The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_devstat.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. The name of the author may not be used to endorse or promote products
   16  *    derived from this software without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  */
   30 
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD$");
   33 
   34 #include <sys/param.h>
   35 #include <sys/disk.h>
   36 #include <sys/kernel.h>
   37 #include <sys/systm.h>
   38 #include <sys/bio.h>
   39 #include <sys/devicestat.h>
   40 #include <sys/sdt.h>
   41 #include <sys/sysctl.h>
   42 #include <sys/malloc.h>
   43 #include <sys/lock.h>
   44 #include <sys/mutex.h>
   45 #include <sys/conf.h>
   46 #include <vm/vm.h>
   47 #include <vm/pmap.h>
   48 
   49 #include <machine/atomic.h>
   50 
   51 SDT_PROVIDER_DEFINE(io);
   52 
   53 SDT_PROBE_DEFINE2(io, , , start, "struct bio *", "struct devstat *");
   54 SDT_PROBE_DEFINE2(io, , , done, "struct bio *", "struct devstat *");
   55 SDT_PROBE_DEFINE2(io, , , wait__start, "struct bio *",
   56     "struct devstat *");
   57 SDT_PROBE_DEFINE2(io, , , wait__done, "struct bio *",
   58     "struct devstat *");
   59 
   60 #define DTRACE_DEVSTAT_START()          SDT_PROBE2(io, , , start, NULL, ds)
   61 #define DTRACE_DEVSTAT_BIO_START()      SDT_PROBE2(io, , , start, bp, ds)
   62 #define DTRACE_DEVSTAT_DONE()           SDT_PROBE2(io, , , done, NULL, ds)
   63 #define DTRACE_DEVSTAT_BIO_DONE()       SDT_PROBE2(io, , , done, bp, ds)
   64 #define DTRACE_DEVSTAT_WAIT_START()     SDT_PROBE2(io, , , wait__start, NULL, ds)
   65 #define DTRACE_DEVSTAT_WAIT_DONE()      SDT_PROBE2(io, , , wait__done, NULL, ds)
   66 
   67 static int devstat_num_devs;
   68 static long devstat_generation = 1;
   69 static int devstat_version = DEVSTAT_VERSION;
   70 static int devstat_current_devnumber;
   71 static struct mtx devstat_mutex;
   72 MTX_SYSINIT(devstat_mutex, &devstat_mutex, "devstat", MTX_DEF);
   73 
   74 static struct devstatlist device_statq = STAILQ_HEAD_INITIALIZER(device_statq);
   75 static struct devstat *devstat_alloc(void);
   76 static void devstat_free(struct devstat *);
   77 static void devstat_add_entry(struct devstat *ds, const void *dev_name, 
   78                        int unit_number, uint32_t block_size,
   79                        devstat_support_flags flags,
   80                        devstat_type_flags device_type,
   81                        devstat_priority priority);
   82 
   83 /*
   84  * Allocate a devstat and initialize it
   85  */
   86 struct devstat *
   87 devstat_new_entry(const void *dev_name,
   88                   int unit_number, uint32_t block_size,
   89                   devstat_support_flags flags,
   90                   devstat_type_flags device_type,
   91                   devstat_priority priority)
   92 {
   93         struct devstat *ds;
   94 
   95         mtx_assert(&devstat_mutex, MA_NOTOWNED);
   96 
   97         ds = devstat_alloc();
   98         mtx_lock(&devstat_mutex);
   99         if (unit_number == -1) {
  100                 ds->unit_number = unit_number;
  101                 ds->id = dev_name;
  102                 binuptime(&ds->creation_time);
  103                 devstat_generation++;
  104         } else {
  105                 devstat_add_entry(ds, dev_name, unit_number, block_size,
  106                                   flags, device_type, priority);
  107         }
  108         mtx_unlock(&devstat_mutex);
  109         return (ds);
  110 }
  111 
  112 /*
  113  * Take a malloced and zeroed devstat structure given to us, fill it in 
  114  * and add it to the queue of devices.  
  115  */
  116 static void
  117 devstat_add_entry(struct devstat *ds, const void *dev_name, 
  118                   int unit_number, uint32_t block_size,
  119                   devstat_support_flags flags,
  120                   devstat_type_flags device_type,
  121                   devstat_priority priority)
  122 {
  123         struct devstatlist *devstat_head;
  124         struct devstat *ds_tmp;
  125 
  126         mtx_assert(&devstat_mutex, MA_OWNED);
  127         devstat_num_devs++;
  128 
  129         devstat_head = &device_statq;
  130 
  131         /*
  132          * Priority sort.  Each driver passes in its priority when it adds
  133          * its devstat entry.  Drivers are sorted first by priority, and
  134          * then by probe order.
  135          * 
  136          * For the first device, we just insert it, since the priority
  137          * doesn't really matter yet.  Subsequent devices are inserted into
  138          * the list using the order outlined above.
  139          */
  140         if (devstat_num_devs == 1)
  141                 STAILQ_INSERT_TAIL(devstat_head, ds, dev_links);
  142         else {
  143                 STAILQ_FOREACH(ds_tmp, devstat_head, dev_links) {
  144                         struct devstat *ds_next;
  145 
  146                         ds_next = STAILQ_NEXT(ds_tmp, dev_links);
  147 
  148                         /*
  149                          * If we find a break between higher and lower
  150                          * priority items, and if this item fits in the
  151                          * break, insert it.  This also applies if the
  152                          * "lower priority item" is the end of the list.
  153                          */
  154                         if ((priority <= ds_tmp->priority)
  155                          && ((ds_next == NULL)
  156                            || (priority > ds_next->priority))) {
  157                                 STAILQ_INSERT_AFTER(devstat_head, ds_tmp, ds,
  158                                                     dev_links);
  159                                 break;
  160                         } else if (priority > ds_tmp->priority) {
  161                                 /*
  162                                  * If this is the case, we should be able
  163                                  * to insert ourselves at the head of the
  164                                  * list.  If we can't, something is wrong.
  165                                  */
  166                                 if (ds_tmp == STAILQ_FIRST(devstat_head)) {
  167                                         STAILQ_INSERT_HEAD(devstat_head,
  168                                                            ds, dev_links);
  169                                         break;
  170                                 } else {
  171                                         STAILQ_INSERT_TAIL(devstat_head,
  172                                                            ds, dev_links);
  173                                         printf("devstat_add_entry: HELP! "
  174                                                "sorting problem detected "
  175                                                "for name %p unit %d\n",
  176                                                dev_name, unit_number);
  177                                         break;
  178                                 }
  179                         }
  180                 }
  181         }
  182 
  183         ds->device_number = devstat_current_devnumber++;
  184         ds->unit_number = unit_number;
  185         strlcpy(ds->device_name, dev_name, DEVSTAT_NAME_LEN);
  186         ds->block_size = block_size;
  187         ds->flags = flags;
  188         ds->device_type = device_type;
  189         ds->priority = priority;
  190         binuptime(&ds->creation_time);
  191         devstat_generation++;
  192 }
  193 
  194 /*
  195  * Remove a devstat structure from the list of devices.
  196  */
  197 void
  198 devstat_remove_entry(struct devstat *ds)
  199 {
  200         struct devstatlist *devstat_head;
  201 
  202         mtx_assert(&devstat_mutex, MA_NOTOWNED);
  203         if (ds == NULL)
  204                 return;
  205 
  206         mtx_lock(&devstat_mutex);
  207 
  208         devstat_head = &device_statq;
  209 
  210         /* Remove this entry from the devstat queue */
  211         atomic_add_acq_int(&ds->sequence1, 1);
  212         if (ds->unit_number != -1) {
  213                 devstat_num_devs--;
  214                 STAILQ_REMOVE(devstat_head, ds, devstat, dev_links);
  215         }
  216         devstat_free(ds);
  217         devstat_generation++;
  218         mtx_unlock(&devstat_mutex);
  219 }
  220 
  221 /*
  222  * Record a transaction start.
  223  *
  224  * See comments for devstat_end_transaction().  Ordering is very important
  225  * here.
  226  */
  227 void
  228 devstat_start_transaction(struct devstat *ds, const struct bintime *now)
  229 {
  230 
  231         mtx_assert(&devstat_mutex, MA_NOTOWNED);
  232 
  233         /* sanity check */
  234         if (ds == NULL)
  235                 return;
  236 
  237         atomic_add_acq_int(&ds->sequence1, 1);
  238         /*
  239          * We only want to set the start time when we are going from idle
  240          * to busy.  The start time is really the start of the latest busy
  241          * period.
  242          */
  243         if (ds->start_count == ds->end_count) {
  244                 if (now != NULL)
  245                         ds->busy_from = *now;
  246                 else
  247                         binuptime(&ds->busy_from);
  248         }
  249         ds->start_count++;
  250         atomic_add_rel_int(&ds->sequence0, 1);
  251         DTRACE_DEVSTAT_START();
  252 }
  253 
  254 void
  255 devstat_start_transaction_bio(struct devstat *ds, struct bio *bp)
  256 {
  257 
  258         mtx_assert(&devstat_mutex, MA_NOTOWNED);
  259 
  260         /* sanity check */
  261         if (ds == NULL)
  262                 return;
  263 
  264         binuptime(&bp->bio_t0);
  265         devstat_start_transaction_bio_t0(ds, bp);
  266 }
  267 
  268 void
  269 devstat_start_transaction_bio_t0(struct devstat *ds, struct bio *bp)
  270 {
  271 
  272         /* sanity check */
  273         if (ds == NULL)
  274                 return;
  275 
  276         devstat_start_transaction(ds, &bp->bio_t0);
  277         DTRACE_DEVSTAT_BIO_START();
  278 }
  279 
  280 /*
  281  * Record the ending of a transaction, and incrment the various counters.
  282  *
  283  * Ordering in this function, and in devstat_start_transaction() is VERY
  284  * important.  The idea here is to run without locks, so we are very
  285  * careful to only modify some fields on the way "down" (i.e. at
  286  * transaction start) and some fields on the way "up" (i.e. at transaction
  287  * completion).  One exception is busy_from, which we only modify in
  288  * devstat_start_transaction() when there are no outstanding transactions,
  289  * and thus it can't be modified in devstat_end_transaction()
  290  * simultaneously.
  291  *
  292  * The sequence0 and sequence1 fields are provided to enable an application
  293  * spying on the structures with mmap(2) to tell when a structure is in a
  294  * consistent state or not.
  295  *
  296  * For this to work 100% reliably, it is important that the two fields
  297  * are at opposite ends of the structure and that they are incremented
  298  * in the opposite order of how a memcpy(3) in userland would copy them.
  299  * We assume that the copying happens front to back, but there is actually
  300  * no way short of writing your own memcpy(3) replacement to guarantee
  301  * this will be the case.
  302  *
  303  * In addition to this, being a kind of locks, they must be updated with
  304  * atomic instructions using appropriate memory barriers.
  305  */
  306 void
  307 devstat_end_transaction(struct devstat *ds, uint32_t bytes, 
  308                         devstat_tag_type tag_type, devstat_trans_flags flags,
  309                         const struct bintime *now, const struct bintime *then)
  310 {
  311         struct bintime dt, lnow;
  312 
  313         /* sanity check */
  314         if (ds == NULL)
  315                 return;
  316 
  317         if (now == NULL) {
  318                 binuptime(&lnow);
  319                 now = &lnow;
  320         }
  321 
  322         atomic_add_acq_int(&ds->sequence1, 1);
  323         /* Update byte and operations counts */
  324         ds->bytes[flags] += bytes;
  325         ds->operations[flags]++;
  326 
  327         /*
  328          * Keep a count of the various tag types sent.
  329          */
  330         if ((ds->flags & DEVSTAT_NO_ORDERED_TAGS) == 0 &&
  331             tag_type != DEVSTAT_TAG_NONE)
  332                 ds->tag_types[tag_type]++;
  333 
  334         if (then != NULL) {
  335                 /* Update duration of operations */
  336                 dt = *now;
  337                 bintime_sub(&dt, then);
  338                 bintime_add(&ds->duration[flags], &dt);
  339         }
  340 
  341         /* Accumulate busy time */
  342         dt = *now;
  343         bintime_sub(&dt, &ds->busy_from);
  344         bintime_add(&ds->busy_time, &dt);
  345         ds->busy_from = *now;
  346 
  347         ds->end_count++;
  348         atomic_add_rel_int(&ds->sequence0, 1);
  349         DTRACE_DEVSTAT_DONE();
  350 }
  351 
  352 void
  353 devstat_end_transaction_bio(struct devstat *ds, const struct bio *bp)
  354 {
  355 
  356         devstat_end_transaction_bio_bt(ds, bp, NULL);
  357 }
  358 
  359 void
  360 devstat_end_transaction_bio_bt(struct devstat *ds, const struct bio *bp,
  361     const struct bintime *now)
  362 {
  363         devstat_trans_flags flg;
  364         devstat_tag_type tag;
  365 
  366         /* sanity check */
  367         if (ds == NULL)
  368                 return;
  369 
  370         if (bp->bio_flags & BIO_ORDERED)
  371                 tag = DEVSTAT_TAG_ORDERED;
  372         else
  373                 tag = DEVSTAT_TAG_SIMPLE;
  374         if (bp->bio_cmd == BIO_DELETE)
  375                 flg = DEVSTAT_FREE;
  376         else if ((bp->bio_cmd == BIO_READ)
  377               || ((bp->bio_cmd == BIO_ZONE)
  378                && (bp->bio_zone.zone_cmd == DISK_ZONE_REPORT_ZONES)))
  379                 flg = DEVSTAT_READ;
  380         else if (bp->bio_cmd == BIO_WRITE)
  381                 flg = DEVSTAT_WRITE;
  382         else 
  383                 flg = DEVSTAT_NO_DATA;
  384 
  385         devstat_end_transaction(ds, bp->bio_bcount - bp->bio_resid,
  386                                 tag, flg, now, &bp->bio_t0);
  387         DTRACE_DEVSTAT_BIO_DONE();
  388 }
  389 
  390 /*
  391  * This is the sysctl handler for the devstat package.  The data pushed out
  392  * on the kern.devstat.all sysctl variable consists of the current devstat
  393  * generation number, and then an array of devstat structures, one for each
  394  * device in the system.
  395  *
  396  * This is more cryptic that obvious, but basically we neither can nor
  397  * want to hold the devstat_mutex for any amount of time, so we grab it
  398  * only when we need to and keep an eye on devstat_generation all the time.
  399  */
  400 static int
  401 sysctl_devstat(SYSCTL_HANDLER_ARGS)
  402 {
  403         int error;
  404         long mygen;
  405         struct devstat *nds;
  406 
  407         mtx_assert(&devstat_mutex, MA_NOTOWNED);
  408 
  409         /*
  410          * XXX devstat_generation should really be "volatile" but that
  411          * XXX freaks out the sysctl macro below.  The places where we
  412          * XXX change it and inspect it are bracketed in the mutex which
  413          * XXX guarantees us proper write barriers.  I don't believe the
  414          * XXX compiler is allowed to optimize mygen away across calls
  415          * XXX to other functions, so the following is belived to be safe.
  416          */
  417         mygen = devstat_generation;
  418 
  419         error = SYSCTL_OUT(req, &mygen, sizeof(mygen));
  420 
  421         if (devstat_num_devs == 0)
  422                 return(0);
  423 
  424         if (error != 0)
  425                 return (error);
  426 
  427         mtx_lock(&devstat_mutex);
  428         nds = STAILQ_FIRST(&device_statq); 
  429         if (mygen != devstat_generation)
  430                 error = EBUSY;
  431         mtx_unlock(&devstat_mutex);
  432 
  433         if (error != 0)
  434                 return (error);
  435 
  436         for (;nds != NULL;) {
  437                 error = SYSCTL_OUT(req, nds, sizeof(struct devstat));
  438                 if (error != 0)
  439                         return (error);
  440                 mtx_lock(&devstat_mutex);
  441                 if (mygen != devstat_generation)
  442                         error = EBUSY;
  443                 else
  444                         nds = STAILQ_NEXT(nds, dev_links);
  445                 mtx_unlock(&devstat_mutex);
  446                 if (error != 0)
  447                         return (error);
  448         }
  449         return(error);
  450 }
  451 
  452 /*
  453  * Sysctl entries for devstat.  The first one is a node that all the rest
  454  * hang off of. 
  455  */
  456 static SYSCTL_NODE(_kern, OID_AUTO, devstat, CTLFLAG_RD, NULL,
  457     "Device Statistics");
  458 
  459 SYSCTL_PROC(_kern_devstat, OID_AUTO, all, CTLFLAG_RD|CTLTYPE_OPAQUE,
  460     NULL, 0, sysctl_devstat, "S,devstat", "All devices in the devstat list");
  461 /*
  462  * Export the number of devices in the system so that userland utilities
  463  * can determine how much memory to allocate to hold all the devices.
  464  */
  465 SYSCTL_INT(_kern_devstat, OID_AUTO, numdevs, CTLFLAG_RD, 
  466     &devstat_num_devs, 0, "Number of devices in the devstat list");
  467 SYSCTL_LONG(_kern_devstat, OID_AUTO, generation, CTLFLAG_RD,
  468     &devstat_generation, 0, "Devstat list generation");
  469 SYSCTL_INT(_kern_devstat, OID_AUTO, version, CTLFLAG_RD, 
  470     &devstat_version, 0, "Devstat list version number");
  471 
  472 /*
  473  * Allocator for struct devstat structures.  We sub-allocate these from pages
  474  * which we get from malloc.  These pages are exported for mmap(2)'ing through
  475  * a miniature device driver
  476  */
  477 
  478 #define statsperpage (PAGE_SIZE / sizeof(struct devstat))
  479 
  480 static d_ioctl_t devstat_ioctl;
  481 static d_mmap_t devstat_mmap;
  482 
  483 static struct cdevsw devstat_cdevsw = {
  484         .d_version =    D_VERSION,
  485         .d_ioctl =      devstat_ioctl,
  486         .d_mmap =       devstat_mmap,
  487         .d_name =       "devstat",
  488 };
  489 
  490 struct statspage {
  491         TAILQ_ENTRY(statspage)  list;
  492         struct devstat          *stat;
  493         u_int                   nfree;
  494 };
  495 
  496 static size_t pagelist_pages = 0;
  497 static TAILQ_HEAD(, statspage)  pagelist = TAILQ_HEAD_INITIALIZER(pagelist);
  498 static MALLOC_DEFINE(M_DEVSTAT, "devstat", "Device statistics");
  499 
  500 static int
  501 devstat_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
  502     struct thread *td)
  503 {
  504         int error = ENOTTY;
  505 
  506         switch (cmd) {
  507         case DIOCGMEDIASIZE:
  508                 error = 0;
  509                 *(off_t *)data = pagelist_pages * PAGE_SIZE;
  510                 break;
  511         }
  512 
  513         return (error);
  514 }
  515 
  516 static int
  517 devstat_mmap(struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr,
  518     int nprot, vm_memattr_t *memattr)
  519 {
  520         struct statspage *spp;
  521 
  522         if (nprot != VM_PROT_READ)
  523                 return (-1);
  524         mtx_lock(&devstat_mutex);
  525         TAILQ_FOREACH(spp, &pagelist, list) {
  526                 if (offset == 0) {
  527                         *paddr = vtophys(spp->stat);
  528                         mtx_unlock(&devstat_mutex);
  529                         return (0);
  530                 }
  531                 offset -= PAGE_SIZE;
  532         }
  533         mtx_unlock(&devstat_mutex);
  534         return (-1);
  535 }
  536 
  537 static struct devstat *
  538 devstat_alloc(void)
  539 {
  540         struct devstat *dsp;
  541         struct statspage *spp, *spp2;
  542         u_int u;
  543         static int once;
  544 
  545         mtx_assert(&devstat_mutex, MA_NOTOWNED);
  546         if (!once) {
  547                 make_dev_credf(MAKEDEV_ETERNAL | MAKEDEV_CHECKNAME,
  548                     &devstat_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0444,
  549                     DEVSTAT_DEVICE_NAME);
  550                 once = 1;
  551         }
  552         spp2 = NULL;
  553         mtx_lock(&devstat_mutex);
  554         for (;;) {
  555                 TAILQ_FOREACH(spp, &pagelist, list) {
  556                         if (spp->nfree > 0)
  557                                 break;
  558                 }
  559                 if (spp != NULL)
  560                         break;
  561                 mtx_unlock(&devstat_mutex);
  562                 spp2 = malloc(sizeof *spp, M_DEVSTAT, M_ZERO | M_WAITOK);
  563                 spp2->stat = malloc(PAGE_SIZE, M_DEVSTAT, M_ZERO | M_WAITOK);
  564                 spp2->nfree = statsperpage;
  565 
  566                 /*
  567                  * If free statspages were added while the lock was released
  568                  * just reuse them.
  569                  */
  570                 mtx_lock(&devstat_mutex);
  571                 TAILQ_FOREACH(spp, &pagelist, list)
  572                         if (spp->nfree > 0)
  573                                 break;
  574                 if (spp == NULL) {
  575                         spp = spp2;
  576 
  577                         /*
  578                          * It would make more sense to add the new page at the
  579                          * head but the order on the list determine the
  580                          * sequence of the mapping so we can't do that.
  581                          */
  582                         pagelist_pages++;
  583                         TAILQ_INSERT_TAIL(&pagelist, spp, list);
  584                 } else
  585                         break;
  586         }
  587         dsp = spp->stat;
  588         for (u = 0; u < statsperpage; u++) {
  589                 if (dsp->allocated == 0)
  590                         break;
  591                 dsp++;
  592         }
  593         spp->nfree--;
  594         dsp->allocated = 1;
  595         mtx_unlock(&devstat_mutex);
  596         if (spp2 != NULL && spp2 != spp) {
  597                 free(spp2->stat, M_DEVSTAT);
  598                 free(spp2, M_DEVSTAT);
  599         }
  600         return (dsp);
  601 }
  602 
  603 static void
  604 devstat_free(struct devstat *dsp)
  605 {
  606         struct statspage *spp;
  607 
  608         mtx_assert(&devstat_mutex, MA_OWNED);
  609         bzero(dsp, sizeof *dsp);
  610         TAILQ_FOREACH(spp, &pagelist, list) {
  611                 if (dsp >= spp->stat && dsp < (spp->stat + statsperpage)) {
  612                         spp->nfree++;
  613                         return;
  614                 }
  615         }
  616 }
  617 
  618 SYSCTL_INT(_debug_sizeof, OID_AUTO, devstat, CTLFLAG_RD,
  619     SYSCTL_NULL_INT_PTR, sizeof(struct devstat), "sizeof(struct devstat)");

Cache object: e31a83ee579befa35164d952edcc49f3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.