful for other consumers of this interface.  Those should use
  628  * the devctl_queue_data() interface instead.
  629  */
  630 static void
  631 devaddq(const char *type, const char *what, device_t dev)
  632 {
  633         char *data = NULL;
  634         char *loc = NULL;
  635         char *pnp = NULL;
  636         const char *parstr;
  637 
  638         if (!devctl_queue_length)/* Rare race, but lost races safely discard */
  639                 return;
  640         data = malloc(1024, M_BUS, M_NOWAIT);
  641         if (data == NULL)
  642                 goto bad;
  643 
  644         /* get the bus specific location of this device */
  645         loc = malloc(1024, M_BUS, M_NOWAIT);
  646         if (loc == NULL)
  647                 goto bad;
  648         *loc = '\0';
  649         bus_child_location_str(dev, loc, 1024);
  650 
  651         /* Get the bus specific pnp info of this device */
  652         pnp = malloc(1024, M_BUS, M_NOWAIT);
  653         if (pnp == NULL)
  654                 goto bad;
  655         *pnp = '\0';
  656         bus_child_pnpinfo_str(dev, pnp, 1024);
  657 
  658         /* Get the parent of this device, or / if high enough in the tree. */
  659         if (device_get_parent(dev) == NULL)
  660                 parstr = ".";   /* Or '/' ? */
  661         else
  662                 parstr = device_get_nameunit(device_get_parent(dev));
  663         /* String it all together. */
  664         snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
  665           parstr);
  666         free(loc, M_BUS);
  667         free(pnp, M_BUS);
  668         devctl_queue_data(data);
  669         return;
  670 bad:
  671         free(pnp, M_BUS);
  672         free(loc, M_BUS);
  673         free(data, M_BUS);
  674         return;
  675 }
  676 
  677 /*
  678  * A device was added to the tree.  We are called just after it successfully
  679  * attaches (that is, probe and attach success for this device).  No call
  680  * is made if a device is merely parented into the tree.  See devnomatch
  681  * if probe fails.  If attach fails, no notification is sent (but maybe
  682  * we should have a different message for this).
  683  */
  684 static void
  685 devadded(device_t dev)
  686 {
  687         char *pnp = NULL;
  688         char *tmp = NULL;
  689 
  690         pnp = malloc(1024, M_BUS, M_NOWAIT);
  691         if (pnp == NULL)
  692                 goto fail;
  693         tmp = malloc(1024, M_BUS, M_NOWAIT);
  694         if (tmp == NULL)
  695                 goto fail;
  696         *pnp = '\0';
  697         bus_child_pnpinfo_str(dev, pnp, 1024);
  698         snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
  699         devaddq("+", tmp, dev);
  700 fail:
  701         if (pnp != NULL)
  702                 free(pnp, M_BUS);
  703         if (tmp != NULL)
  704                 free(tmp, M_BUS);
  705         return;
  706 }
  707 
  708 /*
  709  * A device was removed from the tree.  We are called just before this
  710  * happens.
  711  */
  712 static void
  713 devremoved(device_t dev)
  714 {
  715         char *pnp = NULL;
  716         char *tmp = NULL;
  717 
  718         pnp = malloc(1024, M_BUS, M_NOWAIT);
  719         if (pnp == NULL)
  720                 goto fail;
  721         tmp = malloc(1024, M_BUS, M_NOWAIT);
  722         if (tmp == NULL)
  723                 goto fail;
  724         *pnp = '\0';
  725         bus_child_pnpinfo_str(dev, pnp, 1024);
  726         snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
  727         devaddq("-", tmp, dev);
  728 fail:
  729         if (pnp != NULL)
  730                 free(pnp, M_BUS);
  731         if (tmp != NULL)
  732                 free(tmp, M_BUS);
  733         return;
  734 }
  735 
  736 /*
  737  * Called when there's no match for this device.  This is only called
  738  * the first time that no match happens, so we don't keep getting this
  739  * message.  Should that prove to be undesirable, we can change it.
  740  * This is called when all drivers that can attach to a given bus
  741  * decline to accept this device.  Other errrors may not be detected.
  742  */
  743 static void
  744 devnomatch(device_t dev)
  745 {
  746         devaddq("?", "", dev);
  747 }
  748 
  749 static int
  750 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
  751 {
  752         struct dev_event_info *n1;
  753         int dis, error;
  754 
  755         dis = devctl_queue_length == 0;
  756         error = sysctl_handle_int(oidp, &dis, 0, req);
  757         if (error || !req->newptr)
  758                 return (error);
  759         mtx_lock(&devsoftc.mtx);
  760         if (dis) {
  761                 while (!TAILQ_EMPTY(&devsoftc.devq)) {
  762                         n1 = TAILQ_FIRST(&devsoftc.devq);
  763                         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  764                         free(n1->dei_data, M_BUS);
  765                         free(n1, M_BUS);
  766                 }
  767                 devsoftc.queued = 0;
  768                 devctl_queue_length = 0;
  769         } else {
  770                 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  771         }
  772         mtx_unlock(&devsoftc.mtx);
  773         return (0);
  774 }
  775 
  776 static int
  777 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
  778 {
  779         struct dev_event_info *n1;
  780         int q, error;
  781 
  782         q = devctl_queue_length;
  783         error = sysctl_handle_int(oidp, &q, 0, req);
  784         if (error || !req->newptr)
  785                 return (error);
  786         if (q < 0)
  787                 return (EINVAL);
  788         mtx_lock(&devsoftc.mtx);
  789         devctl_queue_length = q;
  790         while (devsoftc.queued > devctl_queue_length) {
  791                 n1 = TAILQ_FIRST(&devsoftc.devq);
  792                 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  793                 free(n1->dei_data, M_BUS);
  794                 free(n1, M_BUS);
  795                 devsoftc.queued--;
  796         }
  797         mtx_unlock(&devsoftc.mtx);
  798         return (0);
  799 }
  800 
  801 /* End of /dev/devctl code */
  802 
  803 static TAILQ_HEAD(,device)      bus_data_devices;
  804 static int bus_data_generation = 1;
  805 
  806 static kobj_method_t null_methods[] = {
  807         KOBJMETHOD_END
  808 };
  809 
  810 DEFINE_CLASS(null, null_methods, 0);
  811 
  812 /*
  813  * Bus pass implementation
  814  */
  815 
  816 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
  817 int bus_current_pass = BUS_PASS_ROOT;
  818 
  819 /**
  820  * @internal
  821  * @brief Register the pass level of a new driver attachment
  822  *
  823  * Register a new driver attachment's pass level.  If no driver
  824  * attachment with the same pass level has been added, then @p new
  825  * will be added to the global passes list.
  826  *
  827  * @param new           the new driver attachment
  828  */
  829 static void
  830 driver_register_pass(struct driverlink *new)
  831 {
  832         struct driverlink *dl;
  833 
  834         /* We only consider pass numbers during boot. */
  835         if (bus_current_pass == BUS_PASS_DEFAULT)
  836                 return;
  837 
  838         /*
  839          * Walk the passes list.  If we already know about this pass
  840          * then there is nothing to do.  If we don't, then insert this
  841          * driver link into the list.
  842          */
  843         TAILQ_FOREACH(dl, &passes, passlink) {
  844                 if (dl->pass < new->pass)
  845                         continue;
  846                 if (dl->pass == new->pass)
  847                         return;
  848                 TAILQ_INSERT_BEFORE(dl, new, passlink);
  849                 return;
  850         }
  851         TAILQ_INSERT_TAIL(&passes, new, passlink);
  852 }
  853 
  854 /**
  855  * @brief Raise the current bus pass
  856  *
  857  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
  858  * method on the root bus to kick off a new device tree scan for each
  859  * new pass level that has at least one driver.
  860  */
  861 void
  862 bus_set_pass(int pass)
  863 {
  864         struct driverlink *dl;
  865 
  866         if (bus_current_pass > pass)
  867                 panic("Attempt to lower bus pass level");
  868 
  869         TAILQ_FOREACH(dl, &passes, passlink) {
  870                 /* Skip pass values below the current pass level. */
  871                 if (dl->pass <= bus_current_pass)
  872                         continue;
  873 
  874                 /*
  875                  * Bail once we hit a driver with a pass level that is
  876                  * too high.
  877                  */
  878                 if (dl->pass > pass)
  879                         break;
  880 
  881                 /*
  882                  * Raise the pass level to the next level and rescan
  883                  * the tree.
  884                  */
  885                 bus_current_pass = dl->pass;
  886                 BUS_NEW_PASS(root_bus);
  887         }
  888 
  889         /*
  890          * If there isn't a driver registered for the requested pass,
  891          * then bus_current_pass might still be less than 'pass'.  Set
  892          * it to 'pass' in that case.
  893          */
  894         if (bus_current_pass < pass)
  895                 bus_current_pass = pass;
  896         KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
  897 }
  898 
  899 /*
  900  * Devclass implementation
  901  */
  902 
  903 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
  904 
  905 /**
  906  * @internal
  907  * @brief Find or create a device class
  908  *
  909  * If a device class with the name @p classname exists, return it,
  910  * otherwise if @p create is non-zero create and return a new device
  911  * class.
  912  *
  913  * If @p parentname is non-NULL, the parent of the devclass is set to
  914  * the devclass of that name.
  915  *
  916  * @param classname     the devclass name to find or create
  917  * @param parentname    the parent devclass name or @c NULL
  918  * @param create        non-zero to create a devclass
  919  */
  920 static devclass_t
  921 devclass_find_internal(const char *classname, const char *parentname,
  922                        int create)
  923 {
  924         devclass_t dc;
  925 
  926         PDEBUG(("looking for %s", classname));
  927         if (!classname)
  928                 return (NULL);
  929 
  930         TAILQ_FOREACH(dc, &devclasses, link) {
  931                 if (!strcmp(dc->name, classname))
  932                         break;
  933         }
  934 
  935         if (create && !dc) {
  936                 PDEBUG(("creating %s", classname));
  937                 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
  938                     M_BUS, M_NOWAIT | M_ZERO);
  939                 if (!dc)
  940                         return (NULL);
  941                 dc->parent = NULL;
  942                 dc->name = (char*) (dc + 1);
  943                 strcpy(dc->name, classname);
  944                 TAILQ_INIT(&dc->drivers);
  945                 TAILQ_INSERT_TAIL(&devclasses, dc, link);
  946 
  947                 bus_data_generation_update();
  948         }
  949 
  950         /*
  951          * If a parent class is specified, then set that as our parent so
  952          * that this devclass will support drivers for the parent class as
  953          * well.  If the parent class has the same name don't do this though
  954          * as it creates a cycle that can trigger an infinite loop in
  955          * device_probe_child() if a device exists for which there is no
  956          * suitable driver.
  957          */
  958         if (parentname && dc && !dc->parent &&
  959             strcmp(classname, parentname) != 0) {
  960                 dc->parent = devclass_find_internal(parentname, NULL, TRUE);
  961                 dc->parent->flags |= DC_HAS_CHILDREN;
  962         }
  963 
  964         return (dc);
  965 }
  966 
  967 /**
  968  * @brief Create a device class
  969  *
  970  * If a device class with the name @p classname exists, return it,
  971  * otherwise create and return a new device class.
  972  *
  973  * @param classname     the devclass name to find or create
  974  */
  975 devclass_t
  976 devclass_create(const char *classname)
  977 {
  978         return (devclass_find_internal(classname, NULL, TRUE));
  979 }
  980 
  981 /**
  982  * @brief Find a device class
  983  *
  984  * If a device class with the name @p classname exists, return it,
  985  * otherwise return @c NULL.
  986  *
  987  * @param classname     the devclass name to find
  988  */
  989 devclass_t
  990 devclass_find(const char *classname)
  991 {
  992         return (devclass_find_internal(classname, NULL, FALSE));
  993 }
  994 
  995 /**
  996  * @brief Register that a device driver has been added to a devclass
  997  *
  998  * Register that a device driver has been added to a devclass.  This
  999  * is called by devclass_add_driver to accomplish the recursive
 1000  * notification of all the children classes of dc, as well as dc.
 1001  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
 1002  * the devclass.  We do a full search here of the devclass list at
 1003  * each iteration level to save storing children-lists in the devclass
 1004  * structure.  If we ever move beyond a few dozen devices doing this,
 1005  * we may need to reevaluate...
 1006  *
 1007  * @param dc            the devclass to edit
 1008  * @param driver        the driver that was just added
 1009  */
 1010 static void
 1011 devclass_driver_added(devclass_t dc, driver_t *driver)
 1012 {
 1013         devclass_t parent;
 1014         int i;
 1015 
 1016         /*
 1017          * Call BUS_DRIVER_ADDED for any existing busses in this class.
 1018          */
 1019         for (i = 0; i < dc->maxunit; i++)
 1020                 if (dc->devices[i] && device_is_attached(dc->devices[i]))
 1021                         BUS_DRIVER_ADDED(dc->devices[i], driver);
 1022 
 1023         /*
 1024          * Walk through the children classes.  Since we only keep a
 1025          * single parent pointer around, we walk the entire list of
 1026          * devclasses looking for children.  We set the
 1027          * DC_HAS_CHILDREN flag when a child devclass is created on
 1028          * the parent, so we only walk the list for those devclasses
 1029          * that have children.
 1030          */
 1031         if (!(dc->flags & DC_HAS_CHILDREN))
 1032                 return;
 1033         parent = dc;
 1034         TAILQ_FOREACH(dc, &devclasses, link) {
 1035                 if (dc->parent == parent)
 1036                         devclass_driver_added(dc, driver);
 1037         }
 1038 }
 1039 
 1040 /**
 1041  * @brief Add a device driver to a device class
 1042  *
 1043  * Add a device driver to a devclass. This is normally called
 1044  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
 1045  * all devices in the devclass will be called to allow them to attempt
 1046  * to re-probe any unmatched children.
 1047  *
 1048  * @param dc            the devclass to edit
 1049  * @param driver        the driver to register
 1050  */
 1051 static int
 1052 devclass_add_driver(devclass_t dc, driver_t *driver, int pass)
 1053 {
 1054         driverlink_t dl;
 1055 
 1056         PDEBUG(("%s", DRIVERNAME(driver)));
 1057 
 1058         /* Don't allow invalid pass values. */
 1059         if (pass <= BUS_PASS_ROOT)
 1060                 return (EINVAL);
 1061 
 1062         dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
 1063         if (!dl)
 1064                 return (ENOMEM);
 1065 
 1066         /*
 1067          * Compile the driver's methods. Also increase the reference count
 1068          * so that the class doesn't get freed when the last instance
 1069          * goes. This means we can safely use static methods and avoids a
 1070          * double-free in devclass_delete_driver.
 1071          */
 1072         kobj_class_compile((kobj_class_t) driver);
 1073 
 1074         /*
 1075          * Make sure the devclass which the driver is implementing exists.
 1076          */
 1077         devclass_find_internal(driver->name, NULL, TRUE);
 1078 
 1079         dl->driver = driver;
 1080         TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
 1081         driver->refs++;         /* XXX: kobj_mtx */
 1082         dl->pass = pass;
 1083         driver_register_pass(dl);
 1084 
 1085         devclass_driver_added(dc, driver);
 1086         bus_data_generation_update();
 1087         return (0);
 1088 }
 1089 
 1090 /**
 1091  * @brief Delete a device driver from a device class
 1092  *
 1093  * Delete a device driver from a devclass. This is normally called
 1094  * automatically by DRIVER_MODULE().
 1095  *
 1096  * If the driver is currently attached to any devices,
 1097  * devclass_delete_driver() will first attempt to detach from each
 1098  * device. If one of the detach calls fails, the driver will not be
 1099  * deleted.
 1100  *
 1101  * @param dc            the devclass to edit
 1102  * @param driver        the driver to unregister
 1103  */
 1104 static int
 1105 devclass_delete_driver(devclass_t busclass, driver_t *driver)
 1106 {
 1107         devclass_t dc = devclass_find(driver->name);
 1108         driverlink_t dl;
 1109         device_t dev;
 1110         int i;
 1111         int error;
 1112 
 1113         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1114 
 1115         if (!dc)
 1116                 return (0);
 1117 
 1118         /*
 1119          * Find the link structure in the bus' list of drivers.
 1120          */
 1121         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1122                 if (dl->driver == driver)
 1123                         break;
 1124         }
 1125 
 1126         if (!dl) {
 1127                 PDEBUG(("%s not found in %s list", driver->name,
 1128                     busclass->name));
 1129                 return (ENOENT);
 1130         }
 1131 
 1132         /*
 1133          * Disassociate from any devices.  We iterate through all the
 1134          * devices in the devclass of the driver and detach any which are
 1135          * using the driver and which have a parent in the devclass which
 1136          * we are deleting from.
 1137          *
 1138          * Note that since a driver can be in multiple devclasses, we
 1139          * should not detach devices which are not children of devices in
 1140          * the affected devclass.
 1141          */
 1142         for (i = 0; i < dc->maxunit; i++) {
 1143                 if (dc->devices[i]) {
 1144                         dev = dc->devices[i];
 1145                         if (dev->driver == driver && dev->parent &&
 1146                             dev->parent->devclass == busclass) {
 1147                                 if ((error = device_detach(dev)) != 0)
 1148                                         return (error);
 1149                                 device_set_driver(dev, NULL);
 1150                         }
 1151                 }
 1152         }
 1153 
 1154         TAILQ_REMOVE(&busclass->drivers, dl, link);
 1155         free(dl, M_BUS);
 1156 
 1157         /* XXX: kobj_mtx */
 1158         driver->refs--;
 1159         if (driver->refs == 0)
 1160                 kobj_class_free((kobj_class_t) driver);
 1161 
 1162         bus_data_generation_update();
 1163         return (0);
 1164 }
 1165 
 1166 /**
 1167  * @brief Quiesces a set of device drivers from a device class
 1168  *
 1169  * Quiesce a device driver from a devclass. This is normally called
 1170  * automatically by DRIVER_MODULE().
 1171  *
 1172  * If the driver is currently attached to any devices,
 1173  * devclass_quiesece_driver() will first attempt to quiesce each
 1174  * device.
 1175  *
 1176  * @param dc            the devclass to edit
 1177  * @param driver        the driver to unregister
 1178  */
 1179 static int
 1180 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
 1181 {
 1182         devclass_t dc = devclass_find(driver->name);
 1183         driverlink_t dl;
 1184         device_t dev;
 1185         int i;
 1186         int error;
 1187 
 1188         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1189 
 1190         if (!dc)
 1191                 return (0);
 1192 
 1193         /*
 1194          * Find the link structure in the bus' list of drivers.
 1195          */
 1196         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1197                 if (dl->driver == driver)
 1198                         break;
 1199         }
 1200 
 1201         if (!dl) {
 1202                 PDEBUG(("%s not found in %s list", driver->name,
 1203                     busclass->name));
 1204                 return (ENOENT);
 1205         }
 1206 
 1207         /*
 1208          * Quiesce all devices.  We iterate through all the devices in
 1209          * the devclass of the driver and quiesce any which are using
 1210          * the driver and which have a parent in the devclass which we
 1211          * are quiescing.
 1212          *
 1213          * Note that since a driver can be in multiple devclasses, we
 1214          * should not quiesce devices which are not children of
 1215          * devices in the affected devclass.
 1216          */
 1217         for (i = 0; i < dc->maxunit; i++) {
 1218                 if (dc->devices[i]) {
 1219                         dev = dc->devices[i];
 1220                         if (dev->driver == driver && dev->parent &&
 1221                             dev->parent->devclass == busclass) {
 1222                                 if ((error = device_quiesce(dev)) != 0)
 1223                                         return (error);
 1224                         }
 1225                 }
 1226         }
 1227 
 1228         return (0);
 1229 }
 1230 
 1231 /**
 1232  * @internal
 1233  */
 1234 static driverlink_t
 1235 devclass_find_driver_internal(devclass_t dc, const char *classname)
 1236 {
 1237         driverlink_t dl;
 1238 
 1239         PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
 1240 
 1241         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1242                 if (!strcmp(dl->driver->name, classname))
 1243                         return (dl);
 1244         }
 1245 
 1246         PDEBUG(("not found"));
 1247         return (NULL);
 1248 }
 1249 
 1250 /**
 1251  * @brief Return the name of the devclass
 1252  */
 1253 const char *
 1254 devclass_get_name(devclass_t dc)
 1255 {
 1256         return (dc->name);
 1257 }
 1258 
 1259 /**
 1260  * @brief Find a device given a unit number
 1261  *
 1262  * @param dc            the devclass to search
 1263  * @param unit          the unit number to search for
 1264  * 
 1265  * @returns             the device with the given unit number or @c
 1266  *                      NULL if there is no such device
 1267  */
 1268 device_t
 1269 devclass_get_device(devclass_t dc, int unit)
 1270 {
 1271         if (dc == NULL || unit < 0 || unit >= dc->maxunit)
 1272                 return (NULL);
 1273         return (dc->devices[unit]);
 1274 }
 1275 
 1276 /**
 1277  * @brief Find the softc field of a device given a unit number
 1278  *
 1279  * @param dc            the devclass to search
 1280  * @param unit          the unit number to search for
 1281  * 
 1282  * @returns             the softc field of the device with the given
 1283  *                      unit number or @c NULL if there is no such
 1284  *                      device
 1285  */
 1286 void *
 1287 devclass_get_softc(devclass_t dc, int unit)
 1288 {
 1289         device_t dev;
 1290 
 1291         dev = devclass_get_device(dc, unit);
 1292         if (!dev)
 1293                 return (NULL);
 1294 
 1295         return (device_get_softc(dev));
 1296 }
 1297 
 1298 /**
 1299  * @brief Get a list of devices in the devclass
 1300  *
 1301  * An array containing a list of all the devices in the given devclass
 1302  * is allocated and returned in @p *devlistp. The number of devices
 1303  * in the array is returned in @p *devcountp. The caller should free
 1304  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
 1305  *
 1306  * @param dc            the devclass to examine
 1307  * @param devlistp      points at location for array pointer return
 1308  *                      value
 1309  * @param devcountp     points at location for array size return value
 1310  *
 1311  * @retval 0            success
 1312  * @retval ENOMEM       the array allocation failed
 1313  */
 1314 int
 1315 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
 1316 {
 1317         int count, i;
 1318         device_t *list;
 1319 
 1320         count = devclass_get_count(dc);
 1321         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 1322         if (!list)
 1323                 return (ENOMEM);
 1324 
 1325         count = 0;
 1326         for (i = 0; i < dc->maxunit; i++) {
 1327                 if (dc->devices[i]) {
 1328                         list[count] = dc->devices[i];
 1329                         count++;
 1330                 }
 1331         }
 1332 
 1333         *devlistp = list;
 1334         *devcountp = count;
 1335 
 1336         return (0);
 1337 }
 1338 
 1339 /**
 1340  * @brief Get a list of drivers in the devclass
 1341  *
 1342  * An array containing a list of pointers to all the drivers in the
 1343  * given devclass is allocated and returned in @p *listp.  The number
 1344  * of drivers in the array is returned in @p *countp. The caller should
 1345  * free the array using @c free(p, M_TEMP).
 1346  *
 1347  * @param dc            the devclass to examine
 1348  * @param listp         gives location for array pointer return value
 1349  * @param countp        gives location for number of array elements
 1350  *                      return value
 1351  *
 1352  * @retval 0            success
 1353  * @retval ENOMEM       the array allocation failed
 1354  */
 1355 int
 1356 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
 1357 {
 1358         driverlink_t dl;
 1359         driver_t **list;
 1360         int count;
 1361 
 1362         count = 0;
 1363         TAILQ_FOREACH(dl, &dc->drivers, link)
 1364                 count++;
 1365         list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
 1366         if (list == NULL)
 1367                 return (ENOMEM);
 1368 
 1369         count = 0;
 1370         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1371                 list[count] = dl->driver;
 1372                 count++;
 1373         }
 1374         *listp = list;
 1375         *countp = count;
 1376 
 1377         return (0);
 1378 }
 1379 
 1380 /**
 1381  * @brief Get the number of devices in a devclass
 1382  *
 1383  * @param dc            the devclass to examine
 1384  */
 1385 int
 1386 devclass_get_count(devclass_t dc)
 1387 {
 1388         int count, i;
 1389 
 1390         count = 0;
 1391         for (i = 0; i < dc->maxunit; i++)
 1392                 if (dc->devices[i])
 1393                         count++;
 1394         return (count);
 1395 }
 1396 
 1397 /**
 1398  * @brief Get the maximum unit number used in a devclass
 1399  *
 1400  * Note that this is one greater than the highest currently-allocated
 1401  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
 1402  * that not even the devclass has been allocated yet.
 1403  *
 1404  * @param dc            the devclass to examine
 1405  */
 1406 int
 1407 devclass_get_maxunit(devclass_t dc)
 1408 {
 1409         if (dc == NULL)
 1410                 return (-1);
 1411         return (dc->maxunit);
 1412 }
 1413 
 1414 /**
 1415  * @brief Find a free unit number in a devclass
 1416  *
 1417  * This function searches for the first unused unit number greater
 1418  * that or equal to @p unit.
 1419  *
 1420  * @param dc            the devclass to examine
 1421  * @param unit          the first unit number to check
 1422  */
 1423 int
 1424 devclass_find_free_unit(devclass_t dc, int unit)
 1425 {
 1426         if (dc == NULL)
 1427                 return (unit);
 1428         while (unit < dc->maxunit && dc->devices[unit] != NULL)
 1429                 unit++;
 1430         return (unit);
 1431 }
 1432 
 1433 /**
 1434  * @brief Set the parent of a devclass
 1435  *
 1436  * The parent class is normally initialised automatically by
 1437  * DRIVER_MODULE().
 1438  *
 1439  * @param dc            the devclass to edit
 1440  * @param pdc           the new parent devclass
 1441  */
 1442 void
 1443 devclass_set_parent(devclass_t dc, devclass_t pdc)
 1444 {
 1445         dc->parent = pdc;
 1446 }
 1447 
 1448 /**
 1449  * @brief Get the parent of a devclass
 1450  *
 1451  * @param dc            the devclass to examine
 1452  */
 1453 devclass_t
 1454 devclass_get_parent(devclass_t dc)
 1455 {
 1456         return (dc->parent);
 1457 }
 1458 
 1459 struct sysctl_ctx_list *
 1460 devclass_get_sysctl_ctx(devclass_t dc)
 1461 {
 1462         return (&dc->sysctl_ctx);
 1463 }
 1464 
 1465 struct sysctl_oid *
 1466 devclass_get_sysctl_tree(devclass_t dc)
 1467 {
 1468         return (dc->sysctl_tree);
 1469 }
 1470 
 1471 /**
 1472  * @internal
 1473  * @brief Allocate a unit number
 1474  *
 1475  * On entry, @p *unitp is the desired unit number (or @c -1 if any
 1476  * will do). The allocated unit number is returned in @p *unitp.
 1477 
 1478  * @param dc            the devclass to allocate from
 1479  * @param unitp         points at the location for the allocated unit
 1480  *                      number
 1481  *
 1482  * @retval 0            success
 1483  * @retval EEXIST       the requested unit number is already allocated
 1484  * @retval ENOMEM       memory allocation failure
 1485  */
 1486 static int
 1487 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
 1488 {
 1489         const char *s;
 1490         int unit = *unitp;
 1491 
 1492         PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1493 
 1494         /* Ask the parent bus if it wants to wire this device. */
 1495         if (unit == -1)
 1496                 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
 1497                     &unit);
 1498 
 1499         /* If we were given a wired unit number, check for existing device */
 1500         /* XXX imp XXX */
 1501         if (unit != -1) {
 1502                 if (unit >= 0 && unit < dc->maxunit &&
 1503                     dc->devices[unit] != NULL) {
 1504                         if (bootverbose)
 1505                                 printf("%s: %s%d already exists; skipping it\n",
 1506                                     dc->name, dc->name, *unitp);
 1507                         return (EEXIST);
 1508                 }
 1509         } else {
 1510                 /* Unwired device, find the next available slot for it */
 1511                 unit = 0;
 1512                 for (unit = 0;; unit++) {
 1513                         /* If there is an "at" hint for a unit then skip it. */
 1514                         if (resource_string_value(dc->name, unit, "at", &s) ==
 1515                             0)
 1516                                 continue;
 1517 
 1518                         /* If this device slot is already in use, skip it. */
 1519                         if (unit < dc->maxunit && dc->devices[unit] != NULL)
 1520                                 continue;
 1521 
 1522                         break;
 1523                 }
 1524         }
 1525 
 1526         /*
 1527          * We've selected a unit beyond the length of the table, so let's
 1528          * extend the table to make room for all units up to and including
 1529          * this one.
 1530          */
 1531         if (unit >= dc->maxunit) {
 1532                 device_t *newlist, *oldlist;
 1533                 int newsize;
 1534 
 1535                 oldlist = dc->devices;
 1536                 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
 1537                 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
 1538                 if (!newlist)
 1539                         return (ENOMEM);
 1540                 if (oldlist != NULL)
 1541                         bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
 1542                 bzero(newlist + dc->maxunit,
 1543                     sizeof(device_t) * (newsize - dc->maxunit));
 1544                 dc->devices = newlist;
 1545                 dc->maxunit = newsize;
 1546                 if (oldlist != NULL)
 1547                         free(oldlist, M_BUS);
 1548         }
 1549         PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1550 
 1551         *unitp = unit;
 1552         return (0);
 1553 }
 1554 
 1555 /**
 1556  * @internal
 1557  * @brief Add a device to a devclass
 1558  *
 1559  * A unit number is allocated for the device (using the device's
 1560  * preferred unit number if any) and the device is registered in the
 1561  * devclass. This allows the device to be looked up by its unit
 1562  * number, e.g. by decoding a dev_t minor number.
 1563  *
 1564  * @param dc            the devclass to add to
 1565  * @param dev           the device to add
 1566  *
 1567  * @retval 0            success
 1568  * @retval EEXIST       the requested unit number is already allocated
 1569  * @retval ENOMEM       memory allocation failure
 1570  */
 1571 static int
 1572 devclass_add_device(devclass_t dc, device_t dev)
 1573 {
 1574         int buflen, error;
 1575 
 1576         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1577 
 1578         buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
 1579         if (buflen < 0)
 1580                 return (ENOMEM);
 1581         dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
 1582         if (!dev->nameunit)
 1583                 return (ENOMEM);
 1584 
 1585         if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
 1586                 free(dev->nameunit, M_BUS);
 1587                 dev->nameunit = NULL;
 1588                 return (error);
 1589         }
 1590         dc->devices[dev->unit] = dev;
 1591         dev->devclass = dc;
 1592         snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
 1593 
 1594         return (0);
 1595 }
 1596 
 1597 /**
 1598  * @internal
 1599  * @brief Delete a device from a devclass
 1600  *
 1601  * The device is removed from the devclass's device list and its unit
 1602  * number is freed.
 1603 
 1604  * @param dc            the devclass to delete from
 1605  * @param dev           the device to delete
 1606  *
 1607  * @retval 0            success
 1608  */
 1609 static int
 1610 devclass_delete_device(devclass_t dc, device_t dev)
 1611 {
 1612         if (!dc || !dev)
 1613                 return (0);
 1614 
 1615         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1616 
 1617         if (dev->devclass != dc || dc->devices[dev->unit] != dev)
 1618                 panic("devclass_delete_device: inconsistent device class");
 1619         dc->devices[dev->unit] = NULL;
 1620         if (dev->flags & DF_WILDCARD)
 1621                 dev->unit = -1;
 1622         dev->devclass = NULL;
 1623         free(dev->nameunit, M_BUS);
 1624         dev->nameunit = NULL;
 1625 
 1626         return (0);
 1627 }
 1628 
 1629 /**
 1630  * @internal
 1631  * @brief Make a new device and add it as a child of @p parent
 1632  *
 1633  * @param parent        the parent of the new device
 1634  * @param name          the devclass name of the new device or @c NULL
 1635  *                      to leave the devclass unspecified
 1636  * @parem unit          the unit number of the new device of @c -1 to
 1637  *                      leave the unit number unspecified
 1638  *
 1639  * @returns the new device
 1640  */
 1641 static device_t
 1642 make_device(device_t parent, const char *name, int unit)
 1643 {
 1644         device_t dev;
 1645         devclass_t dc;
 1646 
 1647         PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
 1648 
 1649         if (name) {
 1650                 dc = devclass_find_internal(name, NULL, TRUE);
 1651                 if (!dc) {
 1652                         printf("make_device: can't find device class %s\n",
 1653                             name);
 1654                         return (NULL);
 1655                 }
 1656         } else {
 1657                 dc = NULL;
 1658         }
 1659 
 1660         dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
 1661         if (!dev)
 1662                 return (NULL);
 1663 
 1664         dev->parent = parent;
 1665         TAILQ_INIT(&dev->children);
 1666         kobj_init((kobj_t) dev, &null_class);
 1667         dev->driver = NULL;
 1668         dev->devclass = NULL;
 1669         dev->unit = unit;
 1670         dev->nameunit = NULL;
 1671         dev->desc = NULL;
 1672         dev->busy = 0;
 1673         dev->devflags = 0;
 1674         dev->flags = DF_ENABLED;
 1675         dev->order = 0;
 1676         if (unit == -1)
 1677                 dev->flags |= DF_WILDCARD;
 1678         if (name) {
 1679                 dev->flags |= DF_FIXEDCLASS;
 1680                 if (devclass_add_device(dc, dev)) {
 1681                         kobj_delete((kobj_t) dev, M_BUS);
 1682                         return (NULL);
 1683                 }
 1684         }
 1685         dev->ivars = NULL;
 1686         dev->softc = NULL;
 1687 
 1688         dev->state = DS_NOTPRESENT;
 1689 
 1690         TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
 1691         bus_data_generation_update();
 1692 
 1693         return (dev);
 1694 }
 1695 
 1696 /**
 1697  * @internal
 1698  * @brief Print a description of a device.
 1699  */
 1700 static int
 1701 device_print_child(device_t dev, device_t child)
 1702 {
 1703         int retval = 0;
 1704 
 1705         if (device_is_alive(child))
 1706                 retval += BUS_PRINT_CHILD(dev, child);
 1707         else
 1708                 retval += device_printf(child, " not found\n");
 1709 
 1710         return (retval);
 1711 }
 1712 
 1713 /**
 1714  * @brief Create a new device
 1715  *
 1716  * This creates a new device and adds it as a child of an existing
 1717  * parent device. The new device will be added after the last existing
 1718  * child with order zero.
 1719  * 
 1720  * @param dev           the device which will be the parent of the
 1721  *                      new child device
 1722  * @param name          devclass name for new device or @c NULL if not
 1723  *                      specified
 1724  * @param unit          unit number for new device or @c -1 if not
 1725  *                      specified
 1726  * 
 1727  * @returns             the new device
 1728  */
 1729 device_t
 1730 device_add_child(device_t dev, const char *name, int unit)
 1731 {
 1732         return (device_add_child_ordered(dev, 0, name, unit));
 1733 }
 1734 
 1735 /**
 1736  * @brief Create a new device
 1737  *
 1738  * This creates a new device and adds it as a child of an existing
 1739  * parent device. The new device will be added after the last existing
 1740  * child with the same order.
 1741  * 
 1742  * @param dev           the device which will be the parent of the
 1743  *                      new child device
 1744  * @param order         a value which is used to partially sort the
 1745  *                      children of @p dev - devices created using
 1746  *                      lower values of @p order appear first in @p
 1747  *                      dev's list of children
 1748  * @param name          devclass name for new device or @c NULL if not
 1749  *                      specified
 1750  * @param unit          unit number for new device or @c -1 if not
 1751  *                      specified
 1752  * 
 1753  * @returns             the new device
 1754  */
 1755 device_t
 1756 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
 1757 {
 1758         device_t child;
 1759         device_t place;
 1760 
 1761         PDEBUG(("%s at %s with order %d as unit %d",
 1762             name, DEVICENAME(dev), order, unit));
 1763 
 1764         child = make_device(dev, name, unit);
 1765         if (child == NULL)
 1766                 return (child);
 1767         child->order = order;
 1768 
 1769         TAILQ_FOREACH(place, &dev->children, link) {
 1770                 if (place->order > order)
 1771                         break;
 1772         }
 1773 
 1774         if (place) {
 1775                 /*
 1776                  * The device 'place' is the first device whose order is
 1777                  * greater than the new child.
 1778                  */
 1779                 TAILQ_INSERT_BEFORE(place, child, link);
 1780         } else {
 1781                 /*
 1782                  * The new child's order is greater or equal to the order of
 1783                  * any existing device. Add the child to the tail of the list.
 1784                  */
 1785                 TAILQ_INSERT_TAIL(&dev->children, child, link);
 1786         }
 1787 
 1788         bus_data_generation_update();
 1789         return (child);
 1790 }
 1791 
 1792 /**
 1793  * @brief Delete a device
 1794  *
 1795  * This function deletes a device along with all of its children. If
 1796  * the device currently has a driver attached to it, the device is
 1797  * detached first using device_detach().
 1798  * 
 1799  * @param dev           the parent device
 1800  * @param child         the device to delete
 1801  *
 1802  * @retval 0            success
 1803  * @retval non-zero     a unit error code describing the error
 1804  */
 1805 int
 1806 device_delete_child(device_t dev, device_t child)
 1807 {
 1808         int error;
 1809         device_t grandchild;
 1810 
 1811         PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
 1812 
 1813         /* remove children first */
 1814         while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
 1815                 error = device_delete_child(child, grandchild);
 1816                 if (error)
 1817                         return (error);
 1818         }
 1819 
 1820         if ((error = device_detach(child)) != 0)
 1821                 return (error);
 1822         if (child->devclass)
 1823                 devclass_delete_device(child->devclass, child);
 1824         TAILQ_REMOVE(&dev->children, child, link);
 1825         TAILQ_REMOVE(&bus_data_devices, child, devlink);
 1826         kobj_delete((kobj_t) child, M_BUS);
 1827 
 1828         bus_data_generation_update();
 1829         return (0);
 1830 }
 1831 
 1832 /**
 1833  * @brief Find a device given a unit number
 1834  *
 1835  * This is similar to devclass_get_devices() but only searches for
 1836  * devices which have @p dev as a parent.
 1837  *
 1838  * @param dev           the parent device to search
 1839  * @param unit          the unit number to search for.  If the unit is -1,
 1840  *                      return the first child of @p dev which has name
 1841  *                      @p classname (that is, the one with the lowest unit.)
 1842  *
 1843  * @returns             the device with the given unit number or @c
 1844  *                      NULL if there is no such device
 1845  */
 1846 device_t
 1847 device_find_child(device_t dev, const char *classname, int unit)
 1848 {
 1849         devclass_t dc;
 1850         device_t child;
 1851 
 1852         dc = devclass_find(classname);
 1853         if (!dc)
 1854                 return (NULL);
 1855 
 1856         if (unit != -1) {
 1857                 child = devclass_get_device(dc, unit);
 1858                 if (child && child->parent == dev)
 1859                         return (child);
 1860         } else {
 1861                 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
 1862                         child = devclass_get_device(dc, unit);
 1863                         if (child && child->parent == dev)
 1864                                 return (child);
 1865                 }
 1866         }
 1867         return (NULL);
 1868 }
 1869 
 1870 /**
 1871  * @internal
 1872  */
 1873 static driverlink_t
 1874 first_matching_driver(devclass_t dc, device_t dev)
 1875 {
 1876         if (dev->devclass)
 1877                 return (devclass_find_driver_internal(dc, dev->devclass->name));
 1878         return (TAILQ_FIRST(&dc->drivers));
 1879 }
 1880 
 1881 /**
 1882  * @internal
 1883  */
 1884 static driverlink_t
 1885 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
 1886 {
 1887         if (dev->devclass) {
 1888                 driverlink_t dl;
 1889                 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
 1890                         if (!strcmp(dev->devclass->name, dl->driver->name))
 1891                                 return (dl);
 1892                 return (NULL);
 1893         }
 1894         return (TAILQ_NEXT(last, link));
 1895 }
 1896 
 1897 /**
 1898  * @internal
 1899  */
 1900 int
 1901 device_probe_child(device_t dev, device_t child)
 1902 {
 1903         devclass_t dc;
 1904         driverlink_t best = NULL;
 1905         driverlink_t dl;
 1906         int result, pri = 0;
 1907         int hasclass = (child->devclass != NULL);
 1908 
 1909         GIANT_REQUIRED;
 1910 
 1911         dc = dev->devclass;
 1912         if (!dc)
 1913                 panic("device_probe_child: parent device has no devclass");
 1914 
 1915         /*
 1916          * If the state is already probed, then return.  However, don't
 1917          * return if we can rebid this object.
 1918          */
 1919         if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
 1920                 return (0);
 1921 
 1922         for (; dc; dc = dc->parent) {
 1923                 for (dl = first_matching_driver(dc, child);
 1924                      dl;
 1925                      dl = next_matching_driver(dc, child, dl)) {
 1926 
 1927                         /* If this driver's pass is too high, then ignore it. */
 1928                         if (dl->pass > bus_current_pass)
 1929                                 continue;
 1930 
 1931                         PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
 1932                         device_set_driver(child, dl->driver);
 1933                         if (!hasclass) {
 1934                                 if (device_set_devclass(child, dl->driver->name)) {
 1935                                         printf("driver bug: Unable to set devclass (devname: %s)\n",
 1936                                             (child ? device_get_name(child) :
 1937                                                 "no device"));
 1938                                         device_set_driver(child, NULL);
 1939                                         continue;
 1940                                 }
 1941                         }
 1942 
 1943                         /* Fetch any flags for the device before probing. */
 1944                         resource_int_value(dl->driver->name, child->unit,
 1945                             "flags", &child->devflags);
 1946 
 1947                         result = DEVICE_PROBE(child);
 1948 
 1949                         /* Reset flags and devclass before the next probe. */
 1950                         child->devflags = 0;
 1951                         if (!hasclass)
 1952                                 device_set_devclass(child, NULL);
 1953 
 1954                         /*
 1955                          * If the driver returns SUCCESS, there can be
 1956                          * no higher match for this device.
 1957                          */
 1958                         if (result == 0) {
 1959                                 best = dl;
 1960                                 pri = 0;
 1961                                 break;
 1962                         }
 1963 
 1964                         /*
 1965                          * The driver returned an error so it
 1966                          * certainly doesn't match.
 1967                          */
 1968                         if (result > 0) {
 1969                                 device_set_driver(child, NULL);
 1970                                 continue;
 1971                         }
 1972 
 1973                         /*
 1974                          * A priority lower than SUCCESS, remember the
 1975                          * best matching driver. Initialise the value
 1976                          * of pri for the first match.
 1977                          */
 1978                         if (best == NULL || result > pri) {
 1979                                 /*
 1980                                  * Probes that return BUS_PROBE_NOWILDCARD
 1981                                  * or lower only match when they are set
 1982                                  * in stone by the parent bus.
 1983                                  */
 1984                                 if (result <= BUS_PROBE_NOWILDCARD &&
 1985                                     child->flags & DF_WILDCARD)
 1986                                         continue;
 1987                                 best = dl;
 1988                                 pri = result;
 1989                                 continue;
 1990                         }
 1991                 }
 1992                 /*
 1993                  * If we have an unambiguous match in this devclass,
 1994                  * don't look in the parent.
 1995                  */
 1996                 if (best && pri == 0)
 1997                         break;
 1998         }
 1999 
 2000         /*
 2001          * If we found a driver, change state and initialise the devclass.
 2002          */
 2003         /* XXX What happens if we rebid and got no best? */
 2004         if (best) {
 2005                 /*
 2006                  * If this device was atached, and we were asked to
 2007                  * rescan, and it is a different driver, then we have
 2008                  * to detach the old driver and reattach this new one.
 2009                  * Note, we don't have to check for DF_REBID here
 2010                  * because if the state is > DS_ALIVE, we know it must
 2011                  * be.
 2012                  *
 2013                  * This assumes that all DF_REBID drivers can have
 2014                  * their probe routine called at any time and that
 2015                  * they are idempotent as well as completely benign in
 2016                  * normal operations.
 2017                  *
 2018                  * We also have to make sure that the detach
 2019                  * succeeded, otherwise we fail the operation (or
 2020                  * maybe it should just fail silently?  I'm torn).
 2021                  */
 2022                 if (child->state > DS_ALIVE && best->driver != child->driver)
 2023                         if ((result = device_detach(dev)) != 0)
 2024                                 return (result);
 2025 
 2026                 /* Set the winning driver, devclass, and flags. */
 2027                 if (!child->devclass) {
 2028                         result = device_set_devclass(child, best->driver->name);
 2029                         if (result != 0)
 2030                                 return (result);
 2031                 }
 2032                 device_set_driver(child, best->driver);
 2033                 resource_int_value(best->driver->name, child->unit,
 2034                     "flags", &child->devflags);
 2035 
 2036                 if (pri < 0) {
 2037                         /*
 2038                          * A bit bogus. Call the probe method again to make
 2039                          * sure that we have the right description.
 2040                          */
 2041                         DEVICE_PROBE(child);
 2042 #if 0
 2043                         child->flags |= DF_REBID;
 2044 #endif
 2045                 } else
 2046                         child->flags &= ~DF_REBID;
 2047                 child->state = DS_ALIVE;
 2048 
 2049                 bus_data_generation_update();
 2050                 return (0);
 2051         }
 2052 
 2053         return (ENXIO);
 2054 }
 2055 
 2056 /**
 2057  * @brief Return the parent of a device
 2058  */
 2059 device_t
 2060 device_get_parent(device_t dev)
 2061 {
 2062         return (dev->parent);
 2063 }
 2064 
 2065 /**
 2066  * @brief Get a list of children of a device
 2067  *
 2068  * An array containing a list of all the children of the given device
 2069  * is allocated and returned in @p *devlistp. The number of devices
 2070  * in the array is returned in @p *devcountp. The caller should free
 2071  * the array using @c free(p, M_TEMP).
 2072  *
 2073  * @param dev           the device to examine
 2074  * @param devlistp      points at location for array pointer return
 2075  *                      value
 2076  * @param devcountp     points at location for array size return value
 2077  *
 2078  * @retval 0            success
 2079  * @retval ENOMEM       the array allocation failed
 2080  */
 2081 int
 2082 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
 2083 {
 2084         int count;
 2085         device_t child;
 2086         device_t *list;
 2087 
 2088         count = 0;
 2089         TAILQ_FOREACH(child, &dev->children, link) {
 2090                 count++;
 2091         }
 2092 
 2093         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 2094         if (!list)
 2095                 return (ENOMEM);
 2096 
 2097         count = 0;
 2098         TAILQ_FOREACH(child, &dev->children, link) {
 2099                 list[count] = child;
 2100                 count++;
 2101         }
 2102 
 2103         *devlistp = list;
 2104         *devcountp = count;
 2105 
 2106         return (0);
 2107 }
 2108 
 2109 /**
 2110  * @brief Return the current driver for the device or @c NULL if there
 2111  * is no driver currently attached
 2112  */
 2113 driver_t *
 2114 device_get_driver(device_t dev)
 2115 {
 2116         return (dev->driver);
 2117 }
 2118 
 2119 /**
 2120  * @brief Return the current devclass for the device or @c NULL if
 2121  * there is none.
 2122  */
 2123 devclass_t
 2124 device_get_devclass(device_t dev)
 2125 {
 2126         return (dev->devclass);
 2127 }
 2128 
 2129 /**
 2130  * @brief Return the name of the device's devclass or @c NULL if there
 2131  * is none.
 2132  */
 2133 const char *
 2134 device_get_name(device_t dev)
 2135 {
 2136         if (dev != NULL && dev->devclass)
 2137                 return (devclass_get_name(dev->devclass));
 2138         return (NULL);
 2139 }
 2140 
 2141 /**
 2142  * @brief Return a string containing the device's devclass name
 2143  * followed by an ascii representation of the device's unit number
 2144  * (e.g. @c "foo2").
 2145  */
 2146 const char *
 2147 device_get_nameunit(device_t dev)
 2148 {
 2149         return (dev->nameunit);
 2150 }
 2151 
 2152 /**
 2153  * @brief Return the device's unit number.
 2154  */
 2155 int
 2156 device_get_unit(device_t dev)
 2157 {
 2158         return (dev->unit);
 2159 }
 2160 
 2161 /**
 2162  * @brief Return the device's description string
 2163  */
 2164 const char *
 2165 device_get_desc(device_t dev)
 2166 {
 2167         return (dev->desc);
 2168 }
 2169 
 2170 /**
 2171  * @brief Return the device's flags
 2172  */
 2173 u_int32_t
 2174 device_get_flags(device_t dev)
 2175 {
 2176         return (dev->devflags);
 2177 }
 2178 
 2179 struct sysctl_ctx_list *
 2180 device_get_sysctl_ctx(device_t dev)
 2181 {
 2182         return (&dev->sysctl_ctx);
 2183 }
 2184 
 2185 struct sysctl_oid *
 2186 device_get_sysctl_tree(device_t dev)
 2187 {
 2188         return (dev->sysctl_tree);
 2189 }
 2190 
 2191 /**
 2192  * @brief Print the name of the device followed by a colon and a space
 2193  *
 2194  * @returns the number of characters printed
 2195  */
 2196 int
 2197 device_print_prettyname(device_t dev)
 2198 {
 2199         const char *name = device_get_name(dev);
 2200 
 2201         if (name == NULL)
 2202                 return (printf("unknown: "));
 2203         return (printf("%s%d: ", name, device_get_unit(dev)));
 2204 }
 2205 
 2206 /**
 2207  * @brief Print the name of the device followed by a colon, a space
 2208  * and the result of calling vprintf() with the value of @p fmt and
 2209  * the following arguments.
 2210  *
 2211  * @returns the number of characters printed
 2212  */
 2213 int
 2214 device_printf(device_t dev, const char * fmt, ...)
 2215 {
 2216         va_list ap;
 2217         int retval;
 2218 
 2219         retval = device_print_prettyname(dev);
 2220         va_start(ap, fmt);
 2221         retval += vprintf(fmt, ap);
 2222         va_end(ap);
 2223         return (retval);
 2224 }
 2225 
 2226 /**
 2227  * @internal
 2228  */
 2229 static void
 2230 device_set_desc_internal(device_t dev, const char* desc, int copy)
 2231 {
 2232         if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
 2233                 free(dev->desc, M_BUS);
 2234                 dev->flags &= ~DF_DESCMALLOCED;
 2235                 dev->desc = NULL;
 2236         }
 2237 
 2238         if (copy && desc) {
 2239                 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
 2240                 if (dev->desc) {
 2241                         strcpy(dev->desc, desc);
 2242                         dev->flags |= DF_DESCMALLOCED;
 2243                 }
 2244         } else {
 2245                 /* Avoid a -Wcast-qual warning */
 2246                 dev->desc = (char *)(uintptr_t) desc;
 2247         }
 2248 
 2249         bus_data_generation_update();
 2250 }
 2251 
 2252 /**
 2253  * @brief Set the device's description
 2254  *
 2255  * The value of @c desc should be a string constant that will not
 2256  * change (at least until the description is changed in a subsequent
 2257  * call to device_set_desc() or device_set_desc_copy()).
 2258  */
 2259 void
 2260 device_set_desc(device_t dev, const char* desc)
 2261 {
 2262         device_set_desc_internal(dev, desc, FALSE);
 2263 }
 2264 
 2265 /**
 2266  * @brief Set the device's description
 2267  *
 2268  * The string pointed to by @c desc is copied. Use this function if
 2269  * the device description is generated, (e.g. with sprintf()).
 2270  */
 2271 void
 2272 device_set_desc_copy(device_t dev, const char* desc)
 2273 {
 2274         device_set_desc_internal(dev, desc, TRUE);
 2275 }
 2276 
 2277 /**
 2278  * @brief Set the device's flags
 2279  */
 2280 void
 2281 device_set_flags(device_t dev, u_int32_t flags)
 2282 {
 2283         dev->devflags = flags;
 2284 }
 2285 
 2286 /**
 2287  * @brief Return the device's softc field
 2288  *
 2289  * The softc is allocated and zeroed when a driver is attached, based
 2290  * on the size field of the driver.
 2291  */
 2292 void *
 2293 device_get_softc(device_t dev)
 2294 {
 2295         return (dev->softc);
 2296 }
 2297 
 2298 /**
 2299  * @brief Set the device's softc field
 2300  *
 2301  * Most drivers do not need to use this since the softc is allocated
 2302  * automatically when the driver is attached.
 2303  */
 2304 void
 2305 device_set_softc(device_t dev, void *softc)
 2306 {
 2307         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
 2308                 free(dev->softc, M_BUS_SC);
 2309         dev->softc = softc;
 2310         if (dev->softc)
 2311                 dev->flags |= DF_EXTERNALSOFTC;
 2312         else
 2313                 dev->flags &= ~DF_EXTERNALSOFTC;
 2314 }
 2315 
 2316 /**
 2317  * @brief Get the device's ivars field
 2318  *
 2319  * The ivars field is used by the parent device to store per-device
 2320  * state (e.g. the physical location of the device or a list of
 2321  * resources).
 2322  */
 2323 void *
 2324 device_get_ivars(device_t dev)
 2325 {
 2326 
 2327         KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
 2328         return (dev->ivars);
 2329 }
 2330 
 2331 /**
 2332  * @brief Set the device's ivars field
 2333  */
 2334 void
 2335 device_set_ivars(device_t dev, void * ivars)
 2336 {
 2337 
 2338         KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
 2339         dev->ivars = ivars;
 2340 }
 2341 
 2342 /**
 2343  * @brief Return the device's state
 2344  */
 2345 device_state_t
 2346 device_get_state(device_t dev)
 2347 {
 2348         return (dev->state);
 2349 }
 2350 
 2351 /**
 2352  * @brief Set the DF_ENABLED flag for the device
 2353  */
 2354 void
 2355 device_enable(device_t dev)
 2356 {
 2357         dev->flags |= DF_ENABLED;
 2358 }
 2359 
 2360 /**
 2361  * @brief Clear the DF_ENABLED flag for the device
 2362  */
 2363 void
 2364 device_disable(device_t dev)
 2365 {
 2366         dev->flags &= ~DF_ENABLED;
 2367 }
 2368 
 2369 /**
 2370  * @brief Increment the busy counter for the device
 2371  */
 2372 void
 2373 device_busy(device_t dev)
 2374 {
 2375         if (dev->state < DS_ATTACHED)
 2376                 panic("device_busy: called for unattached device");
 2377         if (dev->busy == 0 && dev->parent)
 2378                 device_busy(dev->parent);
 2379         dev->busy++;
 2380         dev->state = DS_BUSY;
 2381 }
 2382 
 2383 /**
 2384  * @brief Decrement the busy counter for the device
 2385  */
 2386 void
 2387 device_unbusy(device_t dev)
 2388 {
 2389         if (dev->state != DS_BUSY)
 2390                 panic("device_unbusy: called for non-busy device %s",
 2391                     device_get_nameunit(dev));
 2392         dev->busy--;
 2393         if (dev->busy == 0) {
 2394                 if (dev->parent)
 2395                         device_unbusy(dev->parent);
 2396                 dev->state = DS_ATTACHED;
 2397         }
 2398 }
 2399 
 2400 /**
 2401  * @brief Set the DF_QUIET flag for the device
 2402  */
 2403 void
 2404 device_quiet(device_t dev)
 2405 {
 2406         dev->flags |= DF_QUIET;
 2407 }
 2408 
 2409 /**
 2410  * @brief Clear the DF_QUIET flag for the device
 2411  */
 2412 void
 2413 device_verbose(device_t dev)
 2414 {
 2415         dev->flags &= ~DF_QUIET;
 2416 }
 2417 
 2418 /**
 2419  * @brief Return non-zero if the DF_QUIET flag is set on the device
 2420  */
 2421 int
 2422 device_is_quiet(device_t dev)
 2423 {
 2424         return ((dev->flags & DF_QUIET) != 0);
 2425 }
 2426 
 2427 /**
 2428  * @brief Return non-zero if the DF_ENABLED flag is set on the device
 2429  */
 2430 int
 2431 device_is_enabled(device_t dev)
 2432 {
 2433         return ((dev->flags & DF_ENABLED) != 0);
 2434 }
 2435 
 2436 /**
 2437  * @brief Return non-zero if the device was successfully probed
 2438  */
 2439 int
 2440 device_is_alive(device_t dev)
 2441 {
 2442         return (dev->state >= DS_ALIVE);
 2443 }
 2444 
 2445 /**
 2446  * @brief Return non-zero if the device currently has a driver
 2447  * attached to it
 2448  */
 2449 int
 2450 device_is_attached(device_t dev)
 2451 {
 2452         return (dev->state >= DS_ATTACHED);
 2453 }
 2454 
 2455 /**
 2456  * @brief Set the devclass of a device
 2457  * @see devclass_add_device().
 2458  */
 2459 int
 2460 device_set_devclass(device_t dev, const char *classname)
 2461 {
 2462         devclass_t dc;
 2463         int error;
 2464 
 2465         if (!classname) {
 2466                 if (dev->devclass)
 2467                         devclass_delete_device(dev->devclass, dev);
 2468                 return (0);
 2469         }
 2470 
 2471         if (dev->devclass) {
 2472                 printf("device_set_devclass: device class already set\n");
 2473                 return (EINVAL);
 2474         }
 2475 
 2476         dc = devclass_find_internal(classname, NULL, TRUE);
 2477         if (!dc)
 2478                 return (ENOMEM);
 2479 
 2480         error = devclass_add_device(dc, dev);
 2481 
 2482         bus_data_generation_update();
 2483         return (error);
 2484 }
 2485 
 2486 /**
 2487  * @brief Set the driver of a device
 2488  *
 2489  * @retval 0            success
 2490  * @retval EBUSY        the device already has a driver attached
 2491  * @retval ENOMEM       a memory allocation failure occurred
 2492  */
 2493 int
 2494 device_set_driver(device_t dev, driver_t *driver)
 2495 {
 2496         if (dev->state >= DS_ATTACHED)
 2497                 return (EBUSY);
 2498 
 2499         if (dev->driver == driver)
 2500                 return (0);
 2501 
 2502         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
 2503                 free(dev->softc, M_BUS_SC);
 2504                 dev->softc = NULL;
 2505         }
 2506         kobj_delete((kobj_t) dev, NULL);
 2507         dev->driver = driver;
 2508         if (driver) {
 2509                 kobj_init((kobj_t) dev, (kobj_class_t) driver);
 2510                 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
 2511                         dev->softc = malloc(driver->size, M_BUS_SC,
 2512                             M_NOWAIT | M_ZERO);
 2513                         if (!dev->softc) {
 2514                                 kobj_delete((kobj_t) dev, NULL);
 2515                                 kobj_init((kobj_t) dev, &null_class);
 2516                                 dev->driver = NULL;
 2517                                 return (ENOMEM);
 2518                         }
 2519                 }
 2520         } else {
 2521                 kobj_init((kobj_t) dev, &null_class);
 2522         }
 2523 
 2524         bus_data_generation_update();
 2525         return (0);
 2526 }
 2527 
 2528 /**
 2529  * @brief Probe a device, and return this status.
 2530  *
 2531  * This function is the core of the device autoconfiguration
 2532  * system. Its purpose is to select a suitable driver for a device and
 2533  * then call that driver to initialise the hardware appropriately. The
 2534  * driver is selected by calling the DEVICE_PROBE() method of a set of
 2535  * candidate drivers and then choosing the driver which returned the
 2536  * best value. This driver is then attached to the device using
 2537  * device_attach().
 2538  *
 2539  * The set of suitable drivers is taken from the list of drivers in
 2540  * the parent device's devclass. If the device was originally created
 2541  * with a specific class name (see device_add_child()), only drivers
 2542  * with that name are probed, otherwise all drivers in the devclass
 2543  * are probed. If no drivers return successful probe values in the
 2544  * parent devclass, the search continues in the parent of that
 2545  * devclass (see devclass_get_parent()) if any.
 2546  *
 2547  * @param dev           the device to initialise
 2548  *
 2549  * @retval 0            success
 2550  * @retval ENXIO        no driver was found
 2551  * @retval ENOMEM       memory allocation failure
 2552  * @retval non-zero     some other unix error code
 2553  * @retval -1           Device already attached
 2554  */
 2555 int
 2556 device_probe(device_t dev)
 2557 {
 2558         int error;
 2559 
 2560         GIANT_REQUIRED;
 2561 
 2562         if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
 2563                 return (-1);
 2564 
 2565         if (!(dev->flags & DF_ENABLED)) {
 2566                 if (bootverbose && device_get_name(dev) != NULL) {
 2567                         device_print_prettyname(dev);
 2568                         printf("not probed (disabled)\n");
 2569                 }
 2570                 return (-1);
 2571         }
 2572         if ((error = device_probe_child(dev->parent, dev)) != 0) {              
 2573                 if (bus_current_pass == BUS_PASS_DEFAULT &&
 2574                     !(dev->flags & DF_DONENOMATCH)) {
 2575                         BUS_PROBE_NOMATCH(dev->parent, dev);
 2576                         devnomatch(dev);
 2577                         dev->flags |= DF_DONENOMATCH;
 2578                 }
 2579                 return (error);
 2580         }
 2581         return (0);
 2582 }
 2583 
 2584 /**
 2585  * @brief Probe a device and attach a driver if possible
 2586  *
 2587  * calls device_probe() and attaches if that was successful.
 2588  */
 2589 int
 2590 device_probe_and_attach(device_t dev)
 2591 {
 2592         int error;
 2593 
 2594         GIANT_REQUIRED;
 2595 
 2596         error = device_probe(dev);
 2597         if (error == -1)
 2598                 return (0);
 2599         else if (error != 0)
 2600                 return (error);
 2601         return (device_attach(dev));
 2602 }
 2603 
 2604 /**
 2605  * @brief Attach a device driver to a device
 2606  *
 2607  * This function is a wrapper around the DEVICE_ATTACH() driver
 2608  * method. In addition to calling DEVICE_ATTACH(), it initialises the
 2609  * device's sysctl tree, optionally prints a description of the device
 2610  * and queues a notification event for user-based device management
 2611  * services.
 2612  *
 2613  * Normally this function is only called internally from
 2614  * device_probe_and_attach().
 2615  *
 2616  * @param dev           the device to initialise
 2617  *
 2618  * @retval 0            success
 2619  * @retval ENXIO        no driver was found
 2620  * @retval ENOMEM       memory allocation failure
 2621  * @retval non-zero     some other unix error code
 2622  */
 2623 int
 2624 device_attach(device_t dev)
 2625 {
 2626         int error;
 2627 
 2628         device_sysctl_init(dev);
 2629         if (!device_is_quiet(dev))
 2630                 device_print_child(dev->parent, dev);
 2631         if ((error = DEVICE_ATTACH(dev)) != 0) {
 2632                 printf("device_attach: %s%d attach returned %d\n",
 2633                     dev->driver->name, dev->unit, error);
 2634                 /* Unset the class; set in device_probe_child */
 2635                 if (dev->devclass == NULL)
 2636                         device_set_devclass(dev, NULL);
 2637                 device_set_driver(dev, NULL);
 2638                 device_sysctl_fini(dev);
 2639                 dev->state = DS_NOTPRESENT;
 2640                 return (error);
 2641         }
 2642         device_sysctl_update(dev);
 2643         dev->state = DS_ATTACHED;
 2644         devadded(dev);
 2645         return (0);
 2646 }
 2647 
 2648 /**
 2649  * @brief Detach a driver from a device
 2650  *
 2651  * This function is a wrapper around the DEVICE_DETACH() driver
 2652  * method. If the call to DEVICE_DETACH() succeeds, it calls
 2653  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
 2654  * notification event for user-based device management services and
 2655  * cleans up the device's sysctl tree.
 2656  *
 2657  * @param dev           the device to un-initialise
 2658  *
 2659  * @retval 0            success
 2660  * @retval ENXIO        no driver was found
 2661  * @retval ENOMEM       memory allocation failure
 2662  * @retval non-zero     some other unix error code
 2663  */
 2664 int
 2665 device_detach(device_t dev)
 2666 {
 2667         int error;
 2668 
 2669         GIANT_REQUIRED;
 2670 
 2671         PDEBUG(("%s", DEVICENAME(dev)));
 2672         if (dev->state == DS_BUSY)
 2673                 return (EBUSY);
 2674         if (dev->state != DS_ATTACHED)
 2675                 return (0);
 2676 
 2677         if ((error = DEVICE_DETACH(dev)) != 0)
 2678                 return (error);
 2679         devremoved(dev);
 2680         if (!device_is_quiet(dev))
 2681                 device_printf(dev, "detached\n");
 2682         if (dev->parent)
 2683                 BUS_CHILD_DETACHED(dev->parent, dev);
 2684 
 2685         if (!(dev->flags & DF_FIXEDCLASS))
 2686                 devclass_delete_device(dev->devclass, dev);
 2687 
 2688         dev->state = DS_NOTPRESENT;
 2689         device_set_driver(dev, NULL);
 2690         device_set_desc(dev, NULL);
 2691         device_sysctl_fini(dev);
 2692 
 2693         return (0);
 2694 }
 2695 
 2696 /**
 2697  * @brief Tells a driver to quiesce itself.
 2698  *
 2699  * This function is a wrapper around the DEVICE_QUIESCE() driver
 2700  * method. If the call to DEVICE_QUIESCE() succeeds.
 2701  *
 2702  * @param dev           the device to quiesce
 2703  *
 2704  * @retval 0            success
 2705  * @retval ENXIO        no driver was found
 2706  * @retval ENOMEM       memory allocation failure
 2707  * @retval non-zero     some other unix error code
 2708  */
 2709 int
 2710 device_quiesce(device_t dev)
 2711 {
 2712 
 2713         PDEBUG(("%s", DEVICENAME(dev)));
 2714         if (dev->state == DS_BUSY)
 2715                 return (EBUSY);
 2716         if (dev->state != DS_ATTACHED)
 2717                 return (0);
 2718 
 2719         return (DEVICE_QUIESCE(dev));
 2720 }
 2721 
 2722 /**
 2723  * @brief Notify a device of system shutdown
 2724  *
 2725  * This function calls the DEVICE_SHUTDOWN() driver method if the
 2726  * device currently has an attached driver.
 2727  *
 2728  * @returns the value returned by DEVICE_SHUTDOWN()
 2729  */
 2730 int
 2731 device_shutdown(device_t dev)
 2732 {
 2733         if (dev->state < DS_ATTACHED)
 2734                 return (0);
 2735         return (DEVICE_SHUTDOWN(dev));
 2736 }
 2737 
 2738 /**
 2739  * @brief Set the unit number of a device
 2740  *
 2741  * This function can be used to override the unit number used for a
 2742  * device (e.g. to wire a device to a pre-configured unit number).
 2743  */
 2744 int
 2745 device_set_unit(device_t dev, int unit)
 2746 {
 2747         devclass_t dc;
 2748         int err;
 2749 
 2750         dc = device_get_devclass(dev);
 2751         if (unit < dc->maxunit && dc->devices[unit])
 2752                 return (EBUSY);
 2753         err = devclass_delete_device(dc, dev);
 2754         if (err)
 2755                 return (err);
 2756         dev->unit = unit;
 2757         err = devclass_add_device(dc, dev);
 2758         if (err)
 2759                 return (err);
 2760 
 2761         bus_data_generation_update();
 2762         return (0);
 2763 }
 2764 
 2765 /*======================================*/
 2766 /*
 2767  * Some useful method implementations to make life easier for bus drivers.
 2768  */
 2769 
 2770 /**
 2771  * @brief Initialise a resource list.
 2772  *
 2773  * @param rl            the resource list to initialise
 2774  */
 2775 void
 2776 resource_list_init(struct resource_list *rl)
 2777 {
 2778         STAILQ_INIT(rl);
 2779 }
 2780 
 2781 /**
 2782  * @brief Reclaim memory used by a resource list.
 2783  *
 2784  * This function frees the memory for all resource entries on the list
 2785  * (if any).
 2786  *
 2787  * @param rl            the resource list to free               
 2788  */
 2789 void
 2790 resource_list_free(struct resource_list *rl)
 2791 {
 2792         struct resource_list_entry *rle;
 2793 
 2794         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 2795                 if (rle->res)
 2796                         panic("resource_list_free: resource entry is busy");
 2797                 STAILQ_REMOVE_HEAD(rl, link);
 2798                 free(rle, M_BUS);
 2799         }
 2800 }
 2801 
 2802 /**
 2803  * @brief Add a resource entry.
 2804  *
 2805  * This function adds a resource entry using the given @p type, @p
 2806  * start, @p end and @p count values. A rid value is chosen by
 2807  * searching sequentially for the first unused rid starting at zero.
 2808  *
 2809  * @param rl            the resource list to edit
 2810  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2811  * @param start         the start address of the resource
 2812  * @param end           the end address of the resource
 2813  * @param count         XXX end-start+1
 2814  */
 2815 int
 2816 resource_list_add_next(struct resource_list *rl, int type, u_long start,
 2817     u_long end, u_long count)
 2818 {
 2819         int rid;
 2820 
 2821         rid = 0;
 2822         while (resource_list_find(rl, type, rid) != NULL)
 2823                 rid++;
 2824         resource_list_add(rl, type, rid, start, end, count);
 2825         return (rid);
 2826 }
 2827 
 2828 /**
 2829  * @brief Add or modify a resource entry.
 2830  *
 2831  * If an existing entry exists with the same type and rid, it will be
 2832  * modified using the given values of @p start, @p end and @p
 2833  * count. If no entry exists, a new one will be created using the
 2834  * given values.  The resource list entry that matches is then returned.
 2835  *
 2836  * @param rl            the resource list to edit
 2837  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2838  * @param rid           the resource identifier
 2839  * @param start         the start address of the resource
 2840  * @param end           the end address of the resource
 2841  * @param count         XXX end-start+1
 2842  */
 2843 struct resource_list_entry *
 2844 resource_list_add(struct resource_list *rl, int type, int rid,
 2845     u_long start, u_long end, u_long count)
 2846 {
 2847         struct resource_list_entry *rle;
 2848 
 2849         rle = resource_list_find(rl, type, rid);
 2850         if (!rle) {
 2851                 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
 2852                     M_NOWAIT);
 2853                 if (!rle)
 2854                         panic("resource_list_add: can't record entry");
 2855                 STAILQ_INSERT_TAIL(rl, rle, link);
 2856                 rle->type = type;
 2857                 rle->rid = rid;
 2858                 rle->res = NULL;
 2859         }
 2860 
 2861         if (rle->res)
 2862                 panic("resource_list_add: resource entry is busy");
 2863 
 2864         rle->start = start;
 2865         rle->end = end;
 2866         rle->count = count;
 2867         return (rle);
 2868 }
 2869 
 2870 /**
 2871  * @brief Find a resource entry by type and rid.
 2872  *
 2873  * @param rl            the resource list to search
 2874  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2875  * @param rid           the resource identifier
 2876  *
 2877  * @returns the resource entry pointer or NULL if there is no such
 2878  * entry.
 2879  */
 2880 struct resource_list_entry *
 2881 resource_list_find(struct resource_list *rl, int type, int rid)
 2882 {
 2883         struct resource_list_entry *rle;
 2884 
 2885         STAILQ_FOREACH(rle, rl, link) {
 2886                 if (rle->type == type && rle->rid == rid)
 2887                         return (rle);
 2888         }
 2889         return (NULL);
 2890 }
 2891 
 2892 /**
 2893  * @brief Delete a resource entry.
 2894  *
 2895  * @param rl            the resource list to edit
 2896  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2897  * @param rid           the resource identifier
 2898  */
 2899 void
 2900 resource_list_delete(struct resource_list *rl, int type, int rid)
 2901 {
 2902         struct resource_list_entry *rle = resource_list_find(rl, type, rid);
 2903 
 2904         if (rle) {
 2905                 if (rle->res != NULL)
 2906                         panic("resource_list_delete: resource has not been released");
 2907                 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
 2908                 free(rle, M_BUS);
 2909         }
 2910 }
 2911 
 2912 /**
 2913  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
 2914  *
 2915  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
 2916  * and passing the allocation up to the parent of @p bus. This assumes
 2917  * that the first entry of @c device_get_ivars(child) is a struct
 2918  * resource_list. This also handles 'passthrough' allocations where a
 2919  * child is a remote descendant of bus by passing the allocation up to
 2920  * the parent of bus.
 2921  *
 2922  * Typically, a bus driver would store a list of child resources
 2923  * somewhere in the child device's ivars (see device_get_ivars()) and
 2924  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
 2925  * then call resource_list_alloc() to perform the allocation.
 2926  *
 2927  * @param rl            the resource list to allocate from
 2928  * @param bus           the parent device of @p child
 2929  * @param child         the device which is requesting an allocation
 2930  * @param type          the type of resource to allocate
 2931  * @param rid           a pointer to the resource identifier
 2932  * @param start         hint at the start of the resource range - pass
 2933  *                      @c 0UL for any start address
 2934  * @param end           hint at the end of the resource range - pass
 2935  *                      @c ~0UL for any end address
 2936  * @param count         hint at the size of range required - pass @c 1
 2937  *                      for any size
 2938  * @param flags         any extra flags to control the resource
 2939  *                      allocation - see @c RF_XXX flags in
 2940  *                      <sys/rman.h> for details
 2941  * 
 2942  * @returns             the resource which was allocated or @c NULL if no
 2943  *                      resource could be allocated
 2944  */
 2945 struct resource *
 2946 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
 2947     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
 2948 {
 2949         struct resource_list_entry *rle = NULL;
 2950         int passthrough = (device_get_parent(child) != bus);
 2951         int isdefault = (start == 0UL && end == ~0UL);
 2952 
 2953         if (passthrough) {
 2954                 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 2955                     type, rid, start, end, count, flags));
 2956         }
 2957 
 2958         rle = resource_list_find(rl, type, *rid);
 2959 
 2960         if (!rle)
 2961                 return (NULL);          /* no resource of that type/rid */
 2962 
 2963         if (rle->res)
 2964                 panic("resource_list_alloc: resource entry is busy");
 2965 
 2966         if (isdefault) {
 2967                 start = rle->start;
 2968                 count = ulmax(count, rle->count);
 2969                 end = ulmax(rle->end, start + count - 1);
 2970         }
 2971 
 2972         rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 2973             type, rid, start, end, count, flags);
 2974 
 2975         /*
 2976          * Record the new range.
 2977          */
 2978         if (rle->res) {
 2979                 rle->start = rman_get_start(rle->res);
 2980                 rle->end = rman_get_end(rle->res);
 2981                 rle->count = count;
 2982         }
 2983 
 2984         return (rle->res);
 2985 }
 2986 
 2987 /**
 2988  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
 2989  * 
 2990  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
 2991  * used with resource_list_alloc().
 2992  * 
 2993  * @param rl            the resource list which was allocated from
 2994  * @param bus           the parent device of @p child
 2995  * @param child         the device which is requesting a release
 2996  * @param type          the type of resource to allocate
 2997  * @param rid           the resource identifier
 2998  * @param res           the resource to release
 2999  * 
 3000  * @retval 0            success
 3001  * @retval non-zero     a standard unix error code indicating what
 3002  *                      error condition prevented the operation
 3003  */
 3004 int
 3005 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
 3006     int type, int rid, struct resource *res)
 3007 {
 3008         struct resource_list_entry *rle = NULL;
 3009         int passthrough = (device_get_parent(child) != bus);
 3010         int error;
 3011 
 3012         if (passthrough) {
 3013                 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3014                     type, rid, res));
 3015         }
 3016 
 3017         rle = resource_list_find(rl, type, rid);
 3018 
 3019         if (!rle)
 3020                 panic("resource_list_release: can't find resource");
 3021         if (!rle->res)
 3022                 panic("resource_list_release: resource entry is not busy");
 3023 
 3024         error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3025             type, rid, res);
 3026         if (error)
 3027                 return (error);
 3028 
 3029         rle->res = NULL;
 3030         return (0);
 3031 }
 3032 
 3033 /**
 3034  * @brief Print a description of resources in a resource list
 3035  *
 3036  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
 3037  * The name is printed if at least one resource of the given type is available.
 3038  * The format is used to print resource start and end.
 3039  *
 3040  * @param rl            the resource list to print
 3041  * @param name          the name of @p type, e.g. @c "memory"
 3042  * @param type          type type of resource entry to print
 3043  * @param format        printf(9) format string to print resource
 3044  *                      start and end values
 3045  * 
 3046  * @returns             the number of characters printed
 3047  */
 3048 int
 3049 resource_list_print_type(struct resource_list *rl, const char *name, int type,
 3050     const char *format)
 3051 {
 3052         struct resource_list_entry *rle;
 3053         int printed, retval;
 3054 
 3055         printed = 0;
 3056         retval = 0;
 3057         /* Yes, this is kinda cheating */
 3058         STAILQ_FOREACH(rle, rl, link) {
 3059                 if (rle->type == type) {
 3060                         if (printed == 0)
 3061                                 retval += printf(" %s ", name);
 3062                         else
 3063                                 retval += printf(",");
 3064                         printed++;
 3065                         retval += printf(format, rle->start);
 3066                         if (rle->count > 1) {
 3067                                 retval += printf("-");
 3068                                 retval += printf(format, rle->start +
 3069                                                  rle->count - 1);
 3070                         }
 3071                 }
 3072         }
 3073         return (retval);
 3074 }
 3075 
 3076 /**
 3077  * @brief Releases all the resources in a list.
 3078  *
 3079  * @param rl            The resource list to purge.
 3080  * 
 3081  * @returns             nothing
 3082  */
 3083 void
 3084 resource_list_purge(struct resource_list *rl)
 3085 {
 3086         struct resource_list_entry *rle;
 3087 
 3088         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 3089                 if (rle->res)
 3090                         bus_release_resource(rman_get_device(rle->res),
 3091                             rle->type, rle->rid, rle->res);
 3092                 STAILQ_REMOVE_HEAD(rl, link);
 3093                 free(rle, M_BUS);
 3094         }
 3095 }
 3096 
 3097 device_t
 3098 bus_generic_add_child(device_t dev, int order, const char *name, int unit)
 3099 {
 3100 
 3101         return (device_add_child_ordered(dev, order, name, unit));
 3102 }
 3103 
 3104 /**
 3105  * @brief Helper function for implementing DEVICE_PROBE()
 3106  *
 3107  * This function can be used to help implement the DEVICE_PROBE() for
 3108  * a bus (i.e. a device which has other devices attached to it). It
 3109  * calls the DEVICE_IDENTIFY() method of each driver in the device's
 3110  * devclass.
 3111  */
 3112 int
 3113 bus_generic_probe(device_t dev)
 3114 {
 3115         devclass_t dc = dev->devclass;
 3116         driverlink_t dl;
 3117 
 3118         TAILQ_FOREACH(dl, &dc->drivers, link) {
 3119                 /*
 3120                  * If this driver's pass is too high, then ignore it.
 3121                  * For most drivers in the default pass, this will
 3122                  * never be true.  For early-pass drivers they will
 3123                  * only call the identify routines of eligible drivers
 3124                  * when this routine is called.  Drivers for later
 3125                  * passes should have their identify routines called
 3126                  * on early-pass busses during BUS_NEW_PASS().
 3127                  */
 3128                 if (dl->pass > bus_current_pass)
 3129                                 continue;
 3130                 DEVICE_IDENTIFY(dl->driver, dev);
 3131         }
 3132 
 3133         return (0);
 3134 }
 3135 
 3136 /**
 3137  * @brief Helper function for implementing DEVICE_ATTACH()
 3138  *
 3139  * This function can be used to help implement the DEVICE_ATTACH() for
 3140  * a bus. It calls device_probe_and_attach() for each of the device's
 3141  * children.
 3142  */
 3143 int
 3144 bus_generic_attach(device_t dev)
 3145 {
 3146         device_t child;
 3147 
 3148         TAILQ_FOREACH(child, &dev->children, link) {
 3149                 device_probe_and_attach(child);
 3150         }
 3151 
 3152         return (0);
 3153 }
 3154 
 3155 /**
 3156  * @brief Helper function for implementing DEVICE_DETACH()
 3157  *
 3158  * This function can be used to help implement the DEVICE_DETACH() for
 3159  * a bus. It calls device_detach() for each of the device's
 3160  * children.
 3161  */
 3162 int
 3163 bus_generic_detach(device_t dev)
 3164 {
 3165         device_t child;
 3166         int error;
 3167 
 3168         if (dev->state != DS_ATTACHED)
 3169                 return (EBUSY);
 3170 
 3171         TAILQ_FOREACH(child, &dev->children, link) {
 3172                 if ((error = device_detach(child)) != 0)
 3173                         return (error);
 3174         }
 3175 
 3176         return (0);
 3177 }
 3178 
 3179 /**
 3180  * @brief Helper function for implementing DEVICE_SHUTDOWN()
 3181  *
 3182  * This function can be used to help implement the DEVICE_SHUTDOWN()
 3183  * for a bus. It calls device_shutdown() for each of the device's
 3184  * children.
 3185  */
 3186 int
 3187 bus_generic_shutdown(device_t dev)
 3188 {
 3189         device_t child;
 3190 
 3191         TAILQ_FOREACH(child, &dev->children, link) {
 3192                 device_shutdown(child);
 3193         }
 3194 
 3195         return (0);
 3196 }
 3197 
 3198 /**
 3199  * @brief Helper function for implementing DEVICE_SUSPEND()
 3200  *
 3201  * This function can be used to help implement the DEVICE_SUSPEND()
 3202  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
 3203  * children. If any call to DEVICE_SUSPEND() fails, the suspend
 3204  * operation is aborted and any devices which were suspended are
 3205  * resumed immediately by calling their DEVICE_RESUME() methods.
 3206  */
 3207 int
 3208 bus_generic_suspend(device_t dev)
 3209 {
 3210         int             error;
 3211         device_t        child, child2;
 3212 
 3213         TAILQ_FOREACH(child, &dev->children, link) {
 3214                 error = DEVICE_SUSPEND(child);
 3215                 if (error) {
 3216                         for (child2 = TAILQ_FIRST(&dev->children);
 3217                              child2 && child2 != child;
 3218                              child2 = TAILQ_NEXT(child2, link))
 3219                                 DEVICE_RESUME(child2);
 3220                         return (error);
 3221                 }
 3222         }
 3223         return (0);
 3224 }
 3225 
 3226 /**
 3227  * @brief Helper function for implementing DEVICE_RESUME()
 3228  *
 3229  * This function can be used to help implement the DEVICE_RESUME() for
 3230  * a bus. It calls DEVICE_RESUME() on each of the device's children.
 3231  */
 3232 int
 3233 bus_generic_resume(device_t dev)
 3234 {
 3235         device_t        child;
 3236 
 3237         TAILQ_FOREACH(child, &dev->children, link) {
 3238                 DEVICE_RESUME(child);
 3239                 /* if resume fails, there's nothing we can usefully do... */
 3240         }
 3241         return (0);
 3242 }
 3243 
 3244 /**
 3245  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3246  *
 3247  * This function prints the first part of the ascii representation of
 3248  * @p child, including its name, unit and description (if any - see
 3249  * device_set_desc()).
 3250  *
 3251  * @returns the number of characters printed
 3252  */
 3253 int
 3254 bus_print_child_header(device_t dev, device_t child)
 3255 {
 3256         int     retval = 0;
 3257 
 3258         if (device_get_desc(child)) {
 3259                 retval += device_printf(child, "<%s>", device_get_desc(child));
 3260         } else {
 3261                 retval += printf("%s", device_get_nameunit(child));
 3262         }
 3263 
 3264         return (retval);
 3265 }
 3266 
 3267 /**
 3268  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3269  *
 3270  * This function prints the last part of the ascii representation of
 3271  * @p child, which consists of the string @c " on " followed by the
 3272  * name and unit of the @p dev.
 3273  *
 3274  * @returns the number of characters printed
 3275  */
 3276 int
 3277 bus_print_child_footer(device_t dev, device_t child)
 3278 {
 3279         return (printf(" on %s\n", device_get_nameunit(dev)));
 3280 }
 3281 
 3282 /**
 3283  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3284  *
 3285  * This function simply calls bus_print_child_header() followed by
 3286  * bus_print_child_footer().
 3287  *
 3288  * @returns the number of characters printed
 3289  */
 3290 int
 3291 bus_generic_print_child(device_t dev, device_t child)
 3292 {
 3293         int     retval = 0;
 3294 
 3295         retval += bus_print_child_header(dev, child);
 3296         retval += bus_print_child_footer(dev, child);
 3297 
 3298         return (retval);
 3299 }
 3300 
 3301 /**
 3302  * @brief Stub function for implementing BUS_READ_IVAR().
 3303  * 
 3304  * @returns ENOENT
 3305  */
 3306 int
 3307 bus_generic_read_ivar(device_t dev, device_t child, int index,
 3308     uintptr_t * result)
 3309 {
 3310         return (ENOENT);
 3311 }
 3312 
 3313 /**
 3314  * @brief Stub function for implementing BUS_WRITE_IVAR().
 3315  * 
 3316  * @returns ENOENT
 3317  */
 3318 int
 3319 bus_generic_write_ivar(device_t dev, device_t child, int index,
 3320     uintptr_t value)
 3321 {
 3322         return (ENOENT);
 3323 }
 3324 
 3325 /**
 3326  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
 3327  * 
 3328  * @returns NULL
 3329  */
 3330 struct resource_list *
 3331 bus_generic_get_resource_list(device_t dev, device_t child)
 3332 {
 3333         return (NULL);
 3334 }
 3335 
 3336 /**
 3337  * @brief Helper function for implementing BUS_DRIVER_ADDED().
 3338  *
 3339  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
 3340  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
 3341  * and then calls device_probe_and_attach() for each unattached child.
 3342  */
 3343 void
 3344 bus_generic_driver_added(device_t dev, driver_t *driver)
 3345 {
 3346         device_t child;
 3347 
 3348         DEVICE_IDENTIFY(driver, dev);
 3349         TAILQ_FOREACH(child, &dev->children, link) {
 3350                 if (child->state == DS_NOTPRESENT ||
 3351                     (child->flags & DF_REBID))
 3352                         device_probe_and_attach(child);
 3353         }
 3354 }
 3355 
 3356 /**
 3357  * @brief Helper function for implementing BUS_NEW_PASS().
 3358  *
 3359  * This implementing of BUS_NEW_PASS() first calls the identify
 3360  * routines for any drivers that probe at the current pass.  Then it
 3361  * walks the list of devices for this bus.  If a device is already
 3362  * attached, then it calls BUS_NEW_PASS() on that device.  If the
 3363  * device is not already attached, it attempts to attach a driver to
 3364  * it.
 3365  */
 3366 void
 3367 bus_generic_new_pass(device_t dev)
 3368 {
 3369         driverlink_t dl;
 3370         devclass_t dc;
 3371         device_t child;
 3372 
 3373         dc = dev->devclass;
 3374         TAILQ_FOREACH(dl, &dc->drivers, link) {
 3375                 if (dl->pass == bus_current_pass)
 3376                         DEVICE_IDENTIFY(dl->driver, dev);
 3377         }
 3378         TAILQ_FOREACH(child, &dev->children, link) {
 3379                 if (child->state >= DS_ATTACHED)
 3380                         BUS_NEW_PASS(child);
 3381                 else if (child->state == DS_NOTPRESENT)
 3382                         device_probe_and_attach(child);
 3383         }
 3384 }
 3385 
 3386 /**
 3387  * @brief Helper function for implementing BUS_SETUP_INTR().
 3388  *
 3389  * This simple implementation of BUS_SETUP_INTR() simply calls the
 3390  * BUS_SETUP_INTR() method of the parent of @p dev.
 3391  */
 3392 int
 3393 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
 3394     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 
 3395     void **cookiep)
 3396 {
 3397         /* Propagate up the bus hierarchy until someone handles it. */
 3398         if (dev->parent)
 3399                 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
 3400                     filter, intr, arg, cookiep));
 3401         return (EINVAL);
 3402 }
 3403 
 3404 /**
 3405  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
 3406  *
 3407  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
 3408  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
 3409  */
 3410 int
 3411 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
 3412     void *cookie)
 3413 {
 3414         /* Propagate up the bus hierarchy until someone handles it. */
 3415         if (dev->parent)
 3416                 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
 3417         return (EINVAL);
 3418 }
 3419 
 3420 /**
 3421  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3422  *
 3423  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
 3424  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
 3425  */
 3426 struct resource *
 3427 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
 3428     u_long start, u_long end, u_long count, u_int flags)
 3429 {
 3430         /* Propagate up the bus hierarchy until someone handles it. */
 3431         if (dev->parent)
 3432                 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
 3433                     start, end, count, flags));
 3434         return (NULL);
 3435 }
 3436 
 3437 /**
 3438  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3439  *
 3440  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
 3441  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
 3442  */
 3443 int
 3444 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
 3445     struct resource *r)
 3446 {
 3447         /* Propagate up the bus hierarchy until someone handles it. */
 3448         if (dev->parent)
 3449                 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
 3450                     r));
 3451         return (EINVAL);
 3452 }
 3453 
 3454 /**
 3455  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
 3456  *
 3457  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
 3458  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
 3459  */
 3460 int
 3461 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
 3462     struct resource *r)
 3463 {
 3464         /* Propagate up the bus hierarchy until someone handles it. */
 3465         if (dev->parent)
 3466                 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3467                     r));
 3468         return (EINVAL);
 3469 }
 3470 
 3471 /**
 3472  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
 3473  *
 3474  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
 3475  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
 3476  */
 3477 int
 3478 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
 3479     int rid, struct resource *r)
 3480 {
 3481         /* Propagate up the bus hierarchy until someone handles it. */
 3482         if (dev->parent)
 3483                 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3484                     r));
 3485         return (EINVAL);
 3486 }
 3487 
 3488 /**
 3489  * @brief Helper function for implementing BUS_BIND_INTR().
 3490  *
 3491  * This simple implementation of BUS_BIND_INTR() simply calls the
 3492  * BUS_BIND_INTR() method of the parent of @p dev.
 3493  */
 3494 int
 3495 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
 3496     int cpu)
 3497 {
 3498 
 3499         /* Propagate up the bus hierarchy until someone handles it. */
 3500         if (dev->parent)
 3501                 return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
 3502         return (EINVAL);
 3503 }
 3504 
 3505 /**
 3506  * @brief Helper function for implementing BUS_CONFIG_INTR().
 3507  *
 3508  * This simple implementation of BUS_CONFIG_INTR() simply calls the
 3509  * BUS_CONFIG_INTR() method of the parent of @p dev.
 3510  */
 3511 int
 3512 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
 3513     enum intr_polarity pol)
 3514 {
 3515 
 3516         /* Propagate up the bus hierarchy until someone handles it. */
 3517         if (dev->parent)
 3518                 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
 3519         return (EINVAL);
 3520 }
 3521 
 3522 /**
 3523  * @brief Helper function for implementing BUS_GET_DMA_TAG().
 3524  *
 3525  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
 3526  * BUS_GET_DMA_TAG() method of the parent of @p dev.
 3527  */
 3528 bus_dma_tag_t
 3529 bus_generic_get_dma_tag(device_t dev, device_t child)
 3530 {
 3531 
 3532         /* Propagate up the bus hierarchy until someone handles it. */
 3533         if (dev->parent != NULL)
 3534                 return (BUS_GET_DMA_TAG(dev->parent, child));
 3535         return (NULL);
 3536 }
 3537 
 3538 /**
 3539  * @brief Helper function for implementing BUS_GET_RESOURCE().
 3540  *
 3541  * This implementation of BUS_GET_RESOURCE() uses the
 3542  * resource_list_find() function to do most of the work. It calls
 3543  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3544  * search.
 3545  */
 3546 int
 3547 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
 3548     u_long *startp, u_long *countp)
 3549 {
 3550         struct resource_list *          rl = NULL;
 3551         struct resource_list_entry *    rle = NULL;
 3552 
 3553         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3554         if (!rl)
 3555                 return (EINVAL);
 3556 
 3557         rle = resource_list_find(rl, type, rid);
 3558         if (!rle)
 3559                 return (ENOENT);
 3560 
 3561         if (startp)
 3562                 *startp = rle->start;
 3563         if (countp)
 3564                 *countp = rle->count;
 3565 
 3566         return (0);
 3567 }
 3568 
 3569 /**
 3570  * @brief Helper function for implementing BUS_SET_RESOURCE().
 3571  *
 3572  * This implementation of BUS_SET_RESOURCE() uses the
 3573  * resource_list_add() function to do most of the work. It calls
 3574  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3575  * edit.
 3576  */
 3577 int
 3578 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
 3579     u_long start, u_long count)
 3580 {
 3581         struct resource_list *          rl = NULL;
 3582 
 3583         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3584         if (!rl)
 3585                 return (EINVAL);
 3586 
 3587         resource_list_add(rl, type, rid, start, (start + count - 1), count);
 3588 
 3589         return (0);
 3590 }
 3591 
 3592 /**
 3593  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
 3594  *
 3595  * This implementation of BUS_DELETE_RESOURCE() uses the
 3596  * resource_list_delete() function to do most of the work. It calls
 3597  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3598  * edit.
 3599  */
 3600 void
 3601 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
 3602 {
 3603         struct resource_list *          rl = NULL;
 3604 
 3605         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3606         if (!rl)
 3607                 return;
 3608 
 3609         resource_list_delete(rl, type, rid);
 3610 
 3611         return;
 3612 }
 3613 
 3614 /**
 3615  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3616  *
 3617  * This implementation of BUS_RELEASE_RESOURCE() uses the
 3618  * resource_list_release() function to do most of the work. It calls
 3619  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3620  */
 3621 int
 3622 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
 3623     int rid, struct resource *r)
 3624 {
 3625         struct resource_list *          rl = NULL;
 3626 
 3627         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3628         if (!rl)
 3629                 return (EINVAL);
 3630 
 3631         return (resource_list_release(rl, dev, child, type, rid, r));
 3632 }
 3633 
 3634 /**
 3635  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3636  *
 3637  * This implementation of BUS_ALLOC_RESOURCE() uses the
 3638  * resource_list_alloc() function to do most of the work. It calls
 3639  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3640  */
 3641 struct resource *
 3642 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
 3643     int *rid, u_long start, u_long end, u_long count, u_int flags)
 3644 {
 3645         struct resource_list *          rl = NULL;
 3646 
 3647         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3648         if (!rl)
 3649                 return (NULL);
 3650 
 3651         return (resource_list_alloc(rl, dev, child, type, rid,
 3652             start, end, count, flags));
 3653 }
 3654 
 3655 /**
 3656  * @brief Helper function for implementing BUS_CHILD_PRESENT().
 3657  *
 3658  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
 3659  * BUS_CHILD_PRESENT() method of the parent of @p dev.
 3660  */
 3661 int
 3662 bus_generic_child_present(device_t dev, device_t child)
 3663 {
 3664         return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
 3665 }
 3666 
 3667 /*
 3668  * Some convenience functions to make it easier for drivers to use the
 3669  * resource-management functions.  All these really do is hide the
 3670  * indirection through the parent's method table, making for slightly
 3671  * less-wordy code.  In the future, it might make sense for this code
 3672  * to maintain some sort of a list of resources allocated by each device.
 3673  */
 3674 
 3675 int
 3676 bus_alloc_resources(device_t dev, struct resource_spec *rs,
 3677     struct resource **res)
 3678 {
 3679         int i;
 3680 
 3681         for (i = 0; rs[i].type != -1; i++)
 3682                 res[i] = NULL;
 3683         for (i = 0; rs[i].type != -1; i++) {
 3684                 res[i] = bus_alloc_resource_any(dev,
 3685                     rs[i].type, &rs[i].rid, rs[i].flags);
 3686                 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
 3687                         bus_release_resources(dev, rs, res);
 3688                         return (ENXIO);
 3689                 }
 3690         }
 3691         return (0);
 3692 }
 3693 
 3694 void
 3695 bus_release_resources(device_t dev, const struct resource_spec *rs,
 3696     struct resource **res)
 3697 {
 3698         int i;
 3699 
 3700         for (i = 0; rs[i].type != -1; i++)
 3701                 if (res[i] != NULL) {
 3702                         bus_release_resource(
 3703                             dev, rs[i].type, rs[i].rid, res[i]);
 3704                         res[i] = NULL;
 3705                 }
 3706 }
 3707 
 3708 /**
 3709  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
 3710  *
 3711  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
 3712  * parent of @p dev.
 3713  */
 3714 struct resource *
 3715 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
 3716     u_long count, u_int flags)
 3717 {
 3718         if (dev->parent == NULL)
 3719                 return (NULL);
 3720         return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
 3721             count, flags));
 3722 }
 3723 
 3724 /**
 3725  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
 3726  *
 3727  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
 3728  * parent of @p dev.
 3729  */
 3730 int
 3731 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
 3732 {
 3733         if (dev->parent == NULL)
 3734                 return (EINVAL);
 3735         return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 3736 }
 3737 
 3738 /**
 3739  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
 3740  *
 3741  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
 3742  * parent of @p dev.
 3743  */
 3744 int
 3745 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
 3746 {
 3747         if (dev->parent == NULL)
 3748                 return (EINVAL);
 3749         return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 3750 }
 3751 
 3752 /**
 3753  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
 3754  *
 3755  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
 3756  * parent of @p dev.
 3757  */
 3758 int
 3759 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
 3760 {
 3761         if (dev->parent == NULL)
 3762                 return (EINVAL);
 3763         return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
 3764 }
 3765 
 3766 /**
 3767  * @brief Wrapper function for BUS_SETUP_INTR().
 3768  *
 3769  * This function simply calls the BUS_SETUP_INTR() method of the
 3770  * parent of @p dev.
 3771  */
 3772 int
 3773 bus_setup_intr(device_t dev, struct resource *r, int flags,
 3774     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
 3775 {
 3776         int error;
 3777 
 3778         if (dev->parent == NULL)
 3779                 return (EINVAL);
 3780         error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
 3781             arg, cookiep);
 3782         if (error != 0)
 3783                 return (error);
 3784         if (handler != NULL && !(flags & INTR_MPSAFE))
 3785                 device_printf(dev, "[GIANT-LOCKED]\n");
 3786         if (bootverbose && (flags & INTR_MPSAFE))
 3787                 device_printf(dev, "[MPSAFE]\n");
 3788         if (filter != NULL) {
 3789                 if (handler == NULL)
 3790                         device_printf(dev, "[FILTER]\n");
 3791                 else 
 3792                         device_printf(dev, "[FILTER+ITHREAD]\n");
 3793         } else 
 3794                 device_printf(dev, "[ITHREAD]\n");
 3795         return (0);
 3796 }
 3797 
 3798 /**
 3799  * @brief Wrapper function for BUS_TEARDOWN_INTR().
 3800  *
 3801  * This function simply calls the BUS_TEARDOWN_INTR() method of the
 3802  * parent of @p dev.
 3803  */
 3804 int
 3805 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
 3806 {
 3807         if (dev->parent == NULL)
 3808                 return (EINVAL);
 3809         return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
 3810 }
 3811 
 3812 /**
 3813  * @brief Wrapper function for BUS_BIND_INTR().
 3814  *
 3815  * This function simply calls the BUS_BIND_INTR() method of the
 3816  * parent of @p dev.
 3817  */
 3818 int
 3819 bus_bind_intr(device_t dev, struct resource *r, int cpu)
 3820 {
 3821         if (dev->parent == NULL)
 3822                 return (EINVAL);
 3823         return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
 3824 }
 3825 
 3826 /**
 3827  * @brief Wrapper function for BUS_SET_RESOURCE().
 3828  *
 3829  * This function simply calls the BUS_SET_RESOURCE() method of the
 3830  * parent of @p dev.
 3831  */
 3832 int
 3833 bus_set_resource(device_t dev, int type, int rid,
 3834     u_long start, u_long count)
 3835 {
 3836         return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3837             start, count));
 3838 }
 3839 
 3840 /**
 3841  * @brief Wrapper function for BUS_GET_RESOURCE().
 3842  *
 3843  * This function simply calls the BUS_GET_RESOURCE() method of the
 3844  * parent of @p dev.
 3845  */
 3846 int
 3847 bus_get_resource(device_t dev, int type, int rid,
 3848     u_long *startp, u_long *countp)
 3849 {
 3850         return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3851             startp, countp));
 3852 }
 3853 
 3854 /**
 3855  * @brief Wrapper function for BUS_GET_RESOURCE().
 3856  *
 3857  * This function simply calls the BUS_GET_RESOURCE() method of the
 3858  * parent of @p dev and returns the start value.
 3859  */
 3860 u_long
 3861 bus_get_resource_start(device_t dev, int type, int rid)
 3862 {
 3863         u_long start, count;
 3864         int error;
 3865 
 3866         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3867             &start, &count);
 3868         if (error)
 3869                 return (0);
 3870         return (start);
 3871 }
 3872 
 3873 /**
 3874  * @brief Wrapper function for BUS_GET_RESOURCE().
 3875  *
 3876  * This function simply calls the BUS_GET_RESOURCE() method of the
 3877  * parent of @p dev and returns the count value.
 3878  */
 3879 u_long
 3880 bus_get_resource_count(device_t dev, int type, int rid)
 3881 {
 3882         u_long start, count;
 3883         int error;
 3884 
 3885         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 3886             &start, &count);
 3887         if (error)
 3888                 return (0);
 3889         return (count);
 3890 }
 3891 
 3892 /**
 3893  * @brief Wrapper function for BUS_DELETE_RESOURCE().
 3894  *
 3895  * This function simply calls the BUS_DELETE_RESOURCE() method of the
 3896  * parent of @p dev.
 3897  */
 3898 void
 3899 bus_delete_resource(device_t dev, int type, int rid)
 3900 {
 3901         BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
 3902 }
 3903 
 3904 /**
 3905  * @brief Wrapper function for BUS_CHILD_PRESENT().
 3906  *
 3907  * This function simply calls the BUS_CHILD_PRESENT() method of the
 3908  * parent of @p dev.
 3909  */
 3910 int
 3911 bus_child_present(device_t child)
 3912 {
 3913         return (BUS_CHILD_PRESENT(device_get_parent(child), child));
 3914 }
 3915 
 3916 /**
 3917  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
 3918  *
 3919  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
 3920  * parent of @p dev.
 3921  */
 3922 int
 3923 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
 3924 {
 3925         device_t parent;
 3926 
 3927         parent = device_get_parent(child);
 3928         if (parent == NULL) {
 3929                 *buf = '\0';
 3930                 return (0);
 3931         }
 3932         return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
 3933 }
 3934 
 3935 /**
 3936  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
 3937  *
 3938  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
 3939  * parent of @p dev.
 3940  */
 3941 int
 3942 bus_child_location_str(device_t child, char *buf, size_t buflen)
 3943 {
 3944         device_t parent;
 3945 
 3946         parent = device_get_parent(child);
 3947         if (parent == NULL) {
 3948                 *buf = '\0';
 3949                 return (0);
 3950         }
 3951         return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
 3952 }
 3953 
 3954 /**
 3955  * @brief Wrapper function for BUS_GET_DMA_TAG().
 3956  *
 3957  * This function simply calls the BUS_GET_DMA_TAG() method of the
 3958  * parent of @p dev.
 3959  */
 3960 bus_dma_tag_t
 3961 bus_get_dma_tag(device_t dev)
 3962 {
 3963         device_t parent;
 3964 
 3965         parent = device_get_parent(dev);
 3966         if (parent == NULL)
 3967                 return (NULL);
 3968         return (BUS_GET_DMA_TAG(parent, dev));
 3969 }
 3970 
 3971 /* Resume all devices and then notify userland that we're up again. */
 3972 static int
 3973 root_resume(device_t dev)
 3974 {
 3975         int error;
 3976 
 3977         error = bus_generic_resume(dev);
 3978         if (error == 0)
 3979                 devctl_notify("kern", "power", "resume", NULL);
 3980         return (error);
 3981 }
 3982 
 3983 static int
 3984 root_print_child(device_t dev, device_t child)
 3985 {
 3986         int     retval = 0;
 3987 
 3988         retval += bus_print_child_header(dev, child);
 3989         retval += printf("\n");
 3990 
 3991         return (retval);
 3992 }
 3993 
 3994 static int
 3995 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
 3996     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
 3997 {
 3998         /*
 3999          * If an interrupt mapping gets to here something bad has happened.
 4000          */
 4001         panic("root_setup_intr");
 4002 }
 4003 
 4004 /*
 4005  * If we get here, assume that the device is permanant and really is
 4006  * present in the system.  Removable bus drivers are expected to intercept
 4007  * this call long before it gets here.  We return -1 so that drivers that
 4008  * really care can check vs -1 or some ERRNO returned higher in the food
 4009  * chain.
 4010  */
 4011 static int
 4012 root_child_present(device_t dev, device_t child)
 4013 {
 4014         return (-1);
 4015 }
 4016 
 4017 static kobj_method_t root_methods[] = {
 4018         /* Device interface */
 4019         KOBJMETHOD(device_shutdown,     bus_generic_shutdown),
 4020         KOBJMETHOD(device_suspend,      bus_generic_suspend),
 4021         KOBJMETHOD(device_resume,       root_resume),
 4022 
 4023         /* Bus interface */
 4024         KOBJMETHOD(bus_print_child,     root_print_child),
 4025         KOBJMETHOD(bus_read_ivar,       bus_generic_read_ivar),
 4026         KOBJMETHOD(bus_write_ivar,      bus_generic_write_ivar),
 4027         KOBJMETHOD(bus_setup_intr,      root_setup_intr),
 4028         KOBJMETHOD(bus_child_present,   root_child_present),
 4029 
 4030         KOBJMETHOD_END
 4031 };
 4032 
 4033 static driver_t root_driver = {
 4034         "root",
 4035         root_methods,
 4036         1,                      /* no softc */
 4037 };
 4038 
 4039 device_t        root_bus;
 4040 devclass_t      root_devclass;
 4041 
 4042 static int
 4043 root_bus_module_handler(module_t mod, int what, void* arg)
 4044 {
 4045         switch (what) {
 4046         case MOD_LOAD:
 4047                 TAILQ_INIT(&bus_data_devices);
 4048                 kobj_class_compile((kobj_class_t) &root_driver);
 4049                 root_bus = make_device(NULL, "root", 0);
 4050                 root_bus->desc = "System root bus";
 4051                 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
 4052                 root_bus->driver = &root_driver;
 4053                 root_bus->state = DS_ATTACHED;
 4054                 root_devclass = devclass_find_internal("root", NULL, FALSE);
 4055                 devinit();
 4056                 return (0);
 4057 
 4058         case MOD_SHUTDOWN:
 4059                 device_shutdown(root_bus);
 4060                 return (0);
 4061         default:
 4062                 return (EOPNOTSUPP);
 4063         }
 4064 
 4065         return (0);
 4066 }
 4067 
 4068 static moduledata_t root_bus_mod = {
 4069         "rootbus",
 4070         root_bus_module_handler,
 4071         NULL
 4072 };
 4073 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
 4074 
 4075 /**
 4076  * @brief Automatically configure devices
 4077  *
 4078  * This function begins the autoconfiguration process by calling
 4079  * device_probe_and_attach() for each child of the @c root0 device.
 4080  */ 
 4081 void
 4082 root_bus_configure(void)
 4083 {
 4084 
 4085         PDEBUG(("."));
 4086 
 4087         /* Eventually this will be split up, but this is sufficient for now. */
 4088         bus_set_pass(BUS_PASS_DEFAULT);
 4089 }
 4090 
 4091 /**
 4092  * @brief Module handler for registering device drivers
 4093  *
 4094  * This module handler is used to automatically register device
 4095  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
 4096  * devclass_add_driver() for the driver described by the
 4097  * driver_module_data structure pointed to by @p arg
 4098  */
 4099 int
 4100 driver_module_handler(module_t mod, int what, void *arg)
 4101 {
 4102         struct driver_module_data *dmd;
 4103         devclass_t bus_devclass;
 4104         kobj_class_t driver;
 4105         int error, pass;
 4106 
 4107         dmd = (struct driver_module_data *)arg;
 4108         bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
 4109         error = 0;
 4110 
 4111         switch (what) {
 4112         case MOD_LOAD:
 4113                 if (dmd->dmd_chainevh)
 4114                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4115 
 4116                 pass = dmd->dmd_pass;
 4117                 driver = dmd->dmd_driver;
 4118                 PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
 4119                     DRIVERNAME(driver), dmd->dmd_busname, pass));
 4120                 error = devclass_add_driver(bus_devclass, driver, pass);
 4121                 if (error)
 4122                         break;
 4123 
 4124                 /*
 4125                  * If the driver has any base classes, make the
 4126                  * devclass inherit from the devclass of the driver's
 4127                  * first base class. This will allow the system to
 4128                  * search for drivers in both devclasses for children
 4129                  * of a device using this driver.
 4130                  */
 4131                 if (driver->baseclasses) {
 4132                         const char *parentname;
 4133                         parentname = driver->baseclasses[0]->name;
 4134                         *dmd->dmd_devclass =
 4135                                 devclass_find_internal(driver->name,
 4136                                     parentname, TRUE);
 4137                 } else {
 4138                         *dmd->dmd_devclass =
 4139                                 devclass_find_internal(driver->name, NULL, TRUE);
 4140                 }
 4141                 break;
 4142 
 4143         case MOD_UNLOAD:
 4144                 PDEBUG(("Unloading module: driver %s from bus %s",
 4145                     DRIVERNAME(dmd->dmd_driver),
 4146                     dmd->dmd_busname));
 4147                 error = devclass_delete_driver(bus_devclass,
 4148                     dmd->dmd_driver);
 4149 
 4150                 if (!error && dmd->dmd_chainevh)
 4151                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4152                 break;
 4153         case MOD_QUIESCE:
 4154                 PDEBUG(("Quiesce module: driver %s from bus %s",
 4155                     DRIVERNAME(dmd->dmd_driver),
 4156                     dmd->dmd_busname));
 4157                 error = devclass_quiesce_driver(bus_devclass,
 4158                     dmd->dmd_driver);
 4159 
 4160                 if (!error && dmd->dmd_chainevh)
 4161                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4162                 break;
 4163         default:
 4164                 error = EOPNOTSUPP;
 4165                 break;
 4166         }
 4167 
 4168         return (error);
 4169 }
 4170 
 4171 /**
 4172  * @brief Enumerate all hinted devices for this bus.
 4173  *
 4174  * Walks through the hints for this bus and calls the bus_hinted_child
 4175  * routine for each one it fines.  It searches first for the specific
 4176  * bus that's being probed for hinted children (eg isa0), and then for
 4177  * generic children (eg isa).
 4178  *
 4179  * @param       dev     bus device to enumerate
 4180  */
 4181 void
 4182 bus_enumerate_hinted_children(device_t bus)
 4183 {
 4184         int i;
 4185         const char *dname, *busname;
 4186         int dunit;
 4187 
 4188         /*
 4189          * enumerate all devices on the specific bus
 4190          */
 4191         busname = device_get_nameunit(bus);
 4192         i = 0;
 4193         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 4194                 BUS_HINTED_CHILD(bus, dname, dunit);
 4195 
 4196         /*
 4197          * and all the generic ones.
 4198          */
 4199         busname = device_get_name(bus);
 4200         i = 0;
 4201         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 4202                 BUS_HINTED_CHILD(bus, dname, dunit);
 4203 }
 4204 
 4205 #ifdef BUS_DEBUG
 4206 
 4207 /* the _short versions avoid iteration by not calling anything that prints
 4208  * more than oneliners. I love oneliners.
 4209  */
 4210 
 4211 static void
 4212 print_device_short(device_t dev, int indent)
 4213 {
 4214         if (!dev)
 4215                 return;
 4216 
 4217         indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
 4218             dev->unit, dev->desc,
 4219             (dev->parent? "":"no "),
 4220             (TAILQ_EMPTY(&dev->children)? "no ":""),
 4221             (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
 4222             (dev->flags&DF_FIXEDCLASS? "fixed,":""),
 4223             (dev->flags&DF_WILDCARD? "wildcard,":""),
 4224             (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
 4225             (dev->flags&DF_REBID? "rebiddable,":""),
 4226             (dev->ivars? "":"no "),
 4227             (dev->softc? "":"no "),
 4228             dev->busy));
 4229 }
 4230 
 4231 static void
 4232 print_device(device_t dev, int indent)
 4233 {
 4234         if (!dev)
 4235                 return;
 4236 
 4237         print_device_short(dev, indent);
 4238 
 4239         indentprintf(("Parent:\n"));
 4240         print_device_short(dev->parent, indent+1);
 4241         indentprintf(("Driver:\n"));
 4242         print_driver_short(dev->driver, indent+1);
 4243         indentprintf(("Devclass:\n"));
 4244         print_devclass_short(dev->devclass, indent+1);
 4245 }
 4246 
 4247 void
 4248 print_device_tree_short(device_t dev, int indent)
 4249 /* print the device and all its children (indented) */
 4250 {
 4251         device_t child;
 4252 
 4253         if (!dev)
 4254                 return;
 4255 
 4256         print_device_short(dev, indent);
 4257 
 4258         TAILQ_FOREACH(child, &dev->children, link) {
 4259                 print_device_tree_short(child, indent+1);
 4260         }
 4261 }
 4262 
 4263 void
 4264 print_device_tree(device_t dev, int indent)
 4265 /* print the device and all its children (indented) */
 4266 {
 4267         device_t child;
 4268 
 4269         if (!dev)
 4270                 return;
 4271 
 4272         print_device(dev, indent);
 4273 
 4274         TAILQ_FOREACH(child, &dev->children, link) {
 4275                 print_device_tree(child, indent+1);
 4276         }
 4277 }
 4278 
 4279 static void
 4280 print_driver_short(driver_t *driver, int indent)
 4281 {
 4282         if (!driver)
 4283                 return;
 4284 
 4285         indentprintf(("driver %s: softc size = %zd\n",
 4286             driver->name, driver->size));
 4287 }
 4288 
 4289 static void
 4290 print_driver(driver_t *driver, int indent)
 4291 {
 4292         if (!driver)
 4293                 return;
 4294 
 4295         print_driver_short(driver, indent);
 4296 }
 4297 
 4298 
 4299 static void
 4300 print_driver_list(driver_list_t drivers, int indent)
 4301 {
 4302         driverlink_t driver;
 4303 
 4304         TAILQ_FOREACH(driver, &drivers, link) {
 4305                 print_driver(driver->driver, indent);
 4306         }
 4307 }
 4308 
 4309 static void
 4310 print_devclass_short(devclass_t dc, int indent)
 4311 {
 4312         if ( !dc )
 4313                 return;
 4314 
 4315         indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
 4316 }
 4317 
 4318 static void
 4319 print_devclass(devclass_t dc, int indent)
 4320 {
 4321         int i;
 4322 
 4323         if ( !dc )
 4324                 return;
 4325 
 4326         print_devclass_short(dc, indent);
 4327         indentprintf(("Drivers:\n"));
 4328         print_driver_list(dc->drivers, indent+1);
 4329 
 4330         indentprintf(("Devices:\n"));
 4331         for (i = 0; i < dc->maxunit; i++)
 4332                 if (dc->devices[i])
 4333                         print_device(dc->devices[i], indent+1);
 4334 }
 4335 
 4336 void
 4337 print_devclass_list_short(void)
 4338 {
 4339         devclass_t dc;
 4340 
 4341         printf("Short listing of devclasses, drivers & devices:\n");
 4342         TAILQ_FOREACH(dc, &devclasses, link) {
 4343                 print_devclass_short(dc, 0);
 4344         }
 4345 }
 4346 
 4347 void
 4348 print_devclass_list(void)
 4349 {
 4350         devclass_t dc;
 4351 
 4352         printf("Full listing of devclasses, drivers & devices:\n");
 4353         TAILQ_FOREACH(dc, &devclasses, link) {
 4354                 print_devclass(dc, 0);
 4355         }
 4356 }
 4357 
 4358 #endif
 4359 
 4360 /*
 4361  * User-space access to the device tree.
 4362  *
 4363  * We implement a small set of nodes:
 4364  *
 4365  * hw.bus                       Single integer read method to obtain the
 4366  *                              current generation count.
 4367  * hw.bus.devices               Reads the entire device tree in flat space.
 4368  * hw.bus.rman                  Resource manager interface
 4369  *
 4370  * We might like to add the ability to scan devclasses and/or drivers to
 4371  * determine what else is currently loaded/available.
 4372  */
 4373 
 4374 static int
 4375 sysctl_bus(SYSCTL_HANDLER_ARGS)
 4376 {
 4377         struct u_businfo        ubus;
 4378 
 4379         ubus.ub_version = BUS_USER_VERSION;
 4380         ubus.ub_generation = bus_data_generation;
 4381 
 4382         return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
 4383 }
 4384 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
 4385     "bus-related data");
 4386 
 4387 static int
 4388 sysctl_devices(SYSCTL_HANDLER_ARGS)
 4389 {
 4390         int                     *name = (int *)arg1;
 4391         u_int                   namelen = arg2;
 4392         int                     index;
 4393         struct device           *dev;
 4394         struct u_device         udev;   /* XXX this is a bit big */
 4395         int                     error;
 4396 
 4397         if (namelen != 2)
 4398                 return (EINVAL);
 4399 
 4400         if (bus_data_generation_check(name[0]))
 4401                 return (EINVAL);
 4402 
 4403         index = name[1];
 4404 
 4405         /*
 4406          * Scan the list of devices, looking for the requested index.
 4407          */
 4408         TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 4409                 if (index-- == 0)
 4410                         break;
 4411         }
 4412         if (dev == NULL)
 4413                 return (ENOENT);
 4414 
 4415         /*
 4416          * Populate the return array.
 4417          */
 4418         bzero(&udev, sizeof(udev));
 4419         udev.dv_handle = (uintptr_t)dev;
 4420         udev.dv_parent = (uintptr_t)dev->parent;
 4421         if (dev->nameunit != NULL)
 4422                 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
 4423         if (dev->desc != NULL)
 4424                 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
 4425         if (dev->driver != NULL && dev->driver->name != NULL)
 4426                 strlcpy(udev.dv_drivername, dev->driver->name,
 4427                     sizeof(udev.dv_drivername));
 4428         bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
 4429         bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
 4430         udev.dv_devflags = dev->devflags;
 4431         udev.dv_flags = dev->flags;
 4432         udev.dv_state = dev->state;
 4433         error = SYSCTL_OUT(req, &udev, sizeof(udev));
 4434         return (error);
 4435 }
 4436 
 4437 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
 4438     "system device tree");
 4439 
 4440 int
 4441 bus_data_generation_check(int generation)
 4442 {
 4443         if (generation != bus_data_generation)
 4444                 return (1);
 4445 
 4446         /* XXX generate optimised lists here? */
 4447         return (0);
 4448 }
 4449 
 4450 void
 4451 bus_data_generation_update(void)
 4452 {
 4453         bus_data_generation++;
 4454 }
 4455 
 4456 int
 4457 bus_free_resource(device_t dev, int type, struct resource *r)
 4458 {
 4459         if (r == NULL)
 4460                 return (0);
 4461         return (bus_release_resource(dev, type, rman_get_rid(r), r));
 4462 }

Cache object: c117e5cb6bc1c66e336a190a958cfe50


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.