The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_epoch.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  *
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include <sys/param.h>
   33 #include <sys/types.h>
   34 #include <sys/systm.h>
   35 #include <sys/counter.h>
   36 #include <sys/epoch.h>
   37 #include <sys/gtaskqueue.h>
   38 #include <sys/kernel.h>
   39 #include <sys/limits.h>
   40 #include <sys/lock.h>
   41 #include <sys/malloc.h>
   42 #include <sys/mutex.h>
   43 #include <sys/pcpu.h>
   44 #include <sys/proc.h>
   45 #include <sys/sched.h>
   46 #include <sys/sx.h>
   47 #include <sys/smp.h>
   48 #include <sys/sysctl.h>
   49 #include <sys/turnstile.h>
   50 #include <vm/vm.h>
   51 #include <vm/vm_extern.h>
   52 #include <vm/vm_kern.h>
   53 #include <vm/uma.h>
   54 
   55 #include <ck_epoch.h>
   56 
   57 #ifdef __amd64__
   58 #define EPOCH_ALIGN CACHE_LINE_SIZE*2
   59 #else
   60 #define EPOCH_ALIGN CACHE_LINE_SIZE
   61 #endif
   62 
   63 TAILQ_HEAD (epoch_tdlist, epoch_tracker);
   64 typedef struct epoch_record {
   65         ck_epoch_record_t er_record;
   66         volatile struct epoch_tdlist er_tdlist;
   67         volatile uint32_t er_gen;
   68         uint32_t er_cpuid;
   69         /* fields above are part of KBI and cannot be modified */
   70         struct epoch_context er_drain_ctx;
   71         struct epoch *er_parent;
   72 #ifdef INVARIANTS
   73         /* Used to verify record ownership for non-preemptible epochs. */
   74         struct thread *er_td;
   75 #endif
   76 } __aligned(EPOCH_ALIGN)     *epoch_record_t;
   77 
   78 struct epoch {
   79         struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
   80         epoch_record_t e_pcpu_record;
   81         int     e_in_use;
   82         int     e_flags;
   83         /* fields above are part of KBI and cannot be modified */
   84         struct sx e_drain_sx;
   85         struct mtx e_drain_mtx;
   86         volatile int e_drain_count;
   87 };
   88 
   89 /* arbitrary --- needs benchmarking */
   90 #define MAX_ADAPTIVE_SPIN 100
   91 #define MAX_EPOCHS 64
   92 
   93 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
   94 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information");
   95 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats");
   96 
   97 /* Stats. */
   98 static counter_u64_t block_count;
   99 
  100 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
  101     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
  102 static counter_u64_t migrate_count;
  103 
  104 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
  105     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
  106 static counter_u64_t turnstile_count;
  107 
  108 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
  109     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
  110 static counter_u64_t switch_count;
  111 
  112 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
  113     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
  114 static counter_u64_t epoch_call_count;
  115 
  116 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
  117     &epoch_call_count, "# of times a callback was deferred");
  118 static counter_u64_t epoch_call_task_count;
  119 
  120 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
  121     &epoch_call_task_count, "# of times a callback task was run");
  122 
  123 TAILQ_HEAD (threadlist, thread);
  124 
  125 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
  126     ck_epoch_entry_container)
  127 
  128 static struct epoch epoch_array[MAX_EPOCHS];
  129 
  130 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
  131 DPCPU_DEFINE(int, epoch_cb_count);
  132 
  133 static __read_mostly int inited;
  134 __read_mostly epoch_t global_epoch;
  135 __read_mostly epoch_t global_epoch_preempt;
  136 
  137 static void epoch_call_task(void *context __unused);
  138 static  uma_zone_t pcpu_zone_record;
  139 
  140 static struct sx epoch_sx;
  141 
  142 #define EPOCH_LOCK() sx_xlock(&epoch_sx)
  143 #define EPOCH_UNLOCK() sx_xunlock(&epoch_sx)
  144 
  145 static void
  146 epoch_init(void *arg __unused)
  147 {
  148         int cpu;
  149 
  150         block_count = counter_u64_alloc(M_WAITOK);
  151         migrate_count = counter_u64_alloc(M_WAITOK);
  152         turnstile_count = counter_u64_alloc(M_WAITOK);
  153         switch_count = counter_u64_alloc(M_WAITOK);
  154         epoch_call_count = counter_u64_alloc(M_WAITOK);
  155         epoch_call_task_count = counter_u64_alloc(M_WAITOK);
  156 
  157         pcpu_zone_record = uma_zcreate("epoch_record pcpu",
  158             sizeof(struct epoch_record), NULL, NULL, NULL, NULL,
  159             UMA_ALIGN_PTR, UMA_ZONE_PCPU);
  160         CPU_FOREACH(cpu) {
  161                 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0,
  162                     epoch_call_task, NULL);
  163                 taskqgroup_attach_cpu(qgroup_softirq,
  164                     DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, -1,
  165                     "epoch call task");
  166         }
  167         sx_init(&epoch_sx, "epoch-sx");
  168         inited = 1;
  169         global_epoch = epoch_alloc(0);
  170         global_epoch_preempt = epoch_alloc(EPOCH_PREEMPT);
  171 }
  172 SYSINIT(epoch, SI_SUB_EPOCH, SI_ORDER_FIRST, epoch_init, NULL);
  173 
  174 #if !defined(EARLY_AP_STARTUP)
  175 static void
  176 epoch_init_smp(void *dummy __unused)
  177 {
  178         inited = 2;
  179 }
  180 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
  181 #endif
  182 
  183 static void
  184 epoch_ctor(epoch_t epoch)
  185 {
  186         epoch_record_t er;
  187         int cpu;
  188 
  189         epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK);
  190         CPU_FOREACH(cpu) {
  191                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
  192                 bzero(er, sizeof(*er));
  193                 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
  194                 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
  195                 er->er_cpuid = cpu;
  196                 er->er_parent = epoch;
  197         }
  198 }
  199 
  200 static void
  201 epoch_adjust_prio(struct thread *td, u_char prio)
  202 {
  203 
  204         thread_lock(td);
  205         sched_prio(td, prio);
  206         thread_unlock(td);
  207 }
  208 
  209 epoch_t
  210 epoch_alloc(int flags)
  211 {
  212         epoch_t epoch;
  213         int i;
  214 
  215         if (__predict_false(!inited))
  216                 panic("%s called too early in boot", __func__);
  217 
  218         EPOCH_LOCK();
  219 
  220         /*
  221          * Find a free index in the epoch array. If no free index is
  222          * found, try to use the index after the last one.
  223          */
  224         for (i = 0;; i++) {
  225                 /*
  226                  * If too many epochs are currently allocated,
  227                  * return NULL.
  228                  */
  229                 if (i == MAX_EPOCHS) {
  230                         epoch = NULL;
  231                         goto done;
  232                 }
  233                 if (epoch_array[i].e_in_use == 0)
  234                         break;
  235         }
  236 
  237         epoch = epoch_array + i;
  238         ck_epoch_init(&epoch->e_epoch);
  239         epoch_ctor(epoch);
  240         epoch->e_flags = flags;
  241         sx_init(&epoch->e_drain_sx, "epoch-drain-sx");
  242         mtx_init(&epoch->e_drain_mtx, "epoch-drain-mtx", NULL, MTX_DEF);
  243 
  244         /*
  245          * Set e_in_use last, because when this field is set the
  246          * epoch_call_task() function will start scanning this epoch
  247          * structure.
  248          */
  249         atomic_store_rel_int(&epoch->e_in_use, 1);
  250 done:
  251         EPOCH_UNLOCK();
  252         return (epoch);
  253 }
  254 
  255 void
  256 epoch_free(epoch_t epoch)
  257 {
  258 #ifdef INVARIANTS
  259         int cpu;
  260 #endif
  261 
  262         EPOCH_LOCK();
  263 
  264         MPASS(epoch->e_in_use != 0);
  265 
  266         epoch_drain_callbacks(epoch);
  267 
  268         atomic_store_rel_int(&epoch->e_in_use, 0);
  269         /*
  270          * Make sure the epoch_call_task() function see e_in_use equal
  271          * to zero, by calling epoch_wait() on the global_epoch:
  272          */
  273         epoch_wait(global_epoch);
  274 #ifdef INVARIANTS
  275         CPU_FOREACH(cpu) {
  276                 epoch_record_t er;
  277 
  278                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
  279 
  280                 /*
  281                  * Sanity check: none of the records should be in use anymore.
  282                  * We drained callbacks above and freeing the pcpu records is
  283                  * imminent.
  284                  */
  285                 MPASS(er->er_td == NULL);
  286                 MPASS(TAILQ_EMPTY(&er->er_tdlist));
  287         }
  288 #endif
  289         uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record);
  290         mtx_destroy(&epoch->e_drain_mtx);
  291         sx_destroy(&epoch->e_drain_sx);
  292         memset(epoch, 0, sizeof(*epoch));
  293 
  294         EPOCH_UNLOCK();
  295 }
  296 
  297 static epoch_record_t
  298 epoch_currecord(epoch_t epoch)
  299 {
  300 
  301         return (zpcpu_get_cpu(epoch->e_pcpu_record, curcpu));
  302 }
  303 
  304 #define INIT_CHECK(epoch)                                       \
  305         do {                                                    \
  306                 if (__predict_false((epoch) == NULL))           \
  307                         return;                                 \
  308         } while (0)
  309 
  310 void
  311 epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et)
  312 {
  313         struct epoch_record *er;
  314         struct thread *td;
  315 
  316         MPASS(cold || epoch != NULL);
  317         INIT_CHECK(epoch);
  318         MPASS(epoch->e_flags & EPOCH_PREEMPT);
  319 #ifdef EPOCH_TRACKER_DEBUG
  320         et->et_magic_pre = EPOCH_MAGIC0;
  321         et->et_magic_post = EPOCH_MAGIC1;
  322 #endif
  323         td = curthread;
  324         et->et_td = td;
  325         td->td_epochnest++;
  326         critical_enter();
  327         sched_pin();
  328 
  329         td->td_pre_epoch_prio = td->td_priority;
  330         er = epoch_currecord(epoch);
  331         /* Record-level tracking is reserved for non-preemptible epochs. */
  332         MPASS(er->er_td == NULL);
  333         TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link);
  334         ck_epoch_begin(&er->er_record, &et->et_section);
  335         critical_exit();
  336 }
  337 
  338 void
  339 epoch_enter(epoch_t epoch)
  340 {
  341         struct thread *td;
  342         epoch_record_t er;
  343 
  344         MPASS(cold || epoch != NULL);
  345         INIT_CHECK(epoch);
  346         td = curthread;
  347 
  348         td->td_epochnest++;
  349         critical_enter();
  350         er = epoch_currecord(epoch);
  351 #ifdef INVARIANTS
  352         if (er->er_record.active == 0) {
  353                 MPASS(er->er_td == NULL);
  354                 er->er_td = curthread;
  355         } else {
  356                 /* We've recursed, just make sure our accounting isn't wrong. */
  357                 MPASS(er->er_td == curthread);
  358         }
  359 #endif
  360         ck_epoch_begin(&er->er_record, NULL);
  361 }
  362 
  363 void
  364 epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et)
  365 {
  366         struct epoch_record *er;
  367         struct thread *td;
  368 
  369         INIT_CHECK(epoch);
  370         td = curthread;
  371         critical_enter();
  372         sched_unpin();
  373         MPASS(td->td_epochnest);
  374         td->td_epochnest--;
  375         er = epoch_currecord(epoch);
  376         MPASS(epoch->e_flags & EPOCH_PREEMPT);
  377         MPASS(et != NULL);
  378         MPASS(et->et_td == td);
  379 #ifdef EPOCH_TRACKER_DEBUG
  380         MPASS(et->et_magic_pre == EPOCH_MAGIC0);
  381         MPASS(et->et_magic_post == EPOCH_MAGIC1);
  382         et->et_magic_pre = 0;
  383         et->et_magic_post = 0;
  384 #endif
  385 #ifdef INVARIANTS
  386         et->et_td = (void*)0xDEADBEEF;
  387         /* Record-level tracking is reserved for non-preemptible epochs. */
  388         MPASS(er->er_td == NULL);
  389 #endif
  390         ck_epoch_end(&er->er_record, &et->et_section);
  391         TAILQ_REMOVE(&er->er_tdlist, et, et_link);
  392         er->er_gen++;
  393         if (__predict_false(td->td_pre_epoch_prio != td->td_priority))
  394                 epoch_adjust_prio(td, td->td_pre_epoch_prio);
  395         critical_exit();
  396 }
  397 
  398 void
  399 epoch_exit(epoch_t epoch)
  400 {
  401         struct thread *td;
  402         epoch_record_t er;
  403 
  404         INIT_CHECK(epoch);
  405         td = curthread;
  406         MPASS(td->td_epochnest);
  407         td->td_epochnest--;
  408         er = epoch_currecord(epoch);
  409         ck_epoch_end(&er->er_record, NULL);
  410 #ifdef INVARIANTS
  411         MPASS(er->er_td == curthread);
  412         if (er->er_record.active == 0)
  413                 er->er_td = NULL;
  414 #endif
  415         critical_exit();
  416 }
  417 
  418 /*
  419  * epoch_block_handler_preempt() is a callback from the CK code when another
  420  * thread is currently in an epoch section.
  421  */
  422 static void
  423 epoch_block_handler_preempt(struct ck_epoch *global __unused,
  424     ck_epoch_record_t *cr, void *arg __unused)
  425 {
  426         epoch_record_t record;
  427         struct thread *td, *owner, *curwaittd;
  428         struct epoch_tracker *tdwait;
  429         struct turnstile *ts;
  430         struct lock_object *lock;
  431         int spincount, gen;
  432         int locksheld __unused;
  433 
  434         record = __containerof(cr, struct epoch_record, er_record);
  435         td = curthread;
  436         locksheld = td->td_locks;
  437         spincount = 0;
  438         counter_u64_add(block_count, 1);
  439         /*
  440          * We lost a race and there's no longer any threads
  441          * on the CPU in an epoch section.
  442          */
  443         if (TAILQ_EMPTY(&record->er_tdlist))
  444                 return;
  445 
  446         if (record->er_cpuid != curcpu) {
  447                 /*
  448                  * If the head of the list is running, we can wait for it
  449                  * to remove itself from the list and thus save us the
  450                  * overhead of a migration
  451                  */
  452                 gen = record->er_gen;
  453                 thread_unlock(td);
  454                 /*
  455                  * We can't actually check if the waiting thread is running
  456                  * so we simply poll for it to exit before giving up and
  457                  * migrating.
  458                  */
  459                 do {
  460                         cpu_spinwait();
  461                 } while (!TAILQ_EMPTY(&record->er_tdlist) &&
  462                                  gen == record->er_gen &&
  463                                  spincount++ < MAX_ADAPTIVE_SPIN);
  464                 thread_lock(td);
  465                 /*
  466                  * If the generation has changed we can poll again
  467                  * otherwise we need to migrate.
  468                  */
  469                 if (gen != record->er_gen)
  470                         return;
  471                 /*
  472                  * Being on the same CPU as that of the record on which
  473                  * we need to wait allows us access to the thread
  474                  * list associated with that CPU. We can then examine the
  475                  * oldest thread in the queue and wait on its turnstile
  476                  * until it resumes and so on until a grace period
  477                  * elapses.
  478                  *
  479                  */
  480                 counter_u64_add(migrate_count, 1);
  481                 sched_bind(td, record->er_cpuid);
  482                 /*
  483                  * At this point we need to return to the ck code
  484                  * to scan to see if a grace period has elapsed.
  485                  * We can't move on to check the thread list, because
  486                  * in the meantime new threads may have arrived that
  487                  * in fact belong to a different epoch.
  488                  */
  489                 return;
  490         }
  491         /*
  492          * Try to find a thread in an epoch section on this CPU
  493          * waiting on a turnstile. Otherwise find the lowest
  494          * priority thread (highest prio value) and drop our priority
  495          * to match to allow it to run.
  496          */
  497         TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) {
  498                 /*
  499                  * Propagate our priority to any other waiters to prevent us
  500                  * from starving them. They will have their original priority
  501                  * restore on exit from epoch_wait().
  502                  */
  503                 curwaittd = tdwait->et_td;
  504                 if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) {
  505                         critical_enter();
  506                         thread_unlock(td);
  507                         thread_lock(curwaittd);
  508                         sched_prio(curwaittd, td->td_priority);
  509                         thread_unlock(curwaittd);
  510                         thread_lock(td);
  511                         critical_exit();
  512                 }
  513                 if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) &&
  514                     ((ts = curwaittd->td_blocked) != NULL)) {
  515                         /*
  516                          * We unlock td to allow turnstile_wait to reacquire
  517                          * the thread lock. Before unlocking it we enter a
  518                          * critical section to prevent preemption after we
  519                          * reenable interrupts by dropping the thread lock in
  520                          * order to prevent curwaittd from getting to run.
  521                          */
  522                         critical_enter();
  523                         thread_unlock(td);
  524 
  525                         if (turnstile_lock(ts, &lock, &owner)) {
  526                                 if (ts == curwaittd->td_blocked) {
  527                                         MPASS(TD_IS_INHIBITED(curwaittd) &&
  528                                             TD_ON_LOCK(curwaittd));
  529                                         critical_exit();
  530                                         turnstile_wait(ts, owner,
  531                                             curwaittd->td_tsqueue);
  532                                         counter_u64_add(turnstile_count, 1);
  533                                         thread_lock(td);
  534                                         return;
  535                                 }
  536                                 turnstile_unlock(ts, lock);
  537                         }
  538                         thread_lock(td);
  539                         critical_exit();
  540                         KASSERT(td->td_locks == locksheld,
  541                             ("%d extra locks held", td->td_locks - locksheld));
  542                 }
  543         }
  544         /*
  545          * We didn't find any threads actually blocked on a lock
  546          * so we have nothing to do except context switch away.
  547          */
  548         counter_u64_add(switch_count, 1);
  549         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
  550 
  551         /*
  552          * Release the thread lock while yielding to
  553          * allow other threads to acquire the lock
  554          * pointed to by TDQ_LOCKPTR(td). Else a
  555          * deadlock like situation might happen. (HPS)
  556          */
  557         thread_unlock(td);
  558         thread_lock(td);
  559 }
  560 
  561 void
  562 epoch_wait_preempt(epoch_t epoch)
  563 {
  564         struct thread *td;
  565         int was_bound;
  566         int old_cpu;
  567         int old_pinned;
  568         u_char old_prio;
  569         int locks __unused;
  570 
  571         MPASS(cold || epoch != NULL);
  572         INIT_CHECK(epoch);
  573         td = curthread;
  574 #ifdef INVARIANTS
  575         locks = curthread->td_locks;
  576         MPASS(epoch->e_flags & EPOCH_PREEMPT);
  577         if ((epoch->e_flags & EPOCH_LOCKED) == 0)
  578                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
  579                     "epoch_wait() can be long running");
  580         KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle "
  581             "of an epoch section of the same epoch"));
  582 #endif
  583         DROP_GIANT();
  584         thread_lock(td);
  585 
  586         old_cpu = PCPU_GET(cpuid);
  587         old_pinned = td->td_pinned;
  588         old_prio = td->td_priority;
  589         was_bound = sched_is_bound(td);
  590         sched_unbind(td);
  591         td->td_pinned = 0;
  592         sched_bind(td, old_cpu);
  593 
  594         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt,
  595             NULL);
  596 
  597         /* restore CPU binding, if any */
  598         if (was_bound != 0) {
  599                 sched_bind(td, old_cpu);
  600         } else {
  601                 /* get thread back to initial CPU, if any */
  602                 if (old_pinned != 0)
  603                         sched_bind(td, old_cpu);
  604                 sched_unbind(td);
  605         }
  606         /* restore pinned after bind */
  607         td->td_pinned = old_pinned;
  608 
  609         /* restore thread priority */
  610         sched_prio(td, old_prio);
  611         thread_unlock(td);
  612         PICKUP_GIANT();
  613         KASSERT(td->td_locks == locks,
  614             ("%d residual locks held", td->td_locks - locks));
  615 }
  616 
  617 static void
  618 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
  619     void *arg __unused)
  620 {
  621         cpu_spinwait();
  622 }
  623 
  624 void
  625 epoch_wait(epoch_t epoch)
  626 {
  627 
  628         MPASS(cold || epoch != NULL);
  629         INIT_CHECK(epoch);
  630         MPASS(epoch->e_flags == 0);
  631         critical_enter();
  632         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
  633         critical_exit();
  634 }
  635 
  636 void
  637 epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t))
  638 {
  639         epoch_record_t er;
  640         ck_epoch_entry_t *cb;
  641 
  642         cb = (void *)ctx;
  643 
  644         MPASS(callback);
  645         /* too early in boot to have epoch set up */
  646         if (__predict_false(epoch == NULL))
  647                 goto boottime;
  648 #if !defined(EARLY_AP_STARTUP)
  649         if (__predict_false(inited < 2))
  650                 goto boottime;
  651 #endif
  652 
  653         critical_enter();
  654         *DPCPU_PTR(epoch_cb_count) += 1;
  655         er = epoch_currecord(epoch);
  656         ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback);
  657         critical_exit();
  658         return;
  659 boottime:
  660         callback(ctx);
  661 }
  662 
  663 static void
  664 epoch_call_task(void *arg __unused)
  665 {
  666         ck_stack_entry_t *cursor, *head, *next;
  667         ck_epoch_record_t *record;
  668         epoch_record_t er;
  669         epoch_t epoch;
  670         ck_stack_t cb_stack;
  671         int i, npending, total;
  672 
  673         ck_stack_init(&cb_stack);
  674         critical_enter();
  675         epoch_enter(global_epoch);
  676         for (total = i = 0; i != MAX_EPOCHS; i++) {
  677                 epoch = epoch_array + i;
  678                 if (__predict_false(
  679                     atomic_load_acq_int(&epoch->e_in_use) == 0))
  680                         continue;
  681                 er = epoch_currecord(epoch);
  682                 record = &er->er_record;
  683                 if ((npending = record->n_pending) == 0)
  684                         continue;
  685                 ck_epoch_poll_deferred(record, &cb_stack);
  686                 total += npending - record->n_pending;
  687         }
  688         epoch_exit(global_epoch);
  689         *DPCPU_PTR(epoch_cb_count) -= total;
  690         critical_exit();
  691 
  692         counter_u64_add(epoch_call_count, total);
  693         counter_u64_add(epoch_call_task_count, 1);
  694 
  695         head = ck_stack_batch_pop_npsc(&cb_stack);
  696         for (cursor = head; cursor != NULL; cursor = next) {
  697                 struct ck_epoch_entry *entry =
  698                     ck_epoch_entry_container(cursor);
  699 
  700                 next = CK_STACK_NEXT(cursor);
  701                 entry->function(entry);
  702         }
  703 }
  704 
  705 static int
  706 in_epoch_verbose_preempt(epoch_t epoch, int dump_onfail)
  707 {
  708         epoch_record_t er;
  709         struct epoch_tracker *tdwait;
  710         struct thread *td;
  711 
  712         MPASS(epoch != NULL);
  713         MPASS((epoch->e_flags & EPOCH_PREEMPT) != 0);
  714         td = curthread;
  715         if (td->td_epochnest == 0)
  716                 return (0);
  717         critical_enter();
  718         er = epoch_currecord(epoch);
  719         TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
  720                 if (tdwait->et_td == td) {
  721                         critical_exit();
  722                         return (1);
  723                 }
  724 #ifdef INVARIANTS
  725         if (dump_onfail) {
  726                 MPASS(td->td_pinned);
  727                 printf("cpu: %d id: %d\n", curcpu, td->td_tid);
  728                 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
  729                         printf("td_tid: %d ", tdwait->et_td->td_tid);
  730                 printf("\n");
  731         }
  732 #endif
  733         critical_exit();
  734         return (0);
  735 }
  736 
  737 #ifdef INVARIANTS
  738 static void
  739 epoch_assert_nocpu(epoch_t epoch, struct thread *td)
  740 {
  741         epoch_record_t er;
  742         int cpu;
  743         bool crit;
  744 
  745         crit = td->td_critnest > 0;
  746 
  747         /* Check for a critical section mishap. */
  748         CPU_FOREACH(cpu) {
  749                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
  750                 KASSERT(er->er_td != td,
  751                     ("%s critical section in epoch from cpu %d",
  752                     (crit ? "exited" : "re-entered"), cpu));
  753         }
  754 }
  755 #else
  756 #define epoch_assert_nocpu(e, td)
  757 #endif
  758 
  759 int
  760 in_epoch_verbose(epoch_t epoch, int dump_onfail)
  761 {
  762         epoch_record_t er;
  763         struct thread *td;
  764 
  765         if (__predict_false((epoch) == NULL))
  766                 return (0);
  767         if ((epoch->e_flags & EPOCH_PREEMPT) != 0)
  768                 return (in_epoch_verbose_preempt(epoch, dump_onfail));
  769 
  770         /*
  771          * The thread being in a critical section is a necessary
  772          * condition to be correctly inside a non-preemptible epoch,
  773          * so it's definitely not in this epoch.
  774          */
  775         td = curthread;
  776         if (td->td_critnest == 0) {
  777                 epoch_assert_nocpu(epoch, td);
  778                 return (0);
  779         }
  780 
  781         /*
  782          * The current cpu is in a critical section, so the epoch record will be
  783          * stable for the rest of this function.  Knowing that the record is not
  784          * active is sufficient for knowing whether we're in this epoch or not,
  785          * since it's a pcpu record.
  786          */
  787         er = epoch_currecord(epoch);
  788         if (er->er_record.active == 0) {
  789                 epoch_assert_nocpu(epoch, td);
  790                 return (0);
  791         }
  792 
  793         MPASS(er->er_td == td);
  794         return (1);
  795 }
  796 
  797 int
  798 in_epoch(epoch_t epoch)
  799 {
  800         return (in_epoch_verbose(epoch, 0));
  801 }
  802 
  803 static void
  804 epoch_drain_cb(struct epoch_context *ctx)
  805 {
  806         struct epoch *epoch =
  807             __containerof(ctx, struct epoch_record, er_drain_ctx)->er_parent;
  808 
  809         if (atomic_fetchadd_int(&epoch->e_drain_count, -1) == 1) {
  810                 mtx_lock(&epoch->e_drain_mtx);
  811                 wakeup(epoch);
  812                 mtx_unlock(&epoch->e_drain_mtx);
  813         }
  814 }
  815 
  816 void
  817 epoch_drain_callbacks(epoch_t epoch)
  818 {
  819         epoch_record_t er;
  820         struct thread *td;
  821         int was_bound;
  822         int old_pinned;
  823         int old_cpu;
  824         int cpu;
  825 
  826         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
  827             "epoch_drain_callbacks() may sleep!");
  828 
  829         /* too early in boot to have epoch set up */
  830         if (__predict_false(epoch == NULL))
  831                 return;
  832 #if !defined(EARLY_AP_STARTUP)
  833         if (__predict_false(inited < 2))
  834                 return;
  835 #endif
  836         DROP_GIANT();
  837 
  838         sx_xlock(&epoch->e_drain_sx);
  839         mtx_lock(&epoch->e_drain_mtx);
  840 
  841         td = curthread;
  842         thread_lock(td);
  843         old_cpu = PCPU_GET(cpuid);
  844         old_pinned = td->td_pinned;
  845         was_bound = sched_is_bound(td);
  846         sched_unbind(td);
  847         td->td_pinned = 0;
  848 
  849         CPU_FOREACH(cpu)
  850                 epoch->e_drain_count++;
  851         CPU_FOREACH(cpu) {
  852                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
  853                 sched_bind(td, cpu);
  854                 epoch_call(epoch, &er->er_drain_ctx, &epoch_drain_cb);
  855         }
  856 
  857         /* restore CPU binding, if any */
  858         if (was_bound != 0) {
  859                 sched_bind(td, old_cpu);
  860         } else {
  861                 /* get thread back to initial CPU, if any */
  862                 if (old_pinned != 0)
  863                         sched_bind(td, old_cpu);
  864                 sched_unbind(td);
  865         }
  866         /* restore pinned after bind */
  867         td->td_pinned = old_pinned;
  868 
  869         thread_unlock(td);
  870 
  871         while (epoch->e_drain_count != 0)
  872                 msleep(epoch, &epoch->e_drain_mtx, PZERO, "EDRAIN", 0);
  873 
  874         mtx_unlock(&epoch->e_drain_mtx);
  875         sx_xunlock(&epoch->e_drain_sx);
  876 
  877         PICKUP_GIANT();
  878 }
  879 
  880 /* for binary compatibility */
  881 
  882 struct epoch_tracker_KBI {
  883         void *datap[3];
  884 #ifdef EPOCH_TRACKER_DEBUG
  885         int datai[5];
  886 #else
  887         int datai[1];
  888 #endif
  889 } __aligned(sizeof(void *));
  890 
  891 CTASSERT(sizeof(struct epoch_tracker_KBI) >= sizeof(struct epoch_tracker));
  892 
  893 void
  894 epoch_enter_preempt_KBI(epoch_t epoch, epoch_tracker_t et)
  895 {
  896         epoch_enter_preempt(epoch, et);
  897 }
  898 
  899 void
  900 epoch_exit_preempt_KBI(epoch_t epoch, epoch_tracker_t et)
  901 {
  902         epoch_exit_preempt(epoch, et);
  903 }
  904 
  905 void
  906 epoch_enter_KBI(epoch_t epoch)
  907 {
  908         epoch_enter(epoch);
  909 }
  910 
  911 void
  912 epoch_exit_KBI(epoch_t epoch)
  913 {
  914         epoch_exit(epoch);
  915 }

Cache object: 0102ae5a9b8eb7ead6eb95e31876cffc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.