The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_bus.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997,1998,2003 Doug Rabson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/9.0/sys/kern/subr_bus.c 225617 2011-09-16 13:58:51Z kmacy $");
   29 
   30 #include "opt_bus.h"
   31 
   32 #include <sys/param.h>
   33 #include <sys/conf.h>
   34 #include <sys/filio.h>
   35 #include <sys/lock.h>
   36 #include <sys/kernel.h>
   37 #include <sys/kobj.h>
   38 #include <sys/limits.h>
   39 #include <sys/malloc.h>
   40 #include <sys/module.h>
   41 #include <sys/mutex.h>
   42 #include <sys/poll.h>
   43 #include <sys/proc.h>
   44 #include <sys/condvar.h>
   45 #include <sys/queue.h>
   46 #include <machine/bus.h>
   47 #include <sys/rman.h>
   48 #include <sys/selinfo.h>
   49 #include <sys/signalvar.h>
   50 #include <sys/sysctl.h>
   51 #include <sys/systm.h>
   52 #include <sys/uio.h>
   53 #include <sys/bus.h>
   54 #include <sys/interrupt.h>
   55 
   56 #include <machine/stdarg.h>
   57 
   58 #include <vm/uma.h>
   59 
   60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
   61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
   62 
   63 /*
   64  * Used to attach drivers to devclasses.
   65  */
   66 typedef struct driverlink *driverlink_t;
   67 struct driverlink {
   68         kobj_class_t    driver;
   69         TAILQ_ENTRY(driverlink) link;   /* list of drivers in devclass */
   70         int             pass;
   71         TAILQ_ENTRY(driverlink) passlink;
   72 };
   73 
   74 /*
   75  * Forward declarations
   76  */
   77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
   78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
   79 typedef TAILQ_HEAD(device_list, device) device_list_t;
   80 
   81 struct devclass {
   82         TAILQ_ENTRY(devclass) link;
   83         devclass_t      parent;         /* parent in devclass hierarchy */
   84         driver_list_t   drivers;     /* bus devclasses store drivers for bus */
   85         char            *name;
   86         device_t        *devices;       /* array of devices indexed by unit */
   87         int             maxunit;        /* size of devices array */
   88         int             flags;
   89 #define DC_HAS_CHILDREN         1
   90 
   91         struct sysctl_ctx_list sysctl_ctx;
   92         struct sysctl_oid *sysctl_tree;
   93 };
   94 
   95 /**
   96  * @brief Implementation of device.
   97  */
   98 struct device {
   99         /*
  100          * A device is a kernel object. The first field must be the
  101          * current ops table for the object.
  102          */
  103         KOBJ_FIELDS;
  104 
  105         /*
  106          * Device hierarchy.
  107          */
  108         TAILQ_ENTRY(device)     link;   /**< list of devices in parent */
  109         TAILQ_ENTRY(device)     devlink; /**< global device list membership */
  110         device_t        parent;         /**< parent of this device  */
  111         device_list_t   children;       /**< list of child devices */
  112 
  113         /*
  114          * Details of this device.
  115          */
  116         driver_t        *driver;        /**< current driver */
  117         devclass_t      devclass;       /**< current device class */
  118         int             unit;           /**< current unit number */
  119         char*           nameunit;       /**< name+unit e.g. foodev0 */
  120         char*           desc;           /**< driver specific description */
  121         int             busy;           /**< count of calls to device_busy() */
  122         device_state_t  state;          /**< current device state  */
  123         uint32_t        devflags;       /**< api level flags for device_get_flags() */
  124         u_int           flags;          /**< internal device flags  */
  125 #define DF_ENABLED      0x01            /* device should be probed/attached */
  126 #define DF_FIXEDCLASS   0x02            /* devclass specified at create time */
  127 #define DF_WILDCARD     0x04            /* unit was originally wildcard */
  128 #define DF_DESCMALLOCED 0x08            /* description was malloced */
  129 #define DF_QUIET        0x10            /* don't print verbose attach message */
  130 #define DF_DONENOMATCH  0x20            /* don't execute DEVICE_NOMATCH again */
  131 #define DF_EXTERNALSOFTC 0x40           /* softc not allocated by us */
  132 #define DF_REBID        0x80            /* Can rebid after attach */
  133         u_int   order;                  /**< order from device_add_child_ordered() */
  134         void    *ivars;                 /**< instance variables  */
  135         void    *softc;                 /**< current driver's variables  */
  136 
  137         struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
  138         struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
  139 };
  140 
  141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
  142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
  143 
  144 #ifdef BUS_DEBUG
  145 
  146 static int bus_debug = 1;
  147 TUNABLE_INT("bus.debug", &bus_debug);
  148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
  149     "Debug bus code");
  150 
  151 #define PDEBUG(a)       if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
  152 #define DEVICENAME(d)   ((d)? device_get_name(d): "no device")
  153 #define DRIVERNAME(d)   ((d)? d->name : "no driver")
  154 #define DEVCLANAME(d)   ((d)? d->name : "no devclass")
  155 
  156 /**
  157  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
  158  * prevent syslog from deleting initial spaces
  159  */
  160 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
  161 
  162 static void print_device_short(device_t dev, int indent);
  163 static void print_device(device_t dev, int indent);
  164 void print_device_tree_short(device_t dev, int indent);
  165 void print_device_tree(device_t dev, int indent);
  166 static void print_driver_short(driver_t *driver, int indent);
  167 static void print_driver(driver_t *driver, int indent);
  168 static void print_driver_list(driver_list_t drivers, int indent);
  169 static void print_devclass_short(devclass_t dc, int indent);
  170 static void print_devclass(devclass_t dc, int indent);
  171 void print_devclass_list_short(void);
  172 void print_devclass_list(void);
  173 
  174 #else
  175 /* Make the compiler ignore the function calls */
  176 #define PDEBUG(a)                       /* nop */
  177 #define DEVICENAME(d)                   /* nop */
  178 #define DRIVERNAME(d)                   /* nop */
  179 #define DEVCLANAME(d)                   /* nop */
  180 
  181 #define print_device_short(d,i)         /* nop */
  182 #define print_device(d,i)               /* nop */
  183 #define print_device_tree_short(d,i)    /* nop */
  184 #define print_device_tree(d,i)          /* nop */
  185 #define print_driver_short(d,i)         /* nop */
  186 #define print_driver(d,i)               /* nop */
  187 #define print_driver_list(d,i)          /* nop */
  188 #define print_devclass_short(d,i)       /* nop */
  189 #define print_devclass(d,i)             /* nop */
  190 #define print_devclass_list_short()     /* nop */
  191 #define print_devclass_list()           /* nop */
  192 #endif
  193 
  194 /*
  195  * dev sysctl tree
  196  */
  197 
  198 enum {
  199         DEVCLASS_SYSCTL_PARENT,
  200 };
  201 
  202 static int
  203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
  204 {
  205         devclass_t dc = (devclass_t)arg1;
  206         const char *value;
  207 
  208         switch (arg2) {
  209         case DEVCLASS_SYSCTL_PARENT:
  210                 value = dc->parent ? dc->parent->name : "";
  211                 break;
  212         default:
  213                 return (EINVAL);
  214         }
  215         return (SYSCTL_OUT(req, value, strlen(value)));
  216 }
  217 
  218 static void
  219 devclass_sysctl_init(devclass_t dc)
  220 {
  221 
  222         if (dc->sysctl_tree != NULL)
  223                 return;
  224         sysctl_ctx_init(&dc->sysctl_ctx);
  225         dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
  226             SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
  227             CTLFLAG_RD, NULL, "");
  228         SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
  229             OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
  230             dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
  231             "parent class");
  232 }
  233 
  234 enum {
  235         DEVICE_SYSCTL_DESC,
  236         DEVICE_SYSCTL_DRIVER,
  237         DEVICE_SYSCTL_LOCATION,
  238         DEVICE_SYSCTL_PNPINFO,
  239         DEVICE_SYSCTL_PARENT,
  240 };
  241 
  242 static int
  243 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
  244 {
  245         device_t dev = (device_t)arg1;
  246         const char *value;
  247         char *buf;
  248         int error;
  249 
  250         buf = NULL;
  251         switch (arg2) {
  252         case DEVICE_SYSCTL_DESC:
  253                 value = dev->desc ? dev->desc : "";
  254                 break;
  255         case DEVICE_SYSCTL_DRIVER:
  256                 value = dev->driver ? dev->driver->name : "";
  257                 break;
  258         case DEVICE_SYSCTL_LOCATION:
  259                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  260                 bus_child_location_str(dev, buf, 1024);
  261                 break;
  262         case DEVICE_SYSCTL_PNPINFO:
  263                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  264                 bus_child_pnpinfo_str(dev, buf, 1024);
  265                 break;
  266         case DEVICE_SYSCTL_PARENT:
  267                 value = dev->parent ? dev->parent->nameunit : "";
  268                 break;
  269         default:
  270                 return (EINVAL);
  271         }
  272         error = SYSCTL_OUT(req, value, strlen(value));
  273         if (buf != NULL)
  274                 free(buf, M_BUS);
  275         return (error);
  276 }
  277 
  278 static void
  279 device_sysctl_init(device_t dev)
  280 {
  281         devclass_t dc = dev->devclass;
  282 
  283         if (dev->sysctl_tree != NULL)
  284                 return;
  285         devclass_sysctl_init(dc);
  286         sysctl_ctx_init(&dev->sysctl_ctx);
  287         dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
  288             SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
  289             dev->nameunit + strlen(dc->name),
  290             CTLFLAG_RD, NULL, "");
  291         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  292             OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
  293             dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
  294             "device description");
  295         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  296             OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
  297             dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
  298             "device driver name");
  299         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  300             OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
  301             dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
  302             "device location relative to parent");
  303         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  304             OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
  305             dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
  306             "device identification");
  307         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  308             OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
  309             dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
  310             "parent device");
  311 }
  312 
  313 static void
  314 device_sysctl_update(device_t dev)
  315 {
  316         devclass_t dc = dev->devclass;
  317 
  318         if (dev->sysctl_tree == NULL)
  319                 return;
  320         sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
  321 }
  322 
  323 static void
  324 device_sysctl_fini(device_t dev)
  325 {
  326         if (dev->sysctl_tree == NULL)
  327                 return;
  328         sysctl_ctx_free(&dev->sysctl_ctx);
  329         dev->sysctl_tree = NULL;
  330 }
  331 
  332 /*
  333  * /dev/devctl implementation
  334  */
  335 
  336 /*
  337  * This design allows only one reader for /dev/devctl.  This is not desirable
  338  * in the long run, but will get a lot of hair out of this implementation.
  339  * Maybe we should make this device a clonable device.
  340  *
  341  * Also note: we specifically do not attach a device to the device_t tree
  342  * to avoid potential chicken and egg problems.  One could argue that all
  343  * of this belongs to the root node.  One could also further argue that the
  344  * sysctl interface that we have not might more properly be an ioctl
  345  * interface, but at this stage of the game, I'm not inclined to rock that
  346  * boat.
  347  *
  348  * I'm also not sure that the SIGIO support is done correctly or not, as
  349  * I copied it from a driver that had SIGIO support that likely hasn't been
  350  * tested since 3.4 or 2.2.8!
  351  */
  352 
  353 /* Deprecated way to adjust queue length */
  354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
  355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
  356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
  357     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
  358 
  359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
  360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
  361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
  363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
  364     0, sysctl_devctl_queue, "I", "devctl queue length");
  365 
  366 static d_open_t         devopen;
  367 static d_close_t        devclose;
  368 static d_read_t         devread;
  369 static d_ioctl_t        devioctl;
  370 static d_poll_t         devpoll;
  371 
  372 static struct cdevsw dev_cdevsw = {
  373         .d_version =    D_VERSION,
  374         .d_flags =      D_NEEDGIANT,
  375         .d_open =       devopen,
  376         .d_close =      devclose,
  377         .d_read =       devread,
  378         .d_ioctl =      devioctl,
  379         .d_poll =       devpoll,
  380         .d_name =       "devctl",
  381 };
  382 
  383 struct dev_event_info
  384 {
  385         char *dei_data;
  386         TAILQ_ENTRY(dev_event_info) dei_link;
  387 };
  388 
  389 TAILQ_HEAD(devq, dev_event_info);
  390 
  391 static struct dev_softc
  392 {
  393         int     inuse;
  394         int     nonblock;
  395         int     queued;
  396         struct mtx mtx;
  397         struct cv cv;
  398         struct selinfo sel;
  399         struct devq devq;
  400         struct proc *async_proc;
  401 } devsoftc;
  402 
  403 static struct cdev *devctl_dev;
  404 
  405 static void
  406 devinit(void)
  407 {
  408         devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
  409             UID_ROOT, GID_WHEEL, 0600, "devctl");
  410         mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
  411         cv_init(&devsoftc.cv, "dev cv");
  412         TAILQ_INIT(&devsoftc.devq);
  413 }
  414 
  415 static int
  416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
  417 {
  418         if (devsoftc.inuse)
  419                 return (EBUSY);
  420         /* move to init */
  421         devsoftc.inuse = 1;
  422         devsoftc.nonblock = 0;
  423         devsoftc.async_proc = NULL;
  424         return (0);
  425 }
  426 
  427 static int
  428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
  429 {
  430         devsoftc.inuse = 0;
  431         mtx_lock(&devsoftc.mtx);
  432         cv_broadcast(&devsoftc.cv);
  433         mtx_unlock(&devsoftc.mtx);
  434         devsoftc.async_proc = NULL;
  435         return (0);
  436 }
  437 
  438 /*
  439  * The read channel for this device is used to report changes to
  440  * userland in realtime.  We are required to free the data as well as
  441  * the n1 object because we allocate them separately.  Also note that
  442  * we return one record at a time.  If you try to read this device a
  443  * character at a time, you will lose the rest of the data.  Listening
  444  * programs are expected to cope.
  445  */
  446 static int
  447 devread(struct cdev *dev, struct uio *uio, int ioflag)
  448 {
  449         struct dev_event_info *n1;
  450         int rv;
  451 
  452         mtx_lock(&devsoftc.mtx);
  453         while (TAILQ_EMPTY(&devsoftc.devq)) {
  454                 if (devsoftc.nonblock) {
  455                         mtx_unlock(&devsoftc.mtx);
  456                         return (EAGAIN);
  457                 }
  458                 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
  459                 if (rv) {
  460                         /*
  461                          * Need to translate ERESTART to EINTR here? -- jake
  462                          */
  463                         mtx_unlock(&devsoftc.mtx);
  464                         return (rv);
  465                 }
  466         }
  467         n1 = TAILQ_FIRST(&devsoftc.devq);
  468         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  469         devsoftc.queued--;
  470         mtx_unlock(&devsoftc.mtx);
  471         rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
  472         free(n1->dei_data, M_BUS);
  473         free(n1, M_BUS);
  474         return (rv);
  475 }
  476 
  477 static  int
  478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
  479 {
  480         switch (cmd) {
  481 
  482         case FIONBIO:
  483                 if (*(int*)data)
  484                         devsoftc.nonblock = 1;
  485                 else
  486                         devsoftc.nonblock = 0;
  487                 return (0);
  488         case FIOASYNC:
  489                 if (*(int*)data)
  490                         devsoftc.async_proc = td->td_proc;
  491                 else
  492                         devsoftc.async_proc = NULL;
  493                 return (0);
  494 
  495                 /* (un)Support for other fcntl() calls. */
  496         case FIOCLEX:
  497         case FIONCLEX:
  498         case FIONREAD:
  499         case FIOSETOWN:
  500         case FIOGETOWN:
  501         default:
  502                 break;
  503         }
  504         return (ENOTTY);
  505 }
  506 
  507 static  int
  508 devpoll(struct cdev *dev, int events, struct thread *td)
  509 {
  510         int     revents = 0;
  511 
  512         mtx_lock(&devsoftc.mtx);
  513         if (events & (POLLIN | POLLRDNORM)) {
  514                 if (!TAILQ_EMPTY(&devsoftc.devq))
  515                         revents = events & (POLLIN | POLLRDNORM);
  516                 else
  517                         selrecord(td, &devsoftc.sel);
  518         }
  519         mtx_unlock(&devsoftc.mtx);
  520 
  521         return (revents);
  522 }
  523 
  524 /**
  525  * @brief Return whether the userland process is running
  526  */
  527 boolean_t
  528 devctl_process_running(void)
  529 {
  530         return (devsoftc.inuse == 1);
  531 }
  532 
  533 /**
  534  * @brief Queue data to be read from the devctl device
  535  *
  536  * Generic interface to queue data to the devctl device.  It is
  537  * assumed that @p data is properly formatted.  It is further assumed
  538  * that @p data is allocated using the M_BUS malloc type.
  539  */
  540 void
  541 devctl_queue_data_f(char *data, int flags)
  542 {
  543         struct dev_event_info *n1 = NULL, *n2 = NULL;
  544         struct proc *p;
  545 
  546         if (strlen(data) == 0)
  547                 goto out;
  548         if (devctl_queue_length == 0)
  549                 goto out;
  550         n1 = malloc(sizeof(*n1), M_BUS, flags);
  551         if (n1 == NULL)
  552                 goto out;
  553         n1->dei_data = data;
  554         mtx_lock(&devsoftc.mtx);
  555         if (devctl_queue_length == 0) {
  556                 mtx_unlock(&devsoftc.mtx);
  557                 free(n1->dei_data, M_BUS);
  558                 free(n1, M_BUS);
  559                 return;
  560         }
  561         /* Leave at least one spot in the queue... */
  562         while (devsoftc.queued > devctl_queue_length - 1) {
  563                 n2 = TAILQ_FIRST(&devsoftc.devq);
  564                 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
  565                 free(n2->dei_data, M_BUS);
  566                 free(n2, M_BUS);
  567                 devsoftc.queued--;
  568         }
  569         TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
  570         devsoftc.queued++;
  571         cv_broadcast(&devsoftc.cv);
  572         mtx_unlock(&devsoftc.mtx);
  573         selwakeup(&devsoftc.sel);
  574         p = devsoftc.async_proc;
  575         if (p != NULL) {
  576                 PROC_LOCK(p);
  577                 kern_psignal(p, SIGIO);
  578                 PROC_UNLOCK(p);
  579         }
  580         return;
  581 out:
  582         /*
  583          * We have to free data on all error paths since the caller
  584          * assumes it will be free'd when this item is dequeued.
  585          */
  586         free(data, M_BUS);
  587         return;
  588 }
  589 
  590 void
  591 devctl_queue_data(char *data)
  592 {
  593 
  594         devctl_queue_data_f(data, M_NOWAIT);
  595 }
  596 
  597 /**
  598  * @brief Send a 'notification' to userland, using standard ways
  599  */
  600 void
  601 devctl_notify_f(const char *system, const char *subsystem, const char *type,
  602     const char *data, int flags)
  603 {
  604         int len = 0;
  605         char *msg;
  606 
  607         if (system == NULL)
  608                 return;         /* BOGUS!  Must specify system. */
  609         if (subsystem == NULL)
  610                 return;         /* BOGUS!  Must specify subsystem. */
  611         if (type == NULL)
  612                 return;         /* BOGUS!  Must specify type. */
  613         len += strlen(" system=") + strlen(system);
  614         len += strlen(" subsystem=") + strlen(subsystem);
  615         len += strlen(" type=") + strlen(type);
  616         /* add in the data message plus newline. */
  617         if (data != NULL)
  618                 len += strlen(data);
  619         len += 3;       /* '!', '\n', and NUL */
  620         msg = malloc(len, M_BUS, flags);
  621         if (msg == NULL)
  622                 return;         /* Drop it on the floor */
  623         if (data != NULL)
  624                 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
  625                     system, subsystem, type, data);
  626         else
  627                 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
  628                     system, subsystem, type);
  629         devctl_queue_data_f(msg, flags);
  630 }
  631 
  632 void
  633 devctl_notify(const char *system, const char *subsystem, const char *type,
  634     const char *data)
  635 {
  636 
  637         devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
  638 }
  639 
  640 /*
  641  * Common routine that tries to make sending messages as easy as possible.
  642  * We allocate memory for the data, copy strings into that, but do not
  643  * free it unless there's an error.  The dequeue part of the driver should
  644  * free the data.  We don't send data when the device is disabled.  We do
  645  * send data, even when we have no listeners, because we wish to avoid
  646  * races relating to startup and restart of listening applications.
  647  *
  648  * devaddq is designed to string together the type of event, with the
  649  * object of that event, plus the plug and play info and location info
  650  * for that event.  This is likely most useful for devices, but less
  651  * useful for other consumers of this interface.  Those should use
  652  * the devctl_queue_data() interface instead.
  653  */
  654 static void
  655 devaddq(const char *type, const char *what, device_t dev)
  656 {
  657         char *data = NULL;
  658         char *loc = NULL;
  659         char *pnp = NULL;
  660         const char *parstr;
  661 
  662         if (!devctl_queue_length)/* Rare race, but lost races safely discard */
  663                 return;
  664         data = malloc(1024, M_BUS, M_NOWAIT);
  665         if (data == NULL)
  666                 goto bad;
  667 
  668         /* get the bus specific location of this device */
  669         loc = malloc(1024, M_BUS, M_NOWAIT);
  670         if (loc == NULL)
  671                 goto bad;
  672         *loc = '\0';
  673         bus_child_location_str(dev, loc, 1024);
  674 
  675         /* Get the bus specific pnp info of this device */
  676         pnp = malloc(1024, M_BUS, M_NOWAIT);
  677         if (pnp == NULL)
  678                 goto bad;
  679         *pnp = '\0';
  680         bus_child_pnpinfo_str(dev, pnp, 1024);
  681 
  682         /* Get the parent of this device, or / if high enough in the tree. */
  683         if (device_get_parent(dev) == NULL)
  684                 parstr = ".";   /* Or '/' ? */
  685         else
  686                 parstr = device_get_nameunit(device_get_parent(dev));
  687         /* String it all together. */
  688         snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
  689           parstr);
  690         free(loc, M_BUS);
  691         free(pnp, M_BUS);
  692         devctl_queue_data(data);
  693         return;
  694 bad:
  695         free(pnp, M_BUS);
  696         free(loc, M_BUS);
  697         free(data, M_BUS);
  698         return;
  699 }
  700 
  701 /*
  702  * A device was added to the tree.  We are called just after it successfully
  703  * attaches (that is, probe and attach success for this device).  No call
  704  * is made if a device is merely parented into the tree.  See devnomatch
  705  * if probe fails.  If attach fails, no notification is sent (but maybe
  706  * we should have a different message for this).
  707  */
  708 static void
  709 devadded(device_t dev)
  710 {
  711         devaddq("+", device_get_nameunit(dev), dev);
  712 }
  713 
  714 /*
  715  * A device was removed from the tree.  We are called just before this
  716  * happens.
  717  */
  718 static void
  719 devremoved(device_t dev)
  720 {
  721         devaddq("-", device_get_nameunit(dev), dev);
  722 }
  723 
  724 /*
  725  * Called when there's no match for this device.  This is only called
  726  * the first time that no match happens, so we don't keep getting this
  727  * message.  Should that prove to be undesirable, we can change it.
  728  * This is called when all drivers that can attach to a given bus
  729  * decline to accept this device.  Other errors may not be detected.
  730  */
  731 static void
  732 devnomatch(device_t dev)
  733 {
  734         devaddq("?", "", dev);
  735 }
  736 
  737 static int
  738 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
  739 {
  740         struct dev_event_info *n1;
  741         int dis, error;
  742 
  743         dis = devctl_queue_length == 0;
  744         error = sysctl_handle_int(oidp, &dis, 0, req);
  745         if (error || !req->newptr)
  746                 return (error);
  747         mtx_lock(&devsoftc.mtx);
  748         if (dis) {
  749                 while (!TAILQ_EMPTY(&devsoftc.devq)) {
  750                         n1 = TAILQ_FIRST(&devsoftc.devq);
  751                         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  752                         free(n1->dei_data, M_BUS);
  753                         free(n1, M_BUS);
  754                 }
  755                 devsoftc.queued = 0;
  756                 devctl_queue_length = 0;
  757         } else {
  758                 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  759         }
  760         mtx_unlock(&devsoftc.mtx);
  761         return (0);
  762 }
  763 
  764 static int
  765 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
  766 {
  767         struct dev_event_info *n1;
  768         int q, error;
  769 
  770         q = devctl_queue_length;
  771         error = sysctl_handle_int(oidp, &q, 0, req);
  772         if (error || !req->newptr)
  773                 return (error);
  774         if (q < 0)
  775                 return (EINVAL);
  776         mtx_lock(&devsoftc.mtx);
  777         devctl_queue_length = q;
  778         while (devsoftc.queued > devctl_queue_length) {
  779                 n1 = TAILQ_FIRST(&devsoftc.devq);
  780                 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  781                 free(n1->dei_data, M_BUS);
  782                 free(n1, M_BUS);
  783                 devsoftc.queued--;
  784         }
  785         mtx_unlock(&devsoftc.mtx);
  786         return (0);
  787 }
  788 
  789 /* End of /dev/devctl code */
  790 
  791 static TAILQ_HEAD(,device)      bus_data_devices;
  792 static int bus_data_generation = 1;
  793 
  794 static kobj_method_t null_methods[] = {
  795         KOBJMETHOD_END
  796 };
  797 
  798 DEFINE_CLASS(null, null_methods, 0);
  799 
  800 /*
  801  * Bus pass implementation
  802  */
  803 
  804 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
  805 int bus_current_pass = BUS_PASS_ROOT;
  806 
  807 /**
  808  * @internal
  809  * @brief Register the pass level of a new driver attachment
  810  *
  811  * Register a new driver attachment's pass level.  If no driver
  812  * attachment with the same pass level has been added, then @p new
  813  * will be added to the global passes list.
  814  *
  815  * @param new           the new driver attachment
  816  */
  817 static void
  818 driver_register_pass(struct driverlink *new)
  819 {
  820         struct driverlink *dl;
  821 
  822         /* We only consider pass numbers during boot. */
  823         if (bus_current_pass == BUS_PASS_DEFAULT)
  824                 return;
  825 
  826         /*
  827          * Walk the passes list.  If we already know about this pass
  828          * then there is nothing to do.  If we don't, then insert this
  829          * driver link into the list.
  830          */
  831         TAILQ_FOREACH(dl, &passes, passlink) {
  832                 if (dl->pass < new->pass)
  833                         continue;
  834                 if (dl->pass == new->pass)
  835                         return;
  836                 TAILQ_INSERT_BEFORE(dl, new, passlink);
  837                 return;
  838         }
  839         TAILQ_INSERT_TAIL(&passes, new, passlink);
  840 }
  841 
  842 /**
  843  * @brief Raise the current bus pass
  844  *
  845  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
  846  * method on the root bus to kick off a new device tree scan for each
  847  * new pass level that has at least one driver.
  848  */
  849 void
  850 bus_set_pass(int pass)
  851 {
  852         struct driverlink *dl;
  853 
  854         if (bus_current_pass > pass)
  855                 panic("Attempt to lower bus pass level");
  856 
  857         TAILQ_FOREACH(dl, &passes, passlink) {
  858                 /* Skip pass values below the current pass level. */
  859                 if (dl->pass <= bus_current_pass)
  860                         continue;
  861 
  862                 /*
  863                  * Bail once we hit a driver with a pass level that is
  864                  * too high.
  865                  */
  866                 if (dl->pass > pass)
  867                         break;
  868 
  869                 /*
  870                  * Raise the pass level to the next level and rescan
  871                  * the tree.
  872                  */
  873                 bus_current_pass = dl->pass;
  874                 BUS_NEW_PASS(root_bus);
  875         }
  876 
  877         /*
  878          * If there isn't a driver registered for the requested pass,
  879          * then bus_current_pass might still be less than 'pass'.  Set
  880          * it to 'pass' in that case.
  881          */
  882         if (bus_current_pass < pass)
  883                 bus_current_pass = pass;
  884         KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
  885 }
  886 
  887 /*
  888  * Devclass implementation
  889  */
  890 
  891 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
  892 
  893 /**
  894  * @internal
  895  * @brief Find or create a device class
  896  *
  897  * If a device class with the name @p classname exists, return it,
  898  * otherwise if @p create is non-zero create and return a new device
  899  * class.
  900  *
  901  * If @p parentname is non-NULL, the parent of the devclass is set to
  902  * the devclass of that name.
  903  *
  904  * @param classname     the devclass name to find or create
  905  * @param parentname    the parent devclass name or @c NULL
  906  * @param create        non-zero to create a devclass
  907  */
  908 static devclass_t
  909 devclass_find_internal(const char *classname, const char *parentname,
  910                        int create)
  911 {
  912         devclass_t dc;
  913 
  914         PDEBUG(("looking for %s", classname));
  915         if (!classname)
  916                 return (NULL);
  917 
  918         TAILQ_FOREACH(dc, &devclasses, link) {
  919                 if (!strcmp(dc->name, classname))
  920                         break;
  921         }
  922 
  923         if (create && !dc) {
  924                 PDEBUG(("creating %s", classname));
  925                 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
  926                     M_BUS, M_NOWAIT | M_ZERO);
  927                 if (!dc)
  928                         return (NULL);
  929                 dc->parent = NULL;
  930                 dc->name = (char*) (dc + 1);
  931                 strcpy(dc->name, classname);
  932                 TAILQ_INIT(&dc->drivers);
  933                 TAILQ_INSERT_TAIL(&devclasses, dc, link);
  934 
  935                 bus_data_generation_update();
  936         }
  937 
  938         /*
  939          * If a parent class is specified, then set that as our parent so
  940          * that this devclass will support drivers for the parent class as
  941          * well.  If the parent class has the same name don't do this though
  942          * as it creates a cycle that can trigger an infinite loop in
  943          * device_probe_child() if a device exists for which there is no
  944          * suitable driver.
  945          */
  946         if (parentname && dc && !dc->parent &&
  947             strcmp(classname, parentname) != 0) {
  948                 dc->parent = devclass_find_internal(parentname, NULL, TRUE);
  949                 dc->parent->flags |= DC_HAS_CHILDREN;
  950         }
  951 
  952         return (dc);
  953 }
  954 
  955 /**
  956  * @brief Create a device class
  957  *
  958  * If a device class with the name @p classname exists, return it,
  959  * otherwise create and return a new device class.
  960  *
  961  * @param classname     the devclass name to find or create
  962  */
  963 devclass_t
  964 devclass_create(const char *classname)
  965 {
  966         return (devclass_find_internal(classname, NULL, TRUE));
  967 }
  968 
  969 /**
  970  * @brief Find a device class
  971  *
  972  * If a device class with the name @p classname exists, return it,
  973  * otherwise return @c NULL.
  974  *
  975  * @param classname     the devclass name to find
  976  */
  977 devclass_t
  978 devclass_find(const char *classname)
  979 {
  980         return (devclass_find_internal(classname, NULL, FALSE));
  981 }
  982 
  983 /**
  984  * @brief Register that a device driver has been added to a devclass
  985  *
  986  * Register that a device driver has been added to a devclass.  This
  987  * is called by devclass_add_driver to accomplish the recursive
  988  * notification of all the children classes of dc, as well as dc.
  989  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
  990  * the devclass.
  991  *
  992  * We do a full search here of the devclass list at each iteration
  993  * level to save storing children-lists in the devclass structure.  If
  994  * we ever move beyond a few dozen devices doing this, we may need to
  995  * reevaluate...
  996  *
  997  * @param dc            the devclass to edit
  998  * @param driver        the driver that was just added
  999  */
 1000 static void
 1001 devclass_driver_added(devclass_t dc, driver_t *driver)
 1002 {
 1003         devclass_t parent;
 1004         int i;
 1005 
 1006         /*
 1007          * Call BUS_DRIVER_ADDED for any existing busses in this class.
 1008          */
 1009         for (i = 0; i < dc->maxunit; i++)
 1010                 if (dc->devices[i] && device_is_attached(dc->devices[i]))
 1011                         BUS_DRIVER_ADDED(dc->devices[i], driver);
 1012 
 1013         /*
 1014          * Walk through the children classes.  Since we only keep a
 1015          * single parent pointer around, we walk the entire list of
 1016          * devclasses looking for children.  We set the
 1017          * DC_HAS_CHILDREN flag when a child devclass is created on
 1018          * the parent, so we only walk the list for those devclasses
 1019          * that have children.
 1020          */
 1021         if (!(dc->flags & DC_HAS_CHILDREN))
 1022                 return;
 1023         parent = dc;
 1024         TAILQ_FOREACH(dc, &devclasses, link) {
 1025                 if (dc->parent == parent)
 1026                         devclass_driver_added(dc, driver);
 1027         }
 1028 }
 1029 
 1030 /**
 1031  * @brief Add a device driver to a device class
 1032  *
 1033  * Add a device driver to a devclass. This is normally called
 1034  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
 1035  * all devices in the devclass will be called to allow them to attempt
 1036  * to re-probe any unmatched children.
 1037  *
 1038  * @param dc            the devclass to edit
 1039  * @param driver        the driver to register
 1040  */
 1041 int
 1042 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
 1043 {
 1044         driverlink_t dl;
 1045         const char *parentname;
 1046 
 1047         PDEBUG(("%s", DRIVERNAME(driver)));
 1048 
 1049         /* Don't allow invalid pass values. */
 1050         if (pass <= BUS_PASS_ROOT)
 1051                 return (EINVAL);
 1052 
 1053         dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
 1054         if (!dl)
 1055                 return (ENOMEM);
 1056 
 1057         /*
 1058          * Compile the driver's methods. Also increase the reference count
 1059          * so that the class doesn't get freed when the last instance
 1060          * goes. This means we can safely use static methods and avoids a
 1061          * double-free in devclass_delete_driver.
 1062          */
 1063         kobj_class_compile((kobj_class_t) driver);
 1064 
 1065         /*
 1066          * If the driver has any base classes, make the
 1067          * devclass inherit from the devclass of the driver's
 1068          * first base class. This will allow the system to
 1069          * search for drivers in both devclasses for children
 1070          * of a device using this driver.
 1071          */
 1072         if (driver->baseclasses)
 1073                 parentname = driver->baseclasses[0]->name;
 1074         else
 1075                 parentname = NULL;
 1076         *dcp = devclass_find_internal(driver->name, parentname, TRUE);
 1077 
 1078         dl->driver = driver;
 1079         TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
 1080         driver->refs++;         /* XXX: kobj_mtx */
 1081         dl->pass = pass;
 1082         driver_register_pass(dl);
 1083 
 1084         devclass_driver_added(dc, driver);
 1085         bus_data_generation_update();
 1086         return (0);
 1087 }
 1088 
 1089 /**
 1090  * @brief Register that a device driver has been deleted from a devclass
 1091  *
 1092  * Register that a device driver has been removed from a devclass.
 1093  * This is called by devclass_delete_driver to accomplish the
 1094  * recursive notification of all the children classes of busclass, as
 1095  * well as busclass.  Each layer will attempt to detach the driver
 1096  * from any devices that are children of the bus's devclass.  The function
 1097  * will return an error if a device fails to detach.
 1098  * 
 1099  * We do a full search here of the devclass list at each iteration
 1100  * level to save storing children-lists in the devclass structure.  If
 1101  * we ever move beyond a few dozen devices doing this, we may need to
 1102  * reevaluate...
 1103  *
 1104  * @param busclass      the devclass of the parent bus
 1105  * @param dc            the devclass of the driver being deleted
 1106  * @param driver        the driver being deleted
 1107  */
 1108 static int
 1109 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
 1110 {
 1111         devclass_t parent;
 1112         device_t dev;
 1113         int error, i;
 1114 
 1115         /*
 1116          * Disassociate from any devices.  We iterate through all the
 1117          * devices in the devclass of the driver and detach any which are
 1118          * using the driver and which have a parent in the devclass which
 1119          * we are deleting from.
 1120          *
 1121          * Note that since a driver can be in multiple devclasses, we
 1122          * should not detach devices which are not children of devices in
 1123          * the affected devclass.
 1124          */
 1125         for (i = 0; i < dc->maxunit; i++) {
 1126                 if (dc->devices[i]) {
 1127                         dev = dc->devices[i];
 1128                         if (dev->driver == driver && dev->parent &&
 1129                             dev->parent->devclass == busclass) {
 1130                                 if ((error = device_detach(dev)) != 0)
 1131                                         return (error);
 1132                                 device_set_driver(dev, NULL);
 1133                                 BUS_PROBE_NOMATCH(dev->parent, dev);
 1134                                 devnomatch(dev);
 1135                                 dev->flags |= DF_DONENOMATCH;
 1136                         }
 1137                 }
 1138         }
 1139 
 1140         /*
 1141          * Walk through the children classes.  Since we only keep a
 1142          * single parent pointer around, we walk the entire list of
 1143          * devclasses looking for children.  We set the
 1144          * DC_HAS_CHILDREN flag when a child devclass is created on
 1145          * the parent, so we only walk the list for those devclasses
 1146          * that have children.
 1147          */
 1148         if (!(busclass->flags & DC_HAS_CHILDREN))
 1149                 return (0);
 1150         parent = busclass;
 1151         TAILQ_FOREACH(busclass, &devclasses, link) {
 1152                 if (busclass->parent == parent) {
 1153                         error = devclass_driver_deleted(busclass, dc, driver);
 1154                         if (error)
 1155                                 return (error);
 1156                 }
 1157         }
 1158         return (0);
 1159 }
 1160 
 1161 /**
 1162  * @brief Delete a device driver from a device class
 1163  *
 1164  * Delete a device driver from a devclass. This is normally called
 1165  * automatically by DRIVER_MODULE().
 1166  *
 1167  * If the driver is currently attached to any devices,
 1168  * devclass_delete_driver() will first attempt to detach from each
 1169  * device. If one of the detach calls fails, the driver will not be
 1170  * deleted.
 1171  *
 1172  * @param dc            the devclass to edit
 1173  * @param driver        the driver to unregister
 1174  */
 1175 int
 1176 devclass_delete_driver(devclass_t busclass, driver_t *driver)
 1177 {
 1178         devclass_t dc = devclass_find(driver->name);
 1179         driverlink_t dl;
 1180         int error;
 1181 
 1182         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1183 
 1184         if (!dc)
 1185                 return (0);
 1186 
 1187         /*
 1188          * Find the link structure in the bus' list of drivers.
 1189          */
 1190         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1191                 if (dl->driver == driver)
 1192                         break;
 1193         }
 1194 
 1195         if (!dl) {
 1196                 PDEBUG(("%s not found in %s list", driver->name,
 1197                     busclass->name));
 1198                 return (ENOENT);
 1199         }
 1200 
 1201         error = devclass_driver_deleted(busclass, dc, driver);
 1202         if (error != 0)
 1203                 return (error);
 1204 
 1205         TAILQ_REMOVE(&busclass->drivers, dl, link);
 1206         free(dl, M_BUS);
 1207 
 1208         /* XXX: kobj_mtx */
 1209         driver->refs--;
 1210         if (driver->refs == 0)
 1211                 kobj_class_free((kobj_class_t) driver);
 1212 
 1213         bus_data_generation_update();
 1214         return (0);
 1215 }
 1216 
 1217 /**
 1218  * @brief Quiesces a set of device drivers from a device class
 1219  *
 1220  * Quiesce a device driver from a devclass. This is normally called
 1221  * automatically by DRIVER_MODULE().
 1222  *
 1223  * If the driver is currently attached to any devices,
 1224  * devclass_quiesece_driver() will first attempt to quiesce each
 1225  * device.
 1226  *
 1227  * @param dc            the devclass to edit
 1228  * @param driver        the driver to unregister
 1229  */
 1230 static int
 1231 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
 1232 {
 1233         devclass_t dc = devclass_find(driver->name);
 1234         driverlink_t dl;
 1235         device_t dev;
 1236         int i;
 1237         int error;
 1238 
 1239         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1240 
 1241         if (!dc)
 1242                 return (0);
 1243 
 1244         /*
 1245          * Find the link structure in the bus' list of drivers.
 1246          */
 1247         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1248                 if (dl->driver == driver)
 1249                         break;
 1250         }
 1251 
 1252         if (!dl) {
 1253                 PDEBUG(("%s not found in %s list", driver->name,
 1254                     busclass->name));
 1255                 return (ENOENT);
 1256         }
 1257 
 1258         /*
 1259          * Quiesce all devices.  We iterate through all the devices in
 1260          * the devclass of the driver and quiesce any which are using
 1261          * the driver and which have a parent in the devclass which we
 1262          * are quiescing.
 1263          *
 1264          * Note that since a driver can be in multiple devclasses, we
 1265          * should not quiesce devices which are not children of
 1266          * devices in the affected devclass.
 1267          */
 1268         for (i = 0; i < dc->maxunit; i++) {
 1269                 if (dc->devices[i]) {
 1270                         dev = dc->devices[i];
 1271                         if (dev->driver == driver && dev->parent &&
 1272                             dev->parent->devclass == busclass) {
 1273                                 if ((error = device_quiesce(dev)) != 0)
 1274                                         return (error);
 1275                         }
 1276                 }
 1277         }
 1278 
 1279         return (0);
 1280 }
 1281 
 1282 /**
 1283  * @internal
 1284  */
 1285 static driverlink_t
 1286 devclass_find_driver_internal(devclass_t dc, const char *classname)
 1287 {
 1288         driverlink_t dl;
 1289 
 1290         PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
 1291 
 1292         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1293                 if (!strcmp(dl->driver->name, classname))
 1294                         return (dl);
 1295         }
 1296 
 1297         PDEBUG(("not found"));
 1298         return (NULL);
 1299 }
 1300 
 1301 /**
 1302  * @brief Return the name of the devclass
 1303  */
 1304 const char *
 1305 devclass_get_name(devclass_t dc)
 1306 {
 1307         return (dc->name);
 1308 }
 1309 
 1310 /**
 1311  * @brief Find a device given a unit number
 1312  *
 1313  * @param dc            the devclass to search
 1314  * @param unit          the unit number to search for
 1315  * 
 1316  * @returns             the device with the given unit number or @c
 1317  *                      NULL if there is no such device
 1318  */
 1319 device_t
 1320 devclass_get_device(devclass_t dc, int unit)
 1321 {
 1322         if (dc == NULL || unit < 0 || unit >= dc->maxunit)
 1323                 return (NULL);
 1324         return (dc->devices[unit]);
 1325 }
 1326 
 1327 /**
 1328  * @brief Find the softc field of a device given a unit number
 1329  *
 1330  * @param dc            the devclass to search
 1331  * @param unit          the unit number to search for
 1332  * 
 1333  * @returns             the softc field of the device with the given
 1334  *                      unit number or @c NULL if there is no such
 1335  *                      device
 1336  */
 1337 void *
 1338 devclass_get_softc(devclass_t dc, int unit)
 1339 {
 1340         device_t dev;
 1341 
 1342         dev = devclass_get_device(dc, unit);
 1343         if (!dev)
 1344                 return (NULL);
 1345 
 1346         return (device_get_softc(dev));
 1347 }
 1348 
 1349 /**
 1350  * @brief Get a list of devices in the devclass
 1351  *
 1352  * An array containing a list of all the devices in the given devclass
 1353  * is allocated and returned in @p *devlistp. The number of devices
 1354  * in the array is returned in @p *devcountp. The caller should free
 1355  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
 1356  *
 1357  * @param dc            the devclass to examine
 1358  * @param devlistp      points at location for array pointer return
 1359  *                      value
 1360  * @param devcountp     points at location for array size return value
 1361  *
 1362  * @retval 0            success
 1363  * @retval ENOMEM       the array allocation failed
 1364  */
 1365 int
 1366 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
 1367 {
 1368         int count, i;
 1369         device_t *list;
 1370 
 1371         count = devclass_get_count(dc);
 1372         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 1373         if (!list)
 1374                 return (ENOMEM);
 1375 
 1376         count = 0;
 1377         for (i = 0; i < dc->maxunit; i++) {
 1378                 if (dc->devices[i]) {
 1379                         list[count] = dc->devices[i];
 1380                         count++;
 1381                 }
 1382         }
 1383 
 1384         *devlistp = list;
 1385         *devcountp = count;
 1386 
 1387         return (0);
 1388 }
 1389 
 1390 /**
 1391  * @brief Get a list of drivers in the devclass
 1392  *
 1393  * An array containing a list of pointers to all the drivers in the
 1394  * given devclass is allocated and returned in @p *listp.  The number
 1395  * of drivers in the array is returned in @p *countp. The caller should
 1396  * free the array using @c free(p, M_TEMP).
 1397  *
 1398  * @param dc            the devclass to examine
 1399  * @param listp         gives location for array pointer return value
 1400  * @param countp        gives location for number of array elements
 1401  *                      return value
 1402  *
 1403  * @retval 0            success
 1404  * @retval ENOMEM       the array allocation failed
 1405  */
 1406 int
 1407 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
 1408 {
 1409         driverlink_t dl;
 1410         driver_t **list;
 1411         int count;
 1412 
 1413         count = 0;
 1414         TAILQ_FOREACH(dl, &dc->drivers, link)
 1415                 count++;
 1416         list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
 1417         if (list == NULL)
 1418                 return (ENOMEM);
 1419 
 1420         count = 0;
 1421         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1422                 list[count] = dl->driver;
 1423                 count++;
 1424         }
 1425         *listp = list;
 1426         *countp = count;
 1427 
 1428         return (0);
 1429 }
 1430 
 1431 /**
 1432  * @brief Get the number of devices in a devclass
 1433  *
 1434  * @param dc            the devclass to examine
 1435  */
 1436 int
 1437 devclass_get_count(devclass_t dc)
 1438 {
 1439         int count, i;
 1440 
 1441         count = 0;
 1442         for (i = 0; i < dc->maxunit; i++)
 1443                 if (dc->devices[i])
 1444                         count++;
 1445         return (count);
 1446 }
 1447 
 1448 /**
 1449  * @brief Get the maximum unit number used in a devclass
 1450  *
 1451  * Note that this is one greater than the highest currently-allocated
 1452  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
 1453  * that not even the devclass has been allocated yet.
 1454  *
 1455  * @param dc            the devclass to examine
 1456  */
 1457 int
 1458 devclass_get_maxunit(devclass_t dc)
 1459 {
 1460         if (dc == NULL)
 1461                 return (-1);
 1462         return (dc->maxunit);
 1463 }
 1464 
 1465 /**
 1466  * @brief Find a free unit number in a devclass
 1467  *
 1468  * This function searches for the first unused unit number greater
 1469  * that or equal to @p unit.
 1470  *
 1471  * @param dc            the devclass to examine
 1472  * @param unit          the first unit number to check
 1473  */
 1474 int
 1475 devclass_find_free_unit(devclass_t dc, int unit)
 1476 {
 1477         if (dc == NULL)
 1478                 return (unit);
 1479         while (unit < dc->maxunit && dc->devices[unit] != NULL)
 1480                 unit++;
 1481         return (unit);
 1482 }
 1483 
 1484 /**
 1485  * @brief Set the parent of a devclass
 1486  *
 1487  * The parent class is normally initialised automatically by
 1488  * DRIVER_MODULE().
 1489  *
 1490  * @param dc            the devclass to edit
 1491  * @param pdc           the new parent devclass
 1492  */
 1493 void
 1494 devclass_set_parent(devclass_t dc, devclass_t pdc)
 1495 {
 1496         dc->parent = pdc;
 1497 }
 1498 
 1499 /**
 1500  * @brief Get the parent of a devclass
 1501  *
 1502  * @param dc            the devclass to examine
 1503  */
 1504 devclass_t
 1505 devclass_get_parent(devclass_t dc)
 1506 {
 1507         return (dc->parent);
 1508 }
 1509 
 1510 struct sysctl_ctx_list *
 1511 devclass_get_sysctl_ctx(devclass_t dc)
 1512 {
 1513         return (&dc->sysctl_ctx);
 1514 }
 1515 
 1516 struct sysctl_oid *
 1517 devclass_get_sysctl_tree(devclass_t dc)
 1518 {
 1519         return (dc->sysctl_tree);
 1520 }
 1521 
 1522 /**
 1523  * @internal
 1524  * @brief Allocate a unit number
 1525  *
 1526  * On entry, @p *unitp is the desired unit number (or @c -1 if any
 1527  * will do). The allocated unit number is returned in @p *unitp.
 1528 
 1529  * @param dc            the devclass to allocate from
 1530  * @param unitp         points at the location for the allocated unit
 1531  *                      number
 1532  *
 1533  * @retval 0            success
 1534  * @retval EEXIST       the requested unit number is already allocated
 1535  * @retval ENOMEM       memory allocation failure
 1536  */
 1537 static int
 1538 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
 1539 {
 1540         const char *s;
 1541         int unit = *unitp;
 1542 
 1543         PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1544 
 1545         /* Ask the parent bus if it wants to wire this device. */
 1546         if (unit == -1)
 1547                 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
 1548                     &unit);
 1549 
 1550         /* If we were given a wired unit number, check for existing device */
 1551         /* XXX imp XXX */
 1552         if (unit != -1) {
 1553                 if (unit >= 0 && unit < dc->maxunit &&
 1554                     dc->devices[unit] != NULL) {
 1555                         if (bootverbose)
 1556                                 printf("%s: %s%d already exists; skipping it\n",
 1557                                     dc->name, dc->name, *unitp);
 1558                         return (EEXIST);
 1559                 }
 1560         } else {
 1561                 /* Unwired device, find the next available slot for it */
 1562                 unit = 0;
 1563                 for (unit = 0;; unit++) {
 1564                         /* If there is an "at" hint for a unit then skip it. */
 1565                         if (resource_string_value(dc->name, unit, "at", &s) ==
 1566                             0)
 1567                                 continue;
 1568 
 1569                         /* If this device slot is already in use, skip it. */
 1570                         if (unit < dc->maxunit && dc->devices[unit] != NULL)
 1571                                 continue;
 1572 
 1573                         break;
 1574                 }
 1575         }
 1576 
 1577         /*
 1578          * We've selected a unit beyond the length of the table, so let's
 1579          * extend the table to make room for all units up to and including
 1580          * this one.
 1581          */
 1582         if (unit >= dc->maxunit) {
 1583                 device_t *newlist, *oldlist;
 1584                 int newsize;
 1585 
 1586                 oldlist = dc->devices;
 1587                 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
 1588                 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
 1589                 if (!newlist)
 1590                         return (ENOMEM);
 1591                 if (oldlist != NULL)
 1592                         bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
 1593                 bzero(newlist + dc->maxunit,
 1594                     sizeof(device_t) * (newsize - dc->maxunit));
 1595                 dc->devices = newlist;
 1596                 dc->maxunit = newsize;
 1597                 if (oldlist != NULL)
 1598                         free(oldlist, M_BUS);
 1599         }
 1600         PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1601 
 1602         *unitp = unit;
 1603         return (0);
 1604 }
 1605 
 1606 /**
 1607  * @internal
 1608  * @brief Add a device to a devclass
 1609  *
 1610  * A unit number is allocated for the device (using the device's
 1611  * preferred unit number if any) and the device is registered in the
 1612  * devclass. This allows the device to be looked up by its unit
 1613  * number, e.g. by decoding a dev_t minor number.
 1614  *
 1615  * @param dc            the devclass to add to
 1616  * @param dev           the device to add
 1617  *
 1618  * @retval 0            success
 1619  * @retval EEXIST       the requested unit number is already allocated
 1620  * @retval ENOMEM       memory allocation failure
 1621  */
 1622 static int
 1623 devclass_add_device(devclass_t dc, device_t dev)
 1624 {
 1625         int buflen, error;
 1626 
 1627         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1628 
 1629         buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
 1630         if (buflen < 0)
 1631                 return (ENOMEM);
 1632         dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
 1633         if (!dev->nameunit)
 1634                 return (ENOMEM);
 1635 
 1636         if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
 1637                 free(dev->nameunit, M_BUS);
 1638                 dev->nameunit = NULL;
 1639                 return (error);
 1640         }
 1641         dc->devices[dev->unit] = dev;
 1642         dev->devclass = dc;
 1643         snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
 1644 
 1645         return (0);
 1646 }
 1647 
 1648 /**
 1649  * @internal
 1650  * @brief Delete a device from a devclass
 1651  *
 1652  * The device is removed from the devclass's device list and its unit
 1653  * number is freed.
 1654 
 1655  * @param dc            the devclass to delete from
 1656  * @param dev           the device to delete
 1657  *
 1658  * @retval 0            success
 1659  */
 1660 static int
 1661 devclass_delete_device(devclass_t dc, device_t dev)
 1662 {
 1663         if (!dc || !dev)
 1664                 return (0);
 1665 
 1666         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1667 
 1668         if (dev->devclass != dc || dc->devices[dev->unit] != dev)
 1669                 panic("devclass_delete_device: inconsistent device class");
 1670         dc->devices[dev->unit] = NULL;
 1671         if (dev->flags & DF_WILDCARD)
 1672                 dev->unit = -1;
 1673         dev->devclass = NULL;
 1674         free(dev->nameunit, M_BUS);
 1675         dev->nameunit = NULL;
 1676 
 1677         return (0);
 1678 }
 1679 
 1680 /**
 1681  * @internal
 1682  * @brief Make a new device and add it as a child of @p parent
 1683  *
 1684  * @param parent        the parent of the new device
 1685  * @param name          the devclass name of the new device or @c NULL
 1686  *                      to leave the devclass unspecified
 1687  * @parem unit          the unit number of the new device of @c -1 to
 1688  *                      leave the unit number unspecified
 1689  *
 1690  * @returns the new device
 1691  */
 1692 static device_t
 1693 make_device(device_t parent, const char *name, int unit)
 1694 {
 1695         device_t dev;
 1696         devclass_t dc;
 1697 
 1698         PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
 1699 
 1700         if (name) {
 1701                 dc = devclass_find_internal(name, NULL, TRUE);
 1702                 if (!dc) {
 1703                         printf("make_device: can't find device class %s\n",
 1704                             name);
 1705                         return (NULL);
 1706                 }
 1707         } else {
 1708                 dc = NULL;
 1709         }
 1710 
 1711         dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
 1712         if (!dev)
 1713                 return (NULL);
 1714 
 1715         dev->parent = parent;
 1716         TAILQ_INIT(&dev->children);
 1717         kobj_init((kobj_t) dev, &null_class);
 1718         dev->driver = NULL;
 1719         dev->devclass = NULL;
 1720         dev->unit = unit;
 1721         dev->nameunit = NULL;
 1722         dev->desc = NULL;
 1723         dev->busy = 0;
 1724         dev->devflags = 0;
 1725         dev->flags = DF_ENABLED;
 1726         dev->order = 0;
 1727         if (unit == -1)
 1728                 dev->flags |= DF_WILDCARD;
 1729         if (name) {
 1730                 dev->flags |= DF_FIXEDCLASS;
 1731                 if (devclass_add_device(dc, dev)) {
 1732                         kobj_delete((kobj_t) dev, M_BUS);
 1733                         return (NULL);
 1734                 }
 1735         }
 1736         dev->ivars = NULL;
 1737         dev->softc = NULL;
 1738 
 1739         dev->state = DS_NOTPRESENT;
 1740 
 1741         TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
 1742         bus_data_generation_update();
 1743 
 1744         return (dev);
 1745 }
 1746 
 1747 /**
 1748  * @internal
 1749  * @brief Print a description of a device.
 1750  */
 1751 static int
 1752 device_print_child(device_t dev, device_t child)
 1753 {
 1754         int retval = 0;
 1755 
 1756         if (device_is_alive(child))
 1757                 retval += BUS_PRINT_CHILD(dev, child);
 1758         else
 1759                 retval += device_printf(child, " not found\n");
 1760 
 1761         return (retval);
 1762 }
 1763 
 1764 /**
 1765  * @brief Create a new device
 1766  *
 1767  * This creates a new device and adds it as a child of an existing
 1768  * parent device. The new device will be added after the last existing
 1769  * child with order zero.
 1770  * 
 1771  * @param dev           the device which will be the parent of the
 1772  *                      new child device
 1773  * @param name          devclass name for new device or @c NULL if not
 1774  *                      specified
 1775  * @param unit          unit number for new device or @c -1 if not
 1776  *                      specified
 1777  * 
 1778  * @returns             the new device
 1779  */
 1780 device_t
 1781 device_add_child(device_t dev, const char *name, int unit)
 1782 {
 1783         return (device_add_child_ordered(dev, 0, name, unit));
 1784 }
 1785 
 1786 /**
 1787  * @brief Create a new device
 1788  *
 1789  * This creates a new device and adds it as a child of an existing
 1790  * parent device. The new device will be added after the last existing
 1791  * child with the same order.
 1792  * 
 1793  * @param dev           the device which will be the parent of the
 1794  *                      new child device
 1795  * @param order         a value which is used to partially sort the
 1796  *                      children of @p dev - devices created using
 1797  *                      lower values of @p order appear first in @p
 1798  *                      dev's list of children
 1799  * @param name          devclass name for new device or @c NULL if not
 1800  *                      specified
 1801  * @param unit          unit number for new device or @c -1 if not
 1802  *                      specified
 1803  * 
 1804  * @returns             the new device
 1805  */
 1806 device_t
 1807 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
 1808 {
 1809         device_t child;
 1810         device_t place;
 1811 
 1812         PDEBUG(("%s at %s with order %u as unit %d",
 1813             name, DEVICENAME(dev), order, unit));
 1814 
 1815         child = make_device(dev, name, unit);
 1816         if (child == NULL)
 1817                 return (child);
 1818         child->order = order;
 1819 
 1820         TAILQ_FOREACH(place, &dev->children, link) {
 1821                 if (place->order > order)
 1822                         break;
 1823         }
 1824 
 1825         if (place) {
 1826                 /*
 1827                  * The device 'place' is the first device whose order is
 1828                  * greater than the new child.
 1829                  */
 1830                 TAILQ_INSERT_BEFORE(place, child, link);
 1831         } else {
 1832                 /*
 1833                  * The new child's order is greater or equal to the order of
 1834                  * any existing device. Add the child to the tail of the list.
 1835                  */
 1836                 TAILQ_INSERT_TAIL(&dev->children, child, link);
 1837         }
 1838 
 1839         bus_data_generation_update();
 1840         return (child);
 1841 }
 1842 
 1843 /**
 1844  * @brief Delete a device
 1845  *
 1846  * This function deletes a device along with all of its children. If
 1847  * the device currently has a driver attached to it, the device is
 1848  * detached first using device_detach().
 1849  * 
 1850  * @param dev           the parent device
 1851  * @param child         the device to delete
 1852  *
 1853  * @retval 0            success
 1854  * @retval non-zero     a unit error code describing the error
 1855  */
 1856 int
 1857 device_delete_child(device_t dev, device_t child)
 1858 {
 1859         int error;
 1860         device_t grandchild;
 1861 
 1862         PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
 1863 
 1864         /* remove children first */
 1865         while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
 1866                 error = device_delete_child(child, grandchild);
 1867                 if (error)
 1868                         return (error);
 1869         }
 1870 
 1871         if ((error = device_detach(child)) != 0)
 1872                 return (error);
 1873         if (child->devclass)
 1874                 devclass_delete_device(child->devclass, child);
 1875         TAILQ_REMOVE(&dev->children, child, link);
 1876         TAILQ_REMOVE(&bus_data_devices, child, devlink);
 1877         kobj_delete((kobj_t) child, M_BUS);
 1878 
 1879         bus_data_generation_update();
 1880         return (0);
 1881 }
 1882 
 1883 /**
 1884  * @brief Find a device given a unit number
 1885  *
 1886  * This is similar to devclass_get_devices() but only searches for
 1887  * devices which have @p dev as a parent.
 1888  *
 1889  * @param dev           the parent device to search
 1890  * @param unit          the unit number to search for.  If the unit is -1,
 1891  *                      return the first child of @p dev which has name
 1892  *                      @p classname (that is, the one with the lowest unit.)
 1893  *
 1894  * @returns             the device with the given unit number or @c
 1895  *                      NULL if there is no such device
 1896  */
 1897 device_t
 1898 device_find_child(device_t dev, const char *classname, int unit)
 1899 {
 1900         devclass_t dc;
 1901         device_t child;
 1902 
 1903         dc = devclass_find(classname);
 1904         if (!dc)
 1905                 return (NULL);
 1906 
 1907         if (unit != -1) {
 1908                 child = devclass_get_device(dc, unit);
 1909                 if (child && child->parent == dev)
 1910                         return (child);
 1911         } else {
 1912                 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
 1913                         child = devclass_get_device(dc, unit);
 1914                         if (child && child->parent == dev)
 1915                                 return (child);
 1916                 }
 1917         }
 1918         return (NULL);
 1919 }
 1920 
 1921 /**
 1922  * @internal
 1923  */
 1924 static driverlink_t
 1925 first_matching_driver(devclass_t dc, device_t dev)
 1926 {
 1927         if (dev->devclass)
 1928                 return (devclass_find_driver_internal(dc, dev->devclass->name));
 1929         return (TAILQ_FIRST(&dc->drivers));
 1930 }
 1931 
 1932 /**
 1933  * @internal
 1934  */
 1935 static driverlink_t
 1936 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
 1937 {
 1938         if (dev->devclass) {
 1939                 driverlink_t dl;
 1940                 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
 1941                         if (!strcmp(dev->devclass->name, dl->driver->name))
 1942                                 return (dl);
 1943                 return (NULL);
 1944         }
 1945         return (TAILQ_NEXT(last, link));
 1946 }
 1947 
 1948 /**
 1949  * @internal
 1950  */
 1951 int
 1952 device_probe_child(device_t dev, device_t child)
 1953 {
 1954         devclass_t dc;
 1955         driverlink_t best = NULL;
 1956         driverlink_t dl;
 1957         int result, pri = 0;
 1958         int hasclass = (child->devclass != NULL);
 1959 
 1960         GIANT_REQUIRED;
 1961 
 1962         dc = dev->devclass;
 1963         if (!dc)
 1964                 panic("device_probe_child: parent device has no devclass");
 1965 
 1966         /*
 1967          * If the state is already probed, then return.  However, don't
 1968          * return if we can rebid this object.
 1969          */
 1970         if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
 1971                 return (0);
 1972 
 1973         for (; dc; dc = dc->parent) {
 1974                 for (dl = first_matching_driver(dc, child);
 1975                      dl;
 1976                      dl = next_matching_driver(dc, child, dl)) {
 1977 
 1978                         /* If this driver's pass is too high, then ignore it. */
 1979                         if (dl->pass > bus_current_pass)
 1980                                 continue;
 1981 
 1982                         PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
 1983                         device_set_driver(child, dl->driver);
 1984                         if (!hasclass) {
 1985                                 if (device_set_devclass(child, dl->driver->name)) {
 1986                                         printf("driver bug: Unable to set devclass (devname: %s)\n",
 1987                                             (child ? device_get_name(child) :
 1988                                                 "no device"));
 1989                                         device_set_driver(child, NULL);
 1990                                         continue;
 1991                                 }
 1992                         }
 1993 
 1994                         /* Fetch any flags for the device before probing. */
 1995                         resource_int_value(dl->driver->name, child->unit,
 1996                             "flags", &child->devflags);
 1997 
 1998                         result = DEVICE_PROBE(child);
 1999 
 2000                         /* Reset flags and devclass before the next probe. */
 2001                         child->devflags = 0;
 2002                         if (!hasclass)
 2003                                 device_set_devclass(child, NULL);
 2004 
 2005                         /*
 2006                          * If the driver returns SUCCESS, there can be
 2007                          * no higher match for this device.
 2008                          */
 2009                         if (result == 0) {
 2010                                 best = dl;
 2011                                 pri = 0;
 2012                                 break;
 2013                         }
 2014 
 2015                         /*
 2016                          * The driver returned an error so it
 2017                          * certainly doesn't match.
 2018                          */
 2019                         if (result > 0) {
 2020                                 device_set_driver(child, NULL);
 2021                                 continue;
 2022                         }
 2023 
 2024                         /*
 2025                          * A priority lower than SUCCESS, remember the
 2026                          * best matching driver. Initialise the value
 2027                          * of pri for the first match.
 2028                          */
 2029                         if (best == NULL || result > pri) {
 2030                                 /*
 2031                                  * Probes that return BUS_PROBE_NOWILDCARD
 2032                                  * or lower only match when they are set
 2033                                  * in stone by the parent bus.
 2034                                  */
 2035                                 if (result <= BUS_PROBE_NOWILDCARD &&
 2036                                     child->flags & DF_WILDCARD)
 2037                                         continue;
 2038                                 best = dl;
 2039                                 pri = result;
 2040                                 continue;
 2041                         }
 2042                 }
 2043                 /*
 2044                  * If we have an unambiguous match in this devclass,
 2045                  * don't look in the parent.
 2046                  */
 2047                 if (best && pri == 0)
 2048                         break;
 2049         }
 2050 
 2051         /*
 2052          * If we found a driver, change state and initialise the devclass.
 2053          */
 2054         /* XXX What happens if we rebid and got no best? */
 2055         if (best) {
 2056                 /*
 2057                  * If this device was atached, and we were asked to
 2058                  * rescan, and it is a different driver, then we have
 2059                  * to detach the old driver and reattach this new one.
 2060                  * Note, we don't have to check for DF_REBID here
 2061                  * because if the state is > DS_ALIVE, we know it must
 2062                  * be.
 2063                  *
 2064                  * This assumes that all DF_REBID drivers can have
 2065                  * their probe routine called at any time and that
 2066                  * they are idempotent as well as completely benign in
 2067                  * normal operations.
 2068                  *
 2069                  * We also have to make sure that the detach
 2070                  * succeeded, otherwise we fail the operation (or
 2071                  * maybe it should just fail silently?  I'm torn).
 2072                  */
 2073                 if (child->state > DS_ALIVE && best->driver != child->driver)
 2074                         if ((result = device_detach(dev)) != 0)
 2075                                 return (result);
 2076 
 2077                 /* Set the winning driver, devclass, and flags. */
 2078                 if (!child->devclass) {
 2079                         result = device_set_devclass(child, best->driver->name);
 2080                         if (result != 0)
 2081                                 return (result);
 2082                 }
 2083                 device_set_driver(child, best->driver);
 2084                 resource_int_value(best->driver->name, child->unit,
 2085                     "flags", &child->devflags);
 2086 
 2087                 if (pri < 0) {
 2088                         /*
 2089                          * A bit bogus. Call the probe method again to make
 2090                          * sure that we have the right description.
 2091                          */
 2092                         DEVICE_PROBE(child);
 2093 #if 0
 2094                         child->flags |= DF_REBID;
 2095 #endif
 2096                 } else
 2097                         child->flags &= ~DF_REBID;
 2098                 child->state = DS_ALIVE;
 2099 
 2100                 bus_data_generation_update();
 2101                 return (0);
 2102         }
 2103 
 2104         return (ENXIO);
 2105 }
 2106 
 2107 /**
 2108  * @brief Return the parent of a device
 2109  */
 2110 device_t
 2111 device_get_parent(device_t dev)
 2112 {
 2113         return (dev->parent);
 2114 }
 2115 
 2116 /**
 2117  * @brief Get a list of children of a device
 2118  *
 2119  * An array containing a list of all the children of the given device
 2120  * is allocated and returned in @p *devlistp. The number of devices
 2121  * in the array is returned in @p *devcountp. The caller should free
 2122  * the array using @c free(p, M_TEMP).
 2123  *
 2124  * @param dev           the device to examine
 2125  * @param devlistp      points at location for array pointer return
 2126  *                      value
 2127  * @param devcountp     points at location for array size return value
 2128  *
 2129  * @retval 0            success
 2130  * @retval ENOMEM       the array allocation failed
 2131  */
 2132 int
 2133 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
 2134 {
 2135         int count;
 2136         device_t child;
 2137         device_t *list;
 2138 
 2139         count = 0;
 2140         TAILQ_FOREACH(child, &dev->children, link) {
 2141                 count++;
 2142         }
 2143 
 2144         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 2145         if (!list)
 2146                 return (ENOMEM);
 2147 
 2148         count = 0;
 2149         TAILQ_FOREACH(child, &dev->children, link) {
 2150                 list[count] = child;
 2151                 count++;
 2152         }
 2153 
 2154         *devlistp = list;
 2155         *devcountp = count;
 2156 
 2157         return (0);
 2158 }
 2159 
 2160 /**
 2161  * @brief Return the current driver for the device or @c NULL if there
 2162  * is no driver currently attached
 2163  */
 2164 driver_t *
 2165 device_get_driver(device_t dev)
 2166 {
 2167         return (dev->driver);
 2168 }
 2169 
 2170 /**
 2171  * @brief Return the current devclass for the device or @c NULL if
 2172  * there is none.
 2173  */
 2174 devclass_t
 2175 device_get_devclass(device_t dev)
 2176 {
 2177         return (dev->devclass);
 2178 }
 2179 
 2180 /**
 2181  * @brief Return the name of the device's devclass or @c NULL if there
 2182  * is none.
 2183  */
 2184 const char *
 2185 device_get_name(device_t dev)
 2186 {
 2187         if (dev != NULL && dev->devclass)
 2188                 return (devclass_get_name(dev->devclass));
 2189         return (NULL);
 2190 }
 2191 
 2192 /**
 2193  * @brief Return a string containing the device's devclass name
 2194  * followed by an ascii representation of the device's unit number
 2195  * (e.g. @c "foo2").
 2196  */
 2197 const char *
 2198 device_get_nameunit(device_t dev)
 2199 {
 2200         return (dev->nameunit);
 2201 }
 2202 
 2203 /**
 2204  * @brief Return the device's unit number.
 2205  */
 2206 int
 2207 device_get_unit(device_t dev)
 2208 {
 2209         return (dev->unit);
 2210 }
 2211 
 2212 /**
 2213  * @brief Return the device's description string
 2214  */
 2215 const char *
 2216 device_get_desc(device_t dev)
 2217 {
 2218         return (dev->desc);
 2219 }
 2220 
 2221 /**
 2222  * @brief Return the device's flags
 2223  */
 2224 uint32_t
 2225 device_get_flags(device_t dev)
 2226 {
 2227         return (dev->devflags);
 2228 }
 2229 
 2230 struct sysctl_ctx_list *
 2231 device_get_sysctl_ctx(device_t dev)
 2232 {
 2233         return (&dev->sysctl_ctx);
 2234 }
 2235 
 2236 struct sysctl_oid *
 2237 device_get_sysctl_tree(device_t dev)
 2238 {
 2239         return (dev->sysctl_tree);
 2240 }
 2241 
 2242 /**
 2243  * @brief Print the name of the device followed by a colon and a space
 2244  *
 2245  * @returns the number of characters printed
 2246  */
 2247 int
 2248 device_print_prettyname(device_t dev)
 2249 {
 2250         const char *name = device_get_name(dev);
 2251 
 2252         if (name == NULL)
 2253                 return (printf("unknown: "));
 2254         return (printf("%s%d: ", name, device_get_unit(dev)));
 2255 }
 2256 
 2257 /**
 2258  * @brief Print the name of the device followed by a colon, a space
 2259  * and the result of calling vprintf() with the value of @p fmt and
 2260  * the following arguments.
 2261  *
 2262  * @returns the number of characters printed
 2263  */
 2264 int
 2265 device_printf(device_t dev, const char * fmt, ...)
 2266 {
 2267         va_list ap;
 2268         int retval;
 2269 
 2270         retval = device_print_prettyname(dev);
 2271         va_start(ap, fmt);
 2272         retval += vprintf(fmt, ap);
 2273         va_end(ap);
 2274         return (retval);
 2275 }
 2276 
 2277 /**
 2278  * @internal
 2279  */
 2280 static void
 2281 device_set_desc_internal(device_t dev, const char* desc, int copy)
 2282 {
 2283         if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
 2284                 free(dev->desc, M_BUS);
 2285                 dev->flags &= ~DF_DESCMALLOCED;
 2286                 dev->desc = NULL;
 2287         }
 2288 
 2289         if (copy && desc) {
 2290                 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
 2291                 if (dev->desc) {
 2292                         strcpy(dev->desc, desc);
 2293                         dev->flags |= DF_DESCMALLOCED;
 2294                 }
 2295         } else {
 2296                 /* Avoid a -Wcast-qual warning */
 2297                 dev->desc = (char *)(uintptr_t) desc;
 2298         }
 2299 
 2300         bus_data_generation_update();
 2301 }
 2302 
 2303 /**
 2304  * @brief Set the device's description
 2305  *
 2306  * The value of @c desc should be a string constant that will not
 2307  * change (at least until the description is changed in a subsequent
 2308  * call to device_set_desc() or device_set_desc_copy()).
 2309  */
 2310 void
 2311 device_set_desc(device_t dev, const char* desc)
 2312 {
 2313         device_set_desc_internal(dev, desc, FALSE);
 2314 }
 2315 
 2316 /**
 2317  * @brief Set the device's description
 2318  *
 2319  * The string pointed to by @c desc is copied. Use this function if
 2320  * the device description is generated, (e.g. with sprintf()).
 2321  */
 2322 void
 2323 device_set_desc_copy(device_t dev, const char* desc)
 2324 {
 2325         device_set_desc_internal(dev, desc, TRUE);
 2326 }
 2327 
 2328 /**
 2329  * @brief Set the device's flags
 2330  */
 2331 void
 2332 device_set_flags(device_t dev, uint32_t flags)
 2333 {
 2334         dev->devflags = flags;
 2335 }
 2336 
 2337 /**
 2338  * @brief Return the device's softc field
 2339  *
 2340  * The softc is allocated and zeroed when a driver is attached, based
 2341  * on the size field of the driver.
 2342  */
 2343 void *
 2344 device_get_softc(device_t dev)
 2345 {
 2346         return (dev->softc);
 2347 }
 2348 
 2349 /**
 2350  * @brief Set the device's softc field
 2351  *
 2352  * Most drivers do not need to use this since the softc is allocated
 2353  * automatically when the driver is attached.
 2354  */
 2355 void
 2356 device_set_softc(device_t dev, void *softc)
 2357 {
 2358         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
 2359                 free(dev->softc, M_BUS_SC);
 2360         dev->softc = softc;
 2361         if (dev->softc)
 2362                 dev->flags |= DF_EXTERNALSOFTC;
 2363         else
 2364                 dev->flags &= ~DF_EXTERNALSOFTC;
 2365 }
 2366 
 2367 /**
 2368  * @brief Get the device's ivars field
 2369  *
 2370  * The ivars field is used by the parent device to store per-device
 2371  * state (e.g. the physical location of the device or a list of
 2372  * resources).
 2373  */
 2374 void *
 2375 device_get_ivars(device_t dev)
 2376 {
 2377 
 2378         KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
 2379         return (dev->ivars);
 2380 }
 2381 
 2382 /**
 2383  * @brief Set the device's ivars field
 2384  */
 2385 void
 2386 device_set_ivars(device_t dev, void * ivars)
 2387 {
 2388 
 2389         KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
 2390         dev->ivars = ivars;
 2391 }
 2392 
 2393 /**
 2394  * @brief Return the device's state
 2395  */
 2396 device_state_t
 2397 device_get_state(device_t dev)
 2398 {
 2399         return (dev->state);
 2400 }
 2401 
 2402 /**
 2403  * @brief Set the DF_ENABLED flag for the device
 2404  */
 2405 void
 2406 device_enable(device_t dev)
 2407 {
 2408         dev->flags |= DF_ENABLED;
 2409 }
 2410 
 2411 /**
 2412  * @brief Clear the DF_ENABLED flag for the device
 2413  */
 2414 void
 2415 device_disable(device_t dev)
 2416 {
 2417         dev->flags &= ~DF_ENABLED;
 2418 }
 2419 
 2420 /**
 2421  * @brief Increment the busy counter for the device
 2422  */
 2423 void
 2424 device_busy(device_t dev)
 2425 {
 2426         if (dev->state < DS_ATTACHED)
 2427                 panic("device_busy: called for unattached device");
 2428         if (dev->busy == 0 && dev->parent)
 2429                 device_busy(dev->parent);
 2430         dev->busy++;
 2431         dev->state = DS_BUSY;
 2432 }
 2433 
 2434 /**
 2435  * @brief Decrement the busy counter for the device
 2436  */
 2437 void
 2438 device_unbusy(device_t dev)
 2439 {
 2440         if (dev->state != DS_BUSY)
 2441                 panic("device_unbusy: called for non-busy device %s",
 2442                     device_get_nameunit(dev));
 2443         dev->busy--;
 2444         if (dev->busy == 0) {
 2445                 if (dev->parent)
 2446                         device_unbusy(dev->parent);
 2447                 dev->state = DS_ATTACHED;
 2448         }
 2449 }
 2450 
 2451 /**
 2452  * @brief Set the DF_QUIET flag for the device
 2453  */
 2454 void
 2455 device_quiet(device_t dev)
 2456 {
 2457         dev->flags |= DF_QUIET;
 2458 }
 2459 
 2460 /**
 2461  * @brief Clear the DF_QUIET flag for the device
 2462  */
 2463 void
 2464 device_verbose(device_t dev)
 2465 {
 2466         dev->flags &= ~DF_QUIET;
 2467 }
 2468 
 2469 /**
 2470  * @brief Return non-zero if the DF_QUIET flag is set on the device
 2471  */
 2472 int
 2473 device_is_quiet(device_t dev)
 2474 {
 2475         return ((dev->flags & DF_QUIET) != 0);
 2476 }
 2477 
 2478 /**
 2479  * @brief Return non-zero if the DF_ENABLED flag is set on the device
 2480  */
 2481 int
 2482 device_is_enabled(device_t dev)
 2483 {
 2484         return ((dev->flags & DF_ENABLED) != 0);
 2485 }
 2486 
 2487 /**
 2488  * @brief Return non-zero if the device was successfully probed
 2489  */
 2490 int
 2491 device_is_alive(device_t dev)
 2492 {
 2493         return (dev->state >= DS_ALIVE);
 2494 }
 2495 
 2496 /**
 2497  * @brief Return non-zero if the device currently has a driver
 2498  * attached to it
 2499  */
 2500 int
 2501 device_is_attached(device_t dev)
 2502 {
 2503         return (dev->state >= DS_ATTACHED);
 2504 }
 2505 
 2506 /**
 2507  * @brief Set the devclass of a device
 2508  * @see devclass_add_device().
 2509  */
 2510 int
 2511 device_set_devclass(device_t dev, const char *classname)
 2512 {
 2513         devclass_t dc;
 2514         int error;
 2515 
 2516         if (!classname) {
 2517                 if (dev->devclass)
 2518                         devclass_delete_device(dev->devclass, dev);
 2519                 return (0);
 2520         }
 2521 
 2522         if (dev->devclass) {
 2523                 printf("device_set_devclass: device class already set\n");
 2524                 return (EINVAL);
 2525         }
 2526 
 2527         dc = devclass_find_internal(classname, NULL, TRUE);
 2528         if (!dc)
 2529                 return (ENOMEM);
 2530 
 2531         error = devclass_add_device(dc, dev);
 2532 
 2533         bus_data_generation_update();
 2534         return (error);
 2535 }
 2536 
 2537 /**
 2538  * @brief Set the driver of a device
 2539  *
 2540  * @retval 0            success
 2541  * @retval EBUSY        the device already has a driver attached
 2542  * @retval ENOMEM       a memory allocation failure occurred
 2543  */
 2544 int
 2545 device_set_driver(device_t dev, driver_t *driver)
 2546 {
 2547         if (dev->state >= DS_ATTACHED)
 2548                 return (EBUSY);
 2549 
 2550         if (dev->driver == driver)
 2551                 return (0);
 2552 
 2553         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
 2554                 free(dev->softc, M_BUS_SC);
 2555                 dev->softc = NULL;
 2556         }
 2557         kobj_delete((kobj_t) dev, NULL);
 2558         dev->driver = driver;
 2559         if (driver) {
 2560                 kobj_init((kobj_t) dev, (kobj_class_t) driver);
 2561                 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
 2562                         dev->softc = malloc(driver->size, M_BUS_SC,
 2563                             M_NOWAIT | M_ZERO);
 2564                         if (!dev->softc) {
 2565                                 kobj_delete((kobj_t) dev, NULL);
 2566                                 kobj_init((kobj_t) dev, &null_class);
 2567                                 dev->driver = NULL;
 2568                                 return (ENOMEM);
 2569                         }
 2570                 }
 2571         } else {
 2572                 kobj_init((kobj_t) dev, &null_class);
 2573         }
 2574 
 2575         bus_data_generation_update();
 2576         return (0);
 2577 }
 2578 
 2579 /**
 2580  * @brief Probe a device, and return this status.
 2581  *
 2582  * This function is the core of the device autoconfiguration
 2583  * system. Its purpose is to select a suitable driver for a device and
 2584  * then call that driver to initialise the hardware appropriately. The
 2585  * driver is selected by calling the DEVICE_PROBE() method of a set of
 2586  * candidate drivers and then choosing the driver which returned the
 2587  * best value. This driver is then attached to the device using
 2588  * device_attach().
 2589  *
 2590  * The set of suitable drivers is taken from the list of drivers in
 2591  * the parent device's devclass. If the device was originally created
 2592  * with a specific class name (see device_add_child()), only drivers
 2593  * with that name are probed, otherwise all drivers in the devclass
 2594  * are probed. If no drivers return successful probe values in the
 2595  * parent devclass, the search continues in the parent of that
 2596  * devclass (see devclass_get_parent()) if any.
 2597  *
 2598  * @param dev           the device to initialise
 2599  *
 2600  * @retval 0            success
 2601  * @retval ENXIO        no driver was found
 2602  * @retval ENOMEM       memory allocation failure
 2603  * @retval non-zero     some other unix error code
 2604  * @retval -1           Device already attached
 2605  */
 2606 int
 2607 device_probe(device_t dev)
 2608 {
 2609         int error;
 2610 
 2611         GIANT_REQUIRED;
 2612 
 2613         if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
 2614                 return (-1);
 2615 
 2616         if (!(dev->flags & DF_ENABLED)) {
 2617                 if (bootverbose && device_get_name(dev) != NULL) {
 2618                         device_print_prettyname(dev);
 2619                         printf("not probed (disabled)\n");
 2620                 }
 2621                 return (-1);
 2622         }
 2623         if ((error = device_probe_child(dev->parent, dev)) != 0) {              
 2624                 if (bus_current_pass == BUS_PASS_DEFAULT &&
 2625                     !(dev->flags & DF_DONENOMATCH)) {
 2626                         BUS_PROBE_NOMATCH(dev->parent, dev);
 2627                         devnomatch(dev);
 2628                         dev->flags |= DF_DONENOMATCH;
 2629                 }
 2630                 return (error);
 2631         }
 2632         return (0);
 2633 }
 2634 
 2635 /**
 2636  * @brief Probe a device and attach a driver if possible
 2637  *
 2638  * calls device_probe() and attaches if that was successful.
 2639  */
 2640 int
 2641 device_probe_and_attach(device_t dev)
 2642 {
 2643         int error;
 2644 
 2645         GIANT_REQUIRED;
 2646 
 2647         error = device_probe(dev);
 2648         if (error == -1)
 2649                 return (0);
 2650         else if (error != 0)
 2651                 return (error);
 2652         return (device_attach(dev));
 2653 }
 2654 
 2655 /**
 2656  * @brief Attach a device driver to a device
 2657  *
 2658  * This function is a wrapper around the DEVICE_ATTACH() driver
 2659  * method. In addition to calling DEVICE_ATTACH(), it initialises the
 2660  * device's sysctl tree, optionally prints a description of the device
 2661  * and queues a notification event for user-based device management
 2662  * services.
 2663  *
 2664  * Normally this function is only called internally from
 2665  * device_probe_and_attach().
 2666  *
 2667  * @param dev           the device to initialise
 2668  *
 2669  * @retval 0            success
 2670  * @retval ENXIO        no driver was found
 2671  * @retval ENOMEM       memory allocation failure
 2672  * @retval non-zero     some other unix error code
 2673  */
 2674 int
 2675 device_attach(device_t dev)
 2676 {
 2677         int error;
 2678 
 2679         device_sysctl_init(dev);
 2680         if (!device_is_quiet(dev))
 2681                 device_print_child(dev->parent, dev);
 2682         if ((error = DEVICE_ATTACH(dev)) != 0) {
 2683                 printf("device_attach: %s%d attach returned %d\n",
 2684                     dev->driver->name, dev->unit, error);
 2685                 /* Unset the class; set in device_probe_child */
 2686                 if (dev->devclass == NULL)
 2687                         device_set_devclass(dev, NULL);
 2688                 device_set_driver(dev, NULL);
 2689                 device_sysctl_fini(dev);
 2690                 dev->state = DS_NOTPRESENT;
 2691                 return (error);
 2692         }
 2693         device_sysctl_update(dev);
 2694         dev->state = DS_ATTACHED;
 2695         dev->flags &= ~DF_DONENOMATCH;
 2696         devadded(dev);
 2697         return (0);
 2698 }
 2699 
 2700 /**
 2701  * @brief Detach a driver from a device
 2702  *
 2703  * This function is a wrapper around the DEVICE_DETACH() driver
 2704  * method. If the call to DEVICE_DETACH() succeeds, it calls
 2705  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
 2706  * notification event for user-based device management services and
 2707  * cleans up the device's sysctl tree.
 2708  *
 2709  * @param dev           the device to un-initialise
 2710  *
 2711  * @retval 0            success
 2712  * @retval ENXIO        no driver was found
 2713  * @retval ENOMEM       memory allocation failure
 2714  * @retval non-zero     some other unix error code
 2715  */
 2716 int
 2717 device_detach(device_t dev)
 2718 {
 2719         int error;
 2720 
 2721         GIANT_REQUIRED;
 2722 
 2723         PDEBUG(("%s", DEVICENAME(dev)));
 2724         if (dev->state == DS_BUSY)
 2725                 return (EBUSY);
 2726         if (dev->state != DS_ATTACHED)
 2727                 return (0);
 2728 
 2729         if ((error = DEVICE_DETACH(dev)) != 0)
 2730                 return (error);
 2731         devremoved(dev);
 2732         if (!device_is_quiet(dev))
 2733                 device_printf(dev, "detached\n");
 2734         if (dev->parent)
 2735                 BUS_CHILD_DETACHED(dev->parent, dev);
 2736 
 2737         if (!(dev->flags & DF_FIXEDCLASS))
 2738                 devclass_delete_device(dev->devclass, dev);
 2739 
 2740         dev->state = DS_NOTPRESENT;
 2741         device_set_driver(dev, NULL);
 2742         device_set_desc(dev, NULL);
 2743         device_sysctl_fini(dev);
 2744 
 2745         return (0);
 2746 }
 2747 
 2748 /**
 2749  * @brief Tells a driver to quiesce itself.
 2750  *
 2751  * This function is a wrapper around the DEVICE_QUIESCE() driver
 2752  * method. If the call to DEVICE_QUIESCE() succeeds.
 2753  *
 2754  * @param dev           the device to quiesce
 2755  *
 2756  * @retval 0            success
 2757  * @retval ENXIO        no driver was found
 2758  * @retval ENOMEM       memory allocation failure
 2759  * @retval non-zero     some other unix error code
 2760  */
 2761 int
 2762 device_quiesce(device_t dev)
 2763 {
 2764 
 2765         PDEBUG(("%s", DEVICENAME(dev)));
 2766         if (dev->state == DS_BUSY)
 2767                 return (EBUSY);
 2768         if (dev->state != DS_ATTACHED)
 2769                 return (0);
 2770 
 2771         return (DEVICE_QUIESCE(dev));
 2772 }
 2773 
 2774 /**
 2775  * @brief Notify a device of system shutdown
 2776  *
 2777  * This function calls the DEVICE_SHUTDOWN() driver method if the
 2778  * device currently has an attached driver.
 2779  *
 2780  * @returns the value returned by DEVICE_SHUTDOWN()
 2781  */
 2782 int
 2783 device_shutdown(device_t dev)
 2784 {
 2785         if (dev->state < DS_ATTACHED)
 2786                 return (0);
 2787         return (DEVICE_SHUTDOWN(dev));
 2788 }
 2789 
 2790 /**
 2791  * @brief Set the unit number of a device
 2792  *
 2793  * This function can be used to override the unit number used for a
 2794  * device (e.g. to wire a device to a pre-configured unit number).
 2795  */
 2796 int
 2797 device_set_unit(device_t dev, int unit)
 2798 {
 2799         devclass_t dc;
 2800         int err;
 2801 
 2802         dc = device_get_devclass(dev);
 2803         if (unit < dc->maxunit && dc->devices[unit])
 2804                 return (EBUSY);
 2805         err = devclass_delete_device(dc, dev);
 2806         if (err)
 2807                 return (err);
 2808         dev->unit = unit;
 2809         err = devclass_add_device(dc, dev);
 2810         if (err)
 2811                 return (err);
 2812 
 2813         bus_data_generation_update();
 2814         return (0);
 2815 }
 2816 
 2817 /*======================================*/
 2818 /*
 2819  * Some useful method implementations to make life easier for bus drivers.
 2820  */
 2821 
 2822 /**
 2823  * @brief Initialise a resource list.
 2824  *
 2825  * @param rl            the resource list to initialise
 2826  */
 2827 void
 2828 resource_list_init(struct resource_list *rl)
 2829 {
 2830         STAILQ_INIT(rl);
 2831 }
 2832 
 2833 /**
 2834  * @brief Reclaim memory used by a resource list.
 2835  *
 2836  * This function frees the memory for all resource entries on the list
 2837  * (if any).
 2838  *
 2839  * @param rl            the resource list to free               
 2840  */
 2841 void
 2842 resource_list_free(struct resource_list *rl)
 2843 {
 2844         struct resource_list_entry *rle;
 2845 
 2846         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 2847                 if (rle->res)
 2848                         panic("resource_list_free: resource entry is busy");
 2849                 STAILQ_REMOVE_HEAD(rl, link);
 2850                 free(rle, M_BUS);
 2851         }
 2852 }
 2853 
 2854 /**
 2855  * @brief Add a resource entry.
 2856  *
 2857  * This function adds a resource entry using the given @p type, @p
 2858  * start, @p end and @p count values. A rid value is chosen by
 2859  * searching sequentially for the first unused rid starting at zero.
 2860  *
 2861  * @param rl            the resource list to edit
 2862  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2863  * @param start         the start address of the resource
 2864  * @param end           the end address of the resource
 2865  * @param count         XXX end-start+1
 2866  */
 2867 int
 2868 resource_list_add_next(struct resource_list *rl, int type, u_long start,
 2869     u_long end, u_long count)
 2870 {
 2871         int rid;
 2872 
 2873         rid = 0;
 2874         while (resource_list_find(rl, type, rid) != NULL)
 2875                 rid++;
 2876         resource_list_add(rl, type, rid, start, end, count);
 2877         return (rid);
 2878 }
 2879 
 2880 /**
 2881  * @brief Add or modify a resource entry.
 2882  *
 2883  * If an existing entry exists with the same type and rid, it will be
 2884  * modified using the given values of @p start, @p end and @p
 2885  * count. If no entry exists, a new one will be created using the
 2886  * given values.  The resource list entry that matches is then returned.
 2887  *
 2888  * @param rl            the resource list to edit
 2889  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2890  * @param rid           the resource identifier
 2891  * @param start         the start address of the resource
 2892  * @param end           the end address of the resource
 2893  * @param count         XXX end-start+1
 2894  */
 2895 struct resource_list_entry *
 2896 resource_list_add(struct resource_list *rl, int type, int rid,
 2897     u_long start, u_long end, u_long count)
 2898 {
 2899         struct resource_list_entry *rle;
 2900 
 2901         rle = resource_list_find(rl, type, rid);
 2902         if (!rle) {
 2903                 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
 2904                     M_NOWAIT);
 2905                 if (!rle)
 2906                         panic("resource_list_add: can't record entry");
 2907                 STAILQ_INSERT_TAIL(rl, rle, link);
 2908                 rle->type = type;
 2909                 rle->rid = rid;
 2910                 rle->res = NULL;
 2911                 rle->flags = 0;
 2912         }
 2913 
 2914         if (rle->res)
 2915                 panic("resource_list_add: resource entry is busy");
 2916 
 2917         rle->start = start;
 2918         rle->end = end;
 2919         rle->count = count;
 2920         return (rle);
 2921 }
 2922 
 2923 /**
 2924  * @brief Determine if a resource entry is busy.
 2925  *
 2926  * Returns true if a resource entry is busy meaning that it has an
 2927  * associated resource that is not an unallocated "reserved" resource.
 2928  *
 2929  * @param rl            the resource list to search
 2930  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2931  * @param rid           the resource identifier
 2932  *
 2933  * @returns Non-zero if the entry is busy, zero otherwise.
 2934  */
 2935 int
 2936 resource_list_busy(struct resource_list *rl, int type, int rid)
 2937 {
 2938         struct resource_list_entry *rle;
 2939 
 2940         rle = resource_list_find(rl, type, rid);
 2941         if (rle == NULL || rle->res == NULL)
 2942                 return (0);
 2943         if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
 2944                 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
 2945                     ("reserved resource is active"));
 2946                 return (0);
 2947         }
 2948         return (1);
 2949 }
 2950 
 2951 /**
 2952  * @brief Determine if a resource entry is reserved.
 2953  *
 2954  * Returns true if a resource entry is reserved meaning that it has an
 2955  * associated "reserved" resource.  The resource can either be
 2956  * allocated or unallocated.
 2957  *
 2958  * @param rl            the resource list to search
 2959  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2960  * @param rid           the resource identifier
 2961  *
 2962  * @returns Non-zero if the entry is reserved, zero otherwise.
 2963  */
 2964 int
 2965 resource_list_reserved(struct resource_list *rl, int type, int rid)
 2966 {
 2967         struct resource_list_entry *rle;
 2968 
 2969         rle = resource_list_find(rl, type, rid);
 2970         if (rle != NULL && rle->flags & RLE_RESERVED)
 2971                 return (1);
 2972         return (0);
 2973 }
 2974 
 2975 /**
 2976  * @brief Find a resource entry by type and rid.
 2977  *
 2978  * @param rl            the resource list to search
 2979  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2980  * @param rid           the resource identifier
 2981  *
 2982  * @returns the resource entry pointer or NULL if there is no such
 2983  * entry.
 2984  */
 2985 struct resource_list_entry *
 2986 resource_list_find(struct resource_list *rl, int type, int rid)
 2987 {
 2988         struct resource_list_entry *rle;
 2989 
 2990         STAILQ_FOREACH(rle, rl, link) {
 2991                 if (rle->type == type && rle->rid == rid)
 2992                         return (rle);
 2993         }
 2994         return (NULL);
 2995 }
 2996 
 2997 /**
 2998  * @brief Delete a resource entry.
 2999  *
 3000  * @param rl            the resource list to edit
 3001  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3002  * @param rid           the resource identifier
 3003  */
 3004 void
 3005 resource_list_delete(struct resource_list *rl, int type, int rid)
 3006 {
 3007         struct resource_list_entry *rle = resource_list_find(rl, type, rid);
 3008 
 3009         if (rle) {
 3010                 if (rle->res != NULL)
 3011                         panic("resource_list_delete: resource has not been released");
 3012                 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
 3013                 free(rle, M_BUS);
 3014         }
 3015 }
 3016 
 3017 /**
 3018  * @brief Allocate a reserved resource
 3019  *
 3020  * This can be used by busses to force the allocation of resources
 3021  * that are always active in the system even if they are not allocated
 3022  * by a driver (e.g. PCI BARs).  This function is usually called when
 3023  * adding a new child to the bus.  The resource is allocated from the
 3024  * parent bus when it is reserved.  The resource list entry is marked
 3025  * with RLE_RESERVED to note that it is a reserved resource.
 3026  *
 3027  * Subsequent attempts to allocate the resource with
 3028  * resource_list_alloc() will succeed the first time and will set
 3029  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
 3030  * resource that has been allocated is released with
 3031  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
 3032  * the actual resource remains allocated.  The resource can be released to
 3033  * the parent bus by calling resource_list_unreserve().
 3034  *
 3035  * @param rl            the resource list to allocate from
 3036  * @param bus           the parent device of @p child
 3037  * @param child         the device for which the resource is being reserved
 3038  * @param type          the type of resource to allocate
 3039  * @param rid           a pointer to the resource identifier
 3040  * @param start         hint at the start of the resource range - pass
 3041  *                      @c 0UL for any start address
 3042  * @param end           hint at the end of the resource range - pass
 3043  *                      @c ~0UL for any end address
 3044  * @param count         hint at the size of range required - pass @c 1
 3045  *                      for any size
 3046  * @param flags         any extra flags to control the resource
 3047  *                      allocation - see @c RF_XXX flags in
 3048  *                      <sys/rman.h> for details
 3049  * 
 3050  * @returns             the resource which was allocated or @c NULL if no
 3051  *                      resource could be allocated
 3052  */
 3053 struct resource *
 3054 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
 3055     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
 3056 {
 3057         struct resource_list_entry *rle = NULL;
 3058         int passthrough = (device_get_parent(child) != bus);
 3059         struct resource *r;
 3060 
 3061         if (passthrough)
 3062                 panic(
 3063     "resource_list_reserve() should only be called for direct children");
 3064         if (flags & RF_ACTIVE)
 3065                 panic(
 3066     "resource_list_reserve() should only reserve inactive resources");
 3067 
 3068         r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
 3069             flags);
 3070         if (r != NULL) {
 3071                 rle = resource_list_find(rl, type, *rid);
 3072                 rle->flags |= RLE_RESERVED;
 3073         }
 3074         return (r);
 3075 }
 3076 
 3077 /**
 3078  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
 3079  *
 3080  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
 3081  * and passing the allocation up to the parent of @p bus. This assumes
 3082  * that the first entry of @c device_get_ivars(child) is a struct
 3083  * resource_list. This also handles 'passthrough' allocations where a
 3084  * child is a remote descendant of bus by passing the allocation up to
 3085  * the parent of bus.
 3086  *
 3087  * Typically, a bus driver would store a list of child resources
 3088  * somewhere in the child device's ivars (see device_get_ivars()) and
 3089  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
 3090  * then call resource_list_alloc() to perform the allocation.
 3091  *
 3092  * @param rl            the resource list to allocate from
 3093  * @param bus           the parent device of @p child
 3094  * @param child         the device which is requesting an allocation
 3095  * @param type          the type of resource to allocate
 3096  * @param rid           a pointer to the resource identifier
 3097  * @param start         hint at the start of the resource range - pass
 3098  *                      @c 0UL for any start address
 3099  * @param end           hint at the end of the resource range - pass
 3100  *                      @c ~0UL for any end address
 3101  * @param count         hint at the size of range required - pass @c 1
 3102  *                      for any size
 3103  * @param flags         any extra flags to control the resource
 3104  *                      allocation - see @c RF_XXX flags in
 3105  *                      <sys/rman.h> for details
 3106  * 
 3107  * @returns             the resource which was allocated or @c NULL if no
 3108  *                      resource could be allocated
 3109  */
 3110 struct resource *
 3111 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
 3112     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
 3113 {
 3114         struct resource_list_entry *rle = NULL;
 3115         int passthrough = (device_get_parent(child) != bus);
 3116         int isdefault = (start == 0UL && end == ~0UL);
 3117 
 3118         if (passthrough) {
 3119                 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 3120                     type, rid, start, end, count, flags));
 3121         }
 3122 
 3123         rle = resource_list_find(rl, type, *rid);
 3124 
 3125         if (!rle)
 3126                 return (NULL);          /* no resource of that type/rid */
 3127 
 3128         if (rle->res) {
 3129                 if (rle->flags & RLE_RESERVED) {
 3130                         if (rle->flags & RLE_ALLOCATED)
 3131                                 return (NULL);
 3132                         if ((flags & RF_ACTIVE) &&
 3133                             bus_activate_resource(child, type, *rid,
 3134                             rle->res) != 0)
 3135                                 return (NULL);
 3136                         rle->flags |= RLE_ALLOCATED;
 3137                         return (rle->res);
 3138                 }
 3139                 panic("resource_list_alloc: resource entry is busy");
 3140         }
 3141 
 3142         if (isdefault) {
 3143                 start = rle->start;
 3144                 count = ulmax(count, rle->count);
 3145                 end = ulmax(rle->end, start + count - 1);
 3146         }
 3147 
 3148         rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 3149             type, rid, start, end, count, flags);
 3150 
 3151         /*
 3152          * Record the new range.
 3153          */
 3154         if (rle->res) {
 3155                 rle->start = rman_get_start(rle->res);
 3156                 rle->end = rman_get_end(rle->res);
 3157                 rle->count = count;
 3158         }
 3159 
 3160         return (rle->res);
 3161 }
 3162 
 3163 /**
 3164  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
 3165  * 
 3166  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
 3167  * used with resource_list_alloc().
 3168  * 
 3169  * @param rl            the resource list which was allocated from
 3170  * @param bus           the parent device of @p child
 3171  * @param child         the device which is requesting a release
 3172  * @param type          the type of resource to release
 3173  * @param rid           the resource identifier
 3174  * @param res           the resource to release
 3175  * 
 3176  * @retval 0            success
 3177  * @retval non-zero     a standard unix error code indicating what
 3178  *                      error condition prevented the operation
 3179  */
 3180 int
 3181 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
 3182     int type, int rid, struct resource *res)
 3183 {
 3184         struct resource_list_entry *rle = NULL;
 3185         int passthrough = (device_get_parent(child) != bus);
 3186         int error;
 3187 
 3188         if (passthrough) {
 3189                 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3190                     type, rid, res));
 3191         }
 3192 
 3193         rle = resource_list_find(rl, type, rid);
 3194 
 3195         if (!rle)
 3196                 panic("resource_list_release: can't find resource");
 3197         if (!rle->res)
 3198                 panic("resource_list_release: resource entry is not busy");
 3199         if (rle->flags & RLE_RESERVED) {
 3200                 if (rle->flags & RLE_ALLOCATED) {
 3201                         if (rman_get_flags(res) & RF_ACTIVE) {
 3202                                 error = bus_deactivate_resource(child, type,
 3203                                     rid, res);
 3204                                 if (error)
 3205                                         return (error);
 3206                         }
 3207                         rle->flags &= ~RLE_ALLOCATED;
 3208                         return (0);
 3209                 }
 3210                 return (EINVAL);
 3211         }
 3212 
 3213         error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3214             type, rid, res);
 3215         if (error)
 3216                 return (error);
 3217 
 3218         rle->res = NULL;
 3219         return (0);
 3220 }
 3221 
 3222 /**
 3223  * @brief Fully release a reserved resource
 3224  *
 3225  * Fully releases a resouce reserved via resource_list_reserve().
 3226  *
 3227  * @param rl            the resource list which was allocated from
 3228  * @param bus           the parent device of @p child
 3229  * @param child         the device whose reserved resource is being released
 3230  * @param type          the type of resource to release
 3231  * @param rid           the resource identifier
 3232  * @param res           the resource to release
 3233  * 
 3234  * @retval 0            success
 3235  * @retval non-zero     a standard unix error code indicating what
 3236  *                      error condition prevented the operation
 3237  */
 3238 int
 3239 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
 3240     int type, int rid)
 3241 {
 3242         struct resource_list_entry *rle = NULL;
 3243         int passthrough = (device_get_parent(child) != bus);
 3244 
 3245         if (passthrough)
 3246                 panic(
 3247     "resource_list_unreserve() should only be called for direct children");
 3248 
 3249         rle = resource_list_find(rl, type, rid);
 3250 
 3251         if (!rle)
 3252                 panic("resource_list_unreserve: can't find resource");
 3253         if (!(rle->flags & RLE_RESERVED))
 3254                 return (EINVAL);
 3255         if (rle->flags & RLE_ALLOCATED)
 3256                 return (EBUSY);
 3257         rle->flags &= ~RLE_RESERVED;
 3258         return (resource_list_release(rl, bus, child, type, rid, rle->res));
 3259 }
 3260 
 3261 /**
 3262  * @brief Print a description of resources in a resource list
 3263  *
 3264  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
 3265  * The name is printed if at least one resource of the given type is available.
 3266  * The format is used to print resource start and end.
 3267  *
 3268  * @param rl            the resource list to print
 3269  * @param name          the name of @p type, e.g. @c "memory"
 3270  * @param type          type type of resource entry to print
 3271  * @param format        printf(9) format string to print resource
 3272  *                      start and end values
 3273  * 
 3274  * @returns             the number of characters printed
 3275  */
 3276 int
 3277 resource_list_print_type(struct resource_list *rl, const char *name, int type,
 3278     const char *format)
 3279 {
 3280         struct resource_list_entry *rle;
 3281         int printed, retval;
 3282 
 3283         printed = 0;
 3284         retval = 0;
 3285         /* Yes, this is kinda cheating */
 3286         STAILQ_FOREACH(rle, rl, link) {
 3287                 if (rle->type == type) {
 3288                         if (printed == 0)
 3289                                 retval += printf(" %s ", name);
 3290                         else
 3291                                 retval += printf(",");
 3292                         printed++;
 3293                         retval += printf(format, rle->start);
 3294                         if (rle->count > 1) {
 3295                                 retval += printf("-");
 3296                                 retval += printf(format, rle->start +
 3297                                                  rle->count - 1);
 3298                         }
 3299                 }
 3300         }
 3301         return (retval);
 3302 }
 3303 
 3304 /**
 3305  * @brief Releases all the resources in a list.
 3306  *
 3307  * @param rl            The resource list to purge.
 3308  * 
 3309  * @returns             nothing
 3310  */
 3311 void
 3312 resource_list_purge(struct resource_list *rl)
 3313 {
 3314         struct resource_list_entry *rle;
 3315 
 3316         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 3317                 if (rle->res)
 3318                         bus_release_resource(rman_get_device(rle->res),
 3319                             rle->type, rle->rid, rle->res);
 3320                 STAILQ_REMOVE_HEAD(rl, link);
 3321                 free(rle, M_BUS);
 3322         }
 3323 }
 3324 
 3325 device_t
 3326 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
 3327 {
 3328 
 3329         return (device_add_child_ordered(dev, order, name, unit));
 3330 }
 3331 
 3332 /**
 3333  * @brief Helper function for implementing DEVICE_PROBE()
 3334  *
 3335  * This function can be used to help implement the DEVICE_PROBE() for
 3336  * a bus (i.e. a device which has other devices attached to it). It
 3337  * calls the DEVICE_IDENTIFY() method of each driver in the device's
 3338  * devclass.
 3339  */
 3340 int
 3341 bus_generic_probe(device_t dev)
 3342 {
 3343         devclass_t dc = dev->devclass;
 3344         driverlink_t dl;
 3345 
 3346         TAILQ_FOREACH(dl, &dc->drivers, link) {
 3347                 /*
 3348                  * If this driver's pass is too high, then ignore it.
 3349                  * For most drivers in the default pass, this will
 3350                  * never be true.  For early-pass drivers they will
 3351                  * only call the identify routines of eligible drivers
 3352                  * when this routine is called.  Drivers for later
 3353                  * passes should have their identify routines called
 3354                  * on early-pass busses during BUS_NEW_PASS().
 3355                  */
 3356                 if (dl->pass > bus_current_pass)
 3357                         continue;
 3358                 DEVICE_IDENTIFY(dl->driver, dev);
 3359         }
 3360 
 3361         return (0);
 3362 }
 3363 
 3364 /**
 3365  * @brief Helper function for implementing DEVICE_ATTACH()
 3366  *
 3367  * This function can be used to help implement the DEVICE_ATTACH() for
 3368  * a bus. It calls device_probe_and_attach() for each of the device's
 3369  * children.
 3370  */
 3371 int
 3372 bus_generic_attach(device_t dev)
 3373 {
 3374         device_t child;
 3375 
 3376         TAILQ_FOREACH(child, &dev->children, link) {
 3377                 device_probe_and_attach(child);
 3378         }
 3379 
 3380         return (0);
 3381 }
 3382 
 3383 /**
 3384  * @brief Helper function for implementing DEVICE_DETACH()
 3385  *
 3386  * This function can be used to help implement the DEVICE_DETACH() for
 3387  * a bus. It calls device_detach() for each of the device's
 3388  * children.
 3389  */
 3390 int
 3391 bus_generic_detach(device_t dev)
 3392 {
 3393         device_t child;
 3394         int error;
 3395 
 3396         if (dev->state != DS_ATTACHED)
 3397                 return (EBUSY);
 3398 
 3399         TAILQ_FOREACH(child, &dev->children, link) {
 3400                 if ((error = device_detach(child)) != 0)
 3401                         return (error);
 3402         }
 3403 
 3404         return (0);
 3405 }
 3406 
 3407 /**
 3408  * @brief Helper function for implementing DEVICE_SHUTDOWN()
 3409  *
 3410  * This function can be used to help implement the DEVICE_SHUTDOWN()
 3411  * for a bus. It calls device_shutdown() for each of the device's
 3412  * children.
 3413  */
 3414 int
 3415 bus_generic_shutdown(device_t dev)
 3416 {
 3417         device_t child;
 3418 
 3419         TAILQ_FOREACH(child, &dev->children, link) {
 3420                 device_shutdown(child);
 3421         }
 3422 
 3423         return (0);
 3424 }
 3425 
 3426 /**
 3427  * @brief Helper function for implementing DEVICE_SUSPEND()
 3428  *
 3429  * This function can be used to help implement the DEVICE_SUSPEND()
 3430  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
 3431  * children. If any call to DEVICE_SUSPEND() fails, the suspend
 3432  * operation is aborted and any devices which were suspended are
 3433  * resumed immediately by calling their DEVICE_RESUME() methods.
 3434  */
 3435 int
 3436 bus_generic_suspend(device_t dev)
 3437 {
 3438         int             error;
 3439         device_t        child, child2;
 3440 
 3441         TAILQ_FOREACH(child, &dev->children, link) {
 3442                 error = DEVICE_SUSPEND(child);
 3443                 if (error) {
 3444                         for (child2 = TAILQ_FIRST(&dev->children);
 3445                              child2 && child2 != child;
 3446                              child2 = TAILQ_NEXT(child2, link))
 3447                                 DEVICE_RESUME(child2);
 3448                         return (error);
 3449                 }
 3450         }
 3451         return (0);
 3452 }
 3453 
 3454 /**
 3455  * @brief Helper function for implementing DEVICE_RESUME()
 3456  *
 3457  * This function can be used to help implement the DEVICE_RESUME() for
 3458  * a bus. It calls DEVICE_RESUME() on each of the device's children.
 3459  */
 3460 int
 3461 bus_generic_resume(device_t dev)
 3462 {
 3463         device_t        child;
 3464 
 3465         TAILQ_FOREACH(child, &dev->children, link) {
 3466                 DEVICE_RESUME(child);
 3467                 /* if resume fails, there's nothing we can usefully do... */
 3468         }
 3469         return (0);
 3470 }
 3471 
 3472 /**
 3473  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3474  *
 3475  * This function prints the first part of the ascii representation of
 3476  * @p child, including its name, unit and description (if any - see
 3477  * device_set_desc()).
 3478  *
 3479  * @returns the number of characters printed
 3480  */
 3481 int
 3482 bus_print_child_header(device_t dev, device_t child)
 3483 {
 3484         int     retval = 0;
 3485 
 3486         if (device_get_desc(child)) {
 3487                 retval += device_printf(child, "<%s>", device_get_desc(child));
 3488         } else {
 3489                 retval += printf("%s", device_get_nameunit(child));
 3490         }
 3491 
 3492         return (retval);
 3493 }
 3494 
 3495 /**
 3496  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3497  *
 3498  * This function prints the last part of the ascii representation of
 3499  * @p child, which consists of the string @c " on " followed by the
 3500  * name and unit of the @p dev.
 3501  *
 3502  * @returns the number of characters printed
 3503  */
 3504 int
 3505 bus_print_child_footer(device_t dev, device_t child)
 3506 {
 3507         return (printf(" on %s\n", device_get_nameunit(dev)));
 3508 }
 3509 
 3510 /**
 3511  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3512  *
 3513  * This function simply calls bus_print_child_header() followed by
 3514  * bus_print_child_footer().
 3515  *
 3516  * @returns the number of characters printed
 3517  */
 3518 int
 3519 bus_generic_print_child(device_t dev, device_t child)
 3520 {
 3521         int     retval = 0;
 3522 
 3523         retval += bus_print_child_header(dev, child);
 3524         retval += bus_print_child_footer(dev, child);
 3525 
 3526         return (retval);
 3527 }
 3528 
 3529 /**
 3530  * @brief Stub function for implementing BUS_READ_IVAR().
 3531  * 
 3532  * @returns ENOENT
 3533  */
 3534 int
 3535 bus_generic_read_ivar(device_t dev, device_t child, int index,
 3536     uintptr_t * result)
 3537 {
 3538         return (ENOENT);
 3539 }
 3540 
 3541 /**
 3542  * @brief Stub function for implementing BUS_WRITE_IVAR().
 3543  * 
 3544  * @returns ENOENT
 3545  */
 3546 int
 3547 bus_generic_write_ivar(device_t dev, device_t child, int index,
 3548     uintptr_t value)
 3549 {
 3550         return (ENOENT);
 3551 }
 3552 
 3553 /**
 3554  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
 3555  * 
 3556  * @returns NULL
 3557  */
 3558 struct resource_list *
 3559 bus_generic_get_resource_list(device_t dev, device_t child)
 3560 {
 3561         return (NULL);
 3562 }
 3563 
 3564 /**
 3565  * @brief Helper function for implementing BUS_DRIVER_ADDED().
 3566  *
 3567  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
 3568  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
 3569  * and then calls device_probe_and_attach() for each unattached child.
 3570  */
 3571 void
 3572 bus_generic_driver_added(device_t dev, driver_t *driver)
 3573 {
 3574         device_t child;
 3575 
 3576         DEVICE_IDENTIFY(driver, dev);
 3577         TAILQ_FOREACH(child, &dev->children, link) {
 3578                 if (child->state == DS_NOTPRESENT ||
 3579                     (child->flags & DF_REBID))
 3580                         device_probe_and_attach(child);
 3581         }
 3582 }
 3583 
 3584 /**
 3585  * @brief Helper function for implementing BUS_NEW_PASS().
 3586  *
 3587  * This implementing of BUS_NEW_PASS() first calls the identify
 3588  * routines for any drivers that probe at the current pass.  Then it
 3589  * walks the list of devices for this bus.  If a device is already
 3590  * attached, then it calls BUS_NEW_PASS() on that device.  If the
 3591  * device is not already attached, it attempts to attach a driver to
 3592  * it.
 3593  */
 3594 void
 3595 bus_generic_new_pass(device_t dev)
 3596 {
 3597         driverlink_t dl;
 3598         devclass_t dc;
 3599         device_t child;
 3600 
 3601         dc = dev->devclass;
 3602         TAILQ_FOREACH(dl, &dc->drivers, link) {
 3603                 if (dl->pass == bus_current_pass)
 3604                         DEVICE_IDENTIFY(dl->driver, dev);
 3605         }
 3606         TAILQ_FOREACH(child, &dev->children, link) {
 3607                 if (child->state >= DS_ATTACHED)
 3608                         BUS_NEW_PASS(child);
 3609                 else if (child->state == DS_NOTPRESENT)
 3610                         device_probe_and_attach(child);
 3611         }
 3612 }
 3613 
 3614 /**
 3615  * @brief Helper function for implementing BUS_SETUP_INTR().
 3616  *
 3617  * This simple implementation of BUS_SETUP_INTR() simply calls the
 3618  * BUS_SETUP_INTR() method of the parent of @p dev.
 3619  */
 3620 int
 3621 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
 3622     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 
 3623     void **cookiep)
 3624 {
 3625         /* Propagate up the bus hierarchy until someone handles it. */
 3626         if (dev->parent)
 3627                 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
 3628                     filter, intr, arg, cookiep));
 3629         return (EINVAL);
 3630 }
 3631 
 3632 /**
 3633  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
 3634  *
 3635  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
 3636  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
 3637  */
 3638 int
 3639 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
 3640     void *cookie)
 3641 {
 3642         /* Propagate up the bus hierarchy until someone handles it. */
 3643         if (dev->parent)
 3644                 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
 3645         return (EINVAL);
 3646 }
 3647 
 3648 /**
 3649  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
 3650  *
 3651  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
 3652  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
 3653  */
 3654 int
 3655 bus_generic_adjust_resource(device_t dev, device_t child, int type,
 3656     struct resource *r, u_long start, u_long end)
 3657 {
 3658         /* Propagate up the bus hierarchy until someone handles it. */
 3659         if (dev->parent)
 3660                 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
 3661                     end));
 3662         return (EINVAL);
 3663 }
 3664 
 3665 /**
 3666  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3667  *
 3668  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
 3669  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
 3670  */
 3671 struct resource *
 3672 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
 3673     u_long start, u_long end, u_long count, u_int flags)
 3674 {
 3675         /* Propagate up the bus hierarchy until someone handles it. */
 3676         if (dev->parent)
 3677                 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
 3678                     start, end, count, flags));
 3679         return (NULL);
 3680 }
 3681 
 3682 /**
 3683  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3684  *
 3685  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
 3686  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
 3687  */
 3688 int
 3689 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
 3690     struct resource *r)
 3691 {
 3692         /* Propagate up the bus hierarchy until someone handles it. */
 3693         if (dev->parent)
 3694                 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
 3695                     r));
 3696         return (EINVAL);
 3697 }
 3698 
 3699 /**
 3700  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
 3701  *
 3702  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
 3703  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
 3704  */
 3705 int
 3706 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
 3707     struct resource *r)
 3708 {
 3709         /* Propagate up the bus hierarchy until someone handles it. */
 3710         if (dev->parent)
 3711                 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3712                     r));
 3713         return (EINVAL);
 3714 }
 3715 
 3716 /**
 3717  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
 3718  *
 3719  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
 3720  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
 3721  */
 3722 int
 3723 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
 3724     int rid, struct resource *r)
 3725 {
 3726         /* Propagate up the bus hierarchy until someone handles it. */
 3727         if (dev->parent)
 3728                 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3729                     r));
 3730         return (EINVAL);
 3731 }
 3732 
 3733 /**
 3734  * @brief Helper function for implementing BUS_BIND_INTR().
 3735  *
 3736  * This simple implementation of BUS_BIND_INTR() simply calls the
 3737  * BUS_BIND_INTR() method of the parent of @p dev.
 3738  */
 3739 int
 3740 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
 3741     int cpu)
 3742 {
 3743 
 3744         /* Propagate up the bus hierarchy until someone handles it. */
 3745         if (dev->parent)
 3746                 return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
 3747         return (EINVAL);
 3748 }
 3749 
 3750 /**
 3751  * @brief Helper function for implementing BUS_CONFIG_INTR().
 3752  *
 3753  * This simple implementation of BUS_CONFIG_INTR() simply calls the
 3754  * BUS_CONFIG_INTR() method of the parent of @p dev.
 3755  */
 3756 int
 3757 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
 3758     enum intr_polarity pol)
 3759 {
 3760 
 3761         /* Propagate up the bus hierarchy until someone handles it. */
 3762         if (dev->parent)
 3763                 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
 3764         return (EINVAL);
 3765 }
 3766 
 3767 /**
 3768  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
 3769  *
 3770  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
 3771  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
 3772  */
 3773 int
 3774 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
 3775     void *cookie, const char *descr)
 3776 {
 3777 
 3778         /* Propagate up the bus hierarchy until someone handles it. */
 3779         if (dev->parent)
 3780                 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
 3781                     descr));
 3782         return (EINVAL);
 3783 }
 3784 
 3785 /**
 3786  * @brief Helper function for implementing BUS_GET_DMA_TAG().
 3787  *
 3788  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
 3789  * BUS_GET_DMA_TAG() method of the parent of @p dev.
 3790  */
 3791 bus_dma_tag_t
 3792 bus_generic_get_dma_tag(device_t dev, device_t child)
 3793 {
 3794 
 3795         /* Propagate up the bus hierarchy until someone handles it. */
 3796         if (dev->parent != NULL)
 3797                 return (BUS_GET_DMA_TAG(dev->parent, child));
 3798         return (NULL);
 3799 }
 3800 
 3801 /**
 3802  * @brief Helper function for implementing BUS_GET_RESOURCE().
 3803  *
 3804  * This implementation of BUS_GET_RESOURCE() uses the
 3805  * resource_list_find() function to do most of the work. It calls
 3806  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3807  * search.
 3808  */
 3809 int
 3810 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
 3811     u_long *startp, u_long *countp)
 3812 {
 3813         struct resource_list *          rl = NULL;
 3814         struct resource_list_entry *    rle = NULL;
 3815 
 3816         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3817         if (!rl)
 3818                 return (EINVAL);
 3819 
 3820         rle = resource_list_find(rl, type, rid);
 3821         if (!rle)
 3822                 return (ENOENT);
 3823 
 3824         if (startp)
 3825                 *startp = rle->start;
 3826         if (countp)
 3827                 *countp = rle->count;
 3828 
 3829         return (0);
 3830 }
 3831 
 3832 /**
 3833  * @brief Helper function for implementing BUS_SET_RESOURCE().
 3834  *
 3835  * This implementation of BUS_SET_RESOURCE() uses the
 3836  * resource_list_add() function to do most of the work. It calls
 3837  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3838  * edit.
 3839  */
 3840 int
 3841 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
 3842     u_long start, u_long count)
 3843 {
 3844         struct resource_list *          rl = NULL;
 3845 
 3846         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3847         if (!rl)
 3848                 return (EINVAL);
 3849 
 3850         resource_list_add(rl, type, rid, start, (start + count - 1), count);
 3851 
 3852         return (0);
 3853 }
 3854 
 3855 /**
 3856  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
 3857  *
 3858  * This implementation of BUS_DELETE_RESOURCE() uses the
 3859  * resource_list_delete() function to do most of the work. It calls
 3860  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3861  * edit.
 3862  */
 3863 void
 3864 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
 3865 {
 3866         struct resource_list *          rl = NULL;
 3867 
 3868         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3869         if (!rl)
 3870                 return;
 3871 
 3872         resource_list_delete(rl, type, rid);
 3873 
 3874         return;
 3875 }
 3876 
 3877 /**
 3878  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3879  *
 3880  * This implementation of BUS_RELEASE_RESOURCE() uses the
 3881  * resource_list_release() function to do most of the work. It calls
 3882  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3883  */
 3884 int
 3885 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
 3886     int rid, struct resource *r)
 3887 {
 3888         struct resource_list *          rl = NULL;
 3889 
 3890         if (device_get_parent(child) != dev)
 3891                 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
 3892                     type, rid, r));
 3893 
 3894         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3895         if (!rl)
 3896                 return (EINVAL);
 3897 
 3898         return (resource_list_release(rl, dev, child, type, rid, r));
 3899 }
 3900 
 3901 /**
 3902  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3903  *
 3904  * This implementation of BUS_ALLOC_RESOURCE() uses the
 3905  * resource_list_alloc() function to do most of the work. It calls
 3906  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3907  */
 3908 struct resource *
 3909 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
 3910     int *rid, u_long start, u_long end, u_long count, u_int flags)
 3911 {
 3912         struct resource_list *          rl = NULL;
 3913 
 3914         if (device_get_parent(child) != dev)
 3915                 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
 3916                     type, rid, start, end, count, flags));
 3917 
 3918         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3919         if (!rl)
 3920                 return (NULL);
 3921 
 3922         return (resource_list_alloc(rl, dev, child, type, rid,
 3923             start, end, count, flags));
 3924 }
 3925 
 3926 /**
 3927  * @brief Helper function for implementing BUS_CHILD_PRESENT().
 3928  *
 3929  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
 3930  * BUS_CHILD_PRESENT() method of the parent of @p dev.
 3931  */
 3932 int
 3933 bus_generic_child_present(device_t dev, device_t child)
 3934 {
 3935         return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
 3936 }
 3937 
 3938 /*
 3939  * Some convenience functions to make it easier for drivers to use the
 3940  * resource-management functions.  All these really do is hide the
 3941  * indirection through the parent's method table, making for slightly
 3942  * less-wordy code.  In the future, it might make sense for this code
 3943  * to maintain some sort of a list of resources allocated by each device.
 3944  */
 3945 
 3946 int
 3947 bus_alloc_resources(device_t dev, struct resource_spec *rs,
 3948     struct resource **res)
 3949 {
 3950         int i;
 3951 
 3952         for (i = 0; rs[i].type != -1; i++)
 3953                 res[i] = NULL;
 3954         for (i = 0; rs[i].type != -1; i++) {
 3955                 res[i] = bus_alloc_resource_any(dev,
 3956                     rs[i].type, &rs[i].rid, rs[i].flags);
 3957                 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
 3958                         bus_release_resources(dev, rs, res);
 3959                         return (ENXIO);
 3960                 }
 3961         }
 3962         return (0);
 3963 }
 3964 
 3965 void
 3966 bus_release_resources(device_t dev, const struct resource_spec *rs,
 3967     struct resource **res)
 3968 {
 3969         int i;
 3970 
 3971         for (i = 0; rs[i].type != -1; i++)
 3972                 if (res[i] != NULL) {
 3973                         bus_release_resource(
 3974                             dev, rs[i].type, rs[i].rid, res[i]);
 3975                         res[i] = NULL;
 3976                 }
 3977 }
 3978 
 3979 /**
 3980  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
 3981  *
 3982  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
 3983  * parent of @p dev.
 3984  */
 3985 struct resource *
 3986 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
 3987     u_long count, u_int flags)
 3988 {
 3989         if (dev->parent == NULL)
 3990                 return (NULL);
 3991         return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
 3992             count, flags));
 3993 }
 3994 
 3995 /**
 3996  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
 3997  *
 3998  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
 3999  * parent of @p dev.
 4000  */
 4001 int
 4002 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
 4003     u_long end)
 4004 {
 4005         if (dev->parent == NULL)
 4006                 return (EINVAL);
 4007         return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
 4008 }
 4009 
 4010 /**
 4011  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
 4012  *
 4013  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
 4014  * parent of @p dev.
 4015  */
 4016 int
 4017 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
 4018 {
 4019         if (dev->parent == NULL)
 4020                 return (EINVAL);
 4021         return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 4022 }
 4023 
 4024 /**
 4025  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
 4026  *
 4027  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
 4028  * parent of @p dev.
 4029  */
 4030 int
 4031 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
 4032 {
 4033         if (dev->parent == NULL)
 4034                 return (EINVAL);
 4035         return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 4036 }
 4037 
 4038 /**
 4039  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
 4040  *
 4041  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
 4042  * parent of @p dev.
 4043  */
 4044 int
 4045 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
 4046 {
 4047         if (dev->parent == NULL)
 4048                 return (EINVAL);
 4049         return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
 4050 }
 4051 
 4052 /**
 4053  * @brief Wrapper function for BUS_SETUP_INTR().
 4054  *
 4055  * This function simply calls the BUS_SETUP_INTR() method of the
 4056  * parent of @p dev.
 4057  */
 4058 int
 4059 bus_setup_intr(device_t dev, struct resource *r, int flags,
 4060     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
 4061 {
 4062         int error;
 4063 
 4064         if (dev->parent == NULL)
 4065                 return (EINVAL);
 4066         error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
 4067             arg, cookiep);
 4068         if (error != 0)
 4069                 return (error);
 4070         if (handler != NULL && !(flags & INTR_MPSAFE))
 4071                 device_printf(dev, "[GIANT-LOCKED]\n");
 4072         return (0);
 4073 }
 4074 
 4075 /**
 4076  * @brief Wrapper function for BUS_TEARDOWN_INTR().
 4077  *
 4078  * This function simply calls the BUS_TEARDOWN_INTR() method of the
 4079  * parent of @p dev.
 4080  */
 4081 int
 4082 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
 4083 {
 4084         if (dev->parent == NULL)
 4085                 return (EINVAL);
 4086         return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
 4087 }
 4088 
 4089 /**
 4090  * @brief Wrapper function for BUS_BIND_INTR().
 4091  *
 4092  * This function simply calls the BUS_BIND_INTR() method of the
 4093  * parent of @p dev.
 4094  */
 4095 int
 4096 bus_bind_intr(device_t dev, struct resource *r, int cpu)
 4097 {
 4098         if (dev->parent == NULL)
 4099                 return (EINVAL);
 4100         return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
 4101 }
 4102 
 4103 /**
 4104  * @brief Wrapper function for BUS_DESCRIBE_INTR().
 4105  *
 4106  * This function first formats the requested description into a
 4107  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
 4108  * the parent of @p dev.
 4109  */
 4110 int
 4111 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
 4112     const char *fmt, ...)
 4113 {
 4114         va_list ap;
 4115         char descr[MAXCOMLEN + 1];
 4116 
 4117         if (dev->parent == NULL)
 4118                 return (EINVAL);
 4119         va_start(ap, fmt);
 4120         vsnprintf(descr, sizeof(descr), fmt, ap);
 4121         va_end(ap);
 4122         return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
 4123 }
 4124 
 4125 /**
 4126  * @brief Wrapper function for BUS_SET_RESOURCE().
 4127  *
 4128  * This function simply calls the BUS_SET_RESOURCE() method of the
 4129  * parent of @p dev.
 4130  */
 4131 int
 4132 bus_set_resource(device_t dev, int type, int rid,
 4133     u_long start, u_long count)
 4134 {
 4135         return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4136             start, count));
 4137 }
 4138 
 4139 /**
 4140  * @brief Wrapper function for BUS_GET_RESOURCE().
 4141  *
 4142  * This function simply calls the BUS_GET_RESOURCE() method of the
 4143  * parent of @p dev.
 4144  */
 4145 int
 4146 bus_get_resource(device_t dev, int type, int rid,
 4147     u_long *startp, u_long *countp)
 4148 {
 4149         return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4150             startp, countp));
 4151 }
 4152 
 4153 /**
 4154  * @brief Wrapper function for BUS_GET_RESOURCE().
 4155  *
 4156  * This function simply calls the BUS_GET_RESOURCE() method of the
 4157  * parent of @p dev and returns the start value.
 4158  */
 4159 u_long
 4160 bus_get_resource_start(device_t dev, int type, int rid)
 4161 {
 4162         u_long start, count;
 4163         int error;
 4164 
 4165         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4166             &start, &count);
 4167         if (error)
 4168                 return (0);
 4169         return (start);
 4170 }
 4171 
 4172 /**
 4173  * @brief Wrapper function for BUS_GET_RESOURCE().
 4174  *
 4175  * This function simply calls the BUS_GET_RESOURCE() method of the
 4176  * parent of @p dev and returns the count value.
 4177  */
 4178 u_long
 4179 bus_get_resource_count(device_t dev, int type, int rid)
 4180 {
 4181         u_long start, count;
 4182         int error;
 4183 
 4184         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4185             &start, &count);
 4186         if (error)
 4187                 return (0);
 4188         return (count);
 4189 }
 4190 
 4191 /**
 4192  * @brief Wrapper function for BUS_DELETE_RESOURCE().
 4193  *
 4194  * This function simply calls the BUS_DELETE_RESOURCE() method of the
 4195  * parent of @p dev.
 4196  */
 4197 void
 4198 bus_delete_resource(device_t dev, int type, int rid)
 4199 {
 4200         BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
 4201 }
 4202 
 4203 /**
 4204  * @brief Wrapper function for BUS_CHILD_PRESENT().
 4205  *
 4206  * This function simply calls the BUS_CHILD_PRESENT() method of the
 4207  * parent of @p dev.
 4208  */
 4209 int
 4210 bus_child_present(device_t child)
 4211 {
 4212         return (BUS_CHILD_PRESENT(device_get_parent(child), child));
 4213 }
 4214 
 4215 /**
 4216  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
 4217  *
 4218  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
 4219  * parent of @p dev.
 4220  */
 4221 int
 4222 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
 4223 {
 4224         device_t parent;
 4225 
 4226         parent = device_get_parent(child);
 4227         if (parent == NULL) {
 4228                 *buf = '\0';
 4229                 return (0);
 4230         }
 4231         return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
 4232 }
 4233 
 4234 /**
 4235  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
 4236  *
 4237  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
 4238  * parent of @p dev.
 4239  */
 4240 int
 4241 bus_child_location_str(device_t child, char *buf, size_t buflen)
 4242 {
 4243         device_t parent;
 4244 
 4245         parent = device_get_parent(child);
 4246         if (parent == NULL) {
 4247                 *buf = '\0';
 4248                 return (0);
 4249         }
 4250         return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
 4251 }
 4252 
 4253 /**
 4254  * @brief Wrapper function for BUS_GET_DMA_TAG().
 4255  *
 4256  * This function simply calls the BUS_GET_DMA_TAG() method of the
 4257  * parent of @p dev.
 4258  */
 4259 bus_dma_tag_t
 4260 bus_get_dma_tag(device_t dev)
 4261 {
 4262         device_t parent;
 4263 
 4264         parent = device_get_parent(dev);
 4265         if (parent == NULL)
 4266                 return (NULL);
 4267         return (BUS_GET_DMA_TAG(parent, dev));
 4268 }
 4269 
 4270 /* Resume all devices and then notify userland that we're up again. */
 4271 static int
 4272 root_resume(device_t dev)
 4273 {
 4274         int error;
 4275 
 4276         error = bus_generic_resume(dev);
 4277         if (error == 0)
 4278                 devctl_notify("kern", "power", "resume", NULL);
 4279         return (error);
 4280 }
 4281 
 4282 static int
 4283 root_print_child(device_t dev, device_t child)
 4284 {
 4285         int     retval = 0;
 4286 
 4287         retval += bus_print_child_header(dev, child);
 4288         retval += printf("\n");
 4289 
 4290         return (retval);
 4291 }
 4292 
 4293 static int
 4294 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
 4295     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
 4296 {
 4297         /*
 4298          * If an interrupt mapping gets to here something bad has happened.
 4299          */
 4300         panic("root_setup_intr");
 4301 }
 4302 
 4303 /*
 4304  * If we get here, assume that the device is permanant and really is
 4305  * present in the system.  Removable bus drivers are expected to intercept
 4306  * this call long before it gets here.  We return -1 so that drivers that
 4307  * really care can check vs -1 or some ERRNO returned higher in the food
 4308  * chain.
 4309  */
 4310 static int
 4311 root_child_present(device_t dev, device_t child)
 4312 {
 4313         return (-1);
 4314 }
 4315 
 4316 static kobj_method_t root_methods[] = {
 4317         /* Device interface */
 4318         KOBJMETHOD(device_shutdown,     bus_generic_shutdown),
 4319         KOBJMETHOD(device_suspend,      bus_generic_suspend),
 4320         KOBJMETHOD(device_resume,       root_resume),
 4321 
 4322         /* Bus interface */
 4323         KOBJMETHOD(bus_print_child,     root_print_child),
 4324         KOBJMETHOD(bus_read_ivar,       bus_generic_read_ivar),
 4325         KOBJMETHOD(bus_write_ivar,      bus_generic_write_ivar),
 4326         KOBJMETHOD(bus_setup_intr,      root_setup_intr),
 4327         KOBJMETHOD(bus_child_present,   root_child_present),
 4328 
 4329         KOBJMETHOD_END
 4330 };
 4331 
 4332 static driver_t root_driver = {
 4333         "root",
 4334         root_methods,
 4335         1,                      /* no softc */
 4336 };
 4337 
 4338 device_t        root_bus;
 4339 devclass_t      root_devclass;
 4340 
 4341 static int
 4342 root_bus_module_handler(module_t mod, int what, void* arg)
 4343 {
 4344         switch (what) {
 4345         case MOD_LOAD:
 4346                 TAILQ_INIT(&bus_data_devices);
 4347                 kobj_class_compile((kobj_class_t) &root_driver);
 4348                 root_bus = make_device(NULL, "root", 0);
 4349                 root_bus->desc = "System root bus";
 4350                 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
 4351                 root_bus->driver = &root_driver;
 4352                 root_bus->state = DS_ATTACHED;
 4353                 root_devclass = devclass_find_internal("root", NULL, FALSE);
 4354                 devinit();
 4355                 return (0);
 4356 
 4357         case MOD_SHUTDOWN:
 4358                 device_shutdown(root_bus);
 4359                 return (0);
 4360         default:
 4361                 return (EOPNOTSUPP);
 4362         }
 4363 
 4364         return (0);
 4365 }
 4366 
 4367 static moduledata_t root_bus_mod = {
 4368         "rootbus",
 4369         root_bus_module_handler,
 4370         NULL
 4371 };
 4372 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
 4373 
 4374 /**
 4375  * @brief Automatically configure devices
 4376  *
 4377  * This function begins the autoconfiguration process by calling
 4378  * device_probe_and_attach() for each child of the @c root0 device.
 4379  */ 
 4380 void
 4381 root_bus_configure(void)
 4382 {
 4383 
 4384         PDEBUG(("."));
 4385 
 4386         /* Eventually this will be split up, but this is sufficient for now. */
 4387         bus_set_pass(BUS_PASS_DEFAULT);
 4388 }
 4389 
 4390 /**
 4391  * @brief Module handler for registering device drivers
 4392  *
 4393  * This module handler is used to automatically register device
 4394  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
 4395  * devclass_add_driver() for the driver described by the
 4396  * driver_module_data structure pointed to by @p arg
 4397  */
 4398 int
 4399 driver_module_handler(module_t mod, int what, void *arg)
 4400 {
 4401         struct driver_module_data *dmd;
 4402         devclass_t bus_devclass;
 4403         kobj_class_t driver;
 4404         int error, pass;
 4405 
 4406         dmd = (struct driver_module_data *)arg;
 4407         bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
 4408         error = 0;
 4409 
 4410         switch (what) {
 4411         case MOD_LOAD:
 4412                 if (dmd->dmd_chainevh)
 4413                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4414 
 4415                 pass = dmd->dmd_pass;
 4416                 driver = dmd->dmd_driver;
 4417                 PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
 4418                     DRIVERNAME(driver), dmd->dmd_busname, pass));
 4419                 error = devclass_add_driver(bus_devclass, driver, pass,
 4420                     dmd->dmd_devclass);
 4421                 break;
 4422 
 4423         case MOD_UNLOAD:
 4424                 PDEBUG(("Unloading module: driver %s from bus %s",
 4425                     DRIVERNAME(dmd->dmd_driver),
 4426                     dmd->dmd_busname));
 4427                 error = devclass_delete_driver(bus_devclass,
 4428                     dmd->dmd_driver);
 4429 
 4430                 if (!error && dmd->dmd_chainevh)
 4431                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4432                 break;
 4433         case MOD_QUIESCE:
 4434                 PDEBUG(("Quiesce module: driver %s from bus %s",
 4435                     DRIVERNAME(dmd->dmd_driver),
 4436                     dmd->dmd_busname));
 4437                 error = devclass_quiesce_driver(bus_devclass,
 4438                     dmd->dmd_driver);
 4439 
 4440                 if (!error && dmd->dmd_chainevh)
 4441                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4442                 break;
 4443         default:
 4444                 error = EOPNOTSUPP;
 4445                 break;
 4446         }
 4447 
 4448         return (error);
 4449 }
 4450 
 4451 /**
 4452  * @brief Enumerate all hinted devices for this bus.
 4453  *
 4454  * Walks through the hints for this bus and calls the bus_hinted_child
 4455  * routine for each one it fines.  It searches first for the specific
 4456  * bus that's being probed for hinted children (eg isa0), and then for
 4457  * generic children (eg isa).
 4458  *
 4459  * @param       dev     bus device to enumerate
 4460  */
 4461 void
 4462 bus_enumerate_hinted_children(device_t bus)
 4463 {
 4464         int i;
 4465         const char *dname, *busname;
 4466         int dunit;
 4467 
 4468         /*
 4469          * enumerate all devices on the specific bus
 4470          */
 4471         busname = device_get_nameunit(bus);
 4472         i = 0;
 4473         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 4474                 BUS_HINTED_CHILD(bus, dname, dunit);
 4475 
 4476         /*
 4477          * and all the generic ones.
 4478          */
 4479         busname = device_get_name(bus);
 4480         i = 0;
 4481         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 4482                 BUS_HINTED_CHILD(bus, dname, dunit);
 4483 }
 4484 
 4485 #ifdef BUS_DEBUG
 4486 
 4487 /* the _short versions avoid iteration by not calling anything that prints
 4488  * more than oneliners. I love oneliners.
 4489  */
 4490 
 4491 static void
 4492 print_device_short(device_t dev, int indent)
 4493 {
 4494         if (!dev)
 4495                 return;
 4496 
 4497         indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
 4498             dev->unit, dev->desc,
 4499             (dev->parent? "":"no "),
 4500             (TAILQ_EMPTY(&dev->children)? "no ":""),
 4501             (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
 4502             (dev->flags&DF_FIXEDCLASS? "fixed,":""),
 4503             (dev->flags&DF_WILDCARD? "wildcard,":""),
 4504             (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
 4505             (dev->flags&DF_REBID? "rebiddable,":""),
 4506             (dev->ivars? "":"no "),
 4507             (dev->softc? "":"no "),
 4508             dev->busy));
 4509 }
 4510 
 4511 static void
 4512 print_device(device_t dev, int indent)
 4513 {
 4514         if (!dev)
 4515                 return;
 4516 
 4517         print_device_short(dev, indent);
 4518 
 4519         indentprintf(("Parent:\n"));
 4520         print_device_short(dev->parent, indent+1);
 4521         indentprintf(("Driver:\n"));
 4522         print_driver_short(dev->driver, indent+1);
 4523         indentprintf(("Devclass:\n"));
 4524         print_devclass_short(dev->devclass, indent+1);
 4525 }
 4526 
 4527 void
 4528 print_device_tree_short(device_t dev, int indent)
 4529 /* print the device and all its children (indented) */
 4530 {
 4531         device_t child;
 4532 
 4533         if (!dev)
 4534                 return;
 4535 
 4536         print_device_short(dev, indent);
 4537 
 4538         TAILQ_FOREACH(child, &dev->children, link) {
 4539                 print_device_tree_short(child, indent+1);
 4540         }
 4541 }
 4542 
 4543 void
 4544 print_device_tree(device_t dev, int indent)
 4545 /* print the device and all its children (indented) */
 4546 {
 4547         device_t child;
 4548 
 4549         if (!dev)
 4550                 return;
 4551 
 4552         print_device(dev, indent);
 4553 
 4554         TAILQ_FOREACH(child, &dev->children, link) {
 4555                 print_device_tree(child, indent+1);
 4556         }
 4557 }
 4558 
 4559 static void
 4560 print_driver_short(driver_t *driver, int indent)
 4561 {
 4562         if (!driver)
 4563                 return;
 4564 
 4565         indentprintf(("driver %s: softc size = %zd\n",
 4566             driver->name, driver->size));
 4567 }
 4568 
 4569 static void
 4570 print_driver(driver_t *driver, int indent)
 4571 {
 4572         if (!driver)
 4573                 return;
 4574 
 4575         print_driver_short(driver, indent);
 4576 }
 4577 
 4578 
 4579 static void
 4580 print_driver_list(driver_list_t drivers, int indent)
 4581 {
 4582         driverlink_t driver;
 4583 
 4584         TAILQ_FOREACH(driver, &drivers, link) {
 4585                 print_driver(driver->driver, indent);
 4586         }
 4587 }
 4588 
 4589 static void
 4590 print_devclass_short(devclass_t dc, int indent)
 4591 {
 4592         if ( !dc )
 4593                 return;
 4594 
 4595         indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
 4596 }
 4597 
 4598 static void
 4599 print_devclass(devclass_t dc, int indent)
 4600 {
 4601         int i;
 4602 
 4603         if ( !dc )
 4604                 return;
 4605 
 4606         print_devclass_short(dc, indent);
 4607         indentprintf(("Drivers:\n"));
 4608         print_driver_list(dc->drivers, indent+1);
 4609 
 4610         indentprintf(("Devices:\n"));
 4611         for (i = 0; i < dc->maxunit; i++)
 4612                 if (dc->devices[i])
 4613                         print_device(dc->devices[i], indent+1);
 4614 }
 4615 
 4616 void
 4617 print_devclass_list_short(void)
 4618 {
 4619         devclass_t dc;
 4620 
 4621         printf("Short listing of devclasses, drivers & devices:\n");
 4622         TAILQ_FOREACH(dc, &devclasses, link) {
 4623                 print_devclass_short(dc, 0);
 4624         }
 4625 }
 4626 
 4627 void
 4628 print_devclass_list(void)
 4629 {
 4630         devclass_t dc;
 4631 
 4632         printf("Full listing of devclasses, drivers & devices:\n");
 4633         TAILQ_FOREACH(dc, &devclasses, link) {
 4634                 print_devclass(dc, 0);
 4635         }
 4636 }
 4637 
 4638 #endif
 4639 
 4640 /*
 4641  * User-space access to the device tree.
 4642  *
 4643  * We implement a small set of nodes:
 4644  *
 4645  * hw.bus                       Single integer read method to obtain the
 4646  *                              current generation count.
 4647  * hw.bus.devices               Reads the entire device tree in flat space.
 4648  * hw.bus.rman                  Resource manager interface
 4649  *
 4650  * We might like to add the ability to scan devclasses and/or drivers to
 4651  * determine what else is currently loaded/available.
 4652  */
 4653 
 4654 static int
 4655 sysctl_bus(SYSCTL_HANDLER_ARGS)
 4656 {
 4657         struct u_businfo        ubus;
 4658 
 4659         ubus.ub_version = BUS_USER_VERSION;
 4660         ubus.ub_generation = bus_data_generation;
 4661 
 4662         return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
 4663 }
 4664 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
 4665     "bus-related data");
 4666 
 4667 static int
 4668 sysctl_devices(SYSCTL_HANDLER_ARGS)
 4669 {
 4670         int                     *name = (int *)arg1;
 4671         u_int                   namelen = arg2;
 4672         int                     index;
 4673         struct device           *dev;
 4674         struct u_device         udev;   /* XXX this is a bit big */
 4675         int                     error;
 4676 
 4677         if (namelen != 2)
 4678                 return (EINVAL);
 4679 
 4680         if (bus_data_generation_check(name[0]))
 4681                 return (EINVAL);
 4682 
 4683         index = name[1];
 4684 
 4685         /*
 4686          * Scan the list of devices, looking for the requested index.
 4687          */
 4688         TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 4689                 if (index-- == 0)
 4690                         break;
 4691         }
 4692         if (dev == NULL)
 4693                 return (ENOENT);
 4694 
 4695         /*
 4696          * Populate the return array.
 4697          */
 4698         bzero(&udev, sizeof(udev));
 4699         udev.dv_handle = (uintptr_t)dev;
 4700         udev.dv_parent = (uintptr_t)dev->parent;
 4701         if (dev->nameunit != NULL)
 4702                 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
 4703         if (dev->desc != NULL)
 4704                 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
 4705         if (dev->driver != NULL && dev->driver->name != NULL)
 4706                 strlcpy(udev.dv_drivername, dev->driver->name,
 4707                     sizeof(udev.dv_drivername));
 4708         bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
 4709         bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
 4710         udev.dv_devflags = dev->devflags;
 4711         udev.dv_flags = dev->flags;
 4712         udev.dv_state = dev->state;
 4713         error = SYSCTL_OUT(req, &udev, sizeof(udev));
 4714         return (error);
 4715 }
 4716 
 4717 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
 4718     "system device tree");
 4719 
 4720 int
 4721 bus_data_generation_check(int generation)
 4722 {
 4723         if (generation != bus_data_generation)
 4724                 return (1);
 4725 
 4726         /* XXX generate optimised lists here? */
 4727         return (0);
 4728 }
 4729 
 4730 void
 4731 bus_data_generation_update(void)
 4732 {
 4733         bus_data_generation++;
 4734 }
 4735 
 4736 int
 4737 bus_free_resource(device_t dev, int type, struct resource *r)
 4738 {
 4739         if (r == NULL)
 4740                 return (0);
 4741         return (bus_release_resource(dev, type, rman_get_rid(r), r));
 4742 }

Cache object: b20ca523f22d86e221e16f2319704e03


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.