The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_bus.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997,1998,2003 Doug Rabson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/8.4/sys/kern/subr_bus.c 241425 2012-10-10 21:27:29Z eadler $");
   29 
   30 #include "opt_bus.h"
   31 
   32 #include <sys/param.h>
   33 #include <sys/conf.h>
   34 #include <sys/filio.h>
   35 #include <sys/lock.h>
   36 #include <sys/kernel.h>
   37 #include <sys/kobj.h>
   38 #include <sys/limits.h>
   39 #include <sys/malloc.h>
   40 #include <sys/module.h>
   41 #include <sys/mutex.h>
   42 #include <sys/poll.h>
   43 #include <sys/proc.h>
   44 #include <sys/condvar.h>
   45 #include <sys/queue.h>
   46 #include <machine/bus.h>
   47 #include <sys/rman.h>
   48 #include <sys/selinfo.h>
   49 #include <sys/signalvar.h>
   50 #include <sys/sysctl.h>
   51 #include <sys/systm.h>
   52 #include <sys/uio.h>
   53 #include <sys/bus.h>
   54 #include <sys/interrupt.h>
   55 
   56 #include <machine/stdarg.h>
   57 
   58 #include <vm/uma.h>
   59 
   60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
   61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
   62 
   63 /*
   64  * Used to attach drivers to devclasses.
   65  */
   66 typedef struct driverlink *driverlink_t;
   67 struct driverlink {
   68         kobj_class_t    driver;
   69         TAILQ_ENTRY(driverlink) link;   /* list of drivers in devclass */
   70         int             pass;
   71         TAILQ_ENTRY(driverlink) passlink;
   72 };
   73 
   74 /*
   75  * Forward declarations
   76  */
   77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
   78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
   79 typedef TAILQ_HEAD(device_list, device) device_list_t;
   80 
   81 struct devclass {
   82         TAILQ_ENTRY(devclass) link;
   83         devclass_t      parent;         /* parent in devclass hierarchy */
   84         driver_list_t   drivers;     /* bus devclasses store drivers for bus */
   85         char            *name;
   86         device_t        *devices;       /* array of devices indexed by unit */
   87         int             maxunit;        /* size of devices array */
   88         int             flags;
   89 #define DC_HAS_CHILDREN         1
   90 
   91         struct sysctl_ctx_list sysctl_ctx;
   92         struct sysctl_oid *sysctl_tree;
   93 };
   94 
   95 /**
   96  * @brief Implementation of device.
   97  */
   98 struct device {
   99         /*
  100          * A device is a kernel object. The first field must be the
  101          * current ops table for the object.
  102          */
  103         KOBJ_FIELDS;
  104 
  105         /*
  106          * Device hierarchy.
  107          */
  108         TAILQ_ENTRY(device)     link;   /**< list of devices in parent */
  109         TAILQ_ENTRY(device)     devlink; /**< global device list membership */
  110         device_t        parent;         /**< parent of this device  */
  111         device_list_t   children;       /**< list of child devices */
  112 
  113         /*
  114          * Details of this device.
  115          */
  116         driver_t        *driver;        /**< current driver */
  117         devclass_t      devclass;       /**< current device class */
  118         int             unit;           /**< current unit number */
  119         char*           nameunit;       /**< name+unit e.g. foodev0 */
  120         char*           desc;           /**< driver specific description */
  121         int             busy;           /**< count of calls to device_busy() */
  122         device_state_t  state;          /**< current device state  */
  123         u_int32_t       devflags;       /**< api level flags for device_get_flags() */
  124         u_int           flags;          /**< internal device flags  */
  125 #define DF_ENABLED      0x01            /* device should be probed/attached */
  126 #define DF_FIXEDCLASS   0x02            /* devclass specified at create time */
  127 #define DF_WILDCARD     0x04            /* unit was originally wildcard */
  128 #define DF_DESCMALLOCED 0x08            /* description was malloced */
  129 #define DF_QUIET        0x10            /* don't print verbose attach message */
  130 #define DF_DONENOMATCH  0x20            /* don't execute DEVICE_NOMATCH again */
  131 #define DF_EXTERNALSOFTC 0x40           /* softc not allocated by us */
  132 #define DF_REBID        0x80            /* Can rebid after attach */
  133         u_int   order;                  /**< order from device_add_child_ordered() */
  134         void    *ivars;                 /**< instance variables  */
  135         void    *softc;                 /**< current driver's variables  */
  136 
  137         struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
  138         struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
  139 };
  140 
  141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
  142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
  143 
  144 #ifdef BUS_DEBUG
  145 
  146 static int bus_debug = 1;
  147 TUNABLE_INT("bus.debug", &bus_debug);
  148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
  149     "Debug bus code");
  150 
  151 #define PDEBUG(a)       if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
  152 #define DEVICENAME(d)   ((d)? device_get_name(d): "no device")
  153 #define DRIVERNAME(d)   ((d)? d->name : "no driver")
  154 #define DEVCLANAME(d)   ((d)? d->name : "no devclass")
  155 
  156 /**
  157  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
  158  * prevent syslog from deleting initial spaces
  159  */
  160 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
  161 
  162 static void print_device_short(device_t dev, int indent);
  163 static void print_device(device_t dev, int indent);
  164 void print_device_tree_short(device_t dev, int indent);
  165 void print_device_tree(device_t dev, int indent);
  166 static void print_driver_short(driver_t *driver, int indent);
  167 static void print_driver(driver_t *driver, int indent);
  168 static void print_driver_list(driver_list_t drivers, int indent);
  169 static void print_devclass_short(devclass_t dc, int indent);
  170 static void print_devclass(devclass_t dc, int indent);
  171 void print_devclass_list_short(void);
  172 void print_devclass_list(void);
  173 
  174 #else
  175 /* Make the compiler ignore the function calls */
  176 #define PDEBUG(a)                       /* nop */
  177 #define DEVICENAME(d)                   /* nop */
  178 #define DRIVERNAME(d)                   /* nop */
  179 #define DEVCLANAME(d)                   /* nop */
  180 
  181 #define print_device_short(d,i)         /* nop */
  182 #define print_device(d,i)               /* nop */
  183 #define print_device_tree_short(d,i)    /* nop */
  184 #define print_device_tree(d,i)          /* nop */
  185 #define print_driver_short(d,i)         /* nop */
  186 #define print_driver(d,i)               /* nop */
  187 #define print_driver_list(d,i)          /* nop */
  188 #define print_devclass_short(d,i)       /* nop */
  189 #define print_devclass(d,i)             /* nop */
  190 #define print_devclass_list_short()     /* nop */
  191 #define print_devclass_list()           /* nop */
  192 #endif
  193 
  194 /*
  195  * dev sysctl tree
  196  */
  197 
  198 enum {
  199         DEVCLASS_SYSCTL_PARENT,
  200 };
  201 
  202 static int
  203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
  204 {
  205         devclass_t dc = (devclass_t)arg1;
  206         const char *value;
  207 
  208         switch (arg2) {
  209         case DEVCLASS_SYSCTL_PARENT:
  210                 value = dc->parent ? dc->parent->name : "";
  211                 break;
  212         default:
  213                 return (EINVAL);
  214         }
  215         return (SYSCTL_OUT(req, value, strlen(value)));
  216 }
  217 
  218 static void
  219 devclass_sysctl_init(devclass_t dc)
  220 {
  221 
  222         if (dc->sysctl_tree != NULL)
  223                 return;
  224         sysctl_ctx_init(&dc->sysctl_ctx);
  225         dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
  226             SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
  227             CTLFLAG_RD, NULL, "");
  228         SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
  229             OID_AUTO, "%parent", CTLFLAG_RD,
  230             dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
  231             "parent class");
  232 }
  233 
  234 enum {
  235         DEVICE_SYSCTL_DESC,
  236         DEVICE_SYSCTL_DRIVER,
  237         DEVICE_SYSCTL_LOCATION,
  238         DEVICE_SYSCTL_PNPINFO,
  239         DEVICE_SYSCTL_PARENT,
  240 };
  241 
  242 static int
  243 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
  244 {
  245         device_t dev = (device_t)arg1;
  246         const char *value;
  247         char *buf;
  248         int error;
  249 
  250         buf = NULL;
  251         switch (arg2) {
  252         case DEVICE_SYSCTL_DESC:
  253                 value = dev->desc ? dev->desc : "";
  254                 break;
  255         case DEVICE_SYSCTL_DRIVER:
  256                 value = dev->driver ? dev->driver->name : "";
  257                 break;
  258         case DEVICE_SYSCTL_LOCATION:
  259                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  260                 bus_child_location_str(dev, buf, 1024);
  261                 break;
  262         case DEVICE_SYSCTL_PNPINFO:
  263                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  264                 bus_child_pnpinfo_str(dev, buf, 1024);
  265                 break;
  266         case DEVICE_SYSCTL_PARENT:
  267                 value = dev->parent ? dev->parent->nameunit : "";
  268                 break;
  269         default:
  270                 return (EINVAL);
  271         }
  272         error = SYSCTL_OUT(req, value, strlen(value));
  273         if (buf != NULL)
  274                 free(buf, M_BUS);
  275         return (error);
  276 }
  277 
  278 static void
  279 device_sysctl_init(device_t dev)
  280 {
  281         devclass_t dc = dev->devclass;
  282 
  283         if (dev->sysctl_tree != NULL)
  284                 return;
  285         devclass_sysctl_init(dc);
  286         sysctl_ctx_init(&dev->sysctl_ctx);
  287         dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
  288             SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
  289             dev->nameunit + strlen(dc->name),
  290             CTLFLAG_RD, NULL, "");
  291         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  292             OID_AUTO, "%desc", CTLFLAG_RD,
  293             dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
  294             "device description");
  295         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  296             OID_AUTO, "%driver", CTLFLAG_RD,
  297             dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
  298             "device driver name");
  299         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  300             OID_AUTO, "%location", CTLFLAG_RD,
  301             dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
  302             "device location relative to parent");
  303         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  304             OID_AUTO, "%pnpinfo", CTLFLAG_RD,
  305             dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
  306             "device identification");
  307         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  308             OID_AUTO, "%parent", CTLFLAG_RD,
  309             dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
  310             "parent device");
  311 }
  312 
  313 static void
  314 device_sysctl_update(device_t dev)
  315 {
  316         devclass_t dc = dev->devclass;
  317 
  318         if (dev->sysctl_tree == NULL)
  319                 return;
  320         sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
  321 }
  322 
  323 static void
  324 device_sysctl_fini(device_t dev)
  325 {
  326         if (dev->sysctl_tree == NULL)
  327                 return;
  328         sysctl_ctx_free(&dev->sysctl_ctx);
  329         dev->sysctl_tree = NULL;
  330 }
  331 
  332 /*
  333  * /dev/devctl implementation
  334  */
  335 
  336 /*
  337  * This design allows only one reader for /dev/devctl.  This is not desirable
  338  * in the long run, but will get a lot of hair out of this implementation.
  339  * Maybe we should make this device a clonable device.
  340  *
  341  * Also note: we specifically do not attach a device to the device_t tree
  342  * to avoid potential chicken and egg problems.  One could argue that all
  343  * of this belongs to the root node.  One could also further argue that the
  344  * sysctl interface that we have not might more properly be an ioctl
  345  * interface, but at this stage of the game, I'm not inclined to rock that
  346  * boat.
  347  *
  348  * I'm also not sure that the SIGIO support is done correctly or not, as
  349  * I copied it from a driver that had SIGIO support that likely hasn't been
  350  * tested since 3.4 or 2.2.8!
  351  */
  352 
  353 /* Deprecated way to adjust queue length */
  354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
  355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
  356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
  357     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
  358 
  359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
  360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
  361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
  363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
  364     0, sysctl_devctl_queue, "I", "devctl queue length");
  365 
  366 static d_open_t         devopen;
  367 static d_close_t        devclose;
  368 static d_read_t         devread;
  369 static d_ioctl_t        devioctl;
  370 static d_poll_t         devpoll;
  371 
  372 static struct cdevsw dev_cdevsw = {
  373         .d_version =    D_VERSION,
  374         .d_flags =      D_NEEDGIANT,
  375         .d_open =       devopen,
  376         .d_close =      devclose,
  377         .d_read =       devread,
  378         .d_ioctl =      devioctl,
  379         .d_poll =       devpoll,
  380         .d_name =       "devctl",
  381 };
  382 
  383 struct dev_event_info
  384 {
  385         char *dei_data;
  386         TAILQ_ENTRY(dev_event_info) dei_link;
  387 };
  388 
  389 TAILQ_HEAD(devq, dev_event_info);
  390 
  391 static struct dev_softc
  392 {
  393         int     inuse;
  394         int     nonblock;
  395         int     queued;
  396         struct mtx mtx;
  397         struct cv cv;
  398         struct selinfo sel;
  399         struct devq devq;
  400         struct proc *async_proc;
  401 } devsoftc;
  402 
  403 static struct cdev *devctl_dev;
  404 
  405 static void
  406 devinit(void)
  407 {
  408         devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
  409             UID_ROOT, GID_WHEEL, 0600, "devctl");
  410         mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
  411         cv_init(&devsoftc.cv, "dev cv");
  412         TAILQ_INIT(&devsoftc.devq);
  413 }
  414 
  415 static int
  416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
  417 {
  418         if (devsoftc.inuse)
  419                 return (EBUSY);
  420         /* move to init */
  421         devsoftc.inuse = 1;
  422         devsoftc.nonblock = 0;
  423         devsoftc.async_proc = NULL;
  424         return (0);
  425 }
  426 
  427 static int
  428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
  429 {
  430         devsoftc.inuse = 0;
  431         mtx_lock(&devsoftc.mtx);
  432         cv_broadcast(&devsoftc.cv);
  433         mtx_unlock(&devsoftc.mtx);
  434         devsoftc.async_proc = NULL;
  435         return (0);
  436 }
  437 
  438 /*
  439  * The read channel for this device is used to report changes to
  440  * userland in realtime.  We are required to free the data as well as
  441  * the n1 object because we allocate them separately.  Also note that
  442  * we return one record at a time.  If you try to read this device a
  443  * character at a time, you will lose the rest of the data.  Listening
  444  * programs are expected to cope.
  445  */
  446 static int
  447 devread(struct cdev *dev, struct uio *uio, int ioflag)
  448 {
  449         struct dev_event_info *n1;
  450         int rv;
  451 
  452         mtx_lock(&devsoftc.mtx);
  453         while (TAILQ_EMPTY(&devsoftc.devq)) {
  454                 if (devsoftc.nonblock) {
  455                         mtx_unlock(&devsoftc.mtx);
  456                         return (EAGAIN);
  457                 }
  458                 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
  459                 if (rv) {
  460                         /*
  461                          * Need to translate ERESTART to EINTR here? -- jake
  462                          */
  463                         mtx_unlock(&devsoftc.mtx);
  464                         return (rv);
  465                 }
  466         }
  467         n1 = TAILQ_FIRST(&devsoftc.devq);
  468         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  469         devsoftc.queued--;
  470         mtx_unlock(&devsoftc.mtx);
  471         rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
  472         free(n1->dei_data, M_BUS);
  473         free(n1, M_BUS);
  474         return (rv);
  475 }
  476 
  477 static  int
  478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
  479 {
  480         switch (cmd) {
  481 
  482         case FIONBIO:
  483                 if (*(int*)data)
  484                         devsoftc.nonblock = 1;
  485                 else
  486                         devsoftc.nonblock = 0;
  487                 return (0);
  488         case FIOASYNC:
  489                 if (*(int*)data)
  490                         devsoftc.async_proc = td->td_proc;
  491                 else
  492                         devsoftc.async_proc = NULL;
  493                 return (0);
  494 
  495                 /* (un)Support for other fcntl() calls. */
  496         case FIOCLEX:
  497         case FIONCLEX:
  498         case FIONREAD:
  499         case FIOSETOWN:
  500         case FIOGETOWN:
  501         default:
  502                 break;
  503         }
  504         return (ENOTTY);
  505 }
  506 
  507 static  int
  508 devpoll(struct cdev *dev, int events, struct thread *td)
  509 {
  510         int     revents = 0;
  511 
  512         mtx_lock(&devsoftc.mtx);
  513         if (events & (POLLIN | POLLRDNORM)) {
  514                 if (!TAILQ_EMPTY(&devsoftc.devq))
  515                         revents = events & (POLLIN | POLLRDNORM);
  516                 else
  517                         selrecord(td, &devsoftc.sel);
  518         }
  519         mtx_unlock(&devsoftc.mtx);
  520 
  521         return (revents);
  522 }
  523 
  524 /**
  525  * @brief Return whether the userland process is running
  526  */
  527 boolean_t
  528 devctl_process_running(void)
  529 {
  530         return (devsoftc.inuse == 1);
  531 }
  532 
  533 /**
  534  * @brief Queue data to be read from the devctl device
  535  *
  536  * Generic interface to queue data to the devctl device.  It is
  537  * assumed that @p data is properly formatted.  It is further assumed
  538  * that @p data is allocated using the M_BUS malloc type.
  539  */
  540 void
  541 devctl_queue_data_f(char *data, int flags)
  542 {
  543         struct dev_event_info *n1 = NULL, *n2 = NULL;
  544         struct proc *p;
  545 
  546         if (strlen(data) == 0)
  547                 goto out;
  548         if (devctl_queue_length == 0)
  549                 goto out;
  550         n1 = malloc(sizeof(*n1), M_BUS, flags);
  551         if (n1 == NULL)
  552                 goto out;
  553         n1->dei_data = data;
  554         mtx_lock(&devsoftc.mtx);
  555         if (devctl_queue_length == 0) {
  556                 mtx_unlock(&devsoftc.mtx);
  557                 free(n1->dei_data, M_BUS);
  558                 free(n1, M_BUS);
  559                 return;
  560         }
  561         /* Leave at least one spot in the queue... */
  562         while (devsoftc.queued > devctl_queue_length - 1) {
  563                 n2 = TAILQ_FIRST(&devsoftc.devq);
  564                 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
  565                 free(n2->dei_data, M_BUS);
  566                 free(n2, M_BUS);
  567                 devsoftc.queued--;
  568         }
  569         TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
  570         devsoftc.queued++;
  571         cv_broadcast(&devsoftc.cv);
  572         mtx_unlock(&devsoftc.mtx);
  573         selwakeup(&devsoftc.sel);
  574         p = devsoftc.async_proc;
  575         if (p != NULL) {
  576                 PROC_LOCK(p);
  577                 psignal(p, SIGIO);
  578                 PROC_UNLOCK(p);
  579         }
  580         return;
  581 out:
  582         /*
  583          * We have to free data on all error paths since the caller
  584          * assumes it will be free'd when this item is dequeued.
  585          */
  586         free(data, M_BUS);
  587         return;
  588 }
  589 
  590 void
  591 devctl_queue_data(char *data)
  592 {
  593 
  594         devctl_queue_data_f(data, M_NOWAIT);
  595 }
  596 
  597 /**
  598  * @brief Send a 'notification' to userland, using standard ways
  599  */
  600 void
  601 devctl_notify_f(const char *system, const char *subsystem, const char *type,
  602     const char *data, int flags)
  603 {
  604         int len = 0;
  605         char *msg;
  606 
  607         if (system == NULL)
  608                 return;         /* BOGUS!  Must specify system. */
  609         if (subsystem == NULL)
  610                 return;         /* BOGUS!  Must specify subsystem. */
  611         if (type == NULL)
  612                 return;         /* BOGUS!  Must specify type. */
  613         len += strlen(" system=") + strlen(system);
  614         len += strlen(" subsystem=") + strlen(subsystem);
  615         len += strlen(" type=") + strlen(type);
  616         /* add in the data message plus newline. */
  617         if (data != NULL)
  618                 len += strlen(data);
  619         len += 3;       /* '!', '\n', and NUL */
  620         msg = malloc(len, M_BUS, flags);
  621         if (msg == NULL)
  622                 return;         /* Drop it on the floor */
  623         if (data != NULL)
  624                 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
  625                     system, subsystem, type, data);
  626         else
  627                 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
  628                     system, subsystem, type);
  629         devctl_queue_data_f(msg, flags);
  630 }
  631 
  632 void
  633 devctl_notify(const char *system, const char *subsystem, const char *type,
  634     const char *data)
  635 {
  636 
  637         devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
  638 }
  639 
  640 /*
  641  * Common routine that tries to make sending messages as easy as possible.
  642  * We allocate memory for the data, copy strings into that, but do not
  643  * free it unless there's an error.  The dequeue part of the driver should
  644  * free the data.  We don't send data when the device is disabled.  We do
  645  * send data, even when we have no listeners, because we wish to avoid
  646  * races relating to startup and restart of listening applications.
  647  *
  648  * devaddq is designed to string together the type of event, with the
  649  * object of that event, plus the plug and play info and location info
  650  * for that event.  This is likely most useful for devices, but less
  651  * useful for other consumers of this interface.  Those should use
  652  * the devctl_queue_data() interface instead.
  653  */
  654 static void
  655 devaddq(const char *type, const char *what, device_t dev)
  656 {
  657         char *data = NULL;
  658         char *loc = NULL;
  659         char *pnp = NULL;
  660         const char *parstr;
  661 
  662         if (!devctl_queue_length)/* Rare race, but lost races safely discard */
  663                 return;
  664         data = malloc(1024, M_BUS, M_NOWAIT);
  665         if (data == NULL)
  666                 goto bad;
  667 
  668         /* get the bus specific location of this device */
  669         loc = malloc(1024, M_BUS, M_NOWAIT);
  670         if (loc == NULL)
  671                 goto bad;
  672         *loc = '\0';
  673         bus_child_location_str(dev, loc, 1024);
  674 
  675         /* Get the bus specific pnp info of this device */
  676         pnp = malloc(1024, M_BUS, M_NOWAIT);
  677         if (pnp == NULL)
  678                 goto bad;
  679         *pnp = '\0';
  680         bus_child_pnpinfo_str(dev, pnp, 1024);
  681 
  682         /* Get the parent of this device, or / if high enough in the tree. */
  683         if (device_get_parent(dev) == NULL)
  684                 parstr = ".";   /* Or '/' ? */
  685         else
  686                 parstr = device_get_nameunit(device_get_parent(dev));
  687         /* String it all together. */
  688         snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
  689           parstr);
  690         free(loc, M_BUS);
  691         free(pnp, M_BUS);
  692         devctl_queue_data(data);
  693         return;
  694 bad:
  695         free(pnp, M_BUS);
  696         free(loc, M_BUS);
  697         free(data, M_BUS);
  698         return;
  699 }
  700 
  701 /*
  702  * A device was added to the tree.  We are called just after it successfully
  703  * attaches (that is, probe and attach success for this device).  No call
  704  * is made if a device is merely parented into the tree.  See devnomatch
  705  * if probe fails.  If attach fails, no notification is sent (but maybe
  706  * we should have a different message for this).
  707  */
  708 static void
  709 devadded(device_t dev)
  710 {
  711         char *pnp = NULL;
  712         char *tmp = NULL;
  713 
  714         pnp = malloc(1024, M_BUS, M_NOWAIT);
  715         if (pnp == NULL)
  716                 goto fail;
  717         tmp = malloc(1024, M_BUS, M_NOWAIT);
  718         if (tmp == NULL)
  719                 goto fail;
  720         *pnp = '\0';
  721         bus_child_pnpinfo_str(dev, pnp, 1024);
  722         snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
  723         devaddq("+", tmp, dev);
  724 fail:
  725         if (pnp != NULL)
  726                 free(pnp, M_BUS);
  727         if (tmp != NULL)
  728                 free(tmp, M_BUS);
  729         return;
  730 }
  731 
  732 /*
  733  * A device was removed from the tree.  We are called just before this
  734  * happens.
  735  */
  736 static void
  737 devremoved(device_t dev)
  738 {
  739         char *pnp = NULL;
  740         char *tmp = NULL;
  741 
  742         pnp = malloc(1024, M_BUS, M_NOWAIT);
  743         if (pnp == NULL)
  744                 goto fail;
  745         tmp = malloc(1024, M_BUS, M_NOWAIT);
  746         if (tmp == NULL)
  747                 goto fail;
  748         *pnp = '\0';
  749         bus_child_pnpinfo_str(dev, pnp, 1024);
  750         snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
  751         devaddq("-", tmp, dev);
  752 fail:
  753         if (pnp != NULL)
  754                 free(pnp, M_BUS);
  755         if (tmp != NULL)
  756                 free(tmp, M_BUS);
  757         return;
  758 }
  759 
  760 /*
  761  * Called when there's no match for this device.  This is only called
  762  * the first time that no match happens, so we don't keep getting this
  763  * message.  Should that prove to be undesirable, we can change it.
  764  * This is called when all drivers that can attach to a given bus
  765  * decline to accept this device.  Other errrors may not be detected.
  766  */
  767 static void
  768 devnomatch(device_t dev)
  769 {
  770         devaddq("?", "", dev);
  771 }
  772 
  773 static int
  774 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
  775 {
  776         struct dev_event_info *n1;
  777         int dis, error;
  778 
  779         dis = devctl_queue_length == 0;
  780         error = sysctl_handle_int(oidp, &dis, 0, req);
  781         if (error || !req->newptr)
  782                 return (error);
  783         mtx_lock(&devsoftc.mtx);
  784         if (dis) {
  785                 while (!TAILQ_EMPTY(&devsoftc.devq)) {
  786                         n1 = TAILQ_FIRST(&devsoftc.devq);
  787                         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  788                         free(n1->dei_data, M_BUS);
  789                         free(n1, M_BUS);
  790                 }
  791                 devsoftc.queued = 0;
  792                 devctl_queue_length = 0;
  793         } else {
  794                 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  795         }
  796         mtx_unlock(&devsoftc.mtx);
  797         return (0);
  798 }
  799 
  800 static int
  801 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
  802 {
  803         struct dev_event_info *n1;
  804         int q, error;
  805 
  806         q = devctl_queue_length;
  807         error = sysctl_handle_int(oidp, &q, 0, req);
  808         if (error || !req->newptr)
  809                 return (error);
  810         if (q < 0)
  811                 return (EINVAL);
  812         mtx_lock(&devsoftc.mtx);
  813         devctl_queue_length = q;
  814         while (devsoftc.queued > devctl_queue_length) {
  815                 n1 = TAILQ_FIRST(&devsoftc.devq);
  816                 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  817                 free(n1->dei_data, M_BUS);
  818                 free(n1, M_BUS);
  819                 devsoftc.queued--;
  820         }
  821         mtx_unlock(&devsoftc.mtx);
  822         return (0);
  823 }
  824 
  825 /* End of /dev/devctl code */
  826 
  827 static TAILQ_HEAD(,device)      bus_data_devices;
  828 static int bus_data_generation = 1;
  829 
  830 static kobj_method_t null_methods[] = {
  831         KOBJMETHOD_END
  832 };
  833 
  834 DEFINE_CLASS(null, null_methods, 0);
  835 
  836 /*
  837  * Bus pass implementation
  838  */
  839 
  840 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
  841 int bus_current_pass = BUS_PASS_ROOT;
  842 
  843 /**
  844  * @internal
  845  * @brief Register the pass level of a new driver attachment
  846  *
  847  * Register a new driver attachment's pass level.  If no driver
  848  * attachment with the same pass level has been added, then @p new
  849  * will be added to the global passes list.
  850  *
  851  * @param new           the new driver attachment
  852  */
  853 static void
  854 driver_register_pass(struct driverlink *new)
  855 {
  856         struct driverlink *dl;
  857 
  858         /* We only consider pass numbers during boot. */
  859         if (bus_current_pass == BUS_PASS_DEFAULT)
  860                 return;
  861 
  862         /*
  863          * Walk the passes list.  If we already know about this pass
  864          * then there is nothing to do.  If we don't, then insert this
  865          * driver link into the list.
  866          */
  867         TAILQ_FOREACH(dl, &passes, passlink) {
  868                 if (dl->pass < new->pass)
  869                         continue;
  870                 if (dl->pass == new->pass)
  871                         return;
  872                 TAILQ_INSERT_BEFORE(dl, new, passlink);
  873                 return;
  874         }
  875         TAILQ_INSERT_TAIL(&passes, new, passlink);
  876 }
  877 
  878 /**
  879  * @brief Raise the current bus pass
  880  *
  881  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
  882  * method on the root bus to kick off a new device tree scan for each
  883  * new pass level that has at least one driver.
  884  */
  885 void
  886 bus_set_pass(int pass)
  887 {
  888         struct driverlink *dl;
  889 
  890         if (bus_current_pass > pass)
  891                 panic("Attempt to lower bus pass level");
  892 
  893         TAILQ_FOREACH(dl, &passes, passlink) {
  894                 /* Skip pass values below the current pass level. */
  895                 if (dl->pass <= bus_current_pass)
  896                         continue;
  897 
  898                 /*
  899                  * Bail once we hit a driver with a pass level that is
  900                  * too high.
  901                  */
  902                 if (dl->pass > pass)
  903                         break;
  904 
  905                 /*
  906                  * Raise the pass level to the next level and rescan
  907                  * the tree.
  908                  */
  909                 bus_current_pass = dl->pass;
  910                 BUS_NEW_PASS(root_bus);
  911         }
  912 
  913         /*
  914          * If there isn't a driver registered for the requested pass,
  915          * then bus_current_pass might still be less than 'pass'.  Set
  916          * it to 'pass' in that case.
  917          */
  918         if (bus_current_pass < pass)
  919                 bus_current_pass = pass;
  920         KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
  921 }
  922 
  923 /*
  924  * Devclass implementation
  925  */
  926 
  927 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
  928 
  929 /**
  930  * @internal
  931  * @brief Find or create a device class
  932  *
  933  * If a device class with the name @p classname exists, return it,
  934  * otherwise if @p create is non-zero create and return a new device
  935  * class.
  936  *
  937  * If @p parentname is non-NULL, the parent of the devclass is set to
  938  * the devclass of that name.
  939  *
  940  * @param classname     the devclass name to find or create
  941  * @param parentname    the parent devclass name or @c NULL
  942  * @param create        non-zero to create a devclass
  943  */
  944 static devclass_t
  945 devclass_find_internal(const char *classname, const char *parentname,
  946                        int create)
  947 {
  948         devclass_t dc;
  949 
  950         PDEBUG(("looking for %s", classname));
  951         if (!classname)
  952                 return (NULL);
  953 
  954         TAILQ_FOREACH(dc, &devclasses, link) {
  955                 if (!strcmp(dc->name, classname))
  956                         break;
  957         }
  958 
  959         if (create && !dc) {
  960                 PDEBUG(("creating %s", classname));
  961                 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
  962                     M_BUS, M_NOWAIT | M_ZERO);
  963                 if (!dc)
  964                         return (NULL);
  965                 dc->parent = NULL;
  966                 dc->name = (char*) (dc + 1);
  967                 strcpy(dc->name, classname);
  968                 TAILQ_INIT(&dc->drivers);
  969                 TAILQ_INSERT_TAIL(&devclasses, dc, link);
  970 
  971                 bus_data_generation_update();
  972         }
  973 
  974         /*
  975          * If a parent class is specified, then set that as our parent so
  976          * that this devclass will support drivers for the parent class as
  977          * well.  If the parent class has the same name don't do this though
  978          * as it creates a cycle that can trigger an infinite loop in
  979          * device_probe_child() if a device exists for which there is no
  980          * suitable driver.
  981          */
  982         if (parentname && dc && !dc->parent &&
  983             strcmp(classname, parentname) != 0) {
  984                 dc->parent = devclass_find_internal(parentname, NULL, TRUE);
  985                 dc->parent->flags |= DC_HAS_CHILDREN;
  986         }
  987 
  988         return (dc);
  989 }
  990 
  991 /**
  992  * @brief Create a device class
  993  *
  994  * If a device class with the name @p classname exists, return it,
  995  * otherwise create and return a new device class.
  996  *
  997  * @param classname     the devclass name to find or create
  998  */
  999 devclass_t
 1000 devclass_create(const char *classname)
 1001 {
 1002         return (devclass_find_internal(classname, NULL, TRUE));
 1003 }
 1004 
 1005 /**
 1006  * @brief Find a device class
 1007  *
 1008  * If a device class with the name @p classname exists, return it,
 1009  * otherwise return @c NULL.
 1010  *
 1011  * @param classname     the devclass name to find
 1012  */
 1013 devclass_t
 1014 devclass_find(const char *classname)
 1015 {
 1016         return (devclass_find_internal(classname, NULL, FALSE));
 1017 }
 1018 
 1019 /**
 1020  * @brief Register that a device driver has been added to a devclass
 1021  *
 1022  * Register that a device driver has been added to a devclass.  This
 1023  * is called by devclass_add_driver to accomplish the recursive
 1024  * notification of all the children classes of dc, as well as dc.
 1025  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
 1026  * the devclass.
 1027  *
 1028  * We do a full search here of the devclass list at each iteration
 1029  * level to save storing children-lists in the devclass structure.  If
 1030  * we ever move beyond a few dozen devices doing this, we may need to
 1031  * reevaluate...
 1032  *
 1033  * @param dc            the devclass to edit
 1034  * @param driver        the driver that was just added
 1035  */
 1036 static void
 1037 devclass_driver_added(devclass_t dc, driver_t *driver)
 1038 {
 1039         devclass_t parent;
 1040         int i;
 1041 
 1042         /*
 1043          * Call BUS_DRIVER_ADDED for any existing busses in this class.
 1044          */
 1045         for (i = 0; i < dc->maxunit; i++)
 1046                 if (dc->devices[i] && device_is_attached(dc->devices[i]))
 1047                         BUS_DRIVER_ADDED(dc->devices[i], driver);
 1048 
 1049         /*
 1050          * Walk through the children classes.  Since we only keep a
 1051          * single parent pointer around, we walk the entire list of
 1052          * devclasses looking for children.  We set the
 1053          * DC_HAS_CHILDREN flag when a child devclass is created on
 1054          * the parent, so we only walk the list for those devclasses
 1055          * that have children.
 1056          */
 1057         if (!(dc->flags & DC_HAS_CHILDREN))
 1058                 return;
 1059         parent = dc;
 1060         TAILQ_FOREACH(dc, &devclasses, link) {
 1061                 if (dc->parent == parent)
 1062                         devclass_driver_added(dc, driver);
 1063         }
 1064 }
 1065 
 1066 /**
 1067  * @brief Add a device driver to a device class
 1068  *
 1069  * Add a device driver to a devclass. This is normally called
 1070  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
 1071  * all devices in the devclass will be called to allow them to attempt
 1072  * to re-probe any unmatched children.
 1073  *
 1074  * @param dc            the devclass to edit
 1075  * @param driver        the driver to register
 1076  */
 1077 static int
 1078 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
 1079 {
 1080         driverlink_t dl;
 1081         const char *parentname;
 1082 
 1083         PDEBUG(("%s", DRIVERNAME(driver)));
 1084 
 1085         /* Don't allow invalid pass values. */
 1086         if (pass <= BUS_PASS_ROOT)
 1087                 return (EINVAL);
 1088 
 1089         dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
 1090         if (!dl)
 1091                 return (ENOMEM);
 1092 
 1093         /*
 1094          * Compile the driver's methods. Also increase the reference count
 1095          * so that the class doesn't get freed when the last instance
 1096          * goes. This means we can safely use static methods and avoids a
 1097          * double-free in devclass_delete_driver.
 1098          */
 1099         kobj_class_compile((kobj_class_t) driver);
 1100 
 1101         /*
 1102          * If the driver has any base classes, make the
 1103          * devclass inherit from the devclass of the driver's
 1104          * first base class. This will allow the system to
 1105          * search for drivers in both devclasses for children
 1106          * of a device using this driver.
 1107          */
 1108         if (driver->baseclasses)
 1109                 parentname = driver->baseclasses[0]->name;
 1110         else
 1111                 parentname = NULL;
 1112         *dcp = devclass_find_internal(driver->name, parentname, TRUE);
 1113 
 1114         dl->driver = driver;
 1115         TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
 1116         driver->refs++;         /* XXX: kobj_mtx */
 1117         dl->pass = pass;
 1118         driver_register_pass(dl);
 1119 
 1120         devclass_driver_added(dc, driver);
 1121         bus_data_generation_update();
 1122         return (0);
 1123 }
 1124 
 1125 /**
 1126  * @brief Register that a device driver has been deleted from a devclass
 1127  *
 1128  * Register that a device driver has been removed from a devclass.
 1129  * This is called by devclass_delete_driver to accomplish the
 1130  * recursive notification of all the children classes of busclass, as
 1131  * well as busclass.  Each layer will attempt to detach the driver
 1132  * from any devices that are children of the bus's devclass.  The function
 1133  * will return an error if a device fails to detach.
 1134  * 
 1135  * We do a full search here of the devclass list at each iteration
 1136  * level to save storing children-lists in the devclass structure.  If
 1137  * we ever move beyond a few dozen devices doing this, we may need to
 1138  * reevaluate...
 1139  *
 1140  * @param busclass      the devclass of the parent bus
 1141  * @param dc            the devclass of the driver being deleted
 1142  * @param driver        the driver being deleted
 1143  */
 1144 static int
 1145 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
 1146 {
 1147         devclass_t parent;
 1148         device_t dev;
 1149         int error, i;
 1150 
 1151         /*
 1152          * Disassociate from any devices.  We iterate through all the
 1153          * devices in the devclass of the driver and detach any which are
 1154          * using the driver and which have a parent in the devclass which
 1155          * we are deleting from.
 1156          *
 1157          * Note that since a driver can be in multiple devclasses, we
 1158          * should not detach devices which are not children of devices in
 1159          * the affected devclass.
 1160          */
 1161         for (i = 0; i < dc->maxunit; i++) {
 1162                 if (dc->devices[i]) {
 1163                         dev = dc->devices[i];
 1164                         if (dev->driver == driver && dev->parent &&
 1165                             dev->parent->devclass == busclass) {
 1166                                 if ((error = device_detach(dev)) != 0)
 1167                                         return (error);
 1168                                 BUS_PROBE_NOMATCH(dev->parent, dev);
 1169                                 devnomatch(dev);
 1170                                 dev->flags |= DF_DONENOMATCH;
 1171                         }
 1172                 }
 1173         }
 1174 
 1175         /*
 1176          * Walk through the children classes.  Since we only keep a
 1177          * single parent pointer around, we walk the entire list of
 1178          * devclasses looking for children.  We set the
 1179          * DC_HAS_CHILDREN flag when a child devclass is created on
 1180          * the parent, so we only walk the list for those devclasses
 1181          * that have children.
 1182          */
 1183         if (!(busclass->flags & DC_HAS_CHILDREN))
 1184                 return (0);
 1185         parent = busclass;
 1186         TAILQ_FOREACH(busclass, &devclasses, link) {
 1187                 if (busclass->parent == parent) {
 1188                         error = devclass_driver_deleted(busclass, dc, driver);
 1189                         if (error)
 1190                                 return (error);
 1191                 }
 1192         }
 1193         return (0);
 1194 }
 1195 
 1196 /**
 1197  * @brief Delete a device driver from a device class
 1198  *
 1199  * Delete a device driver from a devclass. This is normally called
 1200  * automatically by DRIVER_MODULE().
 1201  *
 1202  * If the driver is currently attached to any devices,
 1203  * devclass_delete_driver() will first attempt to detach from each
 1204  * device. If one of the detach calls fails, the driver will not be
 1205  * deleted.
 1206  *
 1207  * @param dc            the devclass to edit
 1208  * @param driver        the driver to unregister
 1209  */
 1210 static int
 1211 devclass_delete_driver(devclass_t busclass, driver_t *driver)
 1212 {
 1213         devclass_t dc = devclass_find(driver->name);
 1214         driverlink_t dl;
 1215         int error;
 1216 
 1217         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1218 
 1219         if (!dc)
 1220                 return (0);
 1221 
 1222         /*
 1223          * Find the link structure in the bus' list of drivers.
 1224          */
 1225         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1226                 if (dl->driver == driver)
 1227                         break;
 1228         }
 1229 
 1230         if (!dl) {
 1231                 PDEBUG(("%s not found in %s list", driver->name,
 1232                     busclass->name));
 1233                 return (ENOENT);
 1234         }
 1235 
 1236         error = devclass_driver_deleted(busclass, dc, driver);
 1237         if (error != 0)
 1238                 return (error);
 1239 
 1240         TAILQ_REMOVE(&busclass->drivers, dl, link);
 1241         free(dl, M_BUS);
 1242 
 1243         /* XXX: kobj_mtx */
 1244         driver->refs--;
 1245         if (driver->refs == 0)
 1246                 kobj_class_free((kobj_class_t) driver);
 1247 
 1248         bus_data_generation_update();
 1249         return (0);
 1250 }
 1251 
 1252 /**
 1253  * @brief Quiesces a set of device drivers from a device class
 1254  *
 1255  * Quiesce a device driver from a devclass. This is normally called
 1256  * automatically by DRIVER_MODULE().
 1257  *
 1258  * If the driver is currently attached to any devices,
 1259  * devclass_quiesece_driver() will first attempt to quiesce each
 1260  * device.
 1261  *
 1262  * @param dc            the devclass to edit
 1263  * @param driver        the driver to unregister
 1264  */
 1265 static int
 1266 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
 1267 {
 1268         devclass_t dc = devclass_find(driver->name);
 1269         driverlink_t dl;
 1270         device_t dev;
 1271         int i;
 1272         int error;
 1273 
 1274         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1275 
 1276         if (!dc)
 1277                 return (0);
 1278 
 1279         /*
 1280          * Find the link structure in the bus' list of drivers.
 1281          */
 1282         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1283                 if (dl->driver == driver)
 1284                         break;
 1285         }
 1286 
 1287         if (!dl) {
 1288                 PDEBUG(("%s not found in %s list", driver->name,
 1289                     busclass->name));
 1290                 return (ENOENT);
 1291         }
 1292 
 1293         /*
 1294          * Quiesce all devices.  We iterate through all the devices in
 1295          * the devclass of the driver and quiesce any which are using
 1296          * the driver and which have a parent in the devclass which we
 1297          * are quiescing.
 1298          *
 1299          * Note that since a driver can be in multiple devclasses, we
 1300          * should not quiesce devices which are not children of
 1301          * devices in the affected devclass.
 1302          */
 1303         for (i = 0; i < dc->maxunit; i++) {
 1304                 if (dc->devices[i]) {
 1305                         dev = dc->devices[i];
 1306                         if (dev->driver == driver && dev->parent &&
 1307                             dev->parent->devclass == busclass) {
 1308                                 if ((error = device_quiesce(dev)) != 0)
 1309                                         return (error);
 1310                         }
 1311                 }
 1312         }
 1313 
 1314         return (0);
 1315 }
 1316 
 1317 /**
 1318  * @internal
 1319  */
 1320 static driverlink_t
 1321 devclass_find_driver_internal(devclass_t dc, const char *classname)
 1322 {
 1323         driverlink_t dl;
 1324 
 1325         PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
 1326 
 1327         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1328                 if (!strcmp(dl->driver->name, classname))
 1329                         return (dl);
 1330         }
 1331 
 1332         PDEBUG(("not found"));
 1333         return (NULL);
 1334 }
 1335 
 1336 /**
 1337  * @brief Return the name of the devclass
 1338  */
 1339 const char *
 1340 devclass_get_name(devclass_t dc)
 1341 {
 1342         return (dc->name);
 1343 }
 1344 
 1345 /**
 1346  * @brief Find a device given a unit number
 1347  *
 1348  * @param dc            the devclass to search
 1349  * @param unit          the unit number to search for
 1350  * 
 1351  * @returns             the device with the given unit number or @c
 1352  *                      NULL if there is no such device
 1353  */
 1354 device_t
 1355 devclass_get_device(devclass_t dc, int unit)
 1356 {
 1357         if (dc == NULL || unit < 0 || unit >= dc->maxunit)
 1358                 return (NULL);
 1359         return (dc->devices[unit]);
 1360 }
 1361 
 1362 /**
 1363  * @brief Find the softc field of a device given a unit number
 1364  *
 1365  * @param dc            the devclass to search
 1366  * @param unit          the unit number to search for
 1367  * 
 1368  * @returns             the softc field of the device with the given
 1369  *                      unit number or @c NULL if there is no such
 1370  *                      device
 1371  */
 1372 void *
 1373 devclass_get_softc(devclass_t dc, int unit)
 1374 {
 1375         device_t dev;
 1376 
 1377         dev = devclass_get_device(dc, unit);
 1378         if (!dev)
 1379                 return (NULL);
 1380 
 1381         return (device_get_softc(dev));
 1382 }
 1383 
 1384 /**
 1385  * @brief Get a list of devices in the devclass
 1386  *
 1387  * An array containing a list of all the devices in the given devclass
 1388  * is allocated and returned in @p *devlistp. The number of devices
 1389  * in the array is returned in @p *devcountp. The caller should free
 1390  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
 1391  *
 1392  * @param dc            the devclass to examine
 1393  * @param devlistp      points at location for array pointer return
 1394  *                      value
 1395  * @param devcountp     points at location for array size return value
 1396  *
 1397  * @retval 0            success
 1398  * @retval ENOMEM       the array allocation failed
 1399  */
 1400 int
 1401 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
 1402 {
 1403         int count, i;
 1404         device_t *list;
 1405 
 1406         count = devclass_get_count(dc);
 1407         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 1408         if (!list)
 1409                 return (ENOMEM);
 1410 
 1411         count = 0;
 1412         for (i = 0; i < dc->maxunit; i++) {
 1413                 if (dc->devices[i]) {
 1414                         list[count] = dc->devices[i];
 1415                         count++;
 1416                 }
 1417         }
 1418 
 1419         *devlistp = list;
 1420         *devcountp = count;
 1421 
 1422         return (0);
 1423 }
 1424 
 1425 /**
 1426  * @brief Get a list of drivers in the devclass
 1427  *
 1428  * An array containing a list of pointers to all the drivers in the
 1429  * given devclass is allocated and returned in @p *listp.  The number
 1430  * of drivers in the array is returned in @p *countp. The caller should
 1431  * free the array using @c free(p, M_TEMP).
 1432  *
 1433  * @param dc            the devclass to examine
 1434  * @param listp         gives location for array pointer return value
 1435  * @param countp        gives location for number of array elements
 1436  *                      return value
 1437  *
 1438  * @retval 0            success
 1439  * @retval ENOMEM       the array allocation failed
 1440  */
 1441 int
 1442 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
 1443 {
 1444         driverlink_t dl;
 1445         driver_t **list;
 1446         int count;
 1447 
 1448         count = 0;
 1449         TAILQ_FOREACH(dl, &dc->drivers, link)
 1450                 count++;
 1451         list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
 1452         if (list == NULL)
 1453                 return (ENOMEM);
 1454 
 1455         count = 0;
 1456         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1457                 list[count] = dl->driver;
 1458                 count++;
 1459         }
 1460         *listp = list;
 1461         *countp = count;
 1462 
 1463         return (0);
 1464 }
 1465 
 1466 /**
 1467  * @brief Get the number of devices in a devclass
 1468  *
 1469  * @param dc            the devclass to examine
 1470  */
 1471 int
 1472 devclass_get_count(devclass_t dc)
 1473 {
 1474         int count, i;
 1475 
 1476         count = 0;
 1477         for (i = 0; i < dc->maxunit; i++)
 1478                 if (dc->devices[i])
 1479                         count++;
 1480         return (count);
 1481 }
 1482 
 1483 /**
 1484  * @brief Get the maximum unit number used in a devclass
 1485  *
 1486  * Note that this is one greater than the highest currently-allocated
 1487  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
 1488  * that not even the devclass has been allocated yet.
 1489  *
 1490  * @param dc            the devclass to examine
 1491  */
 1492 int
 1493 devclass_get_maxunit(devclass_t dc)
 1494 {
 1495         if (dc == NULL)
 1496                 return (-1);
 1497         return (dc->maxunit);
 1498 }
 1499 
 1500 /**
 1501  * @brief Find a free unit number in a devclass
 1502  *
 1503  * This function searches for the first unused unit number greater
 1504  * that or equal to @p unit.
 1505  *
 1506  * @param dc            the devclass to examine
 1507  * @param unit          the first unit number to check
 1508  */
 1509 int
 1510 devclass_find_free_unit(devclass_t dc, int unit)
 1511 {
 1512         if (dc == NULL)
 1513                 return (unit);
 1514         while (unit < dc->maxunit && dc->devices[unit] != NULL)
 1515                 unit++;
 1516         return (unit);
 1517 }
 1518 
 1519 /**
 1520  * @brief Set the parent of a devclass
 1521  *
 1522  * The parent class is normally initialised automatically by
 1523  * DRIVER_MODULE().
 1524  *
 1525  * @param dc            the devclass to edit
 1526  * @param pdc           the new parent devclass
 1527  */
 1528 void
 1529 devclass_set_parent(devclass_t dc, devclass_t pdc)
 1530 {
 1531         dc->parent = pdc;
 1532 }
 1533 
 1534 /**
 1535  * @brief Get the parent of a devclass
 1536  *
 1537  * @param dc            the devclass to examine
 1538  */
 1539 devclass_t
 1540 devclass_get_parent(devclass_t dc)
 1541 {
 1542         return (dc->parent);
 1543 }
 1544 
 1545 struct sysctl_ctx_list *
 1546 devclass_get_sysctl_ctx(devclass_t dc)
 1547 {
 1548         return (&dc->sysctl_ctx);
 1549 }
 1550 
 1551 struct sysctl_oid *
 1552 devclass_get_sysctl_tree(devclass_t dc)
 1553 {
 1554         return (dc->sysctl_tree);
 1555 }
 1556 
 1557 /**
 1558  * @internal
 1559  * @brief Allocate a unit number
 1560  *
 1561  * On entry, @p *unitp is the desired unit number (or @c -1 if any
 1562  * will do). The allocated unit number is returned in @p *unitp.
 1563 
 1564  * @param dc            the devclass to allocate from
 1565  * @param unitp         points at the location for the allocated unit
 1566  *                      number
 1567  *
 1568  * @retval 0            success
 1569  * @retval EEXIST       the requested unit number is already allocated
 1570  * @retval ENOMEM       memory allocation failure
 1571  */
 1572 static int
 1573 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
 1574 {
 1575         const char *s;
 1576         int unit = *unitp;
 1577 
 1578         PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1579 
 1580         /* Ask the parent bus if it wants to wire this device. */
 1581         if (unit == -1)
 1582                 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
 1583                     &unit);
 1584 
 1585         /* If we were given a wired unit number, check for existing device */
 1586         /* XXX imp XXX */
 1587         if (unit != -1) {
 1588                 if (unit >= 0 && unit < dc->maxunit &&
 1589                     dc->devices[unit] != NULL) {
 1590                         if (bootverbose)
 1591                                 printf("%s: %s%d already exists; skipping it\n",
 1592                                     dc->name, dc->name, *unitp);
 1593                         return (EEXIST);
 1594                 }
 1595         } else {
 1596                 /* Unwired device, find the next available slot for it */
 1597                 unit = 0;
 1598                 for (unit = 0;; unit++) {
 1599                         /* If there is an "at" hint for a unit then skip it. */
 1600                         if (resource_string_value(dc->name, unit, "at", &s) ==
 1601                             0)
 1602                                 continue;
 1603 
 1604                         /* If this device slot is already in use, skip it. */
 1605                         if (unit < dc->maxunit && dc->devices[unit] != NULL)
 1606                                 continue;
 1607 
 1608                         break;
 1609                 }
 1610         }
 1611 
 1612         /*
 1613          * We've selected a unit beyond the length of the table, so let's
 1614          * extend the table to make room for all units up to and including
 1615          * this one.
 1616          */
 1617         if (unit >= dc->maxunit) {
 1618                 device_t *newlist, *oldlist;
 1619                 int newsize;
 1620 
 1621                 oldlist = dc->devices;
 1622                 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
 1623                 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
 1624                 if (!newlist)
 1625                         return (ENOMEM);
 1626                 if (oldlist != NULL)
 1627                         bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
 1628                 bzero(newlist + dc->maxunit,
 1629                     sizeof(device_t) * (newsize - dc->maxunit));
 1630                 dc->devices = newlist;
 1631                 dc->maxunit = newsize;
 1632                 if (oldlist != NULL)
 1633                         free(oldlist, M_BUS);
 1634         }
 1635         PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1636 
 1637         *unitp = unit;
 1638         return (0);
 1639 }
 1640 
 1641 /**
 1642  * @internal
 1643  * @brief Add a device to a devclass
 1644  *
 1645  * A unit number is allocated for the device (using the device's
 1646  * preferred unit number if any) and the device is registered in the
 1647  * devclass. This allows the device to be looked up by its unit
 1648  * number, e.g. by decoding a dev_t minor number.
 1649  *
 1650  * @param dc            the devclass to add to
 1651  * @param dev           the device to add
 1652  *
 1653  * @retval 0            success
 1654  * @retval EEXIST       the requested unit number is already allocated
 1655  * @retval ENOMEM       memory allocation failure
 1656  */
 1657 static int
 1658 devclass_add_device(devclass_t dc, device_t dev)
 1659 {
 1660         int buflen, error;
 1661 
 1662         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1663 
 1664         buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
 1665         if (buflen < 0)
 1666                 return (ENOMEM);
 1667         dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
 1668         if (!dev->nameunit)
 1669                 return (ENOMEM);
 1670 
 1671         if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
 1672                 free(dev->nameunit, M_BUS);
 1673                 dev->nameunit = NULL;
 1674                 return (error);
 1675         }
 1676         dc->devices[dev->unit] = dev;
 1677         dev->devclass = dc;
 1678         snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
 1679 
 1680         return (0);
 1681 }
 1682 
 1683 /**
 1684  * @internal
 1685  * @brief Delete a device from a devclass
 1686  *
 1687  * The device is removed from the devclass's device list and its unit
 1688  * number is freed.
 1689 
 1690  * @param dc            the devclass to delete from
 1691  * @param dev           the device to delete
 1692  *
 1693  * @retval 0            success
 1694  */
 1695 static int
 1696 devclass_delete_device(devclass_t dc, device_t dev)
 1697 {
 1698         if (!dc || !dev)
 1699                 return (0);
 1700 
 1701         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1702 
 1703         if (dev->devclass != dc || dc->devices[dev->unit] != dev)
 1704                 panic("devclass_delete_device: inconsistent device class");
 1705         dc->devices[dev->unit] = NULL;
 1706         if (dev->flags & DF_WILDCARD)
 1707                 dev->unit = -1;
 1708         dev->devclass = NULL;
 1709         free(dev->nameunit, M_BUS);
 1710         dev->nameunit = NULL;
 1711 
 1712         return (0);
 1713 }
 1714 
 1715 /**
 1716  * @internal
 1717  * @brief Make a new device and add it as a child of @p parent
 1718  *
 1719  * @param parent        the parent of the new device
 1720  * @param name          the devclass name of the new device or @c NULL
 1721  *                      to leave the devclass unspecified
 1722  * @parem unit          the unit number of the new device of @c -1 to
 1723  *                      leave the unit number unspecified
 1724  *
 1725  * @returns the new device
 1726  */
 1727 static device_t
 1728 make_device(device_t parent, const char *name, int unit)
 1729 {
 1730         device_t dev;
 1731         devclass_t dc;
 1732 
 1733         PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
 1734 
 1735         if (name) {
 1736                 dc = devclass_find_internal(name, NULL, TRUE);
 1737                 if (!dc) {
 1738                         printf("make_device: can't find device class %s\n",
 1739                             name);
 1740                         return (NULL);
 1741                 }
 1742         } else {
 1743                 dc = NULL;
 1744         }
 1745 
 1746         dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
 1747         if (!dev)
 1748                 return (NULL);
 1749 
 1750         dev->parent = parent;
 1751         TAILQ_INIT(&dev->children);
 1752         kobj_init((kobj_t) dev, &null_class);
 1753         dev->driver = NULL;
 1754         dev->devclass = NULL;
 1755         dev->unit = unit;
 1756         dev->nameunit = NULL;
 1757         dev->desc = NULL;
 1758         dev->busy = 0;
 1759         dev->devflags = 0;
 1760         dev->flags = DF_ENABLED;
 1761         dev->order = 0;
 1762         if (unit == -1)
 1763                 dev->flags |= DF_WILDCARD;
 1764         if (name) {
 1765                 dev->flags |= DF_FIXEDCLASS;
 1766                 if (devclass_add_device(dc, dev)) {
 1767                         kobj_delete((kobj_t) dev, M_BUS);
 1768                         return (NULL);
 1769                 }
 1770         }
 1771         dev->ivars = NULL;
 1772         dev->softc = NULL;
 1773 
 1774         dev->state = DS_NOTPRESENT;
 1775 
 1776         TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
 1777         bus_data_generation_update();
 1778 
 1779         return (dev);
 1780 }
 1781 
 1782 /**
 1783  * @internal
 1784  * @brief Print a description of a device.
 1785  */
 1786 static int
 1787 device_print_child(device_t dev, device_t child)
 1788 {
 1789         int retval = 0;
 1790 
 1791         if (device_is_alive(child))
 1792                 retval += BUS_PRINT_CHILD(dev, child);
 1793         else
 1794                 retval += device_printf(child, " not found\n");
 1795 
 1796         return (retval);
 1797 }
 1798 
 1799 /**
 1800  * @brief Create a new device
 1801  *
 1802  * This creates a new device and adds it as a child of an existing
 1803  * parent device. The new device will be added after the last existing
 1804  * child with order zero.
 1805  * 
 1806  * @param dev           the device which will be the parent of the
 1807  *                      new child device
 1808  * @param name          devclass name for new device or @c NULL if not
 1809  *                      specified
 1810  * @param unit          unit number for new device or @c -1 if not
 1811  *                      specified
 1812  * 
 1813  * @returns             the new device
 1814  */
 1815 device_t
 1816 device_add_child(device_t dev, const char *name, int unit)
 1817 {
 1818         return (device_add_child_ordered(dev, 0, name, unit));
 1819 }
 1820 
 1821 /**
 1822  * @brief Create a new device
 1823  *
 1824  * This creates a new device and adds it as a child of an existing
 1825  * parent device. The new device will be added after the last existing
 1826  * child with the same order.
 1827  * 
 1828  * @param dev           the device which will be the parent of the
 1829  *                      new child device
 1830  * @param order         a value which is used to partially sort the
 1831  *                      children of @p dev - devices created using
 1832  *                      lower values of @p order appear first in @p
 1833  *                      dev's list of children
 1834  * @param name          devclass name for new device or @c NULL if not
 1835  *                      specified
 1836  * @param unit          unit number for new device or @c -1 if not
 1837  *                      specified
 1838  * 
 1839  * @returns             the new device
 1840  */
 1841 device_t
 1842 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
 1843 {
 1844         device_t child;
 1845         device_t place;
 1846 
 1847         PDEBUG(("%s at %s with order %u as unit %d",
 1848             name, DEVICENAME(dev), order, unit));
 1849 
 1850         child = make_device(dev, name, unit);
 1851         if (child == NULL)
 1852                 return (child);
 1853         child->order = order;
 1854 
 1855         TAILQ_FOREACH(place, &dev->children, link) {
 1856                 if (place->order > order)
 1857                         break;
 1858         }
 1859 
 1860         if (place) {
 1861                 /*
 1862                  * The device 'place' is the first device whose order is
 1863                  * greater than the new child.
 1864                  */
 1865                 TAILQ_INSERT_BEFORE(place, child, link);
 1866         } else {
 1867                 /*
 1868                  * The new child's order is greater or equal to the order of
 1869                  * any existing device. Add the child to the tail of the list.
 1870                  */
 1871                 TAILQ_INSERT_TAIL(&dev->children, child, link);
 1872         }
 1873 
 1874         bus_data_generation_update();
 1875         return (child);
 1876 }
 1877 
 1878 /**
 1879  * @brief Delete a device
 1880  *
 1881  * This function deletes a device along with all of its children. If
 1882  * the device currently has a driver attached to it, the device is
 1883  * detached first using device_detach().
 1884  * 
 1885  * @param dev           the parent device
 1886  * @param child         the device to delete
 1887  *
 1888  * @retval 0            success
 1889  * @retval non-zero     a unit error code describing the error
 1890  */
 1891 int
 1892 device_delete_child(device_t dev, device_t child)
 1893 {
 1894         int error;
 1895         device_t grandchild;
 1896 
 1897         PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
 1898 
 1899         /* remove children first */
 1900         while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
 1901                 error = device_delete_child(child, grandchild);
 1902                 if (error)
 1903                         return (error);
 1904         }
 1905 
 1906         if ((error = device_detach(child)) != 0)
 1907                 return (error);
 1908         if (child->devclass)
 1909                 devclass_delete_device(child->devclass, child);
 1910         TAILQ_REMOVE(&dev->children, child, link);
 1911         TAILQ_REMOVE(&bus_data_devices, child, devlink);
 1912         kobj_delete((kobj_t) child, M_BUS);
 1913 
 1914         bus_data_generation_update();
 1915         return (0);
 1916 }
 1917 
 1918 /**
 1919  * @brief Delete all children devices of the given device, if any.
 1920  *
 1921  * This function deletes all children devices of the given device, if
 1922  * any, using the device_delete_child() function for each device it
 1923  * finds. If a child device cannot be deleted, this function will
 1924  * return an error code.
 1925  * 
 1926  * @param dev           the parent device
 1927  *
 1928  * @retval 0            success
 1929  * @retval non-zero     a device would not detach
 1930  */
 1931 int
 1932 device_delete_children(device_t dev)
 1933 {
 1934         device_t child;
 1935         int error;
 1936 
 1937         PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
 1938 
 1939         error = 0;
 1940 
 1941         while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
 1942                 error = device_delete_child(dev, child);
 1943                 if (error) {
 1944                         PDEBUG(("Failed deleting %s", DEVICENAME(child)));
 1945                         break;
 1946                 }
 1947         }
 1948         return (error);
 1949 }
 1950 
 1951 /**
 1952  * @brief Find a device given a unit number
 1953  *
 1954  * This is similar to devclass_get_devices() but only searches for
 1955  * devices which have @p dev as a parent.
 1956  *
 1957  * @param dev           the parent device to search
 1958  * @param unit          the unit number to search for.  If the unit is -1,
 1959  *                      return the first child of @p dev which has name
 1960  *                      @p classname (that is, the one with the lowest unit.)
 1961  *
 1962  * @returns             the device with the given unit number or @c
 1963  *                      NULL if there is no such device
 1964  */
 1965 device_t
 1966 device_find_child(device_t dev, const char *classname, int unit)
 1967 {
 1968         devclass_t dc;
 1969         device_t child;
 1970 
 1971         dc = devclass_find(classname);
 1972         if (!dc)
 1973                 return (NULL);
 1974 
 1975         if (unit != -1) {
 1976                 child = devclass_get_device(dc, unit);
 1977                 if (child && child->parent == dev)
 1978                         return (child);
 1979         } else {
 1980                 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
 1981                         child = devclass_get_device(dc, unit);
 1982                         if (child && child->parent == dev)
 1983                                 return (child);
 1984                 }
 1985         }
 1986         return (NULL);
 1987 }
 1988 
 1989 /**
 1990  * @internal
 1991  */
 1992 static driverlink_t
 1993 first_matching_driver(devclass_t dc, device_t dev)
 1994 {
 1995         if (dev->devclass)
 1996                 return (devclass_find_driver_internal(dc, dev->devclass->name));
 1997         return (TAILQ_FIRST(&dc->drivers));
 1998 }
 1999 
 2000 /**
 2001  * @internal
 2002  */
 2003 static driverlink_t
 2004 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
 2005 {
 2006         if (dev->devclass) {
 2007                 driverlink_t dl;
 2008                 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
 2009                         if (!strcmp(dev->devclass->name, dl->driver->name))
 2010                                 return (dl);
 2011                 return (NULL);
 2012         }
 2013         return (TAILQ_NEXT(last, link));
 2014 }
 2015 
 2016 /**
 2017  * @internal
 2018  */
 2019 int
 2020 device_probe_child(device_t dev, device_t child)
 2021 {
 2022         devclass_t dc;
 2023         driverlink_t best = NULL;
 2024         driverlink_t dl;
 2025         int result, pri = 0;
 2026         int hasclass = (child->devclass != NULL);
 2027 
 2028         GIANT_REQUIRED;
 2029 
 2030         dc = dev->devclass;
 2031         if (!dc)
 2032                 panic("device_probe_child: parent device has no devclass");
 2033 
 2034         /*
 2035          * If the state is already probed, then return.  However, don't
 2036          * return if we can rebid this object.
 2037          */
 2038         if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
 2039                 return (0);
 2040 
 2041         for (; dc; dc = dc->parent) {
 2042                 for (dl = first_matching_driver(dc, child);
 2043                      dl;
 2044                      dl = next_matching_driver(dc, child, dl)) {
 2045                         /* If this driver's pass is too high, then ignore it. */
 2046                         if (dl->pass > bus_current_pass)
 2047                                 continue;
 2048 
 2049                         PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
 2050                         result = device_set_driver(child, dl->driver);
 2051                         if (result == ENOMEM)
 2052                                 return (result);
 2053                         else if (result != 0)
 2054                                 continue;
 2055                         if (!hasclass) {
 2056                                 if (device_set_devclass(child,
 2057                                     dl->driver->name) != 0) {
 2058                                         printf("driver bug: Unable to set "
 2059                                             "devclass (devname: %s)\n",
 2060                                             device_get_name(child));
 2061                                         (void)device_set_driver(child, NULL);
 2062                                         continue;
 2063                                 }
 2064                         }
 2065 
 2066                         /* Fetch any flags for the device before probing. */
 2067                         resource_int_value(dl->driver->name, child->unit,
 2068                             "flags", &child->devflags);
 2069 
 2070                         result = DEVICE_PROBE(child);
 2071 
 2072                         /* Reset flags and devclass before the next probe. */
 2073                         child->devflags = 0;
 2074                         if (!hasclass)
 2075                                 (void)device_set_devclass(child, NULL);
 2076 
 2077                         /*
 2078                          * If the driver returns SUCCESS, there can be
 2079                          * no higher match for this device.
 2080                          */
 2081                         if (result == 0) {
 2082                                 best = dl;
 2083                                 pri = 0;
 2084                                 break;
 2085                         }
 2086 
 2087                         /*
 2088                          * The driver returned an error so it
 2089                          * certainly doesn't match.
 2090                          */
 2091                         if (result > 0) {
 2092                                 (void)device_set_driver(child, NULL);
 2093                                 continue;
 2094                         }
 2095 
 2096                         /*
 2097                          * A priority lower than SUCCESS, remember the
 2098                          * best matching driver. Initialise the value
 2099                          * of pri for the first match.
 2100                          */
 2101                         if (best == NULL || result > pri) {
 2102                                 /*
 2103                                  * Probes that return BUS_PROBE_NOWILDCARD
 2104                                  * or lower only match when they are set
 2105                                  * in stone by the parent bus.
 2106                                  */
 2107                                 if (result <= BUS_PROBE_NOWILDCARD &&
 2108                                     child->flags & DF_WILDCARD)
 2109                                         continue;
 2110                                 best = dl;
 2111                                 pri = result;
 2112                                 continue;
 2113                         }
 2114                 }
 2115                 /*
 2116                  * If we have an unambiguous match in this devclass,
 2117                  * don't look in the parent.
 2118                  */
 2119                 if (best && pri == 0)
 2120                         break;
 2121         }
 2122 
 2123         /*
 2124          * If we found a driver, change state and initialise the devclass.
 2125          */
 2126         /* XXX What happens if we rebid and got no best? */
 2127         if (best) {
 2128                 /*
 2129                  * If this device was attached, and we were asked to
 2130                  * rescan, and it is a different driver, then we have
 2131                  * to detach the old driver and reattach this new one.
 2132                  * Note, we don't have to check for DF_REBID here
 2133                  * because if the state is > DS_ALIVE, we know it must
 2134                  * be.
 2135                  *
 2136                  * This assumes that all DF_REBID drivers can have
 2137                  * their probe routine called at any time and that
 2138                  * they are idempotent as well as completely benign in
 2139                  * normal operations.
 2140                  *
 2141                  * We also have to make sure that the detach
 2142                  * succeeded, otherwise we fail the operation (or
 2143                  * maybe it should just fail silently?  I'm torn).
 2144                  */
 2145                 if (child->state > DS_ALIVE && best->driver != child->driver)
 2146                         if ((result = device_detach(dev)) != 0)
 2147                                 return (result);
 2148 
 2149                 /* Set the winning driver, devclass, and flags. */
 2150                 if (!child->devclass) {
 2151                         result = device_set_devclass(child, best->driver->name);
 2152                         if (result != 0)
 2153                                 return (result);
 2154                 }
 2155                 result = device_set_driver(child, best->driver);
 2156                 if (result != 0)
 2157                         return (result);
 2158                 resource_int_value(best->driver->name, child->unit,
 2159                     "flags", &child->devflags);
 2160 
 2161                 if (pri < 0) {
 2162                         /*
 2163                          * A bit bogus. Call the probe method again to make
 2164                          * sure that we have the right description.
 2165                          */
 2166                         DEVICE_PROBE(child);
 2167 #if 0
 2168                         child->flags |= DF_REBID;
 2169 #endif
 2170                 } else
 2171                         child->flags &= ~DF_REBID;
 2172                 child->state = DS_ALIVE;
 2173 
 2174                 bus_data_generation_update();
 2175                 return (0);
 2176         }
 2177 
 2178         return (ENXIO);
 2179 }
 2180 
 2181 /**
 2182  * @brief Return the parent of a device
 2183  */
 2184 device_t
 2185 device_get_parent(device_t dev)
 2186 {
 2187         return (dev->parent);
 2188 }
 2189 
 2190 /**
 2191  * @brief Get a list of children of a device
 2192  *
 2193  * An array containing a list of all the children of the given device
 2194  * is allocated and returned in @p *devlistp. The number of devices
 2195  * in the array is returned in @p *devcountp. The caller should free
 2196  * the array using @c free(p, M_TEMP).
 2197  *
 2198  * @param dev           the device to examine
 2199  * @param devlistp      points at location for array pointer return
 2200  *                      value
 2201  * @param devcountp     points at location for array size return value
 2202  *
 2203  * @retval 0            success
 2204  * @retval ENOMEM       the array allocation failed
 2205  */
 2206 int
 2207 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
 2208 {
 2209         int count;
 2210         device_t child;
 2211         device_t *list;
 2212 
 2213         count = 0;
 2214         TAILQ_FOREACH(child, &dev->children, link) {
 2215                 count++;
 2216         }
 2217         if (count == 0) {
 2218                 *devlistp = NULL;
 2219                 *devcountp = 0;
 2220                 return (0);
 2221         }
 2222 
 2223         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 2224         if (!list)
 2225                 return (ENOMEM);
 2226 
 2227         count = 0;
 2228         TAILQ_FOREACH(child, &dev->children, link) {
 2229                 list[count] = child;
 2230                 count++;
 2231         }
 2232 
 2233         *devlistp = list;
 2234         *devcountp = count;
 2235 
 2236         return (0);
 2237 }
 2238 
 2239 /**
 2240  * @brief Return the current driver for the device or @c NULL if there
 2241  * is no driver currently attached
 2242  */
 2243 driver_t *
 2244 device_get_driver(device_t dev)
 2245 {
 2246         return (dev->driver);
 2247 }
 2248 
 2249 /**
 2250  * @brief Return the current devclass for the device or @c NULL if
 2251  * there is none.
 2252  */
 2253 devclass_t
 2254 device_get_devclass(device_t dev)
 2255 {
 2256         return (dev->devclass);
 2257 }
 2258 
 2259 /**
 2260  * @brief Return the name of the device's devclass or @c NULL if there
 2261  * is none.
 2262  */
 2263 const char *
 2264 device_get_name(device_t dev)
 2265 {
 2266         if (dev != NULL && dev->devclass)
 2267                 return (devclass_get_name(dev->devclass));
 2268         return (NULL);
 2269 }
 2270 
 2271 /**
 2272  * @brief Return a string containing the device's devclass name
 2273  * followed by an ascii representation of the device's unit number
 2274  * (e.g. @c "foo2").
 2275  */
 2276 const char *
 2277 device_get_nameunit(device_t dev)
 2278 {
 2279         return (dev->nameunit);
 2280 }
 2281 
 2282 /**
 2283  * @brief Return the device's unit number.
 2284  */
 2285 int
 2286 device_get_unit(device_t dev)
 2287 {
 2288         return (dev->unit);
 2289 }
 2290 
 2291 /**
 2292  * @brief Return the device's description string
 2293  */
 2294 const char *
 2295 device_get_desc(device_t dev)
 2296 {
 2297         return (dev->desc);
 2298 }
 2299 
 2300 /**
 2301  * @brief Return the device's flags
 2302  */
 2303 u_int32_t
 2304 device_get_flags(device_t dev)
 2305 {
 2306         return (dev->devflags);
 2307 }
 2308 
 2309 struct sysctl_ctx_list *
 2310 device_get_sysctl_ctx(device_t dev)
 2311 {
 2312         return (&dev->sysctl_ctx);
 2313 }
 2314 
 2315 struct sysctl_oid *
 2316 device_get_sysctl_tree(device_t dev)
 2317 {
 2318         return (dev->sysctl_tree);
 2319 }
 2320 
 2321 /**
 2322  * @brief Print the name of the device followed by a colon and a space
 2323  *
 2324  * @returns the number of characters printed
 2325  */
 2326 int
 2327 device_print_prettyname(device_t dev)
 2328 {
 2329         const char *name = device_get_name(dev);
 2330 
 2331         if (name == NULL)
 2332                 return (printf("unknown: "));
 2333         return (printf("%s%d: ", name, device_get_unit(dev)));
 2334 }
 2335 
 2336 /**
 2337  * @brief Print the name of the device followed by a colon, a space
 2338  * and the result of calling vprintf() with the value of @p fmt and
 2339  * the following arguments.
 2340  *
 2341  * @returns the number of characters printed
 2342  */
 2343 int
 2344 device_printf(device_t dev, const char * fmt, ...)
 2345 {
 2346         va_list ap;
 2347         int retval;
 2348 
 2349         retval = device_print_prettyname(dev);
 2350         va_start(ap, fmt);
 2351         retval += vprintf(fmt, ap);
 2352         va_end(ap);
 2353         return (retval);
 2354 }
 2355 
 2356 /**
 2357  * @internal
 2358  */
 2359 static void
 2360 device_set_desc_internal(device_t dev, const char* desc, int copy)
 2361 {
 2362         if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
 2363                 free(dev->desc, M_BUS);
 2364                 dev->flags &= ~DF_DESCMALLOCED;
 2365                 dev->desc = NULL;
 2366         }
 2367 
 2368         if (copy && desc) {
 2369                 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
 2370                 if (dev->desc) {
 2371                         strcpy(dev->desc, desc);
 2372                         dev->flags |= DF_DESCMALLOCED;
 2373                 }
 2374         } else {
 2375                 /* Avoid a -Wcast-qual warning */
 2376                 dev->desc = (char *)(uintptr_t) desc;
 2377         }
 2378 
 2379         bus_data_generation_update();
 2380 }
 2381 
 2382 /**
 2383  * @brief Set the device's description
 2384  *
 2385  * The value of @c desc should be a string constant that will not
 2386  * change (at least until the description is changed in a subsequent
 2387  * call to device_set_desc() or device_set_desc_copy()).
 2388  */
 2389 void
 2390 device_set_desc(device_t dev, const char* desc)
 2391 {
 2392         device_set_desc_internal(dev, desc, FALSE);
 2393 }
 2394 
 2395 /**
 2396  * @brief Set the device's description
 2397  *
 2398  * The string pointed to by @c desc is copied. Use this function if
 2399  * the device description is generated, (e.g. with sprintf()).
 2400  */
 2401 void
 2402 device_set_desc_copy(device_t dev, const char* desc)
 2403 {
 2404         device_set_desc_internal(dev, desc, TRUE);
 2405 }
 2406 
 2407 /**
 2408  * @brief Set the device's flags
 2409  */
 2410 void
 2411 device_set_flags(device_t dev, u_int32_t flags)
 2412 {
 2413         dev->devflags = flags;
 2414 }
 2415 
 2416 /**
 2417  * @brief Return the device's softc field
 2418  *
 2419  * The softc is allocated and zeroed when a driver is attached, based
 2420  * on the size field of the driver.
 2421  */
 2422 void *
 2423 device_get_softc(device_t dev)
 2424 {
 2425         return (dev->softc);
 2426 }
 2427 
 2428 /**
 2429  * @brief Set the device's softc field
 2430  *
 2431  * Most drivers do not need to use this since the softc is allocated
 2432  * automatically when the driver is attached.
 2433  */
 2434 void
 2435 device_set_softc(device_t dev, void *softc)
 2436 {
 2437         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
 2438                 free(dev->softc, M_BUS_SC);
 2439         dev->softc = softc;
 2440         if (dev->softc)
 2441                 dev->flags |= DF_EXTERNALSOFTC;
 2442         else
 2443                 dev->flags &= ~DF_EXTERNALSOFTC;
 2444 }
 2445 
 2446 /**
 2447  * @brief Get the device's ivars field
 2448  *
 2449  * The ivars field is used by the parent device to store per-device
 2450  * state (e.g. the physical location of the device or a list of
 2451  * resources).
 2452  */
 2453 void *
 2454 device_get_ivars(device_t dev)
 2455 {
 2456 
 2457         KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
 2458         return (dev->ivars);
 2459 }
 2460 
 2461 /**
 2462  * @brief Set the device's ivars field
 2463  */
 2464 void
 2465 device_set_ivars(device_t dev, void * ivars)
 2466 {
 2467 
 2468         KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
 2469         dev->ivars = ivars;
 2470 }
 2471 
 2472 /**
 2473  * @brief Return the device's state
 2474  */
 2475 device_state_t
 2476 device_get_state(device_t dev)
 2477 {
 2478         return (dev->state);
 2479 }
 2480 
 2481 /**
 2482  * @brief Set the DF_ENABLED flag for the device
 2483  */
 2484 void
 2485 device_enable(device_t dev)
 2486 {
 2487         dev->flags |= DF_ENABLED;
 2488 }
 2489 
 2490 /**
 2491  * @brief Clear the DF_ENABLED flag for the device
 2492  */
 2493 void
 2494 device_disable(device_t dev)
 2495 {
 2496         dev->flags &= ~DF_ENABLED;
 2497 }
 2498 
 2499 /**
 2500  * @brief Increment the busy counter for the device
 2501  */
 2502 void
 2503 device_busy(device_t dev)
 2504 {
 2505         if (dev->state < DS_ATTACHING)
 2506                 panic("device_busy: called for unattached device");
 2507         if (dev->busy == 0 && dev->parent)
 2508                 device_busy(dev->parent);
 2509         dev->busy++;
 2510         if (dev->state == DS_ATTACHED)
 2511                 dev->state = DS_BUSY;
 2512 }
 2513 
 2514 /**
 2515  * @brief Decrement the busy counter for the device
 2516  */
 2517 void
 2518 device_unbusy(device_t dev)
 2519 {
 2520         if (dev->busy != 0 && dev->state != DS_BUSY &&
 2521             dev->state != DS_ATTACHING)
 2522                 panic("device_unbusy: called for non-busy device %s",
 2523                     device_get_nameunit(dev));
 2524         dev->busy--;
 2525         if (dev->busy == 0) {
 2526                 if (dev->parent)
 2527                         device_unbusy(dev->parent);
 2528                 if (dev->state == DS_BUSY)
 2529                         dev->state = DS_ATTACHED;
 2530         }
 2531 }
 2532 
 2533 /**
 2534  * @brief Set the DF_QUIET flag for the device
 2535  */
 2536 void
 2537 device_quiet(device_t dev)
 2538 {
 2539         dev->flags |= DF_QUIET;
 2540 }
 2541 
 2542 /**
 2543  * @brief Clear the DF_QUIET flag for the device
 2544  */
 2545 void
 2546 device_verbose(device_t dev)
 2547 {
 2548         dev->flags &= ~DF_QUIET;
 2549 }
 2550 
 2551 /**
 2552  * @brief Return non-zero if the DF_QUIET flag is set on the device
 2553  */
 2554 int
 2555 device_is_quiet(device_t dev)
 2556 {
 2557         return ((dev->flags & DF_QUIET) != 0);
 2558 }
 2559 
 2560 /**
 2561  * @brief Return non-zero if the DF_ENABLED flag is set on the device
 2562  */
 2563 int
 2564 device_is_enabled(device_t dev)
 2565 {
 2566         return ((dev->flags & DF_ENABLED) != 0);
 2567 }
 2568 
 2569 /**
 2570  * @brief Return non-zero if the device was successfully probed
 2571  */
 2572 int
 2573 device_is_alive(device_t dev)
 2574 {
 2575         return (dev->state >= DS_ALIVE);
 2576 }
 2577 
 2578 /**
 2579  * @brief Return non-zero if the device currently has a driver
 2580  * attached to it
 2581  */
 2582 int
 2583 device_is_attached(device_t dev)
 2584 {
 2585         return (dev->state >= DS_ATTACHED);
 2586 }
 2587 
 2588 /**
 2589  * @brief Set the devclass of a device
 2590  * @see devclass_add_device().
 2591  */
 2592 int
 2593 device_set_devclass(device_t dev, const char *classname)
 2594 {
 2595         devclass_t dc;
 2596         int error;
 2597 
 2598         if (!classname) {
 2599                 if (dev->devclass)
 2600                         devclass_delete_device(dev->devclass, dev);
 2601                 return (0);
 2602         }
 2603 
 2604         if (dev->devclass) {
 2605                 printf("device_set_devclass: device class already set\n");
 2606                 return (EINVAL);
 2607         }
 2608 
 2609         dc = devclass_find_internal(classname, NULL, TRUE);
 2610         if (!dc)
 2611                 return (ENOMEM);
 2612 
 2613         error = devclass_add_device(dc, dev);
 2614 
 2615         bus_data_generation_update();
 2616         return (error);
 2617 }
 2618 
 2619 /**
 2620  * @brief Set the driver of a device
 2621  *
 2622  * @retval 0            success
 2623  * @retval EBUSY        the device already has a driver attached
 2624  * @retval ENOMEM       a memory allocation failure occurred
 2625  */
 2626 int
 2627 device_set_driver(device_t dev, driver_t *driver)
 2628 {
 2629         if (dev->state >= DS_ATTACHED)
 2630                 return (EBUSY);
 2631 
 2632         if (dev->driver == driver)
 2633                 return (0);
 2634 
 2635         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
 2636                 free(dev->softc, M_BUS_SC);
 2637                 dev->softc = NULL;
 2638         }
 2639         device_set_desc(dev, NULL);
 2640         kobj_delete((kobj_t) dev, NULL);
 2641         dev->driver = driver;
 2642         if (driver) {
 2643                 kobj_init((kobj_t) dev, (kobj_class_t) driver);
 2644                 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
 2645                         dev->softc = malloc(driver->size, M_BUS_SC,
 2646                             M_NOWAIT | M_ZERO);
 2647                         if (!dev->softc) {
 2648                                 kobj_delete((kobj_t) dev, NULL);
 2649                                 kobj_init((kobj_t) dev, &null_class);
 2650                                 dev->driver = NULL;
 2651                                 return (ENOMEM);
 2652                         }
 2653                 }
 2654         } else {
 2655                 kobj_init((kobj_t) dev, &null_class);
 2656         }
 2657 
 2658         bus_data_generation_update();
 2659         return (0);
 2660 }
 2661 
 2662 /**
 2663  * @brief Probe a device, and return this status.
 2664  *
 2665  * This function is the core of the device autoconfiguration
 2666  * system. Its purpose is to select a suitable driver for a device and
 2667  * then call that driver to initialise the hardware appropriately. The
 2668  * driver is selected by calling the DEVICE_PROBE() method of a set of
 2669  * candidate drivers and then choosing the driver which returned the
 2670  * best value. This driver is then attached to the device using
 2671  * device_attach().
 2672  *
 2673  * The set of suitable drivers is taken from the list of drivers in
 2674  * the parent device's devclass. If the device was originally created
 2675  * with a specific class name (see device_add_child()), only drivers
 2676  * with that name are probed, otherwise all drivers in the devclass
 2677  * are probed. If no drivers return successful probe values in the
 2678  * parent devclass, the search continues in the parent of that
 2679  * devclass (see devclass_get_parent()) if any.
 2680  *
 2681  * @param dev           the device to initialise
 2682  *
 2683  * @retval 0            success
 2684  * @retval ENXIO        no driver was found
 2685  * @retval ENOMEM       memory allocation failure
 2686  * @retval non-zero     some other unix error code
 2687  * @retval -1           Device already attached
 2688  */
 2689 int
 2690 device_probe(device_t dev)
 2691 {
 2692         int error;
 2693 
 2694         GIANT_REQUIRED;
 2695 
 2696         if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
 2697                 return (-1);
 2698 
 2699         if (!(dev->flags & DF_ENABLED)) {
 2700                 if (bootverbose && device_get_name(dev) != NULL) {
 2701                         device_print_prettyname(dev);
 2702                         printf("not probed (disabled)\n");
 2703                 }
 2704                 return (-1);
 2705         }
 2706         if ((error = device_probe_child(dev->parent, dev)) != 0) {              
 2707                 if (bus_current_pass == BUS_PASS_DEFAULT &&
 2708                     !(dev->flags & DF_DONENOMATCH)) {
 2709                         BUS_PROBE_NOMATCH(dev->parent, dev);
 2710                         devnomatch(dev);
 2711                         dev->flags |= DF_DONENOMATCH;
 2712                 }
 2713                 return (error);
 2714         }
 2715         return (0);
 2716 }
 2717 
 2718 /**
 2719  * @brief Probe a device and attach a driver if possible
 2720  *
 2721  * calls device_probe() and attaches if that was successful.
 2722  */
 2723 int
 2724 device_probe_and_attach(device_t dev)
 2725 {
 2726         int error;
 2727 
 2728         GIANT_REQUIRED;
 2729 
 2730         error = device_probe(dev);
 2731         if (error == -1)
 2732                 return (0);
 2733         else if (error != 0)
 2734                 return (error);
 2735         return (device_attach(dev));
 2736 }
 2737 
 2738 /**
 2739  * @brief Attach a device driver to a device
 2740  *
 2741  * This function is a wrapper around the DEVICE_ATTACH() driver
 2742  * method. In addition to calling DEVICE_ATTACH(), it initialises the
 2743  * device's sysctl tree, optionally prints a description of the device
 2744  * and queues a notification event for user-based device management
 2745  * services.
 2746  *
 2747  * Normally this function is only called internally from
 2748  * device_probe_and_attach().
 2749  *
 2750  * @param dev           the device to initialise
 2751  *
 2752  * @retval 0            success
 2753  * @retval ENXIO        no driver was found
 2754  * @retval ENOMEM       memory allocation failure
 2755  * @retval non-zero     some other unix error code
 2756  */
 2757 int
 2758 device_attach(device_t dev)
 2759 {
 2760         int error;
 2761 
 2762         if (resource_disabled(dev->driver->name, dev->unit)) {
 2763                 device_disable(dev);
 2764                 if (bootverbose)
 2765                          device_printf(dev, "disabled via hints entry\n");
 2766                 return (ENXIO);
 2767         }
 2768 
 2769         device_sysctl_init(dev);
 2770         if (!device_is_quiet(dev))
 2771                 device_print_child(dev->parent, dev);
 2772         dev->state = DS_ATTACHING;
 2773         if ((error = DEVICE_ATTACH(dev)) != 0) {
 2774                 printf("device_attach: %s%d attach returned %d\n",
 2775                     dev->driver->name, dev->unit, error);
 2776                 if (!(dev->flags & DF_FIXEDCLASS))
 2777                         devclass_delete_device(dev->devclass, dev);
 2778                 (void)device_set_driver(dev, NULL);
 2779                 device_sysctl_fini(dev);
 2780                 KASSERT(dev->busy == 0, ("attach failed but busy"));
 2781                 dev->state = DS_NOTPRESENT;
 2782                 return (error);
 2783         }
 2784         device_sysctl_update(dev);
 2785         if (dev->busy)
 2786                 dev->state = DS_BUSY;
 2787         else
 2788                 dev->state = DS_ATTACHED;
 2789         dev->flags &= ~DF_DONENOMATCH;
 2790         devadded(dev);
 2791         return (0);
 2792 }
 2793 
 2794 /**
 2795  * @brief Detach a driver from a device
 2796  *
 2797  * This function is a wrapper around the DEVICE_DETACH() driver
 2798  * method. If the call to DEVICE_DETACH() succeeds, it calls
 2799  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
 2800  * notification event for user-based device management services and
 2801  * cleans up the device's sysctl tree.
 2802  *
 2803  * @param dev           the device to un-initialise
 2804  *
 2805  * @retval 0            success
 2806  * @retval ENXIO        no driver was found
 2807  * @retval ENOMEM       memory allocation failure
 2808  * @retval non-zero     some other unix error code
 2809  */
 2810 int
 2811 device_detach(device_t dev)
 2812 {
 2813         int error;
 2814 
 2815         GIANT_REQUIRED;
 2816 
 2817         PDEBUG(("%s", DEVICENAME(dev)));
 2818         if (dev->state == DS_BUSY)
 2819                 return (EBUSY);
 2820         if (dev->state != DS_ATTACHED)
 2821                 return (0);
 2822 
 2823         if ((error = DEVICE_DETACH(dev)) != 0)
 2824                 return (error);
 2825         devremoved(dev);
 2826         if (!device_is_quiet(dev))
 2827                 device_printf(dev, "detached\n");
 2828         if (dev->parent)
 2829                 BUS_CHILD_DETACHED(dev->parent, dev);
 2830 
 2831         if (!(dev->flags & DF_FIXEDCLASS))
 2832                 devclass_delete_device(dev->devclass, dev);
 2833 
 2834         dev->state = DS_NOTPRESENT;
 2835         (void)device_set_driver(dev, NULL);
 2836         device_sysctl_fini(dev);
 2837 
 2838         return (0);
 2839 }
 2840 
 2841 /**
 2842  * @brief Tells a driver to quiesce itself.
 2843  *
 2844  * This function is a wrapper around the DEVICE_QUIESCE() driver
 2845  * method. If the call to DEVICE_QUIESCE() succeeds.
 2846  *
 2847  * @param dev           the device to quiesce
 2848  *
 2849  * @retval 0            success
 2850  * @retval ENXIO        no driver was found
 2851  * @retval ENOMEM       memory allocation failure
 2852  * @retval non-zero     some other unix error code
 2853  */
 2854 int
 2855 device_quiesce(device_t dev)
 2856 {
 2857 
 2858         PDEBUG(("%s", DEVICENAME(dev)));
 2859         if (dev->state == DS_BUSY)
 2860                 return (EBUSY);
 2861         if (dev->state != DS_ATTACHED)
 2862                 return (0);
 2863 
 2864         return (DEVICE_QUIESCE(dev));
 2865 }
 2866 
 2867 /**
 2868  * @brief Notify a device of system shutdown
 2869  *
 2870  * This function calls the DEVICE_SHUTDOWN() driver method if the
 2871  * device currently has an attached driver.
 2872  *
 2873  * @returns the value returned by DEVICE_SHUTDOWN()
 2874  */
 2875 int
 2876 device_shutdown(device_t dev)
 2877 {
 2878         if (dev->state < DS_ATTACHED)
 2879                 return (0);
 2880         return (DEVICE_SHUTDOWN(dev));
 2881 }
 2882 
 2883 /**
 2884  * @brief Set the unit number of a device
 2885  *
 2886  * This function can be used to override the unit number used for a
 2887  * device (e.g. to wire a device to a pre-configured unit number).
 2888  */
 2889 int
 2890 device_set_unit(device_t dev, int unit)
 2891 {
 2892         devclass_t dc;
 2893         int err;
 2894 
 2895         dc = device_get_devclass(dev);
 2896         if (unit < dc->maxunit && dc->devices[unit])
 2897                 return (EBUSY);
 2898         err = devclass_delete_device(dc, dev);
 2899         if (err)
 2900                 return (err);
 2901         dev->unit = unit;
 2902         err = devclass_add_device(dc, dev);
 2903         if (err)
 2904                 return (err);
 2905 
 2906         bus_data_generation_update();
 2907         return (0);
 2908 }
 2909 
 2910 /*======================================*/
 2911 /*
 2912  * Some useful method implementations to make life easier for bus drivers.
 2913  */
 2914 
 2915 /**
 2916  * @brief Initialise a resource list.
 2917  *
 2918  * @param rl            the resource list to initialise
 2919  */
 2920 void
 2921 resource_list_init(struct resource_list *rl)
 2922 {
 2923         STAILQ_INIT(rl);
 2924 }
 2925 
 2926 /**
 2927  * @brief Reclaim memory used by a resource list.
 2928  *
 2929  * This function frees the memory for all resource entries on the list
 2930  * (if any).
 2931  *
 2932  * @param rl            the resource list to free               
 2933  */
 2934 void
 2935 resource_list_free(struct resource_list *rl)
 2936 {
 2937         struct resource_list_entry *rle;
 2938 
 2939         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 2940                 if (rle->res)
 2941                         panic("resource_list_free: resource entry is busy");
 2942                 STAILQ_REMOVE_HEAD(rl, link);
 2943                 free(rle, M_BUS);
 2944         }
 2945 }
 2946 
 2947 /**
 2948  * @brief Add a resource entry.
 2949  *
 2950  * This function adds a resource entry using the given @p type, @p
 2951  * start, @p end and @p count values. A rid value is chosen by
 2952  * searching sequentially for the first unused rid starting at zero.
 2953  *
 2954  * @param rl            the resource list to edit
 2955  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2956  * @param start         the start address of the resource
 2957  * @param end           the end address of the resource
 2958  * @param count         XXX end-start+1
 2959  */
 2960 int
 2961 resource_list_add_next(struct resource_list *rl, int type, u_long start,
 2962     u_long end, u_long count)
 2963 {
 2964         int rid;
 2965 
 2966         rid = 0;
 2967         while (resource_list_find(rl, type, rid) != NULL)
 2968                 rid++;
 2969         resource_list_add(rl, type, rid, start, end, count);
 2970         return (rid);
 2971 }
 2972 
 2973 /**
 2974  * @brief Add or modify a resource entry.
 2975  *
 2976  * If an existing entry exists with the same type and rid, it will be
 2977  * modified using the given values of @p start, @p end and @p
 2978  * count. If no entry exists, a new one will be created using the
 2979  * given values.  The resource list entry that matches is then returned.
 2980  *
 2981  * @param rl            the resource list to edit
 2982  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2983  * @param rid           the resource identifier
 2984  * @param start         the start address of the resource
 2985  * @param end           the end address of the resource
 2986  * @param count         XXX end-start+1
 2987  */
 2988 struct resource_list_entry *
 2989 resource_list_add(struct resource_list *rl, int type, int rid,
 2990     u_long start, u_long end, u_long count)
 2991 {
 2992         struct resource_list_entry *rle;
 2993 
 2994         rle = resource_list_find(rl, type, rid);
 2995         if (!rle) {
 2996                 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
 2997                     M_NOWAIT);
 2998                 if (!rle)
 2999                         panic("resource_list_add: can't record entry");
 3000                 STAILQ_INSERT_TAIL(rl, rle, link);
 3001                 rle->type = type;
 3002                 rle->rid = rid;
 3003                 rle->res = NULL;
 3004         }
 3005 
 3006         if (rle->res)
 3007                 panic("resource_list_add: resource entry is busy");
 3008 
 3009         rle->start = start;
 3010         rle->end = end;
 3011         rle->count = count;
 3012         return (rle);
 3013 }
 3014 
 3015 /**
 3016  * @brief Find a resource entry by type and rid.
 3017  *
 3018  * @param rl            the resource list to search
 3019  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3020  * @param rid           the resource identifier
 3021  *
 3022  * @returns the resource entry pointer or NULL if there is no such
 3023  * entry.
 3024  */
 3025 struct resource_list_entry *
 3026 resource_list_find(struct resource_list *rl, int type, int rid)
 3027 {
 3028         struct resource_list_entry *rle;
 3029 
 3030         STAILQ_FOREACH(rle, rl, link) {
 3031                 if (rle->type == type && rle->rid == rid)
 3032                         return (rle);
 3033         }
 3034         return (NULL);
 3035 }
 3036 
 3037 /**
 3038  * @brief Delete a resource entry.
 3039  *
 3040  * @param rl            the resource list to edit
 3041  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3042  * @param rid           the resource identifier
 3043  */
 3044 void
 3045 resource_list_delete(struct resource_list *rl, int type, int rid)
 3046 {
 3047         struct resource_list_entry *rle = resource_list_find(rl, type, rid);
 3048 
 3049         if (rle) {
 3050                 if (rle->res != NULL)
 3051                         panic("resource_list_delete: resource has not been released");
 3052                 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
 3053                 free(rle, M_BUS);
 3054         }
 3055 }
 3056 
 3057 /**
 3058  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
 3059  *
 3060  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
 3061  * and passing the allocation up to the parent of @p bus. This assumes
 3062  * that the first entry of @c device_get_ivars(child) is a struct
 3063  * resource_list. This also handles 'passthrough' allocations where a
 3064  * child is a remote descendant of bus by passing the allocation up to
 3065  * the parent of bus.
 3066  *
 3067  * Typically, a bus driver would store a list of child resources
 3068  * somewhere in the child device's ivars (see device_get_ivars()) and
 3069  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
 3070  * then call resource_list_alloc() to perform the allocation.
 3071  *
 3072  * @param rl            the resource list to allocate from
 3073  * @param bus           the parent device of @p child
 3074  * @param child         the device which is requesting an allocation
 3075  * @param type          the type of resource to allocate
 3076  * @param rid           a pointer to the resource identifier
 3077  * @param start         hint at the start of the resource range - pass
 3078  *                      @c 0UL for any start address
 3079  * @param end           hint at the end of the resource range - pass
 3080  *                      @c ~0UL for any end address
 3081  * @param count         hint at the size of range required - pass @c 1
 3082  *                      for any size
 3083  * @param flags         any extra flags to control the resource
 3084  *                      allocation - see @c RF_XXX flags in
 3085  *                      <sys/rman.h> for details
 3086  * 
 3087  * @returns             the resource which was allocated or @c NULL if no
 3088  *                      resource could be allocated
 3089  */
 3090 struct resource *
 3091 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
 3092     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
 3093 {
 3094         struct resource_list_entry *rle = NULL;
 3095         int passthrough = (device_get_parent(child) != bus);
 3096         int isdefault = (start == 0UL && end == ~0UL);
 3097 
 3098         if (passthrough) {
 3099                 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 3100                     type, rid, start, end, count, flags));
 3101         }
 3102 
 3103         rle = resource_list_find(rl, type, *rid);
 3104 
 3105         if (!rle)
 3106                 return (NULL);          /* no resource of that type/rid */
 3107 
 3108         if (rle->res)
 3109                 panic("resource_list_alloc: resource entry is busy");
 3110 
 3111         if (isdefault) {
 3112                 start = rle->start;
 3113                 count = ulmax(count, rle->count);
 3114                 end = ulmax(rle->end, start + count - 1);
 3115         }
 3116 
 3117         rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 3118             type, rid, start, end, count, flags);
 3119 
 3120         /*
 3121          * Record the new range.
 3122          */
 3123         if (rle->res) {
 3124                 rle->start = rman_get_start(rle->res);
 3125                 rle->end = rman_get_end(rle->res);
 3126                 rle->count = count;
 3127         }
 3128 
 3129         return (rle->res);
 3130 }
 3131 
 3132 /**
 3133  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
 3134  * 
 3135  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
 3136  * used with resource_list_alloc().
 3137  * 
 3138  * @param rl            the resource list which was allocated from
 3139  * @param bus           the parent device of @p child
 3140  * @param child         the device which is requesting a release
 3141  * @param type          the type of resource to allocate
 3142  * @param rid           the resource identifier
 3143  * @param res           the resource to release
 3144  * 
 3145  * @retval 0            success
 3146  * @retval non-zero     a standard unix error code indicating what
 3147  *                      error condition prevented the operation
 3148  */
 3149 int
 3150 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
 3151     int type, int rid, struct resource *res)
 3152 {
 3153         struct resource_list_entry *rle = NULL;
 3154         int passthrough = (device_get_parent(child) != bus);
 3155         int error;
 3156 
 3157         if (passthrough) {
 3158                 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3159                     type, rid, res));
 3160         }
 3161 
 3162         rle = resource_list_find(rl, type, rid);
 3163 
 3164         if (!rle)
 3165                 panic("resource_list_release: can't find resource");
 3166         if (!rle->res)
 3167                 panic("resource_list_release: resource entry is not busy");
 3168 
 3169         error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3170             type, rid, res);
 3171         if (error)
 3172                 return (error);
 3173 
 3174         rle->res = NULL;
 3175         return (0);
 3176 }
 3177 
 3178 /**
 3179  * @brief Print a description of resources in a resource list
 3180  *
 3181  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
 3182  * The name is printed if at least one resource of the given type is available.
 3183  * The format is used to print resource start and end.
 3184  *
 3185  * @param rl            the resource list to print
 3186  * @param name          the name of @p type, e.g. @c "memory"
 3187  * @param type          type type of resource entry to print
 3188  * @param format        printf(9) format string to print resource
 3189  *                      start and end values
 3190  * 
 3191  * @returns             the number of characters printed
 3192  */
 3193 int
 3194 resource_list_print_type(struct resource_list *rl, const char *name, int type,
 3195     const char *format)
 3196 {
 3197         struct resource_list_entry *rle;
 3198         int printed, retval;
 3199 
 3200         printed = 0;
 3201         retval = 0;
 3202         /* Yes, this is kinda cheating */
 3203         STAILQ_FOREACH(rle, rl, link) {
 3204                 if (rle->type == type) {
 3205                         if (printed == 0)
 3206                                 retval += printf(" %s ", name);
 3207                         else
 3208                                 retval += printf(",");
 3209                         printed++;
 3210                         retval += printf(format, rle->start);
 3211                         if (rle->count > 1) {
 3212                                 retval += printf("-");
 3213                                 retval += printf(format, rle->start +
 3214                                                  rle->count - 1);
 3215                         }
 3216                 }
 3217         }
 3218         return (retval);
 3219 }
 3220 
 3221 /**
 3222  * @brief Releases all the resources in a list.
 3223  *
 3224  * @param rl            The resource list to purge.
 3225  * 
 3226  * @returns             nothing
 3227  */
 3228 void
 3229 resource_list_purge(struct resource_list *rl)
 3230 {
 3231         struct resource_list_entry *rle;
 3232 
 3233         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 3234                 if (rle->res)
 3235                         bus_release_resource(rman_get_device(rle->res),
 3236                             rle->type, rle->rid, rle->res);
 3237                 STAILQ_REMOVE_HEAD(rl, link);
 3238                 free(rle, M_BUS);
 3239         }
 3240 }
 3241 
 3242 device_t
 3243 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
 3244 {
 3245 
 3246         return (device_add_child_ordered(dev, order, name, unit));
 3247 }
 3248 
 3249 /**
 3250  * @brief Helper function for implementing DEVICE_PROBE()
 3251  *
 3252  * This function can be used to help implement the DEVICE_PROBE() for
 3253  * a bus (i.e. a device which has other devices attached to it). It
 3254  * calls the DEVICE_IDENTIFY() method of each driver in the device's
 3255  * devclass.
 3256  */
 3257 int
 3258 bus_generic_probe(device_t dev)
 3259 {
 3260         devclass_t dc = dev->devclass;
 3261         driverlink_t dl;
 3262 
 3263         TAILQ_FOREACH(dl, &dc->drivers, link) {
 3264                 /*
 3265                  * If this driver's pass is too high, then ignore it.
 3266                  * For most drivers in the default pass, this will
 3267                  * never be true.  For early-pass drivers they will
 3268                  * only call the identify routines of eligible drivers
 3269                  * when this routine is called.  Drivers for later
 3270                  * passes should have their identify routines called
 3271                  * on early-pass busses during BUS_NEW_PASS().
 3272                  */
 3273                 if (dl->pass > bus_current_pass)
 3274                                 continue;
 3275                 DEVICE_IDENTIFY(dl->driver, dev);
 3276         }
 3277 
 3278         return (0);
 3279 }
 3280 
 3281 /**
 3282  * @brief Helper function for implementing DEVICE_ATTACH()
 3283  *
 3284  * This function can be used to help implement the DEVICE_ATTACH() for
 3285  * a bus. It calls device_probe_and_attach() for each of the device's
 3286  * children.
 3287  */
 3288 int
 3289 bus_generic_attach(device_t dev)
 3290 {
 3291         device_t child;
 3292 
 3293         TAILQ_FOREACH(child, &dev->children, link) {
 3294                 device_probe_and_attach(child);
 3295         }
 3296 
 3297         return (0);
 3298 }
 3299 
 3300 /**
 3301  * @brief Helper function for implementing DEVICE_DETACH()
 3302  *
 3303  * This function can be used to help implement the DEVICE_DETACH() for
 3304  * a bus. It calls device_detach() for each of the device's
 3305  * children.
 3306  */
 3307 int
 3308 bus_generic_detach(device_t dev)
 3309 {
 3310         device_t child;
 3311         int error;
 3312 
 3313         if (dev->state != DS_ATTACHED)
 3314                 return (EBUSY);
 3315 
 3316         TAILQ_FOREACH(child, &dev->children, link) {
 3317                 if ((error = device_detach(child)) != 0)
 3318                         return (error);
 3319         }
 3320 
 3321         return (0);
 3322 }
 3323 
 3324 /**
 3325  * @brief Helper function for implementing DEVICE_SHUTDOWN()
 3326  *
 3327  * This function can be used to help implement the DEVICE_SHUTDOWN()
 3328  * for a bus. It calls device_shutdown() for each of the device's
 3329  * children.
 3330  */
 3331 int
 3332 bus_generic_shutdown(device_t dev)
 3333 {
 3334         device_t child;
 3335 
 3336         TAILQ_FOREACH(child, &dev->children, link) {
 3337                 device_shutdown(child);
 3338         }
 3339 
 3340         return (0);
 3341 }
 3342 
 3343 /**
 3344  * @brief Helper function for implementing DEVICE_SUSPEND()
 3345  *
 3346  * This function can be used to help implement the DEVICE_SUSPEND()
 3347  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
 3348  * children. If any call to DEVICE_SUSPEND() fails, the suspend
 3349  * operation is aborted and any devices which were suspended are
 3350  * resumed immediately by calling their DEVICE_RESUME() methods.
 3351  */
 3352 int
 3353 bus_generic_suspend(device_t dev)
 3354 {
 3355         int             error;
 3356         device_t        child, child2;
 3357 
 3358         TAILQ_FOREACH(child, &dev->children, link) {
 3359                 error = DEVICE_SUSPEND(child);
 3360                 if (error) {
 3361                         for (child2 = TAILQ_FIRST(&dev->children);
 3362                              child2 && child2 != child;
 3363                              child2 = TAILQ_NEXT(child2, link))
 3364                                 DEVICE_RESUME(child2);
 3365                         return (error);
 3366                 }
 3367         }
 3368         return (0);
 3369 }
 3370 
 3371 /**
 3372  * @brief Helper function for implementing DEVICE_RESUME()
 3373  *
 3374  * This function can be used to help implement the DEVICE_RESUME() for
 3375  * a bus. It calls DEVICE_RESUME() on each of the device's children.
 3376  */
 3377 int
 3378 bus_generic_resume(device_t dev)
 3379 {
 3380         device_t        child;
 3381 
 3382         TAILQ_FOREACH(child, &dev->children, link) {
 3383                 DEVICE_RESUME(child);
 3384                 /* if resume fails, there's nothing we can usefully do... */
 3385         }
 3386         return (0);
 3387 }
 3388 
 3389 /**
 3390  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3391  *
 3392  * This function prints the first part of the ascii representation of
 3393  * @p child, including its name, unit and description (if any - see
 3394  * device_set_desc()).
 3395  *
 3396  * @returns the number of characters printed
 3397  */
 3398 int
 3399 bus_print_child_header(device_t dev, device_t child)
 3400 {
 3401         int     retval = 0;
 3402 
 3403         if (device_get_desc(child)) {
 3404                 retval += device_printf(child, "<%s>", device_get_desc(child));
 3405         } else {
 3406                 retval += printf("%s", device_get_nameunit(child));
 3407         }
 3408 
 3409         return (retval);
 3410 }
 3411 
 3412 /**
 3413  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3414  *
 3415  * This function prints the last part of the ascii representation of
 3416  * @p child, which consists of the string @c " on " followed by the
 3417  * name and unit of the @p dev.
 3418  *
 3419  * @returns the number of characters printed
 3420  */
 3421 int
 3422 bus_print_child_footer(device_t dev, device_t child)
 3423 {
 3424         return (printf(" on %s\n", device_get_nameunit(dev)));
 3425 }
 3426 
 3427 /**
 3428  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3429  *
 3430  * This function simply calls bus_print_child_header() followed by
 3431  * bus_print_child_footer().
 3432  *
 3433  * @returns the number of characters printed
 3434  */
 3435 int
 3436 bus_generic_print_child(device_t dev, device_t child)
 3437 {
 3438         int     retval = 0;
 3439 
 3440         retval += bus_print_child_header(dev, child);
 3441         retval += bus_print_child_footer(dev, child);
 3442 
 3443         return (retval);
 3444 }
 3445 
 3446 /**
 3447  * @brief Stub function for implementing BUS_READ_IVAR().
 3448  * 
 3449  * @returns ENOENT
 3450  */
 3451 int
 3452 bus_generic_read_ivar(device_t dev, device_t child, int index,
 3453     uintptr_t * result)
 3454 {
 3455         return (ENOENT);
 3456 }
 3457 
 3458 /**
 3459  * @brief Stub function for implementing BUS_WRITE_IVAR().
 3460  * 
 3461  * @returns ENOENT
 3462  */
 3463 int
 3464 bus_generic_write_ivar(device_t dev, device_t child, int index,
 3465     uintptr_t value)
 3466 {
 3467         return (ENOENT);
 3468 }
 3469 
 3470 /**
 3471  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
 3472  * 
 3473  * @returns NULL
 3474  */
 3475 struct resource_list *
 3476 bus_generic_get_resource_list(device_t dev, device_t child)
 3477 {
 3478         return (NULL);
 3479 }
 3480 
 3481 /**
 3482  * @brief Helper function for implementing BUS_DRIVER_ADDED().
 3483  *
 3484  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
 3485  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
 3486  * and then calls device_probe_and_attach() for each unattached child.
 3487  */
 3488 void
 3489 bus_generic_driver_added(device_t dev, driver_t *driver)
 3490 {
 3491         device_t child;
 3492 
 3493         DEVICE_IDENTIFY(driver, dev);
 3494         TAILQ_FOREACH(child, &dev->children, link) {
 3495                 if (child->state == DS_NOTPRESENT ||
 3496                     (child->flags & DF_REBID))
 3497                         device_probe_and_attach(child);
 3498         }
 3499 }
 3500 
 3501 /**
 3502  * @brief Helper function for implementing BUS_NEW_PASS().
 3503  *
 3504  * This implementing of BUS_NEW_PASS() first calls the identify
 3505  * routines for any drivers that probe at the current pass.  Then it
 3506  * walks the list of devices for this bus.  If a device is already
 3507  * attached, then it calls BUS_NEW_PASS() on that device.  If the
 3508  * device is not already attached, it attempts to attach a driver to
 3509  * it.
 3510  */
 3511 void
 3512 bus_generic_new_pass(device_t dev)
 3513 {
 3514         driverlink_t dl;
 3515         devclass_t dc;
 3516         device_t child;
 3517 
 3518         dc = dev->devclass;
 3519         TAILQ_FOREACH(dl, &dc->drivers, link) {
 3520                 if (dl->pass == bus_current_pass)
 3521                         DEVICE_IDENTIFY(dl->driver, dev);
 3522         }
 3523         TAILQ_FOREACH(child, &dev->children, link) {
 3524                 if (child->state >= DS_ATTACHED)
 3525                         BUS_NEW_PASS(child);
 3526                 else if (child->state == DS_NOTPRESENT)
 3527                         device_probe_and_attach(child);
 3528         }
 3529 }
 3530 
 3531 /**
 3532  * @brief Helper function for implementing BUS_SETUP_INTR().
 3533  *
 3534  * This simple implementation of BUS_SETUP_INTR() simply calls the
 3535  * BUS_SETUP_INTR() method of the parent of @p dev.
 3536  */
 3537 int
 3538 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
 3539     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 
 3540     void **cookiep)
 3541 {
 3542         /* Propagate up the bus hierarchy until someone handles it. */
 3543         if (dev->parent)
 3544                 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
 3545                     filter, intr, arg, cookiep));
 3546         return (EINVAL);
 3547 }
 3548 
 3549 /**
 3550  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
 3551  *
 3552  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
 3553  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
 3554  */
 3555 int
 3556 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
 3557     void *cookie)
 3558 {
 3559         /* Propagate up the bus hierarchy until someone handles it. */
 3560         if (dev->parent)
 3561                 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
 3562         return (EINVAL);
 3563 }
 3564 
 3565 /**
 3566  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
 3567  *
 3568  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
 3569  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
 3570  */
 3571 int
 3572 bus_generic_adjust_resource(device_t dev, device_t child, int type,
 3573     struct resource *r, u_long start, u_long end)
 3574 {
 3575         /* Propagate up the bus hierarchy until someone handles it. */
 3576         if (dev->parent)
 3577                 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
 3578                     end));
 3579         return (EINVAL);
 3580 }
 3581 
 3582 /**
 3583  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3584  *
 3585  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
 3586  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
 3587  */
 3588 struct resource *
 3589 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
 3590     u_long start, u_long end, u_long count, u_int flags)
 3591 {
 3592         /* Propagate up the bus hierarchy until someone handles it. */
 3593         if (dev->parent)
 3594                 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
 3595                     start, end, count, flags));
 3596         return (NULL);
 3597 }
 3598 
 3599 /**
 3600  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3601  *
 3602  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
 3603  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
 3604  */
 3605 int
 3606 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
 3607     struct resource *r)
 3608 {
 3609         /* Propagate up the bus hierarchy until someone handles it. */
 3610         if (dev->parent)
 3611                 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
 3612                     r));
 3613         return (EINVAL);
 3614 }
 3615 
 3616 /**
 3617  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
 3618  *
 3619  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
 3620  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
 3621  */
 3622 int
 3623 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
 3624     struct resource *r)
 3625 {
 3626         /* Propagate up the bus hierarchy until someone handles it. */
 3627         if (dev->parent)
 3628                 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3629                     r));
 3630         return (EINVAL);
 3631 }
 3632 
 3633 /**
 3634  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
 3635  *
 3636  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
 3637  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
 3638  */
 3639 int
 3640 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
 3641     int rid, struct resource *r)
 3642 {
 3643         /* Propagate up the bus hierarchy until someone handles it. */
 3644         if (dev->parent)
 3645                 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3646                     r));
 3647         return (EINVAL);
 3648 }
 3649 
 3650 /**
 3651  * @brief Helper function for implementing BUS_BIND_INTR().
 3652  *
 3653  * This simple implementation of BUS_BIND_INTR() simply calls the
 3654  * BUS_BIND_INTR() method of the parent of @p dev.
 3655  */
 3656 int
 3657 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
 3658     int cpu)
 3659 {
 3660 
 3661         /* Propagate up the bus hierarchy until someone handles it. */
 3662         if (dev->parent)
 3663                 return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
 3664         return (EINVAL);
 3665 }
 3666 
 3667 /**
 3668  * @brief Helper function for implementing BUS_CONFIG_INTR().
 3669  *
 3670  * This simple implementation of BUS_CONFIG_INTR() simply calls the
 3671  * BUS_CONFIG_INTR() method of the parent of @p dev.
 3672  */
 3673 int
 3674 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
 3675     enum intr_polarity pol)
 3676 {
 3677 
 3678         /* Propagate up the bus hierarchy until someone handles it. */
 3679         if (dev->parent)
 3680                 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
 3681         return (EINVAL);
 3682 }
 3683 
 3684 /**
 3685  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
 3686  *
 3687  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
 3688  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
 3689  */
 3690 int
 3691 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
 3692     void *cookie, const char *descr)
 3693 {
 3694 
 3695         /* Propagate up the bus hierarchy until someone handles it. */
 3696         if (dev->parent)
 3697                 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
 3698                     descr));
 3699         return (EINVAL);
 3700 }
 3701 
 3702 /**
 3703  * @brief Helper function for implementing BUS_GET_DMA_TAG().
 3704  *
 3705  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
 3706  * BUS_GET_DMA_TAG() method of the parent of @p dev.
 3707  */
 3708 bus_dma_tag_t
 3709 bus_generic_get_dma_tag(device_t dev, device_t child)
 3710 {
 3711 
 3712         /* Propagate up the bus hierarchy until someone handles it. */
 3713         if (dev->parent != NULL)
 3714                 return (BUS_GET_DMA_TAG(dev->parent, child));
 3715         return (NULL);
 3716 }
 3717 
 3718 /**
 3719  * @brief Helper function for implementing BUS_GET_RESOURCE().
 3720  *
 3721  * This implementation of BUS_GET_RESOURCE() uses the
 3722  * resource_list_find() function to do most of the work. It calls
 3723  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3724  * search.
 3725  */
 3726 int
 3727 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
 3728     u_long *startp, u_long *countp)
 3729 {
 3730         struct resource_list *          rl = NULL;
 3731         struct resource_list_entry *    rle = NULL;
 3732 
 3733         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3734         if (!rl)
 3735                 return (EINVAL);
 3736 
 3737         rle = resource_list_find(rl, type, rid);
 3738         if (!rle)
 3739                 return (ENOENT);
 3740 
 3741         if (startp)
 3742                 *startp = rle->start;
 3743         if (countp)
 3744                 *countp = rle->count;
 3745 
 3746         return (0);
 3747 }
 3748 
 3749 /**
 3750  * @brief Helper function for implementing BUS_SET_RESOURCE().
 3751  *
 3752  * This implementation of BUS_SET_RESOURCE() uses the
 3753  * resource_list_add() function to do most of the work. It calls
 3754  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3755  * edit.
 3756  */
 3757 int
 3758 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
 3759     u_long start, u_long count)
 3760 {
 3761         struct resource_list *          rl = NULL;
 3762 
 3763         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3764         if (!rl)
 3765                 return (EINVAL);
 3766 
 3767         resource_list_add(rl, type, rid, start, (start + count - 1), count);
 3768 
 3769         return (0);
 3770 }
 3771 
 3772 /**
 3773  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
 3774  *
 3775  * This implementation of BUS_DELETE_RESOURCE() uses the
 3776  * resource_list_delete() function to do most of the work. It calls
 3777  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3778  * edit.
 3779  */
 3780 void
 3781 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
 3782 {
 3783         struct resource_list *          rl = NULL;
 3784 
 3785         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3786         if (!rl)
 3787                 return;
 3788 
 3789         resource_list_delete(rl, type, rid);
 3790 
 3791         return;
 3792 }
 3793 
 3794 /**
 3795  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3796  *
 3797  * This implementation of BUS_RELEASE_RESOURCE() uses the
 3798  * resource_list_release() function to do most of the work. It calls
 3799  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3800  */
 3801 int
 3802 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
 3803     int rid, struct resource *r)
 3804 {
 3805         struct resource_list *          rl = NULL;
 3806 
 3807         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3808         if (!rl)
 3809                 return (EINVAL);
 3810 
 3811         return (resource_list_release(rl, dev, child, type, rid, r));
 3812 }
 3813 
 3814 /**
 3815  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3816  *
 3817  * This implementation of BUS_ALLOC_RESOURCE() uses the
 3818  * resource_list_alloc() function to do most of the work. It calls
 3819  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3820  */
 3821 struct resource *
 3822 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
 3823     int *rid, u_long start, u_long end, u_long count, u_int flags)
 3824 {
 3825         struct resource_list *          rl = NULL;
 3826 
 3827         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3828         if (!rl)
 3829                 return (NULL);
 3830 
 3831         return (resource_list_alloc(rl, dev, child, type, rid,
 3832             start, end, count, flags));
 3833 }
 3834 
 3835 /**
 3836  * @brief Helper function for implementing BUS_CHILD_PRESENT().
 3837  *
 3838  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
 3839  * BUS_CHILD_PRESENT() method of the parent of @p dev.
 3840  */
 3841 int
 3842 bus_generic_child_present(device_t dev, device_t child)
 3843 {
 3844         return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
 3845 }
 3846 
 3847 /*
 3848  * Some convenience functions to make it easier for drivers to use the
 3849  * resource-management functions.  All these really do is hide the
 3850  * indirection through the parent's method table, making for slightly
 3851  * less-wordy code.  In the future, it might make sense for this code
 3852  * to maintain some sort of a list of resources allocated by each device.
 3853  */
 3854 
 3855 int
 3856 bus_alloc_resources(device_t dev, struct resource_spec *rs,
 3857     struct resource **res)
 3858 {
 3859         int i;
 3860 
 3861         for (i = 0; rs[i].type != -1; i++)
 3862                 res[i] = NULL;
 3863         for (i = 0; rs[i].type != -1; i++) {
 3864                 res[i] = bus_alloc_resource_any(dev,
 3865                     rs[i].type, &rs[i].rid, rs[i].flags);
 3866                 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
 3867                         bus_release_resources(dev, rs, res);
 3868                         return (ENXIO);
 3869                 }
 3870         }
 3871         return (0);
 3872 }
 3873 
 3874 void
 3875 bus_release_resources(device_t dev, const struct resource_spec *rs,
 3876     struct resource **res)
 3877 {
 3878         int i;
 3879 
 3880         for (i = 0; rs[i].type != -1; i++)
 3881                 if (res[i] != NULL) {
 3882                         bus_release_resource(
 3883                             dev, rs[i].type, rs[i].rid, res[i]);
 3884                         res[i] = NULL;
 3885                 }
 3886 }
 3887 
 3888 /**
 3889  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
 3890  *
 3891  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
 3892  * parent of @p dev.
 3893  */
 3894 struct resource *
 3895 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
 3896     u_long count, u_int flags)
 3897 {
 3898         if (dev->parent == NULL)
 3899                 return (NULL);
 3900         return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
 3901             count, flags));
 3902 }
 3903 
 3904 /**
 3905  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
 3906  *
 3907  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
 3908  * parent of @p dev.
 3909  */
 3910 int
 3911 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
 3912     u_long end)
 3913 {
 3914         if (dev->parent == NULL)
 3915                 return (EINVAL);
 3916         return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
 3917 }
 3918 
 3919 /**
 3920  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
 3921  *
 3922  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
 3923  * parent of @p dev.
 3924  */
 3925 int
 3926 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
 3927 {
 3928         if (dev->parent == NULL)
 3929                 return (EINVAL);
 3930         return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 3931 }
 3932 
 3933 /**
 3934  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
 3935  *
 3936  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
 3937  * parent of @p dev.
 3938  */
 3939 int
 3940 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
 3941 {
 3942         if (dev->parent == NULL)
 3943                 return (EINVAL);
 3944         return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 3945 }
 3946 
 3947 /**
 3948  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
 3949  *
 3950  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
 3951  * parent of @p dev.
 3952  */
 3953 int
 3954 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
 3955 {
 3956         if (dev->parent == NULL)
 3957                 return (EINVAL);
 3958         return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
 3959 }
 3960 
 3961 /**
 3962  * @brief Wrapper function for BUS_SETUP_INTR().
 3963  *
 3964  * This function simply calls the BUS_SETUP_INTR() method of the
 3965  * parent of @p dev.
 3966  */
 3967 int
 3968 bus_setup_intr(device_t dev, struct resource *r, int flags,
 3969     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
 3970 {
 3971         int error;
 3972 
 3973         if (dev->parent == NULL)
 3974                 return (EINVAL);
 3975         error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
 3976             arg, cookiep);
 3977         if (error != 0)
 3978                 return (error);
 3979         if (handler != NULL && !(flags & INTR_MPSAFE))
 3980                 device_printf(dev, "[GIANT-LOCKED]\n");
 3981         if (bootverbose && (flags & INTR_MPSAFE))
 3982                 device_printf(dev, "[MPSAFE]\n");
 3983         if (filter != NULL) {
 3984                 if (handler == NULL)
 3985                         device_printf(dev, "[FILTER]\n");
 3986                 else 
 3987                         device_printf(dev, "[FILTER+ITHREAD]\n");
 3988         } else 
 3989                 device_printf(dev, "[ITHREAD]\n");
 3990         return (0);
 3991 }
 3992 
 3993 /**
 3994  * @brief Wrapper function for BUS_TEARDOWN_INTR().
 3995  *
 3996  * This function simply calls the BUS_TEARDOWN_INTR() method of the
 3997  * parent of @p dev.
 3998  */
 3999 int
 4000 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
 4001 {
 4002         if (dev->parent == NULL)
 4003                 return (EINVAL);
 4004         return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
 4005 }
 4006 
 4007 /**
 4008  * @brief Wrapper function for BUS_BIND_INTR().
 4009  *
 4010  * This function simply calls the BUS_BIND_INTR() method of the
 4011  * parent of @p dev.
 4012  */
 4013 int
 4014 bus_bind_intr(device_t dev, struct resource *r, int cpu)
 4015 {
 4016         if (dev->parent == NULL)
 4017                 return (EINVAL);
 4018         return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
 4019 }
 4020 
 4021 /**
 4022  * @brief Wrapper function for BUS_DESCRIBE_INTR().
 4023  *
 4024  * This function first formats the requested description into a
 4025  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
 4026  * the parent of @p dev.
 4027  */
 4028 int
 4029 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
 4030     const char *fmt, ...)
 4031 {
 4032         va_list ap;
 4033         char descr[MAXCOMLEN + 1];
 4034 
 4035         if (dev->parent == NULL)
 4036                 return (EINVAL);
 4037         va_start(ap, fmt);
 4038         vsnprintf(descr, sizeof(descr), fmt, ap);
 4039         va_end(ap);
 4040         return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
 4041 }
 4042 
 4043 /**
 4044  * @brief Wrapper function for BUS_SET_RESOURCE().
 4045  *
 4046  * This function simply calls the BUS_SET_RESOURCE() method of the
 4047  * parent of @p dev.
 4048  */
 4049 int
 4050 bus_set_resource(device_t dev, int type, int rid,
 4051     u_long start, u_long count)
 4052 {
 4053         return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4054             start, count));
 4055 }
 4056 
 4057 /**
 4058  * @brief Wrapper function for BUS_GET_RESOURCE().
 4059  *
 4060  * This function simply calls the BUS_GET_RESOURCE() method of the
 4061  * parent of @p dev.
 4062  */
 4063 int
 4064 bus_get_resource(device_t dev, int type, int rid,
 4065     u_long *startp, u_long *countp)
 4066 {
 4067         return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4068             startp, countp));
 4069 }
 4070 
 4071 /**
 4072  * @brief Wrapper function for BUS_GET_RESOURCE().
 4073  *
 4074  * This function simply calls the BUS_GET_RESOURCE() method of the
 4075  * parent of @p dev and returns the start value.
 4076  */
 4077 u_long
 4078 bus_get_resource_start(device_t dev, int type, int rid)
 4079 {
 4080         u_long start, count;
 4081         int error;
 4082 
 4083         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4084             &start, &count);
 4085         if (error)
 4086                 return (0);
 4087         return (start);
 4088 }
 4089 
 4090 /**
 4091  * @brief Wrapper function for BUS_GET_RESOURCE().
 4092  *
 4093  * This function simply calls the BUS_GET_RESOURCE() method of the
 4094  * parent of @p dev and returns the count value.
 4095  */
 4096 u_long
 4097 bus_get_resource_count(device_t dev, int type, int rid)
 4098 {
 4099         u_long start, count;
 4100         int error;
 4101 
 4102         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4103             &start, &count);
 4104         if (error)
 4105                 return (0);
 4106         return (count);
 4107 }
 4108 
 4109 /**
 4110  * @brief Wrapper function for BUS_DELETE_RESOURCE().
 4111  *
 4112  * This function simply calls the BUS_DELETE_RESOURCE() method of the
 4113  * parent of @p dev.
 4114  */
 4115 void
 4116 bus_delete_resource(device_t dev, int type, int rid)
 4117 {
 4118         BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
 4119 }
 4120 
 4121 /**
 4122  * @brief Wrapper function for BUS_CHILD_PRESENT().
 4123  *
 4124  * This function simply calls the BUS_CHILD_PRESENT() method of the
 4125  * parent of @p dev.
 4126  */
 4127 int
 4128 bus_child_present(device_t child)
 4129 {
 4130         return (BUS_CHILD_PRESENT(device_get_parent(child), child));
 4131 }
 4132 
 4133 /**
 4134  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
 4135  *
 4136  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
 4137  * parent of @p dev.
 4138  */
 4139 int
 4140 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
 4141 {
 4142         device_t parent;
 4143 
 4144         parent = device_get_parent(child);
 4145         if (parent == NULL) {
 4146                 *buf = '\0';
 4147                 return (0);
 4148         }
 4149         return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
 4150 }
 4151 
 4152 /**
 4153  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
 4154  *
 4155  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
 4156  * parent of @p dev.
 4157  */
 4158 int
 4159 bus_child_location_str(device_t child, char *buf, size_t buflen)
 4160 {
 4161         device_t parent;
 4162 
 4163         parent = device_get_parent(child);
 4164         if (parent == NULL) {
 4165                 *buf = '\0';
 4166                 return (0);
 4167         }
 4168         return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
 4169 }
 4170 
 4171 /**
 4172  * @brief Wrapper function for BUS_GET_DMA_TAG().
 4173  *
 4174  * This function simply calls the BUS_GET_DMA_TAG() method of the
 4175  * parent of @p dev.
 4176  */
 4177 bus_dma_tag_t
 4178 bus_get_dma_tag(device_t dev)
 4179 {
 4180         device_t parent;
 4181 
 4182         parent = device_get_parent(dev);
 4183         if (parent == NULL)
 4184                 return (NULL);
 4185         return (BUS_GET_DMA_TAG(parent, dev));
 4186 }
 4187 
 4188 /* Resume all devices and then notify userland that we're up again. */
 4189 static int
 4190 root_resume(device_t dev)
 4191 {
 4192         int error;
 4193 
 4194         error = bus_generic_resume(dev);
 4195         if (error == 0)
 4196                 devctl_notify("kern", "power", "resume", NULL);
 4197         return (error);
 4198 }
 4199 
 4200 static int
 4201 root_print_child(device_t dev, device_t child)
 4202 {
 4203         int     retval = 0;
 4204 
 4205         retval += bus_print_child_header(dev, child);
 4206         retval += printf("\n");
 4207 
 4208         return (retval);
 4209 }
 4210 
 4211 static int
 4212 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
 4213     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
 4214 {
 4215         /*
 4216          * If an interrupt mapping gets to here something bad has happened.
 4217          */
 4218         panic("root_setup_intr");
 4219 }
 4220 
 4221 /*
 4222  * If we get here, assume that the device is permanant and really is
 4223  * present in the system.  Removable bus drivers are expected to intercept
 4224  * this call long before it gets here.  We return -1 so that drivers that
 4225  * really care can check vs -1 or some ERRNO returned higher in the food
 4226  * chain.
 4227  */
 4228 static int
 4229 root_child_present(device_t dev, device_t child)
 4230 {
 4231         return (-1);
 4232 }
 4233 
 4234 static kobj_method_t root_methods[] = {
 4235         /* Device interface */
 4236         KOBJMETHOD(device_shutdown,     bus_generic_shutdown),
 4237         KOBJMETHOD(device_suspend,      bus_generic_suspend),
 4238         KOBJMETHOD(device_resume,       root_resume),
 4239 
 4240         /* Bus interface */
 4241         KOBJMETHOD(bus_print_child,     root_print_child),
 4242         KOBJMETHOD(bus_read_ivar,       bus_generic_read_ivar),
 4243         KOBJMETHOD(bus_write_ivar,      bus_generic_write_ivar),
 4244         KOBJMETHOD(bus_setup_intr,      root_setup_intr),
 4245         KOBJMETHOD(bus_child_present,   root_child_present),
 4246 
 4247         KOBJMETHOD_END
 4248 };
 4249 
 4250 static driver_t root_driver = {
 4251         "root",
 4252         root_methods,
 4253         1,                      /* no softc */
 4254 };
 4255 
 4256 device_t        root_bus;
 4257 devclass_t      root_devclass;
 4258 
 4259 static int
 4260 root_bus_module_handler(module_t mod, int what, void* arg)
 4261 {
 4262         switch (what) {
 4263         case MOD_LOAD:
 4264                 TAILQ_INIT(&bus_data_devices);
 4265                 kobj_class_compile((kobj_class_t) &root_driver);
 4266                 root_bus = make_device(NULL, "root", 0);
 4267                 root_bus->desc = "System root bus";
 4268                 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
 4269                 root_bus->driver = &root_driver;
 4270                 root_bus->state = DS_ATTACHED;
 4271                 root_devclass = devclass_find_internal("root", NULL, FALSE);
 4272                 devinit();
 4273                 return (0);
 4274 
 4275         case MOD_SHUTDOWN:
 4276                 device_shutdown(root_bus);
 4277                 return (0);
 4278         default:
 4279                 return (EOPNOTSUPP);
 4280         }
 4281 
 4282         return (0);
 4283 }
 4284 
 4285 static moduledata_t root_bus_mod = {
 4286         "rootbus",
 4287         root_bus_module_handler,
 4288         NULL
 4289 };
 4290 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
 4291 
 4292 /**
 4293  * @brief Automatically configure devices
 4294  *
 4295  * This function begins the autoconfiguration process by calling
 4296  * device_probe_and_attach() for each child of the @c root0 device.
 4297  */ 
 4298 void
 4299 root_bus_configure(void)
 4300 {
 4301 
 4302         PDEBUG(("."));
 4303 
 4304         /* Eventually this will be split up, but this is sufficient for now. */
 4305         bus_set_pass(BUS_PASS_DEFAULT);
 4306 }
 4307 
 4308 /**
 4309  * @brief Module handler for registering device drivers
 4310  *
 4311  * This module handler is used to automatically register device
 4312  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
 4313  * devclass_add_driver() for the driver described by the
 4314  * driver_module_data structure pointed to by @p arg
 4315  */
 4316 int
 4317 driver_module_handler(module_t mod, int what, void *arg)
 4318 {
 4319         struct driver_module_data *dmd;
 4320         devclass_t bus_devclass;
 4321         kobj_class_t driver;
 4322         int error, pass;
 4323 
 4324         dmd = (struct driver_module_data *)arg;
 4325         bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
 4326         error = 0;
 4327 
 4328         switch (what) {
 4329         case MOD_LOAD:
 4330                 if (dmd->dmd_chainevh)
 4331                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4332 
 4333                 pass = dmd->dmd_pass;
 4334                 driver = dmd->dmd_driver;
 4335                 PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
 4336                     DRIVERNAME(driver), dmd->dmd_busname, pass));
 4337                 error = devclass_add_driver(bus_devclass, driver, pass,
 4338                     dmd->dmd_devclass);
 4339                 break;
 4340 
 4341         case MOD_UNLOAD:
 4342                 PDEBUG(("Unloading module: driver %s from bus %s",
 4343                     DRIVERNAME(dmd->dmd_driver),
 4344                     dmd->dmd_busname));
 4345                 error = devclass_delete_driver(bus_devclass,
 4346                     dmd->dmd_driver);
 4347 
 4348                 if (!error && dmd->dmd_chainevh)
 4349                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4350                 break;
 4351         case MOD_QUIESCE:
 4352                 PDEBUG(("Quiesce module: driver %s from bus %s",
 4353                     DRIVERNAME(dmd->dmd_driver),
 4354                     dmd->dmd_busname));
 4355                 error = devclass_quiesce_driver(bus_devclass,
 4356                     dmd->dmd_driver);
 4357 
 4358                 if (!error && dmd->dmd_chainevh)
 4359                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4360                 break;
 4361         default:
 4362                 error = EOPNOTSUPP;
 4363                 break;
 4364         }
 4365 
 4366         return (error);
 4367 }
 4368 
 4369 /**
 4370  * @brief Enumerate all hinted devices for this bus.
 4371  *
 4372  * Walks through the hints for this bus and calls the bus_hinted_child
 4373  * routine for each one it fines.  It searches first for the specific
 4374  * bus that's being probed for hinted children (eg isa0), and then for
 4375  * generic children (eg isa).
 4376  *
 4377  * @param       dev     bus device to enumerate
 4378  */
 4379 void
 4380 bus_enumerate_hinted_children(device_t bus)
 4381 {
 4382         int i;
 4383         const char *dname, *busname;
 4384         int dunit;
 4385 
 4386         /*
 4387          * enumerate all devices on the specific bus
 4388          */
 4389         busname = device_get_nameunit(bus);
 4390         i = 0;
 4391         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 4392                 BUS_HINTED_CHILD(bus, dname, dunit);
 4393 
 4394         /*
 4395          * and all the generic ones.
 4396          */
 4397         busname = device_get_name(bus);
 4398         i = 0;
 4399         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 4400                 BUS_HINTED_CHILD(bus, dname, dunit);
 4401 }
 4402 
 4403 #ifdef BUS_DEBUG
 4404 
 4405 /* the _short versions avoid iteration by not calling anything that prints
 4406  * more than oneliners. I love oneliners.
 4407  */
 4408 
 4409 static void
 4410 print_device_short(device_t dev, int indent)
 4411 {
 4412         if (!dev)
 4413                 return;
 4414 
 4415         indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
 4416             dev->unit, dev->desc,
 4417             (dev->parent? "":"no "),
 4418             (TAILQ_EMPTY(&dev->children)? "no ":""),
 4419             (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
 4420             (dev->flags&DF_FIXEDCLASS? "fixed,":""),
 4421             (dev->flags&DF_WILDCARD? "wildcard,":""),
 4422             (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
 4423             (dev->flags&DF_REBID? "rebiddable,":""),
 4424             (dev->ivars? "":"no "),
 4425             (dev->softc? "":"no "),
 4426             dev->busy));
 4427 }
 4428 
 4429 static void
 4430 print_device(device_t dev, int indent)
 4431 {
 4432         if (!dev)
 4433                 return;
 4434 
 4435         print_device_short(dev, indent);
 4436 
 4437         indentprintf(("Parent:\n"));
 4438         print_device_short(dev->parent, indent+1);
 4439         indentprintf(("Driver:\n"));
 4440         print_driver_short(dev->driver, indent+1);
 4441         indentprintf(("Devclass:\n"));
 4442         print_devclass_short(dev->devclass, indent+1);
 4443 }
 4444 
 4445 void
 4446 print_device_tree_short(device_t dev, int indent)
 4447 /* print the device and all its children (indented) */
 4448 {
 4449         device_t child;
 4450 
 4451         if (!dev)
 4452                 return;
 4453 
 4454         print_device_short(dev, indent);
 4455 
 4456         TAILQ_FOREACH(child, &dev->children, link) {
 4457                 print_device_tree_short(child, indent+1);
 4458         }
 4459 }
 4460 
 4461 void
 4462 print_device_tree(device_t dev, int indent)
 4463 /* print the device and all its children (indented) */
 4464 {
 4465         device_t child;
 4466 
 4467         if (!dev)
 4468                 return;
 4469 
 4470         print_device(dev, indent);
 4471 
 4472         TAILQ_FOREACH(child, &dev->children, link) {
 4473                 print_device_tree(child, indent+1);
 4474         }
 4475 }
 4476 
 4477 static void
 4478 print_driver_short(driver_t *driver, int indent)
 4479 {
 4480         if (!driver)
 4481                 return;
 4482 
 4483         indentprintf(("driver %s: softc size = %zd\n",
 4484             driver->name, driver->size));
 4485 }
 4486 
 4487 static void
 4488 print_driver(driver_t *driver, int indent)
 4489 {
 4490         if (!driver)
 4491                 return;
 4492 
 4493         print_driver_short(driver, indent);
 4494 }
 4495 
 4496 static void
 4497 print_driver_list(driver_list_t drivers, int indent)
 4498 {
 4499         driverlink_t driver;
 4500 
 4501         TAILQ_FOREACH(driver, &drivers, link) {
 4502                 print_driver(driver->driver, indent);
 4503         }
 4504 }
 4505 
 4506 static void
 4507 print_devclass_short(devclass_t dc, int indent)
 4508 {
 4509         if ( !dc )
 4510                 return;
 4511 
 4512         indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
 4513 }
 4514 
 4515 static void
 4516 print_devclass(devclass_t dc, int indent)
 4517 {
 4518         int i;
 4519 
 4520         if ( !dc )
 4521                 return;
 4522 
 4523         print_devclass_short(dc, indent);
 4524         indentprintf(("Drivers:\n"));
 4525         print_driver_list(dc->drivers, indent+1);
 4526 
 4527         indentprintf(("Devices:\n"));
 4528         for (i = 0; i < dc->maxunit; i++)
 4529                 if (dc->devices[i])
 4530                         print_device(dc->devices[i], indent+1);
 4531 }
 4532 
 4533 void
 4534 print_devclass_list_short(void)
 4535 {
 4536         devclass_t dc;
 4537 
 4538         printf("Short listing of devclasses, drivers & devices:\n");
 4539         TAILQ_FOREACH(dc, &devclasses, link) {
 4540                 print_devclass_short(dc, 0);
 4541         }
 4542 }
 4543 
 4544 void
 4545 print_devclass_list(void)
 4546 {
 4547         devclass_t dc;
 4548 
 4549         printf("Full listing of devclasses, drivers & devices:\n");
 4550         TAILQ_FOREACH(dc, &devclasses, link) {
 4551                 print_devclass(dc, 0);
 4552         }
 4553 }
 4554 
 4555 #endif
 4556 
 4557 /*
 4558  * User-space access to the device tree.
 4559  *
 4560  * We implement a small set of nodes:
 4561  *
 4562  * hw.bus                       Single integer read method to obtain the
 4563  *                              current generation count.
 4564  * hw.bus.devices               Reads the entire device tree in flat space.
 4565  * hw.bus.rman                  Resource manager interface
 4566  *
 4567  * We might like to add the ability to scan devclasses and/or drivers to
 4568  * determine what else is currently loaded/available.
 4569  */
 4570 
 4571 static int
 4572 sysctl_bus(SYSCTL_HANDLER_ARGS)
 4573 {
 4574         struct u_businfo        ubus;
 4575 
 4576         ubus.ub_version = BUS_USER_VERSION;
 4577         ubus.ub_generation = bus_data_generation;
 4578 
 4579         return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
 4580 }
 4581 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
 4582     "bus-related data");
 4583 
 4584 static int
 4585 sysctl_devices(SYSCTL_HANDLER_ARGS)
 4586 {
 4587         int                     *name = (int *)arg1;
 4588         u_int                   namelen = arg2;
 4589         int                     index;
 4590         struct device           *dev;
 4591         struct u_device         udev;   /* XXX this is a bit big */
 4592         int                     error;
 4593 
 4594         if (namelen != 2)
 4595                 return (EINVAL);
 4596 
 4597         if (bus_data_generation_check(name[0]))
 4598                 return (EINVAL);
 4599 
 4600         index = name[1];
 4601 
 4602         /*
 4603          * Scan the list of devices, looking for the requested index.
 4604          */
 4605         TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 4606                 if (index-- == 0)
 4607                         break;
 4608         }
 4609         if (dev == NULL)
 4610                 return (ENOENT);
 4611 
 4612         /*
 4613          * Populate the return array.
 4614          */
 4615         bzero(&udev, sizeof(udev));
 4616         udev.dv_handle = (uintptr_t)dev;
 4617         udev.dv_parent = (uintptr_t)dev->parent;
 4618         if (dev->nameunit != NULL)
 4619                 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
 4620         if (dev->desc != NULL)
 4621                 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
 4622         if (dev->driver != NULL && dev->driver->name != NULL)
 4623                 strlcpy(udev.dv_drivername, dev->driver->name,
 4624                     sizeof(udev.dv_drivername));
 4625         bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
 4626         bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
 4627         udev.dv_devflags = dev->devflags;
 4628         udev.dv_flags = dev->flags;
 4629         udev.dv_state = dev->state;
 4630         error = SYSCTL_OUT(req, &udev, sizeof(udev));
 4631         return (error);
 4632 }
 4633 
 4634 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
 4635     "system device tree");
 4636 
 4637 int
 4638 bus_data_generation_check(int generation)
 4639 {
 4640         if (generation != bus_data_generation)
 4641                 return (1);
 4642 
 4643         /* XXX generate optimised lists here? */
 4644         return (0);
 4645 }
 4646 
 4647 void
 4648 bus_data_generation_update(void)
 4649 {
 4650         bus_data_generation++;
 4651 }
 4652 
 4653 int
 4654 bus_free_resource(device_t dev, int type, struct resource *r)
 4655 {
 4656         if (r == NULL)
 4657                 return (0);
 4658         return (bus_release_resource(dev, type, rman_get_rid(r), r));
 4659 }

Cache object: 5895fd4eac0792946561baa7dd52345e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.