The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_bus.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997,1998,2003 Doug Rabson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/8.3/sys/kern/subr_bus.c 230741 2012-01-29 12:58:07Z marius $");
   29 
   30 #include "opt_bus.h"
   31 
   32 #include <sys/param.h>
   33 #include <sys/conf.h>
   34 #include <sys/filio.h>
   35 #include <sys/lock.h>
   36 #include <sys/kernel.h>
   37 #include <sys/kobj.h>
   38 #include <sys/limits.h>
   39 #include <sys/malloc.h>
   40 #include <sys/module.h>
   41 #include <sys/mutex.h>
   42 #include <sys/poll.h>
   43 #include <sys/proc.h>
   44 #include <sys/condvar.h>
   45 #include <sys/queue.h>
   46 #include <machine/bus.h>
   47 #include <sys/rman.h>
   48 #include <sys/selinfo.h>
   49 #include <sys/signalvar.h>
   50 #include <sys/sysctl.h>
   51 #include <sys/systm.h>
   52 #include <sys/uio.h>
   53 #include <sys/bus.h>
   54 #include <sys/interrupt.h>
   55 
   56 #include <machine/stdarg.h>
   57 
   58 #include <vm/uma.h>
   59 
   60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
   61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
   62 
   63 /*
   64  * Used to attach drivers to devclasses.
   65  */
   66 typedef struct driverlink *driverlink_t;
   67 struct driverlink {
   68         kobj_class_t    driver;
   69         TAILQ_ENTRY(driverlink) link;   /* list of drivers in devclass */
   70         int             pass;
   71         TAILQ_ENTRY(driverlink) passlink;
   72 };
   73 
   74 /*
   75  * Forward declarations
   76  */
   77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
   78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
   79 typedef TAILQ_HEAD(device_list, device) device_list_t;
   80 
   81 struct devclass {
   82         TAILQ_ENTRY(devclass) link;
   83         devclass_t      parent;         /* parent in devclass hierarchy */
   84         driver_list_t   drivers;     /* bus devclasses store drivers for bus */
   85         char            *name;
   86         device_t        *devices;       /* array of devices indexed by unit */
   87         int             maxunit;        /* size of devices array */
   88         int             flags;
   89 #define DC_HAS_CHILDREN         1
   90 
   91         struct sysctl_ctx_list sysctl_ctx;
   92         struct sysctl_oid *sysctl_tree;
   93 };
   94 
   95 /**
   96  * @brief Implementation of device.
   97  */
   98 struct device {
   99         /*
  100          * A device is a kernel object. The first field must be the
  101          * current ops table for the object.
  102          */
  103         KOBJ_FIELDS;
  104 
  105         /*
  106          * Device hierarchy.
  107          */
  108         TAILQ_ENTRY(device)     link;   /**< list of devices in parent */
  109         TAILQ_ENTRY(device)     devlink; /**< global device list membership */
  110         device_t        parent;         /**< parent of this device  */
  111         device_list_t   children;       /**< list of child devices */
  112 
  113         /*
  114          * Details of this device.
  115          */
  116         driver_t        *driver;        /**< current driver */
  117         devclass_t      devclass;       /**< current device class */
  118         int             unit;           /**< current unit number */
  119         char*           nameunit;       /**< name+unit e.g. foodev0 */
  120         char*           desc;           /**< driver specific description */
  121         int             busy;           /**< count of calls to device_busy() */
  122         device_state_t  state;          /**< current device state  */
  123         u_int32_t       devflags;       /**< api level flags for device_get_flags() */
  124         u_int           flags;          /**< internal device flags  */
  125 #define DF_ENABLED      0x01            /* device should be probed/attached */
  126 #define DF_FIXEDCLASS   0x02            /* devclass specified at create time */
  127 #define DF_WILDCARD     0x04            /* unit was originally wildcard */
  128 #define DF_DESCMALLOCED 0x08            /* description was malloced */
  129 #define DF_QUIET        0x10            /* don't print verbose attach message */
  130 #define DF_DONENOMATCH  0x20            /* don't execute DEVICE_NOMATCH again */
  131 #define DF_EXTERNALSOFTC 0x40           /* softc not allocated by us */
  132 #define DF_REBID        0x80            /* Can rebid after attach */
  133         u_int   order;                  /**< order from device_add_child_ordered() */
  134         void    *ivars;                 /**< instance variables  */
  135         void    *softc;                 /**< current driver's variables  */
  136 
  137         struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
  138         struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
  139 };
  140 
  141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
  142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
  143 
  144 #ifdef BUS_DEBUG
  145 
  146 static int bus_debug = 1;
  147 TUNABLE_INT("bus.debug", &bus_debug);
  148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
  149     "Debug bus code");
  150 
  151 #define PDEBUG(a)       if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
  152 #define DEVICENAME(d)   ((d)? device_get_name(d): "no device")
  153 #define DRIVERNAME(d)   ((d)? d->name : "no driver")
  154 #define DEVCLANAME(d)   ((d)? d->name : "no devclass")
  155 
  156 /**
  157  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
  158  * prevent syslog from deleting initial spaces
  159  */
  160 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
  161 
  162 static void print_device_short(device_t dev, int indent);
  163 static void print_device(device_t dev, int indent);
  164 void print_device_tree_short(device_t dev, int indent);
  165 void print_device_tree(device_t dev, int indent);
  166 static void print_driver_short(driver_t *driver, int indent);
  167 static void print_driver(driver_t *driver, int indent);
  168 static void print_driver_list(driver_list_t drivers, int indent);
  169 static void print_devclass_short(devclass_t dc, int indent);
  170 static void print_devclass(devclass_t dc, int indent);
  171 void print_devclass_list_short(void);
  172 void print_devclass_list(void);
  173 
  174 #else
  175 /* Make the compiler ignore the function calls */
  176 #define PDEBUG(a)                       /* nop */
  177 #define DEVICENAME(d)                   /* nop */
  178 #define DRIVERNAME(d)                   /* nop */
  179 #define DEVCLANAME(d)                   /* nop */
  180 
  181 #define print_device_short(d,i)         /* nop */
  182 #define print_device(d,i)               /* nop */
  183 #define print_device_tree_short(d,i)    /* nop */
  184 #define print_device_tree(d,i)          /* nop */
  185 #define print_driver_short(d,i)         /* nop */
  186 #define print_driver(d,i)               /* nop */
  187 #define print_driver_list(d,i)          /* nop */
  188 #define print_devclass_short(d,i)       /* nop */
  189 #define print_devclass(d,i)             /* nop */
  190 #define print_devclass_list_short()     /* nop */
  191 #define print_devclass_list()           /* nop */
  192 #endif
  193 
  194 /*
  195  * dev sysctl tree
  196  */
  197 
  198 enum {
  199         DEVCLASS_SYSCTL_PARENT,
  200 };
  201 
  202 static int
  203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
  204 {
  205         devclass_t dc = (devclass_t)arg1;
  206         const char *value;
  207 
  208         switch (arg2) {
  209         case DEVCLASS_SYSCTL_PARENT:
  210                 value = dc->parent ? dc->parent->name : "";
  211                 break;
  212         default:
  213                 return (EINVAL);
  214         }
  215         return (SYSCTL_OUT(req, value, strlen(value)));
  216 }
  217 
  218 static void
  219 devclass_sysctl_init(devclass_t dc)
  220 {
  221 
  222         if (dc->sysctl_tree != NULL)
  223                 return;
  224         sysctl_ctx_init(&dc->sysctl_ctx);
  225         dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
  226             SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
  227             CTLFLAG_RD, NULL, "");
  228         SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
  229             OID_AUTO, "%parent", CTLFLAG_RD,
  230             dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
  231             "parent class");
  232 }
  233 
  234 enum {
  235         DEVICE_SYSCTL_DESC,
  236         DEVICE_SYSCTL_DRIVER,
  237         DEVICE_SYSCTL_LOCATION,
  238         DEVICE_SYSCTL_PNPINFO,
  239         DEVICE_SYSCTL_PARENT,
  240 };
  241 
  242 static int
  243 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
  244 {
  245         device_t dev = (device_t)arg1;
  246         const char *value;
  247         char *buf;
  248         int error;
  249 
  250         buf = NULL;
  251         switch (arg2) {
  252         case DEVICE_SYSCTL_DESC:
  253                 value = dev->desc ? dev->desc : "";
  254                 break;
  255         case DEVICE_SYSCTL_DRIVER:
  256                 value = dev->driver ? dev->driver->name : "";
  257                 break;
  258         case DEVICE_SYSCTL_LOCATION:
  259                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  260                 bus_child_location_str(dev, buf, 1024);
  261                 break;
  262         case DEVICE_SYSCTL_PNPINFO:
  263                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  264                 bus_child_pnpinfo_str(dev, buf, 1024);
  265                 break;
  266         case DEVICE_SYSCTL_PARENT:
  267                 value = dev->parent ? dev->parent->nameunit : "";
  268                 break;
  269         default:
  270                 return (EINVAL);
  271         }
  272         error = SYSCTL_OUT(req, value, strlen(value));
  273         if (buf != NULL)
  274                 free(buf, M_BUS);
  275         return (error);
  276 }
  277 
  278 static void
  279 device_sysctl_init(device_t dev)
  280 {
  281         devclass_t dc = dev->devclass;
  282 
  283         if (dev->sysctl_tree != NULL)
  284                 return;
  285         devclass_sysctl_init(dc);
  286         sysctl_ctx_init(&dev->sysctl_ctx);
  287         dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
  288             SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
  289             dev->nameunit + strlen(dc->name),
  290             CTLFLAG_RD, NULL, "");
  291         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  292             OID_AUTO, "%desc", CTLFLAG_RD,
  293             dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
  294             "device description");
  295         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  296             OID_AUTO, "%driver", CTLFLAG_RD,
  297             dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
  298             "device driver name");
  299         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  300             OID_AUTO, "%location", CTLFLAG_RD,
  301             dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
  302             "device location relative to parent");
  303         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  304             OID_AUTO, "%pnpinfo", CTLFLAG_RD,
  305             dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
  306             "device identification");
  307         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  308             OID_AUTO, "%parent", CTLFLAG_RD,
  309             dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
  310             "parent device");
  311 }
  312 
  313 static void
  314 device_sysctl_update(device_t dev)
  315 {
  316         devclass_t dc = dev->devclass;
  317 
  318         if (dev->sysctl_tree == NULL)
  319                 return;
  320         sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
  321 }
  322 
  323 static void
  324 device_sysctl_fini(device_t dev)
  325 {
  326         if (dev->sysctl_tree == NULL)
  327                 return;
  328         sysctl_ctx_free(&dev->sysctl_ctx);
  329         dev->sysctl_tree = NULL;
  330 }
  331 
  332 /*
  333  * /dev/devctl implementation
  334  */
  335 
  336 /*
  337  * This design allows only one reader for /dev/devctl.  This is not desirable
  338  * in the long run, but will get a lot of hair out of this implementation.
  339  * Maybe we should make this device a clonable device.
  340  *
  341  * Also note: we specifically do not attach a device to the device_t tree
  342  * to avoid potential chicken and egg problems.  One could argue that all
  343  * of this belongs to the root node.  One could also further argue that the
  344  * sysctl interface that we have not might more properly be an ioctl
  345  * interface, but at this stage of the game, I'm not inclined to rock that
  346  * boat.
  347  *
  348  * I'm also not sure that the SIGIO support is done correctly or not, as
  349  * I copied it from a driver that had SIGIO support that likely hasn't been
  350  * tested since 3.4 or 2.2.8!
  351  */
  352 
  353 /* Deprecated way to adjust queue length */
  354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
  355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
  356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
  357     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
  358 
  359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
  360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
  361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
  363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
  364     0, sysctl_devctl_queue, "I", "devctl queue length");
  365 
  366 static d_open_t         devopen;
  367 static d_close_t        devclose;
  368 static d_read_t         devread;
  369 static d_ioctl_t        devioctl;
  370 static d_poll_t         devpoll;
  371 
  372 static struct cdevsw dev_cdevsw = {
  373         .d_version =    D_VERSION,
  374         .d_flags =      D_NEEDGIANT,
  375         .d_open =       devopen,
  376         .d_close =      devclose,
  377         .d_read =       devread,
  378         .d_ioctl =      devioctl,
  379         .d_poll =       devpoll,
  380         .d_name =       "devctl",
  381 };
  382 
  383 struct dev_event_info
  384 {
  385         char *dei_data;
  386         TAILQ_ENTRY(dev_event_info) dei_link;
  387 };
  388 
  389 TAILQ_HEAD(devq, dev_event_info);
  390 
  391 static struct dev_softc
  392 {
  393         int     inuse;
  394         int     nonblock;
  395         int     queued;
  396         struct mtx mtx;
  397         struct cv cv;
  398         struct selinfo sel;
  399         struct devq devq;
  400         struct proc *async_proc;
  401 } devsoftc;
  402 
  403 static struct cdev *devctl_dev;
  404 
  405 static void
  406 devinit(void)
  407 {
  408         devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
  409             UID_ROOT, GID_WHEEL, 0600, "devctl");
  410         mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
  411         cv_init(&devsoftc.cv, "dev cv");
  412         TAILQ_INIT(&devsoftc.devq);
  413 }
  414 
  415 static int
  416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
  417 {
  418         if (devsoftc.inuse)
  419                 return (EBUSY);
  420         /* move to init */
  421         devsoftc.inuse = 1;
  422         devsoftc.nonblock = 0;
  423         devsoftc.async_proc = NULL;
  424         return (0);
  425 }
  426 
  427 static int
  428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
  429 {
  430         devsoftc.inuse = 0;
  431         mtx_lock(&devsoftc.mtx);
  432         cv_broadcast(&devsoftc.cv);
  433         mtx_unlock(&devsoftc.mtx);
  434         devsoftc.async_proc = NULL;
  435         return (0);
  436 }
  437 
  438 /*
  439  * The read channel for this device is used to report changes to
  440  * userland in realtime.  We are required to free the data as well as
  441  * the n1 object because we allocate them separately.  Also note that
  442  * we return one record at a time.  If you try to read this device a
  443  * character at a time, you will lose the rest of the data.  Listening
  444  * programs are expected to cope.
  445  */
  446 static int
  447 devread(struct cdev *dev, struct uio *uio, int ioflag)
  448 {
  449         struct dev_event_info *n1;
  450         int rv;
  451 
  452         mtx_lock(&devsoftc.mtx);
  453         while (TAILQ_EMPTY(&devsoftc.devq)) {
  454                 if (devsoftc.nonblock) {
  455                         mtx_unlock(&devsoftc.mtx);
  456                         return (EAGAIN);
  457                 }
  458                 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
  459                 if (rv) {
  460                         /*
  461                          * Need to translate ERESTART to EINTR here? -- jake
  462                          */
  463                         mtx_unlock(&devsoftc.mtx);
  464                         return (rv);
  465                 }
  466         }
  467         n1 = TAILQ_FIRST(&devsoftc.devq);
  468         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  469         devsoftc.queued--;
  470         mtx_unlock(&devsoftc.mtx);
  471         rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
  472         free(n1->dei_data, M_BUS);
  473         free(n1, M_BUS);
  474         return (rv);
  475 }
  476 
  477 static  int
  478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
  479 {
  480         switch (cmd) {
  481 
  482         case FIONBIO:
  483                 if (*(int*)data)
  484                         devsoftc.nonblock = 1;
  485                 else
  486                         devsoftc.nonblock = 0;
  487                 return (0);
  488         case FIOASYNC:
  489                 if (*(int*)data)
  490                         devsoftc.async_proc = td->td_proc;
  491                 else
  492                         devsoftc.async_proc = NULL;
  493                 return (0);
  494 
  495                 /* (un)Support for other fcntl() calls. */
  496         case FIOCLEX:
  497         case FIONCLEX:
  498         case FIONREAD:
  499         case FIOSETOWN:
  500         case FIOGETOWN:
  501         default:
  502                 break;
  503         }
  504         return (ENOTTY);
  505 }
  506 
  507 static  int
  508 devpoll(struct cdev *dev, int events, struct thread *td)
  509 {
  510         int     revents = 0;
  511 
  512         mtx_lock(&devsoftc.mtx);
  513         if (events & (POLLIN | POLLRDNORM)) {
  514                 if (!TAILQ_EMPTY(&devsoftc.devq))
  515                         revents = events & (POLLIN | POLLRDNORM);
  516                 else
  517                         selrecord(td, &devsoftc.sel);
  518         }
  519         mtx_unlock(&devsoftc.mtx);
  520 
  521         return (revents);
  522 }
  523 
  524 /**
  525  * @brief Return whether the userland process is running
  526  */
  527 boolean_t
  528 devctl_process_running(void)
  529 {
  530         return (devsoftc.inuse == 1);
  531 }
  532 
  533 /**
  534  * @brief Queue data to be read from the devctl device
  535  *
  536  * Generic interface to queue data to the devctl device.  It is
  537  * assumed that @p data is properly formatted.  It is further assumed
  538  * that @p data is allocated using the M_BUS malloc type.
  539  */
  540 void
  541 devctl_queue_data_f(char *data, int flags)
  542 {
  543         struct dev_event_info *n1 = NULL, *n2 = NULL;
  544         struct proc *p;
  545 
  546         if (strlen(data) == 0)
  547                 goto out;
  548         if (devctl_queue_length == 0)
  549                 goto out;
  550         n1 = malloc(sizeof(*n1), M_BUS, flags);
  551         if (n1 == NULL)
  552                 goto out;
  553         n1->dei_data = data;
  554         mtx_lock(&devsoftc.mtx);
  555         if (devctl_queue_length == 0) {
  556                 mtx_unlock(&devsoftc.mtx);
  557                 free(n1->dei_data, M_BUS);
  558                 free(n1, M_BUS);
  559                 return;
  560         }
  561         /* Leave at least one spot in the queue... */
  562         while (devsoftc.queued > devctl_queue_length - 1) {
  563                 n2 = TAILQ_FIRST(&devsoftc.devq);
  564                 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
  565                 free(n2->dei_data, M_BUS);
  566                 free(n2, M_BUS);
  567                 devsoftc.queued--;
  568         }
  569         TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
  570         devsoftc.queued++;
  571         cv_broadcast(&devsoftc.cv);
  572         mtx_unlock(&devsoftc.mtx);
  573         selwakeup(&devsoftc.sel);
  574         p = devsoftc.async_proc;
  575         if (p != NULL) {
  576                 PROC_LOCK(p);
  577                 psignal(p, SIGIO);
  578                 PROC_UNLOCK(p);
  579         }
  580         return;
  581 out:
  582         /*
  583          * We have to free data on all error paths since the caller
  584          * assumes it will be free'd when this item is dequeued.
  585          */
  586         free(data, M_BUS);
  587         return;
  588 }
  589 
  590 void
  591 devctl_queue_data(char *data)
  592 {
  593 
  594         devctl_queue_data_f(data, M_NOWAIT);
  595 }
  596 
  597 /**
  598  * @brief Send a 'notification' to userland, using standard ways
  599  */
  600 void
  601 devctl_notify_f(const char *system, const char *subsystem, const char *type,
  602     const char *data, int flags)
  603 {
  604         int len = 0;
  605         char *msg;
  606 
  607         if (system == NULL)
  608                 return;         /* BOGUS!  Must specify system. */
  609         if (subsystem == NULL)
  610                 return;         /* BOGUS!  Must specify subsystem. */
  611         if (type == NULL)
  612                 return;         /* BOGUS!  Must specify type. */
  613         len += strlen(" system=") + strlen(system);
  614         len += strlen(" subsystem=") + strlen(subsystem);
  615         len += strlen(" type=") + strlen(type);
  616         /* add in the data message plus newline. */
  617         if (data != NULL)
  618                 len += strlen(data);
  619         len += 3;       /* '!', '\n', and NUL */
  620         msg = malloc(len, M_BUS, flags);
  621         if (msg == NULL)
  622                 return;         /* Drop it on the floor */
  623         if (data != NULL)
  624                 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
  625                     system, subsystem, type, data);
  626         else
  627                 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
  628                     system, subsystem, type);
  629         devctl_queue_data_f(msg, flags);
  630 }
  631 
  632 void
  633 devctl_notify(const char *system, const char *subsystem, const char *type,
  634     const char *data)
  635 {
  636 
  637         devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
  638 }
  639 
  640 /*
  641  * Common routine that tries to make sending messages as easy as possible.
  642  * We allocate memory for the data, copy strings into that, but do not
  643  * free it unless there's an error.  The dequeue part of the driver should
  644  * free the data.  We don't send data when the device is disabled.  We do
  645  * send data, even when we have no listeners, because we wish to avoid
  646  * races relating to startup and restart of listening applications.
  647  *
  648  * devaddq is designed to string together the type of event, with the
  649  * object of that event, plus the plug and play info and location info
  650  * for that event.  This is likely most useful for devices, but less
  651  * useful for other consumers of this interface.  Those should use
  652  * the devctl_queue_data() interface instead.
  653  */
  654 static void
  655 devaddq(const char *type, const char *what, device_t dev)
  656 {
  657         char *data = NULL;
  658         char *loc = NULL;
  659         char *pnp = NULL;
  660         const char *parstr;
  661 
  662         if (!devctl_queue_length)/* Rare race, but lost races safely discard */
  663                 return;
  664         data = malloc(1024, M_BUS, M_NOWAIT);
  665         if (data == NULL)
  666                 goto bad;
  667 
  668         /* get the bus specific location of this device */
  669         loc = malloc(1024, M_BUS, M_NOWAIT);
  670         if (loc == NULL)
  671                 goto bad;
  672         *loc = '\0';
  673         bus_child_location_str(dev, loc, 1024);
  674 
  675         /* Get the bus specific pnp info of this device */
  676         pnp = malloc(1024, M_BUS, M_NOWAIT);
  677         if (pnp == NULL)
  678                 goto bad;
  679         *pnp = '\0';
  680         bus_child_pnpinfo_str(dev, pnp, 1024);
  681 
  682         /* Get the parent of this device, or / if high enough in the tree. */
  683         if (device_get_parent(dev) == NULL)
  684                 parstr = ".";   /* Or '/' ? */
  685         else
  686                 parstr = device_get_nameunit(device_get_parent(dev));
  687         /* String it all together. */
  688         snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
  689           parstr);
  690         free(loc, M_BUS);
  691         free(pnp, M_BUS);
  692         devctl_queue_data(data);
  693         return;
  694 bad:
  695         free(pnp, M_BUS);
  696         free(loc, M_BUS);
  697         free(data, M_BUS);
  698         return;
  699 }
  700 
  701 /*
  702  * A device was added to the tree.  We are called just after it successfully
  703  * attaches (that is, probe and attach success for this device).  No call
  704  * is made if a device is merely parented into the tree.  See devnomatch
  705  * if probe fails.  If attach fails, no notification is sent (but maybe
  706  * we should have a different message for this).
  707  */
  708 static void
  709 devadded(device_t dev)
  710 {
  711         char *pnp = NULL;
  712         char *tmp = NULL;
  713 
  714         pnp = malloc(1024, M_BUS, M_NOWAIT);
  715         if (pnp == NULL)
  716                 goto fail;
  717         tmp = malloc(1024, M_BUS, M_NOWAIT);
  718         if (tmp == NULL)
  719                 goto fail;
  720         *pnp = '\0';
  721         bus_child_pnpinfo_str(dev, pnp, 1024);
  722         snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
  723         devaddq("+", tmp, dev);
  724 fail:
  725         if (pnp != NULL)
  726                 free(pnp, M_BUS);
  727         if (tmp != NULL)
  728                 free(tmp, M_BUS);
  729         return;
  730 }
  731 
  732 /*
  733  * A device was removed from the tree.  We are called just before this
  734  * happens.
  735  */
  736 static void
  737 devremoved(device_t dev)
  738 {
  739         char *pnp = NULL;
  740         char *tmp = NULL;
  741 
  742         pnp = malloc(1024, M_BUS, M_NOWAIT);
  743         if (pnp == NULL)
  744                 goto fail;
  745         tmp = malloc(1024, M_BUS, M_NOWAIT);
  746         if (tmp == NULL)
  747                 goto fail;
  748         *pnp = '\0';
  749         bus_child_pnpinfo_str(dev, pnp, 1024);
  750         snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
  751         devaddq("-", tmp, dev);
  752 fail:
  753         if (pnp != NULL)
  754                 free(pnp, M_BUS);
  755         if (tmp != NULL)
  756                 free(tmp, M_BUS);
  757         return;
  758 }
  759 
  760 /*
  761  * Called when there's no match for this device.  This is only called
  762  * the first time that no match happens, so we don't keep getting this
  763  * message.  Should that prove to be undesirable, we can change it.
  764  * This is called when all drivers that can attach to a given bus
  765  * decline to accept this device.  Other errrors may not be detected.
  766  */
  767 static void
  768 devnomatch(device_t dev)
  769 {
  770         devaddq("?", "", dev);
  771 }
  772 
  773 static int
  774 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
  775 {
  776         struct dev_event_info *n1;
  777         int dis, error;
  778 
  779         dis = devctl_queue_length == 0;
  780         error = sysctl_handle_int(oidp, &dis, 0, req);
  781         if (error || !req->newptr)
  782                 return (error);
  783         mtx_lock(&devsoftc.mtx);
  784         if (dis) {
  785                 while (!TAILQ_EMPTY(&devsoftc.devq)) {
  786                         n1 = TAILQ_FIRST(&devsoftc.devq);
  787                         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  788                         free(n1->dei_data, M_BUS);
  789                         free(n1, M_BUS);
  790                 }
  791                 devsoftc.queued = 0;
  792                 devctl_queue_length = 0;
  793         } else {
  794                 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  795         }
  796         mtx_unlock(&devsoftc.mtx);
  797         return (0);
  798 }
  799 
  800 static int
  801 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
  802 {
  803         struct dev_event_info *n1;
  804         int q, error;
  805 
  806         q = devctl_queue_length;
  807         error = sysctl_handle_int(oidp, &q, 0, req);
  808         if (error || !req->newptr)
  809                 return (error);
  810         if (q < 0)
  811                 return (EINVAL);
  812         mtx_lock(&devsoftc.mtx);
  813         devctl_queue_length = q;
  814         while (devsoftc.queued > devctl_queue_length) {
  815                 n1 = TAILQ_FIRST(&devsoftc.devq);
  816                 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  817                 free(n1->dei_data, M_BUS);
  818                 free(n1, M_BUS);
  819                 devsoftc.queued--;
  820         }
  821         mtx_unlock(&devsoftc.mtx);
  822         return (0);
  823 }
  824 
  825 /* End of /dev/devctl code */
  826 
  827 static TAILQ_HEAD(,device)      bus_data_devices;
  828 static int bus_data_generation = 1;
  829 
  830 static kobj_method_t null_methods[] = {
  831         KOBJMETHOD_END
  832 };
  833 
  834 DEFINE_CLASS(null, null_methods, 0);
  835 
  836 /*
  837  * Bus pass implementation
  838  */
  839 
  840 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
  841 int bus_current_pass = BUS_PASS_ROOT;
  842 
  843 /**
  844  * @internal
  845  * @brief Register the pass level of a new driver attachment
  846  *
  847  * Register a new driver attachment's pass level.  If no driver
  848  * attachment with the same pass level has been added, then @p new
  849  * will be added to the global passes list.
  850  *
  851  * @param new           the new driver attachment
  852  */
  853 static void
  854 driver_register_pass(struct driverlink *new)
  855 {
  856         struct driverlink *dl;
  857 
  858         /* We only consider pass numbers during boot. */
  859         if (bus_current_pass == BUS_PASS_DEFAULT)
  860                 return;
  861 
  862         /*
  863          * Walk the passes list.  If we already know about this pass
  864          * then there is nothing to do.  If we don't, then insert this
  865          * driver link into the list.
  866          */
  867         TAILQ_FOREACH(dl, &passes, passlink) {
  868                 if (dl->pass < new->pass)
  869                         continue;
  870                 if (dl->pass == new->pass)
  871                         return;
  872                 TAILQ_INSERT_BEFORE(dl, new, passlink);
  873                 return;
  874         }
  875         TAILQ_INSERT_TAIL(&passes, new, passlink);
  876 }
  877 
  878 /**
  879  * @brief Raise the current bus pass
  880  *
  881  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
  882  * method on the root bus to kick off a new device tree scan for each
  883  * new pass level that has at least one driver.
  884  */
  885 void
  886 bus_set_pass(int pass)
  887 {
  888         struct driverlink *dl;
  889 
  890         if (bus_current_pass > pass)
  891                 panic("Attempt to lower bus pass level");
  892 
  893         TAILQ_FOREACH(dl, &passes, passlink) {
  894                 /* Skip pass values below the current pass level. */
  895                 if (dl->pass <= bus_current_pass)
  896                         continue;
  897 
  898                 /*
  899                  * Bail once we hit a driver with a pass level that is
  900                  * too high.
  901                  */
  902                 if (dl->pass > pass)
  903                         break;
  904 
  905                 /*
  906                  * Raise the pass level to the next level and rescan
  907                  * the tree.
  908                  */
  909                 bus_current_pass = dl->pass;
  910                 BUS_NEW_PASS(root_bus);
  911         }
  912 
  913         /*
  914          * If there isn't a driver registered for the requested pass,
  915          * then bus_current_pass might still be less than 'pass'.  Set
  916          * it to 'pass' in that case.
  917          */
  918         if (bus_current_pass < pass)
  919                 bus_current_pass = pass;
  920         KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
  921 }
  922 
  923 /*
  924  * Devclass implementation
  925  */
  926 
  927 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
  928 
  929 /**
  930  * @internal
  931  * @brief Find or create a device class
  932  *
  933  * If a device class with the name @p classname exists, return it,
  934  * otherwise if @p create is non-zero create and return a new device
  935  * class.
  936  *
  937  * If @p parentname is non-NULL, the parent of the devclass is set to
  938  * the devclass of that name.
  939  *
  940  * @param classname     the devclass name to find or create
  941  * @param parentname    the parent devclass name or @c NULL
  942  * @param create        non-zero to create a devclass
  943  */
  944 static devclass_t
  945 devclass_find_internal(const char *classname, const char *parentname,
  946                        int create)
  947 {
  948         devclass_t dc;
  949 
  950         PDEBUG(("looking for %s", classname));
  951         if (!classname)
  952                 return (NULL);
  953 
  954         TAILQ_FOREACH(dc, &devclasses, link) {
  955                 if (!strcmp(dc->name, classname))
  956                         break;
  957         }
  958 
  959         if (create && !dc) {
  960                 PDEBUG(("creating %s", classname));
  961                 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
  962                     M_BUS, M_NOWAIT | M_ZERO);
  963                 if (!dc)
  964                         return (NULL);
  965                 dc->parent = NULL;
  966                 dc->name = (char*) (dc + 1);
  967                 strcpy(dc->name, classname);
  968                 TAILQ_INIT(&dc->drivers);
  969                 TAILQ_INSERT_TAIL(&devclasses, dc, link);
  970 
  971                 bus_data_generation_update();
  972         }
  973 
  974         /*
  975          * If a parent class is specified, then set that as our parent so
  976          * that this devclass will support drivers for the parent class as
  977          * well.  If the parent class has the same name don't do this though
  978          * as it creates a cycle that can trigger an infinite loop in
  979          * device_probe_child() if a device exists for which there is no
  980          * suitable driver.
  981          */
  982         if (parentname && dc && !dc->parent &&
  983             strcmp(classname, parentname) != 0) {
  984                 dc->parent = devclass_find_internal(parentname, NULL, TRUE);
  985                 dc->parent->flags |= DC_HAS_CHILDREN;
  986         }
  987 
  988         return (dc);
  989 }
  990 
  991 /**
  992  * @brief Create a device class
  993  *
  994  * If a device class with the name @p classname exists, return it,
  995  * otherwise create and return a new device class.
  996  *
  997  * @param classname     the devclass name to find or create
  998  */
  999 devclass_t
 1000 devclass_create(const char *classname)
 1001 {
 1002         return (devclass_find_internal(classname, NULL, TRUE));
 1003 }
 1004 
 1005 /**
 1006  * @brief Find a device class
 1007  *
 1008  * If a device class with the name @p classname exists, return it,
 1009  * otherwise return @c NULL.
 1010  *
 1011  * @param classname     the devclass name to find
 1012  */
 1013 devclass_t
 1014 devclass_find(const char *classname)
 1015 {
 1016         return (devclass_find_internal(classname, NULL, FALSE));
 1017 }
 1018 
 1019 /**
 1020  * @brief Register that a device driver has been added to a devclass
 1021  *
 1022  * Register that a device driver has been added to a devclass.  This
 1023  * is called by devclass_add_driver to accomplish the recursive
 1024  * notification of all the children classes of dc, as well as dc.
 1025  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
 1026  * the devclass.
 1027  *
 1028  * We do a full search here of the devclass list at each iteration
 1029  * level to save storing children-lists in the devclass structure.  If
 1030  * we ever move beyond a few dozen devices doing this, we may need to
 1031  * reevaluate...
 1032  *
 1033  * @param dc            the devclass to edit
 1034  * @param driver        the driver that was just added
 1035  */
 1036 static void
 1037 devclass_driver_added(devclass_t dc, driver_t *driver)
 1038 {
 1039         devclass_t parent;
 1040         int i;
 1041 
 1042         /*
 1043          * Call BUS_DRIVER_ADDED for any existing busses in this class.
 1044          */
 1045         for (i = 0; i < dc->maxunit; i++)
 1046                 if (dc->devices[i] && device_is_attached(dc->devices[i]))
 1047                         BUS_DRIVER_ADDED(dc->devices[i], driver);
 1048 
 1049         /*
 1050          * Walk through the children classes.  Since we only keep a
 1051          * single parent pointer around, we walk the entire list of
 1052          * devclasses looking for children.  We set the
 1053          * DC_HAS_CHILDREN flag when a child devclass is created on
 1054          * the parent, so we only walk the list for those devclasses
 1055          * that have children.
 1056          */
 1057         if (!(dc->flags & DC_HAS_CHILDREN))
 1058                 return;
 1059         parent = dc;
 1060         TAILQ_FOREACH(dc, &devclasses, link) {
 1061                 if (dc->parent == parent)
 1062                         devclass_driver_added(dc, driver);
 1063         }
 1064 }
 1065 
 1066 /**
 1067  * @brief Add a device driver to a device class
 1068  *
 1069  * Add a device driver to a devclass. This is normally called
 1070  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
 1071  * all devices in the devclass will be called to allow them to attempt
 1072  * to re-probe any unmatched children.
 1073  *
 1074  * @param dc            the devclass to edit
 1075  * @param driver        the driver to register
 1076  */
 1077 static int
 1078 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
 1079 {
 1080         driverlink_t dl;
 1081         const char *parentname;
 1082 
 1083         PDEBUG(("%s", DRIVERNAME(driver)));
 1084 
 1085         /* Don't allow invalid pass values. */
 1086         if (pass <= BUS_PASS_ROOT)
 1087                 return (EINVAL);
 1088 
 1089         dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
 1090         if (!dl)
 1091                 return (ENOMEM);
 1092 
 1093         /*
 1094          * Compile the driver's methods. Also increase the reference count
 1095          * so that the class doesn't get freed when the last instance
 1096          * goes. This means we can safely use static methods and avoids a
 1097          * double-free in devclass_delete_driver.
 1098          */
 1099         kobj_class_compile((kobj_class_t) driver);
 1100 
 1101         /*
 1102          * If the driver has any base classes, make the
 1103          * devclass inherit from the devclass of the driver's
 1104          * first base class. This will allow the system to
 1105          * search for drivers in both devclasses for children
 1106          * of a device using this driver.
 1107          */
 1108         if (driver->baseclasses)
 1109                 parentname = driver->baseclasses[0]->name;
 1110         else
 1111                 parentname = NULL;
 1112         *dcp = devclass_find_internal(driver->name, parentname, TRUE);
 1113 
 1114         dl->driver = driver;
 1115         TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
 1116         driver->refs++;         /* XXX: kobj_mtx */
 1117         dl->pass = pass;
 1118         driver_register_pass(dl);
 1119 
 1120         devclass_driver_added(dc, driver);
 1121         bus_data_generation_update();
 1122         return (0);
 1123 }
 1124 
 1125 /**
 1126  * @brief Register that a device driver has been deleted from a devclass
 1127  *
 1128  * Register that a device driver has been removed from a devclass.
 1129  * This is called by devclass_delete_driver to accomplish the
 1130  * recursive notification of all the children classes of busclass, as
 1131  * well as busclass.  Each layer will attempt to detach the driver
 1132  * from any devices that are children of the bus's devclass.  The function
 1133  * will return an error if a device fails to detach.
 1134  * 
 1135  * We do a full search here of the devclass list at each iteration
 1136  * level to save storing children-lists in the devclass structure.  If
 1137  * we ever move beyond a few dozen devices doing this, we may need to
 1138  * reevaluate...
 1139  *
 1140  * @param busclass      the devclass of the parent bus
 1141  * @param dc            the devclass of the driver being deleted
 1142  * @param driver        the driver being deleted
 1143  */
 1144 static int
 1145 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
 1146 {
 1147         devclass_t parent;
 1148         device_t dev;
 1149         int error, i;
 1150 
 1151         /*
 1152          * Disassociate from any devices.  We iterate through all the
 1153          * devices in the devclass of the driver and detach any which are
 1154          * using the driver and which have a parent in the devclass which
 1155          * we are deleting from.
 1156          *
 1157          * Note that since a driver can be in multiple devclasses, we
 1158          * should not detach devices which are not children of devices in
 1159          * the affected devclass.
 1160          */
 1161         for (i = 0; i < dc->maxunit; i++) {
 1162                 if (dc->devices[i]) {
 1163                         dev = dc->devices[i];
 1164                         if (dev->driver == driver && dev->parent &&
 1165                             dev->parent->devclass == busclass) {
 1166                                 if ((error = device_detach(dev)) != 0)
 1167                                         return (error);
 1168                                 (void)device_set_driver(dev, NULL);
 1169                                 BUS_PROBE_NOMATCH(dev->parent, dev);
 1170                                 devnomatch(dev);
 1171                                 dev->flags |= DF_DONENOMATCH;
 1172                         }
 1173                 }
 1174         }
 1175 
 1176         /*
 1177          * Walk through the children classes.  Since we only keep a
 1178          * single parent pointer around, we walk the entire list of
 1179          * devclasses looking for children.  We set the
 1180          * DC_HAS_CHILDREN flag when a child devclass is created on
 1181          * the parent, so we only walk the list for those devclasses
 1182          * that have children.
 1183          */
 1184         if (!(busclass->flags & DC_HAS_CHILDREN))
 1185                 return (0);
 1186         parent = busclass;
 1187         TAILQ_FOREACH(busclass, &devclasses, link) {
 1188                 if (busclass->parent == parent) {
 1189                         error = devclass_driver_deleted(busclass, dc, driver);
 1190                         if (error)
 1191                                 return (error);
 1192                 }
 1193         }
 1194         return (0);
 1195 }
 1196 
 1197 /**
 1198  * @brief Delete a device driver from a device class
 1199  *
 1200  * Delete a device driver from a devclass. This is normally called
 1201  * automatically by DRIVER_MODULE().
 1202  *
 1203  * If the driver is currently attached to any devices,
 1204  * devclass_delete_driver() will first attempt to detach from each
 1205  * device. If one of the detach calls fails, the driver will not be
 1206  * deleted.
 1207  *
 1208  * @param dc            the devclass to edit
 1209  * @param driver        the driver to unregister
 1210  */
 1211 static int
 1212 devclass_delete_driver(devclass_t busclass, driver_t *driver)
 1213 {
 1214         devclass_t dc = devclass_find(driver->name);
 1215         driverlink_t dl;
 1216         int error;
 1217 
 1218         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1219 
 1220         if (!dc)
 1221                 return (0);
 1222 
 1223         /*
 1224          * Find the link structure in the bus' list of drivers.
 1225          */
 1226         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1227                 if (dl->driver == driver)
 1228                         break;
 1229         }
 1230 
 1231         if (!dl) {
 1232                 PDEBUG(("%s not found in %s list", driver->name,
 1233                     busclass->name));
 1234                 return (ENOENT);
 1235         }
 1236 
 1237         error = devclass_driver_deleted(busclass, dc, driver);
 1238         if (error != 0)
 1239                 return (error);
 1240 
 1241         TAILQ_REMOVE(&busclass->drivers, dl, link);
 1242         free(dl, M_BUS);
 1243 
 1244         /* XXX: kobj_mtx */
 1245         driver->refs--;
 1246         if (driver->refs == 0)
 1247                 kobj_class_free((kobj_class_t) driver);
 1248 
 1249         bus_data_generation_update();
 1250         return (0);
 1251 }
 1252 
 1253 /**
 1254  * @brief Quiesces a set of device drivers from a device class
 1255  *
 1256  * Quiesce a device driver from a devclass. This is normally called
 1257  * automatically by DRIVER_MODULE().
 1258  *
 1259  * If the driver is currently attached to any devices,
 1260  * devclass_quiesece_driver() will first attempt to quiesce each
 1261  * device.
 1262  *
 1263  * @param dc            the devclass to edit
 1264  * @param driver        the driver to unregister
 1265  */
 1266 static int
 1267 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
 1268 {
 1269         devclass_t dc = devclass_find(driver->name);
 1270         driverlink_t dl;
 1271         device_t dev;
 1272         int i;
 1273         int error;
 1274 
 1275         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1276 
 1277         if (!dc)
 1278                 return (0);
 1279 
 1280         /*
 1281          * Find the link structure in the bus' list of drivers.
 1282          */
 1283         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1284                 if (dl->driver == driver)
 1285                         break;
 1286         }
 1287 
 1288         if (!dl) {
 1289                 PDEBUG(("%s not found in %s list", driver->name,
 1290                     busclass->name));
 1291                 return (ENOENT);
 1292         }
 1293 
 1294         /*
 1295          * Quiesce all devices.  We iterate through all the devices in
 1296          * the devclass of the driver and quiesce any which are using
 1297          * the driver and which have a parent in the devclass which we
 1298          * are quiescing.
 1299          *
 1300          * Note that since a driver can be in multiple devclasses, we
 1301          * should not quiesce devices which are not children of
 1302          * devices in the affected devclass.
 1303          */
 1304         for (i = 0; i < dc->maxunit; i++) {
 1305                 if (dc->devices[i]) {
 1306                         dev = dc->devices[i];
 1307                         if (dev->driver == driver && dev->parent &&
 1308                             dev->parent->devclass == busclass) {
 1309                                 if ((error = device_quiesce(dev)) != 0)
 1310                                         return (error);
 1311                         }
 1312                 }
 1313         }
 1314 
 1315         return (0);
 1316 }
 1317 
 1318 /**
 1319  * @internal
 1320  */
 1321 static driverlink_t
 1322 devclass_find_driver_internal(devclass_t dc, const char *classname)
 1323 {
 1324         driverlink_t dl;
 1325 
 1326         PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
 1327 
 1328         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1329                 if (!strcmp(dl->driver->name, classname))
 1330                         return (dl);
 1331         }
 1332 
 1333         PDEBUG(("not found"));
 1334         return (NULL);
 1335 }
 1336 
 1337 /**
 1338  * @brief Return the name of the devclass
 1339  */
 1340 const char *
 1341 devclass_get_name(devclass_t dc)
 1342 {
 1343         return (dc->name);
 1344 }
 1345 
 1346 /**
 1347  * @brief Find a device given a unit number
 1348  *
 1349  * @param dc            the devclass to search
 1350  * @param unit          the unit number to search for
 1351  * 
 1352  * @returns             the device with the given unit number or @c
 1353  *                      NULL if there is no such device
 1354  */
 1355 device_t
 1356 devclass_get_device(devclass_t dc, int unit)
 1357 {
 1358         if (dc == NULL || unit < 0 || unit >= dc->maxunit)
 1359                 return (NULL);
 1360         return (dc->devices[unit]);
 1361 }
 1362 
 1363 /**
 1364  * @brief Find the softc field of a device given a unit number
 1365  *
 1366  * @param dc            the devclass to search
 1367  * @param unit          the unit number to search for
 1368  * 
 1369  * @returns             the softc field of the device with the given
 1370  *                      unit number or @c NULL if there is no such
 1371  *                      device
 1372  */
 1373 void *
 1374 devclass_get_softc(devclass_t dc, int unit)
 1375 {
 1376         device_t dev;
 1377 
 1378         dev = devclass_get_device(dc, unit);
 1379         if (!dev)
 1380                 return (NULL);
 1381 
 1382         return (device_get_softc(dev));
 1383 }
 1384 
 1385 /**
 1386  * @brief Get a list of devices in the devclass
 1387  *
 1388  * An array containing a list of all the devices in the given devclass
 1389  * is allocated and returned in @p *devlistp. The number of devices
 1390  * in the array is returned in @p *devcountp. The caller should free
 1391  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
 1392  *
 1393  * @param dc            the devclass to examine
 1394  * @param devlistp      points at location for array pointer return
 1395  *                      value
 1396  * @param devcountp     points at location for array size return value
 1397  *
 1398  * @retval 0            success
 1399  * @retval ENOMEM       the array allocation failed
 1400  */
 1401 int
 1402 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
 1403 {
 1404         int count, i;
 1405         device_t *list;
 1406 
 1407         count = devclass_get_count(dc);
 1408         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 1409         if (!list)
 1410                 return (ENOMEM);
 1411 
 1412         count = 0;
 1413         for (i = 0; i < dc->maxunit; i++) {
 1414                 if (dc->devices[i]) {
 1415                         list[count] = dc->devices[i];
 1416                         count++;
 1417                 }
 1418         }
 1419 
 1420         *devlistp = list;
 1421         *devcountp = count;
 1422 
 1423         return (0);
 1424 }
 1425 
 1426 /**
 1427  * @brief Get a list of drivers in the devclass
 1428  *
 1429  * An array containing a list of pointers to all the drivers in the
 1430  * given devclass is allocated and returned in @p *listp.  The number
 1431  * of drivers in the array is returned in @p *countp. The caller should
 1432  * free the array using @c free(p, M_TEMP).
 1433  *
 1434  * @param dc            the devclass to examine
 1435  * @param listp         gives location for array pointer return value
 1436  * @param countp        gives location for number of array elements
 1437  *                      return value
 1438  *
 1439  * @retval 0            success
 1440  * @retval ENOMEM       the array allocation failed
 1441  */
 1442 int
 1443 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
 1444 {
 1445         driverlink_t dl;
 1446         driver_t **list;
 1447         int count;
 1448 
 1449         count = 0;
 1450         TAILQ_FOREACH(dl, &dc->drivers, link)
 1451                 count++;
 1452         list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
 1453         if (list == NULL)
 1454                 return (ENOMEM);
 1455 
 1456         count = 0;
 1457         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1458                 list[count] = dl->driver;
 1459                 count++;
 1460         }
 1461         *listp = list;
 1462         *countp = count;
 1463 
 1464         return (0);
 1465 }
 1466 
 1467 /**
 1468  * @brief Get the number of devices in a devclass
 1469  *
 1470  * @param dc            the devclass to examine
 1471  */
 1472 int
 1473 devclass_get_count(devclass_t dc)
 1474 {
 1475         int count, i;
 1476 
 1477         count = 0;
 1478         for (i = 0; i < dc->maxunit; i++)
 1479                 if (dc->devices[i])
 1480                         count++;
 1481         return (count);
 1482 }
 1483 
 1484 /**
 1485  * @brief Get the maximum unit number used in a devclass
 1486  *
 1487  * Note that this is one greater than the highest currently-allocated
 1488  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
 1489  * that not even the devclass has been allocated yet.
 1490  *
 1491  * @param dc            the devclass to examine
 1492  */
 1493 int
 1494 devclass_get_maxunit(devclass_t dc)
 1495 {
 1496         if (dc == NULL)
 1497                 return (-1);
 1498         return (dc->maxunit);
 1499 }
 1500 
 1501 /**
 1502  * @brief Find a free unit number in a devclass
 1503  *
 1504  * This function searches for the first unused unit number greater
 1505  * that or equal to @p unit.
 1506  *
 1507  * @param dc            the devclass to examine
 1508  * @param unit          the first unit number to check
 1509  */
 1510 int
 1511 devclass_find_free_unit(devclass_t dc, int unit)
 1512 {
 1513         if (dc == NULL)
 1514                 return (unit);
 1515         while (unit < dc->maxunit && dc->devices[unit] != NULL)
 1516                 unit++;
 1517         return (unit);
 1518 }
 1519 
 1520 /**
 1521  * @brief Set the parent of a devclass
 1522  *
 1523  * The parent class is normally initialised automatically by
 1524  * DRIVER_MODULE().
 1525  *
 1526  * @param dc            the devclass to edit
 1527  * @param pdc           the new parent devclass
 1528  */
 1529 void
 1530 devclass_set_parent(devclass_t dc, devclass_t pdc)
 1531 {
 1532         dc->parent = pdc;
 1533 }
 1534 
 1535 /**
 1536  * @brief Get the parent of a devclass
 1537  *
 1538  * @param dc            the devclass to examine
 1539  */
 1540 devclass_t
 1541 devclass_get_parent(devclass_t dc)
 1542 {
 1543         return (dc->parent);
 1544 }
 1545 
 1546 struct sysctl_ctx_list *
 1547 devclass_get_sysctl_ctx(devclass_t dc)
 1548 {
 1549         return (&dc->sysctl_ctx);
 1550 }
 1551 
 1552 struct sysctl_oid *
 1553 devclass_get_sysctl_tree(devclass_t dc)
 1554 {
 1555         return (dc->sysctl_tree);
 1556 }
 1557 
 1558 /**
 1559  * @internal
 1560  * @brief Allocate a unit number
 1561  *
 1562  * On entry, @p *unitp is the desired unit number (or @c -1 if any
 1563  * will do). The allocated unit number is returned in @p *unitp.
 1564 
 1565  * @param dc            the devclass to allocate from
 1566  * @param unitp         points at the location for the allocated unit
 1567  *                      number
 1568  *
 1569  * @retval 0            success
 1570  * @retval EEXIST       the requested unit number is already allocated
 1571  * @retval ENOMEM       memory allocation failure
 1572  */
 1573 static int
 1574 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
 1575 {
 1576         const char *s;
 1577         int unit = *unitp;
 1578 
 1579         PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1580 
 1581         /* Ask the parent bus if it wants to wire this device. */
 1582         if (unit == -1)
 1583                 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
 1584                     &unit);
 1585 
 1586         /* If we were given a wired unit number, check for existing device */
 1587         /* XXX imp XXX */
 1588         if (unit != -1) {
 1589                 if (unit >= 0 && unit < dc->maxunit &&
 1590                     dc->devices[unit] != NULL) {
 1591                         if (bootverbose)
 1592                                 printf("%s: %s%d already exists; skipping it\n",
 1593                                     dc->name, dc->name, *unitp);
 1594                         return (EEXIST);
 1595                 }
 1596         } else {
 1597                 /* Unwired device, find the next available slot for it */
 1598                 unit = 0;
 1599                 for (unit = 0;; unit++) {
 1600                         /* If there is an "at" hint for a unit then skip it. */
 1601                         if (resource_string_value(dc->name, unit, "at", &s) ==
 1602                             0)
 1603                                 continue;
 1604 
 1605                         /* If this device slot is already in use, skip it. */
 1606                         if (unit < dc->maxunit && dc->devices[unit] != NULL)
 1607                                 continue;
 1608 
 1609                         break;
 1610                 }
 1611         }
 1612 
 1613         /*
 1614          * We've selected a unit beyond the length of the table, so let's
 1615          * extend the table to make room for all units up to and including
 1616          * this one.
 1617          */
 1618         if (unit >= dc->maxunit) {
 1619                 device_t *newlist, *oldlist;
 1620                 int newsize;
 1621 
 1622                 oldlist = dc->devices;
 1623                 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
 1624                 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
 1625                 if (!newlist)
 1626                         return (ENOMEM);
 1627                 if (oldlist != NULL)
 1628                         bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
 1629                 bzero(newlist + dc->maxunit,
 1630                     sizeof(device_t) * (newsize - dc->maxunit));
 1631                 dc->devices = newlist;
 1632                 dc->maxunit = newsize;
 1633                 if (oldlist != NULL)
 1634                         free(oldlist, M_BUS);
 1635         }
 1636         PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1637 
 1638         *unitp = unit;
 1639         return (0);
 1640 }
 1641 
 1642 /**
 1643  * @internal
 1644  * @brief Add a device to a devclass
 1645  *
 1646  * A unit number is allocated for the device (using the device's
 1647  * preferred unit number if any) and the device is registered in the
 1648  * devclass. This allows the device to be looked up by its unit
 1649  * number, e.g. by decoding a dev_t minor number.
 1650  *
 1651  * @param dc            the devclass to add to
 1652  * @param dev           the device to add
 1653  *
 1654  * @retval 0            success
 1655  * @retval EEXIST       the requested unit number is already allocated
 1656  * @retval ENOMEM       memory allocation failure
 1657  */
 1658 static int
 1659 devclass_add_device(devclass_t dc, device_t dev)
 1660 {
 1661         int buflen, error;
 1662 
 1663         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1664 
 1665         buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
 1666         if (buflen < 0)
 1667                 return (ENOMEM);
 1668         dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
 1669         if (!dev->nameunit)
 1670                 return (ENOMEM);
 1671 
 1672         if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
 1673                 free(dev->nameunit, M_BUS);
 1674                 dev->nameunit = NULL;
 1675                 return (error);
 1676         }
 1677         dc->devices[dev->unit] = dev;
 1678         dev->devclass = dc;
 1679         snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
 1680 
 1681         return (0);
 1682 }
 1683 
 1684 /**
 1685  * @internal
 1686  * @brief Delete a device from a devclass
 1687  *
 1688  * The device is removed from the devclass's device list and its unit
 1689  * number is freed.
 1690 
 1691  * @param dc            the devclass to delete from
 1692  * @param dev           the device to delete
 1693  *
 1694  * @retval 0            success
 1695  */
 1696 static int
 1697 devclass_delete_device(devclass_t dc, device_t dev)
 1698 {
 1699         if (!dc || !dev)
 1700                 return (0);
 1701 
 1702         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1703 
 1704         if (dev->devclass != dc || dc->devices[dev->unit] != dev)
 1705                 panic("devclass_delete_device: inconsistent device class");
 1706         dc->devices[dev->unit] = NULL;
 1707         if (dev->flags & DF_WILDCARD)
 1708                 dev->unit = -1;
 1709         dev->devclass = NULL;
 1710         free(dev->nameunit, M_BUS);
 1711         dev->nameunit = NULL;
 1712 
 1713         return (0);
 1714 }
 1715 
 1716 /**
 1717  * @internal
 1718  * @brief Make a new device and add it as a child of @p parent
 1719  *
 1720  * @param parent        the parent of the new device
 1721  * @param name          the devclass name of the new device or @c NULL
 1722  *                      to leave the devclass unspecified
 1723  * @parem unit          the unit number of the new device of @c -1 to
 1724  *                      leave the unit number unspecified
 1725  *
 1726  * @returns the new device
 1727  */
 1728 static device_t
 1729 make_device(device_t parent, const char *name, int unit)
 1730 {
 1731         device_t dev;
 1732         devclass_t dc;
 1733 
 1734         PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
 1735 
 1736         if (name) {
 1737                 dc = devclass_find_internal(name, NULL, TRUE);
 1738                 if (!dc) {
 1739                         printf("make_device: can't find device class %s\n",
 1740                             name);
 1741                         return (NULL);
 1742                 }
 1743         } else {
 1744                 dc = NULL;
 1745         }
 1746 
 1747         dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
 1748         if (!dev)
 1749                 return (NULL);
 1750 
 1751         dev->parent = parent;
 1752         TAILQ_INIT(&dev->children);
 1753         kobj_init((kobj_t) dev, &null_class);
 1754         dev->driver = NULL;
 1755         dev->devclass = NULL;
 1756         dev->unit = unit;
 1757         dev->nameunit = NULL;
 1758         dev->desc = NULL;
 1759         dev->busy = 0;
 1760         dev->devflags = 0;
 1761         dev->flags = DF_ENABLED;
 1762         dev->order = 0;
 1763         if (unit == -1)
 1764                 dev->flags |= DF_WILDCARD;
 1765         if (name) {
 1766                 dev->flags |= DF_FIXEDCLASS;
 1767                 if (devclass_add_device(dc, dev)) {
 1768                         kobj_delete((kobj_t) dev, M_BUS);
 1769                         return (NULL);
 1770                 }
 1771         }
 1772         dev->ivars = NULL;
 1773         dev->softc = NULL;
 1774 
 1775         dev->state = DS_NOTPRESENT;
 1776 
 1777         TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
 1778         bus_data_generation_update();
 1779 
 1780         return (dev);
 1781 }
 1782 
 1783 /**
 1784  * @internal
 1785  * @brief Print a description of a device.
 1786  */
 1787 static int
 1788 device_print_child(device_t dev, device_t child)
 1789 {
 1790         int retval = 0;
 1791 
 1792         if (device_is_alive(child))
 1793                 retval += BUS_PRINT_CHILD(dev, child);
 1794         else
 1795                 retval += device_printf(child, " not found\n");
 1796 
 1797         return (retval);
 1798 }
 1799 
 1800 /**
 1801  * @brief Create a new device
 1802  *
 1803  * This creates a new device and adds it as a child of an existing
 1804  * parent device. The new device will be added after the last existing
 1805  * child with order zero.
 1806  * 
 1807  * @param dev           the device which will be the parent of the
 1808  *                      new child device
 1809  * @param name          devclass name for new device or @c NULL if not
 1810  *                      specified
 1811  * @param unit          unit number for new device or @c -1 if not
 1812  *                      specified
 1813  * 
 1814  * @returns             the new device
 1815  */
 1816 device_t
 1817 device_add_child(device_t dev, const char *name, int unit)
 1818 {
 1819         return (device_add_child_ordered(dev, 0, name, unit));
 1820 }
 1821 
 1822 /**
 1823  * @brief Create a new device
 1824  *
 1825  * This creates a new device and adds it as a child of an existing
 1826  * parent device. The new device will be added after the last existing
 1827  * child with the same order.
 1828  * 
 1829  * @param dev           the device which will be the parent of the
 1830  *                      new child device
 1831  * @param order         a value which is used to partially sort the
 1832  *                      children of @p dev - devices created using
 1833  *                      lower values of @p order appear first in @p
 1834  *                      dev's list of children
 1835  * @param name          devclass name for new device or @c NULL if not
 1836  *                      specified
 1837  * @param unit          unit number for new device or @c -1 if not
 1838  *                      specified
 1839  * 
 1840  * @returns             the new device
 1841  */
 1842 device_t
 1843 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
 1844 {
 1845         device_t child;
 1846         device_t place;
 1847 
 1848         PDEBUG(("%s at %s with order %u as unit %d",
 1849             name, DEVICENAME(dev), order, unit));
 1850 
 1851         child = make_device(dev, name, unit);
 1852         if (child == NULL)
 1853                 return (child);
 1854         child->order = order;
 1855 
 1856         TAILQ_FOREACH(place, &dev->children, link) {
 1857                 if (place->order > order)
 1858                         break;
 1859         }
 1860 
 1861         if (place) {
 1862                 /*
 1863                  * The device 'place' is the first device whose order is
 1864                  * greater than the new child.
 1865                  */
 1866                 TAILQ_INSERT_BEFORE(place, child, link);
 1867         } else {
 1868                 /*
 1869                  * The new child's order is greater or equal to the order of
 1870                  * any existing device. Add the child to the tail of the list.
 1871                  */
 1872                 TAILQ_INSERT_TAIL(&dev->children, child, link);
 1873         }
 1874 
 1875         bus_data_generation_update();
 1876         return (child);
 1877 }
 1878 
 1879 /**
 1880  * @brief Delete a device
 1881  *
 1882  * This function deletes a device along with all of its children. If
 1883  * the device currently has a driver attached to it, the device is
 1884  * detached first using device_detach().
 1885  * 
 1886  * @param dev           the parent device
 1887  * @param child         the device to delete
 1888  *
 1889  * @retval 0            success
 1890  * @retval non-zero     a unit error code describing the error
 1891  */
 1892 int
 1893 device_delete_child(device_t dev, device_t child)
 1894 {
 1895         int error;
 1896         device_t grandchild;
 1897 
 1898         PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
 1899 
 1900         /* remove children first */
 1901         while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
 1902                 error = device_delete_child(child, grandchild);
 1903                 if (error)
 1904                         return (error);
 1905         }
 1906 
 1907         if ((error = device_detach(child)) != 0)
 1908                 return (error);
 1909         if (child->devclass)
 1910                 devclass_delete_device(child->devclass, child);
 1911         TAILQ_REMOVE(&dev->children, child, link);
 1912         TAILQ_REMOVE(&bus_data_devices, child, devlink);
 1913         kobj_delete((kobj_t) child, M_BUS);
 1914 
 1915         bus_data_generation_update();
 1916         return (0);
 1917 }
 1918 
 1919 /**
 1920  * @brief Find a device given a unit number
 1921  *
 1922  * This is similar to devclass_get_devices() but only searches for
 1923  * devices which have @p dev as a parent.
 1924  *
 1925  * @param dev           the parent device to search
 1926  * @param unit          the unit number to search for.  If the unit is -1,
 1927  *                      return the first child of @p dev which has name
 1928  *                      @p classname (that is, the one with the lowest unit.)
 1929  *
 1930  * @returns             the device with the given unit number or @c
 1931  *                      NULL if there is no such device
 1932  */
 1933 device_t
 1934 device_find_child(device_t dev, const char *classname, int unit)
 1935 {
 1936         devclass_t dc;
 1937         device_t child;
 1938 
 1939         dc = devclass_find(classname);
 1940         if (!dc)
 1941                 return (NULL);
 1942 
 1943         if (unit != -1) {
 1944                 child = devclass_get_device(dc, unit);
 1945                 if (child && child->parent == dev)
 1946                         return (child);
 1947         } else {
 1948                 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
 1949                         child = devclass_get_device(dc, unit);
 1950                         if (child && child->parent == dev)
 1951                                 return (child);
 1952                 }
 1953         }
 1954         return (NULL);
 1955 }
 1956 
 1957 /**
 1958  * @internal
 1959  */
 1960 static driverlink_t
 1961 first_matching_driver(devclass_t dc, device_t dev)
 1962 {
 1963         if (dev->devclass)
 1964                 return (devclass_find_driver_internal(dc, dev->devclass->name));
 1965         return (TAILQ_FIRST(&dc->drivers));
 1966 }
 1967 
 1968 /**
 1969  * @internal
 1970  */
 1971 static driverlink_t
 1972 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
 1973 {
 1974         if (dev->devclass) {
 1975                 driverlink_t dl;
 1976                 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
 1977                         if (!strcmp(dev->devclass->name, dl->driver->name))
 1978                                 return (dl);
 1979                 return (NULL);
 1980         }
 1981         return (TAILQ_NEXT(last, link));
 1982 }
 1983 
 1984 /**
 1985  * @internal
 1986  */
 1987 int
 1988 device_probe_child(device_t dev, device_t child)
 1989 {
 1990         devclass_t dc;
 1991         driverlink_t best = NULL;
 1992         driverlink_t dl;
 1993         int result, pri = 0;
 1994         int hasclass = (child->devclass != NULL);
 1995 
 1996         GIANT_REQUIRED;
 1997 
 1998         dc = dev->devclass;
 1999         if (!dc)
 2000                 panic("device_probe_child: parent device has no devclass");
 2001 
 2002         /*
 2003          * If the state is already probed, then return.  However, don't
 2004          * return if we can rebid this object.
 2005          */
 2006         if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
 2007                 return (0);
 2008 
 2009         for (; dc; dc = dc->parent) {
 2010                 for (dl = first_matching_driver(dc, child);
 2011                      dl;
 2012                      dl = next_matching_driver(dc, child, dl)) {
 2013                         /* If this driver's pass is too high, then ignore it. */
 2014                         if (dl->pass > bus_current_pass)
 2015                                 continue;
 2016 
 2017                         PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
 2018                         result = device_set_driver(child, dl->driver);
 2019                         if (result == ENOMEM)
 2020                                 return (result);
 2021                         else if (result != 0)
 2022                                 continue;
 2023                         if (!hasclass) {
 2024                                 if (device_set_devclass(child,
 2025                                     dl->driver->name) != 0) {
 2026                                         printf("driver bug: Unable to set "
 2027                                             "devclass (devname: %s)\n",
 2028                                             device_get_name(child));
 2029                                         (void)device_set_driver(child, NULL);
 2030                                         continue;
 2031                                 }
 2032                         }
 2033 
 2034                         /* Fetch any flags for the device before probing. */
 2035                         resource_int_value(dl->driver->name, child->unit,
 2036                             "flags", &child->devflags);
 2037 
 2038                         result = DEVICE_PROBE(child);
 2039 
 2040                         /* Reset flags and devclass before the next probe. */
 2041                         child->devflags = 0;
 2042                         if (!hasclass)
 2043                                 (void)device_set_devclass(child, NULL);
 2044 
 2045                         /*
 2046                          * If the driver returns SUCCESS, there can be
 2047                          * no higher match for this device.
 2048                          */
 2049                         if (result == 0) {
 2050                                 best = dl;
 2051                                 pri = 0;
 2052                                 break;
 2053                         }
 2054 
 2055                         /*
 2056                          * The driver returned an error so it
 2057                          * certainly doesn't match.
 2058                          */
 2059                         if (result > 0) {
 2060                                 (void)device_set_driver(child, NULL);
 2061                                 continue;
 2062                         }
 2063 
 2064                         /*
 2065                          * A priority lower than SUCCESS, remember the
 2066                          * best matching driver. Initialise the value
 2067                          * of pri for the first match.
 2068                          */
 2069                         if (best == NULL || result > pri) {
 2070                                 /*
 2071                                  * Probes that return BUS_PROBE_NOWILDCARD
 2072                                  * or lower only match when they are set
 2073                                  * in stone by the parent bus.
 2074                                  */
 2075                                 if (result <= BUS_PROBE_NOWILDCARD &&
 2076                                     child->flags & DF_WILDCARD)
 2077                                         continue;
 2078                                 best = dl;
 2079                                 pri = result;
 2080                                 continue;
 2081                         }
 2082                 }
 2083                 /*
 2084                  * If we have an unambiguous match in this devclass,
 2085                  * don't look in the parent.
 2086                  */
 2087                 if (best && pri == 0)
 2088                         break;
 2089         }
 2090 
 2091         /*
 2092          * If we found a driver, change state and initialise the devclass.
 2093          */
 2094         /* XXX What happens if we rebid and got no best? */
 2095         if (best) {
 2096                 /*
 2097                  * If this device was atached, and we were asked to
 2098                  * rescan, and it is a different driver, then we have
 2099                  * to detach the old driver and reattach this new one.
 2100                  * Note, we don't have to check for DF_REBID here
 2101                  * because if the state is > DS_ALIVE, we know it must
 2102                  * be.
 2103                  *
 2104                  * This assumes that all DF_REBID drivers can have
 2105                  * their probe routine called at any time and that
 2106                  * they are idempotent as well as completely benign in
 2107                  * normal operations.
 2108                  *
 2109                  * We also have to make sure that the detach
 2110                  * succeeded, otherwise we fail the operation (or
 2111                  * maybe it should just fail silently?  I'm torn).
 2112                  */
 2113                 if (child->state > DS_ALIVE && best->driver != child->driver)
 2114                         if ((result = device_detach(dev)) != 0)
 2115                                 return (result);
 2116 
 2117                 /* Set the winning driver, devclass, and flags. */
 2118                 if (!child->devclass) {
 2119                         result = device_set_devclass(child, best->driver->name);
 2120                         if (result != 0)
 2121                                 return (result);
 2122                 }
 2123                 result = device_set_driver(child, best->driver);
 2124                 if (result != 0)
 2125                         return (result);
 2126                 resource_int_value(best->driver->name, child->unit,
 2127                     "flags", &child->devflags);
 2128 
 2129                 if (pri < 0) {
 2130                         /*
 2131                          * A bit bogus. Call the probe method again to make
 2132                          * sure that we have the right description.
 2133                          */
 2134                         DEVICE_PROBE(child);
 2135 #if 0
 2136                         child->flags |= DF_REBID;
 2137 #endif
 2138                 } else
 2139                         child->flags &= ~DF_REBID;
 2140                 child->state = DS_ALIVE;
 2141 
 2142                 bus_data_generation_update();
 2143                 return (0);
 2144         }
 2145 
 2146         return (ENXIO);
 2147 }
 2148 
 2149 /**
 2150  * @brief Return the parent of a device
 2151  */
 2152 device_t
 2153 device_get_parent(device_t dev)
 2154 {
 2155         return (dev->parent);
 2156 }
 2157 
 2158 /**
 2159  * @brief Get a list of children of a device
 2160  *
 2161  * An array containing a list of all the children of the given device
 2162  * is allocated and returned in @p *devlistp. The number of devices
 2163  * in the array is returned in @p *devcountp. The caller should free
 2164  * the array using @c free(p, M_TEMP).
 2165  *
 2166  * @param dev           the device to examine
 2167  * @param devlistp      points at location for array pointer return
 2168  *                      value
 2169  * @param devcountp     points at location for array size return value
 2170  *
 2171  * @retval 0            success
 2172  * @retval ENOMEM       the array allocation failed
 2173  */
 2174 int
 2175 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
 2176 {
 2177         int count;
 2178         device_t child;
 2179         device_t *list;
 2180 
 2181         count = 0;
 2182         TAILQ_FOREACH(child, &dev->children, link) {
 2183                 count++;
 2184         }
 2185         if (count == 0) {
 2186                 *devlistp = NULL;
 2187                 *devcountp = 0;
 2188                 return (0);
 2189         }
 2190 
 2191         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 2192         if (!list)
 2193                 return (ENOMEM);
 2194 
 2195         count = 0;
 2196         TAILQ_FOREACH(child, &dev->children, link) {
 2197                 list[count] = child;
 2198                 count++;
 2199         }
 2200 
 2201         *devlistp = list;
 2202         *devcountp = count;
 2203 
 2204         return (0);
 2205 }
 2206 
 2207 /**
 2208  * @brief Return the current driver for the device or @c NULL if there
 2209  * is no driver currently attached
 2210  */
 2211 driver_t *
 2212 device_get_driver(device_t dev)
 2213 {
 2214         return (dev->driver);
 2215 }
 2216 
 2217 /**
 2218  * @brief Return the current devclass for the device or @c NULL if
 2219  * there is none.
 2220  */
 2221 devclass_t
 2222 device_get_devclass(device_t dev)
 2223 {
 2224         return (dev->devclass);
 2225 }
 2226 
 2227 /**
 2228  * @brief Return the name of the device's devclass or @c NULL if there
 2229  * is none.
 2230  */
 2231 const char *
 2232 device_get_name(device_t dev)
 2233 {
 2234         if (dev != NULL && dev->devclass)
 2235                 return (devclass_get_name(dev->devclass));
 2236         return (NULL);
 2237 }
 2238 
 2239 /**
 2240  * @brief Return a string containing the device's devclass name
 2241  * followed by an ascii representation of the device's unit number
 2242  * (e.g. @c "foo2").
 2243  */
 2244 const char *
 2245 device_get_nameunit(device_t dev)
 2246 {
 2247         return (dev->nameunit);
 2248 }
 2249 
 2250 /**
 2251  * @brief Return the device's unit number.
 2252  */
 2253 int
 2254 device_get_unit(device_t dev)
 2255 {
 2256         return (dev->unit);
 2257 }
 2258 
 2259 /**
 2260  * @brief Return the device's description string
 2261  */
 2262 const char *
 2263 device_get_desc(device_t dev)
 2264 {
 2265         return (dev->desc);
 2266 }
 2267 
 2268 /**
 2269  * @brief Return the device's flags
 2270  */
 2271 u_int32_t
 2272 device_get_flags(device_t dev)
 2273 {
 2274         return (dev->devflags);
 2275 }
 2276 
 2277 struct sysctl_ctx_list *
 2278 device_get_sysctl_ctx(device_t dev)
 2279 {
 2280         return (&dev->sysctl_ctx);
 2281 }
 2282 
 2283 struct sysctl_oid *
 2284 device_get_sysctl_tree(device_t dev)
 2285 {
 2286         return (dev->sysctl_tree);
 2287 }
 2288 
 2289 /**
 2290  * @brief Print the name of the device followed by a colon and a space
 2291  *
 2292  * @returns the number of characters printed
 2293  */
 2294 int
 2295 device_print_prettyname(device_t dev)
 2296 {
 2297         const char *name = device_get_name(dev);
 2298 
 2299         if (name == NULL)
 2300                 return (printf("unknown: "));
 2301         return (printf("%s%d: ", name, device_get_unit(dev)));
 2302 }
 2303 
 2304 /**
 2305  * @brief Print the name of the device followed by a colon, a space
 2306  * and the result of calling vprintf() with the value of @p fmt and
 2307  * the following arguments.
 2308  *
 2309  * @returns the number of characters printed
 2310  */
 2311 int
 2312 device_printf(device_t dev, const char * fmt, ...)
 2313 {
 2314         va_list ap;
 2315         int retval;
 2316 
 2317         retval = device_print_prettyname(dev);
 2318         va_start(ap, fmt);
 2319         retval += vprintf(fmt, ap);
 2320         va_end(ap);
 2321         return (retval);
 2322 }
 2323 
 2324 /**
 2325  * @internal
 2326  */
 2327 static void
 2328 device_set_desc_internal(device_t dev, const char* desc, int copy)
 2329 {
 2330         if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
 2331                 free(dev->desc, M_BUS);
 2332                 dev->flags &= ~DF_DESCMALLOCED;
 2333                 dev->desc = NULL;
 2334         }
 2335 
 2336         if (copy && desc) {
 2337                 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
 2338                 if (dev->desc) {
 2339                         strcpy(dev->desc, desc);
 2340                         dev->flags |= DF_DESCMALLOCED;
 2341                 }
 2342         } else {
 2343                 /* Avoid a -Wcast-qual warning */
 2344                 dev->desc = (char *)(uintptr_t) desc;
 2345         }
 2346 
 2347         bus_data_generation_update();
 2348 }
 2349 
 2350 /**
 2351  * @brief Set the device's description
 2352  *
 2353  * The value of @c desc should be a string constant that will not
 2354  * change (at least until the description is changed in a subsequent
 2355  * call to device_set_desc() or device_set_desc_copy()).
 2356  */
 2357 void
 2358 device_set_desc(device_t dev, const char* desc)
 2359 {
 2360         device_set_desc_internal(dev, desc, FALSE);
 2361 }
 2362 
 2363 /**
 2364  * @brief Set the device's description
 2365  *
 2366  * The string pointed to by @c desc is copied. Use this function if
 2367  * the device description is generated, (e.g. with sprintf()).
 2368  */
 2369 void
 2370 device_set_desc_copy(device_t dev, const char* desc)
 2371 {
 2372         device_set_desc_internal(dev, desc, TRUE);
 2373 }
 2374 
 2375 /**
 2376  * @brief Set the device's flags
 2377  */
 2378 void
 2379 device_set_flags(device_t dev, u_int32_t flags)
 2380 {
 2381         dev->devflags = flags;
 2382 }
 2383 
 2384 /**
 2385  * @brief Return the device's softc field
 2386  *
 2387  * The softc is allocated and zeroed when a driver is attached, based
 2388  * on the size field of the driver.
 2389  */
 2390 void *
 2391 device_get_softc(device_t dev)
 2392 {
 2393         return (dev->softc);
 2394 }
 2395 
 2396 /**
 2397  * @brief Set the device's softc field
 2398  *
 2399  * Most drivers do not need to use this since the softc is allocated
 2400  * automatically when the driver is attached.
 2401  */
 2402 void
 2403 device_set_softc(device_t dev, void *softc)
 2404 {
 2405         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
 2406                 free(dev->softc, M_BUS_SC);
 2407         dev->softc = softc;
 2408         if (dev->softc)
 2409                 dev->flags |= DF_EXTERNALSOFTC;
 2410         else
 2411                 dev->flags &= ~DF_EXTERNALSOFTC;
 2412 }
 2413 
 2414 /**
 2415  * @brief Get the device's ivars field
 2416  *
 2417  * The ivars field is used by the parent device to store per-device
 2418  * state (e.g. the physical location of the device or a list of
 2419  * resources).
 2420  */
 2421 void *
 2422 device_get_ivars(device_t dev)
 2423 {
 2424 
 2425         KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
 2426         return (dev->ivars);
 2427 }
 2428 
 2429 /**
 2430  * @brief Set the device's ivars field
 2431  */
 2432 void
 2433 device_set_ivars(device_t dev, void * ivars)
 2434 {
 2435 
 2436         KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
 2437         dev->ivars = ivars;
 2438 }
 2439 
 2440 /**
 2441  * @brief Return the device's state
 2442  */
 2443 device_state_t
 2444 device_get_state(device_t dev)
 2445 {
 2446         return (dev->state);
 2447 }
 2448 
 2449 /**
 2450  * @brief Set the DF_ENABLED flag for the device
 2451  */
 2452 void
 2453 device_enable(device_t dev)
 2454 {
 2455         dev->flags |= DF_ENABLED;
 2456 }
 2457 
 2458 /**
 2459  * @brief Clear the DF_ENABLED flag for the device
 2460  */
 2461 void
 2462 device_disable(device_t dev)
 2463 {
 2464         dev->flags &= ~DF_ENABLED;
 2465 }
 2466 
 2467 /**
 2468  * @brief Increment the busy counter for the device
 2469  */
 2470 void
 2471 device_busy(device_t dev)
 2472 {
 2473         if (dev->state < DS_ATTACHED)
 2474                 panic("device_busy: called for unattached device");
 2475         if (dev->busy == 0 && dev->parent)
 2476                 device_busy(dev->parent);
 2477         dev->busy++;
 2478         dev->state = DS_BUSY;
 2479 }
 2480 
 2481 /**
 2482  * @brief Decrement the busy counter for the device
 2483  */
 2484 void
 2485 device_unbusy(device_t dev)
 2486 {
 2487         if (dev->state != DS_BUSY)
 2488                 panic("device_unbusy: called for non-busy device %s",
 2489                     device_get_nameunit(dev));
 2490         dev->busy--;
 2491         if (dev->busy == 0) {
 2492                 if (dev->parent)
 2493                         device_unbusy(dev->parent);
 2494                 dev->state = DS_ATTACHED;
 2495         }
 2496 }
 2497 
 2498 /**
 2499  * @brief Set the DF_QUIET flag for the device
 2500  */
 2501 void
 2502 device_quiet(device_t dev)
 2503 {
 2504         dev->flags |= DF_QUIET;
 2505 }
 2506 
 2507 /**
 2508  * @brief Clear the DF_QUIET flag for the device
 2509  */
 2510 void
 2511 device_verbose(device_t dev)
 2512 {
 2513         dev->flags &= ~DF_QUIET;
 2514 }
 2515 
 2516 /**
 2517  * @brief Return non-zero if the DF_QUIET flag is set on the device
 2518  */
 2519 int
 2520 device_is_quiet(device_t dev)
 2521 {
 2522         return ((dev->flags & DF_QUIET) != 0);
 2523 }
 2524 
 2525 /**
 2526  * @brief Return non-zero if the DF_ENABLED flag is set on the device
 2527  */
 2528 int
 2529 device_is_enabled(device_t dev)
 2530 {
 2531         return ((dev->flags & DF_ENABLED) != 0);
 2532 }
 2533 
 2534 /**
 2535  * @brief Return non-zero if the device was successfully probed
 2536  */
 2537 int
 2538 device_is_alive(device_t dev)
 2539 {
 2540         return (dev->state >= DS_ALIVE);
 2541 }
 2542 
 2543 /**
 2544  * @brief Return non-zero if the device currently has a driver
 2545  * attached to it
 2546  */
 2547 int
 2548 device_is_attached(device_t dev)
 2549 {
 2550         return (dev->state >= DS_ATTACHED);
 2551 }
 2552 
 2553 /**
 2554  * @brief Set the devclass of a device
 2555  * @see devclass_add_device().
 2556  */
 2557 int
 2558 device_set_devclass(device_t dev, const char *classname)
 2559 {
 2560         devclass_t dc;
 2561         int error;
 2562 
 2563         if (!classname) {
 2564                 if (dev->devclass)
 2565                         devclass_delete_device(dev->devclass, dev);
 2566                 return (0);
 2567         }
 2568 
 2569         if (dev->devclass) {
 2570                 printf("device_set_devclass: device class already set\n");
 2571                 return (EINVAL);
 2572         }
 2573 
 2574         dc = devclass_find_internal(classname, NULL, TRUE);
 2575         if (!dc)
 2576                 return (ENOMEM);
 2577 
 2578         error = devclass_add_device(dc, dev);
 2579 
 2580         bus_data_generation_update();
 2581         return (error);
 2582 }
 2583 
 2584 /**
 2585  * @brief Set the driver of a device
 2586  *
 2587  * @retval 0            success
 2588  * @retval EBUSY        the device already has a driver attached
 2589  * @retval ENOMEM       a memory allocation failure occurred
 2590  */
 2591 int
 2592 device_set_driver(device_t dev, driver_t *driver)
 2593 {
 2594         if (dev->state >= DS_ATTACHED)
 2595                 return (EBUSY);
 2596 
 2597         if (dev->driver == driver)
 2598                 return (0);
 2599 
 2600         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
 2601                 free(dev->softc, M_BUS_SC);
 2602                 dev->softc = NULL;
 2603         }
 2604         kobj_delete((kobj_t) dev, NULL);
 2605         dev->driver = driver;
 2606         if (driver) {
 2607                 kobj_init((kobj_t) dev, (kobj_class_t) driver);
 2608                 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
 2609                         dev->softc = malloc(driver->size, M_BUS_SC,
 2610                             M_NOWAIT | M_ZERO);
 2611                         if (!dev->softc) {
 2612                                 kobj_delete((kobj_t) dev, NULL);
 2613                                 kobj_init((kobj_t) dev, &null_class);
 2614                                 dev->driver = NULL;
 2615                                 return (ENOMEM);
 2616                         }
 2617                 }
 2618         } else {
 2619                 kobj_init((kobj_t) dev, &null_class);
 2620         }
 2621 
 2622         bus_data_generation_update();
 2623         return (0);
 2624 }
 2625 
 2626 /**
 2627  * @brief Probe a device, and return this status.
 2628  *
 2629  * This function is the core of the device autoconfiguration
 2630  * system. Its purpose is to select a suitable driver for a device and
 2631  * then call that driver to initialise the hardware appropriately. The
 2632  * driver is selected by calling the DEVICE_PROBE() method of a set of
 2633  * candidate drivers and then choosing the driver which returned the
 2634  * best value. This driver is then attached to the device using
 2635  * device_attach().
 2636  *
 2637  * The set of suitable drivers is taken from the list of drivers in
 2638  * the parent device's devclass. If the device was originally created
 2639  * with a specific class name (see device_add_child()), only drivers
 2640  * with that name are probed, otherwise all drivers in the devclass
 2641  * are probed. If no drivers return successful probe values in the
 2642  * parent devclass, the search continues in the parent of that
 2643  * devclass (see devclass_get_parent()) if any.
 2644  *
 2645  * @param dev           the device to initialise
 2646  *
 2647  * @retval 0            success
 2648  * @retval ENXIO        no driver was found
 2649  * @retval ENOMEM       memory allocation failure
 2650  * @retval non-zero     some other unix error code
 2651  * @retval -1           Device already attached
 2652  */
 2653 int
 2654 device_probe(device_t dev)
 2655 {
 2656         int error;
 2657 
 2658         GIANT_REQUIRED;
 2659 
 2660         if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
 2661                 return (-1);
 2662 
 2663         if (!(dev->flags & DF_ENABLED)) {
 2664                 if (bootverbose && device_get_name(dev) != NULL) {
 2665                         device_print_prettyname(dev);
 2666                         printf("not probed (disabled)\n");
 2667                 }
 2668                 return (-1);
 2669         }
 2670         if ((error = device_probe_child(dev->parent, dev)) != 0) {              
 2671                 if (bus_current_pass == BUS_PASS_DEFAULT &&
 2672                     !(dev->flags & DF_DONENOMATCH)) {
 2673                         BUS_PROBE_NOMATCH(dev->parent, dev);
 2674                         devnomatch(dev);
 2675                         dev->flags |= DF_DONENOMATCH;
 2676                 }
 2677                 return (error);
 2678         }
 2679         return (0);
 2680 }
 2681 
 2682 /**
 2683  * @brief Probe a device and attach a driver if possible
 2684  *
 2685  * calls device_probe() and attaches if that was successful.
 2686  */
 2687 int
 2688 device_probe_and_attach(device_t dev)
 2689 {
 2690         int error;
 2691 
 2692         GIANT_REQUIRED;
 2693 
 2694         error = device_probe(dev);
 2695         if (error == -1)
 2696                 return (0);
 2697         else if (error != 0)
 2698                 return (error);
 2699         return (device_attach(dev));
 2700 }
 2701 
 2702 /**
 2703  * @brief Attach a device driver to a device
 2704  *
 2705  * This function is a wrapper around the DEVICE_ATTACH() driver
 2706  * method. In addition to calling DEVICE_ATTACH(), it initialises the
 2707  * device's sysctl tree, optionally prints a description of the device
 2708  * and queues a notification event for user-based device management
 2709  * services.
 2710  *
 2711  * Normally this function is only called internally from
 2712  * device_probe_and_attach().
 2713  *
 2714  * @param dev           the device to initialise
 2715  *
 2716  * @retval 0            success
 2717  * @retval ENXIO        no driver was found
 2718  * @retval ENOMEM       memory allocation failure
 2719  * @retval non-zero     some other unix error code
 2720  */
 2721 int
 2722 device_attach(device_t dev)
 2723 {
 2724         int error;
 2725 
 2726         device_sysctl_init(dev);
 2727         if (!device_is_quiet(dev))
 2728                 device_print_child(dev->parent, dev);
 2729         if ((error = DEVICE_ATTACH(dev)) != 0) {
 2730                 printf("device_attach: %s%d attach returned %d\n",
 2731                     dev->driver->name, dev->unit, error);
 2732                 /* Unset the class; set in device_probe_child */
 2733                 if (dev->devclass == NULL)
 2734                         (void)device_set_devclass(dev, NULL);
 2735                 (void)device_set_driver(dev, NULL);
 2736                 device_sysctl_fini(dev);
 2737                 dev->state = DS_NOTPRESENT;
 2738                 return (error);
 2739         }
 2740         device_sysctl_update(dev);
 2741         dev->state = DS_ATTACHED;
 2742         dev->flags &= ~DF_DONENOMATCH;
 2743         devadded(dev);
 2744         return (0);
 2745 }
 2746 
 2747 /**
 2748  * @brief Detach a driver from a device
 2749  *
 2750  * This function is a wrapper around the DEVICE_DETACH() driver
 2751  * method. If the call to DEVICE_DETACH() succeeds, it calls
 2752  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
 2753  * notification event for user-based device management services and
 2754  * cleans up the device's sysctl tree.
 2755  *
 2756  * @param dev           the device to un-initialise
 2757  *
 2758  * @retval 0            success
 2759  * @retval ENXIO        no driver was found
 2760  * @retval ENOMEM       memory allocation failure
 2761  * @retval non-zero     some other unix error code
 2762  */
 2763 int
 2764 device_detach(device_t dev)
 2765 {
 2766         int error;
 2767 
 2768         GIANT_REQUIRED;
 2769 
 2770         PDEBUG(("%s", DEVICENAME(dev)));
 2771         if (dev->state == DS_BUSY)
 2772                 return (EBUSY);
 2773         if (dev->state != DS_ATTACHED)
 2774                 return (0);
 2775 
 2776         if ((error = DEVICE_DETACH(dev)) != 0)
 2777                 return (error);
 2778         devremoved(dev);
 2779         if (!device_is_quiet(dev))
 2780                 device_printf(dev, "detached\n");
 2781         if (dev->parent)
 2782                 BUS_CHILD_DETACHED(dev->parent, dev);
 2783 
 2784         if (!(dev->flags & DF_FIXEDCLASS))
 2785                 devclass_delete_device(dev->devclass, dev);
 2786 
 2787         dev->state = DS_NOTPRESENT;
 2788         (void)device_set_driver(dev, NULL);
 2789         device_set_desc(dev, NULL);
 2790         device_sysctl_fini(dev);
 2791 
 2792         return (0);
 2793 }
 2794 
 2795 /**
 2796  * @brief Tells a driver to quiesce itself.
 2797  *
 2798  * This function is a wrapper around the DEVICE_QUIESCE() driver
 2799  * method. If the call to DEVICE_QUIESCE() succeeds.
 2800  *
 2801  * @param dev           the device to quiesce
 2802  *
 2803  * @retval 0            success
 2804  * @retval ENXIO        no driver was found
 2805  * @retval ENOMEM       memory allocation failure
 2806  * @retval non-zero     some other unix error code
 2807  */
 2808 int
 2809 device_quiesce(device_t dev)
 2810 {
 2811 
 2812         PDEBUG(("%s", DEVICENAME(dev)));
 2813         if (dev->state == DS_BUSY)
 2814                 return (EBUSY);
 2815         if (dev->state != DS_ATTACHED)
 2816                 return (0);
 2817 
 2818         return (DEVICE_QUIESCE(dev));
 2819 }
 2820 
 2821 /**
 2822  * @brief Notify a device of system shutdown
 2823  *
 2824  * This function calls the DEVICE_SHUTDOWN() driver method if the
 2825  * device currently has an attached driver.
 2826  *
 2827  * @returns the value returned by DEVICE_SHUTDOWN()
 2828  */
 2829 int
 2830 device_shutdown(device_t dev)
 2831 {
 2832         if (dev->state < DS_ATTACHED)
 2833                 return (0);
 2834         return (DEVICE_SHUTDOWN(dev));
 2835 }
 2836 
 2837 /**
 2838  * @brief Set the unit number of a device
 2839  *
 2840  * This function can be used to override the unit number used for a
 2841  * device (e.g. to wire a device to a pre-configured unit number).
 2842  */
 2843 int
 2844 device_set_unit(device_t dev, int unit)
 2845 {
 2846         devclass_t dc;
 2847         int err;
 2848 
 2849         dc = device_get_devclass(dev);
 2850         if (unit < dc->maxunit && dc->devices[unit])
 2851                 return (EBUSY);
 2852         err = devclass_delete_device(dc, dev);
 2853         if (err)
 2854                 return (err);
 2855         dev->unit = unit;
 2856         err = devclass_add_device(dc, dev);
 2857         if (err)
 2858                 return (err);
 2859 
 2860         bus_data_generation_update();
 2861         return (0);
 2862 }
 2863 
 2864 /*======================================*/
 2865 /*
 2866  * Some useful method implementations to make life easier for bus drivers.
 2867  */
 2868 
 2869 /**
 2870  * @brief Initialise a resource list.
 2871  *
 2872  * @param rl            the resource list to initialise
 2873  */
 2874 void
 2875 resource_list_init(struct resource_list *rl)
 2876 {
 2877         STAILQ_INIT(rl);
 2878 }
 2879 
 2880 /**
 2881  * @brief Reclaim memory used by a resource list.
 2882  *
 2883  * This function frees the memory for all resource entries on the list
 2884  * (if any).
 2885  *
 2886  * @param rl            the resource list to free               
 2887  */
 2888 void
 2889 resource_list_free(struct resource_list *rl)
 2890 {
 2891         struct resource_list_entry *rle;
 2892 
 2893         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 2894                 if (rle->res)
 2895                         panic("resource_list_free: resource entry is busy");
 2896                 STAILQ_REMOVE_HEAD(rl, link);
 2897                 free(rle, M_BUS);
 2898         }
 2899 }
 2900 
 2901 /**
 2902  * @brief Add a resource entry.
 2903  *
 2904  * This function adds a resource entry using the given @p type, @p
 2905  * start, @p end and @p count values. A rid value is chosen by
 2906  * searching sequentially for the first unused rid starting at zero.
 2907  *
 2908  * @param rl            the resource list to edit
 2909  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2910  * @param start         the start address of the resource
 2911  * @param end           the end address of the resource
 2912  * @param count         XXX end-start+1
 2913  */
 2914 int
 2915 resource_list_add_next(struct resource_list *rl, int type, u_long start,
 2916     u_long end, u_long count)
 2917 {
 2918         int rid;
 2919 
 2920         rid = 0;
 2921         while (resource_list_find(rl, type, rid) != NULL)
 2922                 rid++;
 2923         resource_list_add(rl, type, rid, start, end, count);
 2924         return (rid);
 2925 }
 2926 
 2927 /**
 2928  * @brief Add or modify a resource entry.
 2929  *
 2930  * If an existing entry exists with the same type and rid, it will be
 2931  * modified using the given values of @p start, @p end and @p
 2932  * count. If no entry exists, a new one will be created using the
 2933  * given values.  The resource list entry that matches is then returned.
 2934  *
 2935  * @param rl            the resource list to edit
 2936  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2937  * @param rid           the resource identifier
 2938  * @param start         the start address of the resource
 2939  * @param end           the end address of the resource
 2940  * @param count         XXX end-start+1
 2941  */
 2942 struct resource_list_entry *
 2943 resource_list_add(struct resource_list *rl, int type, int rid,
 2944     u_long start, u_long end, u_long count)
 2945 {
 2946         struct resource_list_entry *rle;
 2947 
 2948         rle = resource_list_find(rl, type, rid);
 2949         if (!rle) {
 2950                 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
 2951                     M_NOWAIT);
 2952                 if (!rle)
 2953                         panic("resource_list_add: can't record entry");
 2954                 STAILQ_INSERT_TAIL(rl, rle, link);
 2955                 rle->type = type;
 2956                 rle->rid = rid;
 2957                 rle->res = NULL;
 2958         }
 2959 
 2960         if (rle->res)
 2961                 panic("resource_list_add: resource entry is busy");
 2962 
 2963         rle->start = start;
 2964         rle->end = end;
 2965         rle->count = count;
 2966         return (rle);
 2967 }
 2968 
 2969 /**
 2970  * @brief Find a resource entry by type and rid.
 2971  *
 2972  * @param rl            the resource list to search
 2973  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2974  * @param rid           the resource identifier
 2975  *
 2976  * @returns the resource entry pointer or NULL if there is no such
 2977  * entry.
 2978  */
 2979 struct resource_list_entry *
 2980 resource_list_find(struct resource_list *rl, int type, int rid)
 2981 {
 2982         struct resource_list_entry *rle;
 2983 
 2984         STAILQ_FOREACH(rle, rl, link) {
 2985                 if (rle->type == type && rle->rid == rid)
 2986                         return (rle);
 2987         }
 2988         return (NULL);
 2989 }
 2990 
 2991 /**
 2992  * @brief Delete a resource entry.
 2993  *
 2994  * @param rl            the resource list to edit
 2995  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2996  * @param rid           the resource identifier
 2997  */
 2998 void
 2999 resource_list_delete(struct resource_list *rl, int type, int rid)
 3000 {
 3001         struct resource_list_entry *rle = resource_list_find(rl, type, rid);
 3002 
 3003         if (rle) {
 3004                 if (rle->res != NULL)
 3005                         panic("resource_list_delete: resource has not been released");
 3006                 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
 3007                 free(rle, M_BUS);
 3008         }
 3009 }
 3010 
 3011 /**
 3012  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
 3013  *
 3014  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
 3015  * and passing the allocation up to the parent of @p bus. This assumes
 3016  * that the first entry of @c device_get_ivars(child) is a struct
 3017  * resource_list. This also handles 'passthrough' allocations where a
 3018  * child is a remote descendant of bus by passing the allocation up to
 3019  * the parent of bus.
 3020  *
 3021  * Typically, a bus driver would store a list of child resources
 3022  * somewhere in the child device's ivars (see device_get_ivars()) and
 3023  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
 3024  * then call resource_list_alloc() to perform the allocation.
 3025  *
 3026  * @param rl            the resource list to allocate from
 3027  * @param bus           the parent device of @p child
 3028  * @param child         the device which is requesting an allocation
 3029  * @param type          the type of resource to allocate
 3030  * @param rid           a pointer to the resource identifier
 3031  * @param start         hint at the start of the resource range - pass
 3032  *                      @c 0UL for any start address
 3033  * @param end           hint at the end of the resource range - pass
 3034  *                      @c ~0UL for any end address
 3035  * @param count         hint at the size of range required - pass @c 1
 3036  *                      for any size
 3037  * @param flags         any extra flags to control the resource
 3038  *                      allocation - see @c RF_XXX flags in
 3039  *                      <sys/rman.h> for details
 3040  * 
 3041  * @returns             the resource which was allocated or @c NULL if no
 3042  *                      resource could be allocated
 3043  */
 3044 struct resource *
 3045 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
 3046     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
 3047 {
 3048         struct resource_list_entry *rle = NULL;
 3049         int passthrough = (device_get_parent(child) != bus);
 3050         int isdefault = (start == 0UL && end == ~0UL);
 3051 
 3052         if (passthrough) {
 3053                 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 3054                     type, rid, start, end, count, flags));
 3055         }
 3056 
 3057         rle = resource_list_find(rl, type, *rid);
 3058 
 3059         if (!rle)
 3060                 return (NULL);          /* no resource of that type/rid */
 3061 
 3062         if (rle->res)
 3063                 panic("resource_list_alloc: resource entry is busy");
 3064 
 3065         if (isdefault) {
 3066                 start = rle->start;
 3067                 count = ulmax(count, rle->count);
 3068                 end = ulmax(rle->end, start + count - 1);
 3069         }
 3070 
 3071         rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 3072             type, rid, start, end, count, flags);
 3073 
 3074         /*
 3075          * Record the new range.
 3076          */
 3077         if (rle->res) {
 3078                 rle->start = rman_get_start(rle->res);
 3079                 rle->end = rman_get_end(rle->res);
 3080                 rle->count = count;
 3081         }
 3082 
 3083         return (rle->res);
 3084 }
 3085 
 3086 /**
 3087  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
 3088  * 
 3089  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
 3090  * used with resource_list_alloc().
 3091  * 
 3092  * @param rl            the resource list which was allocated from
 3093  * @param bus           the parent device of @p child
 3094  * @param child         the device which is requesting a release
 3095  * @param type          the type of resource to allocate
 3096  * @param rid           the resource identifier
 3097  * @param res           the resource to release
 3098  * 
 3099  * @retval 0            success
 3100  * @retval non-zero     a standard unix error code indicating what
 3101  *                      error condition prevented the operation
 3102  */
 3103 int
 3104 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
 3105     int type, int rid, struct resource *res)
 3106 {
 3107         struct resource_list_entry *rle = NULL;
 3108         int passthrough = (device_get_parent(child) != bus);
 3109         int error;
 3110 
 3111         if (passthrough) {
 3112                 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3113                     type, rid, res));
 3114         }
 3115 
 3116         rle = resource_list_find(rl, type, rid);
 3117 
 3118         if (!rle)
 3119                 panic("resource_list_release: can't find resource");
 3120         if (!rle->res)
 3121                 panic("resource_list_release: resource entry is not busy");
 3122 
 3123         error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3124             type, rid, res);
 3125         if (error)
 3126                 return (error);
 3127 
 3128         rle->res = NULL;
 3129         return (0);
 3130 }
 3131 
 3132 /**
 3133  * @brief Print a description of resources in a resource list
 3134  *
 3135  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
 3136  * The name is printed if at least one resource of the given type is available.
 3137  * The format is used to print resource start and end.
 3138  *
 3139  * @param rl            the resource list to print
 3140  * @param name          the name of @p type, e.g. @c "memory"
 3141  * @param type          type type of resource entry to print
 3142  * @param format        printf(9) format string to print resource
 3143  *                      start and end values
 3144  * 
 3145  * @returns             the number of characters printed
 3146  */
 3147 int
 3148 resource_list_print_type(struct resource_list *rl, const char *name, int type,
 3149     const char *format)
 3150 {
 3151         struct resource_list_entry *rle;
 3152         int printed, retval;
 3153 
 3154         printed = 0;
 3155         retval = 0;
 3156         /* Yes, this is kinda cheating */
 3157         STAILQ_FOREACH(rle, rl, link) {
 3158                 if (rle->type == type) {
 3159                         if (printed == 0)
 3160                                 retval += printf(" %s ", name);
 3161                         else
 3162                                 retval += printf(",");
 3163                         printed++;
 3164                         retval += printf(format, rle->start);
 3165                         if (rle->count > 1) {
 3166                                 retval += printf("-");
 3167                                 retval += printf(format, rle->start +
 3168                                                  rle->count - 1);
 3169                         }
 3170                 }
 3171         }
 3172         return (retval);
 3173 }
 3174 
 3175 /**
 3176  * @brief Releases all the resources in a list.
 3177  *
 3178  * @param rl            The resource list to purge.
 3179  * 
 3180  * @returns             nothing
 3181  */
 3182 void
 3183 resource_list_purge(struct resource_list *rl)
 3184 {
 3185         struct resource_list_entry *rle;
 3186 
 3187         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 3188                 if (rle->res)
 3189                         bus_release_resource(rman_get_device(rle->res),
 3190                             rle->type, rle->rid, rle->res);
 3191                 STAILQ_REMOVE_HEAD(rl, link);
 3192                 free(rle, M_BUS);
 3193         }
 3194 }
 3195 
 3196 device_t
 3197 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
 3198 {
 3199 
 3200         return (device_add_child_ordered(dev, order, name, unit));
 3201 }
 3202 
 3203 /**
 3204  * @brief Helper function for implementing DEVICE_PROBE()
 3205  *
 3206  * This function can be used to help implement the DEVICE_PROBE() for
 3207  * a bus (i.e. a device which has other devices attached to it). It
 3208  * calls the DEVICE_IDENTIFY() method of each driver in the device's
 3209  * devclass.
 3210  */
 3211 int
 3212 bus_generic_probe(device_t dev)
 3213 {
 3214         devclass_t dc = dev->devclass;
 3215         driverlink_t dl;
 3216 
 3217         TAILQ_FOREACH(dl, &dc->drivers, link) {
 3218                 /*
 3219                  * If this driver's pass is too high, then ignore it.
 3220                  * For most drivers in the default pass, this will
 3221                  * never be true.  For early-pass drivers they will
 3222                  * only call the identify routines of eligible drivers
 3223                  * when this routine is called.  Drivers for later
 3224                  * passes should have their identify routines called
 3225                  * on early-pass busses during BUS_NEW_PASS().
 3226                  */
 3227                 if (dl->pass > bus_current_pass)
 3228                                 continue;
 3229                 DEVICE_IDENTIFY(dl->driver, dev);
 3230         }
 3231 
 3232         return (0);
 3233 }
 3234 
 3235 /**
 3236  * @brief Helper function for implementing DEVICE_ATTACH()
 3237  *
 3238  * This function can be used to help implement the DEVICE_ATTACH() for
 3239  * a bus. It calls device_probe_and_attach() for each of the device's
 3240  * children.
 3241  */
 3242 int
 3243 bus_generic_attach(device_t dev)
 3244 {
 3245         device_t child;
 3246 
 3247         TAILQ_FOREACH(child, &dev->children, link) {
 3248                 device_probe_and_attach(child);
 3249         }
 3250 
 3251         return (0);
 3252 }
 3253 
 3254 /**
 3255  * @brief Helper function for implementing DEVICE_DETACH()
 3256  *
 3257  * This function can be used to help implement the DEVICE_DETACH() for
 3258  * a bus. It calls device_detach() for each of the device's
 3259  * children.
 3260  */
 3261 int
 3262 bus_generic_detach(device_t dev)
 3263 {
 3264         device_t child;
 3265         int error;
 3266 
 3267         if (dev->state != DS_ATTACHED)
 3268                 return (EBUSY);
 3269 
 3270         TAILQ_FOREACH(child, &dev->children, link) {
 3271                 if ((error = device_detach(child)) != 0)
 3272                         return (error);
 3273         }
 3274 
 3275         return (0);
 3276 }
 3277 
 3278 /**
 3279  * @brief Helper function for implementing DEVICE_SHUTDOWN()
 3280  *
 3281  * This function can be used to help implement the DEVICE_SHUTDOWN()
 3282  * for a bus. It calls device_shutdown() for each of the device's
 3283  * children.
 3284  */
 3285 int
 3286 bus_generic_shutdown(device_t dev)
 3287 {
 3288         device_t child;
 3289 
 3290         TAILQ_FOREACH(child, &dev->children, link) {
 3291                 device_shutdown(child);
 3292         }
 3293 
 3294         return (0);
 3295 }
 3296 
 3297 /**
 3298  * @brief Helper function for implementing DEVICE_SUSPEND()
 3299  *
 3300  * This function can be used to help implement the DEVICE_SUSPEND()
 3301  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
 3302  * children. If any call to DEVICE_SUSPEND() fails, the suspend
 3303  * operation is aborted and any devices which were suspended are
 3304  * resumed immediately by calling their DEVICE_RESUME() methods.
 3305  */
 3306 int
 3307 bus_generic_suspend(device_t dev)
 3308 {
 3309         int             error;
 3310         device_t        child, child2;
 3311 
 3312         TAILQ_FOREACH(child, &dev->children, link) {
 3313                 error = DEVICE_SUSPEND(child);
 3314                 if (error) {
 3315                         for (child2 = TAILQ_FIRST(&dev->children);
 3316                              child2 && child2 != child;
 3317                              child2 = TAILQ_NEXT(child2, link))
 3318                                 DEVICE_RESUME(child2);
 3319                         return (error);
 3320                 }
 3321         }
 3322         return (0);
 3323 }
 3324 
 3325 /**
 3326  * @brief Helper function for implementing DEVICE_RESUME()
 3327  *
 3328  * This function can be used to help implement the DEVICE_RESUME() for
 3329  * a bus. It calls DEVICE_RESUME() on each of the device's children.
 3330  */
 3331 int
 3332 bus_generic_resume(device_t dev)
 3333 {
 3334         device_t        child;
 3335 
 3336         TAILQ_FOREACH(child, &dev->children, link) {
 3337                 DEVICE_RESUME(child);
 3338                 /* if resume fails, there's nothing we can usefully do... */
 3339         }
 3340         return (0);
 3341 }
 3342 
 3343 /**
 3344  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3345  *
 3346  * This function prints the first part of the ascii representation of
 3347  * @p child, including its name, unit and description (if any - see
 3348  * device_set_desc()).
 3349  *
 3350  * @returns the number of characters printed
 3351  */
 3352 int
 3353 bus_print_child_header(device_t dev, device_t child)
 3354 {
 3355         int     retval = 0;
 3356 
 3357         if (device_get_desc(child)) {
 3358                 retval += device_printf(child, "<%s>", device_get_desc(child));
 3359         } else {
 3360                 retval += printf("%s", device_get_nameunit(child));
 3361         }
 3362 
 3363         return (retval);
 3364 }
 3365 
 3366 /**
 3367  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3368  *
 3369  * This function prints the last part of the ascii representation of
 3370  * @p child, which consists of the string @c " on " followed by the
 3371  * name and unit of the @p dev.
 3372  *
 3373  * @returns the number of characters printed
 3374  */
 3375 int
 3376 bus_print_child_footer(device_t dev, device_t child)
 3377 {
 3378         return (printf(" on %s\n", device_get_nameunit(dev)));
 3379 }
 3380 
 3381 /**
 3382  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3383  *
 3384  * This function simply calls bus_print_child_header() followed by
 3385  * bus_print_child_footer().
 3386  *
 3387  * @returns the number of characters printed
 3388  */
 3389 int
 3390 bus_generic_print_child(device_t dev, device_t child)
 3391 {
 3392         int     retval = 0;
 3393 
 3394         retval += bus_print_child_header(dev, child);
 3395         retval += bus_print_child_footer(dev, child);
 3396 
 3397         return (retval);
 3398 }
 3399 
 3400 /**
 3401  * @brief Stub function for implementing BUS_READ_IVAR().
 3402  * 
 3403  * @returns ENOENT
 3404  */
 3405 int
 3406 bus_generic_read_ivar(device_t dev, device_t child, int index,
 3407     uintptr_t * result)
 3408 {
 3409         return (ENOENT);
 3410 }
 3411 
 3412 /**
 3413  * @brief Stub function for implementing BUS_WRITE_IVAR().
 3414  * 
 3415  * @returns ENOENT
 3416  */
 3417 int
 3418 bus_generic_write_ivar(device_t dev, device_t child, int index,
 3419     uintptr_t value)
 3420 {
 3421         return (ENOENT);
 3422 }
 3423 
 3424 /**
 3425  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
 3426  * 
 3427  * @returns NULL
 3428  */
 3429 struct resource_list *
 3430 bus_generic_get_resource_list(device_t dev, device_t child)
 3431 {
 3432         return (NULL);
 3433 }
 3434 
 3435 /**
 3436  * @brief Helper function for implementing BUS_DRIVER_ADDED().
 3437  *
 3438  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
 3439  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
 3440  * and then calls device_probe_and_attach() for each unattached child.
 3441  */
 3442 void
 3443 bus_generic_driver_added(device_t dev, driver_t *driver)
 3444 {
 3445         device_t child;
 3446 
 3447         DEVICE_IDENTIFY(driver, dev);
 3448         TAILQ_FOREACH(child, &dev->children, link) {
 3449                 if (child->state == DS_NOTPRESENT ||
 3450                     (child->flags & DF_REBID))
 3451                         device_probe_and_attach(child);
 3452         }
 3453 }
 3454 
 3455 /**
 3456  * @brief Helper function for implementing BUS_NEW_PASS().
 3457  *
 3458  * This implementing of BUS_NEW_PASS() first calls the identify
 3459  * routines for any drivers that probe at the current pass.  Then it
 3460  * walks the list of devices for this bus.  If a device is already
 3461  * attached, then it calls BUS_NEW_PASS() on that device.  If the
 3462  * device is not already attached, it attempts to attach a driver to
 3463  * it.
 3464  */
 3465 void
 3466 bus_generic_new_pass(device_t dev)
 3467 {
 3468         driverlink_t dl;
 3469         devclass_t dc;
 3470         device_t child;
 3471 
 3472         dc = dev->devclass;
 3473         TAILQ_FOREACH(dl, &dc->drivers, link) {
 3474                 if (dl->pass == bus_current_pass)
 3475                         DEVICE_IDENTIFY(dl->driver, dev);
 3476         }
 3477         TAILQ_FOREACH(child, &dev->children, link) {
 3478                 if (child->state >= DS_ATTACHED)
 3479                         BUS_NEW_PASS(child);
 3480                 else if (child->state == DS_NOTPRESENT)
 3481                         device_probe_and_attach(child);
 3482         }
 3483 }
 3484 
 3485 /**
 3486  * @brief Helper function for implementing BUS_SETUP_INTR().
 3487  *
 3488  * This simple implementation of BUS_SETUP_INTR() simply calls the
 3489  * BUS_SETUP_INTR() method of the parent of @p dev.
 3490  */
 3491 int
 3492 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
 3493     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 
 3494     void **cookiep)
 3495 {
 3496         /* Propagate up the bus hierarchy until someone handles it. */
 3497         if (dev->parent)
 3498                 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
 3499                     filter, intr, arg, cookiep));
 3500         return (EINVAL);
 3501 }
 3502 
 3503 /**
 3504  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
 3505  *
 3506  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
 3507  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
 3508  */
 3509 int
 3510 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
 3511     void *cookie)
 3512 {
 3513         /* Propagate up the bus hierarchy until someone handles it. */
 3514         if (dev->parent)
 3515                 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
 3516         return (EINVAL);
 3517 }
 3518 
 3519 /**
 3520  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
 3521  *
 3522  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
 3523  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
 3524  */
 3525 int
 3526 bus_generic_adjust_resource(device_t dev, device_t child, int type,
 3527     struct resource *r, u_long start, u_long end)
 3528 {
 3529         /* Propagate up the bus hierarchy until someone handles it. */
 3530         if (dev->parent)
 3531                 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
 3532                     end));
 3533         return (EINVAL);
 3534 }
 3535 
 3536 /**
 3537  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3538  *
 3539  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
 3540  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
 3541  */
 3542 struct resource *
 3543 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
 3544     u_long start, u_long end, u_long count, u_int flags)
 3545 {
 3546         /* Propagate up the bus hierarchy until someone handles it. */
 3547         if (dev->parent)
 3548                 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
 3549                     start, end, count, flags));
 3550         return (NULL);
 3551 }
 3552 
 3553 /**
 3554  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3555  *
 3556  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
 3557  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
 3558  */
 3559 int
 3560 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
 3561     struct resource *r)
 3562 {
 3563         /* Propagate up the bus hierarchy until someone handles it. */
 3564         if (dev->parent)
 3565                 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
 3566                     r));
 3567         return (EINVAL);
 3568 }
 3569 
 3570 /**
 3571  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
 3572  *
 3573  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
 3574  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
 3575  */
 3576 int
 3577 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
 3578     struct resource *r)
 3579 {
 3580         /* Propagate up the bus hierarchy until someone handles it. */
 3581         if (dev->parent)
 3582                 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3583                     r));
 3584         return (EINVAL);
 3585 }
 3586 
 3587 /**
 3588  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
 3589  *
 3590  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
 3591  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
 3592  */
 3593 int
 3594 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
 3595     int rid, struct resource *r)
 3596 {
 3597         /* Propagate up the bus hierarchy until someone handles it. */
 3598         if (dev->parent)
 3599                 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3600                     r));
 3601         return (EINVAL);
 3602 }
 3603 
 3604 /**
 3605  * @brief Helper function for implementing BUS_BIND_INTR().
 3606  *
 3607  * This simple implementation of BUS_BIND_INTR() simply calls the
 3608  * BUS_BIND_INTR() method of the parent of @p dev.
 3609  */
 3610 int
 3611 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
 3612     int cpu)
 3613 {
 3614 
 3615         /* Propagate up the bus hierarchy until someone handles it. */
 3616         if (dev->parent)
 3617                 return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
 3618         return (EINVAL);
 3619 }
 3620 
 3621 /**
 3622  * @brief Helper function for implementing BUS_CONFIG_INTR().
 3623  *
 3624  * This simple implementation of BUS_CONFIG_INTR() simply calls the
 3625  * BUS_CONFIG_INTR() method of the parent of @p dev.
 3626  */
 3627 int
 3628 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
 3629     enum intr_polarity pol)
 3630 {
 3631 
 3632         /* Propagate up the bus hierarchy until someone handles it. */
 3633         if (dev->parent)
 3634                 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
 3635         return (EINVAL);
 3636 }
 3637 
 3638 /**
 3639  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
 3640  *
 3641  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
 3642  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
 3643  */
 3644 int
 3645 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
 3646     void *cookie, const char *descr)
 3647 {
 3648 
 3649         /* Propagate up the bus hierarchy until someone handles it. */
 3650         if (dev->parent)
 3651                 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
 3652                     descr));
 3653         return (EINVAL);
 3654 }
 3655 
 3656 /**
 3657  * @brief Helper function for implementing BUS_GET_DMA_TAG().
 3658  *
 3659  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
 3660  * BUS_GET_DMA_TAG() method of the parent of @p dev.
 3661  */
 3662 bus_dma_tag_t
 3663 bus_generic_get_dma_tag(device_t dev, device_t child)
 3664 {
 3665 
 3666         /* Propagate up the bus hierarchy until someone handles it. */
 3667         if (dev->parent != NULL)
 3668                 return (BUS_GET_DMA_TAG(dev->parent, child));
 3669         return (NULL);
 3670 }
 3671 
 3672 /**
 3673  * @brief Helper function for implementing BUS_GET_RESOURCE().
 3674  *
 3675  * This implementation of BUS_GET_RESOURCE() uses the
 3676  * resource_list_find() function to do most of the work. It calls
 3677  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3678  * search.
 3679  */
 3680 int
 3681 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
 3682     u_long *startp, u_long *countp)
 3683 {
 3684         struct resource_list *          rl = NULL;
 3685         struct resource_list_entry *    rle = NULL;
 3686 
 3687         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3688         if (!rl)
 3689                 return (EINVAL);
 3690 
 3691         rle = resource_list_find(rl, type, rid);
 3692         if (!rle)
 3693                 return (ENOENT);
 3694 
 3695         if (startp)
 3696                 *startp = rle->start;
 3697         if (countp)
 3698                 *countp = rle->count;
 3699 
 3700         return (0);
 3701 }
 3702 
 3703 /**
 3704  * @brief Helper function for implementing BUS_SET_RESOURCE().
 3705  *
 3706  * This implementation of BUS_SET_RESOURCE() uses the
 3707  * resource_list_add() function to do most of the work. It calls
 3708  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3709  * edit.
 3710  */
 3711 int
 3712 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
 3713     u_long start, u_long count)
 3714 {
 3715         struct resource_list *          rl = NULL;
 3716 
 3717         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3718         if (!rl)
 3719                 return (EINVAL);
 3720 
 3721         resource_list_add(rl, type, rid, start, (start + count - 1), count);
 3722 
 3723         return (0);
 3724 }
 3725 
 3726 /**
 3727  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
 3728  *
 3729  * This implementation of BUS_DELETE_RESOURCE() uses the
 3730  * resource_list_delete() function to do most of the work. It calls
 3731  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3732  * edit.
 3733  */
 3734 void
 3735 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
 3736 {
 3737         struct resource_list *          rl = NULL;
 3738 
 3739         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3740         if (!rl)
 3741                 return;
 3742 
 3743         resource_list_delete(rl, type, rid);
 3744 
 3745         return;
 3746 }
 3747 
 3748 /**
 3749  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3750  *
 3751  * This implementation of BUS_RELEASE_RESOURCE() uses the
 3752  * resource_list_release() function to do most of the work. It calls
 3753  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3754  */
 3755 int
 3756 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
 3757     int rid, struct resource *r)
 3758 {
 3759         struct resource_list *          rl = NULL;
 3760 
 3761         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3762         if (!rl)
 3763                 return (EINVAL);
 3764 
 3765         return (resource_list_release(rl, dev, child, type, rid, r));
 3766 }
 3767 
 3768 /**
 3769  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3770  *
 3771  * This implementation of BUS_ALLOC_RESOURCE() uses the
 3772  * resource_list_alloc() function to do most of the work. It calls
 3773  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3774  */
 3775 struct resource *
 3776 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
 3777     int *rid, u_long start, u_long end, u_long count, u_int flags)
 3778 {
 3779         struct resource_list *          rl = NULL;
 3780 
 3781         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3782         if (!rl)
 3783                 return (NULL);
 3784 
 3785         return (resource_list_alloc(rl, dev, child, type, rid,
 3786             start, end, count, flags));
 3787 }
 3788 
 3789 /**
 3790  * @brief Helper function for implementing BUS_CHILD_PRESENT().
 3791  *
 3792  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
 3793  * BUS_CHILD_PRESENT() method of the parent of @p dev.
 3794  */
 3795 int
 3796 bus_generic_child_present(device_t dev, device_t child)
 3797 {
 3798         return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
 3799 }
 3800 
 3801 /*
 3802  * Some convenience functions to make it easier for drivers to use the
 3803  * resource-management functions.  All these really do is hide the
 3804  * indirection through the parent's method table, making for slightly
 3805  * less-wordy code.  In the future, it might make sense for this code
 3806  * to maintain some sort of a list of resources allocated by each device.
 3807  */
 3808 
 3809 int
 3810 bus_alloc_resources(device_t dev, struct resource_spec *rs,
 3811     struct resource **res)
 3812 {
 3813         int i;
 3814 
 3815         for (i = 0; rs[i].type != -1; i++)
 3816                 res[i] = NULL;
 3817         for (i = 0; rs[i].type != -1; i++) {
 3818                 res[i] = bus_alloc_resource_any(dev,
 3819                     rs[i].type, &rs[i].rid, rs[i].flags);
 3820                 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
 3821                         bus_release_resources(dev, rs, res);
 3822                         return (ENXIO);
 3823                 }
 3824         }
 3825         return (0);
 3826 }
 3827 
 3828 void
 3829 bus_release_resources(device_t dev, const struct resource_spec *rs,
 3830     struct resource **res)
 3831 {
 3832         int i;
 3833 
 3834         for (i = 0; rs[i].type != -1; i++)
 3835                 if (res[i] != NULL) {
 3836                         bus_release_resource(
 3837                             dev, rs[i].type, rs[i].rid, res[i]);
 3838                         res[i] = NULL;
 3839                 }
 3840 }
 3841 
 3842 /**
 3843  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
 3844  *
 3845  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
 3846  * parent of @p dev.
 3847  */
 3848 struct resource *
 3849 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
 3850     u_long count, u_int flags)
 3851 {
 3852         if (dev->parent == NULL)
 3853                 return (NULL);
 3854         return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
 3855             count, flags));
 3856 }
 3857 
 3858 /**
 3859  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
 3860  *
 3861  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
 3862  * parent of @p dev.
 3863  */
 3864 int
 3865 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
 3866     u_long end)
 3867 {
 3868         if (dev->parent == NULL)
 3869                 return (EINVAL);
 3870         return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
 3871 }
 3872 
 3873 /**
 3874  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
 3875  *
 3876  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
 3877  * parent of @p dev.
 3878  */
 3879 int
 3880 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
 3881 {
 3882         if (dev->parent == NULL)
 3883                 return (EINVAL);
 3884         return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 3885 }
 3886 
 3887 /**
 3888  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
 3889  *
 3890  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
 3891  * parent of @p dev.
 3892  */
 3893 int
 3894 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
 3895 {
 3896         if (dev->parent == NULL)
 3897                 return (EINVAL);
 3898         return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 3899 }
 3900 
 3901 /**
 3902  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
 3903  *
 3904  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
 3905  * parent of @p dev.
 3906  */
 3907 int
 3908 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
 3909 {
 3910         if (dev->parent == NULL)
 3911                 return (EINVAL);
 3912         return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
 3913 }
 3914 
 3915 /**
 3916  * @brief Wrapper function for BUS_SETUP_INTR().
 3917  *
 3918  * This function simply calls the BUS_SETUP_INTR() method of the
 3919  * parent of @p dev.
 3920  */
 3921 int
 3922 bus_setup_intr(device_t dev, struct resource *r, int flags,
 3923     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
 3924 {
 3925         int error;
 3926 
 3927         if (dev->parent == NULL)
 3928                 return (EINVAL);
 3929         error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
 3930             arg, cookiep);
 3931         if (error != 0)
 3932                 return (error);
 3933         if (handler != NULL && !(flags & INTR_MPSAFE))
 3934                 device_printf(dev, "[GIANT-LOCKED]\n");
 3935         if (bootverbose && (flags & INTR_MPSAFE))
 3936                 device_printf(dev, "[MPSAFE]\n");
 3937         if (filter != NULL) {
 3938                 if (handler == NULL)
 3939                         device_printf(dev, "[FILTER]\n");
 3940                 else 
 3941                         device_printf(dev, "[FILTER+ITHREAD]\n");
 3942         } else 
 3943                 device_printf(dev, "[ITHREAD]\n");
 3944         return (0);
 3945 }
 3946 
 3947 /**
 3948  * @brief Wrapper function for BUS_TEARDOWN_INTR().
 3949  *
 3950  * This function simply calls the BUS_TEARDOWN_INTR() method of the
 3951  * parent of @p dev.
 3952  */
 3953 int
 3954 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
 3955 {
 3956         if (dev->parent == NULL)
 3957                 return (EINVAL);
 3958         return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
 3959 }
 3960 
 3961 /**
 3962  * @brief Wrapper function for BUS_BIND_INTR().
 3963  *
 3964  * This function simply calls the BUS_BIND_INTR() method of the
 3965  * parent of @p dev.
 3966  */
 3967 int
 3968 bus_bind_intr(device_t dev, struct resource *r, int cpu)
 3969 {
 3970         if (dev->parent == NULL)
 3971                 return (EINVAL);
 3972         return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
 3973 }
 3974 
 3975 /**
 3976  * @brief Wrapper function for BUS_DESCRIBE_INTR().
 3977  *
 3978  * This function first formats the requested description into a
 3979  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
 3980  * the parent of @p dev.
 3981  */
 3982 int
 3983 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
 3984     const char *fmt, ...)
 3985 {
 3986         va_list ap;
 3987         char descr[MAXCOMLEN + 1];
 3988 
 3989         if (dev->parent == NULL)
 3990                 return (EINVAL);
 3991         va_start(ap, fmt);
 3992         vsnprintf(descr, sizeof(descr), fmt, ap);
 3993         va_end(ap);
 3994         return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
 3995 }
 3996 
 3997 /**
 3998  * @brief Wrapper function for BUS_SET_RESOURCE().
 3999  *
 4000  * This function simply calls the BUS_SET_RESOURCE() method of the
 4001  * parent of @p dev.
 4002  */
 4003 int
 4004 bus_set_resource(device_t dev, int type, int rid,
 4005     u_long start, u_long count)
 4006 {
 4007         return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4008             start, count));
 4009 }
 4010 
 4011 /**
 4012  * @brief Wrapper function for BUS_GET_RESOURCE().
 4013  *
 4014  * This function simply calls the BUS_GET_RESOURCE() method of the
 4015  * parent of @p dev.
 4016  */
 4017 int
 4018 bus_get_resource(device_t dev, int type, int rid,
 4019     u_long *startp, u_long *countp)
 4020 {
 4021         return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4022             startp, countp));
 4023 }
 4024 
 4025 /**
 4026  * @brief Wrapper function for BUS_GET_RESOURCE().
 4027  *
 4028  * This function simply calls the BUS_GET_RESOURCE() method of the
 4029  * parent of @p dev and returns the start value.
 4030  */
 4031 u_long
 4032 bus_get_resource_start(device_t dev, int type, int rid)
 4033 {
 4034         u_long start, count;
 4035         int error;
 4036 
 4037         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4038             &start, &count);
 4039         if (error)
 4040                 return (0);
 4041         return (start);
 4042 }
 4043 
 4044 /**
 4045  * @brief Wrapper function for BUS_GET_RESOURCE().
 4046  *
 4047  * This function simply calls the BUS_GET_RESOURCE() method of the
 4048  * parent of @p dev and returns the count value.
 4049  */
 4050 u_long
 4051 bus_get_resource_count(device_t dev, int type, int rid)
 4052 {
 4053         u_long start, count;
 4054         int error;
 4055 
 4056         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4057             &start, &count);
 4058         if (error)
 4059                 return (0);
 4060         return (count);
 4061 }
 4062 
 4063 /**
 4064  * @brief Wrapper function for BUS_DELETE_RESOURCE().
 4065  *
 4066  * This function simply calls the BUS_DELETE_RESOURCE() method of the
 4067  * parent of @p dev.
 4068  */
 4069 void
 4070 bus_delete_resource(device_t dev, int type, int rid)
 4071 {
 4072         BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
 4073 }
 4074 
 4075 /**
 4076  * @brief Wrapper function for BUS_CHILD_PRESENT().
 4077  *
 4078  * This function simply calls the BUS_CHILD_PRESENT() method of the
 4079  * parent of @p dev.
 4080  */
 4081 int
 4082 bus_child_present(device_t child)
 4083 {
 4084         return (BUS_CHILD_PRESENT(device_get_parent(child), child));
 4085 }
 4086 
 4087 /**
 4088  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
 4089  *
 4090  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
 4091  * parent of @p dev.
 4092  */
 4093 int
 4094 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
 4095 {
 4096         device_t parent;
 4097 
 4098         parent = device_get_parent(child);
 4099         if (parent == NULL) {
 4100                 *buf = '\0';
 4101                 return (0);
 4102         }
 4103         return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
 4104 }
 4105 
 4106 /**
 4107  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
 4108  *
 4109  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
 4110  * parent of @p dev.
 4111  */
 4112 int
 4113 bus_child_location_str(device_t child, char *buf, size_t buflen)
 4114 {
 4115         device_t parent;
 4116 
 4117         parent = device_get_parent(child);
 4118         if (parent == NULL) {
 4119                 *buf = '\0';
 4120                 return (0);
 4121         }
 4122         return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
 4123 }
 4124 
 4125 /**
 4126  * @brief Wrapper function for BUS_GET_DMA_TAG().
 4127  *
 4128  * This function simply calls the BUS_GET_DMA_TAG() method of the
 4129  * parent of @p dev.
 4130  */
 4131 bus_dma_tag_t
 4132 bus_get_dma_tag(device_t dev)
 4133 {
 4134         device_t parent;
 4135 
 4136         parent = device_get_parent(dev);
 4137         if (parent == NULL)
 4138                 return (NULL);
 4139         return (BUS_GET_DMA_TAG(parent, dev));
 4140 }
 4141 
 4142 /* Resume all devices and then notify userland that we're up again. */
 4143 static int
 4144 root_resume(device_t dev)
 4145 {
 4146         int error;
 4147 
 4148         error = bus_generic_resume(dev);
 4149         if (error == 0)
 4150                 devctl_notify("kern", "power", "resume", NULL);
 4151         return (error);
 4152 }
 4153 
 4154 static int
 4155 root_print_child(device_t dev, device_t child)
 4156 {
 4157         int     retval = 0;
 4158 
 4159         retval += bus_print_child_header(dev, child);
 4160         retval += printf("\n");
 4161 
 4162         return (retval);
 4163 }
 4164 
 4165 static int
 4166 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
 4167     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
 4168 {
 4169         /*
 4170          * If an interrupt mapping gets to here something bad has happened.
 4171          */
 4172         panic("root_setup_intr");
 4173 }
 4174 
 4175 /*
 4176  * If we get here, assume that the device is permanant and really is
 4177  * present in the system.  Removable bus drivers are expected to intercept
 4178  * this call long before it gets here.  We return -1 so that drivers that
 4179  * really care can check vs -1 or some ERRNO returned higher in the food
 4180  * chain.
 4181  */
 4182 static int
 4183 root_child_present(device_t dev, device_t child)
 4184 {
 4185         return (-1);
 4186 }
 4187 
 4188 static kobj_method_t root_methods[] = {
 4189         /* Device interface */
 4190         KOBJMETHOD(device_shutdown,     bus_generic_shutdown),
 4191         KOBJMETHOD(device_suspend,      bus_generic_suspend),
 4192         KOBJMETHOD(device_resume,       root_resume),
 4193 
 4194         /* Bus interface */
 4195         KOBJMETHOD(bus_print_child,     root_print_child),
 4196         KOBJMETHOD(bus_read_ivar,       bus_generic_read_ivar),
 4197         KOBJMETHOD(bus_write_ivar,      bus_generic_write_ivar),
 4198         KOBJMETHOD(bus_setup_intr,      root_setup_intr),
 4199         KOBJMETHOD(bus_child_present,   root_child_present),
 4200 
 4201         KOBJMETHOD_END
 4202 };
 4203 
 4204 static driver_t root_driver = {
 4205         "root",
 4206         root_methods,
 4207         1,                      /* no softc */
 4208 };
 4209 
 4210 device_t        root_bus;
 4211 devclass_t      root_devclass;
 4212 
 4213 static int
 4214 root_bus_module_handler(module_t mod, int what, void* arg)
 4215 {
 4216         switch (what) {
 4217         case MOD_LOAD:
 4218                 TAILQ_INIT(&bus_data_devices);
 4219                 kobj_class_compile((kobj_class_t) &root_driver);
 4220                 root_bus = make_device(NULL, "root", 0);
 4221                 root_bus->desc = "System root bus";
 4222                 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
 4223                 root_bus->driver = &root_driver;
 4224                 root_bus->state = DS_ATTACHED;
 4225                 root_devclass = devclass_find_internal("root", NULL, FALSE);
 4226                 devinit();
 4227                 return (0);
 4228 
 4229         case MOD_SHUTDOWN:
 4230                 device_shutdown(root_bus);
 4231                 return (0);
 4232         default:
 4233                 return (EOPNOTSUPP);
 4234         }
 4235 
 4236         return (0);
 4237 }
 4238 
 4239 static moduledata_t root_bus_mod = {
 4240         "rootbus",
 4241         root_bus_module_handler,
 4242         NULL
 4243 };
 4244 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
 4245 
 4246 /**
 4247  * @brief Automatically configure devices
 4248  *
 4249  * This function begins the autoconfiguration process by calling
 4250  * device_probe_and_attach() for each child of the @c root0 device.
 4251  */ 
 4252 void
 4253 root_bus_configure(void)
 4254 {
 4255 
 4256         PDEBUG(("."));
 4257 
 4258         /* Eventually this will be split up, but this is sufficient for now. */
 4259         bus_set_pass(BUS_PASS_DEFAULT);
 4260 }
 4261 
 4262 /**
 4263  * @brief Module handler for registering device drivers
 4264  *
 4265  * This module handler is used to automatically register device
 4266  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
 4267  * devclass_add_driver() for the driver described by the
 4268  * driver_module_data structure pointed to by @p arg
 4269  */
 4270 int
 4271 driver_module_handler(module_t mod, int what, void *arg)
 4272 {
 4273         struct driver_module_data *dmd;
 4274         devclass_t bus_devclass;
 4275         kobj_class_t driver;
 4276         int error, pass;
 4277 
 4278         dmd = (struct driver_module_data *)arg;
 4279         bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
 4280         error = 0;
 4281 
 4282         switch (what) {
 4283         case MOD_LOAD:
 4284                 if (dmd->dmd_chainevh)
 4285                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4286 
 4287                 pass = dmd->dmd_pass;
 4288                 driver = dmd->dmd_driver;
 4289                 PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
 4290                     DRIVERNAME(driver), dmd->dmd_busname, pass));
 4291                 error = devclass_add_driver(bus_devclass, driver, pass,
 4292                     dmd->dmd_devclass);
 4293                 break;
 4294 
 4295         case MOD_UNLOAD:
 4296                 PDEBUG(("Unloading module: driver %s from bus %s",
 4297                     DRIVERNAME(dmd->dmd_driver),
 4298                     dmd->dmd_busname));
 4299                 error = devclass_delete_driver(bus_devclass,
 4300                     dmd->dmd_driver);
 4301 
 4302                 if (!error && dmd->dmd_chainevh)
 4303                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4304                 break;
 4305         case MOD_QUIESCE:
 4306                 PDEBUG(("Quiesce module: driver %s from bus %s",
 4307                     DRIVERNAME(dmd->dmd_driver),
 4308                     dmd->dmd_busname));
 4309                 error = devclass_quiesce_driver(bus_devclass,
 4310                     dmd->dmd_driver);
 4311 
 4312                 if (!error && dmd->dmd_chainevh)
 4313                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4314                 break;
 4315         default:
 4316                 error = EOPNOTSUPP;
 4317                 break;
 4318         }
 4319 
 4320         return (error);
 4321 }
 4322 
 4323 /**
 4324  * @brief Enumerate all hinted devices for this bus.
 4325  *
 4326  * Walks through the hints for this bus and calls the bus_hinted_child
 4327  * routine for each one it fines.  It searches first for the specific
 4328  * bus that's being probed for hinted children (eg isa0), and then for
 4329  * generic children (eg isa).
 4330  *
 4331  * @param       dev     bus device to enumerate
 4332  */
 4333 void
 4334 bus_enumerate_hinted_children(device_t bus)
 4335 {
 4336         int i;
 4337         const char *dname, *busname;
 4338         int dunit;
 4339 
 4340         /*
 4341          * enumerate all devices on the specific bus
 4342          */
 4343         busname = device_get_nameunit(bus);
 4344         i = 0;
 4345         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 4346                 BUS_HINTED_CHILD(bus, dname, dunit);
 4347 
 4348         /*
 4349          * and all the generic ones.
 4350          */
 4351         busname = device_get_name(bus);
 4352         i = 0;
 4353         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 4354                 BUS_HINTED_CHILD(bus, dname, dunit);
 4355 }
 4356 
 4357 #ifdef BUS_DEBUG
 4358 
 4359 /* the _short versions avoid iteration by not calling anything that prints
 4360  * more than oneliners. I love oneliners.
 4361  */
 4362 
 4363 static void
 4364 print_device_short(device_t dev, int indent)
 4365 {
 4366         if (!dev)
 4367                 return;
 4368 
 4369         indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
 4370             dev->unit, dev->desc,
 4371             (dev->parent? "":"no "),
 4372             (TAILQ_EMPTY(&dev->children)? "no ":""),
 4373             (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
 4374             (dev->flags&DF_FIXEDCLASS? "fixed,":""),
 4375             (dev->flags&DF_WILDCARD? "wildcard,":""),
 4376             (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
 4377             (dev->flags&DF_REBID? "rebiddable,":""),
 4378             (dev->ivars? "":"no "),
 4379             (dev->softc? "":"no "),
 4380             dev->busy));
 4381 }
 4382 
 4383 static void
 4384 print_device(device_t dev, int indent)
 4385 {
 4386         if (!dev)
 4387                 return;
 4388 
 4389         print_device_short(dev, indent);
 4390 
 4391         indentprintf(("Parent:\n"));
 4392         print_device_short(dev->parent, indent+1);
 4393         indentprintf(("Driver:\n"));
 4394         print_driver_short(dev->driver, indent+1);
 4395         indentprintf(("Devclass:\n"));
 4396         print_devclass_short(dev->devclass, indent+1);
 4397 }
 4398 
 4399 void
 4400 print_device_tree_short(device_t dev, int indent)
 4401 /* print the device and all its children (indented) */
 4402 {
 4403         device_t child;
 4404 
 4405         if (!dev)
 4406                 return;
 4407 
 4408         print_device_short(dev, indent);
 4409 
 4410         TAILQ_FOREACH(child, &dev->children, link) {
 4411                 print_device_tree_short(child, indent+1);
 4412         }
 4413 }
 4414 
 4415 void
 4416 print_device_tree(device_t dev, int indent)
 4417 /* print the device and all its children (indented) */
 4418 {
 4419         device_t child;
 4420 
 4421         if (!dev)
 4422                 return;
 4423 
 4424         print_device(dev, indent);
 4425 
 4426         TAILQ_FOREACH(child, &dev->children, link) {
 4427                 print_device_tree(child, indent+1);
 4428         }
 4429 }
 4430 
 4431 static void
 4432 print_driver_short(driver_t *driver, int indent)
 4433 {
 4434         if (!driver)
 4435                 return;
 4436 
 4437         indentprintf(("driver %s: softc size = %zd\n",
 4438             driver->name, driver->size));
 4439 }
 4440 
 4441 static void
 4442 print_driver(driver_t *driver, int indent)
 4443 {
 4444         if (!driver)
 4445                 return;
 4446 
 4447         print_driver_short(driver, indent);
 4448 }
 4449 
 4450 static void
 4451 print_driver_list(driver_list_t drivers, int indent)
 4452 {
 4453         driverlink_t driver;
 4454 
 4455         TAILQ_FOREACH(driver, &drivers, link) {
 4456                 print_driver(driver->driver, indent);
 4457         }
 4458 }
 4459 
 4460 static void
 4461 print_devclass_short(devclass_t dc, int indent)
 4462 {
 4463         if ( !dc )
 4464                 return;
 4465 
 4466         indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
 4467 }
 4468 
 4469 static void
 4470 print_devclass(devclass_t dc, int indent)
 4471 {
 4472         int i;
 4473 
 4474         if ( !dc )
 4475                 return;
 4476 
 4477         print_devclass_short(dc, indent);
 4478         indentprintf(("Drivers:\n"));
 4479         print_driver_list(dc->drivers, indent+1);
 4480 
 4481         indentprintf(("Devices:\n"));
 4482         for (i = 0; i < dc->maxunit; i++)
 4483                 if (dc->devices[i])
 4484                         print_device(dc->devices[i], indent+1);
 4485 }
 4486 
 4487 void
 4488 print_devclass_list_short(void)
 4489 {
 4490         devclass_t dc;
 4491 
 4492         printf("Short listing of devclasses, drivers & devices:\n");
 4493         TAILQ_FOREACH(dc, &devclasses, link) {
 4494                 print_devclass_short(dc, 0);
 4495         }
 4496 }
 4497 
 4498 void
 4499 print_devclass_list(void)
 4500 {
 4501         devclass_t dc;
 4502 
 4503         printf("Full listing of devclasses, drivers & devices:\n");
 4504         TAILQ_FOREACH(dc, &devclasses, link) {
 4505                 print_devclass(dc, 0);
 4506         }
 4507 }
 4508 
 4509 #endif
 4510 
 4511 /*
 4512  * User-space access to the device tree.
 4513  *
 4514  * We implement a small set of nodes:
 4515  *
 4516  * hw.bus                       Single integer read method to obtain the
 4517  *                              current generation count.
 4518  * hw.bus.devices               Reads the entire device tree in flat space.
 4519  * hw.bus.rman                  Resource manager interface
 4520  *
 4521  * We might like to add the ability to scan devclasses and/or drivers to
 4522  * determine what else is currently loaded/available.
 4523  */
 4524 
 4525 static int
 4526 sysctl_bus(SYSCTL_HANDLER_ARGS)
 4527 {
 4528         struct u_businfo        ubus;
 4529 
 4530         ubus.ub_version = BUS_USER_VERSION;
 4531         ubus.ub_generation = bus_data_generation;
 4532 
 4533         return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
 4534 }
 4535 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
 4536     "bus-related data");
 4537 
 4538 static int
 4539 sysctl_devices(SYSCTL_HANDLER_ARGS)
 4540 {
 4541         int                     *name = (int *)arg1;
 4542         u_int                   namelen = arg2;
 4543         int                     index;
 4544         struct device           *dev;
 4545         struct u_device         udev;   /* XXX this is a bit big */
 4546         int                     error;
 4547 
 4548         if (namelen != 2)
 4549                 return (EINVAL);
 4550 
 4551         if (bus_data_generation_check(name[0]))
 4552                 return (EINVAL);
 4553 
 4554         index = name[1];
 4555 
 4556         /*
 4557          * Scan the list of devices, looking for the requested index.
 4558          */
 4559         TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 4560                 if (index-- == 0)
 4561                         break;
 4562         }
 4563         if (dev == NULL)
 4564                 return (ENOENT);
 4565 
 4566         /*
 4567          * Populate the return array.
 4568          */
 4569         bzero(&udev, sizeof(udev));
 4570         udev.dv_handle = (uintptr_t)dev;
 4571         udev.dv_parent = (uintptr_t)dev->parent;
 4572         if (dev->nameunit != NULL)
 4573                 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
 4574         if (dev->desc != NULL)
 4575                 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
 4576         if (dev->driver != NULL && dev->driver->name != NULL)
 4577                 strlcpy(udev.dv_drivername, dev->driver->name,
 4578                     sizeof(udev.dv_drivername));
 4579         bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
 4580         bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
 4581         udev.dv_devflags = dev->devflags;
 4582         udev.dv_flags = dev->flags;
 4583         udev.dv_state = dev->state;
 4584         error = SYSCTL_OUT(req, &udev, sizeof(udev));
 4585         return (error);
 4586 }
 4587 
 4588 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
 4589     "system device tree");
 4590 
 4591 int
 4592 bus_data_generation_check(int generation)
 4593 {
 4594         if (generation != bus_data_generation)
 4595                 return (1);
 4596 
 4597         /* XXX generate optimised lists here? */
 4598         return (0);
 4599 }
 4600 
 4601 void
 4602 bus_data_generation_update(void)
 4603 {
 4604         bus_data_generation++;
 4605 }
 4606 
 4607 int
 4608 bus_free_resource(device_t dev, int type, struct resource *r)
 4609 {
 4610         if (r == NULL)
 4611                 return (0);
 4612         return (bus_release_resource(dev, type, rman_get_rid(r), r));
 4613 }

Cache object: 372107b8c8202b895de56e2caffd0593


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.