The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_bus.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997,1998,2003 Doug Rabson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/9.2/sys/kern/subr_bus.c 253700 2013-07-27 05:32:26Z rodrigc $");
   29 
   30 #include "opt_bus.h"
   31 
   32 #include <sys/param.h>
   33 #include <sys/conf.h>
   34 #include <sys/filio.h>
   35 #include <sys/lock.h>
   36 #include <sys/kernel.h>
   37 #include <sys/kobj.h>
   38 #include <sys/limits.h>
   39 #include <sys/malloc.h>
   40 #include <sys/module.h>
   41 #include <sys/mutex.h>
   42 #include <sys/poll.h>
   43 #include <sys/proc.h>
   44 #include <sys/condvar.h>
   45 #include <sys/queue.h>
   46 #include <machine/bus.h>
   47 #include <sys/rman.h>
   48 #include <sys/selinfo.h>
   49 #include <sys/signalvar.h>
   50 #include <sys/sysctl.h>
   51 #include <sys/systm.h>
   52 #include <sys/uio.h>
   53 #include <sys/bus.h>
   54 #include <sys/interrupt.h>
   55 
   56 #include <net/vnet.h>
   57 
   58 #include <machine/stdarg.h>
   59 
   60 #include <vm/uma.h>
   61 
   62 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
   63 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
   64 
   65 /*
   66  * Used to attach drivers to devclasses.
   67  */
   68 typedef struct driverlink *driverlink_t;
   69 struct driverlink {
   70         kobj_class_t    driver;
   71         TAILQ_ENTRY(driverlink) link;   /* list of drivers in devclass */
   72         int             pass;
   73         TAILQ_ENTRY(driverlink) passlink;
   74 };
   75 
   76 /*
   77  * Forward declarations
   78  */
   79 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
   80 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
   81 typedef TAILQ_HEAD(device_list, device) device_list_t;
   82 
   83 struct devclass {
   84         TAILQ_ENTRY(devclass) link;
   85         devclass_t      parent;         /* parent in devclass hierarchy */
   86         driver_list_t   drivers;     /* bus devclasses store drivers for bus */
   87         char            *name;
   88         device_t        *devices;       /* array of devices indexed by unit */
   89         int             maxunit;        /* size of devices array */
   90         int             flags;
   91 #define DC_HAS_CHILDREN         1
   92 
   93         struct sysctl_ctx_list sysctl_ctx;
   94         struct sysctl_oid *sysctl_tree;
   95 };
   96 
   97 /**
   98  * @brief Implementation of device.
   99  */
  100 struct device {
  101         /*
  102          * A device is a kernel object. The first field must be the
  103          * current ops table for the object.
  104          */
  105         KOBJ_FIELDS;
  106 
  107         /*
  108          * Device hierarchy.
  109          */
  110         TAILQ_ENTRY(device)     link;   /**< list of devices in parent */
  111         TAILQ_ENTRY(device)     devlink; /**< global device list membership */
  112         device_t        parent;         /**< parent of this device  */
  113         device_list_t   children;       /**< list of child devices */
  114 
  115         /*
  116          * Details of this device.
  117          */
  118         driver_t        *driver;        /**< current driver */
  119         devclass_t      devclass;       /**< current device class */
  120         int             unit;           /**< current unit number */
  121         char*           nameunit;       /**< name+unit e.g. foodev0 */
  122         char*           desc;           /**< driver specific description */
  123         int             busy;           /**< count of calls to device_busy() */
  124         device_state_t  state;          /**< current device state  */
  125         uint32_t        devflags;       /**< api level flags for device_get_flags() */
  126         u_int           flags;          /**< internal device flags  */
  127 #define DF_ENABLED      0x01            /* device should be probed/attached */
  128 #define DF_FIXEDCLASS   0x02            /* devclass specified at create time */
  129 #define DF_WILDCARD     0x04            /* unit was originally wildcard */
  130 #define DF_DESCMALLOCED 0x08            /* description was malloced */
  131 #define DF_QUIET        0x10            /* don't print verbose attach message */
  132 #define DF_DONENOMATCH  0x20            /* don't execute DEVICE_NOMATCH again */
  133 #define DF_EXTERNALSOFTC 0x40           /* softc not allocated by us */
  134 #define DF_REBID        0x80            /* Can rebid after attach */
  135         u_int   order;                  /**< order from device_add_child_ordered() */
  136         void    *ivars;                 /**< instance variables  */
  137         void    *softc;                 /**< current driver's variables  */
  138 
  139         struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
  140         struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
  141 };
  142 
  143 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
  144 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
  145 
  146 #ifdef BUS_DEBUG
  147 
  148 static int bus_debug = 1;
  149 TUNABLE_INT("bus.debug", &bus_debug);
  150 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
  151     "Debug bus code");
  152 
  153 #define PDEBUG(a)       if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
  154 #define DEVICENAME(d)   ((d)? device_get_name(d): "no device")
  155 #define DRIVERNAME(d)   ((d)? d->name : "no driver")
  156 #define DEVCLANAME(d)   ((d)? d->name : "no devclass")
  157 
  158 /**
  159  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
  160  * prevent syslog from deleting initial spaces
  161  */
  162 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
  163 
  164 static void print_device_short(device_t dev, int indent);
  165 static void print_device(device_t dev, int indent);
  166 void print_device_tree_short(device_t dev, int indent);
  167 void print_device_tree(device_t dev, int indent);
  168 static void print_driver_short(driver_t *driver, int indent);
  169 static void print_driver(driver_t *driver, int indent);
  170 static void print_driver_list(driver_list_t drivers, int indent);
  171 static void print_devclass_short(devclass_t dc, int indent);
  172 static void print_devclass(devclass_t dc, int indent);
  173 void print_devclass_list_short(void);
  174 void print_devclass_list(void);
  175 
  176 #else
  177 /* Make the compiler ignore the function calls */
  178 #define PDEBUG(a)                       /* nop */
  179 #define DEVICENAME(d)                   /* nop */
  180 #define DRIVERNAME(d)                   /* nop */
  181 #define DEVCLANAME(d)                   /* nop */
  182 
  183 #define print_device_short(d,i)         /* nop */
  184 #define print_device(d,i)               /* nop */
  185 #define print_device_tree_short(d,i)    /* nop */
  186 #define print_device_tree(d,i)          /* nop */
  187 #define print_driver_short(d,i)         /* nop */
  188 #define print_driver(d,i)               /* nop */
  189 #define print_driver_list(d,i)          /* nop */
  190 #define print_devclass_short(d,i)       /* nop */
  191 #define print_devclass(d,i)             /* nop */
  192 #define print_devclass_list_short()     /* nop */
  193 #define print_devclass_list()           /* nop */
  194 #endif
  195 
  196 /*
  197  * dev sysctl tree
  198  */
  199 
  200 enum {
  201         DEVCLASS_SYSCTL_PARENT,
  202 };
  203 
  204 static int
  205 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
  206 {
  207         devclass_t dc = (devclass_t)arg1;
  208         const char *value;
  209 
  210         switch (arg2) {
  211         case DEVCLASS_SYSCTL_PARENT:
  212                 value = dc->parent ? dc->parent->name : "";
  213                 break;
  214         default:
  215                 return (EINVAL);
  216         }
  217         return (SYSCTL_OUT(req, value, strlen(value)));
  218 }
  219 
  220 static void
  221 devclass_sysctl_init(devclass_t dc)
  222 {
  223 
  224         if (dc->sysctl_tree != NULL)
  225                 return;
  226         sysctl_ctx_init(&dc->sysctl_ctx);
  227         dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
  228             SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
  229             CTLFLAG_RD, NULL, "");
  230         SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
  231             OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
  232             dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
  233             "parent class");
  234 }
  235 
  236 enum {
  237         DEVICE_SYSCTL_DESC,
  238         DEVICE_SYSCTL_DRIVER,
  239         DEVICE_SYSCTL_LOCATION,
  240         DEVICE_SYSCTL_PNPINFO,
  241         DEVICE_SYSCTL_PARENT,
  242 };
  243 
  244 static int
  245 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
  246 {
  247         device_t dev = (device_t)arg1;
  248         const char *value;
  249         char *buf;
  250         int error;
  251 
  252         buf = NULL;
  253         switch (arg2) {
  254         case DEVICE_SYSCTL_DESC:
  255                 value = dev->desc ? dev->desc : "";
  256                 break;
  257         case DEVICE_SYSCTL_DRIVER:
  258                 value = dev->driver ? dev->driver->name : "";
  259                 break;
  260         case DEVICE_SYSCTL_LOCATION:
  261                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  262                 bus_child_location_str(dev, buf, 1024);
  263                 break;
  264         case DEVICE_SYSCTL_PNPINFO:
  265                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  266                 bus_child_pnpinfo_str(dev, buf, 1024);
  267                 break;
  268         case DEVICE_SYSCTL_PARENT:
  269                 value = dev->parent ? dev->parent->nameunit : "";
  270                 break;
  271         default:
  272                 return (EINVAL);
  273         }
  274         error = SYSCTL_OUT(req, value, strlen(value));
  275         if (buf != NULL)
  276                 free(buf, M_BUS);
  277         return (error);
  278 }
  279 
  280 static void
  281 device_sysctl_init(device_t dev)
  282 {
  283         devclass_t dc = dev->devclass;
  284 
  285         if (dev->sysctl_tree != NULL)
  286                 return;
  287         devclass_sysctl_init(dc);
  288         sysctl_ctx_init(&dev->sysctl_ctx);
  289         dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
  290             SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
  291             dev->nameunit + strlen(dc->name),
  292             CTLFLAG_RD, NULL, "");
  293         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  294             OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
  295             dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
  296             "device description");
  297         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  298             OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
  299             dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
  300             "device driver name");
  301         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  302             OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
  303             dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
  304             "device location relative to parent");
  305         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  306             OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
  307             dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
  308             "device identification");
  309         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  310             OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
  311             dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
  312             "parent device");
  313 }
  314 
  315 static void
  316 device_sysctl_update(device_t dev)
  317 {
  318         devclass_t dc = dev->devclass;
  319 
  320         if (dev->sysctl_tree == NULL)
  321                 return;
  322         sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
  323 }
  324 
  325 static void
  326 device_sysctl_fini(device_t dev)
  327 {
  328         if (dev->sysctl_tree == NULL)
  329                 return;
  330         sysctl_ctx_free(&dev->sysctl_ctx);
  331         dev->sysctl_tree = NULL;
  332 }
  333 
  334 /*
  335  * /dev/devctl implementation
  336  */
  337 
  338 /*
  339  * This design allows only one reader for /dev/devctl.  This is not desirable
  340  * in the long run, but will get a lot of hair out of this implementation.
  341  * Maybe we should make this device a clonable device.
  342  *
  343  * Also note: we specifically do not attach a device to the device_t tree
  344  * to avoid potential chicken and egg problems.  One could argue that all
  345  * of this belongs to the root node.  One could also further argue that the
  346  * sysctl interface that we have not might more properly be an ioctl
  347  * interface, but at this stage of the game, I'm not inclined to rock that
  348  * boat.
  349  *
  350  * I'm also not sure that the SIGIO support is done correctly or not, as
  351  * I copied it from a driver that had SIGIO support that likely hasn't been
  352  * tested since 3.4 or 2.2.8!
  353  */
  354 
  355 /* Deprecated way to adjust queue length */
  356 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
  357 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
  358 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
  359     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
  360 
  361 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
  362 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
  363 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  364 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
  365 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
  366     0, sysctl_devctl_queue, "I", "devctl queue length");
  367 
  368 static d_open_t         devopen;
  369 static d_close_t        devclose;
  370 static d_read_t         devread;
  371 static d_ioctl_t        devioctl;
  372 static d_poll_t         devpoll;
  373 
  374 static struct cdevsw dev_cdevsw = {
  375         .d_version =    D_VERSION,
  376         .d_flags =      D_NEEDGIANT,
  377         .d_open =       devopen,
  378         .d_close =      devclose,
  379         .d_read =       devread,
  380         .d_ioctl =      devioctl,
  381         .d_poll =       devpoll,
  382         .d_name =       "devctl",
  383 };
  384 
  385 struct dev_event_info
  386 {
  387         char *dei_data;
  388         TAILQ_ENTRY(dev_event_info) dei_link;
  389 };
  390 
  391 TAILQ_HEAD(devq, dev_event_info);
  392 
  393 static struct dev_softc
  394 {
  395         int     inuse;
  396         int     nonblock;
  397         int     queued;
  398         struct mtx mtx;
  399         struct cv cv;
  400         struct selinfo sel;
  401         struct devq devq;
  402         struct proc *async_proc;
  403 } devsoftc;
  404 
  405 static struct cdev *devctl_dev;
  406 
  407 static void
  408 devinit(void)
  409 {
  410         devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
  411             UID_ROOT, GID_WHEEL, 0600, "devctl");
  412         mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
  413         cv_init(&devsoftc.cv, "dev cv");
  414         TAILQ_INIT(&devsoftc.devq);
  415 }
  416 
  417 static int
  418 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
  419 {
  420         if (devsoftc.inuse)
  421                 return (EBUSY);
  422         /* move to init */
  423         devsoftc.inuse = 1;
  424         devsoftc.nonblock = 0;
  425         devsoftc.async_proc = NULL;
  426         return (0);
  427 }
  428 
  429 static int
  430 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
  431 {
  432         devsoftc.inuse = 0;
  433         mtx_lock(&devsoftc.mtx);
  434         cv_broadcast(&devsoftc.cv);
  435         mtx_unlock(&devsoftc.mtx);
  436         devsoftc.async_proc = NULL;
  437         return (0);
  438 }
  439 
  440 /*
  441  * The read channel for this device is used to report changes to
  442  * userland in realtime.  We are required to free the data as well as
  443  * the n1 object because we allocate them separately.  Also note that
  444  * we return one record at a time.  If you try to read this device a
  445  * character at a time, you will lose the rest of the data.  Listening
  446  * programs are expected to cope.
  447  */
  448 static int
  449 devread(struct cdev *dev, struct uio *uio, int ioflag)
  450 {
  451         struct dev_event_info *n1;
  452         int rv;
  453 
  454         mtx_lock(&devsoftc.mtx);
  455         while (TAILQ_EMPTY(&devsoftc.devq)) {
  456                 if (devsoftc.nonblock) {
  457                         mtx_unlock(&devsoftc.mtx);
  458                         return (EAGAIN);
  459                 }
  460                 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
  461                 if (rv) {
  462                         /*
  463                          * Need to translate ERESTART to EINTR here? -- jake
  464                          */
  465                         mtx_unlock(&devsoftc.mtx);
  466                         return (rv);
  467                 }
  468         }
  469         n1 = TAILQ_FIRST(&devsoftc.devq);
  470         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  471         devsoftc.queued--;
  472         mtx_unlock(&devsoftc.mtx);
  473         rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
  474         free(n1->dei_data, M_BUS);
  475         free(n1, M_BUS);
  476         return (rv);
  477 }
  478 
  479 static  int
  480 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
  481 {
  482         switch (cmd) {
  483 
  484         case FIONBIO:
  485                 if (*(int*)data)
  486                         devsoftc.nonblock = 1;
  487                 else
  488                         devsoftc.nonblock = 0;
  489                 return (0);
  490         case FIOASYNC:
  491                 if (*(int*)data)
  492                         devsoftc.async_proc = td->td_proc;
  493                 else
  494                         devsoftc.async_proc = NULL;
  495                 return (0);
  496 
  497                 /* (un)Support for other fcntl() calls. */
  498         case FIOCLEX:
  499         case FIONCLEX:
  500         case FIONREAD:
  501         case FIOSETOWN:
  502         case FIOGETOWN:
  503         default:
  504                 break;
  505         }
  506         return (ENOTTY);
  507 }
  508 
  509 static  int
  510 devpoll(struct cdev *dev, int events, struct thread *td)
  511 {
  512         int     revents = 0;
  513 
  514         mtx_lock(&devsoftc.mtx);
  515         if (events & (POLLIN | POLLRDNORM)) {
  516                 if (!TAILQ_EMPTY(&devsoftc.devq))
  517                         revents = events & (POLLIN | POLLRDNORM);
  518                 else
  519                         selrecord(td, &devsoftc.sel);
  520         }
  521         mtx_unlock(&devsoftc.mtx);
  522 
  523         return (revents);
  524 }
  525 
  526 /**
  527  * @brief Return whether the userland process is running
  528  */
  529 boolean_t
  530 devctl_process_running(void)
  531 {
  532         return (devsoftc.inuse == 1);
  533 }
  534 
  535 /**
  536  * @brief Queue data to be read from the devctl device
  537  *
  538  * Generic interface to queue data to the devctl device.  It is
  539  * assumed that @p data is properly formatted.  It is further assumed
  540  * that @p data is allocated using the M_BUS malloc type.
  541  */
  542 void
  543 devctl_queue_data_f(char *data, int flags)
  544 {
  545         struct dev_event_info *n1 = NULL, *n2 = NULL;
  546         struct proc *p;
  547 
  548         if (strlen(data) == 0)
  549                 goto out;
  550         if (devctl_queue_length == 0)
  551                 goto out;
  552         n1 = malloc(sizeof(*n1), M_BUS, flags);
  553         if (n1 == NULL)
  554                 goto out;
  555         n1->dei_data = data;
  556         mtx_lock(&devsoftc.mtx);
  557         if (devctl_queue_length == 0) {
  558                 mtx_unlock(&devsoftc.mtx);
  559                 free(n1->dei_data, M_BUS);
  560                 free(n1, M_BUS);
  561                 return;
  562         }
  563         /* Leave at least one spot in the queue... */
  564         while (devsoftc.queued > devctl_queue_length - 1) {
  565                 n2 = TAILQ_FIRST(&devsoftc.devq);
  566                 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
  567                 free(n2->dei_data, M_BUS);
  568                 free(n2, M_BUS);
  569                 devsoftc.queued--;
  570         }
  571         TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
  572         devsoftc.queued++;
  573         cv_broadcast(&devsoftc.cv);
  574         mtx_unlock(&devsoftc.mtx);
  575         selwakeup(&devsoftc.sel);
  576         p = devsoftc.async_proc;
  577         if (p != NULL) {
  578                 PROC_LOCK(p);
  579                 kern_psignal(p, SIGIO);
  580                 PROC_UNLOCK(p);
  581         }
  582         return;
  583 out:
  584         /*
  585          * We have to free data on all error paths since the caller
  586          * assumes it will be free'd when this item is dequeued.
  587          */
  588         free(data, M_BUS);
  589         return;
  590 }
  591 
  592 void
  593 devctl_queue_data(char *data)
  594 {
  595 
  596         devctl_queue_data_f(data, M_NOWAIT);
  597 }
  598 
  599 /**
  600  * @brief Send a 'notification' to userland, using standard ways
  601  */
  602 void
  603 devctl_notify_f(const char *system, const char *subsystem, const char *type,
  604     const char *data, int flags)
  605 {
  606         int len = 0;
  607         char *msg;
  608 
  609         if (system == NULL)
  610                 return;         /* BOGUS!  Must specify system. */
  611         if (subsystem == NULL)
  612                 return;         /* BOGUS!  Must specify subsystem. */
  613         if (type == NULL)
  614                 return;         /* BOGUS!  Must specify type. */
  615         len += strlen(" system=") + strlen(system);
  616         len += strlen(" subsystem=") + strlen(subsystem);
  617         len += strlen(" type=") + strlen(type);
  618         /* add in the data message plus newline. */
  619         if (data != NULL)
  620                 len += strlen(data);
  621         len += 3;       /* '!', '\n', and NUL */
  622         msg = malloc(len, M_BUS, flags);
  623         if (msg == NULL)
  624                 return;         /* Drop it on the floor */
  625         if (data != NULL)
  626                 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
  627                     system, subsystem, type, data);
  628         else
  629                 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
  630                     system, subsystem, type);
  631         devctl_queue_data_f(msg, flags);
  632 }
  633 
  634 void
  635 devctl_notify(const char *system, const char *subsystem, const char *type,
  636     const char *data)
  637 {
  638 
  639         devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
  640 }
  641 
  642 /*
  643  * Common routine that tries to make sending messages as easy as possible.
  644  * We allocate memory for the data, copy strings into that, but do not
  645  * free it unless there's an error.  The dequeue part of the driver should
  646  * free the data.  We don't send data when the device is disabled.  We do
  647  * send data, even when we have no listeners, because we wish to avoid
  648  * races relating to startup and restart of listening applications.
  649  *
  650  * devaddq is designed to string together the type of event, with the
  651  * object of that event, plus the plug and play info and location info
  652  * for that event.  This is likely most useful for devices, but less
  653  * useful for other consumers of this interface.  Those should use
  654  * the devctl_queue_data() interface instead.
  655  */
  656 static void
  657 devaddq(const char *type, const char *what, device_t dev)
  658 {
  659         char *data = NULL;
  660         char *loc = NULL;
  661         char *pnp = NULL;
  662         const char *parstr;
  663 
  664         if (!devctl_queue_length)/* Rare race, but lost races safely discard */
  665                 return;
  666         data = malloc(1024, M_BUS, M_NOWAIT);
  667         if (data == NULL)
  668                 goto bad;
  669 
  670         /* get the bus specific location of this device */
  671         loc = malloc(1024, M_BUS, M_NOWAIT);
  672         if (loc == NULL)
  673                 goto bad;
  674         *loc = '\0';
  675         bus_child_location_str(dev, loc, 1024);
  676 
  677         /* Get the bus specific pnp info of this device */
  678         pnp = malloc(1024, M_BUS, M_NOWAIT);
  679         if (pnp == NULL)
  680                 goto bad;
  681         *pnp = '\0';
  682         bus_child_pnpinfo_str(dev, pnp, 1024);
  683 
  684         /* Get the parent of this device, or / if high enough in the tree. */
  685         if (device_get_parent(dev) == NULL)
  686                 parstr = ".";   /* Or '/' ? */
  687         else
  688                 parstr = device_get_nameunit(device_get_parent(dev));
  689         /* String it all together. */
  690         snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
  691           parstr);
  692         free(loc, M_BUS);
  693         free(pnp, M_BUS);
  694         devctl_queue_data(data);
  695         return;
  696 bad:
  697         free(pnp, M_BUS);
  698         free(loc, M_BUS);
  699         free(data, M_BUS);
  700         return;
  701 }
  702 
  703 /*
  704  * A device was added to the tree.  We are called just after it successfully
  705  * attaches (that is, probe and attach success for this device).  No call
  706  * is made if a device is merely parented into the tree.  See devnomatch
  707  * if probe fails.  If attach fails, no notification is sent (but maybe
  708  * we should have a different message for this).
  709  */
  710 static void
  711 devadded(device_t dev)
  712 {
  713         devaddq("+", device_get_nameunit(dev), dev);
  714 }
  715 
  716 /*
  717  * A device was removed from the tree.  We are called just before this
  718  * happens.
  719  */
  720 static void
  721 devremoved(device_t dev)
  722 {
  723         devaddq("-", device_get_nameunit(dev), dev);
  724 }
  725 
  726 /*
  727  * Called when there's no match for this device.  This is only called
  728  * the first time that no match happens, so we don't keep getting this
  729  * message.  Should that prove to be undesirable, we can change it.
  730  * This is called when all drivers that can attach to a given bus
  731  * decline to accept this device.  Other errors may not be detected.
  732  */
  733 static void
  734 devnomatch(device_t dev)
  735 {
  736         devaddq("?", "", dev);
  737 }
  738 
  739 static int
  740 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
  741 {
  742         struct dev_event_info *n1;
  743         int dis, error;
  744 
  745         dis = devctl_queue_length == 0;
  746         error = sysctl_handle_int(oidp, &dis, 0, req);
  747         if (error || !req->newptr)
  748                 return (error);
  749         mtx_lock(&devsoftc.mtx);
  750         if (dis) {
  751                 while (!TAILQ_EMPTY(&devsoftc.devq)) {
  752                         n1 = TAILQ_FIRST(&devsoftc.devq);
  753                         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  754                         free(n1->dei_data, M_BUS);
  755                         free(n1, M_BUS);
  756                 }
  757                 devsoftc.queued = 0;
  758                 devctl_queue_length = 0;
  759         } else {
  760                 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  761         }
  762         mtx_unlock(&devsoftc.mtx);
  763         return (0);
  764 }
  765 
  766 static int
  767 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
  768 {
  769         struct dev_event_info *n1;
  770         int q, error;
  771 
  772         q = devctl_queue_length;
  773         error = sysctl_handle_int(oidp, &q, 0, req);
  774         if (error || !req->newptr)
  775                 return (error);
  776         if (q < 0)
  777                 return (EINVAL);
  778         mtx_lock(&devsoftc.mtx);
  779         devctl_queue_length = q;
  780         while (devsoftc.queued > devctl_queue_length) {
  781                 n1 = TAILQ_FIRST(&devsoftc.devq);
  782                 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  783                 free(n1->dei_data, M_BUS);
  784                 free(n1, M_BUS);
  785                 devsoftc.queued--;
  786         }
  787         mtx_unlock(&devsoftc.mtx);
  788         return (0);
  789 }
  790 
  791 /* End of /dev/devctl code */
  792 
  793 static TAILQ_HEAD(,device)      bus_data_devices;
  794 static int bus_data_generation = 1;
  795 
  796 static kobj_method_t null_methods[] = {
  797         KOBJMETHOD_END
  798 };
  799 
  800 DEFINE_CLASS(null, null_methods, 0);
  801 
  802 /*
  803  * Bus pass implementation
  804  */
  805 
  806 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
  807 int bus_current_pass = BUS_PASS_ROOT;
  808 
  809 /**
  810  * @internal
  811  * @brief Register the pass level of a new driver attachment
  812  *
  813  * Register a new driver attachment's pass level.  If no driver
  814  * attachment with the same pass level has been added, then @p new
  815  * will be added to the global passes list.
  816  *
  817  * @param new           the new driver attachment
  818  */
  819 static void
  820 driver_register_pass(struct driverlink *new)
  821 {
  822         struct driverlink *dl;
  823 
  824         /* We only consider pass numbers during boot. */
  825         if (bus_current_pass == BUS_PASS_DEFAULT)
  826                 return;
  827 
  828         /*
  829          * Walk the passes list.  If we already know about this pass
  830          * then there is nothing to do.  If we don't, then insert this
  831          * driver link into the list.
  832          */
  833         TAILQ_FOREACH(dl, &passes, passlink) {
  834                 if (dl->pass < new->pass)
  835                         continue;
  836                 if (dl->pass == new->pass)
  837                         return;
  838                 TAILQ_INSERT_BEFORE(dl, new, passlink);
  839                 return;
  840         }
  841         TAILQ_INSERT_TAIL(&passes, new, passlink);
  842 }
  843 
  844 /**
  845  * @brief Raise the current bus pass
  846  *
  847  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
  848  * method on the root bus to kick off a new device tree scan for each
  849  * new pass level that has at least one driver.
  850  */
  851 void
  852 bus_set_pass(int pass)
  853 {
  854         struct driverlink *dl;
  855 
  856         if (bus_current_pass > pass)
  857                 panic("Attempt to lower bus pass level");
  858 
  859         TAILQ_FOREACH(dl, &passes, passlink) {
  860                 /* Skip pass values below the current pass level. */
  861                 if (dl->pass <= bus_current_pass)
  862                         continue;
  863 
  864                 /*
  865                  * Bail once we hit a driver with a pass level that is
  866                  * too high.
  867                  */
  868                 if (dl->pass > pass)
  869                         break;
  870 
  871                 /*
  872                  * Raise the pass level to the next level and rescan
  873                  * the tree.
  874                  */
  875                 bus_current_pass = dl->pass;
  876                 BUS_NEW_PASS(root_bus);
  877         }
  878 
  879         /*
  880          * If there isn't a driver registered for the requested pass,
  881          * then bus_current_pass might still be less than 'pass'.  Set
  882          * it to 'pass' in that case.
  883          */
  884         if (bus_current_pass < pass)
  885                 bus_current_pass = pass;
  886         KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
  887 }
  888 
  889 /*
  890  * Devclass implementation
  891  */
  892 
  893 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
  894 
  895 /**
  896  * @internal
  897  * @brief Find or create a device class
  898  *
  899  * If a device class with the name @p classname exists, return it,
  900  * otherwise if @p create is non-zero create and return a new device
  901  * class.
  902  *
  903  * If @p parentname is non-NULL, the parent of the devclass is set to
  904  * the devclass of that name.
  905  *
  906  * @param classname     the devclass name to find or create
  907  * @param parentname    the parent devclass name or @c NULL
  908  * @param create        non-zero to create a devclass
  909  */
  910 static devclass_t
  911 devclass_find_internal(const char *classname, const char *parentname,
  912                        int create)
  913 {
  914         devclass_t dc;
  915 
  916         PDEBUG(("looking for %s", classname));
  917         if (!classname)
  918                 return (NULL);
  919 
  920         TAILQ_FOREACH(dc, &devclasses, link) {
  921                 if (!strcmp(dc->name, classname))
  922                         break;
  923         }
  924 
  925         if (create && !dc) {
  926                 PDEBUG(("creating %s", classname));
  927                 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
  928                     M_BUS, M_NOWAIT | M_ZERO);
  929                 if (!dc)
  930                         return (NULL);
  931                 dc->parent = NULL;
  932                 dc->name = (char*) (dc + 1);
  933                 strcpy(dc->name, classname);
  934                 TAILQ_INIT(&dc->drivers);
  935                 TAILQ_INSERT_TAIL(&devclasses, dc, link);
  936 
  937                 bus_data_generation_update();
  938         }
  939 
  940         /*
  941          * If a parent class is specified, then set that as our parent so
  942          * that this devclass will support drivers for the parent class as
  943          * well.  If the parent class has the same name don't do this though
  944          * as it creates a cycle that can trigger an infinite loop in
  945          * device_probe_child() if a device exists for which there is no
  946          * suitable driver.
  947          */
  948         if (parentname && dc && !dc->parent &&
  949             strcmp(classname, parentname) != 0) {
  950                 dc->parent = devclass_find_internal(parentname, NULL, TRUE);
  951                 dc->parent->flags |= DC_HAS_CHILDREN;
  952         }
  953 
  954         return (dc);
  955 }
  956 
  957 /**
  958  * @brief Create a device class
  959  *
  960  * If a device class with the name @p classname exists, return it,
  961  * otherwise create and return a new device class.
  962  *
  963  * @param classname     the devclass name to find or create
  964  */
  965 devclass_t
  966 devclass_create(const char *classname)
  967 {
  968         return (devclass_find_internal(classname, NULL, TRUE));
  969 }
  970 
  971 /**
  972  * @brief Find a device class
  973  *
  974  * If a device class with the name @p classname exists, return it,
  975  * otherwise return @c NULL.
  976  *
  977  * @param classname     the devclass name to find
  978  */
  979 devclass_t
  980 devclass_find(const char *classname)
  981 {
  982         return (devclass_find_internal(classname, NULL, FALSE));
  983 }
  984 
  985 /**
  986  * @brief Register that a device driver has been added to a devclass
  987  *
  988  * Register that a device driver has been added to a devclass.  This
  989  * is called by devclass_add_driver to accomplish the recursive
  990  * notification of all the children classes of dc, as well as dc.
  991  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
  992  * the devclass.
  993  *
  994  * We do a full search here of the devclass list at each iteration
  995  * level to save storing children-lists in the devclass structure.  If
  996  * we ever move beyond a few dozen devices doing this, we may need to
  997  * reevaluate...
  998  *
  999  * @param dc            the devclass to edit
 1000  * @param driver        the driver that was just added
 1001  */
 1002 static void
 1003 devclass_driver_added(devclass_t dc, driver_t *driver)
 1004 {
 1005         devclass_t parent;
 1006         int i;
 1007 
 1008         /*
 1009          * Call BUS_DRIVER_ADDED for any existing busses in this class.
 1010          */
 1011         for (i = 0; i < dc->maxunit; i++)
 1012                 if (dc->devices[i] && device_is_attached(dc->devices[i]))
 1013                         BUS_DRIVER_ADDED(dc->devices[i], driver);
 1014 
 1015         /*
 1016          * Walk through the children classes.  Since we only keep a
 1017          * single parent pointer around, we walk the entire list of
 1018          * devclasses looking for children.  We set the
 1019          * DC_HAS_CHILDREN flag when a child devclass is created on
 1020          * the parent, so we only walk the list for those devclasses
 1021          * that have children.
 1022          */
 1023         if (!(dc->flags & DC_HAS_CHILDREN))
 1024                 return;
 1025         parent = dc;
 1026         TAILQ_FOREACH(dc, &devclasses, link) {
 1027                 if (dc->parent == parent)
 1028                         devclass_driver_added(dc, driver);
 1029         }
 1030 }
 1031 
 1032 /**
 1033  * @brief Add a device driver to a device class
 1034  *
 1035  * Add a device driver to a devclass. This is normally called
 1036  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
 1037  * all devices in the devclass will be called to allow them to attempt
 1038  * to re-probe any unmatched children.
 1039  *
 1040  * @param dc            the devclass to edit
 1041  * @param driver        the driver to register
 1042  */
 1043 int
 1044 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
 1045 {
 1046         driverlink_t dl;
 1047         const char *parentname;
 1048 
 1049         PDEBUG(("%s", DRIVERNAME(driver)));
 1050 
 1051         /* Don't allow invalid pass values. */
 1052         if (pass <= BUS_PASS_ROOT)
 1053                 return (EINVAL);
 1054 
 1055         dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
 1056         if (!dl)
 1057                 return (ENOMEM);
 1058 
 1059         /*
 1060          * Compile the driver's methods. Also increase the reference count
 1061          * so that the class doesn't get freed when the last instance
 1062          * goes. This means we can safely use static methods and avoids a
 1063          * double-free in devclass_delete_driver.
 1064          */
 1065         kobj_class_compile((kobj_class_t) driver);
 1066 
 1067         /*
 1068          * If the driver has any base classes, make the
 1069          * devclass inherit from the devclass of the driver's
 1070          * first base class. This will allow the system to
 1071          * search for drivers in both devclasses for children
 1072          * of a device using this driver.
 1073          */
 1074         if (driver->baseclasses)
 1075                 parentname = driver->baseclasses[0]->name;
 1076         else
 1077                 parentname = NULL;
 1078         *dcp = devclass_find_internal(driver->name, parentname, TRUE);
 1079 
 1080         dl->driver = driver;
 1081         TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
 1082         driver->refs++;         /* XXX: kobj_mtx */
 1083         dl->pass = pass;
 1084         driver_register_pass(dl);
 1085 
 1086         devclass_driver_added(dc, driver);
 1087         bus_data_generation_update();
 1088         return (0);
 1089 }
 1090 
 1091 /**
 1092  * @brief Register that a device driver has been deleted from a devclass
 1093  *
 1094  * Register that a device driver has been removed from a devclass.
 1095  * This is called by devclass_delete_driver to accomplish the
 1096  * recursive notification of all the children classes of busclass, as
 1097  * well as busclass.  Each layer will attempt to detach the driver
 1098  * from any devices that are children of the bus's devclass.  The function
 1099  * will return an error if a device fails to detach.
 1100  * 
 1101  * We do a full search here of the devclass list at each iteration
 1102  * level to save storing children-lists in the devclass structure.  If
 1103  * we ever move beyond a few dozen devices doing this, we may need to
 1104  * reevaluate...
 1105  *
 1106  * @param busclass      the devclass of the parent bus
 1107  * @param dc            the devclass of the driver being deleted
 1108  * @param driver        the driver being deleted
 1109  */
 1110 static int
 1111 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
 1112 {
 1113         devclass_t parent;
 1114         device_t dev;
 1115         int error, i;
 1116 
 1117         /*
 1118          * Disassociate from any devices.  We iterate through all the
 1119          * devices in the devclass of the driver and detach any which are
 1120          * using the driver and which have a parent in the devclass which
 1121          * we are deleting from.
 1122          *
 1123          * Note that since a driver can be in multiple devclasses, we
 1124          * should not detach devices which are not children of devices in
 1125          * the affected devclass.
 1126          */
 1127         for (i = 0; i < dc->maxunit; i++) {
 1128                 if (dc->devices[i]) {
 1129                         dev = dc->devices[i];
 1130                         if (dev->driver == driver && dev->parent &&
 1131                             dev->parent->devclass == busclass) {
 1132                                 if ((error = device_detach(dev)) != 0)
 1133                                         return (error);
 1134                                 BUS_PROBE_NOMATCH(dev->parent, dev);
 1135                                 devnomatch(dev);
 1136                                 dev->flags |= DF_DONENOMATCH;
 1137                         }
 1138                 }
 1139         }
 1140 
 1141         /*
 1142          * Walk through the children classes.  Since we only keep a
 1143          * single parent pointer around, we walk the entire list of
 1144          * devclasses looking for children.  We set the
 1145          * DC_HAS_CHILDREN flag when a child devclass is created on
 1146          * the parent, so we only walk the list for those devclasses
 1147          * that have children.
 1148          */
 1149         if (!(busclass->flags & DC_HAS_CHILDREN))
 1150                 return (0);
 1151         parent = busclass;
 1152         TAILQ_FOREACH(busclass, &devclasses, link) {
 1153                 if (busclass->parent == parent) {
 1154                         error = devclass_driver_deleted(busclass, dc, driver);
 1155                         if (error)
 1156                                 return (error);
 1157                 }
 1158         }
 1159         return (0);
 1160 }
 1161 
 1162 /**
 1163  * @brief Delete a device driver from a device class
 1164  *
 1165  * Delete a device driver from a devclass. This is normally called
 1166  * automatically by DRIVER_MODULE().
 1167  *
 1168  * If the driver is currently attached to any devices,
 1169  * devclass_delete_driver() will first attempt to detach from each
 1170  * device. If one of the detach calls fails, the driver will not be
 1171  * deleted.
 1172  *
 1173  * @param dc            the devclass to edit
 1174  * @param driver        the driver to unregister
 1175  */
 1176 int
 1177 devclass_delete_driver(devclass_t busclass, driver_t *driver)
 1178 {
 1179         devclass_t dc = devclass_find(driver->name);
 1180         driverlink_t dl;
 1181         int error;
 1182 
 1183         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1184 
 1185         if (!dc)
 1186                 return (0);
 1187 
 1188         /*
 1189          * Find the link structure in the bus' list of drivers.
 1190          */
 1191         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1192                 if (dl->driver == driver)
 1193                         break;
 1194         }
 1195 
 1196         if (!dl) {
 1197                 PDEBUG(("%s not found in %s list", driver->name,
 1198                     busclass->name));
 1199                 return (ENOENT);
 1200         }
 1201 
 1202         error = devclass_driver_deleted(busclass, dc, driver);
 1203         if (error != 0)
 1204                 return (error);
 1205 
 1206         TAILQ_REMOVE(&busclass->drivers, dl, link);
 1207         free(dl, M_BUS);
 1208 
 1209         /* XXX: kobj_mtx */
 1210         driver->refs--;
 1211         if (driver->refs == 0)
 1212                 kobj_class_free((kobj_class_t) driver);
 1213 
 1214         bus_data_generation_update();
 1215         return (0);
 1216 }
 1217 
 1218 /**
 1219  * @brief Quiesces a set of device drivers from a device class
 1220  *
 1221  * Quiesce a device driver from a devclass. This is normally called
 1222  * automatically by DRIVER_MODULE().
 1223  *
 1224  * If the driver is currently attached to any devices,
 1225  * devclass_quiesece_driver() will first attempt to quiesce each
 1226  * device.
 1227  *
 1228  * @param dc            the devclass to edit
 1229  * @param driver        the driver to unregister
 1230  */
 1231 static int
 1232 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
 1233 {
 1234         devclass_t dc = devclass_find(driver->name);
 1235         driverlink_t dl;
 1236         device_t dev;
 1237         int i;
 1238         int error;
 1239 
 1240         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1241 
 1242         if (!dc)
 1243                 return (0);
 1244 
 1245         /*
 1246          * Find the link structure in the bus' list of drivers.
 1247          */
 1248         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1249                 if (dl->driver == driver)
 1250                         break;
 1251         }
 1252 
 1253         if (!dl) {
 1254                 PDEBUG(("%s not found in %s list", driver->name,
 1255                     busclass->name));
 1256                 return (ENOENT);
 1257         }
 1258 
 1259         /*
 1260          * Quiesce all devices.  We iterate through all the devices in
 1261          * the devclass of the driver and quiesce any which are using
 1262          * the driver and which have a parent in the devclass which we
 1263          * are quiescing.
 1264          *
 1265          * Note that since a driver can be in multiple devclasses, we
 1266          * should not quiesce devices which are not children of
 1267          * devices in the affected devclass.
 1268          */
 1269         for (i = 0; i < dc->maxunit; i++) {
 1270                 if (dc->devices[i]) {
 1271                         dev = dc->devices[i];
 1272                         if (dev->driver == driver && dev->parent &&
 1273                             dev->parent->devclass == busclass) {
 1274                                 if ((error = device_quiesce(dev)) != 0)
 1275                                         return (error);
 1276                         }
 1277                 }
 1278         }
 1279 
 1280         return (0);
 1281 }
 1282 
 1283 /**
 1284  * @internal
 1285  */
 1286 static driverlink_t
 1287 devclass_find_driver_internal(devclass_t dc, const char *classname)
 1288 {
 1289         driverlink_t dl;
 1290 
 1291         PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
 1292 
 1293         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1294                 if (!strcmp(dl->driver->name, classname))
 1295                         return (dl);
 1296         }
 1297 
 1298         PDEBUG(("not found"));
 1299         return (NULL);
 1300 }
 1301 
 1302 /**
 1303  * @brief Return the name of the devclass
 1304  */
 1305 const char *
 1306 devclass_get_name(devclass_t dc)
 1307 {
 1308         return (dc->name);
 1309 }
 1310 
 1311 /**
 1312  * @brief Find a device given a unit number
 1313  *
 1314  * @param dc            the devclass to search
 1315  * @param unit          the unit number to search for
 1316  * 
 1317  * @returns             the device with the given unit number or @c
 1318  *                      NULL if there is no such device
 1319  */
 1320 device_t
 1321 devclass_get_device(devclass_t dc, int unit)
 1322 {
 1323         if (dc == NULL || unit < 0 || unit >= dc->maxunit)
 1324                 return (NULL);
 1325         return (dc->devices[unit]);
 1326 }
 1327 
 1328 /**
 1329  * @brief Find the softc field of a device given a unit number
 1330  *
 1331  * @param dc            the devclass to search
 1332  * @param unit          the unit number to search for
 1333  * 
 1334  * @returns             the softc field of the device with the given
 1335  *                      unit number or @c NULL if there is no such
 1336  *                      device
 1337  */
 1338 void *
 1339 devclass_get_softc(devclass_t dc, int unit)
 1340 {
 1341         device_t dev;
 1342 
 1343         dev = devclass_get_device(dc, unit);
 1344         if (!dev)
 1345                 return (NULL);
 1346 
 1347         return (device_get_softc(dev));
 1348 }
 1349 
 1350 /**
 1351  * @brief Get a list of devices in the devclass
 1352  *
 1353  * An array containing a list of all the devices in the given devclass
 1354  * is allocated and returned in @p *devlistp. The number of devices
 1355  * in the array is returned in @p *devcountp. The caller should free
 1356  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
 1357  *
 1358  * @param dc            the devclass to examine
 1359  * @param devlistp      points at location for array pointer return
 1360  *                      value
 1361  * @param devcountp     points at location for array size return value
 1362  *
 1363  * @retval 0            success
 1364  * @retval ENOMEM       the array allocation failed
 1365  */
 1366 int
 1367 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
 1368 {
 1369         int count, i;
 1370         device_t *list;
 1371 
 1372         count = devclass_get_count(dc);
 1373         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 1374         if (!list)
 1375                 return (ENOMEM);
 1376 
 1377         count = 0;
 1378         for (i = 0; i < dc->maxunit; i++) {
 1379                 if (dc->devices[i]) {
 1380                         list[count] = dc->devices[i];
 1381                         count++;
 1382                 }
 1383         }
 1384 
 1385         *devlistp = list;
 1386         *devcountp = count;
 1387 
 1388         return (0);
 1389 }
 1390 
 1391 /**
 1392  * @brief Get a list of drivers in the devclass
 1393  *
 1394  * An array containing a list of pointers to all the drivers in the
 1395  * given devclass is allocated and returned in @p *listp.  The number
 1396  * of drivers in the array is returned in @p *countp. The caller should
 1397  * free the array using @c free(p, M_TEMP).
 1398  *
 1399  * @param dc            the devclass to examine
 1400  * @param listp         gives location for array pointer return value
 1401  * @param countp        gives location for number of array elements
 1402  *                      return value
 1403  *
 1404  * @retval 0            success
 1405  * @retval ENOMEM       the array allocation failed
 1406  */
 1407 int
 1408 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
 1409 {
 1410         driverlink_t dl;
 1411         driver_t **list;
 1412         int count;
 1413 
 1414         count = 0;
 1415         TAILQ_FOREACH(dl, &dc->drivers, link)
 1416                 count++;
 1417         list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
 1418         if (list == NULL)
 1419                 return (ENOMEM);
 1420 
 1421         count = 0;
 1422         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1423                 list[count] = dl->driver;
 1424                 count++;
 1425         }
 1426         *listp = list;
 1427         *countp = count;
 1428 
 1429         return (0);
 1430 }
 1431 
 1432 /**
 1433  * @brief Get the number of devices in a devclass
 1434  *
 1435  * @param dc            the devclass to examine
 1436  */
 1437 int
 1438 devclass_get_count(devclass_t dc)
 1439 {
 1440         int count, i;
 1441 
 1442         count = 0;
 1443         for (i = 0; i < dc->maxunit; i++)
 1444                 if (dc->devices[i])
 1445                         count++;
 1446         return (count);
 1447 }
 1448 
 1449 /**
 1450  * @brief Get the maximum unit number used in a devclass
 1451  *
 1452  * Note that this is one greater than the highest currently-allocated
 1453  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
 1454  * that not even the devclass has been allocated yet.
 1455  *
 1456  * @param dc            the devclass to examine
 1457  */
 1458 int
 1459 devclass_get_maxunit(devclass_t dc)
 1460 {
 1461         if (dc == NULL)
 1462                 return (-1);
 1463         return (dc->maxunit);
 1464 }
 1465 
 1466 /**
 1467  * @brief Find a free unit number in a devclass
 1468  *
 1469  * This function searches for the first unused unit number greater
 1470  * that or equal to @p unit.
 1471  *
 1472  * @param dc            the devclass to examine
 1473  * @param unit          the first unit number to check
 1474  */
 1475 int
 1476 devclass_find_free_unit(devclass_t dc, int unit)
 1477 {
 1478         if (dc == NULL)
 1479                 return (unit);
 1480         while (unit < dc->maxunit && dc->devices[unit] != NULL)
 1481                 unit++;
 1482         return (unit);
 1483 }
 1484 
 1485 /**
 1486  * @brief Set the parent of a devclass
 1487  *
 1488  * The parent class is normally initialised automatically by
 1489  * DRIVER_MODULE().
 1490  *
 1491  * @param dc            the devclass to edit
 1492  * @param pdc           the new parent devclass
 1493  */
 1494 void
 1495 devclass_set_parent(devclass_t dc, devclass_t pdc)
 1496 {
 1497         dc->parent = pdc;
 1498 }
 1499 
 1500 /**
 1501  * @brief Get the parent of a devclass
 1502  *
 1503  * @param dc            the devclass to examine
 1504  */
 1505 devclass_t
 1506 devclass_get_parent(devclass_t dc)
 1507 {
 1508         return (dc->parent);
 1509 }
 1510 
 1511 struct sysctl_ctx_list *
 1512 devclass_get_sysctl_ctx(devclass_t dc)
 1513 {
 1514         return (&dc->sysctl_ctx);
 1515 }
 1516 
 1517 struct sysctl_oid *
 1518 devclass_get_sysctl_tree(devclass_t dc)
 1519 {
 1520         return (dc->sysctl_tree);
 1521 }
 1522 
 1523 /**
 1524  * @internal
 1525  * @brief Allocate a unit number
 1526  *
 1527  * On entry, @p *unitp is the desired unit number (or @c -1 if any
 1528  * will do). The allocated unit number is returned in @p *unitp.
 1529 
 1530  * @param dc            the devclass to allocate from
 1531  * @param unitp         points at the location for the allocated unit
 1532  *                      number
 1533  *
 1534  * @retval 0            success
 1535  * @retval EEXIST       the requested unit number is already allocated
 1536  * @retval ENOMEM       memory allocation failure
 1537  */
 1538 static int
 1539 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
 1540 {
 1541         const char *s;
 1542         int unit = *unitp;
 1543 
 1544         PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1545 
 1546         /* Ask the parent bus if it wants to wire this device. */
 1547         if (unit == -1)
 1548                 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
 1549                     &unit);
 1550 
 1551         /* If we were given a wired unit number, check for existing device */
 1552         /* XXX imp XXX */
 1553         if (unit != -1) {
 1554                 if (unit >= 0 && unit < dc->maxunit &&
 1555                     dc->devices[unit] != NULL) {
 1556                         if (bootverbose)
 1557                                 printf("%s: %s%d already exists; skipping it\n",
 1558                                     dc->name, dc->name, *unitp);
 1559                         return (EEXIST);
 1560                 }
 1561         } else {
 1562                 /* Unwired device, find the next available slot for it */
 1563                 unit = 0;
 1564                 for (unit = 0;; unit++) {
 1565                         /* If there is an "at" hint for a unit then skip it. */
 1566                         if (resource_string_value(dc->name, unit, "at", &s) ==
 1567                             0)
 1568                                 continue;
 1569 
 1570                         /* If this device slot is already in use, skip it. */
 1571                         if (unit < dc->maxunit && dc->devices[unit] != NULL)
 1572                                 continue;
 1573 
 1574                         break;
 1575                 }
 1576         }
 1577 
 1578         /*
 1579          * We've selected a unit beyond the length of the table, so let's
 1580          * extend the table to make room for all units up to and including
 1581          * this one.
 1582          */
 1583         if (unit >= dc->maxunit) {
 1584                 device_t *newlist, *oldlist;
 1585                 int newsize;
 1586 
 1587                 oldlist = dc->devices;
 1588                 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
 1589                 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
 1590                 if (!newlist)
 1591                         return (ENOMEM);
 1592                 if (oldlist != NULL)
 1593                         bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
 1594                 bzero(newlist + dc->maxunit,
 1595                     sizeof(device_t) * (newsize - dc->maxunit));
 1596                 dc->devices = newlist;
 1597                 dc->maxunit = newsize;
 1598                 if (oldlist != NULL)
 1599                         free(oldlist, M_BUS);
 1600         }
 1601         PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1602 
 1603         *unitp = unit;
 1604         return (0);
 1605 }
 1606 
 1607 /**
 1608  * @internal
 1609  * @brief Add a device to a devclass
 1610  *
 1611  * A unit number is allocated for the device (using the device's
 1612  * preferred unit number if any) and the device is registered in the
 1613  * devclass. This allows the device to be looked up by its unit
 1614  * number, e.g. by decoding a dev_t minor number.
 1615  *
 1616  * @param dc            the devclass to add to
 1617  * @param dev           the device to add
 1618  *
 1619  * @retval 0            success
 1620  * @retval EEXIST       the requested unit number is already allocated
 1621  * @retval ENOMEM       memory allocation failure
 1622  */
 1623 static int
 1624 devclass_add_device(devclass_t dc, device_t dev)
 1625 {
 1626         int buflen, error;
 1627 
 1628         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1629 
 1630         buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
 1631         if (buflen < 0)
 1632                 return (ENOMEM);
 1633         dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
 1634         if (!dev->nameunit)
 1635                 return (ENOMEM);
 1636 
 1637         if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
 1638                 free(dev->nameunit, M_BUS);
 1639                 dev->nameunit = NULL;
 1640                 return (error);
 1641         }
 1642         dc->devices[dev->unit] = dev;
 1643         dev->devclass = dc;
 1644         snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
 1645 
 1646         return (0);
 1647 }
 1648 
 1649 /**
 1650  * @internal
 1651  * @brief Delete a device from a devclass
 1652  *
 1653  * The device is removed from the devclass's device list and its unit
 1654  * number is freed.
 1655 
 1656  * @param dc            the devclass to delete from
 1657  * @param dev           the device to delete
 1658  *
 1659  * @retval 0            success
 1660  */
 1661 static int
 1662 devclass_delete_device(devclass_t dc, device_t dev)
 1663 {
 1664         if (!dc || !dev)
 1665                 return (0);
 1666 
 1667         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1668 
 1669         if (dev->devclass != dc || dc->devices[dev->unit] != dev)
 1670                 panic("devclass_delete_device: inconsistent device class");
 1671         dc->devices[dev->unit] = NULL;
 1672         if (dev->flags & DF_WILDCARD)
 1673                 dev->unit = -1;
 1674         dev->devclass = NULL;
 1675         free(dev->nameunit, M_BUS);
 1676         dev->nameunit = NULL;
 1677 
 1678         return (0);
 1679 }
 1680 
 1681 /**
 1682  * @internal
 1683  * @brief Make a new device and add it as a child of @p parent
 1684  *
 1685  * @param parent        the parent of the new device
 1686  * @param name          the devclass name of the new device or @c NULL
 1687  *                      to leave the devclass unspecified
 1688  * @parem unit          the unit number of the new device of @c -1 to
 1689  *                      leave the unit number unspecified
 1690  *
 1691  * @returns the new device
 1692  */
 1693 static device_t
 1694 make_device(device_t parent, const char *name, int unit)
 1695 {
 1696         device_t dev;
 1697         devclass_t dc;
 1698 
 1699         PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
 1700 
 1701         if (name) {
 1702                 dc = devclass_find_internal(name, NULL, TRUE);
 1703                 if (!dc) {
 1704                         printf("make_device: can't find device class %s\n",
 1705                             name);
 1706                         return (NULL);
 1707                 }
 1708         } else {
 1709                 dc = NULL;
 1710         }
 1711 
 1712         dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
 1713         if (!dev)
 1714                 return (NULL);
 1715 
 1716         dev->parent = parent;
 1717         TAILQ_INIT(&dev->children);
 1718         kobj_init((kobj_t) dev, &null_class);
 1719         dev->driver = NULL;
 1720         dev->devclass = NULL;
 1721         dev->unit = unit;
 1722         dev->nameunit = NULL;
 1723         dev->desc = NULL;
 1724         dev->busy = 0;
 1725         dev->devflags = 0;
 1726         dev->flags = DF_ENABLED;
 1727         dev->order = 0;
 1728         if (unit == -1)
 1729                 dev->flags |= DF_WILDCARD;
 1730         if (name) {
 1731                 dev->flags |= DF_FIXEDCLASS;
 1732                 if (devclass_add_device(dc, dev)) {
 1733                         kobj_delete((kobj_t) dev, M_BUS);
 1734                         return (NULL);
 1735                 }
 1736         }
 1737         dev->ivars = NULL;
 1738         dev->softc = NULL;
 1739 
 1740         dev->state = DS_NOTPRESENT;
 1741 
 1742         TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
 1743         bus_data_generation_update();
 1744 
 1745         return (dev);
 1746 }
 1747 
 1748 /**
 1749  * @internal
 1750  * @brief Print a description of a device.
 1751  */
 1752 static int
 1753 device_print_child(device_t dev, device_t child)
 1754 {
 1755         int retval = 0;
 1756 
 1757         if (device_is_alive(child))
 1758                 retval += BUS_PRINT_CHILD(dev, child);
 1759         else
 1760                 retval += device_printf(child, " not found\n");
 1761 
 1762         return (retval);
 1763 }
 1764 
 1765 /**
 1766  * @brief Create a new device
 1767  *
 1768  * This creates a new device and adds it as a child of an existing
 1769  * parent device. The new device will be added after the last existing
 1770  * child with order zero.
 1771  * 
 1772  * @param dev           the device which will be the parent of the
 1773  *                      new child device
 1774  * @param name          devclass name for new device or @c NULL if not
 1775  *                      specified
 1776  * @param unit          unit number for new device or @c -1 if not
 1777  *                      specified
 1778  * 
 1779  * @returns             the new device
 1780  */
 1781 device_t
 1782 device_add_child(device_t dev, const char *name, int unit)
 1783 {
 1784         return (device_add_child_ordered(dev, 0, name, unit));
 1785 }
 1786 
 1787 /**
 1788  * @brief Create a new device
 1789  *
 1790  * This creates a new device and adds it as a child of an existing
 1791  * parent device. The new device will be added after the last existing
 1792  * child with the same order.
 1793  * 
 1794  * @param dev           the device which will be the parent of the
 1795  *                      new child device
 1796  * @param order         a value which is used to partially sort the
 1797  *                      children of @p dev - devices created using
 1798  *                      lower values of @p order appear first in @p
 1799  *                      dev's list of children
 1800  * @param name          devclass name for new device or @c NULL if not
 1801  *                      specified
 1802  * @param unit          unit number for new device or @c -1 if not
 1803  *                      specified
 1804  * 
 1805  * @returns             the new device
 1806  */
 1807 device_t
 1808 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
 1809 {
 1810         device_t child;
 1811         device_t place;
 1812 
 1813         PDEBUG(("%s at %s with order %u as unit %d",
 1814             name, DEVICENAME(dev), order, unit));
 1815 
 1816         child = make_device(dev, name, unit);
 1817         if (child == NULL)
 1818                 return (child);
 1819         child->order = order;
 1820 
 1821         TAILQ_FOREACH(place, &dev->children, link) {
 1822                 if (place->order > order)
 1823                         break;
 1824         }
 1825 
 1826         if (place) {
 1827                 /*
 1828                  * The device 'place' is the first device whose order is
 1829                  * greater than the new child.
 1830                  */
 1831                 TAILQ_INSERT_BEFORE(place, child, link);
 1832         } else {
 1833                 /*
 1834                  * The new child's order is greater or equal to the order of
 1835                  * any existing device. Add the child to the tail of the list.
 1836                  */
 1837                 TAILQ_INSERT_TAIL(&dev->children, child, link);
 1838         }
 1839 
 1840         bus_data_generation_update();
 1841         return (child);
 1842 }
 1843 
 1844 /**
 1845  * @brief Delete a device
 1846  *
 1847  * This function deletes a device along with all of its children. If
 1848  * the device currently has a driver attached to it, the device is
 1849  * detached first using device_detach().
 1850  * 
 1851  * @param dev           the parent device
 1852  * @param child         the device to delete
 1853  *
 1854  * @retval 0            success
 1855  * @retval non-zero     a unit error code describing the error
 1856  */
 1857 int
 1858 device_delete_child(device_t dev, device_t child)
 1859 {
 1860         int error;
 1861         device_t grandchild;
 1862 
 1863         PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
 1864 
 1865         /* remove children first */
 1866         while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
 1867                 error = device_delete_child(child, grandchild);
 1868                 if (error)
 1869                         return (error);
 1870         }
 1871 
 1872         if ((error = device_detach(child)) != 0)
 1873                 return (error);
 1874         if (child->devclass)
 1875                 devclass_delete_device(child->devclass, child);
 1876         if (child->parent)
 1877                 BUS_CHILD_DELETED(dev, child);
 1878         TAILQ_REMOVE(&dev->children, child, link);
 1879         TAILQ_REMOVE(&bus_data_devices, child, devlink);
 1880         kobj_delete((kobj_t) child, M_BUS);
 1881 
 1882         bus_data_generation_update();
 1883         return (0);
 1884 }
 1885 
 1886 /**
 1887  * @brief Delete all children devices of the given device, if any.
 1888  *
 1889  * This function deletes all children devices of the given device, if
 1890  * any, using the device_delete_child() function for each device it
 1891  * finds. If a child device cannot be deleted, this function will
 1892  * return an error code.
 1893  * 
 1894  * @param dev           the parent device
 1895  *
 1896  * @retval 0            success
 1897  * @retval non-zero     a device would not detach
 1898  */
 1899 int
 1900 device_delete_children(device_t dev)
 1901 {
 1902         device_t child;
 1903         int error;
 1904 
 1905         PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
 1906 
 1907         error = 0;
 1908 
 1909         while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
 1910                 error = device_delete_child(dev, child);
 1911                 if (error) {
 1912                         PDEBUG(("Failed deleting %s", DEVICENAME(child)));
 1913                         break;
 1914                 }
 1915         }
 1916         return (error);
 1917 }
 1918 
 1919 /**
 1920  * @brief Find a device given a unit number
 1921  *
 1922  * This is similar to devclass_get_devices() but only searches for
 1923  * devices which have @p dev as a parent.
 1924  *
 1925  * @param dev           the parent device to search
 1926  * @param unit          the unit number to search for.  If the unit is -1,
 1927  *                      return the first child of @p dev which has name
 1928  *                      @p classname (that is, the one with the lowest unit.)
 1929  *
 1930  * @returns             the device with the given unit number or @c
 1931  *                      NULL if there is no such device
 1932  */
 1933 device_t
 1934 device_find_child(device_t dev, const char *classname, int unit)
 1935 {
 1936         devclass_t dc;
 1937         device_t child;
 1938 
 1939         dc = devclass_find(classname);
 1940         if (!dc)
 1941                 return (NULL);
 1942 
 1943         if (unit != -1) {
 1944                 child = devclass_get_device(dc, unit);
 1945                 if (child && child->parent == dev)
 1946                         return (child);
 1947         } else {
 1948                 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
 1949                         child = devclass_get_device(dc, unit);
 1950                         if (child && child->parent == dev)
 1951                                 return (child);
 1952                 }
 1953         }
 1954         return (NULL);
 1955 }
 1956 
 1957 /**
 1958  * @internal
 1959  */
 1960 static driverlink_t
 1961 first_matching_driver(devclass_t dc, device_t dev)
 1962 {
 1963         if (dev->devclass)
 1964                 return (devclass_find_driver_internal(dc, dev->devclass->name));
 1965         return (TAILQ_FIRST(&dc->drivers));
 1966 }
 1967 
 1968 /**
 1969  * @internal
 1970  */
 1971 static driverlink_t
 1972 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
 1973 {
 1974         if (dev->devclass) {
 1975                 driverlink_t dl;
 1976                 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
 1977                         if (!strcmp(dev->devclass->name, dl->driver->name))
 1978                                 return (dl);
 1979                 return (NULL);
 1980         }
 1981         return (TAILQ_NEXT(last, link));
 1982 }
 1983 
 1984 /**
 1985  * @internal
 1986  */
 1987 int
 1988 device_probe_child(device_t dev, device_t child)
 1989 {
 1990         devclass_t dc;
 1991         driverlink_t best = NULL;
 1992         driverlink_t dl;
 1993         int result, pri = 0;
 1994         int hasclass = (child->devclass != NULL);
 1995 
 1996         GIANT_REQUIRED;
 1997 
 1998         dc = dev->devclass;
 1999         if (!dc)
 2000                 panic("device_probe_child: parent device has no devclass");
 2001 
 2002         /*
 2003          * If the state is already probed, then return.  However, don't
 2004          * return if we can rebid this object.
 2005          */
 2006         if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
 2007                 return (0);
 2008 
 2009         for (; dc; dc = dc->parent) {
 2010                 for (dl = first_matching_driver(dc, child);
 2011                      dl;
 2012                      dl = next_matching_driver(dc, child, dl)) {
 2013                         /* If this driver's pass is too high, then ignore it. */
 2014                         if (dl->pass > bus_current_pass)
 2015                                 continue;
 2016 
 2017                         PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
 2018                         result = device_set_driver(child, dl->driver);
 2019                         if (result == ENOMEM)
 2020                                 return (result);
 2021                         else if (result != 0)
 2022                                 continue;
 2023                         if (!hasclass) {
 2024                                 if (device_set_devclass(child,
 2025                                     dl->driver->name) != 0) {
 2026                                         printf("driver bug: Unable to set "
 2027                                             "devclass (devname: %s)\n",
 2028                                             device_get_name(child));
 2029                                         (void)device_set_driver(child, NULL);
 2030                                         continue;
 2031                                 }
 2032                         }
 2033 
 2034                         /* Fetch any flags for the device before probing. */
 2035                         resource_int_value(dl->driver->name, child->unit,
 2036                             "flags", &child->devflags);
 2037 
 2038                         result = DEVICE_PROBE(child);
 2039 
 2040                         /* Reset flags and devclass before the next probe. */
 2041                         child->devflags = 0;
 2042                         if (!hasclass)
 2043                                 (void)device_set_devclass(child, NULL);
 2044 
 2045                         /*
 2046                          * If the driver returns SUCCESS, there can be
 2047                          * no higher match for this device.
 2048                          */
 2049                         if (result == 0) {
 2050                                 best = dl;
 2051                                 pri = 0;
 2052                                 break;
 2053                         }
 2054 
 2055                         /*
 2056                          * The driver returned an error so it
 2057                          * certainly doesn't match.
 2058                          */
 2059                         if (result > 0) {
 2060                                 (void)device_set_driver(child, NULL);
 2061                                 continue;
 2062                         }
 2063 
 2064                         /*
 2065                          * A priority lower than SUCCESS, remember the
 2066                          * best matching driver. Initialise the value
 2067                          * of pri for the first match.
 2068                          */
 2069                         if (best == NULL || result > pri) {
 2070                                 /*
 2071                                  * Probes that return BUS_PROBE_NOWILDCARD
 2072                                  * or lower only match when they are set
 2073                                  * in stone by the parent bus.
 2074                                  */
 2075                                 if (result <= BUS_PROBE_NOWILDCARD &&
 2076                                     child->flags & DF_WILDCARD)
 2077                                         continue;
 2078                                 best = dl;
 2079                                 pri = result;
 2080                                 continue;
 2081                         }
 2082                 }
 2083                 /*
 2084                  * If we have an unambiguous match in this devclass,
 2085                  * don't look in the parent.
 2086                  */
 2087                 if (best && pri == 0)
 2088                         break;
 2089         }
 2090 
 2091         /*
 2092          * If we found a driver, change state and initialise the devclass.
 2093          */
 2094         /* XXX What happens if we rebid and got no best? */
 2095         if (best) {
 2096                 /*
 2097                  * If this device was attached, and we were asked to
 2098                  * rescan, and it is a different driver, then we have
 2099                  * to detach the old driver and reattach this new one.
 2100                  * Note, we don't have to check for DF_REBID here
 2101                  * because if the state is > DS_ALIVE, we know it must
 2102                  * be.
 2103                  *
 2104                  * This assumes that all DF_REBID drivers can have
 2105                  * their probe routine called at any time and that
 2106                  * they are idempotent as well as completely benign in
 2107                  * normal operations.
 2108                  *
 2109                  * We also have to make sure that the detach
 2110                  * succeeded, otherwise we fail the operation (or
 2111                  * maybe it should just fail silently?  I'm torn).
 2112                  */
 2113                 if (child->state > DS_ALIVE && best->driver != child->driver)
 2114                         if ((result = device_detach(dev)) != 0)
 2115                                 return (result);
 2116 
 2117                 /* Set the winning driver, devclass, and flags. */
 2118                 if (!child->devclass) {
 2119                         result = device_set_devclass(child, best->driver->name);
 2120                         if (result != 0)
 2121                                 return (result);
 2122                 }
 2123                 result = device_set_driver(child, best->driver);
 2124                 if (result != 0)
 2125                         return (result);
 2126                 resource_int_value(best->driver->name, child->unit,
 2127                     "flags", &child->devflags);
 2128 
 2129                 if (pri < 0) {
 2130                         /*
 2131                          * A bit bogus. Call the probe method again to make
 2132                          * sure that we have the right description.
 2133                          */
 2134                         DEVICE_PROBE(child);
 2135 #if 0
 2136                         child->flags |= DF_REBID;
 2137 #endif
 2138                 } else
 2139                         child->flags &= ~DF_REBID;
 2140                 child->state = DS_ALIVE;
 2141 
 2142                 bus_data_generation_update();
 2143                 return (0);
 2144         }
 2145 
 2146         return (ENXIO);
 2147 }
 2148 
 2149 /**
 2150  * @brief Return the parent of a device
 2151  */
 2152 device_t
 2153 device_get_parent(device_t dev)
 2154 {
 2155         return (dev->parent);
 2156 }
 2157 
 2158 /**
 2159  * @brief Get a list of children of a device
 2160  *
 2161  * An array containing a list of all the children of the given device
 2162  * is allocated and returned in @p *devlistp. The number of devices
 2163  * in the array is returned in @p *devcountp. The caller should free
 2164  * the array using @c free(p, M_TEMP).
 2165  *
 2166  * @param dev           the device to examine
 2167  * @param devlistp      points at location for array pointer return
 2168  *                      value
 2169  * @param devcountp     points at location for array size return value
 2170  *
 2171  * @retval 0            success
 2172  * @retval ENOMEM       the array allocation failed
 2173  */
 2174 int
 2175 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
 2176 {
 2177         int count;
 2178         device_t child;
 2179         device_t *list;
 2180 
 2181         count = 0;
 2182         TAILQ_FOREACH(child, &dev->children, link) {
 2183                 count++;
 2184         }
 2185         if (count == 0) {
 2186                 *devlistp = NULL;
 2187                 *devcountp = 0;
 2188                 return (0);
 2189         }
 2190 
 2191         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 2192         if (!list)
 2193                 return (ENOMEM);
 2194 
 2195         count = 0;
 2196         TAILQ_FOREACH(child, &dev->children, link) {
 2197                 list[count] = child;
 2198                 count++;
 2199         }
 2200 
 2201         *devlistp = list;
 2202         *devcountp = count;
 2203 
 2204         return (0);
 2205 }
 2206 
 2207 /**
 2208  * @brief Return the current driver for the device or @c NULL if there
 2209  * is no driver currently attached
 2210  */
 2211 driver_t *
 2212 device_get_driver(device_t dev)
 2213 {
 2214         return (dev->driver);
 2215 }
 2216 
 2217 /**
 2218  * @brief Return the current devclass for the device or @c NULL if
 2219  * there is none.
 2220  */
 2221 devclass_t
 2222 device_get_devclass(device_t dev)
 2223 {
 2224         return (dev->devclass);
 2225 }
 2226 
 2227 /**
 2228  * @brief Return the name of the device's devclass or @c NULL if there
 2229  * is none.
 2230  */
 2231 const char *
 2232 device_get_name(device_t dev)
 2233 {
 2234         if (dev != NULL && dev->devclass)
 2235                 return (devclass_get_name(dev->devclass));
 2236         return (NULL);
 2237 }
 2238 
 2239 /**
 2240  * @brief Return a string containing the device's devclass name
 2241  * followed by an ascii representation of the device's unit number
 2242  * (e.g. @c "foo2").
 2243  */
 2244 const char *
 2245 device_get_nameunit(device_t dev)
 2246 {
 2247         return (dev->nameunit);
 2248 }
 2249 
 2250 /**
 2251  * @brief Return the device's unit number.
 2252  */
 2253 int
 2254 device_get_unit(device_t dev)
 2255 {
 2256         return (dev->unit);
 2257 }
 2258 
 2259 /**
 2260  * @brief Return the device's description string
 2261  */
 2262 const char *
 2263 device_get_desc(device_t dev)
 2264 {
 2265         return (dev->desc);
 2266 }
 2267 
 2268 /**
 2269  * @brief Return the device's flags
 2270  */
 2271 uint32_t
 2272 device_get_flags(device_t dev)
 2273 {
 2274         return (dev->devflags);
 2275 }
 2276 
 2277 struct sysctl_ctx_list *
 2278 device_get_sysctl_ctx(device_t dev)
 2279 {
 2280         return (&dev->sysctl_ctx);
 2281 }
 2282 
 2283 struct sysctl_oid *
 2284 device_get_sysctl_tree(device_t dev)
 2285 {
 2286         return (dev->sysctl_tree);
 2287 }
 2288 
 2289 /**
 2290  * @brief Print the name of the device followed by a colon and a space
 2291  *
 2292  * @returns the number of characters printed
 2293  */
 2294 int
 2295 device_print_prettyname(device_t dev)
 2296 {
 2297         const char *name = device_get_name(dev);
 2298 
 2299         if (name == NULL)
 2300                 return (printf("unknown: "));
 2301         return (printf("%s%d: ", name, device_get_unit(dev)));
 2302 }
 2303 
 2304 /**
 2305  * @brief Print the name of the device followed by a colon, a space
 2306  * and the result of calling vprintf() with the value of @p fmt and
 2307  * the following arguments.
 2308  *
 2309  * @returns the number of characters printed
 2310  */
 2311 int
 2312 device_printf(device_t dev, const char * fmt, ...)
 2313 {
 2314         va_list ap;
 2315         int retval;
 2316 
 2317         retval = device_print_prettyname(dev);
 2318         va_start(ap, fmt);
 2319         retval += vprintf(fmt, ap);
 2320         va_end(ap);
 2321         return (retval);
 2322 }
 2323 
 2324 /**
 2325  * @internal
 2326  */
 2327 static void
 2328 device_set_desc_internal(device_t dev, const char* desc, int copy)
 2329 {
 2330         if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
 2331                 free(dev->desc, M_BUS);
 2332                 dev->flags &= ~DF_DESCMALLOCED;
 2333                 dev->desc = NULL;
 2334         }
 2335 
 2336         if (copy && desc) {
 2337                 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
 2338                 if (dev->desc) {
 2339                         strcpy(dev->desc, desc);
 2340                         dev->flags |= DF_DESCMALLOCED;
 2341                 }
 2342         } else {
 2343                 /* Avoid a -Wcast-qual warning */
 2344                 dev->desc = (char *)(uintptr_t) desc;
 2345         }
 2346 
 2347         bus_data_generation_update();
 2348 }
 2349 
 2350 /**
 2351  * @brief Set the device's description
 2352  *
 2353  * The value of @c desc should be a string constant that will not
 2354  * change (at least until the description is changed in a subsequent
 2355  * call to device_set_desc() or device_set_desc_copy()).
 2356  */
 2357 void
 2358 device_set_desc(device_t dev, const char* desc)
 2359 {
 2360         device_set_desc_internal(dev, desc, FALSE);
 2361 }
 2362 
 2363 /**
 2364  * @brief Set the device's description
 2365  *
 2366  * The string pointed to by @c desc is copied. Use this function if
 2367  * the device description is generated, (e.g. with sprintf()).
 2368  */
 2369 void
 2370 device_set_desc_copy(device_t dev, const char* desc)
 2371 {
 2372         device_set_desc_internal(dev, desc, TRUE);
 2373 }
 2374 
 2375 /**
 2376  * @brief Set the device's flags
 2377  */
 2378 void
 2379 device_set_flags(device_t dev, uint32_t flags)
 2380 {
 2381         dev->devflags = flags;
 2382 }
 2383 
 2384 /**
 2385  * @brief Return the device's softc field
 2386  *
 2387  * The softc is allocated and zeroed when a driver is attached, based
 2388  * on the size field of the driver.
 2389  */
 2390 void *
 2391 device_get_softc(device_t dev)
 2392 {
 2393         return (dev->softc);
 2394 }
 2395 
 2396 /**
 2397  * @brief Set the device's softc field
 2398  *
 2399  * Most drivers do not need to use this since the softc is allocated
 2400  * automatically when the driver is attached.
 2401  */
 2402 void
 2403 device_set_softc(device_t dev, void *softc)
 2404 {
 2405         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
 2406                 free(dev->softc, M_BUS_SC);
 2407         dev->softc = softc;
 2408         if (dev->softc)
 2409                 dev->flags |= DF_EXTERNALSOFTC;
 2410         else
 2411                 dev->flags &= ~DF_EXTERNALSOFTC;
 2412 }
 2413 
 2414 /**
 2415  * @brief Free claimed softc
 2416  *
 2417  * Most drivers do not need to use this since the softc is freed
 2418  * automatically when the driver is detached.
 2419  */
 2420 void
 2421 device_free_softc(void *softc)
 2422 {
 2423         free(softc, M_BUS_SC);
 2424 }
 2425 
 2426 /**
 2427  * @brief Claim softc
 2428  *
 2429  * This function can be used to let the driver free the automatically
 2430  * allocated softc using "device_free_softc()". This function is
 2431  * useful when the driver is refcounting the softc and the softc
 2432  * cannot be freed when the "device_detach" method is called.
 2433  */
 2434 void
 2435 device_claim_softc(device_t dev)
 2436 {
 2437         if (dev->softc)
 2438                 dev->flags |= DF_EXTERNALSOFTC;
 2439         else
 2440                 dev->flags &= ~DF_EXTERNALSOFTC;
 2441 }
 2442 
 2443 /**
 2444  * @brief Get the device's ivars field
 2445  *
 2446  * The ivars field is used by the parent device to store per-device
 2447  * state (e.g. the physical location of the device or a list of
 2448  * resources).
 2449  */
 2450 void *
 2451 device_get_ivars(device_t dev)
 2452 {
 2453 
 2454         KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
 2455         return (dev->ivars);
 2456 }
 2457 
 2458 /**
 2459  * @brief Set the device's ivars field
 2460  */
 2461 void
 2462 device_set_ivars(device_t dev, void * ivars)
 2463 {
 2464 
 2465         KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
 2466         dev->ivars = ivars;
 2467 }
 2468 
 2469 /**
 2470  * @brief Return the device's state
 2471  */
 2472 device_state_t
 2473 device_get_state(device_t dev)
 2474 {
 2475         return (dev->state);
 2476 }
 2477 
 2478 /**
 2479  * @brief Set the DF_ENABLED flag for the device
 2480  */
 2481 void
 2482 device_enable(device_t dev)
 2483 {
 2484         dev->flags |= DF_ENABLED;
 2485 }
 2486 
 2487 /**
 2488  * @brief Clear the DF_ENABLED flag for the device
 2489  */
 2490 void
 2491 device_disable(device_t dev)
 2492 {
 2493         dev->flags &= ~DF_ENABLED;
 2494 }
 2495 
 2496 /**
 2497  * @brief Increment the busy counter for the device
 2498  */
 2499 void
 2500 device_busy(device_t dev)
 2501 {
 2502         if (dev->state < DS_ATTACHING)
 2503                 panic("device_busy: called for unattached device");
 2504         if (dev->busy == 0 && dev->parent)
 2505                 device_busy(dev->parent);
 2506         dev->busy++;
 2507         if (dev->state == DS_ATTACHED)
 2508                 dev->state = DS_BUSY;
 2509 }
 2510 
 2511 /**
 2512  * @brief Decrement the busy counter for the device
 2513  */
 2514 void
 2515 device_unbusy(device_t dev)
 2516 {
 2517         if (dev->busy != 0 && dev->state != DS_BUSY &&
 2518             dev->state != DS_ATTACHING)
 2519                 panic("device_unbusy: called for non-busy device %s",
 2520                     device_get_nameunit(dev));
 2521         dev->busy--;
 2522         if (dev->busy == 0) {
 2523                 if (dev->parent)
 2524                         device_unbusy(dev->parent);
 2525                 if (dev->state == DS_BUSY)
 2526                         dev->state = DS_ATTACHED;
 2527         }
 2528 }
 2529 
 2530 /**
 2531  * @brief Set the DF_QUIET flag for the device
 2532  */
 2533 void
 2534 device_quiet(device_t dev)
 2535 {
 2536         dev->flags |= DF_QUIET;
 2537 }
 2538 
 2539 /**
 2540  * @brief Clear the DF_QUIET flag for the device
 2541  */
 2542 void
 2543 device_verbose(device_t dev)
 2544 {
 2545         dev->flags &= ~DF_QUIET;
 2546 }
 2547 
 2548 /**
 2549  * @brief Return non-zero if the DF_QUIET flag is set on the device
 2550  */
 2551 int
 2552 device_is_quiet(device_t dev)
 2553 {
 2554         return ((dev->flags & DF_QUIET) != 0);
 2555 }
 2556 
 2557 /**
 2558  * @brief Return non-zero if the DF_ENABLED flag is set on the device
 2559  */
 2560 int
 2561 device_is_enabled(device_t dev)
 2562 {
 2563         return ((dev->flags & DF_ENABLED) != 0);
 2564 }
 2565 
 2566 /**
 2567  * @brief Return non-zero if the device was successfully probed
 2568  */
 2569 int
 2570 device_is_alive(device_t dev)
 2571 {
 2572         return (dev->state >= DS_ALIVE);
 2573 }
 2574 
 2575 /**
 2576  * @brief Return non-zero if the device currently has a driver
 2577  * attached to it
 2578  */
 2579 int
 2580 device_is_attached(device_t dev)
 2581 {
 2582         return (dev->state >= DS_ATTACHED);
 2583 }
 2584 
 2585 /**
 2586  * @brief Set the devclass of a device
 2587  * @see devclass_add_device().
 2588  */
 2589 int
 2590 device_set_devclass(device_t dev, const char *classname)
 2591 {
 2592         devclass_t dc;
 2593         int error;
 2594 
 2595         if (!classname) {
 2596                 if (dev->devclass)
 2597                         devclass_delete_device(dev->devclass, dev);
 2598                 return (0);
 2599         }
 2600 
 2601         if (dev->devclass) {
 2602                 printf("device_set_devclass: device class already set\n");
 2603                 return (EINVAL);
 2604         }
 2605 
 2606         dc = devclass_find_internal(classname, NULL, TRUE);
 2607         if (!dc)
 2608                 return (ENOMEM);
 2609 
 2610         error = devclass_add_device(dc, dev);
 2611 
 2612         bus_data_generation_update();
 2613         return (error);
 2614 }
 2615 
 2616 /**
 2617  * @brief Set the driver of a device
 2618  *
 2619  * @retval 0            success
 2620  * @retval EBUSY        the device already has a driver attached
 2621  * @retval ENOMEM       a memory allocation failure occurred
 2622  */
 2623 int
 2624 device_set_driver(device_t dev, driver_t *driver)
 2625 {
 2626         if (dev->state >= DS_ATTACHED)
 2627                 return (EBUSY);
 2628 
 2629         if (dev->driver == driver)
 2630                 return (0);
 2631 
 2632         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
 2633                 free(dev->softc, M_BUS_SC);
 2634                 dev->softc = NULL;
 2635         }
 2636         device_set_desc(dev, NULL);
 2637         kobj_delete((kobj_t) dev, NULL);
 2638         dev->driver = driver;
 2639         if (driver) {
 2640                 kobj_init((kobj_t) dev, (kobj_class_t) driver);
 2641                 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
 2642                         dev->softc = malloc(driver->size, M_BUS_SC,
 2643                             M_NOWAIT | M_ZERO);
 2644                         if (!dev->softc) {
 2645                                 kobj_delete((kobj_t) dev, NULL);
 2646                                 kobj_init((kobj_t) dev, &null_class);
 2647                                 dev->driver = NULL;
 2648                                 return (ENOMEM);
 2649                         }
 2650                 }
 2651         } else {
 2652                 kobj_init((kobj_t) dev, &null_class);
 2653         }
 2654 
 2655         bus_data_generation_update();
 2656         return (0);
 2657 }
 2658 
 2659 /**
 2660  * @brief Probe a device, and return this status.
 2661  *
 2662  * This function is the core of the device autoconfiguration
 2663  * system. Its purpose is to select a suitable driver for a device and
 2664  * then call that driver to initialise the hardware appropriately. The
 2665  * driver is selected by calling the DEVICE_PROBE() method of a set of
 2666  * candidate drivers and then choosing the driver which returned the
 2667  * best value. This driver is then attached to the device using
 2668  * device_attach().
 2669  *
 2670  * The set of suitable drivers is taken from the list of drivers in
 2671  * the parent device's devclass. If the device was originally created
 2672  * with a specific class name (see device_add_child()), only drivers
 2673  * with that name are probed, otherwise all drivers in the devclass
 2674  * are probed. If no drivers return successful probe values in the
 2675  * parent devclass, the search continues in the parent of that
 2676  * devclass (see devclass_get_parent()) if any.
 2677  *
 2678  * @param dev           the device to initialise
 2679  *
 2680  * @retval 0            success
 2681  * @retval ENXIO        no driver was found
 2682  * @retval ENOMEM       memory allocation failure
 2683  * @retval non-zero     some other unix error code
 2684  * @retval -1           Device already attached
 2685  */
 2686 int
 2687 device_probe(device_t dev)
 2688 {
 2689         int error;
 2690 
 2691         GIANT_REQUIRED;
 2692 
 2693         if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
 2694                 return (-1);
 2695 
 2696         if (!(dev->flags & DF_ENABLED)) {
 2697                 if (bootverbose && device_get_name(dev) != NULL) {
 2698                         device_print_prettyname(dev);
 2699                         printf("not probed (disabled)\n");
 2700                 }
 2701                 return (-1);
 2702         }
 2703         if ((error = device_probe_child(dev->parent, dev)) != 0) {              
 2704                 if (bus_current_pass == BUS_PASS_DEFAULT &&
 2705                     !(dev->flags & DF_DONENOMATCH)) {
 2706                         BUS_PROBE_NOMATCH(dev->parent, dev);
 2707                         devnomatch(dev);
 2708                         dev->flags |= DF_DONENOMATCH;
 2709                 }
 2710                 return (error);
 2711         }
 2712         return (0);
 2713 }
 2714 
 2715 /**
 2716  * @brief Probe a device and attach a driver if possible
 2717  *
 2718  * calls device_probe() and attaches if that was successful.
 2719  */
 2720 int
 2721 device_probe_and_attach(device_t dev)
 2722 {
 2723         int error;
 2724 
 2725         GIANT_REQUIRED;
 2726 
 2727         error = device_probe(dev);
 2728         if (error == -1)
 2729                 return (0);
 2730         else if (error != 0)
 2731                 return (error);
 2732 
 2733         CURVNET_SET_QUIET(vnet0);
 2734         error = device_attach(dev);
 2735         CURVNET_RESTORE();
 2736         return error;
 2737 }
 2738 
 2739 /**
 2740  * @brief Attach a device driver to a device
 2741  *
 2742  * This function is a wrapper around the DEVICE_ATTACH() driver
 2743  * method. In addition to calling DEVICE_ATTACH(), it initialises the
 2744  * device's sysctl tree, optionally prints a description of the device
 2745  * and queues a notification event for user-based device management
 2746  * services.
 2747  *
 2748  * Normally this function is only called internally from
 2749  * device_probe_and_attach().
 2750  *
 2751  * @param dev           the device to initialise
 2752  *
 2753  * @retval 0            success
 2754  * @retval ENXIO        no driver was found
 2755  * @retval ENOMEM       memory allocation failure
 2756  * @retval non-zero     some other unix error code
 2757  */
 2758 int
 2759 device_attach(device_t dev)
 2760 {
 2761         int error;
 2762 
 2763         if (resource_disabled(dev->driver->name, dev->unit)) {
 2764                 device_disable(dev);
 2765                 if (bootverbose)
 2766                          device_printf(dev, "disabled via hints entry\n");
 2767                 return (ENXIO);
 2768         }
 2769 
 2770         device_sysctl_init(dev);
 2771         if (!device_is_quiet(dev))
 2772                 device_print_child(dev->parent, dev);
 2773         dev->state = DS_ATTACHING;
 2774         if ((error = DEVICE_ATTACH(dev)) != 0) {
 2775                 printf("device_attach: %s%d attach returned %d\n",
 2776                     dev->driver->name, dev->unit, error);
 2777                 if (!(dev->flags & DF_FIXEDCLASS))
 2778                         devclass_delete_device(dev->devclass, dev);
 2779                 (void)device_set_driver(dev, NULL);
 2780                 device_sysctl_fini(dev);
 2781                 KASSERT(dev->busy == 0, ("attach failed but busy"));
 2782                 dev->state = DS_NOTPRESENT;
 2783                 return (error);
 2784         }
 2785         device_sysctl_update(dev);
 2786         if (dev->busy)
 2787                 dev->state = DS_BUSY;
 2788         else
 2789                 dev->state = DS_ATTACHED;
 2790         dev->flags &= ~DF_DONENOMATCH;
 2791         devadded(dev);
 2792         return (0);
 2793 }
 2794 
 2795 /**
 2796  * @brief Detach a driver from a device
 2797  *
 2798  * This function is a wrapper around the DEVICE_DETACH() driver
 2799  * method. If the call to DEVICE_DETACH() succeeds, it calls
 2800  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
 2801  * notification event for user-based device management services and
 2802  * cleans up the device's sysctl tree.
 2803  *
 2804  * @param dev           the device to un-initialise
 2805  *
 2806  * @retval 0            success
 2807  * @retval ENXIO        no driver was found
 2808  * @retval ENOMEM       memory allocation failure
 2809  * @retval non-zero     some other unix error code
 2810  */
 2811 int
 2812 device_detach(device_t dev)
 2813 {
 2814         int error;
 2815 
 2816         GIANT_REQUIRED;
 2817 
 2818         PDEBUG(("%s", DEVICENAME(dev)));
 2819         if (dev->state == DS_BUSY)
 2820                 return (EBUSY);
 2821         if (dev->state != DS_ATTACHED)
 2822                 return (0);
 2823 
 2824         if ((error = DEVICE_DETACH(dev)) != 0)
 2825                 return (error);
 2826         devremoved(dev);
 2827         if (!device_is_quiet(dev))
 2828                 device_printf(dev, "detached\n");
 2829         if (dev->parent)
 2830                 BUS_CHILD_DETACHED(dev->parent, dev);
 2831 
 2832         if (!(dev->flags & DF_FIXEDCLASS))
 2833                 devclass_delete_device(dev->devclass, dev);
 2834 
 2835         dev->state = DS_NOTPRESENT;
 2836         (void)device_set_driver(dev, NULL);
 2837         device_sysctl_fini(dev);
 2838 
 2839         return (0);
 2840 }
 2841 
 2842 /**
 2843  * @brief Tells a driver to quiesce itself.
 2844  *
 2845  * This function is a wrapper around the DEVICE_QUIESCE() driver
 2846  * method. If the call to DEVICE_QUIESCE() succeeds.
 2847  *
 2848  * @param dev           the device to quiesce
 2849  *
 2850  * @retval 0            success
 2851  * @retval ENXIO        no driver was found
 2852  * @retval ENOMEM       memory allocation failure
 2853  * @retval non-zero     some other unix error code
 2854  */
 2855 int
 2856 device_quiesce(device_t dev)
 2857 {
 2858 
 2859         PDEBUG(("%s", DEVICENAME(dev)));
 2860         if (dev->state == DS_BUSY)
 2861                 return (EBUSY);
 2862         if (dev->state != DS_ATTACHED)
 2863                 return (0);
 2864 
 2865         return (DEVICE_QUIESCE(dev));
 2866 }
 2867 
 2868 /**
 2869  * @brief Notify a device of system shutdown
 2870  *
 2871  * This function calls the DEVICE_SHUTDOWN() driver method if the
 2872  * device currently has an attached driver.
 2873  *
 2874  * @returns the value returned by DEVICE_SHUTDOWN()
 2875  */
 2876 int
 2877 device_shutdown(device_t dev)
 2878 {
 2879         if (dev->state < DS_ATTACHED)
 2880                 return (0);
 2881         return (DEVICE_SHUTDOWN(dev));
 2882 }
 2883 
 2884 /**
 2885  * @brief Set the unit number of a device
 2886  *
 2887  * This function can be used to override the unit number used for a
 2888  * device (e.g. to wire a device to a pre-configured unit number).
 2889  */
 2890 int
 2891 device_set_unit(device_t dev, int unit)
 2892 {
 2893         devclass_t dc;
 2894         int err;
 2895 
 2896         dc = device_get_devclass(dev);
 2897         if (unit < dc->maxunit && dc->devices[unit])
 2898                 return (EBUSY);
 2899         err = devclass_delete_device(dc, dev);
 2900         if (err)
 2901                 return (err);
 2902         dev->unit = unit;
 2903         err = devclass_add_device(dc, dev);
 2904         if (err)
 2905                 return (err);
 2906 
 2907         bus_data_generation_update();
 2908         return (0);
 2909 }
 2910 
 2911 /*======================================*/
 2912 /*
 2913  * Some useful method implementations to make life easier for bus drivers.
 2914  */
 2915 
 2916 /**
 2917  * @brief Initialise a resource list.
 2918  *
 2919  * @param rl            the resource list to initialise
 2920  */
 2921 void
 2922 resource_list_init(struct resource_list *rl)
 2923 {
 2924         STAILQ_INIT(rl);
 2925 }
 2926 
 2927 /**
 2928  * @brief Reclaim memory used by a resource list.
 2929  *
 2930  * This function frees the memory for all resource entries on the list
 2931  * (if any).
 2932  *
 2933  * @param rl            the resource list to free               
 2934  */
 2935 void
 2936 resource_list_free(struct resource_list *rl)
 2937 {
 2938         struct resource_list_entry *rle;
 2939 
 2940         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 2941                 if (rle->res)
 2942                         panic("resource_list_free: resource entry is busy");
 2943                 STAILQ_REMOVE_HEAD(rl, link);
 2944                 free(rle, M_BUS);
 2945         }
 2946 }
 2947 
 2948 /**
 2949  * @brief Add a resource entry.
 2950  *
 2951  * This function adds a resource entry using the given @p type, @p
 2952  * start, @p end and @p count values. A rid value is chosen by
 2953  * searching sequentially for the first unused rid starting at zero.
 2954  *
 2955  * @param rl            the resource list to edit
 2956  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2957  * @param start         the start address of the resource
 2958  * @param end           the end address of the resource
 2959  * @param count         XXX end-start+1
 2960  */
 2961 int
 2962 resource_list_add_next(struct resource_list *rl, int type, u_long start,
 2963     u_long end, u_long count)
 2964 {
 2965         int rid;
 2966 
 2967         rid = 0;
 2968         while (resource_list_find(rl, type, rid) != NULL)
 2969                 rid++;
 2970         resource_list_add(rl, type, rid, start, end, count);
 2971         return (rid);
 2972 }
 2973 
 2974 /**
 2975  * @brief Add or modify a resource entry.
 2976  *
 2977  * If an existing entry exists with the same type and rid, it will be
 2978  * modified using the given values of @p start, @p end and @p
 2979  * count. If no entry exists, a new one will be created using the
 2980  * given values.  The resource list entry that matches is then returned.
 2981  *
 2982  * @param rl            the resource list to edit
 2983  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2984  * @param rid           the resource identifier
 2985  * @param start         the start address of the resource
 2986  * @param end           the end address of the resource
 2987  * @param count         XXX end-start+1
 2988  */
 2989 struct resource_list_entry *
 2990 resource_list_add(struct resource_list *rl, int type, int rid,
 2991     u_long start, u_long end, u_long count)
 2992 {
 2993         struct resource_list_entry *rle;
 2994 
 2995         rle = resource_list_find(rl, type, rid);
 2996         if (!rle) {
 2997                 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
 2998                     M_NOWAIT);
 2999                 if (!rle)
 3000                         panic("resource_list_add: can't record entry");
 3001                 STAILQ_INSERT_TAIL(rl, rle, link);
 3002                 rle->type = type;
 3003                 rle->rid = rid;
 3004                 rle->res = NULL;
 3005                 rle->flags = 0;
 3006         }
 3007 
 3008         if (rle->res)
 3009                 panic("resource_list_add: resource entry is busy");
 3010 
 3011         rle->start = start;
 3012         rle->end = end;
 3013         rle->count = count;
 3014         return (rle);
 3015 }
 3016 
 3017 /**
 3018  * @brief Determine if a resource entry is busy.
 3019  *
 3020  * Returns true if a resource entry is busy meaning that it has an
 3021  * associated resource that is not an unallocated "reserved" resource.
 3022  *
 3023  * @param rl            the resource list to search
 3024  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3025  * @param rid           the resource identifier
 3026  *
 3027  * @returns Non-zero if the entry is busy, zero otherwise.
 3028  */
 3029 int
 3030 resource_list_busy(struct resource_list *rl, int type, int rid)
 3031 {
 3032         struct resource_list_entry *rle;
 3033 
 3034         rle = resource_list_find(rl, type, rid);
 3035         if (rle == NULL || rle->res == NULL)
 3036                 return (0);
 3037         if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
 3038                 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
 3039                     ("reserved resource is active"));
 3040                 return (0);
 3041         }
 3042         return (1);
 3043 }
 3044 
 3045 /**
 3046  * @brief Determine if a resource entry is reserved.
 3047  *
 3048  * Returns true if a resource entry is reserved meaning that it has an
 3049  * associated "reserved" resource.  The resource can either be
 3050  * allocated or unallocated.
 3051  *
 3052  * @param rl            the resource list to search
 3053  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3054  * @param rid           the resource identifier
 3055  *
 3056  * @returns Non-zero if the entry is reserved, zero otherwise.
 3057  */
 3058 int
 3059 resource_list_reserved(struct resource_list *rl, int type, int rid)
 3060 {
 3061         struct resource_list_entry *rle;
 3062 
 3063         rle = resource_list_find(rl, type, rid);
 3064         if (rle != NULL && rle->flags & RLE_RESERVED)
 3065                 return (1);
 3066         return (0);
 3067 }
 3068 
 3069 /**
 3070  * @brief Find a resource entry by type and rid.
 3071  *
 3072  * @param rl            the resource list to search
 3073  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3074  * @param rid           the resource identifier
 3075  *
 3076  * @returns the resource entry pointer or NULL if there is no such
 3077  * entry.
 3078  */
 3079 struct resource_list_entry *
 3080 resource_list_find(struct resource_list *rl, int type, int rid)
 3081 {
 3082         struct resource_list_entry *rle;
 3083 
 3084         STAILQ_FOREACH(rle, rl, link) {
 3085                 if (rle->type == type && rle->rid == rid)
 3086                         return (rle);
 3087         }
 3088         return (NULL);
 3089 }
 3090 
 3091 /**
 3092  * @brief Delete a resource entry.
 3093  *
 3094  * @param rl            the resource list to edit
 3095  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3096  * @param rid           the resource identifier
 3097  */
 3098 void
 3099 resource_list_delete(struct resource_list *rl, int type, int rid)
 3100 {
 3101         struct resource_list_entry *rle = resource_list_find(rl, type, rid);
 3102 
 3103         if (rle) {
 3104                 if (rle->res != NULL)
 3105                         panic("resource_list_delete: resource has not been released");
 3106                 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
 3107                 free(rle, M_BUS);
 3108         }
 3109 }
 3110 
 3111 /**
 3112  * @brief Allocate a reserved resource
 3113  *
 3114  * This can be used by busses to force the allocation of resources
 3115  * that are always active in the system even if they are not allocated
 3116  * by a driver (e.g. PCI BARs).  This function is usually called when
 3117  * adding a new child to the bus.  The resource is allocated from the
 3118  * parent bus when it is reserved.  The resource list entry is marked
 3119  * with RLE_RESERVED to note that it is a reserved resource.
 3120  *
 3121  * Subsequent attempts to allocate the resource with
 3122  * resource_list_alloc() will succeed the first time and will set
 3123  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
 3124  * resource that has been allocated is released with
 3125  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
 3126  * the actual resource remains allocated.  The resource can be released to
 3127  * the parent bus by calling resource_list_unreserve().
 3128  *
 3129  * @param rl            the resource list to allocate from
 3130  * @param bus           the parent device of @p child
 3131  * @param child         the device for which the resource is being reserved
 3132  * @param type          the type of resource to allocate
 3133  * @param rid           a pointer to the resource identifier
 3134  * @param start         hint at the start of the resource range - pass
 3135  *                      @c 0UL for any start address
 3136  * @param end           hint at the end of the resource range - pass
 3137  *                      @c ~0UL for any end address
 3138  * @param count         hint at the size of range required - pass @c 1
 3139  *                      for any size
 3140  * @param flags         any extra flags to control the resource
 3141  *                      allocation - see @c RF_XXX flags in
 3142  *                      <sys/rman.h> for details
 3143  * 
 3144  * @returns             the resource which was allocated or @c NULL if no
 3145  *                      resource could be allocated
 3146  */
 3147 struct resource *
 3148 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
 3149     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
 3150 {
 3151         struct resource_list_entry *rle = NULL;
 3152         int passthrough = (device_get_parent(child) != bus);
 3153         struct resource *r;
 3154 
 3155         if (passthrough)
 3156                 panic(
 3157     "resource_list_reserve() should only be called for direct children");
 3158         if (flags & RF_ACTIVE)
 3159                 panic(
 3160     "resource_list_reserve() should only reserve inactive resources");
 3161 
 3162         r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
 3163             flags);
 3164         if (r != NULL) {
 3165                 rle = resource_list_find(rl, type, *rid);
 3166                 rle->flags |= RLE_RESERVED;
 3167         }
 3168         return (r);
 3169 }
 3170 
 3171 /**
 3172  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
 3173  *
 3174  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
 3175  * and passing the allocation up to the parent of @p bus. This assumes
 3176  * that the first entry of @c device_get_ivars(child) is a struct
 3177  * resource_list. This also handles 'passthrough' allocations where a
 3178  * child is a remote descendant of bus by passing the allocation up to
 3179  * the parent of bus.
 3180  *
 3181  * Typically, a bus driver would store a list of child resources
 3182  * somewhere in the child device's ivars (see device_get_ivars()) and
 3183  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
 3184  * then call resource_list_alloc() to perform the allocation.
 3185  *
 3186  * @param rl            the resource list to allocate from
 3187  * @param bus           the parent device of @p child
 3188  * @param child         the device which is requesting an allocation
 3189  * @param type          the type of resource to allocate
 3190  * @param rid           a pointer to the resource identifier
 3191  * @param start         hint at the start of the resource range - pass
 3192  *                      @c 0UL for any start address
 3193  * @param end           hint at the end of the resource range - pass
 3194  *                      @c ~0UL for any end address
 3195  * @param count         hint at the size of range required - pass @c 1
 3196  *                      for any size
 3197  * @param flags         any extra flags to control the resource
 3198  *                      allocation - see @c RF_XXX flags in
 3199  *                      <sys/rman.h> for details
 3200  * 
 3201  * @returns             the resource which was allocated or @c NULL if no
 3202  *                      resource could be allocated
 3203  */
 3204 struct resource *
 3205 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
 3206     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
 3207 {
 3208         struct resource_list_entry *rle = NULL;
 3209         int passthrough = (device_get_parent(child) != bus);
 3210         int isdefault = (start == 0UL && end == ~0UL);
 3211 
 3212         if (passthrough) {
 3213                 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 3214                     type, rid, start, end, count, flags));
 3215         }
 3216 
 3217         rle = resource_list_find(rl, type, *rid);
 3218 
 3219         if (!rle)
 3220                 return (NULL);          /* no resource of that type/rid */
 3221 
 3222         if (rle->res) {
 3223                 if (rle->flags & RLE_RESERVED) {
 3224                         if (rle->flags & RLE_ALLOCATED)
 3225                                 return (NULL);
 3226                         if ((flags & RF_ACTIVE) &&
 3227                             bus_activate_resource(child, type, *rid,
 3228                             rle->res) != 0)
 3229                                 return (NULL);
 3230                         rle->flags |= RLE_ALLOCATED;
 3231                         return (rle->res);
 3232                 }
 3233                 panic("resource_list_alloc: resource entry is busy");
 3234         }
 3235 
 3236         if (isdefault) {
 3237                 start = rle->start;
 3238                 count = ulmax(count, rle->count);
 3239                 end = ulmax(rle->end, start + count - 1);
 3240         }
 3241 
 3242         rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 3243             type, rid, start, end, count, flags);
 3244 
 3245         /*
 3246          * Record the new range.
 3247          */
 3248         if (rle->res) {
 3249                 rle->start = rman_get_start(rle->res);
 3250                 rle->end = rman_get_end(rle->res);
 3251                 rle->count = count;
 3252         }
 3253 
 3254         return (rle->res);
 3255 }
 3256 
 3257 /**
 3258  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
 3259  * 
 3260  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
 3261  * used with resource_list_alloc().
 3262  * 
 3263  * @param rl            the resource list which was allocated from
 3264  * @param bus           the parent device of @p child
 3265  * @param child         the device which is requesting a release
 3266  * @param type          the type of resource to release
 3267  * @param rid           the resource identifier
 3268  * @param res           the resource to release
 3269  * 
 3270  * @retval 0            success
 3271  * @retval non-zero     a standard unix error code indicating what
 3272  *                      error condition prevented the operation
 3273  */
 3274 int
 3275 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
 3276     int type, int rid, struct resource *res)
 3277 {
 3278         struct resource_list_entry *rle = NULL;
 3279         int passthrough = (device_get_parent(child) != bus);
 3280         int error;
 3281 
 3282         if (passthrough) {
 3283                 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3284                     type, rid, res));
 3285         }
 3286 
 3287         rle = resource_list_find(rl, type, rid);
 3288 
 3289         if (!rle)
 3290                 panic("resource_list_release: can't find resource");
 3291         if (!rle->res)
 3292                 panic("resource_list_release: resource entry is not busy");
 3293         if (rle->flags & RLE_RESERVED) {
 3294                 if (rle->flags & RLE_ALLOCATED) {
 3295                         if (rman_get_flags(res) & RF_ACTIVE) {
 3296                                 error = bus_deactivate_resource(child, type,
 3297                                     rid, res);
 3298                                 if (error)
 3299                                         return (error);
 3300                         }
 3301                         rle->flags &= ~RLE_ALLOCATED;
 3302                         return (0);
 3303                 }
 3304                 return (EINVAL);
 3305         }
 3306 
 3307         error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3308             type, rid, res);
 3309         if (error)
 3310                 return (error);
 3311 
 3312         rle->res = NULL;
 3313         return (0);
 3314 }
 3315 
 3316 /**
 3317  * @brief Fully release a reserved resource
 3318  *
 3319  * Fully releases a resouce reserved via resource_list_reserve().
 3320  *
 3321  * @param rl            the resource list which was allocated from
 3322  * @param bus           the parent device of @p child
 3323  * @param child         the device whose reserved resource is being released
 3324  * @param type          the type of resource to release
 3325  * @param rid           the resource identifier
 3326  * @param res           the resource to release
 3327  * 
 3328  * @retval 0            success
 3329  * @retval non-zero     a standard unix error code indicating what
 3330  *                      error condition prevented the operation
 3331  */
 3332 int
 3333 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
 3334     int type, int rid)
 3335 {
 3336         struct resource_list_entry *rle = NULL;
 3337         int passthrough = (device_get_parent(child) != bus);
 3338 
 3339         if (passthrough)
 3340                 panic(
 3341     "resource_list_unreserve() should only be called for direct children");
 3342 
 3343         rle = resource_list_find(rl, type, rid);
 3344 
 3345         if (!rle)
 3346                 panic("resource_list_unreserve: can't find resource");
 3347         if (!(rle->flags & RLE_RESERVED))
 3348                 return (EINVAL);
 3349         if (rle->flags & RLE_ALLOCATED)
 3350                 return (EBUSY);
 3351         rle->flags &= ~RLE_RESERVED;
 3352         return (resource_list_release(rl, bus, child, type, rid, rle->res));
 3353 }
 3354 
 3355 /**
 3356  * @brief Print a description of resources in a resource list
 3357  *
 3358  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
 3359  * The name is printed if at least one resource of the given type is available.
 3360  * The format is used to print resource start and end.
 3361  *
 3362  * @param rl            the resource list to print
 3363  * @param name          the name of @p type, e.g. @c "memory"
 3364  * @param type          type type of resource entry to print
 3365  * @param format        printf(9) format string to print resource
 3366  *                      start and end values
 3367  * 
 3368  * @returns             the number of characters printed
 3369  */
 3370 int
 3371 resource_list_print_type(struct resource_list *rl, const char *name, int type,
 3372     const char *format)
 3373 {
 3374         struct resource_list_entry *rle;
 3375         int printed, retval;
 3376 
 3377         printed = 0;
 3378         retval = 0;
 3379         /* Yes, this is kinda cheating */
 3380         STAILQ_FOREACH(rle, rl, link) {
 3381                 if (rle->type == type) {
 3382                         if (printed == 0)
 3383                                 retval += printf(" %s ", name);
 3384                         else
 3385                                 retval += printf(",");
 3386                         printed++;
 3387                         retval += printf(format, rle->start);
 3388                         if (rle->count > 1) {
 3389                                 retval += printf("-");
 3390                                 retval += printf(format, rle->start +
 3391                                                  rle->count - 1);
 3392                         }
 3393                 }
 3394         }
 3395         return (retval);
 3396 }
 3397 
 3398 /**
 3399  * @brief Releases all the resources in a list.
 3400  *
 3401  * @param rl            The resource list to purge.
 3402  * 
 3403  * @returns             nothing
 3404  */
 3405 void
 3406 resource_list_purge(struct resource_list *rl)
 3407 {
 3408         struct resource_list_entry *rle;
 3409 
 3410         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 3411                 if (rle->res)
 3412                         bus_release_resource(rman_get_device(rle->res),
 3413                             rle->type, rle->rid, rle->res);
 3414                 STAILQ_REMOVE_HEAD(rl, link);
 3415                 free(rle, M_BUS);
 3416         }
 3417 }
 3418 
 3419 device_t
 3420 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
 3421 {
 3422 
 3423         return (device_add_child_ordered(dev, order, name, unit));
 3424 }
 3425 
 3426 /**
 3427  * @brief Helper function for implementing DEVICE_PROBE()
 3428  *
 3429  * This function can be used to help implement the DEVICE_PROBE() for
 3430  * a bus (i.e. a device which has other devices attached to it). It
 3431  * calls the DEVICE_IDENTIFY() method of each driver in the device's
 3432  * devclass.
 3433  */
 3434 int
 3435 bus_generic_probe(device_t dev)
 3436 {
 3437         devclass_t dc = dev->devclass;
 3438         driverlink_t dl;
 3439 
 3440         TAILQ_FOREACH(dl, &dc->drivers, link) {
 3441                 /*
 3442                  * If this driver's pass is too high, then ignore it.
 3443                  * For most drivers in the default pass, this will
 3444                  * never be true.  For early-pass drivers they will
 3445                  * only call the identify routines of eligible drivers
 3446                  * when this routine is called.  Drivers for later
 3447                  * passes should have their identify routines called
 3448                  * on early-pass busses during BUS_NEW_PASS().
 3449                  */
 3450                 if (dl->pass > bus_current_pass)
 3451                         continue;
 3452                 DEVICE_IDENTIFY(dl->driver, dev);
 3453         }
 3454 
 3455         return (0);
 3456 }
 3457 
 3458 /**
 3459  * @brief Helper function for implementing DEVICE_ATTACH()
 3460  *
 3461  * This function can be used to help implement the DEVICE_ATTACH() for
 3462  * a bus. It calls device_probe_and_attach() for each of the device's
 3463  * children.
 3464  */
 3465 int
 3466 bus_generic_attach(device_t dev)
 3467 {
 3468         device_t child;
 3469 
 3470         TAILQ_FOREACH(child, &dev->children, link) {
 3471                 device_probe_and_attach(child);
 3472         }
 3473 
 3474         return (0);
 3475 }
 3476 
 3477 /**
 3478  * @brief Helper function for implementing DEVICE_DETACH()
 3479  *
 3480  * This function can be used to help implement the DEVICE_DETACH() for
 3481  * a bus. It calls device_detach() for each of the device's
 3482  * children.
 3483  */
 3484 int
 3485 bus_generic_detach(device_t dev)
 3486 {
 3487         device_t child;
 3488         int error;
 3489 
 3490         if (dev->state != DS_ATTACHED)
 3491                 return (EBUSY);
 3492 
 3493         TAILQ_FOREACH(child, &dev->children, link) {
 3494                 if ((error = device_detach(child)) != 0)
 3495                         return (error);
 3496         }
 3497 
 3498         return (0);
 3499 }
 3500 
 3501 /**
 3502  * @brief Helper function for implementing DEVICE_SHUTDOWN()
 3503  *
 3504  * This function can be used to help implement the DEVICE_SHUTDOWN()
 3505  * for a bus. It calls device_shutdown() for each of the device's
 3506  * children.
 3507  */
 3508 int
 3509 bus_generic_shutdown(device_t dev)
 3510 {
 3511         device_t child;
 3512 
 3513         TAILQ_FOREACH(child, &dev->children, link) {
 3514                 device_shutdown(child);
 3515         }
 3516 
 3517         return (0);
 3518 }
 3519 
 3520 /**
 3521  * @brief Helper function for implementing DEVICE_SUSPEND()
 3522  *
 3523  * This function can be used to help implement the DEVICE_SUSPEND()
 3524  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
 3525  * children. If any call to DEVICE_SUSPEND() fails, the suspend
 3526  * operation is aborted and any devices which were suspended are
 3527  * resumed immediately by calling their DEVICE_RESUME() methods.
 3528  */
 3529 int
 3530 bus_generic_suspend(device_t dev)
 3531 {
 3532         int             error;
 3533         device_t        child, child2;
 3534 
 3535         TAILQ_FOREACH(child, &dev->children, link) {
 3536                 error = DEVICE_SUSPEND(child);
 3537                 if (error) {
 3538                         for (child2 = TAILQ_FIRST(&dev->children);
 3539                              child2 && child2 != child;
 3540                              child2 = TAILQ_NEXT(child2, link))
 3541                                 DEVICE_RESUME(child2);
 3542                         return (error);
 3543                 }
 3544         }
 3545         return (0);
 3546 }
 3547 
 3548 /**
 3549  * @brief Helper function for implementing DEVICE_RESUME()
 3550  *
 3551  * This function can be used to help implement the DEVICE_RESUME() for
 3552  * a bus. It calls DEVICE_RESUME() on each of the device's children.
 3553  */
 3554 int
 3555 bus_generic_resume(device_t dev)
 3556 {
 3557         device_t        child;
 3558 
 3559         TAILQ_FOREACH(child, &dev->children, link) {
 3560                 DEVICE_RESUME(child);
 3561                 /* if resume fails, there's nothing we can usefully do... */
 3562         }
 3563         return (0);
 3564 }
 3565 
 3566 /**
 3567  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3568  *
 3569  * This function prints the first part of the ascii representation of
 3570  * @p child, including its name, unit and description (if any - see
 3571  * device_set_desc()).
 3572  *
 3573  * @returns the number of characters printed
 3574  */
 3575 int
 3576 bus_print_child_header(device_t dev, device_t child)
 3577 {
 3578         int     retval = 0;
 3579 
 3580         if (device_get_desc(child)) {
 3581                 retval += device_printf(child, "<%s>", device_get_desc(child));
 3582         } else {
 3583                 retval += printf("%s", device_get_nameunit(child));
 3584         }
 3585 
 3586         return (retval);
 3587 }
 3588 
 3589 /**
 3590  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3591  *
 3592  * This function prints the last part of the ascii representation of
 3593  * @p child, which consists of the string @c " on " followed by the
 3594  * name and unit of the @p dev.
 3595  *
 3596  * @returns the number of characters printed
 3597  */
 3598 int
 3599 bus_print_child_footer(device_t dev, device_t child)
 3600 {
 3601         return (printf(" on %s\n", device_get_nameunit(dev)));
 3602 }
 3603 
 3604 /**
 3605  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3606  *
 3607  * This function simply calls bus_print_child_header() followed by
 3608  * bus_print_child_footer().
 3609  *
 3610  * @returns the number of characters printed
 3611  */
 3612 int
 3613 bus_generic_print_child(device_t dev, device_t child)
 3614 {
 3615         int     retval = 0;
 3616 
 3617         retval += bus_print_child_header(dev, child);
 3618         retval += bus_print_child_footer(dev, child);
 3619 
 3620         return (retval);
 3621 }
 3622 
 3623 /**
 3624  * @brief Stub function for implementing BUS_READ_IVAR().
 3625  * 
 3626  * @returns ENOENT
 3627  */
 3628 int
 3629 bus_generic_read_ivar(device_t dev, device_t child, int index,
 3630     uintptr_t * result)
 3631 {
 3632         return (ENOENT);
 3633 }
 3634 
 3635 /**
 3636  * @brief Stub function for implementing BUS_WRITE_IVAR().
 3637  * 
 3638  * @returns ENOENT
 3639  */
 3640 int
 3641 bus_generic_write_ivar(device_t dev, device_t child, int index,
 3642     uintptr_t value)
 3643 {
 3644         return (ENOENT);
 3645 }
 3646 
 3647 /**
 3648  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
 3649  * 
 3650  * @returns NULL
 3651  */
 3652 struct resource_list *
 3653 bus_generic_get_resource_list(device_t dev, device_t child)
 3654 {
 3655         return (NULL);
 3656 }
 3657 
 3658 /**
 3659  * @brief Helper function for implementing BUS_DRIVER_ADDED().
 3660  *
 3661  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
 3662  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
 3663  * and then calls device_probe_and_attach() for each unattached child.
 3664  */
 3665 void
 3666 bus_generic_driver_added(device_t dev, driver_t *driver)
 3667 {
 3668         device_t child;
 3669 
 3670         DEVICE_IDENTIFY(driver, dev);
 3671         TAILQ_FOREACH(child, &dev->children, link) {
 3672                 if (child->state == DS_NOTPRESENT ||
 3673                     (child->flags & DF_REBID))
 3674                         device_probe_and_attach(child);
 3675         }
 3676 }
 3677 
 3678 /**
 3679  * @brief Helper function for implementing BUS_NEW_PASS().
 3680  *
 3681  * This implementing of BUS_NEW_PASS() first calls the identify
 3682  * routines for any drivers that probe at the current pass.  Then it
 3683  * walks the list of devices for this bus.  If a device is already
 3684  * attached, then it calls BUS_NEW_PASS() on that device.  If the
 3685  * device is not already attached, it attempts to attach a driver to
 3686  * it.
 3687  */
 3688 void
 3689 bus_generic_new_pass(device_t dev)
 3690 {
 3691         driverlink_t dl;
 3692         devclass_t dc;
 3693         device_t child;
 3694 
 3695         dc = dev->devclass;
 3696         TAILQ_FOREACH(dl, &dc->drivers, link) {
 3697                 if (dl->pass == bus_current_pass)
 3698                         DEVICE_IDENTIFY(dl->driver, dev);
 3699         }
 3700         TAILQ_FOREACH(child, &dev->children, link) {
 3701                 if (child->state >= DS_ATTACHED)
 3702                         BUS_NEW_PASS(child);
 3703                 else if (child->state == DS_NOTPRESENT)
 3704                         device_probe_and_attach(child);
 3705         }
 3706 }
 3707 
 3708 /**
 3709  * @brief Helper function for implementing BUS_SETUP_INTR().
 3710  *
 3711  * This simple implementation of BUS_SETUP_INTR() simply calls the
 3712  * BUS_SETUP_INTR() method of the parent of @p dev.
 3713  */
 3714 int
 3715 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
 3716     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 
 3717     void **cookiep)
 3718 {
 3719         /* Propagate up the bus hierarchy until someone handles it. */
 3720         if (dev->parent)
 3721                 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
 3722                     filter, intr, arg, cookiep));
 3723         return (EINVAL);
 3724 }
 3725 
 3726 /**
 3727  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
 3728  *
 3729  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
 3730  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
 3731  */
 3732 int
 3733 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
 3734     void *cookie)
 3735 {
 3736         /* Propagate up the bus hierarchy until someone handles it. */
 3737         if (dev->parent)
 3738                 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
 3739         return (EINVAL);
 3740 }
 3741 
 3742 /**
 3743  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
 3744  *
 3745  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
 3746  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
 3747  */
 3748 int
 3749 bus_generic_adjust_resource(device_t dev, device_t child, int type,
 3750     struct resource *r, u_long start, u_long end)
 3751 {
 3752         /* Propagate up the bus hierarchy until someone handles it. */
 3753         if (dev->parent)
 3754                 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
 3755                     end));
 3756         return (EINVAL);
 3757 }
 3758 
 3759 /**
 3760  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3761  *
 3762  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
 3763  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
 3764  */
 3765 struct resource *
 3766 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
 3767     u_long start, u_long end, u_long count, u_int flags)
 3768 {
 3769         /* Propagate up the bus hierarchy until someone handles it. */
 3770         if (dev->parent)
 3771                 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
 3772                     start, end, count, flags));
 3773         return (NULL);
 3774 }
 3775 
 3776 /**
 3777  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3778  *
 3779  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
 3780  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
 3781  */
 3782 int
 3783 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
 3784     struct resource *r)
 3785 {
 3786         /* Propagate up the bus hierarchy until someone handles it. */
 3787         if (dev->parent)
 3788                 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
 3789                     r));
 3790         return (EINVAL);
 3791 }
 3792 
 3793 /**
 3794  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
 3795  *
 3796  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
 3797  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
 3798  */
 3799 int
 3800 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
 3801     struct resource *r)
 3802 {
 3803         /* Propagate up the bus hierarchy until someone handles it. */
 3804         if (dev->parent)
 3805                 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3806                     r));
 3807         return (EINVAL);
 3808 }
 3809 
 3810 /**
 3811  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
 3812  *
 3813  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
 3814  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
 3815  */
 3816 int
 3817 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
 3818     int rid, struct resource *r)
 3819 {
 3820         /* Propagate up the bus hierarchy until someone handles it. */
 3821         if (dev->parent)
 3822                 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3823                     r));
 3824         return (EINVAL);
 3825 }
 3826 
 3827 /**
 3828  * @brief Helper function for implementing BUS_BIND_INTR().
 3829  *
 3830  * This simple implementation of BUS_BIND_INTR() simply calls the
 3831  * BUS_BIND_INTR() method of the parent of @p dev.
 3832  */
 3833 int
 3834 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
 3835     int cpu)
 3836 {
 3837 
 3838         /* Propagate up the bus hierarchy until someone handles it. */
 3839         if (dev->parent)
 3840                 return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
 3841         return (EINVAL);
 3842 }
 3843 
 3844 /**
 3845  * @brief Helper function for implementing BUS_CONFIG_INTR().
 3846  *
 3847  * This simple implementation of BUS_CONFIG_INTR() simply calls the
 3848  * BUS_CONFIG_INTR() method of the parent of @p dev.
 3849  */
 3850 int
 3851 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
 3852     enum intr_polarity pol)
 3853 {
 3854 
 3855         /* Propagate up the bus hierarchy until someone handles it. */
 3856         if (dev->parent)
 3857                 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
 3858         return (EINVAL);
 3859 }
 3860 
 3861 /**
 3862  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
 3863  *
 3864  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
 3865  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
 3866  */
 3867 int
 3868 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
 3869     void *cookie, const char *descr)
 3870 {
 3871 
 3872         /* Propagate up the bus hierarchy until someone handles it. */
 3873         if (dev->parent)
 3874                 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
 3875                     descr));
 3876         return (EINVAL);
 3877 }
 3878 
 3879 /**
 3880  * @brief Helper function for implementing BUS_GET_DMA_TAG().
 3881  *
 3882  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
 3883  * BUS_GET_DMA_TAG() method of the parent of @p dev.
 3884  */
 3885 bus_dma_tag_t
 3886 bus_generic_get_dma_tag(device_t dev, device_t child)
 3887 {
 3888 
 3889         /* Propagate up the bus hierarchy until someone handles it. */
 3890         if (dev->parent != NULL)
 3891                 return (BUS_GET_DMA_TAG(dev->parent, child));
 3892         return (NULL);
 3893 }
 3894 
 3895 /**
 3896  * @brief Helper function for implementing BUS_GET_RESOURCE().
 3897  *
 3898  * This implementation of BUS_GET_RESOURCE() uses the
 3899  * resource_list_find() function to do most of the work. It calls
 3900  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3901  * search.
 3902  */
 3903 int
 3904 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
 3905     u_long *startp, u_long *countp)
 3906 {
 3907         struct resource_list *          rl = NULL;
 3908         struct resource_list_entry *    rle = NULL;
 3909 
 3910         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3911         if (!rl)
 3912                 return (EINVAL);
 3913 
 3914         rle = resource_list_find(rl, type, rid);
 3915         if (!rle)
 3916                 return (ENOENT);
 3917 
 3918         if (startp)
 3919                 *startp = rle->start;
 3920         if (countp)
 3921                 *countp = rle->count;
 3922 
 3923         return (0);
 3924 }
 3925 
 3926 /**
 3927  * @brief Helper function for implementing BUS_SET_RESOURCE().
 3928  *
 3929  * This implementation of BUS_SET_RESOURCE() uses the
 3930  * resource_list_add() function to do most of the work. It calls
 3931  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3932  * edit.
 3933  */
 3934 int
 3935 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
 3936     u_long start, u_long count)
 3937 {
 3938         struct resource_list *          rl = NULL;
 3939 
 3940         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3941         if (!rl)
 3942                 return (EINVAL);
 3943 
 3944         resource_list_add(rl, type, rid, start, (start + count - 1), count);
 3945 
 3946         return (0);
 3947 }
 3948 
 3949 /**
 3950  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
 3951  *
 3952  * This implementation of BUS_DELETE_RESOURCE() uses the
 3953  * resource_list_delete() function to do most of the work. It calls
 3954  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3955  * edit.
 3956  */
 3957 void
 3958 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
 3959 {
 3960         struct resource_list *          rl = NULL;
 3961 
 3962         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3963         if (!rl)
 3964                 return;
 3965 
 3966         resource_list_delete(rl, type, rid);
 3967 
 3968         return;
 3969 }
 3970 
 3971 /**
 3972  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3973  *
 3974  * This implementation of BUS_RELEASE_RESOURCE() uses the
 3975  * resource_list_release() function to do most of the work. It calls
 3976  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3977  */
 3978 int
 3979 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
 3980     int rid, struct resource *r)
 3981 {
 3982         struct resource_list *          rl = NULL;
 3983 
 3984         if (device_get_parent(child) != dev)
 3985                 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
 3986                     type, rid, r));
 3987 
 3988         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3989         if (!rl)
 3990                 return (EINVAL);
 3991 
 3992         return (resource_list_release(rl, dev, child, type, rid, r));
 3993 }
 3994 
 3995 /**
 3996  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3997  *
 3998  * This implementation of BUS_ALLOC_RESOURCE() uses the
 3999  * resource_list_alloc() function to do most of the work. It calls
 4000  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 4001  */
 4002 struct resource *
 4003 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
 4004     int *rid, u_long start, u_long end, u_long count, u_int flags)
 4005 {
 4006         struct resource_list *          rl = NULL;
 4007 
 4008         if (device_get_parent(child) != dev)
 4009                 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
 4010                     type, rid, start, end, count, flags));
 4011 
 4012         rl = BUS_GET_RESOURCE_LIST(dev, child);
 4013         if (!rl)
 4014                 return (NULL);
 4015 
 4016         return (resource_list_alloc(rl, dev, child, type, rid,
 4017             start, end, count, flags));
 4018 }
 4019 
 4020 /**
 4021  * @brief Helper function for implementing BUS_CHILD_PRESENT().
 4022  *
 4023  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
 4024  * BUS_CHILD_PRESENT() method of the parent of @p dev.
 4025  */
 4026 int
 4027 bus_generic_child_present(device_t dev, device_t child)
 4028 {
 4029         return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
 4030 }
 4031 
 4032 /*
 4033  * Some convenience functions to make it easier for drivers to use the
 4034  * resource-management functions.  All these really do is hide the
 4035  * indirection through the parent's method table, making for slightly
 4036  * less-wordy code.  In the future, it might make sense for this code
 4037  * to maintain some sort of a list of resources allocated by each device.
 4038  */
 4039 
 4040 int
 4041 bus_alloc_resources(device_t dev, struct resource_spec *rs,
 4042     struct resource **res)
 4043 {
 4044         int i;
 4045 
 4046         for (i = 0; rs[i].type != -1; i++)
 4047                 res[i] = NULL;
 4048         for (i = 0; rs[i].type != -1; i++) {
 4049                 res[i] = bus_alloc_resource_any(dev,
 4050                     rs[i].type, &rs[i].rid, rs[i].flags);
 4051                 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
 4052                         bus_release_resources(dev, rs, res);
 4053                         return (ENXIO);
 4054                 }
 4055         }
 4056         return (0);
 4057 }
 4058 
 4059 void
 4060 bus_release_resources(device_t dev, const struct resource_spec *rs,
 4061     struct resource **res)
 4062 {
 4063         int i;
 4064 
 4065         for (i = 0; rs[i].type != -1; i++)
 4066                 if (res[i] != NULL) {
 4067                         bus_release_resource(
 4068                             dev, rs[i].type, rs[i].rid, res[i]);
 4069                         res[i] = NULL;
 4070                 }
 4071 }
 4072 
 4073 /**
 4074  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
 4075  *
 4076  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
 4077  * parent of @p dev.
 4078  */
 4079 struct resource *
 4080 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
 4081     u_long count, u_int flags)
 4082 {
 4083         if (dev->parent == NULL)
 4084                 return (NULL);
 4085         return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
 4086             count, flags));
 4087 }
 4088 
 4089 /**
 4090  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
 4091  *
 4092  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
 4093  * parent of @p dev.
 4094  */
 4095 int
 4096 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
 4097     u_long end)
 4098 {
 4099         if (dev->parent == NULL)
 4100                 return (EINVAL);
 4101         return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
 4102 }
 4103 
 4104 /**
 4105  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
 4106  *
 4107  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
 4108  * parent of @p dev.
 4109  */
 4110 int
 4111 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
 4112 {
 4113         if (dev->parent == NULL)
 4114                 return (EINVAL);
 4115         return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 4116 }
 4117 
 4118 /**
 4119  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
 4120  *
 4121  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
 4122  * parent of @p dev.
 4123  */
 4124 int
 4125 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
 4126 {
 4127         if (dev->parent == NULL)
 4128                 return (EINVAL);
 4129         return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 4130 }
 4131 
 4132 /**
 4133  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
 4134  *
 4135  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
 4136  * parent of @p dev.
 4137  */
 4138 int
 4139 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
 4140 {
 4141         if (dev->parent == NULL)
 4142                 return (EINVAL);
 4143         return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
 4144 }
 4145 
 4146 /**
 4147  * @brief Wrapper function for BUS_SETUP_INTR().
 4148  *
 4149  * This function simply calls the BUS_SETUP_INTR() method of the
 4150  * parent of @p dev.
 4151  */
 4152 int
 4153 bus_setup_intr(device_t dev, struct resource *r, int flags,
 4154     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
 4155 {
 4156         int error;
 4157 
 4158         if (dev->parent == NULL)
 4159                 return (EINVAL);
 4160         error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
 4161             arg, cookiep);
 4162         if (error != 0)
 4163                 return (error);
 4164         if (handler != NULL && !(flags & INTR_MPSAFE))
 4165                 device_printf(dev, "[GIANT-LOCKED]\n");
 4166         return (0);
 4167 }
 4168 
 4169 /**
 4170  * @brief Wrapper function for BUS_TEARDOWN_INTR().
 4171  *
 4172  * This function simply calls the BUS_TEARDOWN_INTR() method of the
 4173  * parent of @p dev.
 4174  */
 4175 int
 4176 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
 4177 {
 4178         if (dev->parent == NULL)
 4179                 return (EINVAL);
 4180         return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
 4181 }
 4182 
 4183 /**
 4184  * @brief Wrapper function for BUS_BIND_INTR().
 4185  *
 4186  * This function simply calls the BUS_BIND_INTR() method of the
 4187  * parent of @p dev.
 4188  */
 4189 int
 4190 bus_bind_intr(device_t dev, struct resource *r, int cpu)
 4191 {
 4192         if (dev->parent == NULL)
 4193                 return (EINVAL);
 4194         return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
 4195 }
 4196 
 4197 /**
 4198  * @brief Wrapper function for BUS_DESCRIBE_INTR().
 4199  *
 4200  * This function first formats the requested description into a
 4201  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
 4202  * the parent of @p dev.
 4203  */
 4204 int
 4205 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
 4206     const char *fmt, ...)
 4207 {
 4208         va_list ap;
 4209         char descr[MAXCOMLEN + 1];
 4210 
 4211         if (dev->parent == NULL)
 4212                 return (EINVAL);
 4213         va_start(ap, fmt);
 4214         vsnprintf(descr, sizeof(descr), fmt, ap);
 4215         va_end(ap);
 4216         return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
 4217 }
 4218 
 4219 /**
 4220  * @brief Wrapper function for BUS_SET_RESOURCE().
 4221  *
 4222  * This function simply calls the BUS_SET_RESOURCE() method of the
 4223  * parent of @p dev.
 4224  */
 4225 int
 4226 bus_set_resource(device_t dev, int type, int rid,
 4227     u_long start, u_long count)
 4228 {
 4229         return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4230             start, count));
 4231 }
 4232 
 4233 /**
 4234  * @brief Wrapper function for BUS_GET_RESOURCE().
 4235  *
 4236  * This function simply calls the BUS_GET_RESOURCE() method of the
 4237  * parent of @p dev.
 4238  */
 4239 int
 4240 bus_get_resource(device_t dev, int type, int rid,
 4241     u_long *startp, u_long *countp)
 4242 {
 4243         return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4244             startp, countp));
 4245 }
 4246 
 4247 /**
 4248  * @brief Wrapper function for BUS_GET_RESOURCE().
 4249  *
 4250  * This function simply calls the BUS_GET_RESOURCE() method of the
 4251  * parent of @p dev and returns the start value.
 4252  */
 4253 u_long
 4254 bus_get_resource_start(device_t dev, int type, int rid)
 4255 {
 4256         u_long start, count;
 4257         int error;
 4258 
 4259         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4260             &start, &count);
 4261         if (error)
 4262                 return (0);
 4263         return (start);
 4264 }
 4265 
 4266 /**
 4267  * @brief Wrapper function for BUS_GET_RESOURCE().
 4268  *
 4269  * This function simply calls the BUS_GET_RESOURCE() method of the
 4270  * parent of @p dev and returns the count value.
 4271  */
 4272 u_long
 4273 bus_get_resource_count(device_t dev, int type, int rid)
 4274 {
 4275         u_long start, count;
 4276         int error;
 4277 
 4278         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4279             &start, &count);
 4280         if (error)
 4281                 return (0);
 4282         return (count);
 4283 }
 4284 
 4285 /**
 4286  * @brief Wrapper function for BUS_DELETE_RESOURCE().
 4287  *
 4288  * This function simply calls the BUS_DELETE_RESOURCE() method of the
 4289  * parent of @p dev.
 4290  */
 4291 void
 4292 bus_delete_resource(device_t dev, int type, int rid)
 4293 {
 4294         BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
 4295 }
 4296 
 4297 /**
 4298  * @brief Wrapper function for BUS_CHILD_PRESENT().
 4299  *
 4300  * This function simply calls the BUS_CHILD_PRESENT() method of the
 4301  * parent of @p dev.
 4302  */
 4303 int
 4304 bus_child_present(device_t child)
 4305 {
 4306         return (BUS_CHILD_PRESENT(device_get_parent(child), child));
 4307 }
 4308 
 4309 /**
 4310  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
 4311  *
 4312  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
 4313  * parent of @p dev.
 4314  */
 4315 int
 4316 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
 4317 {
 4318         device_t parent;
 4319 
 4320         parent = device_get_parent(child);
 4321         if (parent == NULL) {
 4322                 *buf = '\0';
 4323                 return (0);
 4324         }
 4325         return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
 4326 }
 4327 
 4328 /**
 4329  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
 4330  *
 4331  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
 4332  * parent of @p dev.
 4333  */
 4334 int
 4335 bus_child_location_str(device_t child, char *buf, size_t buflen)
 4336 {
 4337         device_t parent;
 4338 
 4339         parent = device_get_parent(child);
 4340         if (parent == NULL) {
 4341                 *buf = '\0';
 4342                 return (0);
 4343         }
 4344         return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
 4345 }
 4346 
 4347 /**
 4348  * @brief Wrapper function for BUS_GET_DMA_TAG().
 4349  *
 4350  * This function simply calls the BUS_GET_DMA_TAG() method of the
 4351  * parent of @p dev.
 4352  */
 4353 bus_dma_tag_t
 4354 bus_get_dma_tag(device_t dev)
 4355 {
 4356         device_t parent;
 4357 
 4358         parent = device_get_parent(dev);
 4359         if (parent == NULL)
 4360                 return (NULL);
 4361         return (BUS_GET_DMA_TAG(parent, dev));
 4362 }
 4363 
 4364 /* Resume all devices and then notify userland that we're up again. */
 4365 static int
 4366 root_resume(device_t dev)
 4367 {
 4368         int error;
 4369 
 4370         error = bus_generic_resume(dev);
 4371         if (error == 0)
 4372                 devctl_notify("kern", "power", "resume", NULL);
 4373         return (error);
 4374 }
 4375 
 4376 static int
 4377 root_print_child(device_t dev, device_t child)
 4378 {
 4379         int     retval = 0;
 4380 
 4381         retval += bus_print_child_header(dev, child);
 4382         retval += printf("\n");
 4383 
 4384         return (retval);
 4385 }
 4386 
 4387 static int
 4388 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
 4389     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
 4390 {
 4391         /*
 4392          * If an interrupt mapping gets to here something bad has happened.
 4393          */
 4394         panic("root_setup_intr");
 4395 }
 4396 
 4397 /*
 4398  * If we get here, assume that the device is permanant and really is
 4399  * present in the system.  Removable bus drivers are expected to intercept
 4400  * this call long before it gets here.  We return -1 so that drivers that
 4401  * really care can check vs -1 or some ERRNO returned higher in the food
 4402  * chain.
 4403  */
 4404 static int
 4405 root_child_present(device_t dev, device_t child)
 4406 {
 4407         return (-1);
 4408 }
 4409 
 4410 static kobj_method_t root_methods[] = {
 4411         /* Device interface */
 4412         KOBJMETHOD(device_shutdown,     bus_generic_shutdown),
 4413         KOBJMETHOD(device_suspend,      bus_generic_suspend),
 4414         KOBJMETHOD(device_resume,       root_resume),
 4415 
 4416         /* Bus interface */
 4417         KOBJMETHOD(bus_print_child,     root_print_child),
 4418         KOBJMETHOD(bus_read_ivar,       bus_generic_read_ivar),
 4419         KOBJMETHOD(bus_write_ivar,      bus_generic_write_ivar),
 4420         KOBJMETHOD(bus_setup_intr,      root_setup_intr),
 4421         KOBJMETHOD(bus_child_present,   root_child_present),
 4422 
 4423         KOBJMETHOD_END
 4424 };
 4425 
 4426 static driver_t root_driver = {
 4427         "root",
 4428         root_methods,
 4429         1,                      /* no softc */
 4430 };
 4431 
 4432 device_t        root_bus;
 4433 devclass_t      root_devclass;
 4434 
 4435 static int
 4436 root_bus_module_handler(module_t mod, int what, void* arg)
 4437 {
 4438         switch (what) {
 4439         case MOD_LOAD:
 4440                 TAILQ_INIT(&bus_data_devices);
 4441                 kobj_class_compile((kobj_class_t) &root_driver);
 4442                 root_bus = make_device(NULL, "root", 0);
 4443                 root_bus->desc = "System root bus";
 4444                 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
 4445                 root_bus->driver = &root_driver;
 4446                 root_bus->state = DS_ATTACHED;
 4447                 root_devclass = devclass_find_internal("root", NULL, FALSE);
 4448                 devinit();
 4449                 return (0);
 4450 
 4451         case MOD_SHUTDOWN:
 4452                 device_shutdown(root_bus);
 4453                 return (0);
 4454         default:
 4455                 return (EOPNOTSUPP);
 4456         }
 4457 
 4458         return (0);
 4459 }
 4460 
 4461 static moduledata_t root_bus_mod = {
 4462         "rootbus",
 4463         root_bus_module_handler,
 4464         NULL
 4465 };
 4466 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
 4467 
 4468 /**
 4469  * @brief Automatically configure devices
 4470  *
 4471  * This function begins the autoconfiguration process by calling
 4472  * device_probe_and_attach() for each child of the @c root0 device.
 4473  */ 
 4474 void
 4475 root_bus_configure(void)
 4476 {
 4477 
 4478         PDEBUG(("."));
 4479 
 4480         /* Eventually this will be split up, but this is sufficient for now. */
 4481         bus_set_pass(BUS_PASS_DEFAULT);
 4482 }
 4483 
 4484 /**
 4485  * @brief Module handler for registering device drivers
 4486  *
 4487  * This module handler is used to automatically register device
 4488  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
 4489  * devclass_add_driver() for the driver described by the
 4490  * driver_module_data structure pointed to by @p arg
 4491  */
 4492 int
 4493 driver_module_handler(module_t mod, int what, void *arg)
 4494 {
 4495         struct driver_module_data *dmd;
 4496         devclass_t bus_devclass;
 4497         kobj_class_t driver;
 4498         int error, pass;
 4499 
 4500         dmd = (struct driver_module_data *)arg;
 4501         bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
 4502         error = 0;
 4503 
 4504         switch (what) {
 4505         case MOD_LOAD:
 4506                 if (dmd->dmd_chainevh)
 4507                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4508 
 4509                 pass = dmd->dmd_pass;
 4510                 driver = dmd->dmd_driver;
 4511                 PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
 4512                     DRIVERNAME(driver), dmd->dmd_busname, pass));
 4513                 error = devclass_add_driver(bus_devclass, driver, pass,
 4514                     dmd->dmd_devclass);
 4515                 break;
 4516 
 4517         case MOD_UNLOAD:
 4518                 PDEBUG(("Unloading module: driver %s from bus %s",
 4519                     DRIVERNAME(dmd->dmd_driver),
 4520                     dmd->dmd_busname));
 4521                 error = devclass_delete_driver(bus_devclass,
 4522                     dmd->dmd_driver);
 4523 
 4524                 if (!error && dmd->dmd_chainevh)
 4525                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4526                 break;
 4527         case MOD_QUIESCE:
 4528                 PDEBUG(("Quiesce module: driver %s from bus %s",
 4529                     DRIVERNAME(dmd->dmd_driver),
 4530                     dmd->dmd_busname));
 4531                 error = devclass_quiesce_driver(bus_devclass,
 4532                     dmd->dmd_driver);
 4533 
 4534                 if (!error && dmd->dmd_chainevh)
 4535                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4536                 break;
 4537         default:
 4538                 error = EOPNOTSUPP;
 4539                 break;
 4540         }
 4541 
 4542         return (error);
 4543 }
 4544 
 4545 /**
 4546  * @brief Enumerate all hinted devices for this bus.
 4547  *
 4548  * Walks through the hints for this bus and calls the bus_hinted_child
 4549  * routine for each one it fines.  It searches first for the specific
 4550  * bus that's being probed for hinted children (eg isa0), and then for
 4551  * generic children (eg isa).
 4552  *
 4553  * @param       dev     bus device to enumerate
 4554  */
 4555 void
 4556 bus_enumerate_hinted_children(device_t bus)
 4557 {
 4558         int i;
 4559         const char *dname, *busname;
 4560         int dunit;
 4561 
 4562         /*
 4563          * enumerate all devices on the specific bus
 4564          */
 4565         busname = device_get_nameunit(bus);
 4566         i = 0;
 4567         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 4568                 BUS_HINTED_CHILD(bus, dname, dunit);
 4569 
 4570         /*
 4571          * and all the generic ones.
 4572          */
 4573         busname = device_get_name(bus);
 4574         i = 0;
 4575         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 4576                 BUS_HINTED_CHILD(bus, dname, dunit);
 4577 }
 4578 
 4579 #ifdef BUS_DEBUG
 4580 
 4581 /* the _short versions avoid iteration by not calling anything that prints
 4582  * more than oneliners. I love oneliners.
 4583  */
 4584 
 4585 static void
 4586 print_device_short(device_t dev, int indent)
 4587 {
 4588         if (!dev)
 4589                 return;
 4590 
 4591         indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
 4592             dev->unit, dev->desc,
 4593             (dev->parent? "":"no "),
 4594             (TAILQ_EMPTY(&dev->children)? "no ":""),
 4595             (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
 4596             (dev->flags&DF_FIXEDCLASS? "fixed,":""),
 4597             (dev->flags&DF_WILDCARD? "wildcard,":""),
 4598             (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
 4599             (dev->flags&DF_REBID? "rebiddable,":""),
 4600             (dev->ivars? "":"no "),
 4601             (dev->softc? "":"no "),
 4602             dev->busy));
 4603 }
 4604 
 4605 static void
 4606 print_device(device_t dev, int indent)
 4607 {
 4608         if (!dev)
 4609                 return;
 4610 
 4611         print_device_short(dev, indent);
 4612 
 4613         indentprintf(("Parent:\n"));
 4614         print_device_short(dev->parent, indent+1);
 4615         indentprintf(("Driver:\n"));
 4616         print_driver_short(dev->driver, indent+1);
 4617         indentprintf(("Devclass:\n"));
 4618         print_devclass_short(dev->devclass, indent+1);
 4619 }
 4620 
 4621 void
 4622 print_device_tree_short(device_t dev, int indent)
 4623 /* print the device and all its children (indented) */
 4624 {
 4625         device_t child;
 4626 
 4627         if (!dev)
 4628                 return;
 4629 
 4630         print_device_short(dev, indent);
 4631 
 4632         TAILQ_FOREACH(child, &dev->children, link) {
 4633                 print_device_tree_short(child, indent+1);
 4634         }
 4635 }
 4636 
 4637 void
 4638 print_device_tree(device_t dev, int indent)
 4639 /* print the device and all its children (indented) */
 4640 {
 4641         device_t child;
 4642 
 4643         if (!dev)
 4644                 return;
 4645 
 4646         print_device(dev, indent);
 4647 
 4648         TAILQ_FOREACH(child, &dev->children, link) {
 4649                 print_device_tree(child, indent+1);
 4650         }
 4651 }
 4652 
 4653 static void
 4654 print_driver_short(driver_t *driver, int indent)
 4655 {
 4656         if (!driver)
 4657                 return;
 4658 
 4659         indentprintf(("driver %s: softc size = %zd\n",
 4660             driver->name, driver->size));
 4661 }
 4662 
 4663 static void
 4664 print_driver(driver_t *driver, int indent)
 4665 {
 4666         if (!driver)
 4667                 return;
 4668 
 4669         print_driver_short(driver, indent);
 4670 }
 4671 
 4672 static void
 4673 print_driver_list(driver_list_t drivers, int indent)
 4674 {
 4675         driverlink_t driver;
 4676 
 4677         TAILQ_FOREACH(driver, &drivers, link) {
 4678                 print_driver(driver->driver, indent);
 4679         }
 4680 }
 4681 
 4682 static void
 4683 print_devclass_short(devclass_t dc, int indent)
 4684 {
 4685         if ( !dc )
 4686                 return;
 4687 
 4688         indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
 4689 }
 4690 
 4691 static void
 4692 print_devclass(devclass_t dc, int indent)
 4693 {
 4694         int i;
 4695 
 4696         if ( !dc )
 4697                 return;
 4698 
 4699         print_devclass_short(dc, indent);
 4700         indentprintf(("Drivers:\n"));
 4701         print_driver_list(dc->drivers, indent+1);
 4702 
 4703         indentprintf(("Devices:\n"));
 4704         for (i = 0; i < dc->maxunit; i++)
 4705                 if (dc->devices[i])
 4706                         print_device(dc->devices[i], indent+1);
 4707 }
 4708 
 4709 void
 4710 print_devclass_list_short(void)
 4711 {
 4712         devclass_t dc;
 4713 
 4714         printf("Short listing of devclasses, drivers & devices:\n");
 4715         TAILQ_FOREACH(dc, &devclasses, link) {
 4716                 print_devclass_short(dc, 0);
 4717         }
 4718 }
 4719 
 4720 void
 4721 print_devclass_list(void)
 4722 {
 4723         devclass_t dc;
 4724 
 4725         printf("Full listing of devclasses, drivers & devices:\n");
 4726         TAILQ_FOREACH(dc, &devclasses, link) {
 4727                 print_devclass(dc, 0);
 4728         }
 4729 }
 4730 
 4731 #endif
 4732 
 4733 /*
 4734  * User-space access to the device tree.
 4735  *
 4736  * We implement a small set of nodes:
 4737  *
 4738  * hw.bus                       Single integer read method to obtain the
 4739  *                              current generation count.
 4740  * hw.bus.devices               Reads the entire device tree in flat space.
 4741  * hw.bus.rman                  Resource manager interface
 4742  *
 4743  * We might like to add the ability to scan devclasses and/or drivers to
 4744  * determine what else is currently loaded/available.
 4745  */
 4746 
 4747 static int
 4748 sysctl_bus(SYSCTL_HANDLER_ARGS)
 4749 {
 4750         struct u_businfo        ubus;
 4751 
 4752         ubus.ub_version = BUS_USER_VERSION;
 4753         ubus.ub_generation = bus_data_generation;
 4754 
 4755         return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
 4756 }
 4757 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
 4758     "bus-related data");
 4759 
 4760 static int
 4761 sysctl_devices(SYSCTL_HANDLER_ARGS)
 4762 {
 4763         int                     *name = (int *)arg1;
 4764         u_int                   namelen = arg2;
 4765         int                     index;
 4766         struct device           *dev;
 4767         struct u_device         udev;   /* XXX this is a bit big */
 4768         int                     error;
 4769 
 4770         if (namelen != 2)
 4771                 return (EINVAL);
 4772 
 4773         if (bus_data_generation_check(name[0]))
 4774                 return (EINVAL);
 4775 
 4776         index = name[1];
 4777 
 4778         /*
 4779          * Scan the list of devices, looking for the requested index.
 4780          */
 4781         TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 4782                 if (index-- == 0)
 4783                         break;
 4784         }
 4785         if (dev == NULL)
 4786                 return (ENOENT);
 4787 
 4788         /*
 4789          * Populate the return array.
 4790          */
 4791         bzero(&udev, sizeof(udev));
 4792         udev.dv_handle = (uintptr_t)dev;
 4793         udev.dv_parent = (uintptr_t)dev->parent;
 4794         if (dev->nameunit != NULL)
 4795                 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
 4796         if (dev->desc != NULL)
 4797                 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
 4798         if (dev->driver != NULL && dev->driver->name != NULL)
 4799                 strlcpy(udev.dv_drivername, dev->driver->name,
 4800                     sizeof(udev.dv_drivername));
 4801         bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
 4802         bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
 4803         udev.dv_devflags = dev->devflags;
 4804         udev.dv_flags = dev->flags;
 4805         udev.dv_state = dev->state;
 4806         error = SYSCTL_OUT(req, &udev, sizeof(udev));
 4807         return (error);
 4808 }
 4809 
 4810 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
 4811     "system device tree");
 4812 
 4813 int
 4814 bus_data_generation_check(int generation)
 4815 {
 4816         if (generation != bus_data_generation)
 4817                 return (1);
 4818 
 4819         /* XXX generate optimised lists here? */
 4820         return (0);
 4821 }
 4822 
 4823 void
 4824 bus_data_generation_update(void)
 4825 {
 4826         bus_data_generation++;
 4827 }
 4828 
 4829 int
 4830 bus_free_resource(device_t dev, int type, struct resource *r)
 4831 {
 4832         if (r == NULL)
 4833                 return (0);
 4834         return (bus_release_resource(dev, type, rman_get_rid(r), r));
 4835 }

Cache object: 9cce5f1390276407d2c737ee5b50cff1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.