The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_bus.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997,1998,2003 Doug Rabson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD$");
   29 
   30 #include "opt_bus.h"
   31 
   32 #include <sys/param.h>
   33 #include <sys/conf.h>
   34 #include <sys/filio.h>
   35 #include <sys/lock.h>
   36 #include <sys/kernel.h>
   37 #include <sys/kobj.h>
   38 #include <sys/limits.h>
   39 #include <sys/malloc.h>
   40 #include <sys/module.h>
   41 #include <sys/mutex.h>
   42 #include <sys/poll.h>
   43 #include <sys/proc.h>
   44 #include <sys/condvar.h>
   45 #include <sys/queue.h>
   46 #include <machine/bus.h>
   47 #include <sys/rman.h>
   48 #include <sys/selinfo.h>
   49 #include <sys/signalvar.h>
   50 #include <sys/sysctl.h>
   51 #include <sys/systm.h>
   52 #include <sys/uio.h>
   53 #include <sys/bus.h>
   54 #include <sys/interrupt.h>
   55 
   56 #include <net/vnet.h>
   57 
   58 #include <machine/stdarg.h>
   59 
   60 #include <vm/uma.h>
   61 
   62 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
   63 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
   64 
   65 /*
   66  * Used to attach drivers to devclasses.
   67  */
   68 typedef struct driverlink *driverlink_t;
   69 struct driverlink {
   70         kobj_class_t    driver;
   71         TAILQ_ENTRY(driverlink) link;   /* list of drivers in devclass */
   72         int             pass;
   73         TAILQ_ENTRY(driverlink) passlink;
   74 };
   75 
   76 /*
   77  * Forward declarations
   78  */
   79 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
   80 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
   81 typedef TAILQ_HEAD(device_list, device) device_list_t;
   82 
   83 struct devclass {
   84         TAILQ_ENTRY(devclass) link;
   85         devclass_t      parent;         /* parent in devclass hierarchy */
   86         driver_list_t   drivers;     /* bus devclasses store drivers for bus */
   87         char            *name;
   88         device_t        *devices;       /* array of devices indexed by unit */
   89         int             maxunit;        /* size of devices array */
   90         int             flags;
   91 #define DC_HAS_CHILDREN         1
   92 
   93         struct sysctl_ctx_list sysctl_ctx;
   94         struct sysctl_oid *sysctl_tree;
   95 };
   96 
   97 /**
   98  * @brief Implementation of device.
   99  */
  100 struct device {
  101         /*
  102          * A device is a kernel object. The first field must be the
  103          * current ops table for the object.
  104          */
  105         KOBJ_FIELDS;
  106 
  107         /*
  108          * Device hierarchy.
  109          */
  110         TAILQ_ENTRY(device)     link;   /**< list of devices in parent */
  111         TAILQ_ENTRY(device)     devlink; /**< global device list membership */
  112         device_t        parent;         /**< parent of this device  */
  113         device_list_t   children;       /**< list of child devices */
  114 
  115         /*
  116          * Details of this device.
  117          */
  118         driver_t        *driver;        /**< current driver */
  119         devclass_t      devclass;       /**< current device class */
  120         int             unit;           /**< current unit number */
  121         char*           nameunit;       /**< name+unit e.g. foodev0 */
  122         char*           desc;           /**< driver specific description */
  123         int             busy;           /**< count of calls to device_busy() */
  124         device_state_t  state;          /**< current device state  */
  125         uint32_t        devflags;       /**< api level flags for device_get_flags() */
  126         u_int           flags;          /**< internal device flags  */
  127 #define DF_ENABLED      0x01            /* device should be probed/attached */
  128 #define DF_FIXEDCLASS   0x02            /* devclass specified at create time */
  129 #define DF_WILDCARD     0x04            /* unit was originally wildcard */
  130 #define DF_DESCMALLOCED 0x08            /* description was malloced */
  131 #define DF_QUIET        0x10            /* don't print verbose attach message */
  132 #define DF_DONENOMATCH  0x20            /* don't execute DEVICE_NOMATCH again */
  133 #define DF_EXTERNALSOFTC 0x40           /* softc not allocated by us */
  134 #define DF_REBID        0x80            /* Can rebid after attach */
  135         u_int   order;                  /**< order from device_add_child_ordered() */
  136         void    *ivars;                 /**< instance variables  */
  137         void    *softc;                 /**< current driver's variables  */
  138 
  139         struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
  140         struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
  141 };
  142 
  143 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
  144 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
  145 
  146 #ifdef BUS_DEBUG
  147 
  148 static int bus_debug = 1;
  149 TUNABLE_INT("bus.debug", &bus_debug);
  150 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
  151     "Debug bus code");
  152 
  153 #define PDEBUG(a)       if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
  154 #define DEVICENAME(d)   ((d)? device_get_name(d): "no device")
  155 #define DRIVERNAME(d)   ((d)? d->name : "no driver")
  156 #define DEVCLANAME(d)   ((d)? d->name : "no devclass")
  157 
  158 /**
  159  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
  160  * prevent syslog from deleting initial spaces
  161  */
  162 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
  163 
  164 static void print_device_short(device_t dev, int indent);
  165 static void print_device(device_t dev, int indent);
  166 void print_device_tree_short(device_t dev, int indent);
  167 void print_device_tree(device_t dev, int indent);
  168 static void print_driver_short(driver_t *driver, int indent);
  169 static void print_driver(driver_t *driver, int indent);
  170 static void print_driver_list(driver_list_t drivers, int indent);
  171 static void print_devclass_short(devclass_t dc, int indent);
  172 static void print_devclass(devclass_t dc, int indent);
  173 void print_devclass_list_short(void);
  174 void print_devclass_list(void);
  175 
  176 #else
  177 /* Make the compiler ignore the function calls */
  178 #define PDEBUG(a)                       /* nop */
  179 #define DEVICENAME(d)                   /* nop */
  180 #define DRIVERNAME(d)                   /* nop */
  181 #define DEVCLANAME(d)                   /* nop */
  182 
  183 #define print_device_short(d,i)         /* nop */
  184 #define print_device(d,i)               /* nop */
  185 #define print_device_tree_short(d,i)    /* nop */
  186 #define print_device_tree(d,i)          /* nop */
  187 #define print_driver_short(d,i)         /* nop */
  188 #define print_driver(d,i)               /* nop */
  189 #define print_driver_list(d,i)          /* nop */
  190 #define print_devclass_short(d,i)       /* nop */
  191 #define print_devclass(d,i)             /* nop */
  192 #define print_devclass_list_short()     /* nop */
  193 #define print_devclass_list()           /* nop */
  194 #endif
  195 
  196 /*
  197  * dev sysctl tree
  198  */
  199 
  200 enum {
  201         DEVCLASS_SYSCTL_PARENT,
  202 };
  203 
  204 static int
  205 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
  206 {
  207         devclass_t dc = (devclass_t)arg1;
  208         const char *value;
  209 
  210         switch (arg2) {
  211         case DEVCLASS_SYSCTL_PARENT:
  212                 value = dc->parent ? dc->parent->name : "";
  213                 break;
  214         default:
  215                 return (EINVAL);
  216         }
  217         return (SYSCTL_OUT(req, value, strlen(value)));
  218 }
  219 
  220 static void
  221 devclass_sysctl_init(devclass_t dc)
  222 {
  223 
  224         if (dc->sysctl_tree != NULL)
  225                 return;
  226         sysctl_ctx_init(&dc->sysctl_ctx);
  227         dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
  228             SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
  229             CTLFLAG_RD, NULL, "");
  230         SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
  231             OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
  232             dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
  233             "parent class");
  234 }
  235 
  236 enum {
  237         DEVICE_SYSCTL_DESC,
  238         DEVICE_SYSCTL_DRIVER,
  239         DEVICE_SYSCTL_LOCATION,
  240         DEVICE_SYSCTL_PNPINFO,
  241         DEVICE_SYSCTL_PARENT,
  242 };
  243 
  244 static int
  245 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
  246 {
  247         device_t dev = (device_t)arg1;
  248         const char *value;
  249         char *buf;
  250         int error;
  251 
  252         buf = NULL;
  253         switch (arg2) {
  254         case DEVICE_SYSCTL_DESC:
  255                 value = dev->desc ? dev->desc : "";
  256                 break;
  257         case DEVICE_SYSCTL_DRIVER:
  258                 value = dev->driver ? dev->driver->name : "";
  259                 break;
  260         case DEVICE_SYSCTL_LOCATION:
  261                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  262                 bus_child_location_str(dev, buf, 1024);
  263                 break;
  264         case DEVICE_SYSCTL_PNPINFO:
  265                 value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
  266                 bus_child_pnpinfo_str(dev, buf, 1024);
  267                 break;
  268         case DEVICE_SYSCTL_PARENT:
  269                 value = dev->parent ? dev->parent->nameunit : "";
  270                 break;
  271         default:
  272                 return (EINVAL);
  273         }
  274         error = SYSCTL_OUT(req, value, strlen(value));
  275         if (buf != NULL)
  276                 free(buf, M_BUS);
  277         return (error);
  278 }
  279 
  280 static void
  281 device_sysctl_init(device_t dev)
  282 {
  283         devclass_t dc = dev->devclass;
  284 
  285         if (dev->sysctl_tree != NULL)
  286                 return;
  287         devclass_sysctl_init(dc);
  288         sysctl_ctx_init(&dev->sysctl_ctx);
  289         dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
  290             SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
  291             dev->nameunit + strlen(dc->name),
  292             CTLFLAG_RD, NULL, "");
  293         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  294             OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
  295             dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
  296             "device description");
  297         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  298             OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
  299             dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
  300             "device driver name");
  301         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  302             OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
  303             dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
  304             "device location relative to parent");
  305         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  306             OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
  307             dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
  308             "device identification");
  309         SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
  310             OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
  311             dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
  312             "parent device");
  313 }
  314 
  315 static void
  316 device_sysctl_update(device_t dev)
  317 {
  318         devclass_t dc = dev->devclass;
  319 
  320         if (dev->sysctl_tree == NULL)
  321                 return;
  322         sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
  323 }
  324 
  325 static void
  326 device_sysctl_fini(device_t dev)
  327 {
  328         if (dev->sysctl_tree == NULL)
  329                 return;
  330         sysctl_ctx_free(&dev->sysctl_ctx);
  331         dev->sysctl_tree = NULL;
  332 }
  333 
  334 /*
  335  * /dev/devctl implementation
  336  */
  337 
  338 /*
  339  * This design allows only one reader for /dev/devctl.  This is not desirable
  340  * in the long run, but will get a lot of hair out of this implementation.
  341  * Maybe we should make this device a clonable device.
  342  *
  343  * Also note: we specifically do not attach a device to the device_t tree
  344  * to avoid potential chicken and egg problems.  One could argue that all
  345  * of this belongs to the root node.  One could also further argue that the
  346  * sysctl interface that we have not might more properly be an ioctl
  347  * interface, but at this stage of the game, I'm not inclined to rock that
  348  * boat.
  349  *
  350  * I'm also not sure that the SIGIO support is done correctly or not, as
  351  * I copied it from a driver that had SIGIO support that likely hasn't been
  352  * tested since 3.4 or 2.2.8!
  353  */
  354 
  355 /* Deprecated way to adjust queue length */
  356 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
  357 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
  358 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
  359     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
  360 
  361 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
  362 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
  363 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  364 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
  365 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
  366     0, sysctl_devctl_queue, "I", "devctl queue length");
  367 
  368 static d_open_t         devopen;
  369 static d_close_t        devclose;
  370 static d_read_t         devread;
  371 static d_ioctl_t        devioctl;
  372 static d_poll_t         devpoll;
  373 
  374 static struct cdevsw dev_cdevsw = {
  375         .d_version =    D_VERSION,
  376         .d_flags =      D_NEEDGIANT,
  377         .d_open =       devopen,
  378         .d_close =      devclose,
  379         .d_read =       devread,
  380         .d_ioctl =      devioctl,
  381         .d_poll =       devpoll,
  382         .d_name =       "devctl",
  383 };
  384 
  385 struct dev_event_info
  386 {
  387         char *dei_data;
  388         TAILQ_ENTRY(dev_event_info) dei_link;
  389 };
  390 
  391 TAILQ_HEAD(devq, dev_event_info);
  392 
  393 static struct dev_softc
  394 {
  395         int     inuse;
  396         int     nonblock;
  397         int     queued;
  398         struct mtx mtx;
  399         struct cv cv;
  400         struct selinfo sel;
  401         struct devq devq;
  402         struct proc *async_proc;
  403 } devsoftc;
  404 
  405 static struct cdev *devctl_dev;
  406 
  407 static void
  408 devinit(void)
  409 {
  410         devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
  411             UID_ROOT, GID_WHEEL, 0600, "devctl");
  412         mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
  413         cv_init(&devsoftc.cv, "dev cv");
  414         TAILQ_INIT(&devsoftc.devq);
  415 }
  416 
  417 static int
  418 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
  419 {
  420         if (devsoftc.inuse)
  421                 return (EBUSY);
  422         /* move to init */
  423         devsoftc.inuse = 1;
  424         devsoftc.nonblock = 0;
  425         devsoftc.async_proc = NULL;
  426         return (0);
  427 }
  428 
  429 static int
  430 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
  431 {
  432         devsoftc.inuse = 0;
  433         mtx_lock(&devsoftc.mtx);
  434         cv_broadcast(&devsoftc.cv);
  435         mtx_unlock(&devsoftc.mtx);
  436         devsoftc.async_proc = NULL;
  437         return (0);
  438 }
  439 
  440 /*
  441  * The read channel for this device is used to report changes to
  442  * userland in realtime.  We are required to free the data as well as
  443  * the n1 object because we allocate them separately.  Also note that
  444  * we return one record at a time.  If you try to read this device a
  445  * character at a time, you will lose the rest of the data.  Listening
  446  * programs are expected to cope.
  447  */
  448 static int
  449 devread(struct cdev *dev, struct uio *uio, int ioflag)
  450 {
  451         struct dev_event_info *n1;
  452         int rv;
  453 
  454         mtx_lock(&devsoftc.mtx);
  455         while (TAILQ_EMPTY(&devsoftc.devq)) {
  456                 if (devsoftc.nonblock) {
  457                         mtx_unlock(&devsoftc.mtx);
  458                         return (EAGAIN);
  459                 }
  460                 rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
  461                 if (rv) {
  462                         /*
  463                          * Need to translate ERESTART to EINTR here? -- jake
  464                          */
  465                         mtx_unlock(&devsoftc.mtx);
  466                         return (rv);
  467                 }
  468         }
  469         n1 = TAILQ_FIRST(&devsoftc.devq);
  470         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  471         devsoftc.queued--;
  472         mtx_unlock(&devsoftc.mtx);
  473         rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
  474         free(n1->dei_data, M_BUS);
  475         free(n1, M_BUS);
  476         return (rv);
  477 }
  478 
  479 static  int
  480 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
  481 {
  482         switch (cmd) {
  483 
  484         case FIONBIO:
  485                 if (*(int*)data)
  486                         devsoftc.nonblock = 1;
  487                 else
  488                         devsoftc.nonblock = 0;
  489                 return (0);
  490         case FIOASYNC:
  491                 if (*(int*)data)
  492                         devsoftc.async_proc = td->td_proc;
  493                 else
  494                         devsoftc.async_proc = NULL;
  495                 return (0);
  496 
  497                 /* (un)Support for other fcntl() calls. */
  498         case FIOCLEX:
  499         case FIONCLEX:
  500         case FIONREAD:
  501         case FIOSETOWN:
  502         case FIOGETOWN:
  503         default:
  504                 break;
  505         }
  506         return (ENOTTY);
  507 }
  508 
  509 static  int
  510 devpoll(struct cdev *dev, int events, struct thread *td)
  511 {
  512         int     revents = 0;
  513 
  514         mtx_lock(&devsoftc.mtx);
  515         if (events & (POLLIN | POLLRDNORM)) {
  516                 if (!TAILQ_EMPTY(&devsoftc.devq))
  517                         revents = events & (POLLIN | POLLRDNORM);
  518                 else
  519                         selrecord(td, &devsoftc.sel);
  520         }
  521         mtx_unlock(&devsoftc.mtx);
  522 
  523         return (revents);
  524 }
  525 
  526 /**
  527  * @brief Return whether the userland process is running
  528  */
  529 boolean_t
  530 devctl_process_running(void)
  531 {
  532         return (devsoftc.inuse == 1);
  533 }
  534 
  535 /**
  536  * @brief Queue data to be read from the devctl device
  537  *
  538  * Generic interface to queue data to the devctl device.  It is
  539  * assumed that @p data is properly formatted.  It is further assumed
  540  * that @p data is allocated using the M_BUS malloc type.
  541  */
  542 void
  543 devctl_queue_data_f(char *data, int flags)
  544 {
  545         struct dev_event_info *n1 = NULL, *n2 = NULL;
  546         struct proc *p;
  547 
  548         if (strlen(data) == 0)
  549                 goto out;
  550         if (devctl_queue_length == 0)
  551                 goto out;
  552         n1 = malloc(sizeof(*n1), M_BUS, flags);
  553         if (n1 == NULL)
  554                 goto out;
  555         n1->dei_data = data;
  556         mtx_lock(&devsoftc.mtx);
  557         if (devctl_queue_length == 0) {
  558                 mtx_unlock(&devsoftc.mtx);
  559                 free(n1->dei_data, M_BUS);
  560                 free(n1, M_BUS);
  561                 return;
  562         }
  563         /* Leave at least one spot in the queue... */
  564         while (devsoftc.queued > devctl_queue_length - 1) {
  565                 n2 = TAILQ_FIRST(&devsoftc.devq);
  566                 TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
  567                 free(n2->dei_data, M_BUS);
  568                 free(n2, M_BUS);
  569                 devsoftc.queued--;
  570         }
  571         TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
  572         devsoftc.queued++;
  573         cv_broadcast(&devsoftc.cv);
  574         mtx_unlock(&devsoftc.mtx);
  575         selwakeup(&devsoftc.sel);
  576         p = devsoftc.async_proc;
  577         if (p != NULL) {
  578                 PROC_LOCK(p);
  579                 kern_psignal(p, SIGIO);
  580                 PROC_UNLOCK(p);
  581         }
  582         return;
  583 out:
  584         /*
  585          * We have to free data on all error paths since the caller
  586          * assumes it will be free'd when this item is dequeued.
  587          */
  588         free(data, M_BUS);
  589         return;
  590 }
  591 
  592 void
  593 devctl_queue_data(char *data)
  594 {
  595 
  596         devctl_queue_data_f(data, M_NOWAIT);
  597 }
  598 
  599 /**
  600  * @brief Send a 'notification' to userland, using standard ways
  601  */
  602 void
  603 devctl_notify_f(const char *system, const char *subsystem, const char *type,
  604     const char *data, int flags)
  605 {
  606         int len = 0;
  607         char *msg;
  608 
  609         if (system == NULL)
  610                 return;         /* BOGUS!  Must specify system. */
  611         if (subsystem == NULL)
  612                 return;         /* BOGUS!  Must specify subsystem. */
  613         if (type == NULL)
  614                 return;         /* BOGUS!  Must specify type. */
  615         len += strlen(" system=") + strlen(system);
  616         len += strlen(" subsystem=") + strlen(subsystem);
  617         len += strlen(" type=") + strlen(type);
  618         /* add in the data message plus newline. */
  619         if (data != NULL)
  620                 len += strlen(data);
  621         len += 3;       /* '!', '\n', and NUL */
  622         msg = malloc(len, M_BUS, flags);
  623         if (msg == NULL)
  624                 return;         /* Drop it on the floor */
  625         if (data != NULL)
  626                 snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
  627                     system, subsystem, type, data);
  628         else
  629                 snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
  630                     system, subsystem, type);
  631         devctl_queue_data_f(msg, flags);
  632 }
  633 
  634 void
  635 devctl_notify(const char *system, const char *subsystem, const char *type,
  636     const char *data)
  637 {
  638 
  639         devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
  640 }
  641 
  642 /*
  643  * Common routine that tries to make sending messages as easy as possible.
  644  * We allocate memory for the data, copy strings into that, but do not
  645  * free it unless there's an error.  The dequeue part of the driver should
  646  * free the data.  We don't send data when the device is disabled.  We do
  647  * send data, even when we have no listeners, because we wish to avoid
  648  * races relating to startup and restart of listening applications.
  649  *
  650  * devaddq is designed to string together the type of event, with the
  651  * object of that event, plus the plug and play info and location info
  652  * for that event.  This is likely most useful for devices, but less
  653  * useful for other consumers of this interface.  Those should use
  654  * the devctl_queue_data() interface instead.
  655  */
  656 static void
  657 devaddq(const char *type, const char *what, device_t dev)
  658 {
  659         char *data = NULL;
  660         char *loc = NULL;
  661         char *pnp = NULL;
  662         const char *parstr;
  663 
  664         if (!devctl_queue_length)/* Rare race, but lost races safely discard */
  665                 return;
  666         data = malloc(1024, M_BUS, M_NOWAIT);
  667         if (data == NULL)
  668                 goto bad;
  669 
  670         /* get the bus specific location of this device */
  671         loc = malloc(1024, M_BUS, M_NOWAIT);
  672         if (loc == NULL)
  673                 goto bad;
  674         *loc = '\0';
  675         bus_child_location_str(dev, loc, 1024);
  676 
  677         /* Get the bus specific pnp info of this device */
  678         pnp = malloc(1024, M_BUS, M_NOWAIT);
  679         if (pnp == NULL)
  680                 goto bad;
  681         *pnp = '\0';
  682         bus_child_pnpinfo_str(dev, pnp, 1024);
  683 
  684         /* Get the parent of this device, or / if high enough in the tree. */
  685         if (device_get_parent(dev) == NULL)
  686                 parstr = ".";   /* Or '/' ? */
  687         else
  688                 parstr = device_get_nameunit(device_get_parent(dev));
  689         /* String it all together. */
  690         snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
  691           parstr);
  692         free(loc, M_BUS);
  693         free(pnp, M_BUS);
  694         devctl_queue_data(data);
  695         return;
  696 bad:
  697         free(pnp, M_BUS);
  698         free(loc, M_BUS);
  699         free(data, M_BUS);
  700         return;
  701 }
  702 
  703 /*
  704  * A device was added to the tree.  We are called just after it successfully
  705  * attaches (that is, probe and attach success for this device).  No call
  706  * is made if a device is merely parented into the tree.  See devnomatch
  707  * if probe fails.  If attach fails, no notification is sent (but maybe
  708  * we should have a different message for this).
  709  */
  710 static void
  711 devadded(device_t dev)
  712 {
  713         devaddq("+", device_get_nameunit(dev), dev);
  714 }
  715 
  716 /*
  717  * A device was removed from the tree.  We are called just before this
  718  * happens.
  719  */
  720 static void
  721 devremoved(device_t dev)
  722 {
  723         devaddq("-", device_get_nameunit(dev), dev);
  724 }
  725 
  726 /*
  727  * Called when there's no match for this device.  This is only called
  728  * the first time that no match happens, so we don't keep getting this
  729  * message.  Should that prove to be undesirable, we can change it.
  730  * This is called when all drivers that can attach to a given bus
  731  * decline to accept this device.  Other errors may not be detected.
  732  */
  733 static void
  734 devnomatch(device_t dev)
  735 {
  736         devaddq("?", "", dev);
  737 }
  738 
  739 static int
  740 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
  741 {
  742         struct dev_event_info *n1;
  743         int dis, error;
  744 
  745         dis = devctl_queue_length == 0;
  746         error = sysctl_handle_int(oidp, &dis, 0, req);
  747         if (error || !req->newptr)
  748                 return (error);
  749         mtx_lock(&devsoftc.mtx);
  750         if (dis) {
  751                 while (!TAILQ_EMPTY(&devsoftc.devq)) {
  752                         n1 = TAILQ_FIRST(&devsoftc.devq);
  753                         TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  754                         free(n1->dei_data, M_BUS);
  755                         free(n1, M_BUS);
  756                 }
  757                 devsoftc.queued = 0;
  758                 devctl_queue_length = 0;
  759         } else {
  760                 devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
  761         }
  762         mtx_unlock(&devsoftc.mtx);
  763         return (0);
  764 }
  765 
  766 static int
  767 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
  768 {
  769         struct dev_event_info *n1;
  770         int q, error;
  771 
  772         q = devctl_queue_length;
  773         error = sysctl_handle_int(oidp, &q, 0, req);
  774         if (error || !req->newptr)
  775                 return (error);
  776         if (q < 0)
  777                 return (EINVAL);
  778         mtx_lock(&devsoftc.mtx);
  779         devctl_queue_length = q;
  780         while (devsoftc.queued > devctl_queue_length) {
  781                 n1 = TAILQ_FIRST(&devsoftc.devq);
  782                 TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
  783                 free(n1->dei_data, M_BUS);
  784                 free(n1, M_BUS);
  785                 devsoftc.queued--;
  786         }
  787         mtx_unlock(&devsoftc.mtx);
  788         return (0);
  789 }
  790 
  791 /* End of /dev/devctl code */
  792 
  793 static TAILQ_HEAD(,device)      bus_data_devices;
  794 static int bus_data_generation = 1;
  795 
  796 static kobj_method_t null_methods[] = {
  797         KOBJMETHOD_END
  798 };
  799 
  800 DEFINE_CLASS(null, null_methods, 0);
  801 
  802 /*
  803  * Bus pass implementation
  804  */
  805 
  806 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
  807 int bus_current_pass = BUS_PASS_ROOT;
  808 
  809 /**
  810  * @internal
  811  * @brief Register the pass level of a new driver attachment
  812  *
  813  * Register a new driver attachment's pass level.  If no driver
  814  * attachment with the same pass level has been added, then @p new
  815  * will be added to the global passes list.
  816  *
  817  * @param new           the new driver attachment
  818  */
  819 static void
  820 driver_register_pass(struct driverlink *new)
  821 {
  822         struct driverlink *dl;
  823 
  824         /* We only consider pass numbers during boot. */
  825         if (bus_current_pass == BUS_PASS_DEFAULT)
  826                 return;
  827 
  828         /*
  829          * Walk the passes list.  If we already know about this pass
  830          * then there is nothing to do.  If we don't, then insert this
  831          * driver link into the list.
  832          */
  833         TAILQ_FOREACH(dl, &passes, passlink) {
  834                 if (dl->pass < new->pass)
  835                         continue;
  836                 if (dl->pass == new->pass)
  837                         return;
  838                 TAILQ_INSERT_BEFORE(dl, new, passlink);
  839                 return;
  840         }
  841         TAILQ_INSERT_TAIL(&passes, new, passlink);
  842 }
  843 
  844 /**
  845  * @brief Raise the current bus pass
  846  *
  847  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
  848  * method on the root bus to kick off a new device tree scan for each
  849  * new pass level that has at least one driver.
  850  */
  851 void
  852 bus_set_pass(int pass)
  853 {
  854         struct driverlink *dl;
  855 
  856         if (bus_current_pass > pass)
  857                 panic("Attempt to lower bus pass level");
  858 
  859         TAILQ_FOREACH(dl, &passes, passlink) {
  860                 /* Skip pass values below the current pass level. */
  861                 if (dl->pass <= bus_current_pass)
  862                         continue;
  863 
  864                 /*
  865                  * Bail once we hit a driver with a pass level that is
  866                  * too high.
  867                  */
  868                 if (dl->pass > pass)
  869                         break;
  870 
  871                 /*
  872                  * Raise the pass level to the next level and rescan
  873                  * the tree.
  874                  */
  875                 bus_current_pass = dl->pass;
  876                 BUS_NEW_PASS(root_bus);
  877         }
  878 
  879         /*
  880          * If there isn't a driver registered for the requested pass,
  881          * then bus_current_pass might still be less than 'pass'.  Set
  882          * it to 'pass' in that case.
  883          */
  884         if (bus_current_pass < pass)
  885                 bus_current_pass = pass;
  886         KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
  887 }
  888 
  889 /*
  890  * Devclass implementation
  891  */
  892 
  893 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
  894 
  895 /**
  896  * @internal
  897  * @brief Find or create a device class
  898  *
  899  * If a device class with the name @p classname exists, return it,
  900  * otherwise if @p create is non-zero create and return a new device
  901  * class.
  902  *
  903  * If @p parentname is non-NULL, the parent of the devclass is set to
  904  * the devclass of that name.
  905  *
  906  * @param classname     the devclass name to find or create
  907  * @param parentname    the parent devclass name or @c NULL
  908  * @param create        non-zero to create a devclass
  909  */
  910 static devclass_t
  911 devclass_find_internal(const char *classname, const char *parentname,
  912                        int create)
  913 {
  914         devclass_t dc;
  915 
  916         PDEBUG(("looking for %s", classname));
  917         if (!classname)
  918                 return (NULL);
  919 
  920         TAILQ_FOREACH(dc, &devclasses, link) {
  921                 if (!strcmp(dc->name, classname))
  922                         break;
  923         }
  924 
  925         if (create && !dc) {
  926                 PDEBUG(("creating %s", classname));
  927                 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
  928                     M_BUS, M_NOWAIT | M_ZERO);
  929                 if (!dc)
  930                         return (NULL);
  931                 dc->parent = NULL;
  932                 dc->name = (char*) (dc + 1);
  933                 strcpy(dc->name, classname);
  934                 TAILQ_INIT(&dc->drivers);
  935                 TAILQ_INSERT_TAIL(&devclasses, dc, link);
  936 
  937                 bus_data_generation_update();
  938         }
  939 
  940         /*
  941          * If a parent class is specified, then set that as our parent so
  942          * that this devclass will support drivers for the parent class as
  943          * well.  If the parent class has the same name don't do this though
  944          * as it creates a cycle that can trigger an infinite loop in
  945          * device_probe_child() if a device exists for which there is no
  946          * suitable driver.
  947          */
  948         if (parentname && dc && !dc->parent &&
  949             strcmp(classname, parentname) != 0) {
  950                 dc->parent = devclass_find_internal(parentname, NULL, TRUE);
  951                 dc->parent->flags |= DC_HAS_CHILDREN;
  952         }
  953 
  954         return (dc);
  955 }
  956 
  957 /**
  958  * @brief Create a device class
  959  *
  960  * If a device class with the name @p classname exists, return it,
  961  * otherwise create and return a new device class.
  962  *
  963  * @param classname     the devclass name to find or create
  964  */
  965 devclass_t
  966 devclass_create(const char *classname)
  967 {
  968         return (devclass_find_internal(classname, NULL, TRUE));
  969 }
  970 
  971 /**
  972  * @brief Find a device class
  973  *
  974  * If a device class with the name @p classname exists, return it,
  975  * otherwise return @c NULL.
  976  *
  977  * @param classname     the devclass name to find
  978  */
  979 devclass_t
  980 devclass_find(const char *classname)
  981 {
  982         return (devclass_find_internal(classname, NULL, FALSE));
  983 }
  984 
  985 /**
  986  * @brief Register that a device driver has been added to a devclass
  987  *
  988  * Register that a device driver has been added to a devclass.  This
  989  * is called by devclass_add_driver to accomplish the recursive
  990  * notification of all the children classes of dc, as well as dc.
  991  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
  992  * the devclass.
  993  *
  994  * We do a full search here of the devclass list at each iteration
  995  * level to save storing children-lists in the devclass structure.  If
  996  * we ever move beyond a few dozen devices doing this, we may need to
  997  * reevaluate...
  998  *
  999  * @param dc            the devclass to edit
 1000  * @param driver        the driver that was just added
 1001  */
 1002 static void
 1003 devclass_driver_added(devclass_t dc, driver_t *driver)
 1004 {
 1005         devclass_t parent;
 1006         int i;
 1007 
 1008         /*
 1009          * Call BUS_DRIVER_ADDED for any existing busses in this class.
 1010          */
 1011         for (i = 0; i < dc->maxunit; i++)
 1012                 if (dc->devices[i] && device_is_attached(dc->devices[i]))
 1013                         BUS_DRIVER_ADDED(dc->devices[i], driver);
 1014 
 1015         /*
 1016          * Walk through the children classes.  Since we only keep a
 1017          * single parent pointer around, we walk the entire list of
 1018          * devclasses looking for children.  We set the
 1019          * DC_HAS_CHILDREN flag when a child devclass is created on
 1020          * the parent, so we only walk the list for those devclasses
 1021          * that have children.
 1022          */
 1023         if (!(dc->flags & DC_HAS_CHILDREN))
 1024                 return;
 1025         parent = dc;
 1026         TAILQ_FOREACH(dc, &devclasses, link) {
 1027                 if (dc->parent == parent)
 1028                         devclass_driver_added(dc, driver);
 1029         }
 1030 }
 1031 
 1032 /**
 1033  * @brief Add a device driver to a device class
 1034  *
 1035  * Add a device driver to a devclass. This is normally called
 1036  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
 1037  * all devices in the devclass will be called to allow them to attempt
 1038  * to re-probe any unmatched children.
 1039  *
 1040  * @param dc            the devclass to edit
 1041  * @param driver        the driver to register
 1042  */
 1043 int
 1044 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
 1045 {
 1046         driverlink_t dl;
 1047         const char *parentname;
 1048 
 1049         PDEBUG(("%s", DRIVERNAME(driver)));
 1050 
 1051         /* Don't allow invalid pass values. */
 1052         if (pass <= BUS_PASS_ROOT)
 1053                 return (EINVAL);
 1054 
 1055         dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
 1056         if (!dl)
 1057                 return (ENOMEM);
 1058 
 1059         /*
 1060          * Compile the driver's methods. Also increase the reference count
 1061          * so that the class doesn't get freed when the last instance
 1062          * goes. This means we can safely use static methods and avoids a
 1063          * double-free in devclass_delete_driver.
 1064          */
 1065         kobj_class_compile((kobj_class_t) driver);
 1066 
 1067         /*
 1068          * If the driver has any base classes, make the
 1069          * devclass inherit from the devclass of the driver's
 1070          * first base class. This will allow the system to
 1071          * search for drivers in both devclasses for children
 1072          * of a device using this driver.
 1073          */
 1074         if (driver->baseclasses)
 1075                 parentname = driver->baseclasses[0]->name;
 1076         else
 1077                 parentname = NULL;
 1078         *dcp = devclass_find_internal(driver->name, parentname, TRUE);
 1079 
 1080         dl->driver = driver;
 1081         TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
 1082         driver->refs++;         /* XXX: kobj_mtx */
 1083         dl->pass = pass;
 1084         driver_register_pass(dl);
 1085 
 1086         devclass_driver_added(dc, driver);
 1087         bus_data_generation_update();
 1088         return (0);
 1089 }
 1090 
 1091 /**
 1092  * @brief Register that a device driver has been deleted from a devclass
 1093  *
 1094  * Register that a device driver has been removed from a devclass.
 1095  * This is called by devclass_delete_driver to accomplish the
 1096  * recursive notification of all the children classes of busclass, as
 1097  * well as busclass.  Each layer will attempt to detach the driver
 1098  * from any devices that are children of the bus's devclass.  The function
 1099  * will return an error if a device fails to detach.
 1100  * 
 1101  * We do a full search here of the devclass list at each iteration
 1102  * level to save storing children-lists in the devclass structure.  If
 1103  * we ever move beyond a few dozen devices doing this, we may need to
 1104  * reevaluate...
 1105  *
 1106  * @param busclass      the devclass of the parent bus
 1107  * @param dc            the devclass of the driver being deleted
 1108  * @param driver        the driver being deleted
 1109  */
 1110 static int
 1111 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
 1112 {
 1113         devclass_t parent;
 1114         device_t dev;
 1115         int error, i;
 1116 
 1117         /*
 1118          * Disassociate from any devices.  We iterate through all the
 1119          * devices in the devclass of the driver and detach any which are
 1120          * using the driver and which have a parent in the devclass which
 1121          * we are deleting from.
 1122          *
 1123          * Note that since a driver can be in multiple devclasses, we
 1124          * should not detach devices which are not children of devices in
 1125          * the affected devclass.
 1126          */
 1127         for (i = 0; i < dc->maxunit; i++) {
 1128                 if (dc->devices[i]) {
 1129                         dev = dc->devices[i];
 1130                         if (dev->driver == driver && dev->parent &&
 1131                             dev->parent->devclass == busclass) {
 1132                                 if ((error = device_detach(dev)) != 0)
 1133                                         return (error);
 1134                                 BUS_PROBE_NOMATCH(dev->parent, dev);
 1135                                 devnomatch(dev);
 1136                                 dev->flags |= DF_DONENOMATCH;
 1137                         }
 1138                 }
 1139         }
 1140 
 1141         /*
 1142          * Walk through the children classes.  Since we only keep a
 1143          * single parent pointer around, we walk the entire list of
 1144          * devclasses looking for children.  We set the
 1145          * DC_HAS_CHILDREN flag when a child devclass is created on
 1146          * the parent, so we only walk the list for those devclasses
 1147          * that have children.
 1148          */
 1149         if (!(busclass->flags & DC_HAS_CHILDREN))
 1150                 return (0);
 1151         parent = busclass;
 1152         TAILQ_FOREACH(busclass, &devclasses, link) {
 1153                 if (busclass->parent == parent) {
 1154                         error = devclass_driver_deleted(busclass, dc, driver);
 1155                         if (error)
 1156                                 return (error);
 1157                 }
 1158         }
 1159         return (0);
 1160 }
 1161 
 1162 /**
 1163  * @brief Delete a device driver from a device class
 1164  *
 1165  * Delete a device driver from a devclass. This is normally called
 1166  * automatically by DRIVER_MODULE().
 1167  *
 1168  * If the driver is currently attached to any devices,
 1169  * devclass_delete_driver() will first attempt to detach from each
 1170  * device. If one of the detach calls fails, the driver will not be
 1171  * deleted.
 1172  *
 1173  * @param dc            the devclass to edit
 1174  * @param driver        the driver to unregister
 1175  */
 1176 int
 1177 devclass_delete_driver(devclass_t busclass, driver_t *driver)
 1178 {
 1179         devclass_t dc = devclass_find(driver->name);
 1180         driverlink_t dl;
 1181         int error;
 1182 
 1183         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1184 
 1185         if (!dc)
 1186                 return (0);
 1187 
 1188         /*
 1189          * Find the link structure in the bus' list of drivers.
 1190          */
 1191         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1192                 if (dl->driver == driver)
 1193                         break;
 1194         }
 1195 
 1196         if (!dl) {
 1197                 PDEBUG(("%s not found in %s list", driver->name,
 1198                     busclass->name));
 1199                 return (ENOENT);
 1200         }
 1201 
 1202         error = devclass_driver_deleted(busclass, dc, driver);
 1203         if (error != 0)
 1204                 return (error);
 1205 
 1206         TAILQ_REMOVE(&busclass->drivers, dl, link);
 1207         free(dl, M_BUS);
 1208 
 1209         /* XXX: kobj_mtx */
 1210         driver->refs--;
 1211         if (driver->refs == 0)
 1212                 kobj_class_free((kobj_class_t) driver);
 1213 
 1214         bus_data_generation_update();
 1215         return (0);
 1216 }
 1217 
 1218 /**
 1219  * @brief Quiesces a set of device drivers from a device class
 1220  *
 1221  * Quiesce a device driver from a devclass. This is normally called
 1222  * automatically by DRIVER_MODULE().
 1223  *
 1224  * If the driver is currently attached to any devices,
 1225  * devclass_quiesece_driver() will first attempt to quiesce each
 1226  * device.
 1227  *
 1228  * @param dc            the devclass to edit
 1229  * @param driver        the driver to unregister
 1230  */
 1231 static int
 1232 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
 1233 {
 1234         devclass_t dc = devclass_find(driver->name);
 1235         driverlink_t dl;
 1236         device_t dev;
 1237         int i;
 1238         int error;
 1239 
 1240         PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 1241 
 1242         if (!dc)
 1243                 return (0);
 1244 
 1245         /*
 1246          * Find the link structure in the bus' list of drivers.
 1247          */
 1248         TAILQ_FOREACH(dl, &busclass->drivers, link) {
 1249                 if (dl->driver == driver)
 1250                         break;
 1251         }
 1252 
 1253         if (!dl) {
 1254                 PDEBUG(("%s not found in %s list", driver->name,
 1255                     busclass->name));
 1256                 return (ENOENT);
 1257         }
 1258 
 1259         /*
 1260          * Quiesce all devices.  We iterate through all the devices in
 1261          * the devclass of the driver and quiesce any which are using
 1262          * the driver and which have a parent in the devclass which we
 1263          * are quiescing.
 1264          *
 1265          * Note that since a driver can be in multiple devclasses, we
 1266          * should not quiesce devices which are not children of
 1267          * devices in the affected devclass.
 1268          */
 1269         for (i = 0; i < dc->maxunit; i++) {
 1270                 if (dc->devices[i]) {
 1271                         dev = dc->devices[i];
 1272                         if (dev->driver == driver && dev->parent &&
 1273                             dev->parent->devclass == busclass) {
 1274                                 if ((error = device_quiesce(dev)) != 0)
 1275                                         return (error);
 1276                         }
 1277                 }
 1278         }
 1279 
 1280         return (0);
 1281 }
 1282 
 1283 /**
 1284  * @internal
 1285  */
 1286 static driverlink_t
 1287 devclass_find_driver_internal(devclass_t dc, const char *classname)
 1288 {
 1289         driverlink_t dl;
 1290 
 1291         PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
 1292 
 1293         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1294                 if (!strcmp(dl->driver->name, classname))
 1295                         return (dl);
 1296         }
 1297 
 1298         PDEBUG(("not found"));
 1299         return (NULL);
 1300 }
 1301 
 1302 /**
 1303  * @brief Return the name of the devclass
 1304  */
 1305 const char *
 1306 devclass_get_name(devclass_t dc)
 1307 {
 1308         return (dc->name);
 1309 }
 1310 
 1311 /**
 1312  * @brief Find a device given a unit number
 1313  *
 1314  * @param dc            the devclass to search
 1315  * @param unit          the unit number to search for
 1316  * 
 1317  * @returns             the device with the given unit number or @c
 1318  *                      NULL if there is no such device
 1319  */
 1320 device_t
 1321 devclass_get_device(devclass_t dc, int unit)
 1322 {
 1323         if (dc == NULL || unit < 0 || unit >= dc->maxunit)
 1324                 return (NULL);
 1325         return (dc->devices[unit]);
 1326 }
 1327 
 1328 /**
 1329  * @brief Find the softc field of a device given a unit number
 1330  *
 1331  * @param dc            the devclass to search
 1332  * @param unit          the unit number to search for
 1333  * 
 1334  * @returns             the softc field of the device with the given
 1335  *                      unit number or @c NULL if there is no such
 1336  *                      device
 1337  */
 1338 void *
 1339 devclass_get_softc(devclass_t dc, int unit)
 1340 {
 1341         device_t dev;
 1342 
 1343         dev = devclass_get_device(dc, unit);
 1344         if (!dev)
 1345                 return (NULL);
 1346 
 1347         return (device_get_softc(dev));
 1348 }
 1349 
 1350 /**
 1351  * @brief Get a list of devices in the devclass
 1352  *
 1353  * An array containing a list of all the devices in the given devclass
 1354  * is allocated and returned in @p *devlistp. The number of devices
 1355  * in the array is returned in @p *devcountp. The caller should free
 1356  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
 1357  *
 1358  * @param dc            the devclass to examine
 1359  * @param devlistp      points at location for array pointer return
 1360  *                      value
 1361  * @param devcountp     points at location for array size return value
 1362  *
 1363  * @retval 0            success
 1364  * @retval ENOMEM       the array allocation failed
 1365  */
 1366 int
 1367 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
 1368 {
 1369         int count, i;
 1370         device_t *list;
 1371 
 1372         count = devclass_get_count(dc);
 1373         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 1374         if (!list)
 1375                 return (ENOMEM);
 1376 
 1377         count = 0;
 1378         for (i = 0; i < dc->maxunit; i++) {
 1379                 if (dc->devices[i]) {
 1380                         list[count] = dc->devices[i];
 1381                         count++;
 1382                 }
 1383         }
 1384 
 1385         *devlistp = list;
 1386         *devcountp = count;
 1387 
 1388         return (0);
 1389 }
 1390 
 1391 /**
 1392  * @brief Get a list of drivers in the devclass
 1393  *
 1394  * An array containing a list of pointers to all the drivers in the
 1395  * given devclass is allocated and returned in @p *listp.  The number
 1396  * of drivers in the array is returned in @p *countp. The caller should
 1397  * free the array using @c free(p, M_TEMP).
 1398  *
 1399  * @param dc            the devclass to examine
 1400  * @param listp         gives location for array pointer return value
 1401  * @param countp        gives location for number of array elements
 1402  *                      return value
 1403  *
 1404  * @retval 0            success
 1405  * @retval ENOMEM       the array allocation failed
 1406  */
 1407 int
 1408 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
 1409 {
 1410         driverlink_t dl;
 1411         driver_t **list;
 1412         int count;
 1413 
 1414         count = 0;
 1415         TAILQ_FOREACH(dl, &dc->drivers, link)
 1416                 count++;
 1417         list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
 1418         if (list == NULL)
 1419                 return (ENOMEM);
 1420 
 1421         count = 0;
 1422         TAILQ_FOREACH(dl, &dc->drivers, link) {
 1423                 list[count] = dl->driver;
 1424                 count++;
 1425         }
 1426         *listp = list;
 1427         *countp = count;
 1428 
 1429         return (0);
 1430 }
 1431 
 1432 /**
 1433  * @brief Get the number of devices in a devclass
 1434  *
 1435  * @param dc            the devclass to examine
 1436  */
 1437 int
 1438 devclass_get_count(devclass_t dc)
 1439 {
 1440         int count, i;
 1441 
 1442         count = 0;
 1443         for (i = 0; i < dc->maxunit; i++)
 1444                 if (dc->devices[i])
 1445                         count++;
 1446         return (count);
 1447 }
 1448 
 1449 /**
 1450  * @brief Get the maximum unit number used in a devclass
 1451  *
 1452  * Note that this is one greater than the highest currently-allocated
 1453  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
 1454  * that not even the devclass has been allocated yet.
 1455  *
 1456  * @param dc            the devclass to examine
 1457  */
 1458 int
 1459 devclass_get_maxunit(devclass_t dc)
 1460 {
 1461         if (dc == NULL)
 1462                 return (-1);
 1463         return (dc->maxunit);
 1464 }
 1465 
 1466 /**
 1467  * @brief Find a free unit number in a devclass
 1468  *
 1469  * This function searches for the first unused unit number greater
 1470  * that or equal to @p unit.
 1471  *
 1472  * @param dc            the devclass to examine
 1473  * @param unit          the first unit number to check
 1474  */
 1475 int
 1476 devclass_find_free_unit(devclass_t dc, int unit)
 1477 {
 1478         if (dc == NULL)
 1479                 return (unit);
 1480         while (unit < dc->maxunit && dc->devices[unit] != NULL)
 1481                 unit++;
 1482         return (unit);
 1483 }
 1484 
 1485 /**
 1486  * @brief Set the parent of a devclass
 1487  *
 1488  * The parent class is normally initialised automatically by
 1489  * DRIVER_MODULE().
 1490  *
 1491  * @param dc            the devclass to edit
 1492  * @param pdc           the new parent devclass
 1493  */
 1494 void
 1495 devclass_set_parent(devclass_t dc, devclass_t pdc)
 1496 {
 1497         dc->parent = pdc;
 1498 }
 1499 
 1500 /**
 1501  * @brief Get the parent of a devclass
 1502  *
 1503  * @param dc            the devclass to examine
 1504  */
 1505 devclass_t
 1506 devclass_get_parent(devclass_t dc)
 1507 {
 1508         return (dc->parent);
 1509 }
 1510 
 1511 struct sysctl_ctx_list *
 1512 devclass_get_sysctl_ctx(devclass_t dc)
 1513 {
 1514         return (&dc->sysctl_ctx);
 1515 }
 1516 
 1517 struct sysctl_oid *
 1518 devclass_get_sysctl_tree(devclass_t dc)
 1519 {
 1520         return (dc->sysctl_tree);
 1521 }
 1522 
 1523 /**
 1524  * @internal
 1525  * @brief Allocate a unit number
 1526  *
 1527  * On entry, @p *unitp is the desired unit number (or @c -1 if any
 1528  * will do). The allocated unit number is returned in @p *unitp.
 1529 
 1530  * @param dc            the devclass to allocate from
 1531  * @param unitp         points at the location for the allocated unit
 1532  *                      number
 1533  *
 1534  * @retval 0            success
 1535  * @retval EEXIST       the requested unit number is already allocated
 1536  * @retval ENOMEM       memory allocation failure
 1537  */
 1538 static int
 1539 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
 1540 {
 1541         const char *s;
 1542         int unit = *unitp;
 1543 
 1544         PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1545 
 1546         /* Ask the parent bus if it wants to wire this device. */
 1547         if (unit == -1)
 1548                 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
 1549                     &unit);
 1550 
 1551         /* If we were given a wired unit number, check for existing device */
 1552         /* XXX imp XXX */
 1553         if (unit != -1) {
 1554                 if (unit >= 0 && unit < dc->maxunit &&
 1555                     dc->devices[unit] != NULL) {
 1556                         if (bootverbose)
 1557                                 printf("%s: %s%d already exists; skipping it\n",
 1558                                     dc->name, dc->name, *unitp);
 1559                         return (EEXIST);
 1560                 }
 1561         } else {
 1562                 /* Unwired device, find the next available slot for it */
 1563                 unit = 0;
 1564                 for (unit = 0;; unit++) {
 1565                         /* If there is an "at" hint for a unit then skip it. */
 1566                         if (resource_string_value(dc->name, unit, "at", &s) ==
 1567                             0)
 1568                                 continue;
 1569 
 1570                         /* If this device slot is already in use, skip it. */
 1571                         if (unit < dc->maxunit && dc->devices[unit] != NULL)
 1572                                 continue;
 1573 
 1574                         break;
 1575                 }
 1576         }
 1577 
 1578         /*
 1579          * We've selected a unit beyond the length of the table, so let's
 1580          * extend the table to make room for all units up to and including
 1581          * this one.
 1582          */
 1583         if (unit >= dc->maxunit) {
 1584                 device_t *newlist, *oldlist;
 1585                 int newsize;
 1586 
 1587                 oldlist = dc->devices;
 1588                 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
 1589                 newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
 1590                 if (!newlist)
 1591                         return (ENOMEM);
 1592                 if (oldlist != NULL)
 1593                         bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
 1594                 bzero(newlist + dc->maxunit,
 1595                     sizeof(device_t) * (newsize - dc->maxunit));
 1596                 dc->devices = newlist;
 1597                 dc->maxunit = newsize;
 1598                 if (oldlist != NULL)
 1599                         free(oldlist, M_BUS);
 1600         }
 1601         PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
 1602 
 1603         *unitp = unit;
 1604         return (0);
 1605 }
 1606 
 1607 /**
 1608  * @internal
 1609  * @brief Add a device to a devclass
 1610  *
 1611  * A unit number is allocated for the device (using the device's
 1612  * preferred unit number if any) and the device is registered in the
 1613  * devclass. This allows the device to be looked up by its unit
 1614  * number, e.g. by decoding a dev_t minor number.
 1615  *
 1616  * @param dc            the devclass to add to
 1617  * @param dev           the device to add
 1618  *
 1619  * @retval 0            success
 1620  * @retval EEXIST       the requested unit number is already allocated
 1621  * @retval ENOMEM       memory allocation failure
 1622  */
 1623 static int
 1624 devclass_add_device(devclass_t dc, device_t dev)
 1625 {
 1626         int buflen, error;
 1627 
 1628         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1629 
 1630         buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
 1631         if (buflen < 0)
 1632                 return (ENOMEM);
 1633         dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
 1634         if (!dev->nameunit)
 1635                 return (ENOMEM);
 1636 
 1637         if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
 1638                 free(dev->nameunit, M_BUS);
 1639                 dev->nameunit = NULL;
 1640                 return (error);
 1641         }
 1642         dc->devices[dev->unit] = dev;
 1643         dev->devclass = dc;
 1644         snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
 1645 
 1646         return (0);
 1647 }
 1648 
 1649 /**
 1650  * @internal
 1651  * @brief Delete a device from a devclass
 1652  *
 1653  * The device is removed from the devclass's device list and its unit
 1654  * number is freed.
 1655 
 1656  * @param dc            the devclass to delete from
 1657  * @param dev           the device to delete
 1658  *
 1659  * @retval 0            success
 1660  */
 1661 static int
 1662 devclass_delete_device(devclass_t dc, device_t dev)
 1663 {
 1664         if (!dc || !dev)
 1665                 return (0);
 1666 
 1667         PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 1668 
 1669         if (dev->devclass != dc || dc->devices[dev->unit] != dev)
 1670                 panic("devclass_delete_device: inconsistent device class");
 1671         dc->devices[dev->unit] = NULL;
 1672         if (dev->flags & DF_WILDCARD)
 1673                 dev->unit = -1;
 1674         dev->devclass = NULL;
 1675         free(dev->nameunit, M_BUS);
 1676         dev->nameunit = NULL;
 1677 
 1678         return (0);
 1679 }
 1680 
 1681 /**
 1682  * @internal
 1683  * @brief Make a new device and add it as a child of @p parent
 1684  *
 1685  * @param parent        the parent of the new device
 1686  * @param name          the devclass name of the new device or @c NULL
 1687  *                      to leave the devclass unspecified
 1688  * @parem unit          the unit number of the new device of @c -1 to
 1689  *                      leave the unit number unspecified
 1690  *
 1691  * @returns the new device
 1692  */
 1693 static device_t
 1694 make_device(device_t parent, const char *name, int unit)
 1695 {
 1696         device_t dev;
 1697         devclass_t dc;
 1698 
 1699         PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
 1700 
 1701         if (name) {
 1702                 dc = devclass_find_internal(name, NULL, TRUE);
 1703                 if (!dc) {
 1704                         printf("make_device: can't find device class %s\n",
 1705                             name);
 1706                         return (NULL);
 1707                 }
 1708         } else {
 1709                 dc = NULL;
 1710         }
 1711 
 1712         dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
 1713         if (!dev)
 1714                 return (NULL);
 1715 
 1716         dev->parent = parent;
 1717         TAILQ_INIT(&dev->children);
 1718         kobj_init((kobj_t) dev, &null_class);
 1719         dev->driver = NULL;
 1720         dev->devclass = NULL;
 1721         dev->unit = unit;
 1722         dev->nameunit = NULL;
 1723         dev->desc = NULL;
 1724         dev->busy = 0;
 1725         dev->devflags = 0;
 1726         dev->flags = DF_ENABLED;
 1727         dev->order = 0;
 1728         if (unit == -1)
 1729                 dev->flags |= DF_WILDCARD;
 1730         if (name) {
 1731                 dev->flags |= DF_FIXEDCLASS;
 1732                 if (devclass_add_device(dc, dev)) {
 1733                         kobj_delete((kobj_t) dev, M_BUS);
 1734                         return (NULL);
 1735                 }
 1736         }
 1737         dev->ivars = NULL;
 1738         dev->softc = NULL;
 1739 
 1740         dev->state = DS_NOTPRESENT;
 1741 
 1742         TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
 1743         bus_data_generation_update();
 1744 
 1745         return (dev);
 1746 }
 1747 
 1748 /**
 1749  * @internal
 1750  * @brief Print a description of a device.
 1751  */
 1752 static int
 1753 device_print_child(device_t dev, device_t child)
 1754 {
 1755         int retval = 0;
 1756 
 1757         if (device_is_alive(child))
 1758                 retval += BUS_PRINT_CHILD(dev, child);
 1759         else
 1760                 retval += device_printf(child, " not found\n");
 1761 
 1762         return (retval);
 1763 }
 1764 
 1765 /**
 1766  * @brief Create a new device
 1767  *
 1768  * This creates a new device and adds it as a child of an existing
 1769  * parent device. The new device will be added after the last existing
 1770  * child with order zero.
 1771  * 
 1772  * @param dev           the device which will be the parent of the
 1773  *                      new child device
 1774  * @param name          devclass name for new device or @c NULL if not
 1775  *                      specified
 1776  * @param unit          unit number for new device or @c -1 if not
 1777  *                      specified
 1778  * 
 1779  * @returns             the new device
 1780  */
 1781 device_t
 1782 device_add_child(device_t dev, const char *name, int unit)
 1783 {
 1784         return (device_add_child_ordered(dev, 0, name, unit));
 1785 }
 1786 
 1787 /**
 1788  * @brief Create a new device
 1789  *
 1790  * This creates a new device and adds it as a child of an existing
 1791  * parent device. The new device will be added after the last existing
 1792  * child with the same order.
 1793  * 
 1794  * @param dev           the device which will be the parent of the
 1795  *                      new child device
 1796  * @param order         a value which is used to partially sort the
 1797  *                      children of @p dev - devices created using
 1798  *                      lower values of @p order appear first in @p
 1799  *                      dev's list of children
 1800  * @param name          devclass name for new device or @c NULL if not
 1801  *                      specified
 1802  * @param unit          unit number for new device or @c -1 if not
 1803  *                      specified
 1804  * 
 1805  * @returns             the new device
 1806  */
 1807 device_t
 1808 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
 1809 {
 1810         device_t child;
 1811         device_t place;
 1812 
 1813         PDEBUG(("%s at %s with order %u as unit %d",
 1814             name, DEVICENAME(dev), order, unit));
 1815         KASSERT(name != NULL || unit == -1,
 1816             ("child device with wildcard name and specific unit number"));
 1817 
 1818         child = make_device(dev, name, unit);
 1819         if (child == NULL)
 1820                 return (child);
 1821         child->order = order;
 1822 
 1823         TAILQ_FOREACH(place, &dev->children, link) {
 1824                 if (place->order > order)
 1825                         break;
 1826         }
 1827 
 1828         if (place) {
 1829                 /*
 1830                  * The device 'place' is the first device whose order is
 1831                  * greater than the new child.
 1832                  */
 1833                 TAILQ_INSERT_BEFORE(place, child, link);
 1834         } else {
 1835                 /*
 1836                  * The new child's order is greater or equal to the order of
 1837                  * any existing device. Add the child to the tail of the list.
 1838                  */
 1839                 TAILQ_INSERT_TAIL(&dev->children, child, link);
 1840         }
 1841 
 1842         bus_data_generation_update();
 1843         return (child);
 1844 }
 1845 
 1846 /**
 1847  * @brief Delete a device
 1848  *
 1849  * This function deletes a device along with all of its children. If
 1850  * the device currently has a driver attached to it, the device is
 1851  * detached first using device_detach().
 1852  * 
 1853  * @param dev           the parent device
 1854  * @param child         the device to delete
 1855  *
 1856  * @retval 0            success
 1857  * @retval non-zero     a unit error code describing the error
 1858  */
 1859 int
 1860 device_delete_child(device_t dev, device_t child)
 1861 {
 1862         int error;
 1863         device_t grandchild;
 1864 
 1865         PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
 1866 
 1867         /* detach parent before deleting children, if any */
 1868         if ((error = device_detach(child)) != 0)
 1869                 return (error);
 1870         
 1871         /* remove children second */
 1872         while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
 1873                 error = device_delete_child(child, grandchild);
 1874                 if (error)
 1875                         return (error);
 1876         }
 1877 
 1878         if (child->devclass)
 1879                 devclass_delete_device(child->devclass, child);
 1880         if (child->parent)
 1881                 BUS_CHILD_DELETED(dev, child);
 1882         TAILQ_REMOVE(&dev->children, child, link);
 1883         TAILQ_REMOVE(&bus_data_devices, child, devlink);
 1884         kobj_delete((kobj_t) child, M_BUS);
 1885 
 1886         bus_data_generation_update();
 1887         return (0);
 1888 }
 1889 
 1890 /**
 1891  * @brief Delete all children devices of the given device, if any.
 1892  *
 1893  * This function deletes all children devices of the given device, if
 1894  * any, using the device_delete_child() function for each device it
 1895  * finds. If a child device cannot be deleted, this function will
 1896  * return an error code.
 1897  * 
 1898  * @param dev           the parent device
 1899  *
 1900  * @retval 0            success
 1901  * @retval non-zero     a device would not detach
 1902  */
 1903 int
 1904 device_delete_children(device_t dev)
 1905 {
 1906         device_t child;
 1907         int error;
 1908 
 1909         PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
 1910 
 1911         error = 0;
 1912 
 1913         while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
 1914                 error = device_delete_child(dev, child);
 1915                 if (error) {
 1916                         PDEBUG(("Failed deleting %s", DEVICENAME(child)));
 1917                         break;
 1918                 }
 1919         }
 1920         return (error);
 1921 }
 1922 
 1923 /**
 1924  * @brief Find a device given a unit number
 1925  *
 1926  * This is similar to devclass_get_devices() but only searches for
 1927  * devices which have @p dev as a parent.
 1928  *
 1929  * @param dev           the parent device to search
 1930  * @param unit          the unit number to search for.  If the unit is -1,
 1931  *                      return the first child of @p dev which has name
 1932  *                      @p classname (that is, the one with the lowest unit.)
 1933  *
 1934  * @returns             the device with the given unit number or @c
 1935  *                      NULL if there is no such device
 1936  */
 1937 device_t
 1938 device_find_child(device_t dev, const char *classname, int unit)
 1939 {
 1940         devclass_t dc;
 1941         device_t child;
 1942 
 1943         dc = devclass_find(classname);
 1944         if (!dc)
 1945                 return (NULL);
 1946 
 1947         if (unit != -1) {
 1948                 child = devclass_get_device(dc, unit);
 1949                 if (child && child->parent == dev)
 1950                         return (child);
 1951         } else {
 1952                 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
 1953                         child = devclass_get_device(dc, unit);
 1954                         if (child && child->parent == dev)
 1955                                 return (child);
 1956                 }
 1957         }
 1958         return (NULL);
 1959 }
 1960 
 1961 /**
 1962  * @internal
 1963  */
 1964 static driverlink_t
 1965 first_matching_driver(devclass_t dc, device_t dev)
 1966 {
 1967         if (dev->devclass)
 1968                 return (devclass_find_driver_internal(dc, dev->devclass->name));
 1969         return (TAILQ_FIRST(&dc->drivers));
 1970 }
 1971 
 1972 /**
 1973  * @internal
 1974  */
 1975 static driverlink_t
 1976 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
 1977 {
 1978         if (dev->devclass) {
 1979                 driverlink_t dl;
 1980                 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
 1981                         if (!strcmp(dev->devclass->name, dl->driver->name))
 1982                                 return (dl);
 1983                 return (NULL);
 1984         }
 1985         return (TAILQ_NEXT(last, link));
 1986 }
 1987 
 1988 /**
 1989  * @internal
 1990  */
 1991 int
 1992 device_probe_child(device_t dev, device_t child)
 1993 {
 1994         devclass_t dc;
 1995         driverlink_t best = NULL;
 1996         driverlink_t dl;
 1997         int result, pri = 0;
 1998         int hasclass = (child->devclass != NULL);
 1999 
 2000         GIANT_REQUIRED;
 2001 
 2002         dc = dev->devclass;
 2003         if (!dc)
 2004                 panic("device_probe_child: parent device has no devclass");
 2005 
 2006         /*
 2007          * If the state is already probed, then return.  However, don't
 2008          * return if we can rebid this object.
 2009          */
 2010         if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
 2011                 return (0);
 2012 
 2013         for (; dc; dc = dc->parent) {
 2014                 for (dl = first_matching_driver(dc, child);
 2015                      dl;
 2016                      dl = next_matching_driver(dc, child, dl)) {
 2017                         /* If this driver's pass is too high, then ignore it. */
 2018                         if (dl->pass > bus_current_pass)
 2019                                 continue;
 2020 
 2021                         PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
 2022                         result = device_set_driver(child, dl->driver);
 2023                         if (result == ENOMEM)
 2024                                 return (result);
 2025                         else if (result != 0)
 2026                                 continue;
 2027                         if (!hasclass) {
 2028                                 if (device_set_devclass(child,
 2029                                     dl->driver->name) != 0) {
 2030                                         printf("driver bug: Unable to set "
 2031                                             "devclass (devname: %s)\n",
 2032                                             device_get_name(child));
 2033                                         (void)device_set_driver(child, NULL);
 2034                                         continue;
 2035                                 }
 2036                         }
 2037 
 2038                         /* Fetch any flags for the device before probing. */
 2039                         resource_int_value(dl->driver->name, child->unit,
 2040                             "flags", &child->devflags);
 2041 
 2042                         result = DEVICE_PROBE(child);
 2043 
 2044                         /* Reset flags and devclass before the next probe. */
 2045                         child->devflags = 0;
 2046                         if (!hasclass)
 2047                                 (void)device_set_devclass(child, NULL);
 2048 
 2049                         /*
 2050                          * If the driver returns SUCCESS, there can be
 2051                          * no higher match for this device.
 2052                          */
 2053                         if (result == 0) {
 2054                                 best = dl;
 2055                                 pri = 0;
 2056                                 break;
 2057                         }
 2058 
 2059                         /*
 2060                          * The driver returned an error so it
 2061                          * certainly doesn't match.
 2062                          */
 2063                         if (result > 0) {
 2064                                 (void)device_set_driver(child, NULL);
 2065                                 continue;
 2066                         }
 2067 
 2068                         /*
 2069                          * A priority lower than SUCCESS, remember the
 2070                          * best matching driver. Initialise the value
 2071                          * of pri for the first match.
 2072                          */
 2073                         if (best == NULL || result > pri) {
 2074                                 /*
 2075                                  * Probes that return BUS_PROBE_NOWILDCARD
 2076                                  * or lower only match when they are set
 2077                                  * in stone by the parent bus.
 2078                                  */
 2079                                 if (result <= BUS_PROBE_NOWILDCARD &&
 2080                                     child->flags & DF_WILDCARD)
 2081                                         continue;
 2082                                 best = dl;
 2083                                 pri = result;
 2084                                 continue;
 2085                         }
 2086                 }
 2087                 /*
 2088                  * If we have an unambiguous match in this devclass,
 2089                  * don't look in the parent.
 2090                  */
 2091                 if (best && pri == 0)
 2092                         break;
 2093         }
 2094 
 2095         /*
 2096          * If we found a driver, change state and initialise the devclass.
 2097          */
 2098         /* XXX What happens if we rebid and got no best? */
 2099         if (best) {
 2100                 /*
 2101                  * If this device was attached, and we were asked to
 2102                  * rescan, and it is a different driver, then we have
 2103                  * to detach the old driver and reattach this new one.
 2104                  * Note, we don't have to check for DF_REBID here
 2105                  * because if the state is > DS_ALIVE, we know it must
 2106                  * be.
 2107                  *
 2108                  * This assumes that all DF_REBID drivers can have
 2109                  * their probe routine called at any time and that
 2110                  * they are idempotent as well as completely benign in
 2111                  * normal operations.
 2112                  *
 2113                  * We also have to make sure that the detach
 2114                  * succeeded, otherwise we fail the operation (or
 2115                  * maybe it should just fail silently?  I'm torn).
 2116                  */
 2117                 if (child->state > DS_ALIVE && best->driver != child->driver)
 2118                         if ((result = device_detach(dev)) != 0)
 2119                                 return (result);
 2120 
 2121                 /* Set the winning driver, devclass, and flags. */
 2122                 if (!child->devclass) {
 2123                         result = device_set_devclass(child, best->driver->name);
 2124                         if (result != 0)
 2125                                 return (result);
 2126                 }
 2127                 result = device_set_driver(child, best->driver);
 2128                 if (result != 0)
 2129                         return (result);
 2130                 resource_int_value(best->driver->name, child->unit,
 2131                     "flags", &child->devflags);
 2132 
 2133                 if (pri < 0) {
 2134                         /*
 2135                          * A bit bogus. Call the probe method again to make
 2136                          * sure that we have the right description.
 2137                          */
 2138                         DEVICE_PROBE(child);
 2139 #if 0
 2140                         child->flags |= DF_REBID;
 2141 #endif
 2142                 } else
 2143                         child->flags &= ~DF_REBID;
 2144                 child->state = DS_ALIVE;
 2145 
 2146                 bus_data_generation_update();
 2147                 return (0);
 2148         }
 2149 
 2150         return (ENXIO);
 2151 }
 2152 
 2153 /**
 2154  * @brief Return the parent of a device
 2155  */
 2156 device_t
 2157 device_get_parent(device_t dev)
 2158 {
 2159         return (dev->parent);
 2160 }
 2161 
 2162 /**
 2163  * @brief Get a list of children of a device
 2164  *
 2165  * An array containing a list of all the children of the given device
 2166  * is allocated and returned in @p *devlistp. The number of devices
 2167  * in the array is returned in @p *devcountp. The caller should free
 2168  * the array using @c free(p, M_TEMP).
 2169  *
 2170  * @param dev           the device to examine
 2171  * @param devlistp      points at location for array pointer return
 2172  *                      value
 2173  * @param devcountp     points at location for array size return value
 2174  *
 2175  * @retval 0            success
 2176  * @retval ENOMEM       the array allocation failed
 2177  */
 2178 int
 2179 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
 2180 {
 2181         int count;
 2182         device_t child;
 2183         device_t *list;
 2184 
 2185         count = 0;
 2186         TAILQ_FOREACH(child, &dev->children, link) {
 2187                 count++;
 2188         }
 2189         if (count == 0) {
 2190                 *devlistp = NULL;
 2191                 *devcountp = 0;
 2192                 return (0);
 2193         }
 2194 
 2195         list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 2196         if (!list)
 2197                 return (ENOMEM);
 2198 
 2199         count = 0;
 2200         TAILQ_FOREACH(child, &dev->children, link) {
 2201                 list[count] = child;
 2202                 count++;
 2203         }
 2204 
 2205         *devlistp = list;
 2206         *devcountp = count;
 2207 
 2208         return (0);
 2209 }
 2210 
 2211 /**
 2212  * @brief Return the current driver for the device or @c NULL if there
 2213  * is no driver currently attached
 2214  */
 2215 driver_t *
 2216 device_get_driver(device_t dev)
 2217 {
 2218         return (dev->driver);
 2219 }
 2220 
 2221 /**
 2222  * @brief Return the current devclass for the device or @c NULL if
 2223  * there is none.
 2224  */
 2225 devclass_t
 2226 device_get_devclass(device_t dev)
 2227 {
 2228         return (dev->devclass);
 2229 }
 2230 
 2231 /**
 2232  * @brief Return the name of the device's devclass or @c NULL if there
 2233  * is none.
 2234  */
 2235 const char *
 2236 device_get_name(device_t dev)
 2237 {
 2238         if (dev != NULL && dev->devclass)
 2239                 return (devclass_get_name(dev->devclass));
 2240         return (NULL);
 2241 }
 2242 
 2243 /**
 2244  * @brief Return a string containing the device's devclass name
 2245  * followed by an ascii representation of the device's unit number
 2246  * (e.g. @c "foo2").
 2247  */
 2248 const char *
 2249 device_get_nameunit(device_t dev)
 2250 {
 2251         return (dev->nameunit);
 2252 }
 2253 
 2254 /**
 2255  * @brief Return the device's unit number.
 2256  */
 2257 int
 2258 device_get_unit(device_t dev)
 2259 {
 2260         return (dev->unit);
 2261 }
 2262 
 2263 /**
 2264  * @brief Return the device's description string
 2265  */
 2266 const char *
 2267 device_get_desc(device_t dev)
 2268 {
 2269         return (dev->desc);
 2270 }
 2271 
 2272 /**
 2273  * @brief Return the device's flags
 2274  */
 2275 uint32_t
 2276 device_get_flags(device_t dev)
 2277 {
 2278         return (dev->devflags);
 2279 }
 2280 
 2281 struct sysctl_ctx_list *
 2282 device_get_sysctl_ctx(device_t dev)
 2283 {
 2284         return (&dev->sysctl_ctx);
 2285 }
 2286 
 2287 struct sysctl_oid *
 2288 device_get_sysctl_tree(device_t dev)
 2289 {
 2290         return (dev->sysctl_tree);
 2291 }
 2292 
 2293 /**
 2294  * @brief Print the name of the device followed by a colon and a space
 2295  *
 2296  * @returns the number of characters printed
 2297  */
 2298 int
 2299 device_print_prettyname(device_t dev)
 2300 {
 2301         const char *name = device_get_name(dev);
 2302 
 2303         if (name == NULL)
 2304                 return (printf("unknown: "));
 2305         return (printf("%s%d: ", name, device_get_unit(dev)));
 2306 }
 2307 
 2308 /**
 2309  * @brief Print the name of the device followed by a colon, a space
 2310  * and the result of calling vprintf() with the value of @p fmt and
 2311  * the following arguments.
 2312  *
 2313  * @returns the number of characters printed
 2314  */
 2315 int
 2316 device_printf(device_t dev, const char * fmt, ...)
 2317 {
 2318         va_list ap;
 2319         int retval;
 2320 
 2321         retval = device_print_prettyname(dev);
 2322         va_start(ap, fmt);
 2323         retval += vprintf(fmt, ap);
 2324         va_end(ap);
 2325         return (retval);
 2326 }
 2327 
 2328 /**
 2329  * @internal
 2330  */
 2331 static void
 2332 device_set_desc_internal(device_t dev, const char* desc, int copy)
 2333 {
 2334         if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
 2335                 free(dev->desc, M_BUS);
 2336                 dev->flags &= ~DF_DESCMALLOCED;
 2337                 dev->desc = NULL;
 2338         }
 2339 
 2340         if (copy && desc) {
 2341                 dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
 2342                 if (dev->desc) {
 2343                         strcpy(dev->desc, desc);
 2344                         dev->flags |= DF_DESCMALLOCED;
 2345                 }
 2346         } else {
 2347                 /* Avoid a -Wcast-qual warning */
 2348                 dev->desc = (char *)(uintptr_t) desc;
 2349         }
 2350 
 2351         bus_data_generation_update();
 2352 }
 2353 
 2354 /**
 2355  * @brief Set the device's description
 2356  *
 2357  * The value of @c desc should be a string constant that will not
 2358  * change (at least until the description is changed in a subsequent
 2359  * call to device_set_desc() or device_set_desc_copy()).
 2360  */
 2361 void
 2362 device_set_desc(device_t dev, const char* desc)
 2363 {
 2364         device_set_desc_internal(dev, desc, FALSE);
 2365 }
 2366 
 2367 /**
 2368  * @brief Set the device's description
 2369  *
 2370  * The string pointed to by @c desc is copied. Use this function if
 2371  * the device description is generated, (e.g. with sprintf()).
 2372  */
 2373 void
 2374 device_set_desc_copy(device_t dev, const char* desc)
 2375 {
 2376         device_set_desc_internal(dev, desc, TRUE);
 2377 }
 2378 
 2379 /**
 2380  * @brief Set the device's flags
 2381  */
 2382 void
 2383 device_set_flags(device_t dev, uint32_t flags)
 2384 {
 2385         dev->devflags = flags;
 2386 }
 2387 
 2388 /**
 2389  * @brief Return the device's softc field
 2390  *
 2391  * The softc is allocated and zeroed when a driver is attached, based
 2392  * on the size field of the driver.
 2393  */
 2394 void *
 2395 device_get_softc(device_t dev)
 2396 {
 2397         return (dev->softc);
 2398 }
 2399 
 2400 /**
 2401  * @brief Set the device's softc field
 2402  *
 2403  * Most drivers do not need to use this since the softc is allocated
 2404  * automatically when the driver is attached.
 2405  */
 2406 void
 2407 device_set_softc(device_t dev, void *softc)
 2408 {
 2409         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
 2410                 free(dev->softc, M_BUS_SC);
 2411         dev->softc = softc;
 2412         if (dev->softc)
 2413                 dev->flags |= DF_EXTERNALSOFTC;
 2414         else
 2415                 dev->flags &= ~DF_EXTERNALSOFTC;
 2416 }
 2417 
 2418 /**
 2419  * @brief Free claimed softc
 2420  *
 2421  * Most drivers do not need to use this since the softc is freed
 2422  * automatically when the driver is detached.
 2423  */
 2424 void
 2425 device_free_softc(void *softc)
 2426 {
 2427         free(softc, M_BUS_SC);
 2428 }
 2429 
 2430 /**
 2431  * @brief Claim softc
 2432  *
 2433  * This function can be used to let the driver free the automatically
 2434  * allocated softc using "device_free_softc()". This function is
 2435  * useful when the driver is refcounting the softc and the softc
 2436  * cannot be freed when the "device_detach" method is called.
 2437  */
 2438 void
 2439 device_claim_softc(device_t dev)
 2440 {
 2441         if (dev->softc)
 2442                 dev->flags |= DF_EXTERNALSOFTC;
 2443         else
 2444                 dev->flags &= ~DF_EXTERNALSOFTC;
 2445 }
 2446 
 2447 /**
 2448  * @brief Get the device's ivars field
 2449  *
 2450  * The ivars field is used by the parent device to store per-device
 2451  * state (e.g. the physical location of the device or a list of
 2452  * resources).
 2453  */
 2454 void *
 2455 device_get_ivars(device_t dev)
 2456 {
 2457 
 2458         KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
 2459         return (dev->ivars);
 2460 }
 2461 
 2462 /**
 2463  * @brief Set the device's ivars field
 2464  */
 2465 void
 2466 device_set_ivars(device_t dev, void * ivars)
 2467 {
 2468 
 2469         KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
 2470         dev->ivars = ivars;
 2471 }
 2472 
 2473 /**
 2474  * @brief Return the device's state
 2475  */
 2476 device_state_t
 2477 device_get_state(device_t dev)
 2478 {
 2479         return (dev->state);
 2480 }
 2481 
 2482 /**
 2483  * @brief Set the DF_ENABLED flag for the device
 2484  */
 2485 void
 2486 device_enable(device_t dev)
 2487 {
 2488         dev->flags |= DF_ENABLED;
 2489 }
 2490 
 2491 /**
 2492  * @brief Clear the DF_ENABLED flag for the device
 2493  */
 2494 void
 2495 device_disable(device_t dev)
 2496 {
 2497         dev->flags &= ~DF_ENABLED;
 2498 }
 2499 
 2500 /**
 2501  * @brief Increment the busy counter for the device
 2502  */
 2503 void
 2504 device_busy(device_t dev)
 2505 {
 2506         if (dev->state < DS_ATTACHING)
 2507                 panic("device_busy: called for unattached device");
 2508         if (dev->busy == 0 && dev->parent)
 2509                 device_busy(dev->parent);
 2510         dev->busy++;
 2511         if (dev->state == DS_ATTACHED)
 2512                 dev->state = DS_BUSY;
 2513 }
 2514 
 2515 /**
 2516  * @brief Decrement the busy counter for the device
 2517  */
 2518 void
 2519 device_unbusy(device_t dev)
 2520 {
 2521         if (dev->busy != 0 && dev->state != DS_BUSY &&
 2522             dev->state != DS_ATTACHING)
 2523                 panic("device_unbusy: called for non-busy device %s",
 2524                     device_get_nameunit(dev));
 2525         dev->busy--;
 2526         if (dev->busy == 0) {
 2527                 if (dev->parent)
 2528                         device_unbusy(dev->parent);
 2529                 if (dev->state == DS_BUSY)
 2530                         dev->state = DS_ATTACHED;
 2531         }
 2532 }
 2533 
 2534 /**
 2535  * @brief Set the DF_QUIET flag for the device
 2536  */
 2537 void
 2538 device_quiet(device_t dev)
 2539 {
 2540         dev->flags |= DF_QUIET;
 2541 }
 2542 
 2543 /**
 2544  * @brief Clear the DF_QUIET flag for the device
 2545  */
 2546 void
 2547 device_verbose(device_t dev)
 2548 {
 2549         dev->flags &= ~DF_QUIET;
 2550 }
 2551 
 2552 /**
 2553  * @brief Return non-zero if the DF_QUIET flag is set on the device
 2554  */
 2555 int
 2556 device_is_quiet(device_t dev)
 2557 {
 2558         return ((dev->flags & DF_QUIET) != 0);
 2559 }
 2560 
 2561 /**
 2562  * @brief Return non-zero if the DF_ENABLED flag is set on the device
 2563  */
 2564 int
 2565 device_is_enabled(device_t dev)
 2566 {
 2567         return ((dev->flags & DF_ENABLED) != 0);
 2568 }
 2569 
 2570 /**
 2571  * @brief Return non-zero if the device was successfully probed
 2572  */
 2573 int
 2574 device_is_alive(device_t dev)
 2575 {
 2576         return (dev->state >= DS_ALIVE);
 2577 }
 2578 
 2579 /**
 2580  * @brief Return non-zero if the device currently has a driver
 2581  * attached to it
 2582  */
 2583 int
 2584 device_is_attached(device_t dev)
 2585 {
 2586         return (dev->state >= DS_ATTACHED);
 2587 }
 2588 
 2589 /**
 2590  * @brief Set the devclass of a device
 2591  * @see devclass_add_device().
 2592  */
 2593 int
 2594 device_set_devclass(device_t dev, const char *classname)
 2595 {
 2596         devclass_t dc;
 2597         int error;
 2598 
 2599         if (!classname) {
 2600                 if (dev->devclass)
 2601                         devclass_delete_device(dev->devclass, dev);
 2602                 return (0);
 2603         }
 2604 
 2605         if (dev->devclass) {
 2606                 printf("device_set_devclass: device class already set\n");
 2607                 return (EINVAL);
 2608         }
 2609 
 2610         dc = devclass_find_internal(classname, NULL, TRUE);
 2611         if (!dc)
 2612                 return (ENOMEM);
 2613 
 2614         error = devclass_add_device(dc, dev);
 2615 
 2616         bus_data_generation_update();
 2617         return (error);
 2618 }
 2619 
 2620 /**
 2621  * @brief Set the driver of a device
 2622  *
 2623  * @retval 0            success
 2624  * @retval EBUSY        the device already has a driver attached
 2625  * @retval ENOMEM       a memory allocation failure occurred
 2626  */
 2627 int
 2628 device_set_driver(device_t dev, driver_t *driver)
 2629 {
 2630         if (dev->state >= DS_ATTACHED)
 2631                 return (EBUSY);
 2632 
 2633         if (dev->driver == driver)
 2634                 return (0);
 2635 
 2636         if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
 2637                 free(dev->softc, M_BUS_SC);
 2638                 dev->softc = NULL;
 2639         }
 2640         device_set_desc(dev, NULL);
 2641         kobj_delete((kobj_t) dev, NULL);
 2642         dev->driver = driver;
 2643         if (driver) {
 2644                 kobj_init((kobj_t) dev, (kobj_class_t) driver);
 2645                 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
 2646                         dev->softc = malloc(driver->size, M_BUS_SC,
 2647                             M_NOWAIT | M_ZERO);
 2648                         if (!dev->softc) {
 2649                                 kobj_delete((kobj_t) dev, NULL);
 2650                                 kobj_init((kobj_t) dev, &null_class);
 2651                                 dev->driver = NULL;
 2652                                 return (ENOMEM);
 2653                         }
 2654                 }
 2655         } else {
 2656                 kobj_init((kobj_t) dev, &null_class);
 2657         }
 2658 
 2659         bus_data_generation_update();
 2660         return (0);
 2661 }
 2662 
 2663 /**
 2664  * @brief Probe a device, and return this status.
 2665  *
 2666  * This function is the core of the device autoconfiguration
 2667  * system. Its purpose is to select a suitable driver for a device and
 2668  * then call that driver to initialise the hardware appropriately. The
 2669  * driver is selected by calling the DEVICE_PROBE() method of a set of
 2670  * candidate drivers and then choosing the driver which returned the
 2671  * best value. This driver is then attached to the device using
 2672  * device_attach().
 2673  *
 2674  * The set of suitable drivers is taken from the list of drivers in
 2675  * the parent device's devclass. If the device was originally created
 2676  * with a specific class name (see device_add_child()), only drivers
 2677  * with that name are probed, otherwise all drivers in the devclass
 2678  * are probed. If no drivers return successful probe values in the
 2679  * parent devclass, the search continues in the parent of that
 2680  * devclass (see devclass_get_parent()) if any.
 2681  *
 2682  * @param dev           the device to initialise
 2683  *
 2684  * @retval 0            success
 2685  * @retval ENXIO        no driver was found
 2686  * @retval ENOMEM       memory allocation failure
 2687  * @retval non-zero     some other unix error code
 2688  * @retval -1           Device already attached
 2689  */
 2690 int
 2691 device_probe(device_t dev)
 2692 {
 2693         int error;
 2694 
 2695         GIANT_REQUIRED;
 2696 
 2697         if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
 2698                 return (-1);
 2699 
 2700         if (!(dev->flags & DF_ENABLED)) {
 2701                 if (bootverbose && device_get_name(dev) != NULL) {
 2702                         device_print_prettyname(dev);
 2703                         printf("not probed (disabled)\n");
 2704                 }
 2705                 return (-1);
 2706         }
 2707         if ((error = device_probe_child(dev->parent, dev)) != 0) {              
 2708                 if (bus_current_pass == BUS_PASS_DEFAULT &&
 2709                     !(dev->flags & DF_DONENOMATCH)) {
 2710                         BUS_PROBE_NOMATCH(dev->parent, dev);
 2711                         devnomatch(dev);
 2712                         dev->flags |= DF_DONENOMATCH;
 2713                 }
 2714                 return (error);
 2715         }
 2716         return (0);
 2717 }
 2718 
 2719 /**
 2720  * @brief Probe a device and attach a driver if possible
 2721  *
 2722  * calls device_probe() and attaches if that was successful.
 2723  */
 2724 int
 2725 device_probe_and_attach(device_t dev)
 2726 {
 2727         int error;
 2728 
 2729         GIANT_REQUIRED;
 2730 
 2731         error = device_probe(dev);
 2732         if (error == -1)
 2733                 return (0);
 2734         else if (error != 0)
 2735                 return (error);
 2736 
 2737         CURVNET_SET_QUIET(vnet0);
 2738         error = device_attach(dev);
 2739         CURVNET_RESTORE();
 2740         return error;
 2741 }
 2742 
 2743 /**
 2744  * @brief Attach a device driver to a device
 2745  *
 2746  * This function is a wrapper around the DEVICE_ATTACH() driver
 2747  * method. In addition to calling DEVICE_ATTACH(), it initialises the
 2748  * device's sysctl tree, optionally prints a description of the device
 2749  * and queues a notification event for user-based device management
 2750  * services.
 2751  *
 2752  * Normally this function is only called internally from
 2753  * device_probe_and_attach().
 2754  *
 2755  * @param dev           the device to initialise
 2756  *
 2757  * @retval 0            success
 2758  * @retval ENXIO        no driver was found
 2759  * @retval ENOMEM       memory allocation failure
 2760  * @retval non-zero     some other unix error code
 2761  */
 2762 int
 2763 device_attach(device_t dev)
 2764 {
 2765         int error;
 2766 
 2767         if (resource_disabled(dev->driver->name, dev->unit)) {
 2768                 device_disable(dev);
 2769                 if (bootverbose)
 2770                          device_printf(dev, "disabled via hints entry\n");
 2771                 return (ENXIO);
 2772         }
 2773 
 2774         device_sysctl_init(dev);
 2775         if (!device_is_quiet(dev))
 2776                 device_print_child(dev->parent, dev);
 2777         dev->state = DS_ATTACHING;
 2778         if ((error = DEVICE_ATTACH(dev)) != 0) {
 2779                 printf("device_attach: %s%d attach returned %d\n",
 2780                     dev->driver->name, dev->unit, error);
 2781                 if (!(dev->flags & DF_FIXEDCLASS))
 2782                         devclass_delete_device(dev->devclass, dev);
 2783                 (void)device_set_driver(dev, NULL);
 2784                 device_sysctl_fini(dev);
 2785                 KASSERT(dev->busy == 0, ("attach failed but busy"));
 2786                 dev->state = DS_NOTPRESENT;
 2787                 return (error);
 2788         }
 2789         device_sysctl_update(dev);
 2790         if (dev->busy)
 2791                 dev->state = DS_BUSY;
 2792         else
 2793                 dev->state = DS_ATTACHED;
 2794         dev->flags &= ~DF_DONENOMATCH;
 2795         devadded(dev);
 2796         return (0);
 2797 }
 2798 
 2799 /**
 2800  * @brief Detach a driver from a device
 2801  *
 2802  * This function is a wrapper around the DEVICE_DETACH() driver
 2803  * method. If the call to DEVICE_DETACH() succeeds, it calls
 2804  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
 2805  * notification event for user-based device management services and
 2806  * cleans up the device's sysctl tree.
 2807  *
 2808  * @param dev           the device to un-initialise
 2809  *
 2810  * @retval 0            success
 2811  * @retval ENXIO        no driver was found
 2812  * @retval ENOMEM       memory allocation failure
 2813  * @retval non-zero     some other unix error code
 2814  */
 2815 int
 2816 device_detach(device_t dev)
 2817 {
 2818         int error;
 2819 
 2820         GIANT_REQUIRED;
 2821 
 2822         PDEBUG(("%s", DEVICENAME(dev)));
 2823         if (dev->state == DS_BUSY)
 2824                 return (EBUSY);
 2825         if (dev->state != DS_ATTACHED)
 2826                 return (0);
 2827 
 2828         if ((error = DEVICE_DETACH(dev)) != 0)
 2829                 return (error);
 2830         devremoved(dev);
 2831         if (!device_is_quiet(dev))
 2832                 device_printf(dev, "detached\n");
 2833         if (dev->parent)
 2834                 BUS_CHILD_DETACHED(dev->parent, dev);
 2835 
 2836         if (!(dev->flags & DF_FIXEDCLASS))
 2837                 devclass_delete_device(dev->devclass, dev);
 2838 
 2839         dev->state = DS_NOTPRESENT;
 2840         (void)device_set_driver(dev, NULL);
 2841         device_sysctl_fini(dev);
 2842 
 2843         return (0);
 2844 }
 2845 
 2846 /**
 2847  * @brief Tells a driver to quiesce itself.
 2848  *
 2849  * This function is a wrapper around the DEVICE_QUIESCE() driver
 2850  * method. If the call to DEVICE_QUIESCE() succeeds.
 2851  *
 2852  * @param dev           the device to quiesce
 2853  *
 2854  * @retval 0            success
 2855  * @retval ENXIO        no driver was found
 2856  * @retval ENOMEM       memory allocation failure
 2857  * @retval non-zero     some other unix error code
 2858  */
 2859 int
 2860 device_quiesce(device_t dev)
 2861 {
 2862 
 2863         PDEBUG(("%s", DEVICENAME(dev)));
 2864         if (dev->state == DS_BUSY)
 2865                 return (EBUSY);
 2866         if (dev->state != DS_ATTACHED)
 2867                 return (0);
 2868 
 2869         return (DEVICE_QUIESCE(dev));
 2870 }
 2871 
 2872 /**
 2873  * @brief Notify a device of system shutdown
 2874  *
 2875  * This function calls the DEVICE_SHUTDOWN() driver method if the
 2876  * device currently has an attached driver.
 2877  *
 2878  * @returns the value returned by DEVICE_SHUTDOWN()
 2879  */
 2880 int
 2881 device_shutdown(device_t dev)
 2882 {
 2883         if (dev->state < DS_ATTACHED)
 2884                 return (0);
 2885         return (DEVICE_SHUTDOWN(dev));
 2886 }
 2887 
 2888 /**
 2889  * @brief Set the unit number of a device
 2890  *
 2891  * This function can be used to override the unit number used for a
 2892  * device (e.g. to wire a device to a pre-configured unit number).
 2893  */
 2894 int
 2895 device_set_unit(device_t dev, int unit)
 2896 {
 2897         devclass_t dc;
 2898         int err;
 2899 
 2900         dc = device_get_devclass(dev);
 2901         if (unit < dc->maxunit && dc->devices[unit])
 2902                 return (EBUSY);
 2903         err = devclass_delete_device(dc, dev);
 2904         if (err)
 2905                 return (err);
 2906         dev->unit = unit;
 2907         err = devclass_add_device(dc, dev);
 2908         if (err)
 2909                 return (err);
 2910 
 2911         bus_data_generation_update();
 2912         return (0);
 2913 }
 2914 
 2915 /*======================================*/
 2916 /*
 2917  * Some useful method implementations to make life easier for bus drivers.
 2918  */
 2919 
 2920 /**
 2921  * @brief Initialise a resource list.
 2922  *
 2923  * @param rl            the resource list to initialise
 2924  */
 2925 void
 2926 resource_list_init(struct resource_list *rl)
 2927 {
 2928         STAILQ_INIT(rl);
 2929 }
 2930 
 2931 /**
 2932  * @brief Reclaim memory used by a resource list.
 2933  *
 2934  * This function frees the memory for all resource entries on the list
 2935  * (if any).
 2936  *
 2937  * @param rl            the resource list to free               
 2938  */
 2939 void
 2940 resource_list_free(struct resource_list *rl)
 2941 {
 2942         struct resource_list_entry *rle;
 2943 
 2944         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 2945                 if (rle->res)
 2946                         panic("resource_list_free: resource entry is busy");
 2947                 STAILQ_REMOVE_HEAD(rl, link);
 2948                 free(rle, M_BUS);
 2949         }
 2950 }
 2951 
 2952 /**
 2953  * @brief Add a resource entry.
 2954  *
 2955  * This function adds a resource entry using the given @p type, @p
 2956  * start, @p end and @p count values. A rid value is chosen by
 2957  * searching sequentially for the first unused rid starting at zero.
 2958  *
 2959  * @param rl            the resource list to edit
 2960  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2961  * @param start         the start address of the resource
 2962  * @param end           the end address of the resource
 2963  * @param count         XXX end-start+1
 2964  */
 2965 int
 2966 resource_list_add_next(struct resource_list *rl, int type, u_long start,
 2967     u_long end, u_long count)
 2968 {
 2969         int rid;
 2970 
 2971         rid = 0;
 2972         while (resource_list_find(rl, type, rid) != NULL)
 2973                 rid++;
 2974         resource_list_add(rl, type, rid, start, end, count);
 2975         return (rid);
 2976 }
 2977 
 2978 /**
 2979  * @brief Add or modify a resource entry.
 2980  *
 2981  * If an existing entry exists with the same type and rid, it will be
 2982  * modified using the given values of @p start, @p end and @p
 2983  * count. If no entry exists, a new one will be created using the
 2984  * given values.  The resource list entry that matches is then returned.
 2985  *
 2986  * @param rl            the resource list to edit
 2987  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 2988  * @param rid           the resource identifier
 2989  * @param start         the start address of the resource
 2990  * @param end           the end address of the resource
 2991  * @param count         XXX end-start+1
 2992  */
 2993 struct resource_list_entry *
 2994 resource_list_add(struct resource_list *rl, int type, int rid,
 2995     u_long start, u_long end, u_long count)
 2996 {
 2997         struct resource_list_entry *rle;
 2998 
 2999         rle = resource_list_find(rl, type, rid);
 3000         if (!rle) {
 3001                 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
 3002                     M_NOWAIT);
 3003                 if (!rle)
 3004                         panic("resource_list_add: can't record entry");
 3005                 STAILQ_INSERT_TAIL(rl, rle, link);
 3006                 rle->type = type;
 3007                 rle->rid = rid;
 3008                 rle->res = NULL;
 3009                 rle->flags = 0;
 3010         }
 3011 
 3012         if (rle->res)
 3013                 panic("resource_list_add: resource entry is busy");
 3014 
 3015         rle->start = start;
 3016         rle->end = end;
 3017         rle->count = count;
 3018         return (rle);
 3019 }
 3020 
 3021 /**
 3022  * @brief Determine if a resource entry is busy.
 3023  *
 3024  * Returns true if a resource entry is busy meaning that it has an
 3025  * associated resource that is not an unallocated "reserved" resource.
 3026  *
 3027  * @param rl            the resource list to search
 3028  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3029  * @param rid           the resource identifier
 3030  *
 3031  * @returns Non-zero if the entry is busy, zero otherwise.
 3032  */
 3033 int
 3034 resource_list_busy(struct resource_list *rl, int type, int rid)
 3035 {
 3036         struct resource_list_entry *rle;
 3037 
 3038         rle = resource_list_find(rl, type, rid);
 3039         if (rle == NULL || rle->res == NULL)
 3040                 return (0);
 3041         if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
 3042                 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
 3043                     ("reserved resource is active"));
 3044                 return (0);
 3045         }
 3046         return (1);
 3047 }
 3048 
 3049 /**
 3050  * @brief Determine if a resource entry is reserved.
 3051  *
 3052  * Returns true if a resource entry is reserved meaning that it has an
 3053  * associated "reserved" resource.  The resource can either be
 3054  * allocated or unallocated.
 3055  *
 3056  * @param rl            the resource list to search
 3057  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3058  * @param rid           the resource identifier
 3059  *
 3060  * @returns Non-zero if the entry is reserved, zero otherwise.
 3061  */
 3062 int
 3063 resource_list_reserved(struct resource_list *rl, int type, int rid)
 3064 {
 3065         struct resource_list_entry *rle;
 3066 
 3067         rle = resource_list_find(rl, type, rid);
 3068         if (rle != NULL && rle->flags & RLE_RESERVED)
 3069                 return (1);
 3070         return (0);
 3071 }
 3072 
 3073 /**
 3074  * @brief Find a resource entry by type and rid.
 3075  *
 3076  * @param rl            the resource list to search
 3077  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3078  * @param rid           the resource identifier
 3079  *
 3080  * @returns the resource entry pointer or NULL if there is no such
 3081  * entry.
 3082  */
 3083 struct resource_list_entry *
 3084 resource_list_find(struct resource_list *rl, int type, int rid)
 3085 {
 3086         struct resource_list_entry *rle;
 3087 
 3088         STAILQ_FOREACH(rle, rl, link) {
 3089                 if (rle->type == type && rle->rid == rid)
 3090                         return (rle);
 3091         }
 3092         return (NULL);
 3093 }
 3094 
 3095 /**
 3096  * @brief Delete a resource entry.
 3097  *
 3098  * @param rl            the resource list to edit
 3099  * @param type          the resource entry type (e.g. SYS_RES_MEMORY)
 3100  * @param rid           the resource identifier
 3101  */
 3102 void
 3103 resource_list_delete(struct resource_list *rl, int type, int rid)
 3104 {
 3105         struct resource_list_entry *rle = resource_list_find(rl, type, rid);
 3106 
 3107         if (rle) {
 3108                 if (rle->res != NULL)
 3109                         panic("resource_list_delete: resource has not been released");
 3110                 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
 3111                 free(rle, M_BUS);
 3112         }
 3113 }
 3114 
 3115 /**
 3116  * @brief Allocate a reserved resource
 3117  *
 3118  * This can be used by busses to force the allocation of resources
 3119  * that are always active in the system even if they are not allocated
 3120  * by a driver (e.g. PCI BARs).  This function is usually called when
 3121  * adding a new child to the bus.  The resource is allocated from the
 3122  * parent bus when it is reserved.  The resource list entry is marked
 3123  * with RLE_RESERVED to note that it is a reserved resource.
 3124  *
 3125  * Subsequent attempts to allocate the resource with
 3126  * resource_list_alloc() will succeed the first time and will set
 3127  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
 3128  * resource that has been allocated is released with
 3129  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
 3130  * the actual resource remains allocated.  The resource can be released to
 3131  * the parent bus by calling resource_list_unreserve().
 3132  *
 3133  * @param rl            the resource list to allocate from
 3134  * @param bus           the parent device of @p child
 3135  * @param child         the device for which the resource is being reserved
 3136  * @param type          the type of resource to allocate
 3137  * @param rid           a pointer to the resource identifier
 3138  * @param start         hint at the start of the resource range - pass
 3139  *                      @c 0UL for any start address
 3140  * @param end           hint at the end of the resource range - pass
 3141  *                      @c ~0UL for any end address
 3142  * @param count         hint at the size of range required - pass @c 1
 3143  *                      for any size
 3144  * @param flags         any extra flags to control the resource
 3145  *                      allocation - see @c RF_XXX flags in
 3146  *                      <sys/rman.h> for details
 3147  * 
 3148  * @returns             the resource which was allocated or @c NULL if no
 3149  *                      resource could be allocated
 3150  */
 3151 struct resource *
 3152 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
 3153     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
 3154 {
 3155         struct resource_list_entry *rle = NULL;
 3156         int passthrough = (device_get_parent(child) != bus);
 3157         struct resource *r;
 3158 
 3159         if (passthrough)
 3160                 panic(
 3161     "resource_list_reserve() should only be called for direct children");
 3162         if (flags & RF_ACTIVE)
 3163                 panic(
 3164     "resource_list_reserve() should only reserve inactive resources");
 3165 
 3166         r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
 3167             flags);
 3168         if (r != NULL) {
 3169                 rle = resource_list_find(rl, type, *rid);
 3170                 rle->flags |= RLE_RESERVED;
 3171         }
 3172         return (r);
 3173 }
 3174 
 3175 /**
 3176  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
 3177  *
 3178  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
 3179  * and passing the allocation up to the parent of @p bus. This assumes
 3180  * that the first entry of @c device_get_ivars(child) is a struct
 3181  * resource_list. This also handles 'passthrough' allocations where a
 3182  * child is a remote descendant of bus by passing the allocation up to
 3183  * the parent of bus.
 3184  *
 3185  * Typically, a bus driver would store a list of child resources
 3186  * somewhere in the child device's ivars (see device_get_ivars()) and
 3187  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
 3188  * then call resource_list_alloc() to perform the allocation.
 3189  *
 3190  * @param rl            the resource list to allocate from
 3191  * @param bus           the parent device of @p child
 3192  * @param child         the device which is requesting an allocation
 3193  * @param type          the type of resource to allocate
 3194  * @param rid           a pointer to the resource identifier
 3195  * @param start         hint at the start of the resource range - pass
 3196  *                      @c 0UL for any start address
 3197  * @param end           hint at the end of the resource range - pass
 3198  *                      @c ~0UL for any end address
 3199  * @param count         hint at the size of range required - pass @c 1
 3200  *                      for any size
 3201  * @param flags         any extra flags to control the resource
 3202  *                      allocation - see @c RF_XXX flags in
 3203  *                      <sys/rman.h> for details
 3204  * 
 3205  * @returns             the resource which was allocated or @c NULL if no
 3206  *                      resource could be allocated
 3207  */
 3208 struct resource *
 3209 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
 3210     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
 3211 {
 3212         struct resource_list_entry *rle = NULL;
 3213         int passthrough = (device_get_parent(child) != bus);
 3214         int isdefault = (start == 0UL && end == ~0UL);
 3215 
 3216         if (passthrough) {
 3217                 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 3218                     type, rid, start, end, count, flags));
 3219         }
 3220 
 3221         rle = resource_list_find(rl, type, *rid);
 3222 
 3223         if (!rle)
 3224                 return (NULL);          /* no resource of that type/rid */
 3225 
 3226         if (rle->res) {
 3227                 if (rle->flags & RLE_RESERVED) {
 3228                         if (rle->flags & RLE_ALLOCATED)
 3229                                 return (NULL);
 3230                         if ((flags & RF_ACTIVE) &&
 3231                             bus_activate_resource(child, type, *rid,
 3232                             rle->res) != 0)
 3233                                 return (NULL);
 3234                         rle->flags |= RLE_ALLOCATED;
 3235                         return (rle->res);
 3236                 }
 3237                 device_printf(bus,
 3238                     "resource entry %#x type %d for child %s is busy\n", *rid,
 3239                     type, device_get_nameunit(child));
 3240                 return (NULL);
 3241         }
 3242 
 3243         if (isdefault) {
 3244                 start = rle->start;
 3245                 count = ulmax(count, rle->count);
 3246                 end = ulmax(rle->end, start + count - 1);
 3247         }
 3248 
 3249         rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 3250             type, rid, start, end, count, flags);
 3251 
 3252         /*
 3253          * Record the new range.
 3254          */
 3255         if (rle->res) {
 3256                 rle->start = rman_get_start(rle->res);
 3257                 rle->end = rman_get_end(rle->res);
 3258                 rle->count = count;
 3259         }
 3260 
 3261         return (rle->res);
 3262 }
 3263 
 3264 /**
 3265  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
 3266  * 
 3267  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
 3268  * used with resource_list_alloc().
 3269  * 
 3270  * @param rl            the resource list which was allocated from
 3271  * @param bus           the parent device of @p child
 3272  * @param child         the device which is requesting a release
 3273  * @param type          the type of resource to release
 3274  * @param rid           the resource identifier
 3275  * @param res           the resource to release
 3276  * 
 3277  * @retval 0            success
 3278  * @retval non-zero     a standard unix error code indicating what
 3279  *                      error condition prevented the operation
 3280  */
 3281 int
 3282 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
 3283     int type, int rid, struct resource *res)
 3284 {
 3285         struct resource_list_entry *rle = NULL;
 3286         int passthrough = (device_get_parent(child) != bus);
 3287         int error;
 3288 
 3289         if (passthrough) {
 3290                 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3291                     type, rid, res));
 3292         }
 3293 
 3294         rle = resource_list_find(rl, type, rid);
 3295 
 3296         if (!rle)
 3297                 panic("resource_list_release: can't find resource");
 3298         if (!rle->res)
 3299                 panic("resource_list_release: resource entry is not busy");
 3300         if (rle->flags & RLE_RESERVED) {
 3301                 if (rle->flags & RLE_ALLOCATED) {
 3302                         if (rman_get_flags(res) & RF_ACTIVE) {
 3303                                 error = bus_deactivate_resource(child, type,
 3304                                     rid, res);
 3305                                 if (error)
 3306                                         return (error);
 3307                         }
 3308                         rle->flags &= ~RLE_ALLOCATED;
 3309                         return (0);
 3310                 }
 3311                 return (EINVAL);
 3312         }
 3313 
 3314         error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 3315             type, rid, res);
 3316         if (error)
 3317                 return (error);
 3318 
 3319         rle->res = NULL;
 3320         return (0);
 3321 }
 3322 
 3323 /**
 3324  * @brief Fully release a reserved resource
 3325  *
 3326  * Fully releases a resouce reserved via resource_list_reserve().
 3327  *
 3328  * @param rl            the resource list which was allocated from
 3329  * @param bus           the parent device of @p child
 3330  * @param child         the device whose reserved resource is being released
 3331  * @param type          the type of resource to release
 3332  * @param rid           the resource identifier
 3333  * @param res           the resource to release
 3334  * 
 3335  * @retval 0            success
 3336  * @retval non-zero     a standard unix error code indicating what
 3337  *                      error condition prevented the operation
 3338  */
 3339 int
 3340 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
 3341     int type, int rid)
 3342 {
 3343         struct resource_list_entry *rle = NULL;
 3344         int passthrough = (device_get_parent(child) != bus);
 3345 
 3346         if (passthrough)
 3347                 panic(
 3348     "resource_list_unreserve() should only be called for direct children");
 3349 
 3350         rle = resource_list_find(rl, type, rid);
 3351 
 3352         if (!rle)
 3353                 panic("resource_list_unreserve: can't find resource");
 3354         if (!(rle->flags & RLE_RESERVED))
 3355                 return (EINVAL);
 3356         if (rle->flags & RLE_ALLOCATED)
 3357                 return (EBUSY);
 3358         rle->flags &= ~RLE_RESERVED;
 3359         return (resource_list_release(rl, bus, child, type, rid, rle->res));
 3360 }
 3361 
 3362 /**
 3363  * @brief Print a description of resources in a resource list
 3364  *
 3365  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
 3366  * The name is printed if at least one resource of the given type is available.
 3367  * The format is used to print resource start and end.
 3368  *
 3369  * @param rl            the resource list to print
 3370  * @param name          the name of @p type, e.g. @c "memory"
 3371  * @param type          type type of resource entry to print
 3372  * @param format        printf(9) format string to print resource
 3373  *                      start and end values
 3374  * 
 3375  * @returns             the number of characters printed
 3376  */
 3377 int
 3378 resource_list_print_type(struct resource_list *rl, const char *name, int type,
 3379     const char *format)
 3380 {
 3381         struct resource_list_entry *rle;
 3382         int printed, retval;
 3383 
 3384         printed = 0;
 3385         retval = 0;
 3386         /* Yes, this is kinda cheating */
 3387         STAILQ_FOREACH(rle, rl, link) {
 3388                 if (rle->type == type) {
 3389                         if (printed == 0)
 3390                                 retval += printf(" %s ", name);
 3391                         else
 3392                                 retval += printf(",");
 3393                         printed++;
 3394                         retval += printf(format, rle->start);
 3395                         if (rle->count > 1) {
 3396                                 retval += printf("-");
 3397                                 retval += printf(format, rle->start +
 3398                                                  rle->count - 1);
 3399                         }
 3400                 }
 3401         }
 3402         return (retval);
 3403 }
 3404 
 3405 /**
 3406  * @brief Releases all the resources in a list.
 3407  *
 3408  * @param rl            The resource list to purge.
 3409  * 
 3410  * @returns             nothing
 3411  */
 3412 void
 3413 resource_list_purge(struct resource_list *rl)
 3414 {
 3415         struct resource_list_entry *rle;
 3416 
 3417         while ((rle = STAILQ_FIRST(rl)) != NULL) {
 3418                 if (rle->res)
 3419                         bus_release_resource(rman_get_device(rle->res),
 3420                             rle->type, rle->rid, rle->res);
 3421                 STAILQ_REMOVE_HEAD(rl, link);
 3422                 free(rle, M_BUS);
 3423         }
 3424 }
 3425 
 3426 device_t
 3427 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
 3428 {
 3429 
 3430         return (device_add_child_ordered(dev, order, name, unit));
 3431 }
 3432 
 3433 /**
 3434  * @brief Helper function for implementing DEVICE_PROBE()
 3435  *
 3436  * This function can be used to help implement the DEVICE_PROBE() for
 3437  * a bus (i.e. a device which has other devices attached to it). It
 3438  * calls the DEVICE_IDENTIFY() method of each driver in the device's
 3439  * devclass.
 3440  */
 3441 int
 3442 bus_generic_probe(device_t dev)
 3443 {
 3444         devclass_t dc = dev->devclass;
 3445         driverlink_t dl;
 3446 
 3447         TAILQ_FOREACH(dl, &dc->drivers, link) {
 3448                 /*
 3449                  * If this driver's pass is too high, then ignore it.
 3450                  * For most drivers in the default pass, this will
 3451                  * never be true.  For early-pass drivers they will
 3452                  * only call the identify routines of eligible drivers
 3453                  * when this routine is called.  Drivers for later
 3454                  * passes should have their identify routines called
 3455                  * on early-pass busses during BUS_NEW_PASS().
 3456                  */
 3457                 if (dl->pass > bus_current_pass)
 3458                         continue;
 3459                 DEVICE_IDENTIFY(dl->driver, dev);
 3460         }
 3461 
 3462         return (0);
 3463 }
 3464 
 3465 /**
 3466  * @brief Helper function for implementing DEVICE_ATTACH()
 3467  *
 3468  * This function can be used to help implement the DEVICE_ATTACH() for
 3469  * a bus. It calls device_probe_and_attach() for each of the device's
 3470  * children.
 3471  */
 3472 int
 3473 bus_generic_attach(device_t dev)
 3474 {
 3475         device_t child;
 3476 
 3477         TAILQ_FOREACH(child, &dev->children, link) {
 3478                 device_probe_and_attach(child);
 3479         }
 3480 
 3481         return (0);
 3482 }
 3483 
 3484 /**
 3485  * @brief Helper function for implementing DEVICE_DETACH()
 3486  *
 3487  * This function can be used to help implement the DEVICE_DETACH() for
 3488  * a bus. It calls device_detach() for each of the device's
 3489  * children.
 3490  */
 3491 int
 3492 bus_generic_detach(device_t dev)
 3493 {
 3494         device_t child;
 3495         int error;
 3496 
 3497         if (dev->state != DS_ATTACHED)
 3498                 return (EBUSY);
 3499 
 3500         TAILQ_FOREACH(child, &dev->children, link) {
 3501                 if ((error = device_detach(child)) != 0)
 3502                         return (error);
 3503         }
 3504 
 3505         return (0);
 3506 }
 3507 
 3508 /**
 3509  * @brief Helper function for implementing DEVICE_SHUTDOWN()
 3510  *
 3511  * This function can be used to help implement the DEVICE_SHUTDOWN()
 3512  * for a bus. It calls device_shutdown() for each of the device's
 3513  * children.
 3514  */
 3515 int
 3516 bus_generic_shutdown(device_t dev)
 3517 {
 3518         device_t child;
 3519 
 3520         TAILQ_FOREACH(child, &dev->children, link) {
 3521                 device_shutdown(child);
 3522         }
 3523 
 3524         return (0);
 3525 }
 3526 
 3527 /**
 3528  * @brief Helper function for implementing DEVICE_SUSPEND()
 3529  *
 3530  * This function can be used to help implement the DEVICE_SUSPEND()
 3531  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
 3532  * children. If any call to DEVICE_SUSPEND() fails, the suspend
 3533  * operation is aborted and any devices which were suspended are
 3534  * resumed immediately by calling their DEVICE_RESUME() methods.
 3535  */
 3536 int
 3537 bus_generic_suspend(device_t dev)
 3538 {
 3539         int             error;
 3540         device_t        child, child2;
 3541 
 3542         TAILQ_FOREACH(child, &dev->children, link) {
 3543                 error = DEVICE_SUSPEND(child);
 3544                 if (error) {
 3545                         for (child2 = TAILQ_FIRST(&dev->children);
 3546                              child2 && child2 != child;
 3547                              child2 = TAILQ_NEXT(child2, link))
 3548                                 DEVICE_RESUME(child2);
 3549                         return (error);
 3550                 }
 3551         }
 3552         return (0);
 3553 }
 3554 
 3555 /**
 3556  * @brief Helper function for implementing DEVICE_RESUME()
 3557  *
 3558  * This function can be used to help implement the DEVICE_RESUME() for
 3559  * a bus. It calls DEVICE_RESUME() on each of the device's children.
 3560  */
 3561 int
 3562 bus_generic_resume(device_t dev)
 3563 {
 3564         device_t        child;
 3565 
 3566         TAILQ_FOREACH(child, &dev->children, link) {
 3567                 DEVICE_RESUME(child);
 3568                 /* if resume fails, there's nothing we can usefully do... */
 3569         }
 3570         return (0);
 3571 }
 3572 
 3573 /**
 3574  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3575  *
 3576  * This function prints the first part of the ascii representation of
 3577  * @p child, including its name, unit and description (if any - see
 3578  * device_set_desc()).
 3579  *
 3580  * @returns the number of characters printed
 3581  */
 3582 int
 3583 bus_print_child_header(device_t dev, device_t child)
 3584 {
 3585         int     retval = 0;
 3586 
 3587         if (device_get_desc(child)) {
 3588                 retval += device_printf(child, "<%s>", device_get_desc(child));
 3589         } else {
 3590                 retval += printf("%s", device_get_nameunit(child));
 3591         }
 3592 
 3593         return (retval);
 3594 }
 3595 
 3596 /**
 3597  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3598  *
 3599  * This function prints the last part of the ascii representation of
 3600  * @p child, which consists of the string @c " on " followed by the
 3601  * name and unit of the @p dev.
 3602  *
 3603  * @returns the number of characters printed
 3604  */
 3605 int
 3606 bus_print_child_footer(device_t dev, device_t child)
 3607 {
 3608         return (printf(" on %s\n", device_get_nameunit(dev)));
 3609 }
 3610 
 3611 /**
 3612  * @brief Helper function for implementing BUS_PRINT_CHILD().
 3613  *
 3614  * This function simply calls bus_print_child_header() followed by
 3615  * bus_print_child_footer().
 3616  *
 3617  * @returns the number of characters printed
 3618  */
 3619 int
 3620 bus_generic_print_child(device_t dev, device_t child)
 3621 {
 3622         int     retval = 0;
 3623 
 3624         retval += bus_print_child_header(dev, child);
 3625         retval += bus_print_child_footer(dev, child);
 3626 
 3627         return (retval);
 3628 }
 3629 
 3630 /**
 3631  * @brief Stub function for implementing BUS_READ_IVAR().
 3632  * 
 3633  * @returns ENOENT
 3634  */
 3635 int
 3636 bus_generic_read_ivar(device_t dev, device_t child, int index,
 3637     uintptr_t * result)
 3638 {
 3639         return (ENOENT);
 3640 }
 3641 
 3642 /**
 3643  * @brief Stub function for implementing BUS_WRITE_IVAR().
 3644  * 
 3645  * @returns ENOENT
 3646  */
 3647 int
 3648 bus_generic_write_ivar(device_t dev, device_t child, int index,
 3649     uintptr_t value)
 3650 {
 3651         return (ENOENT);
 3652 }
 3653 
 3654 /**
 3655  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
 3656  * 
 3657  * @returns NULL
 3658  */
 3659 struct resource_list *
 3660 bus_generic_get_resource_list(device_t dev, device_t child)
 3661 {
 3662         return (NULL);
 3663 }
 3664 
 3665 /**
 3666  * @brief Helper function for implementing BUS_DRIVER_ADDED().
 3667  *
 3668  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
 3669  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
 3670  * and then calls device_probe_and_attach() for each unattached child.
 3671  */
 3672 void
 3673 bus_generic_driver_added(device_t dev, driver_t *driver)
 3674 {
 3675         device_t child;
 3676 
 3677         DEVICE_IDENTIFY(driver, dev);
 3678         TAILQ_FOREACH(child, &dev->children, link) {
 3679                 if (child->state == DS_NOTPRESENT ||
 3680                     (child->flags & DF_REBID))
 3681                         device_probe_and_attach(child);
 3682         }
 3683 }
 3684 
 3685 /**
 3686  * @brief Helper function for implementing BUS_NEW_PASS().
 3687  *
 3688  * This implementing of BUS_NEW_PASS() first calls the identify
 3689  * routines for any drivers that probe at the current pass.  Then it
 3690  * walks the list of devices for this bus.  If a device is already
 3691  * attached, then it calls BUS_NEW_PASS() on that device.  If the
 3692  * device is not already attached, it attempts to attach a driver to
 3693  * it.
 3694  */
 3695 void
 3696 bus_generic_new_pass(device_t dev)
 3697 {
 3698         driverlink_t dl;
 3699         devclass_t dc;
 3700         device_t child;
 3701 
 3702         dc = dev->devclass;
 3703         TAILQ_FOREACH(dl, &dc->drivers, link) {
 3704                 if (dl->pass == bus_current_pass)
 3705                         DEVICE_IDENTIFY(dl->driver, dev);
 3706         }
 3707         TAILQ_FOREACH(child, &dev->children, link) {
 3708                 if (child->state >= DS_ATTACHED)
 3709                         BUS_NEW_PASS(child);
 3710                 else if (child->state == DS_NOTPRESENT)
 3711                         device_probe_and_attach(child);
 3712         }
 3713 }
 3714 
 3715 /**
 3716  * @brief Helper function for implementing BUS_SETUP_INTR().
 3717  *
 3718  * This simple implementation of BUS_SETUP_INTR() simply calls the
 3719  * BUS_SETUP_INTR() method of the parent of @p dev.
 3720  */
 3721 int
 3722 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
 3723     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, 
 3724     void **cookiep)
 3725 {
 3726         /* Propagate up the bus hierarchy until someone handles it. */
 3727         if (dev->parent)
 3728                 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
 3729                     filter, intr, arg, cookiep));
 3730         return (EINVAL);
 3731 }
 3732 
 3733 /**
 3734  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
 3735  *
 3736  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
 3737  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
 3738  */
 3739 int
 3740 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
 3741     void *cookie)
 3742 {
 3743         /* Propagate up the bus hierarchy until someone handles it. */
 3744         if (dev->parent)
 3745                 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
 3746         return (EINVAL);
 3747 }
 3748 
 3749 /**
 3750  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
 3751  *
 3752  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
 3753  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
 3754  */
 3755 int
 3756 bus_generic_adjust_resource(device_t dev, device_t child, int type,
 3757     struct resource *r, u_long start, u_long end)
 3758 {
 3759         /* Propagate up the bus hierarchy until someone handles it. */
 3760         if (dev->parent)
 3761                 return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
 3762                     end));
 3763         return (EINVAL);
 3764 }
 3765 
 3766 /**
 3767  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 3768  *
 3769  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
 3770  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
 3771  */
 3772 struct resource *
 3773 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
 3774     u_long start, u_long end, u_long count, u_int flags)
 3775 {
 3776         /* Propagate up the bus hierarchy until someone handles it. */
 3777         if (dev->parent)
 3778                 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
 3779                     start, end, count, flags));
 3780         return (NULL);
 3781 }
 3782 
 3783 /**
 3784  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3785  *
 3786  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
 3787  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
 3788  */
 3789 int
 3790 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
 3791     struct resource *r)
 3792 {
 3793         /* Propagate up the bus hierarchy until someone handles it. */
 3794         if (dev->parent)
 3795                 return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
 3796                     r));
 3797         return (EINVAL);
 3798 }
 3799 
 3800 /**
 3801  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
 3802  *
 3803  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
 3804  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
 3805  */
 3806 int
 3807 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
 3808     struct resource *r)
 3809 {
 3810         /* Propagate up the bus hierarchy until someone handles it. */
 3811         if (dev->parent)
 3812                 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3813                     r));
 3814         return (EINVAL);
 3815 }
 3816 
 3817 /**
 3818  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
 3819  *
 3820  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
 3821  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
 3822  */
 3823 int
 3824 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
 3825     int rid, struct resource *r)
 3826 {
 3827         /* Propagate up the bus hierarchy until someone handles it. */
 3828         if (dev->parent)
 3829                 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
 3830                     r));
 3831         return (EINVAL);
 3832 }
 3833 
 3834 /**
 3835  * @brief Helper function for implementing BUS_BIND_INTR().
 3836  *
 3837  * This simple implementation of BUS_BIND_INTR() simply calls the
 3838  * BUS_BIND_INTR() method of the parent of @p dev.
 3839  */
 3840 int
 3841 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
 3842     int cpu)
 3843 {
 3844 
 3845         /* Propagate up the bus hierarchy until someone handles it. */
 3846         if (dev->parent)
 3847                 return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
 3848         return (EINVAL);
 3849 }
 3850 
 3851 /**
 3852  * @brief Helper function for implementing BUS_CONFIG_INTR().
 3853  *
 3854  * This simple implementation of BUS_CONFIG_INTR() simply calls the
 3855  * BUS_CONFIG_INTR() method of the parent of @p dev.
 3856  */
 3857 int
 3858 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
 3859     enum intr_polarity pol)
 3860 {
 3861 
 3862         /* Propagate up the bus hierarchy until someone handles it. */
 3863         if (dev->parent)
 3864                 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
 3865         return (EINVAL);
 3866 }
 3867 
 3868 /**
 3869  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
 3870  *
 3871  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
 3872  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
 3873  */
 3874 int
 3875 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
 3876     void *cookie, const char *descr)
 3877 {
 3878 
 3879         /* Propagate up the bus hierarchy until someone handles it. */
 3880         if (dev->parent)
 3881                 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
 3882                     descr));
 3883         return (EINVAL);
 3884 }
 3885 
 3886 /**
 3887  * @brief Helper function for implementing BUS_GET_DMA_TAG().
 3888  *
 3889  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
 3890  * BUS_GET_DMA_TAG() method of the parent of @p dev.
 3891  */
 3892 bus_dma_tag_t
 3893 bus_generic_get_dma_tag(device_t dev, device_t child)
 3894 {
 3895 
 3896         /* Propagate up the bus hierarchy until someone handles it. */
 3897         if (dev->parent != NULL)
 3898                 return (BUS_GET_DMA_TAG(dev->parent, child));
 3899         return (NULL);
 3900 }
 3901 
 3902 /**
 3903  * @brief Helper function for implementing BUS_GET_RESOURCE().
 3904  *
 3905  * This implementation of BUS_GET_RESOURCE() uses the
 3906  * resource_list_find() function to do most of the work. It calls
 3907  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3908  * search.
 3909  */
 3910 int
 3911 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
 3912     u_long *startp, u_long *countp)
 3913 {
 3914         struct resource_list *          rl = NULL;
 3915         struct resource_list_entry *    rle = NULL;
 3916 
 3917         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3918         if (!rl)
 3919                 return (EINVAL);
 3920 
 3921         rle = resource_list_find(rl, type, rid);
 3922         if (!rle)
 3923                 return (ENOENT);
 3924 
 3925         if (startp)
 3926                 *startp = rle->start;
 3927         if (countp)
 3928                 *countp = rle->count;
 3929 
 3930         return (0);
 3931 }
 3932 
 3933 /**
 3934  * @brief Helper function for implementing BUS_SET_RESOURCE().
 3935  *
 3936  * This implementation of BUS_SET_RESOURCE() uses the
 3937  * resource_list_add() function to do most of the work. It calls
 3938  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3939  * edit.
 3940  */
 3941 int
 3942 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
 3943     u_long start, u_long count)
 3944 {
 3945         struct resource_list *          rl = NULL;
 3946 
 3947         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3948         if (!rl)
 3949                 return (EINVAL);
 3950 
 3951         resource_list_add(rl, type, rid, start, (start + count - 1), count);
 3952 
 3953         return (0);
 3954 }
 3955 
 3956 /**
 3957  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
 3958  *
 3959  * This implementation of BUS_DELETE_RESOURCE() uses the
 3960  * resource_list_delete() function to do most of the work. It calls
 3961  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
 3962  * edit.
 3963  */
 3964 void
 3965 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
 3966 {
 3967         struct resource_list *          rl = NULL;
 3968 
 3969         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3970         if (!rl)
 3971                 return;
 3972 
 3973         resource_list_delete(rl, type, rid);
 3974 
 3975         return;
 3976 }
 3977 
 3978 /**
 3979  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
 3980  *
 3981  * This implementation of BUS_RELEASE_RESOURCE() uses the
 3982  * resource_list_release() function to do most of the work. It calls
 3983  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 3984  */
 3985 int
 3986 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
 3987     int rid, struct resource *r)
 3988 {
 3989         struct resource_list *          rl = NULL;
 3990 
 3991         if (device_get_parent(child) != dev)
 3992                 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
 3993                     type, rid, r));
 3994 
 3995         rl = BUS_GET_RESOURCE_LIST(dev, child);
 3996         if (!rl)
 3997                 return (EINVAL);
 3998 
 3999         return (resource_list_release(rl, dev, child, type, rid, r));
 4000 }
 4001 
 4002 /**
 4003  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
 4004  *
 4005  * This implementation of BUS_ALLOC_RESOURCE() uses the
 4006  * resource_list_alloc() function to do most of the work. It calls
 4007  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
 4008  */
 4009 struct resource *
 4010 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
 4011     int *rid, u_long start, u_long end, u_long count, u_int flags)
 4012 {
 4013         struct resource_list *          rl = NULL;
 4014 
 4015         if (device_get_parent(child) != dev)
 4016                 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
 4017                     type, rid, start, end, count, flags));
 4018 
 4019         rl = BUS_GET_RESOURCE_LIST(dev, child);
 4020         if (!rl)
 4021                 return (NULL);
 4022 
 4023         return (resource_list_alloc(rl, dev, child, type, rid,
 4024             start, end, count, flags));
 4025 }
 4026 
 4027 /**
 4028  * @brief Helper function for implementing BUS_CHILD_PRESENT().
 4029  *
 4030  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
 4031  * BUS_CHILD_PRESENT() method of the parent of @p dev.
 4032  */
 4033 int
 4034 bus_generic_child_present(device_t dev, device_t child)
 4035 {
 4036         return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
 4037 }
 4038 
 4039 /*
 4040  * Some convenience functions to make it easier for drivers to use the
 4041  * resource-management functions.  All these really do is hide the
 4042  * indirection through the parent's method table, making for slightly
 4043  * less-wordy code.  In the future, it might make sense for this code
 4044  * to maintain some sort of a list of resources allocated by each device.
 4045  */
 4046 
 4047 int
 4048 bus_alloc_resources(device_t dev, struct resource_spec *rs,
 4049     struct resource **res)
 4050 {
 4051         int i;
 4052 
 4053         for (i = 0; rs[i].type != -1; i++)
 4054                 res[i] = NULL;
 4055         for (i = 0; rs[i].type != -1; i++) {
 4056                 res[i] = bus_alloc_resource_any(dev,
 4057                     rs[i].type, &rs[i].rid, rs[i].flags);
 4058                 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
 4059                         bus_release_resources(dev, rs, res);
 4060                         return (ENXIO);
 4061                 }
 4062         }
 4063         return (0);
 4064 }
 4065 
 4066 void
 4067 bus_release_resources(device_t dev, const struct resource_spec *rs,
 4068     struct resource **res)
 4069 {
 4070         int i;
 4071 
 4072         for (i = 0; rs[i].type != -1; i++)
 4073                 if (res[i] != NULL) {
 4074                         bus_release_resource(
 4075                             dev, rs[i].type, rs[i].rid, res[i]);
 4076                         res[i] = NULL;
 4077                 }
 4078 }
 4079 
 4080 /**
 4081  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
 4082  *
 4083  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
 4084  * parent of @p dev.
 4085  */
 4086 struct resource *
 4087 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
 4088     u_long count, u_int flags)
 4089 {
 4090         if (dev->parent == NULL)
 4091                 return (NULL);
 4092         return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
 4093             count, flags));
 4094 }
 4095 
 4096 /**
 4097  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
 4098  *
 4099  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
 4100  * parent of @p dev.
 4101  */
 4102 int
 4103 bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
 4104     u_long end)
 4105 {
 4106         if (dev->parent == NULL)
 4107                 return (EINVAL);
 4108         return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
 4109 }
 4110 
 4111 /**
 4112  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
 4113  *
 4114  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
 4115  * parent of @p dev.
 4116  */
 4117 int
 4118 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
 4119 {
 4120         if (dev->parent == NULL)
 4121                 return (EINVAL);
 4122         return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 4123 }
 4124 
 4125 /**
 4126  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
 4127  *
 4128  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
 4129  * parent of @p dev.
 4130  */
 4131 int
 4132 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
 4133 {
 4134         if (dev->parent == NULL)
 4135                 return (EINVAL);
 4136         return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 4137 }
 4138 
 4139 /**
 4140  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
 4141  *
 4142  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
 4143  * parent of @p dev.
 4144  */
 4145 int
 4146 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
 4147 {
 4148         if (dev->parent == NULL)
 4149                 return (EINVAL);
 4150         return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
 4151 }
 4152 
 4153 /**
 4154  * @brief Wrapper function for BUS_SETUP_INTR().
 4155  *
 4156  * This function simply calls the BUS_SETUP_INTR() method of the
 4157  * parent of @p dev.
 4158  */
 4159 int
 4160 bus_setup_intr(device_t dev, struct resource *r, int flags,
 4161     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
 4162 {
 4163         int error;
 4164 
 4165         if (dev->parent == NULL)
 4166                 return (EINVAL);
 4167         error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
 4168             arg, cookiep);
 4169         if (error != 0)
 4170                 return (error);
 4171         if (handler != NULL && !(flags & INTR_MPSAFE))
 4172                 device_printf(dev, "[GIANT-LOCKED]\n");
 4173         return (0);
 4174 }
 4175 
 4176 /**
 4177  * @brief Wrapper function for BUS_TEARDOWN_INTR().
 4178  *
 4179  * This function simply calls the BUS_TEARDOWN_INTR() method of the
 4180  * parent of @p dev.
 4181  */
 4182 int
 4183 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
 4184 {
 4185         if (dev->parent == NULL)
 4186                 return (EINVAL);
 4187         return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
 4188 }
 4189 
 4190 /**
 4191  * @brief Wrapper function for BUS_BIND_INTR().
 4192  *
 4193  * This function simply calls the BUS_BIND_INTR() method of the
 4194  * parent of @p dev.
 4195  */
 4196 int
 4197 bus_bind_intr(device_t dev, struct resource *r, int cpu)
 4198 {
 4199         if (dev->parent == NULL)
 4200                 return (EINVAL);
 4201         return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
 4202 }
 4203 
 4204 /**
 4205  * @brief Wrapper function for BUS_DESCRIBE_INTR().
 4206  *
 4207  * This function first formats the requested description into a
 4208  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
 4209  * the parent of @p dev.
 4210  */
 4211 int
 4212 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
 4213     const char *fmt, ...)
 4214 {
 4215         va_list ap;
 4216         char descr[MAXCOMLEN + 1];
 4217 
 4218         if (dev->parent == NULL)
 4219                 return (EINVAL);
 4220         va_start(ap, fmt);
 4221         vsnprintf(descr, sizeof(descr), fmt, ap);
 4222         va_end(ap);
 4223         return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
 4224 }
 4225 
 4226 /**
 4227  * @brief Wrapper function for BUS_SET_RESOURCE().
 4228  *
 4229  * This function simply calls the BUS_SET_RESOURCE() method of the
 4230  * parent of @p dev.
 4231  */
 4232 int
 4233 bus_set_resource(device_t dev, int type, int rid,
 4234     u_long start, u_long count)
 4235 {
 4236         return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4237             start, count));
 4238 }
 4239 
 4240 /**
 4241  * @brief Wrapper function for BUS_GET_RESOURCE().
 4242  *
 4243  * This function simply calls the BUS_GET_RESOURCE() method of the
 4244  * parent of @p dev.
 4245  */
 4246 int
 4247 bus_get_resource(device_t dev, int type, int rid,
 4248     u_long *startp, u_long *countp)
 4249 {
 4250         return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4251             startp, countp));
 4252 }
 4253 
 4254 /**
 4255  * @brief Wrapper function for BUS_GET_RESOURCE().
 4256  *
 4257  * This function simply calls the BUS_GET_RESOURCE() method of the
 4258  * parent of @p dev and returns the start value.
 4259  */
 4260 u_long
 4261 bus_get_resource_start(device_t dev, int type, int rid)
 4262 {
 4263         u_long start, count;
 4264         int error;
 4265 
 4266         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4267             &start, &count);
 4268         if (error)
 4269                 return (0);
 4270         return (start);
 4271 }
 4272 
 4273 /**
 4274  * @brief Wrapper function for BUS_GET_RESOURCE().
 4275  *
 4276  * This function simply calls the BUS_GET_RESOURCE() method of the
 4277  * parent of @p dev and returns the count value.
 4278  */
 4279 u_long
 4280 bus_get_resource_count(device_t dev, int type, int rid)
 4281 {
 4282         u_long start, count;
 4283         int error;
 4284 
 4285         error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 4286             &start, &count);
 4287         if (error)
 4288                 return (0);
 4289         return (count);
 4290 }
 4291 
 4292 /**
 4293  * @brief Wrapper function for BUS_DELETE_RESOURCE().
 4294  *
 4295  * This function simply calls the BUS_DELETE_RESOURCE() method of the
 4296  * parent of @p dev.
 4297  */
 4298 void
 4299 bus_delete_resource(device_t dev, int type, int rid)
 4300 {
 4301         BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
 4302 }
 4303 
 4304 /**
 4305  * @brief Wrapper function for BUS_CHILD_PRESENT().
 4306  *
 4307  * This function simply calls the BUS_CHILD_PRESENT() method of the
 4308  * parent of @p dev.
 4309  */
 4310 int
 4311 bus_child_present(device_t child)
 4312 {
 4313         return (BUS_CHILD_PRESENT(device_get_parent(child), child));
 4314 }
 4315 
 4316 /**
 4317  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
 4318  *
 4319  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
 4320  * parent of @p dev.
 4321  */
 4322 int
 4323 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
 4324 {
 4325         device_t parent;
 4326 
 4327         parent = device_get_parent(child);
 4328         if (parent == NULL) {
 4329                 *buf = '\0';
 4330                 return (0);
 4331         }
 4332         return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
 4333 }
 4334 
 4335 /**
 4336  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
 4337  *
 4338  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
 4339  * parent of @p dev.
 4340  */
 4341 int
 4342 bus_child_location_str(device_t child, char *buf, size_t buflen)
 4343 {
 4344         device_t parent;
 4345 
 4346         parent = device_get_parent(child);
 4347         if (parent == NULL) {
 4348                 *buf = '\0';
 4349                 return (0);
 4350         }
 4351         return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
 4352 }
 4353 
 4354 /**
 4355  * @brief Wrapper function for BUS_GET_DMA_TAG().
 4356  *
 4357  * This function simply calls the BUS_GET_DMA_TAG() method of the
 4358  * parent of @p dev.
 4359  */
 4360 bus_dma_tag_t
 4361 bus_get_dma_tag(device_t dev)
 4362 {
 4363         device_t parent;
 4364 
 4365         parent = device_get_parent(dev);
 4366         if (parent == NULL)
 4367                 return (NULL);
 4368         return (BUS_GET_DMA_TAG(parent, dev));
 4369 }
 4370 
 4371 /* Resume all devices and then notify userland that we're up again. */
 4372 static int
 4373 root_resume(device_t dev)
 4374 {
 4375         int error;
 4376 
 4377         error = bus_generic_resume(dev);
 4378         if (error == 0)
 4379                 devctl_notify("kern", "power", "resume", NULL);
 4380         return (error);
 4381 }
 4382 
 4383 static int
 4384 root_print_child(device_t dev, device_t child)
 4385 {
 4386         int     retval = 0;
 4387 
 4388         retval += bus_print_child_header(dev, child);
 4389         retval += printf("\n");
 4390 
 4391         return (retval);
 4392 }
 4393 
 4394 static int
 4395 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
 4396     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
 4397 {
 4398         /*
 4399          * If an interrupt mapping gets to here something bad has happened.
 4400          */
 4401         panic("root_setup_intr");
 4402 }
 4403 
 4404 /*
 4405  * If we get here, assume that the device is permanant and really is
 4406  * present in the system.  Removable bus drivers are expected to intercept
 4407  * this call long before it gets here.  We return -1 so that drivers that
 4408  * really care can check vs -1 or some ERRNO returned higher in the food
 4409  * chain.
 4410  */
 4411 static int
 4412 root_child_present(device_t dev, device_t child)
 4413 {
 4414         return (-1);
 4415 }
 4416 
 4417 static kobj_method_t root_methods[] = {
 4418         /* Device interface */
 4419         KOBJMETHOD(device_shutdown,     bus_generic_shutdown),
 4420         KOBJMETHOD(device_suspend,      bus_generic_suspend),
 4421         KOBJMETHOD(device_resume,       root_resume),
 4422 
 4423         /* Bus interface */
 4424         KOBJMETHOD(bus_print_child,     root_print_child),
 4425         KOBJMETHOD(bus_read_ivar,       bus_generic_read_ivar),
 4426         KOBJMETHOD(bus_write_ivar,      bus_generic_write_ivar),
 4427         KOBJMETHOD(bus_setup_intr,      root_setup_intr),
 4428         KOBJMETHOD(bus_child_present,   root_child_present),
 4429 
 4430         KOBJMETHOD_END
 4431 };
 4432 
 4433 static driver_t root_driver = {
 4434         "root",
 4435         root_methods,
 4436         1,                      /* no softc */
 4437 };
 4438 
 4439 device_t        root_bus;
 4440 devclass_t      root_devclass;
 4441 
 4442 static int
 4443 root_bus_module_handler(module_t mod, int what, void* arg)
 4444 {
 4445         switch (what) {
 4446         case MOD_LOAD:
 4447                 TAILQ_INIT(&bus_data_devices);
 4448                 kobj_class_compile((kobj_class_t) &root_driver);
 4449                 root_bus = make_device(NULL, "root", 0);
 4450                 root_bus->desc = "System root bus";
 4451                 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
 4452                 root_bus->driver = &root_driver;
 4453                 root_bus->state = DS_ATTACHED;
 4454                 root_devclass = devclass_find_internal("root", NULL, FALSE);
 4455                 devinit();
 4456                 return (0);
 4457 
 4458         case MOD_SHUTDOWN:
 4459                 device_shutdown(root_bus);
 4460                 return (0);
 4461         default:
 4462                 return (EOPNOTSUPP);
 4463         }
 4464 
 4465         return (0);
 4466 }
 4467 
 4468 static moduledata_t root_bus_mod = {
 4469         "rootbus",
 4470         root_bus_module_handler,
 4471         NULL
 4472 };
 4473 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
 4474 
 4475 /**
 4476  * @brief Automatically configure devices
 4477  *
 4478  * This function begins the autoconfiguration process by calling
 4479  * device_probe_and_attach() for each child of the @c root0 device.
 4480  */ 
 4481 void
 4482 root_bus_configure(void)
 4483 {
 4484 
 4485         PDEBUG(("."));
 4486 
 4487         /* Eventually this will be split up, but this is sufficient for now. */
 4488         bus_set_pass(BUS_PASS_DEFAULT);
 4489 }
 4490 
 4491 /**
 4492  * @brief Module handler for registering device drivers
 4493  *
 4494  * This module handler is used to automatically register device
 4495  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
 4496  * devclass_add_driver() for the driver described by the
 4497  * driver_module_data structure pointed to by @p arg
 4498  */
 4499 int
 4500 driver_module_handler(module_t mod, int what, void *arg)
 4501 {
 4502         struct driver_module_data *dmd;
 4503         devclass_t bus_devclass;
 4504         kobj_class_t driver;
 4505         int error, pass;
 4506 
 4507         dmd = (struct driver_module_data *)arg;
 4508         bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
 4509         error = 0;
 4510 
 4511         switch (what) {
 4512         case MOD_LOAD:
 4513                 if (dmd->dmd_chainevh)
 4514                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4515 
 4516                 pass = dmd->dmd_pass;
 4517                 driver = dmd->dmd_driver;
 4518                 PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
 4519                     DRIVERNAME(driver), dmd->dmd_busname, pass));
 4520                 error = devclass_add_driver(bus_devclass, driver, pass,
 4521                     dmd->dmd_devclass);
 4522                 break;
 4523 
 4524         case MOD_UNLOAD:
 4525                 PDEBUG(("Unloading module: driver %s from bus %s",
 4526                     DRIVERNAME(dmd->dmd_driver),
 4527                     dmd->dmd_busname));
 4528                 error = devclass_delete_driver(bus_devclass,
 4529                     dmd->dmd_driver);
 4530 
 4531                 if (!error && dmd->dmd_chainevh)
 4532                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4533                 break;
 4534         case MOD_QUIESCE:
 4535                 PDEBUG(("Quiesce module: driver %s from bus %s",
 4536                     DRIVERNAME(dmd->dmd_driver),
 4537                     dmd->dmd_busname));
 4538                 error = devclass_quiesce_driver(bus_devclass,
 4539                     dmd->dmd_driver);
 4540 
 4541                 if (!error && dmd->dmd_chainevh)
 4542                         error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 4543                 break;
 4544         default:
 4545                 error = EOPNOTSUPP;
 4546                 break;
 4547         }
 4548 
 4549         return (error);
 4550 }
 4551 
 4552 /**
 4553  * @brief Enumerate all hinted devices for this bus.
 4554  *
 4555  * Walks through the hints for this bus and calls the bus_hinted_child
 4556  * routine for each one it fines.  It searches first for the specific
 4557  * bus that's being probed for hinted children (eg isa0), and then for
 4558  * generic children (eg isa).
 4559  *
 4560  * @param       dev     bus device to enumerate
 4561  */
 4562 void
 4563 bus_enumerate_hinted_children(device_t bus)
 4564 {
 4565         int i;
 4566         const char *dname, *busname;
 4567         int dunit;
 4568 
 4569         /*
 4570          * enumerate all devices on the specific bus
 4571          */
 4572         busname = device_get_nameunit(bus);
 4573         i = 0;
 4574         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 4575                 BUS_HINTED_CHILD(bus, dname, dunit);
 4576 
 4577         /*
 4578          * and all the generic ones.
 4579          */
 4580         busname = device_get_name(bus);
 4581         i = 0;
 4582         while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 4583                 BUS_HINTED_CHILD(bus, dname, dunit);
 4584 }
 4585 
 4586 #ifdef BUS_DEBUG
 4587 
 4588 /* the _short versions avoid iteration by not calling anything that prints
 4589  * more than oneliners. I love oneliners.
 4590  */
 4591 
 4592 static void
 4593 print_device_short(device_t dev, int indent)
 4594 {
 4595         if (!dev)
 4596                 return;
 4597 
 4598         indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
 4599             dev->unit, dev->desc,
 4600             (dev->parent? "":"no "),
 4601             (TAILQ_EMPTY(&dev->children)? "no ":""),
 4602             (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
 4603             (dev->flags&DF_FIXEDCLASS? "fixed,":""),
 4604             (dev->flags&DF_WILDCARD? "wildcard,":""),
 4605             (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
 4606             (dev->flags&DF_REBID? "rebiddable,":""),
 4607             (dev->ivars? "":"no "),
 4608             (dev->softc? "":"no "),
 4609             dev->busy));
 4610 }
 4611 
 4612 static void
 4613 print_device(device_t dev, int indent)
 4614 {
 4615         if (!dev)
 4616                 return;
 4617 
 4618         print_device_short(dev, indent);
 4619 
 4620         indentprintf(("Parent:\n"));
 4621         print_device_short(dev->parent, indent+1);
 4622         indentprintf(("Driver:\n"));
 4623         print_driver_short(dev->driver, indent+1);
 4624         indentprintf(("Devclass:\n"));
 4625         print_devclass_short(dev->devclass, indent+1);
 4626 }
 4627 
 4628 void
 4629 print_device_tree_short(device_t dev, int indent)
 4630 /* print the device and all its children (indented) */
 4631 {
 4632         device_t child;
 4633 
 4634         if (!dev)
 4635                 return;
 4636 
 4637         print_device_short(dev, indent);
 4638 
 4639         TAILQ_FOREACH(child, &dev->children, link) {
 4640                 print_device_tree_short(child, indent+1);
 4641         }
 4642 }
 4643 
 4644 void
 4645 print_device_tree(device_t dev, int indent)
 4646 /* print the device and all its children (indented) */
 4647 {
 4648         device_t child;
 4649 
 4650         if (!dev)
 4651                 return;
 4652 
 4653         print_device(dev, indent);
 4654 
 4655         TAILQ_FOREACH(child, &dev->children, link) {
 4656                 print_device_tree(child, indent+1);
 4657         }
 4658 }
 4659 
 4660 static void
 4661 print_driver_short(driver_t *driver, int indent)
 4662 {
 4663         if (!driver)
 4664                 return;
 4665 
 4666         indentprintf(("driver %s: softc size = %zd\n",
 4667             driver->name, driver->size));
 4668 }
 4669 
 4670 static void
 4671 print_driver(driver_t *driver, int indent)
 4672 {
 4673         if (!driver)
 4674                 return;
 4675 
 4676         print_driver_short(driver, indent);
 4677 }
 4678 
 4679 static void
 4680 print_driver_list(driver_list_t drivers, int indent)
 4681 {
 4682         driverlink_t driver;
 4683 
 4684         TAILQ_FOREACH(driver, &drivers, link) {
 4685                 print_driver(driver->driver, indent);
 4686         }
 4687 }
 4688 
 4689 static void
 4690 print_devclass_short(devclass_t dc, int indent)
 4691 {
 4692         if ( !dc )
 4693                 return;
 4694 
 4695         indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
 4696 }
 4697 
 4698 static void
 4699 print_devclass(devclass_t dc, int indent)
 4700 {
 4701         int i;
 4702 
 4703         if ( !dc )
 4704                 return;
 4705 
 4706         print_devclass_short(dc, indent);
 4707         indentprintf(("Drivers:\n"));
 4708         print_driver_list(dc->drivers, indent+1);
 4709 
 4710         indentprintf(("Devices:\n"));
 4711         for (i = 0; i < dc->maxunit; i++)
 4712                 if (dc->devices[i])
 4713                         print_device(dc->devices[i], indent+1);
 4714 }
 4715 
 4716 void
 4717 print_devclass_list_short(void)
 4718 {
 4719         devclass_t dc;
 4720 
 4721         printf("Short listing of devclasses, drivers & devices:\n");
 4722         TAILQ_FOREACH(dc, &devclasses, link) {
 4723                 print_devclass_short(dc, 0);
 4724         }
 4725 }
 4726 
 4727 void
 4728 print_devclass_list(void)
 4729 {
 4730         devclass_t dc;
 4731 
 4732         printf("Full listing of devclasses, drivers & devices:\n");
 4733         TAILQ_FOREACH(dc, &devclasses, link) {
 4734                 print_devclass(dc, 0);
 4735         }
 4736 }
 4737 
 4738 #endif
 4739 
 4740 /*
 4741  * User-space access to the device tree.
 4742  *
 4743  * We implement a small set of nodes:
 4744  *
 4745  * hw.bus                       Single integer read method to obtain the
 4746  *                              current generation count.
 4747  * hw.bus.devices               Reads the entire device tree in flat space.
 4748  * hw.bus.rman                  Resource manager interface
 4749  *
 4750  * We might like to add the ability to scan devclasses and/or drivers to
 4751  * determine what else is currently loaded/available.
 4752  */
 4753 
 4754 static int
 4755 sysctl_bus(SYSCTL_HANDLER_ARGS)
 4756 {
 4757         struct u_businfo        ubus;
 4758 
 4759         ubus.ub_version = BUS_USER_VERSION;
 4760         ubus.ub_generation = bus_data_generation;
 4761 
 4762         return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
 4763 }
 4764 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
 4765     "bus-related data");
 4766 
 4767 static int
 4768 sysctl_devices(SYSCTL_HANDLER_ARGS)
 4769 {
 4770         int                     *name = (int *)arg1;
 4771         u_int                   namelen = arg2;
 4772         int                     index;
 4773         struct device           *dev;
 4774         struct u_device         udev;   /* XXX this is a bit big */
 4775         int                     error;
 4776 
 4777         if (namelen != 2)
 4778                 return (EINVAL);
 4779 
 4780         if (bus_data_generation_check(name[0]))
 4781                 return (EINVAL);
 4782 
 4783         index = name[1];
 4784 
 4785         /*
 4786          * Scan the list of devices, looking for the requested index.
 4787          */
 4788         TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 4789                 if (index-- == 0)
 4790                         break;
 4791         }
 4792         if (dev == NULL)
 4793                 return (ENOENT);
 4794 
 4795         /*
 4796          * Populate the return array.
 4797          */
 4798         bzero(&udev, sizeof(udev));
 4799         udev.dv_handle = (uintptr_t)dev;
 4800         udev.dv_parent = (uintptr_t)dev->parent;
 4801         if (dev->nameunit != NULL)
 4802                 strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
 4803         if (dev->desc != NULL)
 4804                 strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
 4805         if (dev->driver != NULL && dev->driver->name != NULL)
 4806                 strlcpy(udev.dv_drivername, dev->driver->name,
 4807                     sizeof(udev.dv_drivername));
 4808         bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
 4809         bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
 4810         udev.dv_devflags = dev->devflags;
 4811         udev.dv_flags = dev->flags;
 4812         udev.dv_state = dev->state;
 4813         error = SYSCTL_OUT(req, &udev, sizeof(udev));
 4814         return (error);
 4815 }
 4816 
 4817 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
 4818     "system device tree");
 4819 
 4820 int
 4821 bus_data_generation_check(int generation)
 4822 {
 4823         if (generation != bus_data_generation)
 4824                 return (1);
 4825 
 4826         /* XXX generate optimised lists here? */
 4827         return (0);
 4828 }
 4829 
 4830 void
 4831 bus_data_generation_update(void)
 4832 {
 4833         bus_data_generation++;
 4834 }
 4835 
 4836 int
 4837 bus_free_resource(device_t dev, int type, struct resource *r)
 4838 {
 4839         if (r == NULL)
 4840                 return (0);
 4841         return (bus_release_resource(dev, type, rman_get_rid(r), r));
 4842 }

Cache object: 120d5abb303946e1e16a866e494a85b7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.